WorldWideScience

Sample records for quadrangle v-9 venus

  1. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus

    Science.gov (United States)

    Young, Duncan A.; Hansen, Vicki L.

    2003-01-01

    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  2. Geologic Map of the Greenaway Quadrangle (V-24), Venus

    Science.gov (United States)

    Lang, Nicholas P.; Hansen, Vicki L.

    2010-01-01

    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that aerially expansive shield terrain (unit st) played a primary role and coronae played a secondary role in volcanic resurfacing across the map area.

  3. Stratigraphy and Observations of Nepthys Mons Quadrangle (V54), Venus

    Science.gov (United States)

    Bridges, N. T.

    2001-01-01

    Initial mapping has begun in Venus' Nepthys Mons Quadrangle (V54, 300-330 deg. E, 25-50 deg. S). Major research areas addressed are how the styles of volcanism and tectonism have changed with time, the evolution of shield volcanoes, the evolution of coronae, the characteristics of plains volcanism, and what these observations tell us about the general geologic history of Venus. Reported here is a preliminary general stratigraphy and several intriguing findings. Additional information is contained in the original extended abstract.

  4. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    Science.gov (United States)

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  5. Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2010-01-01

    The Fredegonde quadrangle (V-57; 50-75degS, 60-120degE, Fig. 1) corresponds to the northeastern edge of Lada Terra and covers a broad area of the topographic province of midlands (0-2 km above MPR [1,2]). This province is most abundant on Venus and displays a wide variety of units and structures [3-11]. The sequence of events that formed the characteristic features of the midlands is crucially important in understanding of the timing and modes of evolution of this topographic province. Topographically, the Fredegonde quadrangle is within a transition zone between the elevated portion of Lada Terra to the west (Quetzalpetlatl-Boala Coronae rise, approx.3.5 km) and the lowland of Aino Planitia to the north and northeast (approx.-0.5 km). This transition is one of the key features of the V-57 quadrangle. In this respect the quadrangle resembles the region of V-4 quadrangle [12] that shows transition between the midlands and the lowlands of Atalanta Planitia. One of the main goals of our mapping within the V-57 quadrangle is comparison of this region with the other transitional topographic zones such as quadrangles V-4 and V-3 [13]. The most prominent features in the V-57 quadrangle are linear deformational zones of grooves and large coronae. The zones characterize the central and NW portions of the map area and represent broad (up to 100s of km wide) ridges that are 100s of m high. Morphologically and topographically, these zones are almost identical to the groove belt/corona complexes at the western edge of Atalanta Planitia [12]. Within the Fredegonde area, however, the zones are oriented at high angles to the general trend of elongated Aino Planitia, whereas within the V-4 quadrangle they are parallel to the edge of Atalanta Planitia. Relatively small (100s of km across, 100s of m deep) equidimensional basins occur between the corona-groove-chains in the area of V-57 quadrangle. These basins are similar to those that populate the area of the V-3 quadrangle [13

  6. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  7. Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).

  8. Geologic map of the Ganiki Planitia quadrangle (V-14), Venus

    Science.gov (United States)

    Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna

    2011-01-01

    The Ganiki Planitia (V-14) quadrangle on Venus, which extends from 25° N. to 50° N. and from 180° E. to 210° E., derives its name from the extensive suite of plains that dominates the geology of the northern part of the region. With a surface area of nearly 6.5 x 106 km2 (roughly two-thirds that of the United States), the quadrangle is located northwest of the Beta-Atla-Themis volcanic zone and southeast of the Atalanta Planitia lowlands, areas proposed to be the result of large scale mantle upwelling and downwelling, respectively. The region immediately south of Ganiki Planitia is dominated by Atla Regio, a major volcanic rise beneath which localized upwelling appears to be ongoing, whereas the area just to the north is dominated by the orderly system of north-trending deformation belts that characterize Vinmara Planitia. The Ganiki Planitia quadrangle thus lies at the intersection between several physiographic regions where extensive mantle flow-induced tectonic and volcanic processes are thought to have occurred. The geology of the V-14 quadrangle is characterized by a complex array of volcanic, tectonic, and impact-derived features. There are eleven impact craters with diameters from 4 to 64 km, as well as four diffuse 'splotch' features interpreted to be the product of near-surface bolide explosions. Tectonic activity has produced heavily deformed tesserae, belts of complex deformation and rifts as well as a distributed system of fractures and wrinkle ridges. Volcanic activity has produced extensive regional plains deposits, and in the northwest corner of the quadrangle these plains host the initial (or terminal) 700 km of the Baltis Vallis canali, an enigmatic volcanic feature with a net length of ~7,000 km that is the longest channel on Venus. Major volcanic centers in V-14 include eight large volcanoes and eight coronae; all but one of these sixteen features was noted during a previous global survey. The V-14 quadrangle contains an abundance of minor

  9. Geologic map of the Lada Terra quadrangle (V-56), Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  10. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2010-01-01

    The Lakshmi Planum quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N., and from long 300 degrees to 360 degrees E. The elevated volcanic plateau of Lakshmi Planum, which represents a very specific and unique class of highlands on Venus, dominates the northern half of the quadrangle. The surface of the planum stands 3-4 km above mean planetary radius and the plateau is surrounded by the highest Venusian mountain ranges, 7-10 km high. Before the Magellan mission, the geology of the Lakshmi Planum quadrangle was known on the basis of topographic data acquired by the Pioneer-Venus and Venera-15/16 altimeter and radar images received by the Arecibo telescope and Venera-15/16 spacecraft. These data showed unique topographic and morphologic structures of the mountain belts, which have no counterparts elsewhere on Venus, and the interior volcanic plateau with two large and low volcanic centers and large blocks of tessera-like terrain. From the outside, Lakshmi Planum is outlined by a zone of complexly deformed terrains that occur on the regional outer slope of Lakshmi. Vast low-lying plains surround this zone. After acquisition of the Venera-15/16 data, two classes of hypotheses were formulated to explain the unique structure of Lakshmi Planum and its surrounding. The first proposed that the western portion of Ishtar Terra, dominated by Lakshmi Planum, was a site of large-scale upwelling while the alternative hypothesis considered this region as a site of large-scale downwelling and underthrusting. Early Magellan results showed important details of the general geology of this area displayed in the Venera-15/16 images. Swarms of extensional structures and massifs of tesserae populate the southern slope of Lakshmi. The zone of fractures and grabens form a giant arc thousands of kilometers long and hundreds of kilometers wide around the southern flank of Lakshmi Planum. From the north, the deformational zones consist mostly of

  11. Geologic map of the Themis Regio quadrangle (V-53), Venus

    Science.gov (United States)

    Stofan, Ellen R.; Brian, Antony W.

    2012-01-01

    The Themis Regio quadrangle (V-53), Venus, has been geologically mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. The quadrangle extends from lat 25° to 50° S. and from long 270° to 300° E. and encompasses the Themis Regio highland, the surrounding plains, and the southernmost extension of Parga Chasmata. Themis Regio is a broad regional topographic high with a diameter of about 2,000 km and a height of about 0.5 km that has been interpreted previously as a hotspot underlain by a mantle plume. The Themis rise is dominated by coronae and lies at the terminus of the Parga Chasmata corona chain. Themis Regio is the only one of the three corona-dominated rises that contains significant extensional deformation. Fractures and grabens are much less common than along the rest of Parga Chasmata and are embayed by corona-related flows in places. Rift and corona formation has overlapped in time at Themis Regio.

  12. Geology of the V28 Quadrangle: Hecate Chasma, Venus

    Science.gov (United States)

    Stofan, E. R.; Guest, J. E.; Brian, A. W.

    2000-01-01

    The Hecate Chasma Quadrangle (V28), mapped at 1:5,000,000 scale, extends from 0-25 N and 240-270 Longitude. The quadrangle has thirteen impact craters, several large volcanoes, many coronae, three chasmata, and northern Hinemoa Planitia.

  13. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    Science.gov (United States)

    McGowan, Eileen M.; McGill, George G.

    2010-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.

  14. Geologic Map of the Diana Chasma Quadrangle (V-37), Venus

    Science.gov (United States)

    Hansen, V.L.; DeShon, H.R.

    2002-01-01

    Introduction The Diana Chasma quadrangle (V-37), an equatorial region between 0° to 25° S. and 150° to 180° E. that encompasses ~8,400,000 km2, is broadly divided into southern Rusalka Planitia in the north, eastern Aphrodite Terra in the central region, and unnamed regions to the south. Geologic mapping constrains the temporal and spatial relations of the major features, which include a tessera inlier, Markham crater, six large coronae (300-675 km diameter), four smaller coronae (150-225 km diameter), Diana and Dali chasmata, a large fracture zone, and southern Rusalka Planitia. Eastern Aphrodite Terra, marked here by large coronae, deep chasmata, and an extensive northeast-trending fracture zone, extends from Atla Regio to Thetis Regio. The large coronae are part of a chain of such features that includes Inari Corona to the west-southwest and Zemina Corona to the northeast. V-37 quadrangle is bounded on the north by Rusalka Planitia and on the south by Zhibek Planitia. International Astronomical Union (IAU) approved and provisional nomenclature and positions for geographic features within Diana Chasma quadrangle are shown on the geologic map. [Note: Atahensik Corona was referred to as Latona Corona in much previously published literature.

  15. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2001-01-01

    Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head, 1995), Alpha Regio tessera (Bindschadler and others, 1992a) and Eve Corona (Stofan and others, 1992) to the northeast, itself an extensive rift zone and coronae belt to the east and south (Baer and others, 1994; Magee and Head, 1995), Mylitta Fluctus to the south (Magee Roberts and others, 1992), and Helen Planitia to the southwest (Senske and others, 1991). In contrast to other areas on Venus, the Lavinia Planitia area is one of several large, relatively equidimensional lowlands (basins) and as such is an important region for the analysis of processes of basin formation and volcanic flooding. Before the Magellan mission, Lavinia Planitia was known on the basis of Pioneer-Venus altimetry to be a lowland area (Pettengill and others, 1980);. Arecibo radar images showed that Lavinia Plaitia was surrounded by several corona-like features and rift-like fractures parallel to the basin margin to the east and south (Senske and others, 1991; Campbell and others, 1990). Arecibo data further revealed that the interior contained complex patterns of deformational features in the form of belts and volcanic plains, and several regions along the margins were seen to be the sources of extensive outpourings of digitate lava flows into the interior (Senske and others, 1991; Campbell and others, 1990). Early Magellan results showed that the ridge belts are composed of complex structures of both extensional and contractional origin (Squyres and others, 1992; Solomon and others, 1992) and that the complex lava flows (fluctus) along the margins (Magee Roberts and others, 1992) emanated from a

  16. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  17. Lunar and Planetary Science XXXV: Venus

    Science.gov (United States)

    2004-01-01

    The session "Venus" included the following reports:Preliminary Study of Laser-induced Breakdown Spectroscopy (LIBS) for a Venus Mission; Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission; Use of Magellan Images for Venus Landing Safety Assessment; Volatile Element Geochemistry in the Lower Atmosphere of Venus; Resurfacing Styles and Rates on Venus: Assessment of 18 Venusian Quadrangles; Stereo Imaging of Impact Craters in the Beta-Atla-Themis (BAT) Region, Venus; Depths of Extended Crater-related Deposits on Venus ; Potential Pyroclastic Deposit in the Nemesis Tessera (V14) Quadrangle of Venus; Relationship Between Coronae, Regional Plains and Rift Zones on Venus, Preliminary Results; Coronae of Parga Chasma, Venus; The Evolution of Four Volcano/Corona Hybrids on Venus; Calderas on Venus and Earth: Comparison and Models of Formation; Venus Festoon Deposits: Analysis of Characteristics and Modes of Emplacement; Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System; Anomalous Radial Structures at Irnini Mons, Venus: A Parametric Study of Stresses on a Pressurized Hole; Analysis of Gravity and Topography Signals in Atalanta-Vinmara and Lavinia Planitiae Canali are Lava, Not River, Channels; and Formation of Venusian Channels in a Shield Paint Substrate.

  18. Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus

    Science.gov (United States)

    Tandberg, E. R.; Bleamaster, L. F., III

    2010-01-01

    The Devana Chasma quadrangle (V-29; 0-25degN/270-300degE) is situated over the northeastern apex of the Beta-Atla-Themis (BAT) province and includes the southern half of Beta Regio, the northern and transitional segments of the Devana Chasma complex, the northern reaches of Phoebe Regio, Hyndla Regio, and Nedolya Tesserae, and several smaller volcano-tectonic centers and impact craters.

  19. Geologic map of the Agnesi quadrangle (V-45), Venus

    Science.gov (United States)

    Hansen, Vicki L.; Tharalson, Erik R.

    2014-01-01

    The Agnesi quadrangle (V–45), named for centrally located Agnesi crater, encompasses approximately 6,500,000 km2 extending from lat 25° to 50° S. and from long 30° to 60° E. The V–45 quadrangle lies within Venus’ lowland broadly between highlands Ovda Regio to the northeast and Alpha Regio to the west. The region ranges in altitude from 6,051 to 6,054 km, with an average of ~6,052 km, which is essentially mean planetary radius. The quadrangle displays a wide range of features including large to small arcuate exposures of ribbon-tessera terrain (Hansen and Willis, 1998), ten lowland coronae, two montes, 13 pristine impact craters, and long but localized volcanic flows sourced to the west in V–44. Shield terrain (Hansen, 2005) occurs across much of the V–45 quadrangle. Although V–45 lies topographically within the lowland, it includes only one planitia (Fonueha Planitia), perhaps because the features mentioned decorate it.

  20. Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report

    Science.gov (United States)

    Bleamaster, Leslie F., III

    2009-01-01

    The BAT province is of particular interest with respect to evaluating Venus geologic, tectonic, and volcanic history and provides tests of global paradigms regarding her thermal evolution. The BAT is "ringed" by volcano-tectonic troughs (Parga, Hecate, and Devana Chasmata), has an anomalously high-density of volcanic features with concentrations 2-4 times the global average [1], and is spatially coincident with "young terrain" as illustrated by Average Surface Model Ages [2, 3]. The BAT province is key to understanding Venus current volcanic and tectonic modes, which may provide insight for evaluating Venus historical record. Several quadrangles, two 1:5,000,000 scale - Isabella (V-50) Quadrangle and Devana Chasma (V-29) Quadrangle and two 1:10,000,000 scale - Helen Planitia (I-2477) and Guinevere Planitia (I-2457), are in various stages of production (Figure 1). This abstract will report on their levels of completion as well as highlight some current results and outstanding issues.

  1. Geologic map of the Artemis Chasma quadrangle (V-48), Venus

    Science.gov (United States)

    Bannister, Roger A.; Hansen, Vicki L.

    2010-01-01

    Artemis, named for the Greek goddess of the hunt, represents an approximately 2,600 km diameter circular feature on Venus, and it may represent the largest circular structure in our solar system. Artemis, which lies between the rugged highlands of Aphrodite Terra to the north and relatively smooth lowlands to the south, includes an interior topographic high surrounded by the 2,100-km-diameter, 25- to 200-km-wide, 1- to 2-km-deep circular trough, called Artemis Chasma, and an outer rise that grades outward into the surrounding lowland. Although several other chasmata exist in the area and globally, other chasmata have generally linear trends that lack the distinctive circular pattern of Artemis Chasma. The enigmatic nature of Artemis has perplexed researchers since Artemis Chasma was first identified in Pioneer Venus data. Although Venus' surface abounds with circular to quasi-circular features at a variety of scales, including from smallest to largest diameter features: small shield edifices (>1 km), large volcanic edifices (100-1,000 km), impact craters (1-270 km), coronae (60-1,010 km), volcanic rises and crustal plateaus (~1,500-2,500 km), Artemis defies classification into any of these groups. Artemis dwarfs Venus' largest impact crater, Mead (~280 km diameter); Artemis also lacks the basin topography, multiple ring structures, and central peak expected for large impact basins. Topographically, Artemis resembles some Venusian coronae; however Artemis is an order of magnitude larger than the average corona (200 km) and about twice the size of Heng-O Corona (which is 1,010 km in diameter), the largest of Venusian coronae. In map view Artemis' size and shape resemble volcanic rises and crustal plateaus; however, both of these classes of features differ topographically from Artemis. Volcanic rises and crustal plateaus form broad domical regions, and steep-sided regions with flat tops, respectively; furthermore, neither rises nor plateaus include circular troughs

  2. Geological map of the Kaiwan Fluctus Quadrangle (V-44), Venus

    Science.gov (United States)

    Bridges, Nathan T.; McGill, George E.

    2002-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphereon October 12, 1994. Magellan had the objectives of: (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September of 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  3. Geologic Map of the Mylitta Fluctus Quadrangle (V-61), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2006-01-01

    INTRODUCTION The Magellan Mission The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included: (1) improving knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology, and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three data sets: (1) synthetic aperture radar (SAR) images of the surface, (2) passive microwave thermal emission observations, and (3) measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging, altimetric, and radiometric mapping of the Venusian surface was done in mission cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied between about 20? and 45?. High resolution Doppler tracking of the spacecraft took place from September 1992 through October 1994 (mission cycles 4, 5, 6). Approximately 950 orbits of high-resolution gravity observations were obtained between September 1992 and May 1993 while Magellan was in an elliptical orbit with a periapsis near 175 km and an apoapsis near 8,000 km. An additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  4. Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus

    Science.gov (United States)

    Rosenberg, Elizabeth; McGill, George E.

    2001-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  5. Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus

    Science.gov (United States)

    Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.

    2005-01-01

    The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.

  6. Geologic Mapping of Impact Craters and the Mahuea Tholus Construct: A Year Three Progress Report for the Mahuea Tholus (V-49) Quadrangle, Venus

    Science.gov (United States)

    Lang, N. P.; Covley, M. T.; Beltran, J.; Rogers, K.; Thomson, B. J.

    2018-06-01

    We are reporting on our year three status of mapping the V-49 quadrangle (Mahuea Tholus). Our mapping efforts over this past year emphasized the 13 impact craters in the quadrangle as well as larger-scale mapping of the Mahuea Tholus construct.

  7. Analysis of the Tectonic Lineaments in the Ganiki Planitia (V14) Quadrangle, Venus

    Science.gov (United States)

    Venechuk, E. M.; Hurwitz, D. M.; Drury, D. E.; Long, S. M.; Grosfils, E. B.

    2005-01-01

    The Ganiki Planitia quadrangle, located between the Atla Regio highland to the south and the Atalanta Planitia lowland to the north, is deformed by many tectonic lineaments which have been mapped previously but have not yet been assessed in detail. As a result, neither the characteristics of these lineaments nor their relationship to material unit stratigraphy is well constrained. In this study we analyze the orientation of extensional and compressional lineaments in all non-tessera areas in order to begin characterizing the dominant tectonic stresses that have affected the region.

  8. Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping

    Science.gov (United States)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    Lakshmi Planum is a high-standing plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing crustal plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes and played an important role in Venus geologic history. Lakshmi was studied with Venera-15/16 and Magellan data, resulting in two classes of models, divergent and convergent, to explain its unusual topographic and morphologic characteristics. Divergent models explain Lakshmi as a site of mantle upwelling due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50-75degN, 300-360degE; scale 1:5M) that allows testing the proposed models for Lakshmi.

  9. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    Science.gov (United States)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  10. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    Science.gov (United States)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  11. The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2)

    Science.gov (United States)

    Head, J. W.; Ivanov, M. A.

    2010-01-01

    Today, and throughout its recorded history, Venus can be classified as a "one-plate planet." The observable geological record of the planet comprises only the last 1/4 or less of its overall geologic history. As shown by many authors, it started with intensive deformation in broad regions to form tessera [1-6] during the Fortunian period of history [7]. The period of tessera formation quickly changed to numerous zonal deformational belts of ridges and grooves that were followed by emplacement of vast volcanic plains (shield plains, regional plains) [7,8]. During the final epoch of the geologic history of Venus, large but isolated centers of volcanism formed extensive fields of lavas, with tectonics concentrated within fewer very prominent rift zones [8,9]. The observable changes in intensity and character of volcanism and tectonics suggest progressive changes from thin lithosphere early in the geologic history to thick lithosphere during later epochs [6,10]. We have little idea of the character of the first 3/4 of Venus' history. So, what does the earliest period of recorded history tell us about the transition from the Pre-Fortunian to the Fortunian period and what insight does this give us into this earlier period?

  12. GALILEO ORBITER V POS VENUS TRAJECTORY V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Galileo Orbiter 60 second sampled trajectory data from the Venus flyby in Venus Solar Orbital (VSO) coordinates. These data cover the interval 1990-02-09 00:00 to...

  13. Digital amateur observations of Venus at 0.9μm

    Science.gov (United States)

    Kardasis, E.

    2017-09-01

    Venus atmosphere is extremely dynamic, though it is very difficult to observe any features on it in the visible and even in the near-IR range. Digital observations with planetary cameras in recent years routinely produce high-quality images, especially in the near-infrared (0.7-1μm), since IR wavelengths are less influenced by Earth's atmosphere and Venus's atmosphere is partially transparent in this spectral region. Continuous observations over a few hours may track dark atmospheric features in the dayside and determine their motion. In this work we will present such observations and some dark-feature motion measurements at 0.9μm. Ground-based observations at this wavelength are rare and are complementary to in situ observations by JAXA's Akatsuki orbiter, that studies the atmospheric dynamics of Venus also in this band with the IR1 camera.

  14. Venus Express uurib Maa kurja kaksikut / ref. Triin Thalheim

    Index Scriptorium Estoniae

    2005-01-01

    9. novembril startis Baikonuri kosmodroomilt Veenusele Euroopa Kosmoseagentuuri sond Venus Express, mis peaks planeedi atmosfääri sisenema aprillis. Teadlaste sõnul peab sondi saadetav info aitama mõista naaberplaneedi kliimat ja atmosfääri ning tooma selgust, kas Maa võib kunagi Veenuse sarnaseks muutuda. Lisaks joonis: Venus Express

  15. Corona Associations and Their Implications for Venus

    Science.gov (United States)

    Chapman, M.G.; Zimbelman, J.R.

    1998-01-01

    Geologic mapping principles were applied to determine genetic relations between coronae and surrounding geomorphologic features within two study areas in order to better understand venusian coronae. The study areas contain coronae in a cluster versus a contrasting chain and are (1) directly west of Phoebe Regio (quadrangle V-40; centered at latitude 15??S, longitude 250??) and (2) west of Asteria and Beta Regiones (between latitude 23??N, longitude 239?? and latitude 43??N, longitude 275??). Results of this research indicate two groups of coronae on Venus: (1) those that are older and nearly coeval with regional plains, and occur globally; and (2) those that are younger and occur between Beta, Atla, and Themis Regiones or along extensional rifts elsewhere, sometimes showing systematic age progressions. Mapping relations and Earth analogs suggest that older plains coronae may be related to a near-global resurfacing event perhaps initiated by a mantle superplume or plumes. Younger coronae of this study that show age progression may be related to (1) a tectonic junction of connecting rifts resulting from local mantle upwelling and spread of a quasi-stationary hotspot plume, and (2) localized spread of post-plains volcanism. We postulate that on Venus most of the young, post-resurfacing coronal plumes may be concentrated within an area defined by the bounds of Beta, Atla, and Themis Regiones. ?? 1998 Academic Press.

  16. Venus Elongation Measurements for the Transit of Venus, using the ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 11. Venus Elongation Measurements for the Transit of Venus, using the Historical Jantar Mantar Observatory. N Rathnasree. Classroom Volume 9 Issue 11 November 2004 pp 46-55 ...

  17. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    Science.gov (United States)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  18. VENUS-2 Benchmark Problem Analysis with HELIOS-1.9

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Jun; Choe, Jiwon; Lee, Deokjung

    2014-01-01

    Since there are reliable results of benchmark data from the OECD/NEA report of the VENUS-2 MOX benchmark problem, by comparing benchmark results users can identify the credibility of code. In this paper, the solution of the VENUS-2 benchmark problem from HELIOS 1.9 using the ENDF/B-VI library(NJOY91.13) is compared with the result from HELIOS 1.7 with consideration of the MCNP-4B result as reference data. The comparison contains the results of pin cell calculation, assembly calculation, and core calculation. The eigenvalues from those are considered by comparing the results from other codes. In the case of UOX and MOX assemblies, the differences from the MCNP-4B results are about 10 pcm. However, there is some inaccuracy in baffle-reflector condition, and relatively large differences were found in the MOX-reflector assembly and core calculation. Although HELIOS 1.9 utilizes an inflow transport correction, it seems that it has a limited effect on the error in baffle-reflector condition

  19. Mapping Vesta Mid-Latitude Quadrangle V-12EW: Mapping the Edge of the South Polar Structure

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.; Williams, D. A.; Hiesinger, H.; Garry, W. B.; Yingst, R.; Buczkowski, D.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Le Corre, L.; Roatsch, T.; Preusker, F.; White, O. L.; DeSanctis, C.; Filacchione, G.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-12EW. This quadrangle is dominated by the arcuate edge of the large 460+ km diameter south polar topographic feature first observed by HST (Thomas et al., 1997). Sparsely cratered, the portion of this feature covered in V-12EW is characterized by arcuate ridges and troughs forming a generalized arcuate pattern. Mapping of this terrain and the transition to areas to the north will be used to test whether this feature has an impact or other (e.g., internal) origin. We are also using FC stereo and VIR images to assess whether their are any compositional differences between this terrain and areas further to the north, and image data to evaluate the distribution and age of young impact craters within the map area. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams.

  20. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South West Region: Volume 9

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  1. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  2. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.

    1988-07-01

    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  3. Energetic particles at venus: galileo results.

    Science.gov (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G

    1991-09-27

    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  4. Venus

    CERN Document Server

    Payment, Simone

    2017-01-01

    This straightforward but fascinating book takes a close look at Venus and shows young people just how different our neighboring planet is from our own. Known as the hottest planet, Venus is an example of the greenhouse effect to the extreme. Young readers will take a tour beneath the sulfur dioxide clouds and see the planet's surface up close with images taken by the Magellan and the Venus Express missions. This book will surely fascinate any young person interested in alien worlds.

  5. Greenhouse effects on Venus

    Science.gov (United States)

    Bell, Peter M.

    Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.

  6. Venus night ionosphere according to results of two-frequency radioscopy by means of the Venera 9 and Venera 10

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.N.; Vasil'ev, M.B.; Vyshlov, A.S.

    1976-01-01

    The night ionosphere of the planet Venus has been studied. The experiments were conducted by the radioscopy method from 24.10 till 7.12. 1975 using the Venus-9 and Venus-10 space probes in 32 and 8 cm wavelengths. The signals reflected from the planet were received at a terrestrxal station where their frequencies and the reduced phase differences between them were measured. The measurement data processing yielded distribution of the electron density (ED) with height over the planet surface. The ED profiles obtained were divided into two groups. Each of the first group profiles (13 profiles) has two distinct maxima. The ED in the upper maximum is generally greater than in the lower one. The ED values equal (3-8.8)x10 3 cm -3 and 2x10 3 cm -3 respectively. The upper maximum lies at an altitude from 134 to 114 km, the lower maximum is shifted relative to the upper one by 17-24 km. The second group profiles (3 profiles) have the same maximum at the same altitudes as the upper maximum in the first group. The ED value in the maximum equal to 1.6x10 4 cm -3 drops to 7x10 3 cm -3 . According to the author opinion of the authors, the variability of the Venus night ionosphere parameters reflects considerable variations of an ionization source

  7. Missions to Venus

    Science.gov (United States)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  8. Infrared spectrometry of Venus: IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus express

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2004-01-01

    Thermal infrared spectrometry in the range 6-40 μm with spectral resolution of 4.5-6.5 cm -1 was realized onboard of Venera 15 for the middle atmosphere of Venus investigations. The 3-D temperature and zonal wind fields ( h, ϕ, LT) in the range 55-100 km and the 3-D aerosol field ( h, ϕ, LT) in the range 55-70 km were retrieved and analyzed. The solar related waves at isobaric levels, generated by the absorbed solar energy, were investigated. In the thermal IR spectral range the, ν1, ν2 and ν3 SO 2 and the H 2O rotational (40 μm) and vibro-rotational (6.3 μm) absorption bands are observed and used for minor compounds retrieval. An advantage of the thermal infrared spectrometry method is that both the temperature and aerosol profiles, which need for retrieval of the vertical profiles of minor compounds, are evaluated from the same spectrum. The Fourier spectrometer on Venera-15 may be considered as a precursor of the Planetary Fourier Spectrometer (PI Prof. V. Formisano), which is included in the payload of the planned Venus Express mission. It has a spectral range 0.9-45 μm, separated into two channels: a short wavelength channel (SWC) in the range 0.9-5 μm and a long wavelength channel (LWC) from 6 to 45 μm, and spectral resolution of 1-2 cm -1. In the history of planetary Fourier spectrometry the PFS is a unique instrument, which possesses a short wavelength channel. A functioning of this instrument on the polar orbit with a good spatial and local time coverage will advance our knowledge in the fundamental problems of the Venus atmosphere.

  9. A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: Activation analysis

    International Nuclear Information System (INIS)

    Jun, I.; Kim, W.; Smith, M.; Mitrofanov, I.; Litvak, M.

    2011-01-01

    The surface elemental composition of Venus can be determined using an artificially pulsed 14 MeV neutron generator (PNG) combined with a gamma ray spectrometer (GRS). The 14 MeV neutrons will interact with the surface materials and generate gamma rays, characteristic of specific elements, whose energy spectrum will be measured by GRS. These characteristic gamma rays are produced mainly through 3 different neutron interaction mechanisms: capture, inelastic, and activation reactions. Each reaction type has a different neutron energy dependency and different time scale for gamma ray production and transport. Certain elements are more easily identified through one reaction type over the others. Thus, careful analysis of the gamma ray spectra during and after the neutron pulse provides a comprehensive understanding of the surface elemental composition. In this paper, we use a well-tested neutron/gamma transport code, called Monte Carlo N-Particles (MCNP), to investigate the measurement capability of a PNG-GRS detection system through the neutron activation reactions. An activation analysis was performed for a representative soil composition of Venus with a notional operational scenario of PNG and GRS. The analysis shows that the proposed instrument concept can identify most of the modeled surface elements at Venus with sufficient accuracy through the activation mode. Specifically, U, Th, K, Si can be measured to within 1%, Fe within 2%, Al within 10%, Ca within 5%, Mg with 15%, Mn with 20%, and Cl within 6%. Although modeled in the analysis, it is shown that the activation mode alone cannot distinguish the S and Ti peaks.

  10. Venus magnetosphere

    International Nuclear Information System (INIS)

    Podgornyj, I.M.

    1983-01-01

    Some peculiarities of the structure of the Venus magnetosphere are considered. A Swedish scientist H. Alfven supposes that nebular bodies with ionospheric shelles of the type of Venus atmosphere possess induced magnetospheres with dragged magnetic tails. In the Institute of Space Research of the USSR Academy of Sciences experiments on the modelling of such magnetosphere are performed. The possibility of formation of the shock wave in the body with plasma shell in the absence of the proper magnetic shell is proved. The cosmic ''Pioneer-Venus'' equipment is used to obtain such a distribution of the magnetic field depending on the distance to Venus as it was predicted by the laboratory model

  11. Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios

    Science.gov (United States)

    Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.

    2011-01-01

    When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.

  12. Return to Venus of AKATSUKI, the Japanese Venus Orbiter

    Science.gov (United States)

    Nakamura, M.; Iwagami, N.; Satoh, T.; Taguchi, M.; Watanabe, S.; Takahashi, Y.; Imamura, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Fukuhara, T.; Yamada, M.; Ishii, N.; Ogohara, K.

    2011-12-01

    Japanese Venus Climate Orbiter 'AKATSUKI' (PLANET-C) was proposed in 2001 with strong support by international Venus science community and approved as an ISAS mission soon after the proposal. AKATSUKI and ESA's Venus Express complement each other in Venus climate study. Various coordinated observations using the two spacecraft have been planned. Also participating scientists from US have been selected. Its science target is to understand the climate of Venus. The mission life we expected was more than 2 Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' expansion was confirmed. AKATSUKI was put into the 3-axis stabilized mode in the initial operation from Uchinoura station and the critical operation was finished at 20:00JST on the same day. The malfunction, which happened during the Venus Orbit Insertion (VOI) on7 Dec, 2010 is as follows. We set all commands on Dec. 5. Attitude control for Venus orbit insertion (VOI) was automatically done on Dec. 6. Orbital maneuver engine (OME) was fired 08:49 JST on Dec. 7. 1min. after firing the spacecraft went into the occultation region and we had no telemetry, but we expected to continuous firing for 12min. Recording on the spacecraft told us later that, unfortunately the firing continued just 152sec. and stopped. The reason of the malfunction of the OME was the blocking of check valve of the gas pressure line to push the fuel to the engine. We failed to make the spacecraft the Venus orbiter, and it is rotating the sun with the orbital period of 203 days. As the Venus orbit the sun with the period of 225 days, AKATSUKI has a chance to meet Venus again in 5 or 6 years depending on the orbit correction plan. Let us summarize the present situation of AKATSUKI. Most of the fuel still remains. But the condition of the propulsion

  13. Distant interplanetary wake of Venus: plasma observations from pioneer Venus

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Barnes, A.

    1982-01-01

    In June 1979 the Pioneer Venus orbiter made its first series of passes through the distant solar wind wake of Venus at distances of 8--12 R/sub V/ behind the planet. During this period the plasma analyzer aboard the spacecraft detected disturbed magnetosheath plasma that intermittently disappeared and reappeared, suggesting a tattered, filamentary cavity trailing behind the planet. The magnetosheath dropouts almost always occurred inside the region of 'magnetotail' observed by Russell et al. Sporadic bursts of energetic ions (E/q> or approx. =4kV) are detected inside and, occasionally, outside the magnetotail; all such bursts are consistent with identification of the ion as O + of planetary origin moving at the local magnetosheath flow speed. The morphology of the plasma dropouts and of the O + bursts is analyzed in detail. The cavity appears to contract at times of high solar wind dynamic pressure. The intensity of the O + component is highly variable, and appears not to be strongly correlated with solar wind dynamic pressure. The most intense bursts correspond to a flux 7 ions cm - 2 s - 1 . This maximum flux, if steady and filling a cylinder 1 R/sub V/ in radius would correspond to a mass loss rate of 25 ions s - 1 ; the intermittency and variability of the flux suggest that the true mean loss rate is very much lower. The kinetic temperature of the O + component is estimated as 10 5 --10 6 K in order of magnitude

  14. Meeting Venus

    Science.gov (United States)

    Sterken, Christiaan; Aspaas, Per Pippin

    2013-06-01

    On 2-3 June 2012, the University of Tromsoe hosted a conference about the cultural and scientific history of the transits of Venus. The conference took place in Tromsoe for two very specific reasons. First and foremost, the last transit of Venus of this century lent itself to be observed on the disc of the Midnight Sun in this part of Europe during the night of 5 to 6 June 2012. Second, several Venus transit expeditions in this region were central in the global enterprise of measuring the scale of the solar system in the eighteenth century. The site of the conference was the Nordnorsk Vitensenter (Science Centre of Northern Norway), which is located at the campus of the University of Tromsoe. After the conference, participants were invited to either stay in Tromsoe until the midnight of 5-6 June, or take part in a Venus transit voyage in Finnmark, during which the historical sites Vardoe, Hammerfest, and the North Cape were to be visited. The post-conference program culminated with the participants observing the transit of Venus in or near Tromsoe, Vardoe and even from a plane near Alta. These Proceedings contain a selection of the lectures delivered on 2-3 June 2012, and also a narrative description of the transit viewing from Tromsoe, Vardoe and Alta. The title of the book, Meeting Venus, refers the title of a play by the Hungarian film director, screenwriter and opera director Istvan Szabo (1938-). The autobiographical movie Meeting Venus (1991) directed by him is based on his experience directing Tannhauser at the Paris Opera in 1984. The movie brings the story of an imaginary international opera company that encounters a never ending series of difficulties and pitfalls that symbolise the challenges of any multicultural and international endeavour. As is evident from the many papers presented in this book, Meeting Venus not only contains the epic tales of the transits of the seventeenth, eighteenth and nineteenth centuries, it also covers the conference

  15. Surface and interior of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Masursky, H [U.S. Geological Survey, Flagstaff, Arizona, USA; Kaula, W M [California Univ., Los Angeles (USA); McGill, G E [Massachusetts Univ., Amherst (USA); Pettengill, G H; Shapiro, I I [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences; Phillips, R J [Jet Propulsion Lab., Pasadena, Calif. (USA); Russell, C T [California Univ., Los Angeles (USA). Inst. of Geophysics and Planetary Physics; Schubert, G [California Univ., Los Angeles (USA)

    1977-06-01

    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50/sup 0/S and 75/sup 0/N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained.

  16. VICI (Venus In Situ Composition Investigations): The Next Step in Understanding Venus Climate Evolution

    Science.gov (United States)

    Glaze, L. S.; Garvin, J. B.

    2017-12-01

    Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental

  17. Venus: Our Misunderstood Sister

    Science.gov (United States)

    Dyar, Darby; Smrekar, Suzanne E.

    2018-01-01

    Of all known bodies in the galaxy, Venus is the most Earth-like in size, composition, surface age, and incoming energy. As we search for habitable planets around other stars, learning how Venus works is critical to understanding how Earth evolved to host life, and whether rocky exoplanets in stars’ habitable zones are faraway Earths or Venuses. What caused Venus’ path to its present hostile environment, devoid of oceans, magnetic field, and plate tectonics? This talk reviews recent mission results, presents key unresolved science questions, and describes proposed missions to answer these questions.Despite its importance in understanding habitability, Venus is the least-explored rocky planet, last visited by NASA in 1994. Fundamental, unanswered questions for Venus include: 1. How did Venus evolve differently? 2. How have volatiles shaped its evolution? 3. Did Venus catastrophically resurface? 4. What geologic processes are active today? 5. Why does Venus lack plate tectonics?On Earth, plate tectonics supports long-term climate stability and habitability by cycling volatiles in and out of the mantle. New information on planetary volatiles disputes the long-held notion that Venus’ interior is dry; several lines of evidence indicate that planets start out wet, creating long-term atmospheres by outgassing. ESA’s Venus Express mission provided evidence for recent and ongoing volcanism and for Si-rich crust like Earth’s continents. New hypotheses suggest that lithospheric temperature can explain why Venus lacks tectonics, and are consistent with present-day initiation of subduction on Venus.New data are needed to answer these key questions of rocky planet evolution. Orbital IR data can be acquired through windows in Venus’ CO2-rich atmosphere, informing surface mineralogy, rock types, cloud variations, and active volcanism. High resolution gravity, radar, and topography data along with mineralogical constraints must be obtained. Mineralogy and geochemistry

  18. Modeling Venus-like Worlds Through Time and Implications for the Habitable Zone

    Science.gov (United States)

    Way, M.; Del Genio, A. D.; Amundsen, D. S.; Sohl, L. E.; Kiang, N. Y.; Aleinov, I. D.; Kelley, M.

    2017-12-01

    In recent work [1] we demonstrated that the climatic history of Venus may have allowed for surface liquid water to exist for several billion years using a 3D GCM [2]. Model resolution was 4x5 latitude x longitude, 20 atmospheric layers and a 13 layer fully coupled ocean. Several assumptions were made based on what data we have for early Venus: a.) Used a solar spectrum from 2.9 billion years ago, and 715 million years ago for the incident radiation. b.) Assumed Venus had the same slow modern retrograde rotation throughout the 2.9 to 0.715 Gya history explored, although one simulation at faster rotation rate was shown not to be in the HZ. c.) Used atmospheric constituents similar to modern Earth: 1 bar N2, 400ppmv CO2, 1ppmv CH4. d.) Gave the planet a shallow 310m deep ocean constrained by published D/H ratio observations. e.) Used present day Venus topography and one run with Earth topography.In all cases except the faster rotating one the planet was able to maintain surface liquid water. We have now inserted the SOCRATES [3] radiation scheme into our 3D GCM to more accurately calculate heating fluxes for different atmospheric constituents. Using SOCRATES we have explored a number of other possible early histories for Venus including: f.) An aquaplanet configuration at 2.9Gya with present day rotation period.g.) A Land planet configuration at 2.9Gya with the equivalent of 10m of water in soil and lakes. h.) A synchronously rotating version of a, f, and g (supported by recent work of [4] and older work of [5]) i.) A Venus topography with a 310m ocean, but using present day insolation (1.9 x Earth). j.) Versions of most of the worlds above but with solar insolations >1.9 to explore more Venus-like exoplanetary worlds around G-type stars. In these additional cases the planet still resides in the liquid water habitable zone. Studies such as these should help Astronomers better understand whether exoplanets found in the Venus zone [6] are capable of hosting liquid water

  19. Correlations between Venus nightside near infrared emissions measured by VIRTIS/Venus Express and Magellan radar data

    Science.gov (United States)

    Mueller, N.; Helbert, J.; Hashimoto, G. L.; Tsang, C. C. C.; Erard, S.; Piccioni, G.; Drossart, P.

    2008-09-01

    . Laques, F. Deladerriere, and F. Colas (1993), Detection of the surface of Venus at 1.0 micrometer from ground-based observations, Planetary and Space Science, 41, 543-549. [2] Meadows, V. S., and D. Crisp (1996), Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface, Journal of Geophysical Research, 101, 4595-4622. [3] Hashimoto, G. L., and S. Sugita (2003), On observing the compositional variability of the surface of Venus using nightside near-infrared thermal radiation, Journal of Geophysical Research (Planets), 108, 13-18. [4] Tsang, C. C. C., P. G. J. Irwin, F. W. Taylor, and C. F. Wilson (2008), A correlated-k model of radiative transfer in the near-infrared windows of venus, Journal of Quantitative Spectroscopy & Radiative Transfer, In press. [5] Ford, P. G., and G. H. Pettengill (1992), Venus topography and kilometer-scale slopes, Journal of Geophysical Research, 97, 13,103. [6] Nikolaeva, O. V., M. A. Ivanov, and V. K. Borozdin (1992), Evidence on the crustal dichotomy, pp. 129- 139, Venus Geology, Geochemistry, and Geophysics - Research results from the USSR. [7] Hashimoto, G. L., M. Roos-Serote, S. Sugita, M. S. Gilmore, L. W. Kamp, B. Carlson, and K. Baines (this issue), Galileo Near Infrared Mapping Spectrometer (NIMS) Data Suggests Felsic Highland Crust on Venus, Journal of Geophysical Research, submitted. [8] Head, J. W., E. M. Parmentier, and P. C. Hess (1994), Venus: Vertical accretion of crust and depleted mantle and implications for geological history and processes, Planetary and Space Science, 42, 803-811.

  20. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  1. Practical Observations of the Transit of Venus

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Practical Observations of the Transit of Venus. B S Shyalaja. Classroom Volume 9 Issue 5 May 2004 pp 79-83. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/05/0079-0083 ...

  2. Topographic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Jaji-Maydan (517) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Aerobraking at Venus: A science and technology enabler

    Science.gov (United States)

    Hibbard, Kenneth; Glaze, Lori; Prince, Jill

    2012-04-01

    Venus remains one of the great unexplored planets in our solar system, with key questions remaining on the evolution of its atmosphere and climate, its volatile cycles, and the thermal and magmatic evolution of its surface. One potential approach toward answering these questions is to fly a reconnaissance mission that uses a multi-mode radar in a near-circular, low-altitude orbit of ∼400 km and 60-70° inclination. This type of mission profile results in a total mission delta-V of ∼4.4 km/s. Aerobraking could provide a significant portion, potentially up to half, of this energy transfer, thereby permitting more mass to be allocated to the spacecraft and science payload or facilitating the use of smaller, cheaper launch vehicles.Aerobraking at Venus also provides additional science benefits through the measurement of upper atmospheric density (recovered from accelerometer data) and temperature values, especially near the terminator where temperature changes are abrupt and constant pressure levels drop dramatically in altitude from day to night.Scientifically rich, Venus is also an ideal location for implementing aerobraking techniques. Its thick lower atmosphere and slow planet rotation result in relatively more predictable atmospheric densities than Mars. The upper atmosphere (aerobraking altitudes) of Venus has a density variation of 8% compared to Mars' 30% variability. In general, most aerobraking missions try to minimize the duration of the aerobraking phase to keep costs down. These short phases have limited margin to account for contingencies. It is the stable and predictive nature of Venus' atmosphere that provides safer aerobraking opportunities.The nature of aerobraking at Venus provides ideal opportunities to demonstrate aerobraking enhancements and techniques yet to be used at Mars, such as flying a temperature corridor (versus a heat-rate corridor) and using a thermal-response surface algorithm and autonomous aerobraking, shifting many daily ground

  4. Hydrogeochemical and stream sediment reconnaissance basic data for Dallas NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Dallas Quadrangle, Texas are reported. Field and laboratory data are presented for 284 groundwater and 545 stream sediment samples. Statistical and areal distribution plots of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided. Groundwater produced from the Navarro Group, Neylandville Formation, Marlbrook Marl, and the Glen Rose and Twin Mountains Formations exhibit anomalous uranium (> 9.05 ppB) and specific conductance (> 1871 μmhos/cm) values. The anomalies represent a southern extension of a similar trend observed in the Sherman Quadrangle, K/UR-110. Stream sediments representing the Eagle Ford Group and Woodbine Formation exhibit the highest concentrations of total and hot-acid-soluble uranium and thorium of samples collected in the Dallas Quadrangle. The U/TU value indicates that > 80% of this uranium is present in a soluble form

  5. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  6. Topographic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  7. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  9. Topographic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  10. Topographic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. National Uranium Resource Evaluation: Harrisburg Quadrangle, Pennsylvania

    International Nuclear Information System (INIS)

    Popper, G.H.P.

    1982-08-01

    The Harrisburg Quadrangle, Pennsylvania, was evaluated to identify geologic environments and delineate areas favorable for uranium deposits. The evaluation, based primarily on surface reconnaissance, was carried out for all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys provided the supplementary data used in field-work followup studies. Results of the investigation indicate that environments favorable for peneconcordant sandstone uranium deposits exist in the Devonian Catskill Formation. Near the western border of the quadrangle, this environment is characterized by channel-controlled uranium occurrences in basal Catskill strata of the Broad Top syncline. In the east-central portion of the quadrangle, the favorable environment contains non-channel-controlled uranium occurrences adjacent to the Clarks Ferry-Duncannon Members contact. All other geologic environments are considered unfavorable for uranium deposits

  12. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    Science.gov (United States)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    -4197, 1992. [3] Keating, G.M.; Taylor, F.W.; Nicholson, J. V. II; and Hinson, E.W. : Short-Term Cyclic Variations and Diurnal Variations of the Venus Upper Atmosphere, Science, Vol. 205, No. 4401, 62-64, July 6, 1979. [4] Bougher, S. W.; Dickinson, R. E.; Ridley, E. C.; Roble, R. G.; Nagy, A. F.; and Cravens, T. E.: Venus mesosphere and thermosphere, II, Global circulation, temperature, and density variations, Icarus, Vol. 68, 284-312, 1986. [5] Keating, G. M. et al.: Evidence of Long-Term Global Decline in the Earth's Thermospheric Densities Apparently Related to Anthropogenic Effects, Geophysical Research Letters, Vol. 27, No. 10, 1522-1526, 2000. [6] Keating, G. M. et al.: Models of Venus Neutral Upper Atmosphere Structure and Composition: The Venus International Reference Atmosphere (Edited by A. L. Kliore, V. I. Moros, and G. M. Keating) Advances in Space Research, Vol. 5, No. 11, 117-171,1985. [7] Keating, G. M.; Hsu, N.C., and Lyu, J.: Improved Thermospheric Model for the Venus International Reference Atmosphere, Proceedings of the 31st Scientific Assembly of COSPAR, Birmingham, England, 139, 1996 (Invited) [8] Keating, G. M. and Hsu, N. C.: The Venus Atmospheric Response to Solar Cycle Variations, Geophysical Research Letters, Vol. 20, 2751-2754, 1993. [9] Keating, G.M. et al: Future drag measurements from Venus Express. Adv

  13. Signs of Life on Venus

    Science.gov (United States)

    Ksanfomality, L.

    2012-04-01

    The search for "habitable zones" in extrasolar planetary systems is based on the premise of "normal" physical conditions in a habitable zone, i.e. pressure, temperature range, and atmospheric composition similar to those on the Earth. However, one should not exclude completely the possibility of the existence of life at relatively high temperatures, despite the fact that at the first glance it seems impossible. The planet Venus with its dense, hot (735 K), oxigenless CO2 - atmosphere and high 92 bar-pressure at the surface could be the natural laboratory for the studies of this type. Amid exoplanets, celestial bodies with the physical conditions similar to the Venusian can be met. The only existing data of actual close-in observations of Venus' surface are the results of a series of missions of the soviet VENERA landers which took place the 1970's and 80's in the atmosphere and on the surface of Venus. For 36 and 29 years since these missions, respectively, I repeatedly returned to the obtained images of the Venus' surface in order to reveal on them any unusual objects observed in the real conditions of Venus. The new analysis of the Venus' panoramas was based on the search of unusual elements in two ways. Since the efficiency of the VENERA landers maintained for a long time they produced a large number of primary television panoramas during the lander's work. Thus, one can try to detect: (a) any differences in successive images (appearance or disappearance of parts of the image or change of their shape), and understand what these changes are related to (e.g., wind), and whether they are related to hypothetical habitability of a planet. Another sign (b) of the wanted object is their morphological peculiarities which distinguishes them from the ordinary surface details. The results of VENERA-9 (1975) and VENERA -13 (1982) are of the main interest. A few relatively large objects ranging from a decimeter to half meter and with unusual morphology were observed in some

  14. Venus Lightning: What We Have Learned from the Venus Express Fluxgate Magnetometer

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.

    2010-03-01

    The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as predicted by the lightning model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by lightning.

  15. 10. The surface and interior of venus

    Science.gov (United States)

    Masursky, H.; Kaula, W.M.; McGill, G.E.; Pettengill, G.H.; Phillips, R.J.; Russell, C.T.; Schubert, G.; Shapiro, I.I.

    1977-01-01

    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50??S and 75??N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained. ?? 1977 D. Reidel Publishing Company.

  16. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  17. Topographic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  18. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  19. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  20. Topographic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  1. Topographic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Topographic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Venus Interior Probe Using In-Situ Power and Propulsion (VIP-INSPR)

    Science.gov (United States)

    Bugga, Ratnakumar V.

    2016-01-01

    Venus, despite being our closest neighboring planet, is under-explored due to its hostile and extreme environment, with a 92 bar pressure and 467 C temperature at the surface. The temperature decreases at higher altitudes, almost at the rate of 7.9 C/km, reaching the Earth surface conditions at 65 km. Due to the less extreme conditions, balloon missions could survive as long as 46 h at an altitude of 54 km. However, because of the opacity of the Venus atmosphere filled with clouds of sulfuric acid and CO2, orbiter or balloon missions are not as revealing and informative in characterizing the surface, as similar missions on Moon and Mars. To understand the evolutionary paths of Venus in relation to Earth, it is imperative to gather basic information on the crust, mantle, core, atmosphere/exosphere and bulk composition of Venus, through in-situ investigations using landers, probes and variable altitude areal platforms.

  4. The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus

    Science.gov (United States)

    Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team

    2017-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S

  5. MEETING VENUS. A Collection of Papers presented at the Venus Transit Conference Tromsoe 2012

    Science.gov (United States)

    Sterken, Christiaan; Aspaas, Per Pippin

    2013-05-01

    On 2-3 June 2012, the University of Tromsoe hosted a conference about the cultural and scientific history of the transits of Venus. The conference took place in Tromsoe for two very specific reasons. First and foremost, the last transit of Venus of this century lent itself to be observed on the disc of the Midnight Sun in this part of Europe during the night of 5 to 6 June 2012. Second, several Venus transit expeditions in this region were central in the global enterprise of measuring the scale of the solar system in the eighteenth century. The site of the conference was the Nordnorsk Vitensenter (Science Centre of Northern Norway), which is located at the campus of the University of Tromsoe. After the conference, participants were invited to either stay in Tromsoe until the midnight of 5-6 June, or take part in a Venus transit voyage in Finnmark, during which the historical sites Vardoe, Hammerfest, and the North Cape were to be visited. The post-conference program culminated with the participants observing the transit of Venus in or near Tromsoe, Vardoe and even from a plane near Alta. These Proceedings contain a selection of the lectures delivered on 2-3 June 2012, and also a narrative description of the transit viewing from Tromsoe, Vardoe and Alta. The title of the book, Meeting Venus, refers the title of a play by the Hungarian film director, screenwriter and opera director Istvan Szabo (1938-). The autobiographical movie Meeting Venus (1991) directed by him is based on his experience directing Tannhauser at the Paris Opera in 1984. The movie brings the story of an imaginary international opera company that encounters a never ending series of difficulties and pitfalls that symbolise the challenges of any multicultural and international endeavour. As is evident from the many papers presented in this book, Meeting Venus not only contains the epic tales of the transits of the seventeenth, eighteenth and nineteenth centuries, it also covers the conference

  6. Aerial gamma ray and magnetic survey: Idaho Project, Hailey, Idaho Falls, Elk City quadrangles of Idaho/Montana and Boise quadrangle, Oregon/Idaho. Final report

    International Nuclear Information System (INIS)

    1979-09-01

    During the months of July and August, 1979, geoMetrics, Inc. collected 11561 line mile of high sensitivity airborne radiometric and magnetic data in Idaho and adjoining portions of Oregon and Montana over four 1 0 x 2 0 NTMS quadrangles (Boise, Hailey, Idaho Falls, and Elk City) as part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as five volumes (one Volume I and four Volume II's). Approximately 95 percent of the surveyed areas are occupied by exposures of intrusive and extrusive rocks. The Cretaceous-Tertiary Idaho Batholith dominates the Elk City and Hailey quadrangles. The Snake River volcanics of Cenozoic Age dominate the Idaho Falls quadrangle and southeast part of the Hailey sheet. Tertiary Columbia River basalts and Idaho volcanics cover the Boise quadrangle. There are only two uranium deposits within the four quadrangles. The main uranium producing areas of Idaho lie adjacent to the surveyed area in the Challis and Dubois quadrangles

  7. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Topographic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  9. Laying bare Venus' dark secrets

    International Nuclear Information System (INIS)

    Allen, D.A.

    1987-01-01

    Ground-based IR observations of the dark side of Venus obtained in 1983 and 1985 with the Anglo-Australian Telescope are studied. An IR spectrum of Venus' dark side is analyzed. It is observed that the Venus atmosphere is composed of CO and radiation escapes only at 1.74 microns and 2.2 to 2.4 microns. The possible origin of the radiation, either due to absorbed sunlight or escaping thermal radiation, was investigated. These two hypotheses were eliminated, and it is proposed that the clouds of Venus are transparent and the radiation originates from the same stratum as the brighter portions but is weakened by the passage through the upper layer. The significance of the observed dark side markings is discussed

  10. Coupled Photochemical and Condensation Model for the Venus Atmosphere

    Science.gov (United States)

    Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang

    2017-10-01

    Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016

  11. Venus project : experimentation at ENEA's pilot site

    International Nuclear Information System (INIS)

    Bargellini, M.L.; Fontana, F.; Niccolai, L.; Scavino, G.; Mancini, R.; Levialdi, S.

    1996-12-01

    The document describes the ENEA's (Italian Agency for New Technologies, Energy and the Environment) experience in the Venus Project (Esprit III 6398). Venus is an advanced visual interface based on icon representation that permits to end-user to inquiry databases. VENUS interfaces to ENEA's databases: cometa materials Module, Cometa Laboratories Module and European Programs. This report contents the results of the experimentation and of the validation carried out in ENEA's related to the Venus generations. Moreover, the description of the architecture, the user requirements syntesis and the validation methodology of the VENUS systems have been included

  12. Airborne gamma-ray spectrometer and magnetometer survey: Crescent Quadrangle, Burns Quadrangle, Canyon City Quadrangle, Bend Quadrangle, Salem Quadrangle (Oregon). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combining radiometric and magnetic survey was performed for the Department of Energy over the area covered by the Burns, Crescent, Canyon City, Bend, and Salem, Washington 1:250,000 National Topographic Map Series, 1 0 x 2 0 quadrangle maps. The survey was a part of DOE's National Aerial Radiometric Reconnaissance program, which is in turn a part of the National Uranium Resource Evaluation program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured throughout the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. These maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  13. Blaise Cendrars e o Brasil: "Brésil, des hommes sont venus"

    OpenAIRE

    Wimmer, Norma [UNESP

    2013-01-01

    The paper intitled Blaise Cendrars and Brazil: Brésil, des hommes sont venus discusses the way Cendrars portrays Brazil, and also debates his influence on the artists of the Semana de Arte Moderna (Modern Art Week) in 1922. O texto intitulado Blaise Cendrars e o Brasil: Brésil, des hommes sont venus tece considerações acerca da perspectiva sob a qual Cendrars vê o Brasil, bem como de sua relação com os artistas da Semana de Arte Moderna de 1922.

  14. Geologic Map of the Tower Peak Quadrangle, Central Sierra Nevada, California

    Science.gov (United States)

    Wahrhaftig, Clyde

    2000-01-01

    Introduction The Tower Peak quadrangle, which includes northernmost Yosemite National Park, is located astride the glaciated crest of the central Sierra Nevada and covers an exceptionally well-exposed part of the Sierra Nevada batholith. Granitic plutonic rocks of the batholith dominate the geology of the Tower Peak quadrangle, and at least 18 separate pre-Tertiary intrusive events have been identified. Pre-Cretaceous metamorphic rocks crop out in the quadrangle in isolated roof pendants and septa. Tertiary volcanic rocks cover granitic rocks in the northern part of the quadrangle, but are not considered in this brief summary. Potassium-argon (K-Ar) age determinations for plutonic rocks in the quadrangle range from 83 to 96 million years (Ma), including one of 86 Ma for the granodiorite of Lake Harriet (Robinson and Kistler, 1986). However, a rubidium-strontium whole-rock isochron age of 129 Ma has been obtained for the Lake Harriet pluton (Robinson and Kistler, 1986), which field evidence indicates is the oldest plutonic body within the quadrangle. This suggests that some of the K-Ar ages record an episode of resetting during later thermal events and are too young. The evidence indicates that all the plutonic rocks are of Cretaceous age, with the youngest being the Cathedral Peak Granodiorite at about 83 Ma. The pre-Tertiary rocks of the Tower Peak quadrangle fall into two groups: (1) an L-shaped area of older plutonic and metamorphic rocks, 3 to 10 km wide, that extends diagonally both northeast and southeast from near the center of the quadrangle; and (2) a younger group of large, probably composite intrusions that cover large areas in adjacent quadrangles and extend into the Tower Peak quadrangle from the east, north, and southwest.

  15. USGS 1:24000 (7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — Mathematically generated grid representing USGS 7 1/2 Minute Quadrangle Map outlines. Quadrangle names and standard identifiers are included with the data set.

  16. The Atmosphere and Climate of Venus

    Science.gov (United States)

    Bullock, M. A.; Grinspoon, D. H.

    Venus lies just sunward of the inner edge of the Sun's habitable zone. Liquid water is not stable. Like Earth and Mars, Venus probably accreted at least an ocean's worth of water, although there are alternative scenarios. The loss of this water led to the massive, dry CO2 atmosphere, extensive H2SO4 clouds (at least some of the time), and an intense CO2 greenhouse effect. This chapter describes the current understanding of Venus' atmosphere, established from the data of dozens of spacecraft and atmospheric probe missions since 1962, and by telescopic observations since the nineteenth century. Theoretical work to model the temperature, chemistry, and circulation of Venus' atmosphere is largely based on analogous models developed in the Earth sciences. We discuss the data and modeling used to understand the temperature structure of the atmosphere, as well as its composition, cloud structure, and general circulation. We address what is known and theorized about the origin and early evolution of Venus' atmosphere. It is widely understood that Venus' dense CO2 atmosphere is the ultimate result of the loss of an ocean to space, but the timing of major transitions in Venus' climate is very poorly constrained by the available data. At present, the bright clouds allow only 20% of the sunlight to drive the energy balance and therefore determine conditions at Venus' surface. Like Earth and Mars, differential heating between the equator and poles drives the atmospheric circulation. Condensable species in the atmosphere create clouds and hazes that drive feedbacks that alter radiative forcing. Also in common with Earth and Mars, the loss of light, volatile elements to space produces long-term changes in composition and chemistry. As on Earth, geologic processes are most likely modifying the atmosphere and clouds by injecting gases from volcanos as well as directly through chemical reactions with the surface. The sensitivity of Venus' atmospheric energy balance is quantified in

  17. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.

    1979-01-01

    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  18. Results from VENUS

    International Nuclear Information System (INIS)

    Ogawa, K.

    1990-01-01

    Recent results from VENUS experiments on e + e - reactions at energies between 52 and 60.8 GeV are presented. The R-values, the ratio of the total hadronic cross section to that of μ pair production, look slightly high within the present energy region. To understand this observation, a detailed study was carried out on the production of a heavy quark with |Q|=e/3. By using a next-to-leading log. approximation, the QCD cut-off parameter, Λ MS , was obtained as being Λ MS =208 MeV(+80MeV, -62MeV). The differential cross sections for e + e - → e + e - , γγ, μ + μ - , and τ + τ - were found to be consistent with predictions of the standard model. The average charge asymmetry for e + e - → qq-bar was also measured and found to be consistent with the prediction of the standard model. No evidence was observed indicating new particle production. No single photon production was observed and the upper limit of the number of light neutrino types was set to be N ν < 17.8 (90 % CL). (author)

  19. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  20. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  1. Topographic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Geology of the Delta, Escalante, Price, Richfield, and Salina 10 x 20 quadrangles, Utah

    International Nuclear Information System (INIS)

    Thayer, P.A.

    1981-11-01

    The National Uranium Resource Evaluation (NURE) program was established to evaluate domestic uranium resources in the continental United States and to identify areas favorable for uranium exploration. The Grand Junction Office of the Department of Energy is responsible for administering the program. The Savannah River Laboratory (SRL) is responsible for hydrogeochemical and stream-sediment reconnaissance (HSSR) of 3.9 million km 2 (1,500,000 mi 2 ) in 37 eastern and western states. This document provides geologic and mineral resources reports for the Delta, Escalante, Price, Richfield, and Salina 1 0 x 2 0 National Topographic Map Series quadrangles, Utah. The purpose of these reports is to provide background geologic and mineral resources information to aid in the interpretation of NURE geochemical reconnaissance data. Except for the Escalante Quadrangle, each report is accompanied by a geologic map and a mineral locality map (Plates 1-8, in pocket). The US Geological Survey previously published a 1 0 x 2 0 geologic map of the Escalante Quadrangle and described the uranium deposits in the area (Hackman and Wyant, 1973). NURE hydrogeochemical and stream-sediment reconnaissance data for these quadrangles have been issued previously in some of the reports included in the references

  3. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    Science.gov (United States)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  4. Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-9A Thompson, PJ�and Thompson, TB, 1995, Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles,...

  5. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2006-07-01

    The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.

  6. Geology of the Shakespeare quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2017-09-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the remotely sensed images of the NASA MESSENGER mission. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials, pertaining to the Caloris basin, the largest impact crater on Mercury's surface. The geologic boundaries have been redefined compared to the previous 1:5M map of the quadrangle and the craters have been classified privileging their stratigraphic order rather than morphological appearance. The abundant tectonic landforms have been interpreted and mapped as thrusts or wrinkle ridges.

  7. Chandra Captures Venus In A Whole New Light

    Science.gov (United States)

    2001-11-01

    Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that

  8. Venus Express Contributions to the Study of Planetary Lightning

    Science.gov (United States)

    Russell, C. T.; Hart, R. A.; Zhang, T. L.

    2014-04-01

    Jupiter, and Saturn are expected to generate the electrical potential differences in their clouds sufficient to cause a breakdown in the atmosphere,creating a conducting path for the electric potential to discharge. This high-energy phenomenon creates a hot, high-pressure channel that enables chemical reactions not possible under usual local thermodynamic conditions. Thus it is of some interest to determine if lightning occurs in an atmosphere. While Venus is not usually considered one of the wet planets, lightning has been an object of interest since the Venera landers. It was observed with electromagnetic coils on Venera 11, 12, 13, 14 landers [2]. It was observed with a visible spectrometer on the Venera 9 orbits [1]. It was mapped during solar occultations by the electric antenna on the Pioneer Venus Orbiter [4]. These measurements revealed extensive lightning activity with an electromagnetic energy flux similar to that on Earth. However, the observations were limited in number in the atmosphere and to the nightside from orbit. In order to improve the understanding of Venus lightning, the Venus Express magnetometer was given a 128-Hz sampling rate that could cover much of the ELF frequencies at which lightning could be observed in the weak magnetic fields of the Venus ionosphere [5]. This investigation was immediately successful [3], but mastering the cleaning of the broadband data took several years to accomplish. Furthermore, the high polar latitudes of VEX periapsis were not the ideal locations to conduct the more global survey that was desired. Fortunately, after precessing poleward over the first few years the latitude of periapsis has returned to lower latitudes(Figures 1 and 2) and active electrical storms are now being studied. The charged constituent of the Venus atmosphere need not be water. In fact, we believe it is H2SO4 which polarizes much as water does and which freezes and melts at similar temperatures. If it is H2SO4, we would expect the

  9. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  10. 27 CFR 9.188 - Horse Heaven Hills.

    Science.gov (United States)

    2010-04-01

    ... Junction Quadrangle, Oregon—Washington, 1962, photo revised, 1970; (9) Wood Gulch Quadrangle, Washington... miles to the junction of Pine Creek and the western boundary of section 16, T4N/R21E, on the Wood Gulch... Douty Canyon maps (crossing Tule Canyon, Tule Prong, and Dead Canyon) to the contour line's intersection...

  11. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  12. Kepler-1649b: An Exo-Venus in the Solar Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, Isabel; Rowe, Jason F.; Huber, Daniel [SETI Institute, Mountain View, CA 94043 (United States); Howell, Steve B.; Quintana, Elisa V.; Burningham, Ben; Barclay, Thomas [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Still, Martin [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Mann, Andrew W. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA (United States); Kane, Stephen R., E-mail: isabelangelo@berkeley.edu [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States)

    2017-04-01

    The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergence of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.

  13. Kepler-1649b: An Exo-Venus in the Solar Neighborhood

    International Nuclear Information System (INIS)

    Angelo, Isabel; Rowe, Jason F.; Huber, Daniel; Howell, Steve B.; Quintana, Elisa V.; Burningham, Ben; Barclay, Thomas; Still, Martin; Mann, Andrew W.; Ciardi, David R.; Kane, Stephen R.

    2017-01-01

    The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergence of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.

  14. Venus project : experimentation at ENEA`s pilot site

    Energy Technology Data Exchange (ETDEWEB)

    Bargellini, M L; Fontana, F [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione; Bucci, C; Ferrara, F; Sottile, P A [GESI s.r.l., Rome (Italy); Niccolai, L; Scavino, G [Rome Univ. Sacro Cuore (Italy); Mancini, R; Levialdi, S [Rome Univ. La Sapienza (Italy). Dip. di Scienze dell` Informazione

    1996-12-01

    The document describes the ENEA`s (Italian Agency for New Technologies, Energy and the Environment) experience in the Venus Project (Esprit III ). Venus is an advanced visual interface based on icon representation that permits to end-user to inquiry databases. VENUS interfaces to ENEA`s databases: cometa materials Module, Cometa Laboratories Module and European Programs. This report contents the results of the experimentation and of the validation carried out in ENEA`s related to the Venus generations. Moreover, the description of the architecture, the user requirements syntesis and the validation methodology of the VENUS systems have been included.

  15. Estimation of the rate of volcanism on Venus from reaction rate measurements

    Science.gov (United States)

    Fegley, Bruce, Jr.; Prinn, Ronald G.

    1989-01-01

    Laboratory rate data for the reaction between SO2 and calcite to form anhydrite are presented. If this reaction rate represents the SO2 reaction rate on Venus, then all SO2 in the Venusian atmosphere will disappear in 1.9 Myr unless volcanism replenishes the lost SO2. The required volcanism rate, which depends on the sulfur content of the erupted material, is in the range 0.4-11 cu km of magma erupted per year. The Venus surface composition at the Venera 13, 14, and Vega 2 landing sites implies a volcanism rate of about 1 cu km/yr. This geochemically estimated rate can be used to determine if either (or neither) of two discordant geophysically estimated rates is correct. It also suggests that Venus may be less volcanically active than the earth.

  16. Space weather at planet Venus during the forthcoming BepiColombo flybys

    Science.gov (United States)

    McKenna-Lawlor, S.; Jackson, B.; Odstrcil, D.

    2018-03-01

    The BepiColombo (BC) Mission which will be launched in 2018, will include during its Cruise Phase two flybys of Venus and five Mercury flybys. It will then enter a one Earth year orbit about Mercury (with a possible one-year extension) during which two spacecraft, one provided by ESA (MPO) and one provided by JAXA (MMO), will perform both autonomous and coordinated observations of the Hermean environment at various separations. The measurements will take place during the minimum of solar cycle 24 and the rise of solar cycle 25. At the start of the minimum of solar cycle 23, four major flares, each associated with the production of MeV particle radiation and CME activity occurred. Predictions of the HAFv.2 model of the arrival of particle radiation and a travelling shock at Venus on 6 December 2006 were verified by in-situ measurements made aboard Venus Express (VEX) by the ASPERA 4 instrument. Interplanetary scintillation observations, as well as the ENLIL 3-D MHD model when employed separately or in combination, enable the making of predictions of the solar wind density and speed at various locations in the inner heliosphere. Both methods, which outdate HAFv.2, are utilized in the present paper to predict (retrospectively) the arrival of the flare related, interplanetary propagating shock recorded at Venus on 6 December 2006 aboard VEX with a view to putting in place the facility to make very reliable space weather predictions for BC during both its Cruise Phase and when in the Hermean environment itself. The successful matching of the December 2006 predictions with in-situ signatures recorded aboard Venus Express provide confidence that the predictive methodology to be adopted will be appropriate to provide space weather predictions for BepiColombo during its Venus flybys and throughout the mission.

  17. Airborne gamma-ray spectrometer and magnetometer survey: Forsyth quadrangle, Round Up quadrangle, Hardin quadrangle (Montana), Sheridan quadrangle, (Wyoming). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Forsyth, Hardin, and Sheridan, and Roundup, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration Pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  18. A dynamic model of Venus's gravity field

    Science.gov (United States)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  19. Index Grids - QUADRANGLES_24K_USGS_IN: Boundaries of 7.5-Minute Quadrangles in Indiana, (United States Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — QUADRANGLES_24K_USGS_IN is a polygon shapefile defining the boundaries of the USGS 7.5-minute (1:24,000-scale) quadrangles which cover the state of Indiana. Dates of...

  20. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  1. Implications of /sup 36/A excess on Venus

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, M [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1979-05-01

    The finding of /sup 36/A excess on Venus by the mass-spectroscopic measurement of the Venus Pioneer appears to endorse the more rapid accretion theory of Venus than the Earth and the secondary origin of the terrestrial atmosphere.

  2. Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express.

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.

    Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.

  3. Venus Surface Composition Constrained by Observation and Experiment

    Science.gov (United States)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-11-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  4. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  5. Venus and the Archean Earth: Thermal considerations

    International Nuclear Information System (INIS)

    Sleep, N.H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus

  6. On the Thermal Protection Systems of Landers for Venus Exploration

    Science.gov (United States)

    Ekonomov, A. P.; Ksanfomality, L. V.

    2018-01-01

    The landers of the Soviet Venera series—from Venera-9 to Venera-14—designed at the Lavochkin Association are a man-made monument to spectacular achievements of Soviet space research. For more than 40 years, they have remained the uneclipsed Soviet results in space studies of the Solar System. Within the last almost half a century, the experiments carried out by the Venera-9 to Venera-14 probes for studying the surface of the planet have not been repeated by any space agency in the world, mainly due to quite substantial technical problems. Since that time, no Russian missions with landers have been sent to Venus either. On Venus, there is an anoxic carbon dioxide atmosphere, where the pressure is 9.2 MPa and the temperature is 735 K near the surface. A long-lived lander should experience these conditions for an appreciable length of time. What technical solutions could provide a longer operation time for a new probe investigating the surface of Venus, if its thermal scheme is constructed similar to that of the Venera series? Onboard new landers, there should be a sealed module, where the physical conditions required for operating scientific instruments are maintained for a long period. At the same time, new high-temperature electronic equipment that remains functional under the above-mentioned conditions have appeared. In this paper, we consider and discuss different variants of the system for a long-lived sealed lander, in particular, the absorption of the penetrating heat due to water evaporation and the thermal protection construction for the instruments with intermediate characteristics.

  7. The geology and ore deposits of the Bisbee quadrangle, Arizona

    Science.gov (United States)

    Ransome, Frederick Leslie

    1904-01-01

    The Bisbee quadrangle lies in Cochise County, in the southeastern part of Arizona, within what has been called in a previous paper the mountain region of the Territory. It is inclosed between meridians 109 ° 45' and 110 ° 00' and parallels 31° 30' and 31 ° 20', the latter being locally the Mexican boundary line. The area of the quadrangle is about 170 square miles, and includes the southeastern half of the Mule Mountains, one of the smaller of the isolated ranges so characteristic of the mountain region of Arizona. The Mule Mountains, while less markedly linear than the Dragoon, Huachuca, Chiricahua, and other neighboring ranges, have a general northwest-southeast trend. They may be considered as extending from the old mining town of Tombstone to the Mexican border, a distance of about 30 miles. On the northeast they are separated by the broad fiat floor of Sulphur Spring Valley form the Chiricahua Range, and on the southwest by the similar broad valley of the Rio San Pedro from the Huachuca Range (Pl. V, A). 

  8. The VENUS detector at TRISTAN

    International Nuclear Information System (INIS)

    Sugimoto, Shojiro

    1983-01-01

    The design of the VENUS detector is described. In this paper, emphasis is placed on the central tracking chamber and the electromagnetic shower calorimeters. Referring to computer simulations and test measurements with prototypes, the expected performance of our detector system is discussed. The contents are, for the most part, taken from the VENUS proposal /2/. (author)

  9. Gravity field of Venus - A preliminary analysis

    Science.gov (United States)

    Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Smith, J. C.; Wimberly, R. N.; Wagner, C. A.

    1979-01-01

    The gravitational field of Venus obtained by tracking the Pioneer Venus Orbiter is examined. For each spacecraft orbit, two hours of Doppler data centered around periapsis were used to estimate spacecraft position and velocity and the velocity residuals obtained were spline fit and differentiated to produce line of sight gravitational accelerations. Consistent variations in line of sight accelerations from orbit to orbit reveal the presence of gravitational anomalies. A simulation of isostatic compensation for an elevated region on the surface of Venus indicates that the mean depth of compensation is no greater than about 100 km. Gravitational spectra obtained from a Fourier analysis of line of sight accelerations from selected Venus orbits are compared to the earth's gravitational spectrum and spherical harmonic gravitational potential power spectra of the earth, the moon and Mars. The Venus power spectrum is found to be remarkably similar to that of the earth, however systematic variations in the harmonics suggest differences in dynamic processes or lithospheric behavior.

  10. Temperature and Wind Measurements in Venus Lower Thermosphere between 2007 and 2015

    Science.gov (United States)

    Krause, Pia; Sornig, Manuela; Wischnewski, Carolin; Sonnabend, Guido; Stangier, Tobias; Herrmann, Maren; Kostiuk, Theodor; Livengood, Timothy A.; Pätzold, Martin

    2016-10-01

    The structure of Venus atmosphere and its thermal and dynamical behavior was intensely studied during the past decade by groundbased and the space mission Venus Express. A comprehensive understanding of the atmosphere, however, is still missing. Direct measurements of atmospheric parameters on various time scales and at different locations across the planet are essential for better understanding and to validate global circulation models. Line-resolved spectroscopy of infrared CO2 transitions provides a powerful tool to accomplish measurements of temperature and wind speed within the neutral atmosphere, using Doppler line-broadening and Doppler shift. Temperature is the motor to drive circulation, and wind speed is the result. Measuring both provides both the basis and an empirical test for circulation models. Non-LTE emission lines at 10 µm that originate from a pressure level of 1μbar, ~110 km altitude, probe the lower thermosphere and are measurable at high spectral resolution using the infrared heterodyne spectrometers THIS (University of Cologne), HIPWAC (NASA GSFC) and MILAHI (Tohoku University).Thermal and dynamical structures on the Venus day side are retrieved using a newly developed method that considers the influence of the spectrometer field-of-view (FoV) and the dispersion of spectral properties across the FoV. New conclusions from the ground-based observing campaigns between 2007 and 2015 will be presented based on this retrieval methodology. The spatial resolution on the planetary disk is different for each campaign, depending on the apparent diameter of the planet and the diffraction-limited FoV of the telescope. Previously, a comparison of the observing campaigns was limited due to the difference in spatial resolution. The new retrieval method enables comparing observations with different observing geometry. The observations yield a large quantity of temperature and wind measurements at different positions on the planetary disk, which supports

  11. Sampling the Cloudtop Region on Venus

    Science.gov (United States)

    Limaye, Sanjay; Ashish, Kumar; Alam, Mofeez; Landis, Geoffrey; Widemann, Thomas; Kremic, Tibor

    2014-05-01

    The details of the cloud structure on Venus continue to be elusive. One of the main questions is the nature and identity of the ultraviolet absorber(s). Remote sensing observations from Venus Express have provided much more information about the ubiquitous cloud cover on Venus from both reflected and emitted radiation from Venus Monitoring Camera (VMC) and Visible InfraRed Imaging Spectrometer (VIRTIS) observations. Previously, only the Pioneer Venus Large Probe has measured the size distribution of the cloud particles, and other probes have measured the bulk optical properties of the cloud cover. However, the direct sampling of the clouds has been possible only below about 62 km, whereas the recent Venus Express observations indicate that the cloud tops extend from about 75 km in equatorial region to about 67 km in polar regions. To sample the cloud top region of Venus, other platforms are required. An unmanned aerial vehicle (UAV) has been proposed previously (Landis et al., 2002). Another that is being looked into, is a semi-buoyant aerial vehicle that can be powered using solar cells and equipped with instruments to not only sample the cloud particles, but also to make key atmospheric measurements - e.g. atmospheric composition including isotopic abundances of noble and other gases, winds and turbulence, deposition of solar and infrared radiation, electrical activity. The conceptual design of such a vehicle can carry a much more massive payload than any other platform, and can be controlled to sample different altitudes and day and night hemispheres. Thus, detailed observations of the surface using a miniature Synthetic Aperture Radar are possible. Data relay to Earth will need an orbiter, preferably in a low inclination orbit, depending on the latitude region selected for emphasis. Since the vehicle has a large surface area, thermal loads on entry are low, enabling deployment without the use of an aeroshell. Flight characteristics of such a vehicle have been

  12. Reassessment of planetary protection requirements for Venus missions

    Science.gov (United States)

    Szostak, J.; Riemer, R.; Smith, D.; Rummel, J.

    In 2005 the US Space Studies Board SSB was asked by NASA to reexamine the planetary protection requirements for spacecraft missions to Venus In particular the SSB was tasked to 1 Assess the surface and atmospheric environments of Venus with respect to their ability to support the survival and growth of Earth-origin microbial contamination by future spacecraft missions and 2 Provide recommendations related to planetary protection issues associated with the return to Earth of samples from Venus The task group established by the SSB to address these issues assessed the known aspects of the present-day environment of Venus and the ability of Earth organisms to survive in the physical and chemical conditions found on the planet s surface or in the clouds in the planet s atmosphere As a result of its deliberations the task group found compelling evidence against there being significant dangers of forward or reverse biological contamination as a result of contact between a spacecraft and the surface of Venus or the clouds in the atmosphere of Venus regardless of the current unknowns The task group did however conclude that Venus is a body of interest relative to the process of chemical evolution and the origin of life As a result the task group endorses NASA s current policy of subjecting missions to Venus to the requirements imposed by planetary protection Category II rather than the less restrictive Category I recommended by COSPAR

  13. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    International Nuclear Information System (INIS)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria

  14. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria.

  15. Topographic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  16. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  17. On a predominant ionization source in the main maximum of the Venus nightside ionosphere

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Verigin, M.I.; Breus, T.K.; Shvachunova, L.A.

    1983-01-01

    New considerations in favour of the previously made hypothesis, made on the basis of data using ''Venera-9 and 10'' satellites, that electron fluxes are the main ionization sources, creating the upper maximum of electron concentration in the night Venus atmosphere, are presented. Analysis of arguments, made by certain american authors, suggesting that O + ion transfer from the day Venus ionosphere to the night one should be considered as the main source of night ionization is made, and inconsistency of the argument shown

  18. Venus Express set for launch to the cryptic planet

    Science.gov (United States)

    2005-10-01

    On Wednesday, 26 October 2005, the sky over the Baikonur Cosmodrome, Kazakhstan, will be illuminated by the blast from a Soyuz-Fregat rocket carrying this precious spacecraft aloft. The celestial motion of the planets in our Solar System has given Venus Express the window to travel to Venus on the best route. In fact, every nineteen months Venus reaches the point where a voyage from Earth is the most fuel-efficient. To take advantage of this opportunity, ESA has opted to launch Venus Express within the next ‘launch window’, opening on 26 October this year and closing about one month later, on 24 November. Again, due to the relative motion of Earth and Venus, plus Earth’s daily rotation, there is only one short period per day when it is possible to launch, lasting only a few seconds. The first launch opportunity is on 26 October at 06:43 Central European Summer Time (CEST) (10:43 in Baikonur). Venus Express will take only 163 days, a little more than five months, to reach Venus. Then, in April 2006, the adventure of exploration will begin with Venus finally welcoming a spacecraft, a fully European one, more than ten years after humankind paid the last visit. The journey starts at launch One of the most reliable launchers in the world, the Soyuz-Fregat rocket, will set Venus Express on course for its target. Soyuz, procured by the European/Russian Starsem company, consists of three main stages with an additional upper stage, Fregat, atop. Venus Express is attached to this upper stage. The injection of Venus Express into the interplanetary trajectory which will bring it to Venus consists of three phases. In the first nine minutes after launch, Soyuz will perform the first phase, that is an almost vertical ascent trajectory, in which it is boosted to about 190 kilometres altitude by its three stages, separating in sequence. In the second phase, the Fregat-Venus Express ‘block’, now free from the Soyuz, is injected into a circular parking orbit around Earth

  19. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  20. First stage of cosmic expedition Vega: Venus investigations

    International Nuclear Information System (INIS)

    Balebanov, V.M.; Moroz, V.I.; Mukhin, L.M.

    1985-01-01

    Main results of the first (Venus) stage of the international complex program ''Venus - Halley'' (''Vega'' for short) are presented. The program is aimed at transporting descent space vehicles to the Venus to explore its atmosphere and surface. Then automatic interplanetary stations (AIS) will be directed to the Halley's comet. In June 1985 the descent space vehicles AIS ''Vega-1'' and ''Vega-2'' have landed softly on the Venus surface, aerostat probes have been launched to the planet atmosphere. The design of the descent space vehicle, structure and chemical composition of the atmosphere, ground composition are briefly outlined

  1. Geology of the Horse Range Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  2. Reconnaissance geologic map of the Hyampom 15' quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2010-01-01

    The Hyampom 15' quadrangle lies west of the Hayfork 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of four generally northwest-trending tectono- stratigraphic terranes of the Klamath Mountains, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, a small part of the Pickett Peak terrane of the Coast Range province. Remnants of the Cretaceous Great Valley overlap sequence that once covered much of the pre-Cretaceous bedrock of the quadrangle are now found only as a few small patches in the northeast corner of the quadrangle. Fluvial and lacustrine deposits of the mid-Tertiary Weaverville Formation crop out in the vicinity of the village of Hyampom. The Eastern Hayfork terrane is a broken formation and m-lange of volcanic and sedimentary rocks that include blocks of chert and limestone. The chert has not been sampled; however, chert from the same terrane in the Hayfork quadrangle contains radiolarians of Permian and Triassic ages, but none clearly of Jurassic age. Limestone at two localities contains late Paleozoic foraminifers. Some of the limestone from the Eastern Klamath terrane in the Hayfork quadrangle contains faunas of Tethyan affinity. The Western Hayfork terrane is part of an andesitic volcanic arc that was accreted to the western edge of the Eastern Hayfork terrane. It consists mainly of metavolcaniclastic andesitic agglomerate and tuff, as well as argillite and chert, and it includes the dioritic Ironside Mountain batholith that intruded during Middle Jurassic time (about 170 Ma). This intrusive body provides the principal constraint on the age of the terrane. The Rattlesnake Creek terrane is a melange consisting mostly of highly dismembered ophiolite. It includes slabs of serpentinized ultramafic rock, basaltic volcanic rocks, radiolarian chert of Triassic and Jurassic ages, limestone containing

  3. Topographic Map of Quadrangles 3560 and 3562, Sir-Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  4. Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS Open-File Report 95-483, 2 plates, scale 1:24000

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-483A Lyttle, PT,�Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS...

  5. Perfect Octagon Quadrangle Systems with an upper C4-system and a large spectrum

    Directory of Open Access Journals (Sweden)

    Luigia Berardi

    2011-02-01

    Full Text Available An octagon quadrangle is the graph consisting of an 8-cycle (x1, x2,..., x8 with two additional chords: the edges {x1, x4} and {x5, x8}. An octagon quadrangle system of order ν and index λ [OQS] is a pair (X,H, where X is a finite set of ν vertices and H is a collection of edge disjoint octagon quadrangles (called blocks which partition the edge set of λKν defined on X. An octagon quadrangle system Σ=(X,H of order ν and index λ is said to be upper C4-perfect if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν; it is said to be upper strongly perfect, if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν and also the collection of all of the outside 8-cycles contained in the octagon quadrangles form a ρ-fold 8-cycle system of order ν. In this paper, the authors determine the spectrum for these systems, in the case that it is the largest possible.

  6. The Plains of Venus

    Science.gov (United States)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  7. Geologic map of the Montauk quadrangle, Dent, Texas, and Shannon Counties, Missouri

    Science.gov (United States)

    Weary, David J.

    2015-04-30

    The Montauk 7.5-minute quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,000 feet (ft) of flat-lying to gently dipping lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as caves, springs, and sinkholes, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from approximately 830 ft where the Current River exits the middle-eastern edge of the quadrangle to about 1,320 ft in sec. 16, T. 31 N., R. 7 W., in the southwestern part of the quadrangle. The most prominent physiographic features within the quadrangle are the deeply incised valleys of the Current River and its major tributaries located in the center of the map area. The Montauk quadrangle is named for Montauk Springs, a cluster of several springs that resurge in sec. 22, T. 32 N., R. 7 W. These springs supply clean, cold water for the Montauk Fish Hatchery, and the addition of their flow to that of Pigeon Creek produces the headwaters of the Current River, the centerpiece of the Ozark National Scenic Riverways park. Most of the land in the quadrangle is privately owned and used primarily for grazing cattle and horses and growing timber. A smaller portion of the land within the quadrangle is publicly owned by either Montauk State Park or the Ozark National Scenic Riverways (National Park Service). Geologic mapping for this investigation was conducted in 2007 and 2009.

  8. The Reappearance of Venus Observed 8 October 2015

    Science.gov (United States)

    Dunham, David W.; Dunham, Joan B.

    2018-01-01

    The reappearance of Venus on October 8, 2015 offered a unique opportunity to attempt observation of the ashen light of Venus as the unlit side of Venus emerged from behind the dark side of the Moon. The dark side of Venus would be offered to observers without interference from the bright side of Venus or of the Moon. Observations were made from Alice Springs, Australia visually with a 20-cm Schmidt-Cassegrain and with a low-light level surveillance camera on a 25-cm reflector. No evidence of the dark side was noted by the visual observer, the video shows little indication of Venus prior to the bright side reappearance. The conclusion reached is that the ashen light, as it was classically defined, is not observable visually or with small telescopes in the visual regime.The presentation describes the prediction, observation technique, and various analyses by the authors and others to draw conclusions from the data.To date, the authors have been unable to locate any reports of others attempting to observe this unique event. That is a pity since, not only was it interesting for an attempt to verify past observations of the ashen light, it was also a visually stunning event.

  9. Lightning on Venus

    Science.gov (United States)

    Scarf, F. L.

    1985-01-01

    On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  10. Topographic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. Topographic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Exploration of Venus' Deep Atmosphere and Surface Environment

    Science.gov (United States)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  13. Future Drag Measurements from Venus Express

    Science.gov (United States)

    Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

    Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected

  14. Geological mapping of the Kuiper quadrangle (H06) of Mercury

    Science.gov (United States)

    Giacomini, Lorenza; Massironi, Matteo; Galluzzi, Valentina

    2017-04-01

    Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the area between longitudes 288°E - 360°E and latitudes 22.5°N - 22.5°S. The quadrangle was previously mapped for its most part by De Hon et al. (1981) that, using Mariner10 data, produced a final 1:5M scale map of the area. In this work we present the preliminary results of a more detailed geological map (1:3M scale) of the Kuiper quadrangle that we compiled using the higher resolution of MESSENGER data. The main basemap used for the mapping is the MDIS (Mercury Dual Imaging System) 166 m/pixel BDR (map-projected Basemap reduced Data Record) mosaic. Additional datasets were also taken into account, such as DLR stereo-DEM of the region (Preusker et al., 2016), global mosaics with high-incidence illumination from the east and west (Chabot et al., 2016) and MDIS global color mosaic (Denevi et al., 2016). The preliminary geological map shows that the western part of the quadrangle is characterized by a prevalence of crater materials (i.e. crater floor, crater ejecta) which were distinguished into three classes on the basis of their degradation degree (Galluzzi et al., 2016). Different plain units were also identified and classified as: (i) intercrater plains, represented by densely cratered terrains, (ii) intermediate plains, which are terrains with a moderate density of superposed craters, and (iii) smooth plains, which are poorly cratered volcanic deposits emplaced mainly on the larger crater floors. Finally, several structures were mapped all over the quadrangle. Most of these features are represented by thrusts, some of which appear to form systematic alignments. In particular, two main thrust systems have been identified: i) the "Thakur" system, a 1500 km-long system including several scarps with a NNE-SSW orientation, located at the edge between the Kuiper and Beethoven (H07) quadrangles; ii) the "Santa Maria" system, located at the centre of the quadrangle. It is a 1700 km

  15. Escape of natural satellites from Mercury and Venus

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S S [Virginia Univ., Charlottesville (USA)

    1977-09-01

    It is suggested that the slow rotations of Mercury and Venus may be connected with the absence of natural satellites around them. If Mercury or Venus possessed a satellite at the time of formation, the tidal evolution would have caused the satellite to recede. At a sufficiently large distance from the planet, the Sun's gravitational influence makes the satellite orbit unstable. The natural satellites of Mercury and Venus might have escaped as a consequence of this instability.

  16. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  17. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    Science.gov (United States)

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  18. Venus Landsailing Rover

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn has developed electronics and low-power photovoltaics that will continue to function even at the Venus temperature of 450°C. So the fundamental elements...

  19. Solar Wind Interaction and Impact on the Venus Atmosphere

    Science.gov (United States)

    Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.

    2017-11-01

    Venus has intrigued planetary scientists for decades because of its huge contrasts to Earth, in spite of its nickname of "Earth's Twin". Its invisible upper atmosphere and space environment are also part of the larger story of Venus and its evolution. In 60s to 70s, several missions (Venera and Mariner series) explored Venus-solar wind interaction regions. They identified the basic structure of the near-Venus space environment, for example, existence of the bow shock, magnetotail, ionosphere, as well as the lack of the intrinsic magnetic field. A huge leap in knowledge about the solar wind interaction with Venus was made possible by the 14-year long mission, Pioneer Venus Orbiter (PVO), launched in 1978. More recently, ESA's probe, Venus Express (VEX), was inserted into orbit in 2006, operated for 8 years. Owing to its different orbit from that of PVO, VEX made unique measurements in the polar and terminator regions, and probed the near-Venus tail for the first time. The near-tail hosts dynamic processes that lead to plasma energization. These processes in turn lead to the loss of ionospheric ions to space, slowly eroding the Venusian atmosphere. VEX carried an ion spectrometer with a moderate mass-separation capability and the observed ratio of the escaping hydrogen and oxygen ions in the wake indicates the stoichiometric loss of water from Venus. The structure and dynamics of the induced magnetosphere depends on the prevailing solar wind conditions. VEX studied the response of the magnetospheric system on different time scales. A plethora of waves was identified by the magnetometer on VEX; some of them were not previously observed by PVO. Proton cyclotron waves were seen far upstream of the bow shock, mirror mode waves were observed in magnetosheath and whistler mode waves, possibly generated by lightning discharges were frequently seen. VEX also encouraged renewed numerical modeling efforts, including fluid-type of models and particle-fluid hybrid type of models

  20. Mesoscale circulation at the upper cloud level at middle latitudes from the imaging by Venus Monitoring Camera onboard Venus Express

    Science.gov (United States)

    Patsaeva, Marina; Ignatiev, Nikolay; Markiewicz, Wojciech; Khatuntsev, Igor; Titov, Dmitrij; Patsaev, Dmitry

    The Venus Monitoring Camera onboard ESA Venus Express spacecraft acquired a great number of UV images (365 nm) allowing us to track the motion of cloud features at the upper cloud layer of Venus. A digital method developed to analyze correlation functions between two UV images provided wind vector fields on the Venus day side (9-16 hours local time) from the equator to high latitudes. Sizes and regions for the correlation were chosen empirically, as a trade-off of sensitivity against noise immunity and vary from 10(°) x7.5(°) to 20(°) x10(°) depending on the grid step, making this method suitable to investigate the mesoscale circulation. Previously, the digital method was used for investigation of the circulation at low latitudes and provided good agreement with manual tracking of the motion of cloud patterns. Here we present first results obtained by this method for middle latitudes (25(°) S-75(°) S) on the basis of 270 orbits. Comparing obtained vector fields with images for certain orbits, we found a relationship between morphological patterns of the cloud cover at middle latitudes and parameters of the circulation. Elongated cloud features, so-called streaks, are typical for middle latitudes, and their orientation varies over wide range. The behavior of the vector field of velocities depends on the angle between the streak and latitude circles. In the middle latitudes the average angle of the flow deviation from the zonal direction is equal to -5.6(°) ± 1(°) (the sign “-“ means the poleward flow, the standard error is given). For certain orbits, this angle varies from -15.6(°) ± 1(°) to 1.4(°) ± 1(°) . In some regions at latitudes above 60(°) S the meridional wind is equatorward in the morning. The relationship between the cloud cover morphology and circulation peculiarity can be attributed to the motion of the Y-feature in the upper cloud layer due to the super-rotation of the atmosphere.

  1. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    units is ~81.7% of the map area, whereas the younger units cover ~14.1% of the surface. Depending upon the estimates of T (750 Ma [36], 500 Ma [37], 300 Ma [38]), duration of Fortunian Period can be from 300 m.y (T=750 Ma) to 120 m.y (T=300 Ma). The minimum integrated resurfacing rate (both volcanic and tectonic) at this time was from ~1.2 to ~3.1 km2/y. Duration of Atlian Period is estimated to be from 750 to 300 m.y and the integrated resurfacing rate during this period could be from ~0.2 to ~0.4 km2/y. Such a significant drop of the resurfacing rates suggests that Fortunian and Atlian periods correspond to two different geodynamic regimes that probably were related to different regimes of mantle convection and lithospheric properties. References: 1) Basilevsky, A. T. and J.W. Head, PSS, 43, 1523, 1995; 2) Basilevsky, A.T. and J.W. Head, PSS, 48, 75, 2000 3) DeShon, H.R. et al., JGR, 105, 6983, 2000; 4) Head, J.W. et al., JGR, 97, 13153, 1992; 5) Solomon, S.C. et al., JGR, 97, 13199, 1992; 6) Squyres, S.W. et al., JGR, 97, 13579, 1992; 7) Stofan, E. R. et al., JGR, 97, 13347, 1992; 8) Guest, J.E., and E.R., Icarus139, 56, 1999; 9) Basilevsky, A.T.,et al., in: Venus II, S.W. Bougher et al. eds., Univ. Arizona Press 1047, 1997; 10) Head, J.W. and A.T. Basilevsky, Geology, 26, 35, 1998; 11) Ivanov, M.A. and J.W. Head, JGR, 106, 17515, 2001; 12) Price, M. and J., Nature, 372, 756, 1994; 13) Price, M. et al., JGR, 101, 4657, 1996 14) Namiki, N. and S.C. Solomon, Science, 265, 929, 1994 15) Parmentier, E.M. and P.C. Hess, GRL, 19, 2015, 1992; 16) Head, J.W. et al., PSS, 42, 803, 1994; 17) Turcotte, D.L., JGR, 98, 127061, 1993; 18) Arkani-Hamed, J. and M.N. Toksoz, PEPI, 34, 232, 1984; 19) Solomon, S.C, LPSC (Abstr.), XXIV, 1331, 1993; 20) Phillips R.J. and V.L. Hansen, Science, 279, 1492, 1998; 21) Solomatov, S.V. and L.-N. Moresi, JGR, 101, 4737, 1996; 22) Bender, K.C., et al., USGS Map I-2620, 2000; 23) Rosenberg, E. and G. E. McGill, USGS Map I-2721, 2001; 24) Ivanov, M

  2. The various contributions in Venus rotation rate and LOD

    Science.gov (United States)

    Cottereau, L.; Rambaux, N.; Lebonnois, S.; Souchay, J.

    2011-07-01

    Context. Thanks to the Venus Express Mission, new data on the properties of Venus could be obtained, in particular concerning its rotation. Aims: In view of these upcoming results, the purpose of this paper is to determine and compare the major physical processes influencing the rotation of Venus and, more particularly, the angular rotation rate. Methods: Applying models already used for Earth, the effect of the triaxiality of a rigid Venus on its period of rotation are computed. Then the variations of Venus rotation caused by the elasticity, the atmosphere, and the core of the planet are evaluated. Results: Although the largest irregularities in the rotation rate of the Earth on short time scales are caused by its atmosphere and elastic deformations, we show that the irregularities for Venus are dominated by the tidal torque exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation, these effects have a large amplitude of two minutes of time (mn). These variations in the rotation rate are greater than the one induced by atmospheric wind variations that can reach 25-50 s of time (s), depending on the simulation used. The variations due to the core effects that vary with its size between 3 and 20 s are smaller. Compared to these effects, the influence of the elastic deformation caused by the zonal tidal potential is negligible. Conclusions: As the variations in the rotation of Venus reported here are close to 3 mn peak to peak, they should influence past, present, and future observations, thereby providing further constraints on the planet's internal structure and atmosphere.

  3. Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations

    Directory of Open Access Journals (Sweden)

    L. Guicking

    2010-04-01

    Full Text Available We investigate wave properties of low-frequency magnetic field fluctuations in Venus' solar wind interaction region based on the measurements made on board the Venus Express spacecraft. The orbit geometry is very suitable to investigate the fluctuations in Venus' low-altitude magnetosheath and mid-magnetotail and provides an opportunity for a comparative study of low-frequency waves at Venus and Mars. The spatial distributions of the wave properties, in particular in the dayside and nightside magnetosheath as well as in the tail and mantle region, are similar to observations at Mars. As both planets do not have a global magnetic field, the interaction process of the solar wind with both planets is similar and leads to similar instabilities and wave structures. We focus on the spatial distribution of the wave intensity of the fluctuating magnetic field and detect an enhancement of the intensity in the dayside magnetosheath and a strong decrease towards the terminator. For a detailed investigation of the intensity distribution we adopt an analytical streamline model to describe the plasma flow around Venus. This allows displaying the evolution of the intensity along different streamlines. It is assumed that the waves are generated in the vicinity of the bow shock and are convected downstream with the turbulent magnetosheath flow. However, neither the different Mach numbers upstream and downstream of the bow shock, nor the variation of the cross sectional area and the flow velocity along the streamlines play probably an important role in order to explain the observed concentration of wave intensity in the dayside magnetosheath and the decay towards the nightside magnetosheath. But, the concept of freely evolving or decaying turbulence is in good qualitative agreement with the observations, as we observe a power law decay of the intensity along the streamlines. The observations support the assumption of wave convection through the magnetosheath, but

  4. 27 CFR 9.77 - Altus.

    Science.gov (United States)

    2010-04-01

    ...) Hartman Quadrangle, 1961. (4) Hunt Quadrangle, 1963. (5) Watalula Quadrangle, 1973. (c) Boundary—(1... eastward to the crossing over Horsehead Creek (on the Hartman Quadrangle map). (ii) From there northward...

  5. Topographic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  6. Topographic Map of Quadrangles 3770 and 3870, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  7. Topographic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Chemical Weathering on Venus

    Science.gov (United States)

    Zolotov, Mikhail

    2018-01-01

    Chemical and phase compositions of Venus's surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth's sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions. Venus's surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal

  9. Parabolic features and the erosion rate on Venus

    Science.gov (United States)

    Strom, Robert G.

    1993-01-01

    The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.

  10. Venus' Spectral Signatures and the Potential for Life in the Clouds.

    Science.gov (United States)

    Limaye, Sanjay S; Mogul, Rakesh; Smith, David J; Ansari, Arif H; Słowik, Grzegorz P; Vaishampayan, Parag

    2018-03-30

    The lower cloud layer of Venus (47.5-50.5 km) is an exceptional target for exploration due to the favorable conditions for microbial life, including moderate temperatures and pressures (∼60°C and 1 atm), and the presence of micron-sized sulfuric acid aerosols. Nearly a century after the ultraviolet (UV) contrasts of Venus' cloud layer were discovered with Earth-based photographs, the substances and mechanisms responsible for the changes in Venus' contrasts and albedo are still unknown. While current models include sulfur dioxide and iron chloride as the UV absorbers, the temporal and spatial changes in contrasts, and albedo, between 330 and 500 nm, remain to be fully explained. Within this context, we present a discussion regarding the potential for microorganisms to survive in Venus' lower clouds and contribute to the observed bulk spectra. In this article, we provide an overview of relevant Venus observations, compare the spectral and physical properties of Venus' clouds to terrestrial biological materials, review the potential for an iron- and sulfur-centered metabolism in the clouds, discuss conceivable mechanisms of transport from the surface toward a more habitable zone in the clouds, and identify spectral and biological experiments that could measure the habitability of Venus' clouds and terrestrial analogues. Together, our lines of reasoning suggest that particles in Venus' lower clouds contain sufficient mass balance to harbor microorganisms, water, and solutes, and potentially sufficient biomass to be detected by optical methods. As such, the comparisons presented in this article warrant further investigations into the prospect of biosignatures in Venus' clouds. Key Words: Venus-Clouds-Life-Habitability-Microorganism-Albedo-Spectroscopy-Biosignatures-Aerosol-Sulfuric Acid. Astrobiology 18, xxx-xxx.

  11. Preliminary geologic map of the Turayf Quadrangle, sheet 31C, and part of the An Nabk quadrangle, sheet 31B, Kingdom of Saudi Arabia

    Science.gov (United States)

    Meissner, C.R.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.

    1989-01-01

    The An Nabk and Turayf quadrangles lie at the northern border of the Kingdom of Saudi Arabia. Middle and upper Cenozoic sedimentary and volcanic rocks form the surface of the quadrangles, and sedimentary rocks of the Paleozoic, Mesozoic, and lower Cenozoic are found in the subsurface. The Paleozoic and Mesozoic rocks, described from drill hole records, include the Tabuk, Upper Sudair, Lower Jilh and Aruma formations which are mostly of marine origin.

  12. National Uranium Resource Evaluation, Llano Quadrangle, Texas

    International Nuclear Information System (INIS)

    Droddy, M.J.; Hovorka, S.D.

    1982-04-01

    The Llano 2 0 quadrangle was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The areas were delineated according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, carborne scintillometer surveys, outcrop investigations, and followup of hydrogeochemical and stream-sediment reconnaissance data. A radon emanometry survey and investigations of electric and gamma-ray well logs, drillers' logs, and well core samples were performed to evaluate the subsurface potential of the Llano Quadrangle. An environment favorable for pegmatitic deposits is identified in the Town Mountain Granite

  13. Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho

    Data.gov (United States)

    Department of the Interior — The paper version of Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho was...

  14. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission

    International Nuclear Information System (INIS)

    Arp, Zane A.; Cremers, David A.; Harris, Ronny D.; Oschwald, David M.; Parker, Gary R.; Wayne, David M.

    2004-01-01

    Laser-induced breakdown spectroscopy (LIBS) is being developed for future use on landers and rovers to Mars. The method also has potential for use on probes to other planets, the Moon, asteroids and comets. Like Mars, Venus is of strong interest because of its proximity to earth, but unlike Mars, conditions at the surface are far more hostile with temperatures in excess of 700 K and pressures on the order of 9.1 MPa (90 atm). These conditions present a significant challenge to spacecraft design and demand that rapid methods of chemical data gathering be implemented. The advantages of LIBS (e.g. stand-off and very rapid analysis) make the method particularly attractive for Venus exploration because of the expected short operational lifetimes (∼2 h) of surface instrumentation. Although the high temperature of Venus should pose no problem to the analytical capabilities of the LIBS spark, the demonstrated strong dependence of laser plasma characteristics on ambient gas pressures below earth atmospheric pressure requires that LIBS measurements be evaluated at the high Venus surface pressures. Here, we present a preliminary investigation of LIBS at 9.1 MPa for application to the analysis of a basalt rock sample. The results suggest the feasibility of the method for a Venus surface probe and that further study is justified

  15. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission

    Energy Technology Data Exchange (ETDEWEB)

    Arp, Zane A.; Cremers, David A. E-mail: cremers_david@lanl.gov; Harris, Ronny D.; Oschwald, David M.; Parker, Gary R.; Wayne, David M

    2004-07-30

    Laser-induced breakdown spectroscopy (LIBS) is being developed for future use on landers and rovers to Mars. The method also has potential for use on probes to other planets, the Moon, asteroids and comets. Like Mars, Venus is of strong interest because of its proximity to earth, but unlike Mars, conditions at the surface are far more hostile with temperatures in excess of 700 K and pressures on the order of 9.1 MPa (90 atm). These conditions present a significant challenge to spacecraft design and demand that rapid methods of chemical data gathering be implemented. The advantages of LIBS (e.g. stand-off and very rapid analysis) make the method particularly attractive for Venus exploration because of the expected short operational lifetimes ({approx}2 h) of surface instrumentation. Although the high temperature of Venus should pose no problem to the analytical capabilities of the LIBS spark, the demonstrated strong dependence of laser plasma characteristics on ambient gas pressures below earth atmospheric pressure requires that LIBS measurements be evaluated at the high Venus surface pressures. Here, we present a preliminary investigation of LIBS at 9.1 MPa for application to the analysis of a basalt rock sample. The results suggest the feasibility of the method for a Venus surface probe and that further study is justified.

  16. Transit of Venus Culture: A Celestial Phenomenon Intrigues the Public

    Science.gov (United States)

    Bueter, Chuck

    2012-01-01

    When Jeremiah Horrocks first observed it in 1639, the transit of Venus was a desirable telescopic target because of its scientific value. By the next transit of Venus in 1761, though, the enlightened public also embraced it as a popular celestial phenomenon. Its stature elevated over the centuries, the transit of Venus has been featured in music, poetry, stamps, plays, books, and art. The June 2004 transit emerged as a surprising global sensation, as suggested by the search queries it generated. Google's Zeitgeist deemed Venus Transit to be the #1 Most Popular Event in the world for that month. New priorities, technologies, and media have brought new audiences to the rare alignment. As the 2012 transit of Venus approaches, the trend continues with publicly accessible capabilities that did not exist only eight years prior. For example, sites from which historic observations have been made are plotted and readily available on Google Earth. A transit of Venus phone app in development will, if fully funded, facilitate a global effort to recreate historic expeditions by allowing smartphone users to submit their observed transit timings to a database for quantifying the Astronomical Unit. While maintaining relevance in modern scientific applications, the transit of Venus has emerged as a cultural attraction that briefly intrigues the mainstream public and inspires their active participation in the spectacle.

  17. Topographic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  18. The escape of natural satellites from Mercury and Venus

    International Nuclear Information System (INIS)

    Kumar, S.S.

    1977-01-01

    It is suggested that the slow rotations of Mercury and Venus may be connected with the absence of natural satellites around them. If Mercury or Venus possessed a satellite at the time of formation, the tidal evolution would have caused the satellite to recede. At a sufficiently large distance from the planet, the Sun's gravitational influence makes the satellite orbit unstable. The natural satellites of Mercury and Venus might have escaped as a consequence of this instability. (Auth.)

  19. National Uranium Resource Evaluation: Greensboro Quadrangle, North Carolina and Virginia

    International Nuclear Information System (INIS)

    Dribus, J.R.; Hurley, B.W.; Lawton, D.E.; Lee, C.H.

    1982-07-01

    The Greensboro Quadrangle, North Carolina and Virginia, was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data were analyzed, and ground-truth followup studies of anomalies were conducted. Detailed surface investigations, log and core studies, and a radon emanometry survey were conducted in selected environments. The results of this investigation suggest environments favorable for allogenic uranium deposits in metamorphic rocks adjacent to the intrusive margins of the Rolesville, Castalia, Redoak, and Shelton granite plutons, and sandstone-type deposits in the sediments of the Durham and Dan River Triassic basin systems. Environments in the quadrangle considered unfavorable for uranium deposits are pegmatites and metamorphic rocks and their included veins associated with fault and shear zones

  20. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus' Polar Region

    Science.gov (United States)

    Widemann, T.; Marcq, E.; Tsang, C.; Mueller, N. T.; Kappel, D.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.

    2017-12-01

    Venus' climate evolution is driven by the energy balance of its global cloud layers. Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012). Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013). The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA's Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of 10 km. Circular polar orbit geometry would provide an unprecedented study of both polar regions within the same mission. In addition, VEM's pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Rawlins NTMS quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Weaver, T.A.; Morris, W.A.; Trexler, P.K.

    1978-04-01

    During the spring and winter of 1976 and January and June of 1977, 570 natural water and 1281 waterborne sediment samples were collected from 1369 locations in the Rawlins, Wyoming, NTMS quadrangle. The samples obtained from this 18 700-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 parts per billion (ppB) to 448 ppB, with a mean value of 6 ppB. The concentrations in sediments ranged from 1.2 parts per million (ppM) to 60.4 ppM, with a mean value of 4.1 ppM. Based on simple statistical analyses of these data, arbitrary anomaly thresholds were set at 50 ppB for water samples and 9 ppM for sediment samples. Eleven water and 44 sediment samples were considered anomalous; 1 anomalous water and 25 anomalous sediments could be associated with four of the five major uranium occurrences in the quadrangle. Only the Ketchum Buttes area did not show up in the data. Twelve minor reported occurrences could not be identified by the data. Eleven anomalous samples (8 waters and 3 sediments) and 13 near-anomalous samples (10 waters and 3 sediments) outline a broad area in the northeast corner of the quadrangle (corresponding to the drainage area of the Medicine Bow River) where two airborne radiometric anomalies were discovered in an earlier study. This area, and perhaps others, may warrant further, more detailed geological, geophysical, and geochemical investigations

  2. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  3. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study

    Science.gov (United States)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram

    2009-01-01

    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  4. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  5. Single-edition quadrangle maps

    Science.gov (United States)

    ,

    1998-01-01

    In August 1993, the U.S. Geological Survey's (USGS) National Mapping Division and the U.S. Department of Agriculture's Forest Service signed an Interagency Agreement to begin a single-edition joint mapping program. This agreement established the coordination for producing and maintaining single-edition primary series topographic maps for quadrangles containing National Forest System lands. The joint mapping program saves money by eliminating duplication of effort by the agencies and results in a more frequent revision cycle for quadrangles containing national forests. Maps are revised on the basis of jointly developed standards and contain normal features mapped by the USGS, as well as additional features required for efficient management of National Forest System lands. Single-edition maps look slightly different but meet the content, accuracy, and quality criteria of other USGS products. The Forest Service is responsible for the land management of more than 191 million acres of land throughout the continental United States, Alaska, and Puerto Rico, including 155 national forests and 20 national grasslands. These areas make up the National Forest System lands and comprise more than 10,600 of the 56,000 primary series 7.5-minute quadrangle maps (15-minute in Alaska) covering the United States. The Forest Service has assumed responsibility for maintaining these maps, and the USGS remains responsible for printing and distributing them. Before the agreement, both agencies published similar maps of the same areas. The maps were used for different purposes, but had comparable types of features that were revised at different times. Now, the two products have been combined into one so that the revision cycle is stabilized and only one agency revises the maps, thus increasing the number of current maps available for National Forest System lands. This agreement has improved service to the public by requiring that the agencies share the same maps and that the maps meet a

  6. 27 CFR 9.201 - Sloughhouse.

    Science.gov (United States)

    2010-04-01

    ... Wilton Road at the hamlet of Dillard, section 6, T6N, R7E (Elk Grove Quadrangle); then (9) Proceed northwest 3.1 miles on Wilton Road to its intersection with Grant Line Road at the hamlet of Sheldon...

  7. VLF imaging of the Venus foreshock

    Science.gov (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1993-01-01

    VLF plasma wave measurements obtained from the Pioneer Venus Orbiter Electric Field Detector (OEFD) have been used to construct statistical images of the Venus foreshock. Our data set contains all upstream measurements from an entire Venus year (approximately 200 orbits). Since the foreshock VLF characteristics vary with Interplanetary Magnetic Field (IMF) orientation we restrict the study to IMF orientations near the nominal Parker spiral angle (25 to 45). Our results show a strong decrease in 30 kHz wave intensity with both foreshock depth and distance. There is also an asymmetry in the 30 kHz emissions from the upstream and downstream foreshocks. The ion foreshock is characterized by strong emissions in the 5.4 kHz OEFD channel which are positioned much deeper in the foreshock than expected from terrestrial observations. No activity is observed in the region where field aligned ion distributions are expected. ULF wave activity, while weaker than at Earth, shows similar behavior and may indicate the presence of similar ion distributions.

  8. Venus: radar determination of gravity potential.

    Science.gov (United States)

    Shapiro, I I; Pettengill, G H; Sherman, G N; Rogers, A E; Ingalls, R P

    1973-02-02

    We describe a method for the determination of the gravity potential of Venus from multiple-frequency radar measurements. The method is based on the strong frequency dependence of the absorption of radio waves in Venus' atmosphere. Comparison of the differing radar reflection intensities at several frequencies yields the height of the surface relative to a reference pressure contour; combination with measurements of round-trip echo delays allows the pressure, and hence the gravity potential contour, to be mapped relative to the mean planet radius. Since calibration data from other frequencies are unavailable, the absorption-sensitive Haystack Observatory data have been analyzed under the assumption of uniform surface reflectivity to yield a gravity equipotential contour for the equatorial region and a tentative upper bound of 6 x 10(-4) on the fractional difference of Venus' principal equatorial moments of inertia. The minima in the equipotential contours appear to be associated with topographic minima.

  9. Topographic Map of Quadrangle 3470 and the Northern Edge of 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afg

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  10. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  11. Late Veneer consequences on Venus' long term evolution

    Science.gov (United States)

    Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.

    2017-12-01

    Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.

  12. Little Rock and El Dorado 10 x 20 NTMS quadrangles and adjacent areas, Arkansas: data report (abbreviated)

    International Nuclear Information System (INIS)

    Steel, K.F.; Cook, J.R.

    1981-07-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Little Rock 1 0 x 2 0 quadrangle (Cleveland, Dallas, and Howard Counties do not have stream sediment analyses); the El Dorado 1 0 x 2 0 quadrangle (only Clark County has stream sediment analyses); the western part (Lonoke and Jefferson Counties) of Helena 1 0 x 2 0 quadrangle; the southern part (Franklin, Logan, Yell, Perry, Faulkner, and Lonoke Counties) of Russellville 1 0 x 2 0 quadrangle; and the southwestern corner (Ashley County) of the Greenwood 1 0 x 2 0 quadrangle. Stream samples were collected at 943 sites in the Little Rock quadrangle, 806 sites in the El Dorado quadrangle, 121 sites in the Helena area, 292 sites in the Russellville area, and 77 in the Greenwood area. Ground water samples were collected at 1211 sites in the Little Rock quadrangle, 1369 sites in the El Dorado quadrangle, 186 sites in the Helena area, 470 sites in the Russellville area, and 138 sites in the Greenwood area. Stream sediment and stream water samples were collected from small streams at nominal density of one site per 21 square kilometers in rural areas. Ground water samples were collected at a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Uranium concentrations in the sediments ranged from less than 0.1 ppM to 23.5 ppM with a mean of 1.7 ppM. The ground water uranium mean concentration is 0.113 ppB, and the uranium concentrations range from less than 0.002 ppB to 15.875 ppB. High ground water uranium values in the Ouachita Mountain region of the Little Rock quadrangle appear to be associated with Ordovician black shale units

  13. Surface age of venus: use of the terrestrial cratering record

    International Nuclear Information System (INIS)

    Schaber, G.G.; Shoemaker, E.M.; Kozak, R.C.

    1987-01-01

    The average crater age of Venus' northern hemisphere may be less than 250 m.y. assuming equivalence between the recent terrestrial cratering rate and that on Venus for craters ≥ 20 km in diameter. For craters larger than this threshold size, below which crater production is significantly affected by the Venusian atmosphere, there are fairly strong observational grounds for concluding that such an equivalence in cratering rates on Venus and Earth may exist. However, given the uncertainties in the role of both active and inactive comet nuclei in the cratering history of Earth, we conclude that the age of the observed surface in the northern hemisphere of Venus could be as great as the 450-m.y. mean age of the Earth's crust. The observed surface of Venus might be even older, but no evidence from the crater observations supports an age as great as 1 b.y. If the age of the observed Venusian surface were 1 b.y., it probably should bear the impact scars of a half dozen or more large comet nuclei that penetrated the atmosphere and formed craters well over 100 km in diameter. Venera 15/16 mapped only about 25% of Venus; the remaining 75% may tell us a completely different story

  14. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    Science.gov (United States)

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast

  15. Long-Lived Venus Lander Conceptual Design: How To Keep It Cool

    Science.gov (United States)

    Dyson, Ridger W.; Schmitz, Paul C.; Penswick, L. Barry; Bruder, Geoffrey A.

    2009-01-01

    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.

  16. Geology of the Venus equatorial region from Pioneer Venus radar imaging

    International Nuclear Information System (INIS)

    Senske, D.A.; Head, J.W.

    1989-01-01

    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae

  17. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  18. Commissioning of the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

    2003-01-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. The magnetic field strength has been designed for optimum operation at 28 GHz. The four-year VENUS project has recently achieved two major milestones: The first plasma was ignited in June, the first mass-analyzed high charge state ion beam was extracted in September of 2002. The pa per describes the ongoing commissioning. Initial results including first emittance measurements are presented

  19. Topographic Map of Quadrangle 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the

  20. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  1. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North Region: Volume 7

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  2. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, East Region: Volume 4

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  3. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, West Region: Volume 10

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  4. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  5. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  6. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    Science.gov (United States)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  7. Topographic Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Pioneer Venus and near-earth observations of interplanetary shocks

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Russell, C.T.; Knudsen, W.C.; Scarf, F.L.

    1987-01-01

    Twenty-three transient interplanetary shocks observed near earth during 1978-1982, and mostly reported in the literature, have also been identified at the Pioneer Venus Orbiter spacecraft. There seems to be a fairly consistent trend for lower shock speeds, farther from the sun. Shock normals obtained using the Pioneer Venus data correspond well with published values from near earth. By referring to the portion of the Pioneer Venus plasma data used here from locations at longitudes within 37 degree of earth, it is found that shocks are weaker at earth, compared with closer to the sun

  9. Venus: The First Habitable World of Our Solar System?

    Science.gov (United States)

    Way, Michael Joseph; Del Genio, Anthony; Kiang, Nancy; Sohl, Linda; Clune, Tom; Aleinov, Igor; Kelley, Maxwell

    2015-01-01

    A great deal of effort in the search for life off-Earth in the past 20+ years has focused on Mars via a plethora of space and ground based missions. While there is good evidence that surface liquid water existed on Mars in substantial quantities, it is not clear how long such water existed. Most studies point to this water existing billions of years ago. However,those familiar with the Faint Young Sun hypothesis for Earth will quickly realize that this problem is even more pronounced for Mars. In this context recent simulations have been completed with the GISS 3-D GCM (1) of paleo Venus (approx. 3 billion years ago) when the sun was approx. 25 less luminous than today. A combination of a less luminous Sun and a slow rotation rate reveal that Venus could have had conditions on its surface amenable to surface liquid water. Previous work has also provided bounds on how much water Venus could have had using measured DH ratios. It is possible that less assumptions have to be made to make Venus an early habitable world than have to be made for Mars, even thoughVenus is a much tougher world on which to confirm this hypothesis.

  10. Venus Express en route to probe the planet's hidden mysteries

    Science.gov (United States)

    2005-11-01

    Venus Express will eventually manoeuvre itself into orbit around Venus in order to perform a detailed study of the structure, chemistry and dynamics of the planet's atmosphere, which is characterised by extremely high temperatures, very high atmospheric pressure, a huge greenhouse effect and as-yet inexplicable "super-rotation" which means that it speeds around the planet in just four days. The European spacecraft will also be the first orbiter to probe the planet's surface while exploiting the "visibility windows" recently discovered in the infrared waveband. The 1240 kg mass spacecraft was developed for ESA by a European industrial team led by EADS Astrium with 25 main contractors spread across 14 countries. It lifted off onboard a Soyuz-Fregat rocket, the launch service being provided by Starsem. The lift-off from the Baikonur Cosmodrome in Kazakstan this morning took place at 09:33 hours local time (04:33 Central European Time). Initial Fregat upper-stage ignition took place 9 minutes into the flight, manoeuvring the spacecraft into a low-earth parking orbit. A second firing, 1 hour 22 minutes later, boosted the spacecraft to pursue its interplanetary trajectory. Contact with Venus Express was established by ESA's European Space Operations Centre (ESOC) at Darmstadt, Germany approximately two hours after lift-off. The spacecraft has correctly oriented itself in relation to the sun and has deployed its solar arrays. All onboard systems are operating perfectly and the orbiter is communicating with the Earth via its low-gain antenna. In three days' time, it will establish communications using its high-gain antenna. Full speed ahead for Venus Venus Express is currently distancing itself from the Earth full speed, heading on its five-month 350 million kilometre journey inside our solar system. After check-outs to ensure that its onboard equipment and instrument payload are in proper working order, the spacecraft will be mothballed, with contact with the Earth being

  11. Venus winds at cloud level from VIRTIS during the Venus Express mission

    Science.gov (United States)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  12. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  13. VENUS+δf - A bootstrap current calculation module for 3D configurations

    International Nuclear Information System (INIS)

    Isaev, M.Yu.; Brunner, S.; Cooper, W.A.; Tran, T.M.; Bergmann, A.; Beidler, C.D.; Geiger, J.; Maassberg, H.; Nuehrenberg, J.; Schmidt, M.

    2005-01-01

    We present a new 3D code VENUS+δf for neoclassical transport calculations in nonaxisymmetric toroidal systems. Numerical drift orbits from the original VENUS code and the δf method for tokamak transport calculations are combined. The first results obtained with VENUS+δf are compared with neoclassical theory for different collisional regimes in a JT-60 tokamak test case with monoenergetic particles and with a Maxwellian distribution. Benchmarks with DKES code results for the bootstrap current in the W7X configuration as well as further VENUS+δf developments are discussed. (author)

  14. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle

  15. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  16. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  17. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2009-01-01

    The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork

  18. Aerial gamma ray and magnetic survey: Idaho Project, Hailey quadrangle of Idaho. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Hailey quadrangle in central Idaho lies at the boundary between the Northern Rocky Mountains and the western Cordilleran Physiographic Provinces. The area is dominated by intrusives of the Idaho and Sawtooth Batholiths, but contains considerable exposures of Tertiary and Quaternary volcanics, and Paleozoic sedimentary rocks. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Paleozoic and Tertiary rocks appear to express themselves as roughly defined regions of high frequency/high amplitude wavelengths. The Hailey quadrangle has been unproductive in terms of uranium mining, though some prospects do exist south of the town of Hailey. The quadrangle contains significant exposures of the Tertiary Challis Formation (primarily volcanics) which has been productive in other areas to the north. A total of 161 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive groups of anomalies are associated with Tertiary igneous rocks in the mountainous areas

  19. VLF emissions in the Venus foreshock - Comparison with terrestrial observations

    Science.gov (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1993-01-01

    An examination is conducted of ELF/VLF emissions observed in the solar wind upstream of the Venus shock, for the 100 Hz-30 kHz range, using data from the Pioneer Venus Orbiter's electric field detector and magnetometer instruments. Detailed comparisons are made with terrestrial measurements for both the electron and ion foreshocks. The results obtained support the Crawford et al. (1990) identification of the Venus electron foreshock emissions as electron plasma oscillations, whose waves are generated in situ and act to isotropize the electron distributions.

  20. The SPICAV-SOIR instrument probing the atmosphere of Venus: an overview

    Science.gov (United States)

    Trompet, Loïc; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Chamberlain, Sarah; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup

    2016-04-01

    The Solar Occultation in the Infrared (SOIR) channel mounted on top of the SPICAV instrument of the ESA's Venus Express mission has observed the atmosphere of Venus during more than eight years. This IR spectrometer (2.2-4.3 μm) with a high spectral resolution (0.12 cm-1) combined an echelle grating with an acousto-optic tunable filter for order selection. SOIR performed more than 1500 solar occultation measurements leading to about two millions spectra. The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR's development and operations as well as its data pipeline. BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere: carbon dioxide, carbon monoxide, hydrogen halide (HF, HCl, DF, DCl), sulfur dioxide, water (H2O, HDO) as well as sulphuric acid aerosols in the upper haze of Venus. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR's spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations. These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA). Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA's Planetary Science Archive (PDSPSA). Consequently the re-analysis of all spectra has been undergone. We will briefly present the improvements implemented in the data pipeline. We will also show a compilation of results obtained by the instrument considering the complete mission duration.

  1. Double-layer model of the venus night-side ionosphere formation from the radio occultation data

    International Nuclear Information System (INIS)

    Osmolovskij, I.K.; Savich, N.A.; Samoznaev, L.N.

    1984-01-01

    The results of the radio occultation experiments performed with the Venera space probes - 9, 10(1975) and Pioneer - Venus satellite (1978) have shown that in most of the cases the electron concentration distribution in the Venus night-side ionosphere in the low solar activity years has two maxima (double-layer profile) whereas in the high activity years - one maximum. The two-component (O + and O 2 + ) diffusion model is suggested that describes naturally the formation of one or two maxima depending on physical conditions in the Venus upper atmosphere. At initial hypothesis accepted is the well-known hypothesis of the night-side ionosphere formation for account of the O + plasma overflow from the day side to the night one. The main idea of the study consists in finding conditions when the upper maximum formed in the O + ion downward current is spaced by height at a certain distance from the lower current caused by the O 2 + ions being formed as a result of O + ion chemical reactions with CO 2 molecules

  2. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South East Region: Volume 5

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  3. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid West Region: Volume 8

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  4. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North West Region: Volume 11

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  5. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid East Region: Volume 6

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  6. Solar Airplane Concept Developed for Venus Exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    An airplane is the ideal vehicle for gathering atmospheric data over a wide range of locations and altitudes, while having the freedom to maneuver to regions of scientific interest. Solar energy is available in abundance on Venus. Venus has an exoatmospheric solar flux of 2600 W/m2, compared with Earth's 1370 W/m2. The solar intensity is 20 to 50 percent of the exoatmospheric intensity at the bottom of the cloud layer, and it increases to nearly 95 percent of the exoatmospheric intensity at 65 km. At these altitudes, the temperature of the atmosphere is moderate, in the range of 0 to 100 degrees Celsius, depending on the altitude. A Venus exploration aircraft, sized to fit in a small aeroshell for a "Discovery" class scientific mission, has been designed and analyzed at the NASA Glenn Research Center. For an exploratory aircraft to remain continually illuminated by sunlight, it would have to be capable of sustained flight at or above the wind speed, about 95 m/sec at the cloud-top level. The analysis concluded that, at typical flight altitudes above the cloud layer (65 to 75 km above the surface), a small aircraft powered by solar energy could fly continuously in the atmosphere of Venus. At this altitude, the atmospheric pressure is similar to pressure at terrestrial flight altitudes.

  7. Advancing Venus Geophysics with the NF4 VOX Gravity Investigation.

    Science.gov (United States)

    Iess, L.; Mazarico, E.; Andrews-Hanna, J. C.; De Marchi, F.; Di Achille, G.; Di Benedetto, M.; Smrekar, S. E.

    2017-12-01

    The Venus Origins Explorer is a JPL-led New Frontiers 4 mission proposal to Venus to answer critical questions about the origin and evolution of Venus. Venus stands out among other planets as Earth's twin planet, and is a natural target to better understand our own planet's place, in our own Solar System but also among the ever-increasing number of exoplanetary systems. The VOX radio science investigation will make use of an innovative Ka-band transponder provided by the Italian Space Agency (ASI) to map the global gravity field of Venus to much finer resolution and accuracy than the current knowledge, based on the NASA Magellan mission. We will present the results of comprehensive simulations performed with the NASA GSFC orbit determination and geodetic parameter estimation software `GEODYN', based on a realistic mission scenario, tracking schedule, and high-fidelity Doppler tracking noise model. We will show how the achieved resolution and accuracy help fulfill the geophysical goals of the VOX mission, in particular through the mapping of subsurface crustal density or thickness variations that will inform the composition and origin of the tesserae and help ascertain the heat loss and importance of tectonism and subduction.

  8. Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS Quadrangle, Nebraska/Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Grand Island Quadrangle, Nebraska/Kansas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 564 groundwater and 532 stream sediment samples. Also included is a brief discussion on location and geologic setting. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in shallow wells (0 to 20 m) along or near the Platte and Republican Rivers, which flow west to east along the northern and southern portions of the quadrangle, respectively. Waters containing high concentration of uranium in the northern portion of the quadrangle occur in recent alluvium and nearby glacial deposits. In the southern portion of the quadrangle, waters containing high uranium concentrations occur in Recent alluvium and the Niobrara Chalk in the southeast. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments along the Platte River in the northern portion of the quadrangle and paralleling the Republican River in the southeastern portion. Sediments with high uranium values along the Platte River are derived from glacial and alluvial deposits. High uranium values paralleling the Republican River in the southeast are derived from the Niobrara Chalk, the Carlile Shale, and glacial and alluvial deposits. High U-NT and thorium values, and high values for cerium, niobium, scandium, titanium, vanadium, yttrium, and zirconium suggest the presence of clays and/or residual minerals in the southeast. Sediment derivation and the leaching of possible ash-rich loess and alluvial deposits and/or uranium-rich alkaline evaporite deposits could account for high uranium concentrations in sediment and groundwaters within the quadrangle

  9. Present status of the Japanese Venus climate orbiter

    Science.gov (United States)

    Nakamura, M.; Imamura, T.; Abe, T.; Ishii, N.

    The code name of 24th science spacecraft of ISAS/JAXA is Planet-C. It is the first Venus Climate Orbiter (VCO) of Japan. The ministry of finance of Japan finally agreed to start phase B study of VCO from this April, 2004. We plan 1-2 years phase B study followed by 2 years of flight model integration. The spacecraft will be launched between 2009 and 2010. After arriving Venus, 2 years of operation is expected. VCO will complemet the ESA's Venus Express mission which have several spectrometers and will reveal the composition of the Venusian atmosphere. On the other hand, VCO is designed to reveal the details of the atmospheric motion on Venus and approach the dynamics of the Venusian climate. Cooperation between Japanese VCO and ESA's Venus Express, in the colaboration framework of U.S., Europian, and Japanese scienctist is very important. To elucidate the driving mechanism of the 4-days super-rotation is one of our main targets. We have 4 cameras to take snap shots of the planets in different wave lengths. They are the IR1 camera (1 micron-meter), the IR2 camera (2.4 micron-meter), the LIR camera (10-12 micron-meter), and the UVI camera (340nm). They are attached to the side panel of the 3-axis stabilized spacecraft, and are directed to Venus with the spacecraft's attitude control. Snap shots are expected to be taken every 2 hours. The spacecraft has an orbit of 300km x 13Rv (Venusian radii) with 172 degrees inclination. Orbital period is 30 hours. The angular position of the spacecraft on this orbit is synchronized for 20 hours at its apoapsis with the global atmospheric circulation at the altitude of 50km, thus the snap shots of every 2 hours will be the images of the same side of the atmosphere. In addition to these 4 cameras, we have a Lightning and Airglow camera (LAC) in visible range. This will be operated when the orbiter is close to the planet.

  10. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    Science.gov (United States)

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  11. Innovative measurement within the atmosphere of Venus.

    Science.gov (United States)

    Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander

    The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.

  12. Transits of Venus and Mercury as muses

    Science.gov (United States)

    Tobin, William

    2013-11-01

    Transits of Venus and Mercury have inspired artistic creation of all kinds. After having been the first to witness a Venusian transit, in 1639, Jeremiah Horrocks expressed his feelings in poetry. Production has subsequently widened to include songs, short stories, novels, novellas, sermons, theatre, film, engravings, paintings, photography, medals, sculpture, stained glass, cartoons, stamps, music, opera, flower arrangements, and food and drink. Transit creations are reviewed, with emphasis on the English- and French-speaking worlds. It is found that transits of Mercury inspire much less creation than those of Venus, despite being much more frequent, and arguably of no less astronomical significance. It is suggested that this is primarily due to the mythological associations of Venus with sex and love, which are more powerful and gripping than Mercury's mythological role as a messenger and protector of traders and thieves. The lesson for those presenting the night sky to the public is that sex sells.

  13. Venus Suface Sampling and Analysis

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort is developing the technology to transfer particulate samples from a Venus drill (being developed by Honeybee Robotics in a Phase 2 Small Business...

  14. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  15. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  16. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  17. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1 0 x 2 0 Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains

  18. The 1761 discovery of Venus' atmosphere: Lomonosov and others

    Science.gov (United States)

    Shiltsev, Vladimir

    2014-03-01

    Russian polymath Mikhail Vasil'evich Lomonosov claimed to have discovered the atmosphere of Venus during the planet's transit over the Sun's disc in 1761. Although several other astronomers observed similar effects during the 1761 and 1769 transits, Lomonosov's claim for priority is the strongest as he was the first to publish a comprehensive scientific report, and the first to offer a detailed explanation of the aureole around Venus at ingress and egress, which was caused by refraction of the sunlight through Venus' atmosphere. His observations, moreover, were successfully reconstructed experimentally using antique telescopes during the 2012 transit. In this paper we review details of Lomonosov's observations (which usually are poorly covered by commentators and often misunderstood); compare other reports of the eighteenth century transit observations, and summarize their findings in a comprehensive table; and address recent calls to reconsider Lomonosov's priority. After reviewing the available documentation we conclude that everything we learned before, during and after the twenty-first century transits only supports further the widely-accepted attribution of the discovery of Venus' atmosphere to Lomonosov.

  19. Distribution of tessera terrain on Venus: Prediction for Magellan

    International Nuclear Information System (INIS)

    Bindschadler, D.L.; Head, J.W.; Kreslavsky, M.A.; Shkuratov, Yu.G.; Ivanov, M.A.; Basilevsky, A.T.

    1990-01-01

    Tessera terrain is the dominant tectonic unit in the northern hemisphere of Venus and is characterized by complex sets of intersecting structural trends and distinctive radar properties due to a high degree of meter and sub-meter scale (5 cm to 10 m) roughness. Based on these distinctive radar properties, a prediction of the global distribution of tessera can be made using Pioneer Venus (PV) reflectivity and roughness data. Where available, Venera 15/16 and Arecibo images and PV diffuse scattering data were used to evaluate the prediction. From this assessment, the authors conclude that most of the regions with prediction values greater than 0.6 (out of 1) are likely to be tessera, and are almost certain to be tectonically deformed. Lada Terra and Phoebe Regio are very likely to contain tessera terrain, while much of Aphrodite Terra is most likely to be either tessera or a landform which has not yet been recognized on Venus. This prediction map will assist in targeting Magellan investigations of Venus tectonics

  20. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  1. The composition of the atmosphere of Venus below 100 km altitude: An overview

    Science.gov (United States)

    de Bergh, C.; Moroz, V. I.; Taylor, F. W.; Crisp, D.; Bézard, B.; Zasova, L. V.

    2006-11-01

    We review the progress in our understanding of the composition of the Venus atmosphere since the publication of the COSPAR Venus International Reference Atmosphere volume in 1985. Results presented there were derived from data compiled in 1982-1983. More recent progress has resulted in large part from Earth-based studies of the near-infrared radiation from the nightside of the planet. These observations allow us to probe the atmosphere between the cloud tops and the surface. Additional insight has been gained through: (i) the analysis of ultraviolet radiation by satellites and rockets; (ii) data collected by the Vega 1 and 2 landers; (iii) complementary analyses of Venera 15 and 16 data; (iv) ground-based and Magellan radio occultation measurements, and (v) re-analyses of some spacecraft measurements made before 1983, in particular the Pioneer Venus and Venera 11, 13 and 14 data. These new data, and re-interpretations of older data, provide a much better knowledge of the vertical profile of water vapor, and more information on sulfur species above and below the clouds, including firm detections of OCS and SO. In addition, some spatial and/or temporal variations have been observed for CO, H 2O, H 2SO 4, SO 2, and OCS. New values of the D/H ratio have also been obtained.

  2. Spectroscopic characterization of Venus at the single molecule level.

    Science.gov (United States)

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  3. Venusians: the Planet Venus in the 18th-Century Extraterrestrial Life Debate

    Science.gov (United States)

    Duner, David

    2013-05-01

    In the seventeenth and eighteenth centuries it became possible to believe in the existence of life on other planets on scientific grounds. Once the Earth was no longer the center of the universe according to Copernicus, once Galileo had aimed his telescope at the Moon and found it a rough globe with mountains and seas, the assumption of life on other planets became much less far-fetched. In general there were no actual differences between Earth and Venus, since both planets orbited the Sun, were of similar size, and possessed mountains and an atmosphere. If there is life on Earth, one may ponder why it could not also exist on Venus. In the extraterrestrial life debate of the seventeenth and eighteenth centuries, the Moon, our closest celestial body, was the prime candidate for life on other worlds, although a number of scientists and scholars also speculated about life on Venus and on other planets, both within our solar system and beyond its frontiers. This chapter discusses the arguments for life on Venus and those scientific findings that were used to support them, which were based in particular on assumptions and claims that both mountains and an atmosphere had been found on Venus. The transits of Venus in the 1760s became especially important for the notion that life could thrive on Venus. Here, I detect two significant cognitive processes that were at work in the search for life on Venus, i.e., analogical reasoning and epistemic perception, while analogies and interpretations of sensory impressions based on prior knowledge played an important role in astrobiological theories.

  4. Venus - Volcanic features in Atla Region

    Science.gov (United States)

    1991-01-01

    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  5. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Robins, J.W.

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits

  6. Geologic map of the Western Grove quadrangle, northwestern Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.; Repetski, John E.

    2006-01-01

    This map summarizes the geology of the Western Grove 7.5-minute quadrangle in northern Arkansas that is located on the southern flank of the Ozark dome, a late Paleozoic regional uplift. The exposed bedrock of this map area comprises approximately 1,000 ft of Ordovician and Mississippian carbonate and clastic sedimentary rocks that have been mildly folded and broken by faults. A segment of the Buffalo River loops through the southern part of the quadrangle, and the river and adjacent lands form part of Buffalo National River, a park administered by the U.S. National Park Service. This geologic map provides information to better understand the natural resources of the Buffalo River watershed, particularly its karst hydrogeologic framework.

  7. O2/1 Delta/ emission in the day and night airglow of Venus

    Science.gov (United States)

    Connes, P.; Noxon, J. F.; Traub, W. A.; Carleton, N. P.

    1979-01-01

    An intense airglow from O2(1 Delta) at 1.27 microns on both the light and the dark sides of Venus has been detected by using a ground-based high-resolution Fourier-transform spectrometer. Both dayglow and nightglow are roughly 1,000 times brighter than the visible O2 nightglow found by Veneras 9 and 10 in 1975. The column emission rate of O2(1 Delta) from Venus is close to the rate at which fresh O atoms are produced from photolysis of CO2 on the day side. Formation of O2(1 Delta) is thus a major step in the removal of O atoms from the atmosphere, and dynamical processes must carry these atoms to the night side fast enough to yield a maximum density near 90 km, which is almost constant over the planet.

  8. Non-Cooled Power System for Venus Lander

    Science.gov (United States)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  9. Tidal constraints on the interior of Venus

    Science.gov (United States)

    Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N.

    2017-12-01

    As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers, and tide-induced phase lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. Viscoelasticity of the mantle strongly increases the potential Love number relative to previously published elastic models. Due to the anelasticity effects, we show that the possibility of a completely solid metal core inside Venus cannot be ruled out based on the available estimate of k2 from the Magellan mission (Konopliv and Yoder, 1996). A Love number k2 lower than 0.27 would indicate the presence of a fully solid iron core, while for larger values, solutions with an entirely or partially liquid core are possible. Precise determination of the Love numbers, k2 and h2, together with an estimate of the tidal phase lag, are required to determine the state and size of the core, as well as the composition and viscosity of the mantle.

  10. Energy consumption analysis of the Venus Deep Space Station (DSS-13)

    Science.gov (United States)

    Hayes, N. V.

    1983-01-01

    This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.

  11. Day and night models of the Venus thermosphere

    Science.gov (United States)

    Massie, S. T.; Hunten, D. M.; Sowell, D. R.

    1983-01-01

    A model atmosphere of Venus for altitudes between 100 and 178 km is presented for the dayside and nightside. Densities of CO2, CO, O, N2, He, and O2 on the dayside, for 0800 and 1600 hours local time, are obtained by simultaneous solution of continuity equations. These equations couple ionospheric and neutral chemistry and the transport processes of molecular and eddy diffusion. Photodissociation and photoionization J coefficients are presented to facilitate the incorporation of chemistry into circulation models of the Venus atmosphere. Midnight densities of CO2 CO, O, N2, He, and N are derived from integration of the continuity equations, subject to specified fluxes. The nightside densities and fluxes are consistent with the observed airglow of NO and O2(1 Delta). The homopause of Venus is located near 133 km on both the dayside and nightside.

  12. Methane measurement by the Pioneer Venus large probe neutral mass spectrometer

    Science.gov (United States)

    Donahue, T. M.; Hodges, R. R., Jr.

    1992-12-01

    The Pioneer Venus Large Probe Mass Spectrometer detected a large quantity of methane as it descended below 20 km in the atmosphere of Venus. Terrestrial methane and Xe-136, both originating in the same container and flowing through the same plumbing, were deliberately released inside the mass spectrometer for instrumental reasons. However, the Xe-136 did not exhibit behavior similar to methane during Venus entry, nor did CH4 in laboratory simulations. The CH4 was deuterium poor compared to Venus water and hydrogen. While the inlet to the mass spectrometer was clogged with sulfuric acid droplets, significant deuteration of CH4 and its H2 progeny was observed. Since the only source of deuterium identifiable was water from sulfuric acid, we have concluded that we should correct the HDO/H2O ratio in Venus water from 3.2 x 10-2 to (5 plus or minus 0.7) x 10-2. When the probe was in the lower atmosphere, transfer of deuterium from Venus HDO and HD to CH4 can account quantitatively for the deficiencies recorded in HDO and HD below 10 km, and consequently, the mysterious gradients in water vapor and hydrogen mixing ratios we have reported. The revision in the D/H ratio reduces the mixing ratio of water vapor (and H2) reported previously by a factor of 3.2/5. We are not yet able to say whether the methane detected was atmospheric or an instrumental artifact. If it was atmospheric, its release must have been episodic and highly localized. Otherwise, the large D/H ratio in Venus water and hydrogen could not be maintained.

  13. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  14. Data release on the Salton Sea Quadrangle, California and Arizona. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Chew, R.T. III; Antrim, D.R.

    1982-10-01

    The purpose of the National Uranium Resource Evaluation (NURE) was to delineate and evaluate all geologic environments favorable for the occurrence of uranium deposits. A favorable environment was defined as having the potential to contain an occurrence of at least 100 tons of U 3 O 8 at an average grade of not less than 0.01% U 3 O 8 . In the Salton Sea Quadrangle, reported uranium occurrences were evaluated, and geologic environments thought to be favorable were examined. This report includes the field data collected during that work and a summary of the quadrangle geology and uranium favorability. This is the final report to be prepared on this quadrangle under the NURE program

  15. Venus transits - A French view

    Science.gov (United States)

    Débarbat, Suzanne

    2005-04-01

    After a careful study of Mars observations obtained by Tycho Brahé (1546-1601), Kepler (1571-1630) discovered the now-called Kepler's third law. In 1627 he published his famous Tabulae Rudolphinae, a homage to his protector Rudolph II (1552-1612), tables (Kepler 1609, 1627) from which he predicted Mercury and Venus transits over the Sun. In 1629 Kepler published his Admonitio ad Astronomos Advertisement to Astronomers (Kepler 1630), Avertissement aux Astronomes in French Au sujet de phénomènes rares et étonnants de l'an 1631: l'incursion de Vénus et de Mercure sur le Soleil. This was the beginning of the interest of French astronomers, among many others, in such transits, mostly for Venus, the subject of this paper in which dates are given in the Gregorian calendar.

  16. Reconnaissance Geologic Map of the Hayfork 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2010-01-01

    The Hayfork 15' quadrangle is located just west of the Weaverville 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of six generally north-northwest-trending tectonostratigraphic terranes that are, from east to west, the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, Western Hayfork, and Rattlesnake Creek terranes. Remnants of a once-widespread postaccretionary overlap assemblage, the Cretaceous Great Valley sequence, crop out at three localities in the southern part of the Hayfork quadrangle. The Tertiary fluvial and lacustrine Weaverville Formation occupies a large, shallow, east-northeast-trending graben in the south half of the quadrangle. The small area of Eastern Klamath terrane is part of the Oregon Mountain outlier, which is more widely exposed to the east in the Weaverville 15' quadrangle. It was originally mapped as a thrust plate of Bragdon(?) Formation, but it is now thought by some to be part of an outlier of Yreka terrane that has been dislocated 60 km southward by the La Grange Fault. The Central Metamorphic terrane, which forms the footwall of the La Grange Fault, was formed by the eastward subduction of oceanic crustal basalt (the Salmon Hornblende Schist) and its overlying siliceous sediments with interbedded limestone (the Abrams Mica Schist) beneath the Eastern Klamath terrane. Rb-Sr analysis of the Abrams Mica Schist indicates a Middle Devonian metamorphic age of approximately 380 Ma, which probably represents the age of subduction. The North Fork terrane, which is faulted against the western boundary of the Central Metamorphic terrane, consists of the Permian(?) North Fork ophiolite and overlying broken formation and melange of Permian to Early Jurassic (Pliensbachian) marine metasedimentary and metavolcanic rocks. The ophiolite, which crops out along the western border of the terrane, is thrust westward over the Eastern Hayfork terrane. The Eastern

  17. A mantle plume model for the Equatorial Highlands of Venus

    Science.gov (United States)

    Kiefer, Walter S.; Hager, Bradford H.

    1991-01-01

    The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.

  18. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  19. An electrodynamic model of the solar wind interaction with the ionospheres of Mars and Venus

    International Nuclear Information System (INIS)

    Cloutier, P.A.; Daniell, R.E. Jr.

    1979-01-01

    the electrodynamic model for the solar wind interaction with non-magnetic planets (Cloutier and Daniell, Planet. Space Sci. 21, 463, 1973; Daniell and Cloutier, Planet. Space Sci. 25, 621, 1977) is modified to include the effects of non-ohmic currents in the upper ionosphere. The model is then used to calculate convection patterns induced by the solar wind in the ionospheres of Mars and Venus. For Mars the observations of the neutral mass spectrometer or Vikings 1 and 2 provided the neutral atmosphere. Model calculations reproduced the retarding potential analyzer data and indicate that the ionosphere above about 200 km is probably controlled by convection rather than chemistry or diffusion. For Venus a model atmosphere based on Dickenson and Ridley, J. Atmos. Sci. 32, 1219 (1975) and Mayr et al., J. Geophys. Res. 83, 4411 (1978) was used. The resulting model calculations were compared to radio occultation data from Mariners 5 and 10 and Venera 9 which represent extremes in the variability of the upper Cytherean ionosphere. The model calculations are shown to fall within this variation. These results represent the state of the theory immediately prior to the Pioneer-Venus encounter. (author)

  20. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability

    Science.gov (United States)

    Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.

    2017-10-01

    Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.

  1. Combustion-based power source for Venus surface missions

    Science.gov (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  2. Deuterium content of the Venus atmosphere

    International Nuclear Information System (INIS)

    Bertaux, -J.-L.; Clarke, J.T.

    1989-01-01

    The abundance of deuterium in the atmosphere of Venus is an important clue to the planet's history, because ordinary and deuterated water escape at different rates. Using the high-resolution mode of the International Ultraviolet Explorer (IUE), we measured hydrogen Lyman-α-emission but found only an upper limit on deuterium Lyman-α-emission, from which we inferred a D/H ratio of less than 2-5 x 10 -3 . This is smaller by a factor of 3-8 than the D/H ratio derived from measurements by the Pioneer Venus Large Probe, and may indicate either a stratification of D/H ratio with altitude or a smaller overall ratio than previously thought. (author)

  3. Magnetic energy density and plasma energy density in the Venus wake

    Science.gov (United States)

    Perez De Tejada, H. A.; Durand-Manterola, H. J.; Lundin, R.; Barabash, S.; Zhang, T.; Reyes-Ruiz, M.; Sauvaud, J.

    2013-05-01

    Magnetic energy density and plasma energy density in the Venus wake H. Pérez-de-Tejada1, H. Durand-Manterola1, R. Lundin2, S. Barabash2, T. L. Zhang3, A. Sauvaud4, M. Reyes-Ruiz5. 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Umea, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted in the Venus wake with the magnetometer and the Aspera-4 plasma instrument of the Venus Express spacecraft show that average values of the kinetic energy density of the plasma in that region are comparable to average local values of the magnetic energy density. Observations were carried out in several orbits of the Venus Express near the midnight plane and suggest that the total energy content in the Venus wake is distributed with nearly comparable values between the plasma and the magnetic field. Processes associated with the solar wind erosion of planetary ions from the polar magnetic regions of the ionosphere are involved in the comparable distribution of both energy components.

  4. Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado

    Science.gov (United States)

    Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.

    2018-04-24

    The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.

  5. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  6. Galileo infrared imaging spectroscopy measurements at venus

    Science.gov (United States)

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  7. Geologic and Mineralogic Mapping of Av-6 (Gegania) and Av-7 (Lucaria) Quadrangles of Asteroid 4 Vesta

    Science.gov (United States)

    Nathues, A.; Le Corre, L.; Reddy, V.; De Sanctis, M. C.; Williams, D. A.; Garry, W. B.; Yingst, R. A.; Jaumann, R.; Ammannito, E.; Capaccioni, F.; Preusker, F.; Palomba, E.; Roatsch, T.; Tosi, F.; Zambon, F.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.

    2012-04-01

    NASA's Dawn spacecraft arrived at the asteroid 4 Vesta in July 2011 and is now collecting imaging and spectroscopic data during its one-year orbital mission. The maps we present are based on information obtained by the Visible and Infrared Mapping Spectrometer VIR-MS and the multi-color Framing Camera FC. VIR covers the wavelength range between 0.25 to 5.1 µm while FC covers the range 0.4 to 1.0 µm. The VIR instrument has a significant higher spectral resolution than FC but the latter achieves higher spatial resolution data. As part of the geological and mineralogical analysis of the surface, a series of 15 quadrangles have been defined covering the entire surface of Vesta. We report about the mapping results of quadrangle Av-6 (Gegania) and Av-7 (Lucaria). The Gegania quadrangle is dominated by old craters showing no ejecta blankets and rays while several small fresh craters do. The most obvious geologic features are a set of equatorial troughs, a group of three ghost craters of similar diameter (~57 km), an ejecta mantling of the Gegania crater and three smaller craters showing bright and dark ejecta rays. The quadrangle contains two main geologic units: 1) the northern cratered trough terrain and 2) the equatorial ridge and trough terrain. The quadrangle shows moderate variation in Band II center wavelength and Band II depth. FC color ratio variations of some recent craters and their ejecta are linked to the bright and dark material. The bright material is possibly excavated eucritic material while the dark material could be remnants of a CM2 impator(s) or an excavated subsurface layer of endogenic origin. The most prominent geologic features in the Lucaria quadrangle are the 40 km long hill Lucaria Tholus, a set of equatorial troughs, some relatively fresh craters with bright and dark material and mass wasting. The quadrangle contains three main geologic units: 1) the northern cratered trough terrain, 2) the equatorial ridge and trough terrain, and 3) the

  8. Aerial gamma ray and magnetic survey: Idaho Project, Idaho Falls quadrangle, Idaho. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    The Idaho Falls quadrangle in southeastern Idaho lies at the juncture of the Snake River Plain, the Northern Rocky Mountains, and the Basin-Range Province. Quaternary basalts of the Snake River Plain occupy 70% of the quadrangle. The rest of the area is covered by uplifted Paleozoic, Mesozoic, and Cenozoic rocks of the Pre-Late Cenozoic Orogenic Complex. Magnetic data apparently show contributions from both shallow and deep sources. The apparent expression of intrusive and extrusive rocks of late Mesozoic and Cenozoic age tends to mask the underlying structural downtrap thought to exist under the Snake River Plain. The Idaho Falls quadrangle has been unproductive in terms of uranium mining. A single claim exists in the Sawtooth Mountains, but no information was found concerning its present status at the time of this study. A total of 169 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle, though one large group appears to relate to unnatural radiation sources in the Reactor Test Site area. The most distinctive anomalies occur in the Permian Phosphoria Formation and the Starlight Volcanics in the Port Neuf Mountains

  9. Investigating the Origin and Evolution of Venus with in Situ Mass Spectrometry

    Science.gov (United States)

    Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.

    2016-01-01

    The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these "twin planets". It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more "recent" development, its relationship to the resurfacing of the planet's enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus' past as well as whether Earth could become more Venus-like in the future.

  10. Aeolian sand transport and aeolian deposits on Venus: A review

    Science.gov (United States)

    Kreslavsly, Mikhail A.; Bondarenko, Nataliya V.

    2017-06-01

    We review the current state of knowledge about aeolian sand transport and aeolian bedforms on planet Venus. This knowledge is limited by lack of observational data. Among the four planetary bodies of the Solar System with sufficient atmospheres in contact with solid surfaces, Venus has the densest atmosphere; the conditions there are transitional between those for terrestrial subaerial and subaqueous transport. The dense atmosphere causes low saltation threshold and short characteristic saltation length, and short scale length of the incipient dunes. A few lines of evidence indicate that the typical wind speeds exceed the saltation threshold; therefore, sand transport would be pervasive, if sand capable of saltation is available. Sand production on Venus is probably much slower than on the Earth; the major terrestrial sand sinks are also absent, however, lithification of sand through sintering is expected to be effective under Venus' conditions. Active transport is not detectable with the data available. Aeolian bedforms (transverse dunes) resolved in the currently available radar images occupy a tiny area on the planet; however, indirect observations suggest that small-scale unresolved aeolian bedforms are ubiquitous. Aeolian transport is probably limited by sand lithification causing shortage of saltation-capable material. Large impact events likely cause regional short-term spikes in aeolian transport by supplying a large amount of sand-size particles, as well as disintegration and activation of older indurated sand deposits. The data available are insufficient to understand whether the global aeolian sand transport occurs or not. More robust knowledge about aeolian transport on Venus is essential for future scientific exploration of the planet, in particular, for implementation and interpretation of geochemical studies of surface materials. High-resolution orbital radar imaging with local to regional coverage and desirable interferometric capabilities is the

  11. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  12. Aerial gamma ray and magnetic survey: Idaho Project, Elk City quadrangle of Idaho/Montana. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Elk City quadrangle in north central Idaho and western Montana lies within the Northern Rocky Mountain province. The area is dominated by instrusives of the Idaho and Sawtooth Batholiths, but contains significant exposures of Precambrian metamorphics and Tertiary volcanics. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Precambrian and Tertiary rocks appear to express themselves as well defined regions of high frequency and high amplitudes wavelengths. The Elk City quadrangle has been unproductive in terms of uranium mining, though it contains significant exposures of the Challis Formation, which has been productive in other areas south of the quadrangle. A total of 238 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive group of anomalies with peak apparent uranium concentrations of 10.0 ppM eU or greater

  13. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1 0 x 2 0 Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous material and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age

  14. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  15. Topographic Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Erftah (321) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  16. The multistring model VENUS for ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1988-02-01

    The event generator VENUS is based on a multistring model for heavy ion collisions at ultrarelativistic energies. The model is a straightforward extension of a successful model for soft proton-proton scattering, the latter one being consistent with e/sup /plus//e/sup /minus// annihilation and deep inelastic lepton scattering. Comparisons of VENUS results with pA and recent AA data alow some statements about intranuclear cascading. 18 refs., 7 figs

  17. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  18. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    Science.gov (United States)

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  19. Aerial gamma ray and magnetic survey: Tarpon Springs and Orlando quadrangles, Florida. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    The Tarpon Springs and Orlando quadrangles cover 7850 square miles of central peninsular Florida. Cretaceous and younger platform deposits overlie a complex core of Precambrian, Paleozoic and early Mesozoic crystalline rocks and sediments. Tertiary and Quaternary platform deposits and alluvium cover the surface. Extensive mining for phosphates is taking place in certain areas of the two quadrangles. No known uranium deposits are present within the quadrangles, but the phosphates are known to contain higher than normal amounts of uranium. Statistical analysis resulted in the selection of 47 anomalies. All appear to be related to culture, but some that are associated with the phosphate region have extremely high apparent uranium values. Detailed resource study should concentrate on the phosphates and on the possibility of uranium recovery as a by-product of phosphate mining

  20. Bols Grand Prix 2014 selgitas parima baarmenite võistkonna ja parima Bols kokteili

    Index Scriptorium Estoniae

    2014-01-01

    12. veebruaril ööklubis Venus Club toimunud 17. Bols Grand Prix võistkondliku võistluse võitis Butterfly Lounge'i võistkond Tallinnast ja parima Bols kokteili tiitli sai Getter Laur Tartust Kivi baarist

  1. Where should one look for traces of life on Venus?

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    Now Venus is not very similar to a suitable place for living. It surface temperature exceeds 730 K, the pressure is 90 atmospheres, the cloud layer consists of sulfur dioxide, and the fog above cloud is a solution of sulfuric acid. But about 3 billion years ago, this planet among the Earth-type planets within the Solar System was perhaps the most suitable place for the existence of some form of life there. Measurements of the ratio of hydrogen isotopes in the atmosphere also showed that the planet once had much more water, and perhaps it was enough even for the oceans. In early years on Venus was similar to the earth's climate, have a satisfactory temperature and oceans of liquid water. That is, under the above conditions with moderate temperature, sufficient heat and liquid water, Venus would be quite suitable for the emergence of certain microorganisms and for the existence of primitive life there, especially in the oceans. One way to check whether the ancient Venus was once covered by the oceans is the study of the tremolite found on Earth. It is necessary to hope to find the tremolite at some depth below the surface of Venus. Also necessary to search for some biosignals in the form of petrified remains, of possibly simple thermophilic microorganisms. We believe that such an experiment can be prepared and technically carried out during the next decades.

  2. Digital bedrock geologic map of the Cavendish quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-203A Ratcliffe, NM, 1995,�Digital bedrock geologic map of the Cavendish quadrangle, Vermont: USGS Open-File Report 95-203, 2 plates, scale...

  3. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    International Nuclear Information System (INIS)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U 3 O 8 were delineated. The most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast

  4. How did Earth not End up like Venus?

    Science.gov (United States)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  5. Airborne gamma-ray spectrometer and magnetometer survey: Lund quadrangle, Ely quadrangle, Nevada. Volume I. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Ely and Lund 1:250,000 National Topographic Map Series (NTMS quadrangle maps). The survey was part of DOE's National Uranium Resource Evaluation (NURE) Aerial Radiometric Reconnaissance program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and interpretation methodology. Volume II contains the data displays for a quadrangle and the interpretation results

  6. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  7. Digital bedrock geologic map of the Weston quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-526A Ratcliffe, NM�and Burton, WC, 1996,�Digital bedrock geologic map of the Weston quadrangle, Vermont: USGS Open-File Report 96-526, 2...

  8. Digital bedrock geologic map of the Chester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-576A Ratcliffe, N.M., 1995,�Digital bedrock geologic map of the Chester quadrangle, Vermont: USGS Open-File Report 95-576, 2 plates, scale...

  9. Bedrock Geologic Map of the Jay Peak, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG99-1 Compilation bedrock geologic map of the Jay Peak quadrangle, Compiled by B. Doolan, 1999: VGS Open-File Report VG99-1, 1 plate, scale...

  10. Aplikasi Dua Segitiga Sebangun pada Studi Venus Transit di Matahari Tanggal 8 Juni 2004 dari BPD LAPAN Watukosek

    Directory of Open Access Journals (Sweden)

    Nanang Widodo

    2013-11-01

    Full Text Available Transit planet Venus di cakram matahari (jari-jari = 696000 km merupakan peristiwa alam yang dapat dilihat secara berkala. Planet Venus merupakan planet kedua dalam sistem tata surya yang mempunyai orbit lebih dekat ke matahari (= 0,723 Astronomical Unit dibanding jarak bumi-matahari (= 149.600.000 km = 1 AU. Sehingga pada suatu waktu tertentu ada peluang berada tepat di depan Bumi, saat menghadap matahari atau dikenal dengan transit Venus. Proses pengamatan fenomena transit Venus di cakram matahari tersebut dapat diimplimentasikan sebagai aplikasi dua segitiga sebangun, Dimana jari-jari planet Venus (jari-jari = 6051,8 km dinyatakan sebagai tinggi benda dan jari-jari tinggi bayangan Venus sebesar 20880 km (= 3,65 mm pada cakram matahari. Dimana diameter matahari 1.392.000 km (= 240 mm pada lembar sket. Dengan pengukuran jarak tempuh Venus transit 72,4 mm (419 920 km di cakram matahari terhadap waktu kontak pertama bayangan Venus pada jam 05.28 UT (12.28 WIB di tepi timur hingga akhir transit pada 17.50 UT (14.50 WIB diperoleh kecepatan bayangan Venus sebesar 49,286 km/detik

  11. Digital bedrock geologic map of the Andover quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-31A Ratcliffe, N.M., 1996,�Digital bedrock geologic map of the Andover quadrangle, Vermont: USGS Open-File Report 96-31-A, 2 plates, scale...

  12. Digital bedrock geologic map of the Johnson quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-2 Thompson, PJ�and Thompson, TB, 1998,�Digital bedrock geologic map of the Johnson quadrangle, Vermont: VGS Open-File Report VG98-2, 2 plates,...

  13. Digital bedrock geologic map of the Rochester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-33A Walsh, GJ�and Falta, CK, 1996, Digital bedrock geologic map of the Rochester quadrangle, Vermont: USGS Open-File Report 96-33-A, 2 plates,...

  14. Surface geology of Williston 7.5-minute quadrangle, Aiken and Barnwell Counties, South Carolina

    International Nuclear Information System (INIS)

    Willoughby, R.H.; Nystrom, P.G. Jr.; Denham, M.E.; Eddy, C.A.; Price, L.K.

    1994-01-01

    Detailed geologic mapping has shown the distribution and lithologic character of stratigraphic units and sedimentary deposits in Williston quadrangle. A middle Eocene stratigraphic unit correlative with the restricted McBean Formation is the oldest unit at the surface. The McBean-equivalent unit occurs at low elevations along drainages in the north of the quadrangle but does not crop out. These beds are typically very fine- to fine-grained quartz sand, locally with abundant black organic matter and less commonly with calcium carbonate. The uppermost middle Eocene Orangeburg District bed, commonly composed of loose, clay-poor, very fine- to fine-grained quartz sand, occurs at the surface in the north and southwest of the quadrangle with sparse exposure. The upper Eocene Dry Branch Formation occurs on valley slopes throughout the quadrangle. The Dry Branch is composed of medium- to very coarse-grained quartz sand with varying amounts on interstitial clay and lesser bedded clay. The upper Eocene Tobacco road Sand occurs on upper valley slopes and some interfluves and consists of very fine-grained quartz sand to quartz granules. The upper Middle Miocene to lower Upper Miocene upland unit caps the interfluves and is dominantly coarse-grained quartz sand to quartz granules, with included granule-size particles of white clay that are weathered feldspars. Loose, incohesive quartzose sands of the eolian Pinehurst Formation, Upper Miocene to Lower Pliocene, occur on the eastern slopes of some interfluves in the north of the quadrangle. Quartz sand with varying included humic matter occurs in Carolina bays, and loose deposits of windblown sand occur on the rims of several Carolina bays. Quaternary alluvium fills the valley floors

  15. Venus: The case for a wet origin and a runaway greenhouse

    Science.gov (United States)

    Kasting, J. F.

    1992-01-01

    To one interested in atmospheric evolution, the most intriguing aspect of our neighboring planet Venus is its lack of water. Measurements made by Pioneer Venus and by Several Venera spacecraft indicate that the present water abundance in Venus' lower atmosphere is of the order of 20 to 200 ppmv, or 3 x 10( exp -6) to 3 x 10 (exp -5) of the amount of water in Earth's oceans. The exact depletion factor is uncertain, in part because of an unexplained vertical gradient in H2O concentration in the lowest 10 km of the venusian atmosphere, but the general scarcity of water is well established. The interesting question, then, is: Was venus deficient in water when it formed and, if not, where did its water go? The conclusion that Venus was originally wet is consistent with its large endowment of other volatiles and with the enhanced D/H ratio in the present atmosphere. The most likely mechanism by which Venus could have lost its water is by the development of a runaway or moist greenhouse atmosphere followed by photodissociation of water vapor and escape of hydrogen to space. Climate model calculations that neglect cloud albedo feedback predict the existence of two critical transitions in atmospheric behavior at high solar fluxes: (1) at a solar flux of approximately 1.1 times the value at Earth's orbit, S(o), the abundance of stratospheric water vapor increases dramatically, permitting rapid escape of hydrogen to space (termed a moist greenhouse) and (2) at a solar flux of approximately 1.4 S(o), the oceans vaporize entirely, creating a true runaway greenhouse. If cloudiness increases at high surface temperatures, as seems likely, and if the dominant effect of clouds is to cool the planet by reflecting incident solar radiation, the actual solar flux required to create moist or runaway conditions would be higher than the values quoted above. Early in solar system history, solar luminosity was about 25 percent to 30 percent less than today, putting the flux at Venus' orbit

  16. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  17. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  18. Aerial gamma ray and magnetic survey: Nebraska/Texas Project, the Alliance and Scottsbluff quadrangles of Nebraska. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    During the months of September and October 1979, EG and G geoMetrics collected 3156 line miles of high sensitivity airborne radiometric and magnetic data in the state of Nebraska in two 1 by 2 degree NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as three Volumes (one Volume I and two Volume II's). Both quadrangles are dominated by Tertiary nonmarine strata, though the Sand Hills in the eastern central portion of the area is covered by Quaternary dune sand. Some Late Cretaceous marine shales are exposed in the northwest quadrant of Alliance quadrangle. No uranium deposits are known in this area, but outcrops of shales thought to be uraniferous outcrop in the Alliance quadrangle

  19. Venus y el fin del mundo

    Directory of Open Access Journals (Sweden)

    Gonzalo Munévar

    2006-01-01

    Full Text Available Este artículo busca demostrar que los argumentos generales acerca de la exploración científica valen también para las ciencias espaciales. El trabajo se basa en el ejemplo de la exploración de Venus y lo que esta nos dice acerca de nuestro propio planeta. Argumenta que el concepto de la probabilidad de Leslie es incorrecto, como también lo son las dudas sobre la evidencia Venusiana. Así mismo, concluye que no se puede rechazar la importancia que tienen los descubrimientos inesperados que han resultado de la exploración de Venus para ayudarnos a comprender nuestro propio planeta. Y que si van a ser rechazados estos descubrimientos debe ser por razones científicas, no por intuiciones acerca de la probabilidad.

  20. Astronomers, Transits of Venus, and the Birth of Experimental Psychology

    Science.gov (United States)

    Sheehan, William; Thurber, S.

    2012-01-01

    The eighteenth century transits of Venus were regarded as the most important astronomical events of their era. Halley's expectation was that by observing the contact points between the limbs of Venus and the Sun, this distance could be determined to an accuracy of one part in 500. But in the event, it proved otherwise. But, as the British historian Agnes Clerke wrote in 1902: "A transit of Venus seems, at first sight, full of promise for solving the problem of the sun's distance. For nothing would appear easier than to determine exactly either the duration of the passage of a small, dark orb across a large brilliant disc, or the instant of its entry upon or exit from it". But in that word `exactly' what snares and pitfalls lie hid!” In the post-mortem analysis of the disappointing results, astronomers devoted a great deal of effort to understand the sources of errors. They rehearsed their observational techniques by observing, under strictly controlled conditions, transits of artificial planets across artificial Suns, and studied such parameters as attention and reflex reaction. In the process, the transits of Venus provided an important impetus to the early development of experimental psychology.

  1. Geologic Map of the Shakespeare Quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2018-05-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the MESSENGER images. The most prominent geomorphological feature is the Caloris basin, the largest impact crater on Mercury.

  2. Digital bedrock geologic map of the Plymouth quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG94-654A Walsh, G.J., and Ratcliffe, N.M., 1994,�Digital bedrock geologic map of the Plymouth quadrangle, Vermont: USGS Open-File Report 94-654, 2...

  3. Digital bedrock geologic map of the Eden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-3 Kim, J, Springston, G, and Gale, M, 1998,�Digital bedrock geologic map of the Eden quadrangle, Vermont: VGS Open-File Report VG98-3, 2...

  4. Results of the new processing of images obtained from the surface of Venus in a TV experiment onboard the VENERA-9 lander (1975)

    Science.gov (United States)

    Ksanfomality, L. V.

    2012-09-01

    Data on the results of the analysis of the content of re-processed panorama of the VENERA-9 lander are presented. The panorama was transmitted historically for the first time from the surface of Venus in 1975. The low noise of the VENERA-9 data allowed allocating a large object of an unusual regular structure. Earlier, its fuzzy image was repeatedly cited in the literature being interpreted as a "strange stone". The complex shape and its other features suggest that the object may be a real habitant of the planet. It is not excluded that another similar object observed was damaged during the VENERA-9 landing. From the evidence of its movement and position of some other similar objects it is concluded that because of the limited energy capacity, the physical action of the Venusian fauna may be much slower than that of the Earth fauna. Another question considered is what sources of energy could be used by life in the conditions of the high temperature oxygenless atmosphere of the planet. It is natural to assume that, like on Earth, the Venusian fauna is heterotrophic and should be based on hypothetical flora, using photosynthesis (based on an unknown high temperature biophysical mechanism).

  5. Transits of Venus in Public Education and Contemporary Research

    Science.gov (United States)

    Pasachoff, J. M.

    2011-10-01

    Transits of Venus are among the rarest predictable astronomical event that humans can enjoy, and the 2012 transit will be visible by almost all the people on Earth. It is our job as educators to bring out the thrill of being able to see the tiny dot of Venus silhouetted against the solar disk even with just a simple eye-protection filter. My Website at http://www.transitofvenus.info brings together not only historical information about the five previous transits of Venus that were observed through the 20th century--1639, 1761, 1769, 1874, and 1882--but also the scientific work carried out at the 2004 transit and at recent transits of Mercury. Based on space observations of the 1999 transit of Mercury with NASA's Transition Region and Coronal Explorer (TRACE), Glenn Schneider and I provided proof of the contemporary explanation of the black-drop effect as an amalgam of instrumental point-spread and solar limb-darkening [1]. Based on observations of the changes in the total solar irradiance during the transit, we provided an analysis of this solar-system analogue to exoplanet transits [2]. High-resolution (0.5 arcsec pixels) observations of ingress and egress with TRACE during the 2004 transit provided information about the visibility of Venus's atmosphere through its refraction of sunlight, interpreted with Venus Express observations [3]. We anticipate observing the 2012 transit with groundbased facilities of the University of Hawaii at Haleakala, and of the National Solar Observatory at Sacramento Peak, and Kitt Peak, as well as with NASA and JAXA spacecraft, including Solar Dynamics Observatory, ACRIMsat, and Hinode. The Program Group on Public Education on the Occasions of Eclipses and Transits of Commission 46 on Education and Development of the International Astronomical Union, which I chair, looks forward to participating in Education and Public Outreach efforts related to the 2012 transit.

  6. Near-infrared oxygen airglow from the Venus nightside

    Science.gov (United States)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.

    1992-01-01

    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  7. A statistical study of ionopause perturbation and associated boundary wave formation at Venus.

    Science.gov (United States)

    Chong, G. S.; Pope, S. A.; Walker, S. N.; Zhang, T.; Balikhin, M. A.

    2017-12-01

    In contrast to Earth, Venus does not possess an intrinsic magnetic field. Hence the interaction between solar wind and Venus is significantly different when compared to Earth, even though these two planets were once considered similar. Within the induced magnetosphere and ionosphere of Venus, previous studies have shown the existence of ionospheric boundary waves. These structures may play an important role in the atmospheric evolution of Venus. By using Venus Express data, the crossings of the ionopause boundary are determined based on the observations of photoelectrons during 2011. Pulses of dropouts in the electron energy spectrometer were observed in 92 events, which suggests potential perturbations of the boundary. Minimum variance analysis of the 1Hz magnetic field data for the perturbations is conducted and used to confirm the occurrence of the boundary waves. Statistical analysis shows that they were propagating mainly in the ±VSO-Y direction in the polar north terminator region. The generation mechanisms of boundary waves and their evolution into the potential nonlinear regime are discussed and analysed.

  8. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    Science.gov (United States)

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  9. Venus Interior Probe Using In-situ Power and Propulsion (VIP-INSPR), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We envision a novel architecture for Venus Interior Probes based on in-situ resources for power generation (VIP-INSPR). Proposed Venus probe is based on the...

  10. Venus and Mercury as Planets

    Science.gov (United States)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  11. Venus and Mercury as planets

    International Nuclear Information System (INIS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described

  12. Ground-based observations of Mars and Venus water vapor during 1972 and 1973

    International Nuclear Information System (INIS)

    Barker, E.S.

    1974-01-01

    The Venus water vapor line at 8197.71 A has been monitored at several positions on the disk of Venus and at phase angles between 22 0 and 91 0 . Variations in the abundance have been found with both position and time. The total two-way transmission has varied from less than 5 to 77 μ of water vapor. Comparisons are made between water vapor abundance, presence of UV features and the CO 2 abundance determined from near simultaneous observations of CO 2 bands at the same position on the disk of Venus. The amount of Martian atmospheric water vapor has been monitored during the past two years at McDonald Observatory using the echelle coude scanner of the 272cm reflector. Two periods of the Martain year have been monitored. The first period was during and after the great 1971 dust storm (Lsub(s)=290 0 to 20 0 or summer in the southern hemisphere). The results obtained are compared to the Mariner 9 IRIS and Mars 3 observations made during the same period. During the second period (Lsub(s)=124 0 to 266 0 ) observations were made to follow the seasonal latitudinal and diurnal changes in the water abundance in the Martian atmosphere. Studies of the latitudinal and diurnal vapor distributions indicate the location of maximum and minimum abundances for this season are positively correlated with surface temperature variations. (Auth.)

  13. Geologic map of the Tuba City 30' x 60' quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Stoffer, Philip W.; Priest, Susan S.

    2012-01-01

    The Tuba City 30’ x 60’ quadrangle encompasses approximately 5,018 km² (1,920 mi²) within Coconino County, northern Arizona. It is characterized by nearly flat lying to gently dipping sequences of Paleozoic and Mesozoic strata that overly tilted Precambrian strata or metasedimentary and igneous rocks that are exposed at the bottom of Grand Canyon. The Paleozoic rock sequences from Cambrian to Permian age are exposed in the walls of Grand Canyon, Marble Canyon, and Little Colorado River Gorge. Mesozoic sedimentary rocks are exposed in the eastern half of the quadrangle where resistant sandstone units form cliffs, escarpments, mesas, and local plateaus. A few Miocene volcanic dikes intrude Mesozoic rocks southwest, northwest, and northeast of Tuba City, and Pleistocene volcanic rocks representing the northernmost extent of the San Francisco Volcanic Field are present at the south-central edge of the quadrangle. Quaternary deposits mantle much of the Mesozoic rocks in the eastern half of the quadrangle and are sparsely scattered in the western half. Principal folds are the north-south-trending, east-dipping Echo Cliffs Monocline and the East Kaibab Monocline. The East Kaibab Monocline elevates the Kaibab, Walhalla, and Coconino Plateaus and parts of Grand Canyon. Grand Canyon erosion has exposed the Butte Fault beneath the east Kaibab Monocline, providing a window into the structural complexity of monoclines in this part of the Colorado Plateau. Rocks of Permian and Triassic age form the surface bedrock of Marble Plateau and House Rock Valley between the East Kaibab and Echo Cliffs Monoclines. The Echo Cliffs Monocline forms a structural boundary between the Marble Plateau to the west and the Kaibito and Moenkopi Plateaus to the east. Jurassic rocks of the Kaibito and Moenkopi Plateaus are largely mantled by extensive eolian sand deposits. A small part of the northeast-dipping Red Lake Monocline is present in the northeast corner of the quadrangle. A broad and

  14. Colour mapping of the Shakespeare (H-03) quadrangle of Mercury

    Science.gov (United States)

    Bott, N.; Doressoundiram, A.; Perna, D.; Zambon, F.; Carli, C.; Capaccioni, F.

    2017-09-01

    We will present a colour mapping of the Shakespeare (H-03) quadrangle of Mercury, as well as the spectral analysis and a preliminary correlation between the spectral properties and the geological units.

  15. Venus-Earth-Mars: comparative climatology and the search for life in the solar system.

    Science.gov (United States)

    Launius, Roger D

    2012-09-19

    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans-all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a "runaway greenhouse theory," and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  16. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System

    Science.gov (United States)

    Launius, Roger D.

    2012-01-01

    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth. PMID:25371106

  17. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System

    Directory of Open Access Journals (Sweden)

    Roger D. Launius

    2012-09-01

    Full Text Available Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  18. Topographic Map of Quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  19. VenSAR on EnVision: Taking earth observation radar to Venus

    Science.gov (United States)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  20. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2011-03-01

    Full Text Available Foreshock ions are compared between Venus and Mars at energies of 0.6~20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2~6 times the solar wind energy that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the solar wind frame, and are similar to the field-aligned beams and intermediate gyrating component of the foreshock ions in the terrestrial upstream region. Mars Express does not observe similar foreshock ions as does Venus Express, indicating that the Martian foreshock does not possess the intermediate gyrating component in the upstream region on the dayside of the planet. Instead, two types of gyrating protons in the solar wind frame are observed very close to the Martian quasi-perpendicular bow shock within a proton gyroradius distance. The first type is observed only within the region which is about 400 km from the bow shock and flows tailward nearly along the bow shock with a similar velocity as the solar wind. The second type is observed up to about 700 km from the bow shock and has a bundled structure in the energy domain. A traversal on 12 July 2005, in which the energy-bunching came from bundling in the magnetic field direction, is further examined. The observed velocities of the latter population are consistent with multiple specular reflections of the solar wind at the bow shock, and the ions after the second reflection have a field-aligned velocity larger than that of the de Hoffman-Teller velocity frame, i.e., their guiding center has moved toward interplanetary space out from the bow shock. To account for the observed peculiarity of the Martian upstream region, finite gyroradius effects of the solar wind protons compared to the radius of the bow shock curvature and

  1. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Science.gov (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  2. Krypton and xenon in the atmosphere of Venus

    Science.gov (United States)

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.

    1981-01-01

    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  3. Geologic map of the Yacolt quadrangle, Clark County, Washington

    Science.gov (United States)

    Evarts, R.C.

    2006-01-01

    The Yacolt 7.5' quadrangle is situated in the foothills of the western Cascade Range of southwestern Washington approximately 35 km northeast of Portland, Oregon. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Volcanic and shallow-level intrusive rocks emplaced early in the history of the arc underlie most of the Yacolt quadrangle, forming a dissected and partly glaciated terrain with elevations between 250 and 2180 ft (75 and 665 m). The bedrock surface slopes irregularly but steeply to the southwest, forming the eastern margin of the Portland Basin, and weakly consolidated Miocene and younger basin-fill sediments lap up against the bedrock terrain in the southern part of the map area. A deep canyon, carved by the East Fork Lewis River that flows westward out of the Cascade Range, separates Yacolt and Bells Mountains, the two highest points in the quadrangle. Just west of the quadrangle, the river departs from its narrow bedrock channel and enters a wide alluvial floodplain. Bedrock of the Yacolt quadrangle consists of near-horizontal strata of Oligocene volcanic and volcaniclastic rocks that comprise early products of the Cascade volcanic arc. Basalt and basaltic andesite flows predominate. Most were emplaced on the flanks of a large mafic shield volcano and are interfingered with crudely bedded sections of volcanic breccia of probable lahar origin and a variety of well bedded epiclastic sedimentary rocks. At Yacolt Mountain, the volcanogenic rocks are intruded by a body of Miocene quartz diorite that is compositionally distinct from any volcanic rocks in the map area. The town of Yacolt sits in a north-northwest-trending valley apparently formed within a major fault zone. Several times during the Pleistocene, mountain glaciers moved down the Lewis River valley and spread southward into the map area

  4. Digital bedrock geologic map of the Saxtons River quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-52A Ratcliffe, NM�and Armstrong, TR, 1996, Digital bedrock geologic map of the Saxtons River quadrangle, Vermont, USGS Open-File Report...

  5. Multisource data set integration and characterization of uranium mineralization for the Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Balog, S.H.; Campbell, K.; Fugelso, L.E.; Weaver, T.A.; Wecksung, G.W.

    1981-04-01

    Several data-classification schemes were developed by the Los Alamos National Laboratory to detect potential uranium mineralization in the Montrose 1 0 x 2 0 quadrangle, Colorado. A first step was to develop and refine the techniques necessary to digitize, integrate, and register various large geological, geochemical, and geophysical data sets, including Landsat 2 imagery, for the Montrose quadrangle, Colorado, using a grid resolution of 1 km. All data sets for the Montrose quadrangle were registered to the Universal Transverse Mercator projection. The data sets include hydrogeochemical and stream sediment analyses for 23 elements, uranium-to-thorium ratios, airborne geophysical survey data, the locations of 90 uranium occurrences, a geologic map and Landsat 2 (bands 4 through 7) imagery. Geochemical samples were collected from 3965 locations in the 19 200 km 2 quadrangle; aerial data were collected on flight lines flown with 3 to 5 km spacings. These data sets were smoothed by universal kriging and interpolated to a 179 x 119 rectangular grid. A mylar transparency of the geologic map was prepared and digitized. Locations for the known uranium occurrences were also digitized. The Landsat 2 imagery was digitally manipulated and rubber-sheet transformed to quadrangle boundaries and bands 4 through 7 were resampled to both a 1-km and 100-m resolution. All possible combinations of three, for all data sets, were examined for general geologic correlations by utilizing a color microfilm output. Subsets of data were further examined for selected test areas. Two classification schemes for uranium mineralization, based on selected test areas in both the Cochetopa and Marshall Pass uranium districts, are presented. Areas favorable for uranium mineralization, based on these schemes, were identified and are discussed

  6. A high resolution gravity model for Venus - GVM-1

    Science.gov (United States)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.

    1993-01-01

    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  7. Geologic evolution of iron quadrangle on archean and early proterozoic

    International Nuclear Information System (INIS)

    Machado, N.; Noce, C.M.; Ladeira, E.A.

    1989-01-01

    The preliminary results of U-Pb geochronology of iron quadrangle. Brazil are presented, using the Davis linear regression program for determining of intersection concordance-discord and for estimation the associate mistakes. (C.G.C.)

  8. Aerial gamma ray and magnetic survey: Raton Basin Project. The Raton and Santa Fe Quadrangles of New Mexico. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    In 1978, EG and G geoMetrics collected 4955 line miles of high sensitivity airborne radiometric and magnetic data in New Mexico within the Raton and Santa Fe quadrangles. These quadrangles represent part of the Raton Basin Project. All radiometric and magnetic data for the two quadrangles were fully reduced and interpreted by geoMetrics, and are presented as three volumes; one Volume I covering both quadrangles and separate Volume II's for the individual quadrangles. Over 50% of the survey area is covered by flat lying Mesozoic and Cenozoic deposits of the southern Great Plains Province. The western and southern portions of the area contain a combination of Precambrian and Paleozoic igneous and metamorphic rocks. These rocks occur primarily within and in close proximity to the Sangre de Cristo Mountains and late Cenozoic volcanic deposits occur to the west of the mountains and in the Las Vegas Volcanic region. Uranium deposits are scattered throughout the region, but none are known to be economic at the time of this report

  9. Automated cloud tracking system for the Akatsuki Venus Climate Orbiter data

    Science.gov (United States)

    Ogohara, Kazunori; Kouyama, Toru; Yamamoto, Hiroki; Sato, Naoki; Takagi, Masahiro; Imamura, Takeshi

    2012-02-01

    Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude-latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude-latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude-latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude-latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude-latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.

  10. Aerial gamma-ray and magnetic survey, Columbus Quadrangle, Ohio. Final report

    International Nuclear Information System (INIS)

    1981-07-01

    The Columbus quadrangle covers a 7100 square mile area of south central Ohio which is located within the Midwestern Physiographic Province. Up to 6000 feet of Paleozoic strata overlie the east dipping Precambrian basement. Flat lying Quaternary glacial sediments cover a large part of the surface in the north and west regions of the quadrangle. A search of available literature revealed no known uranium deposits. Ninety-nine uranium anomalies were detected and are disussed briefly. Radiometric data reflect the presence of two zones of higher than average uranium anomaly occurrences. One zone is the northerly continuation of a trend observed in a contiguous quadrangle and occurs over undifferentiated Devonian and Mississippian sediments. Some anomalies appear to be culturally induced such as those in the vicinity of the city of Columbus. The outlined area in Figure 3 (indicated by a dashed contour line) should be considered for further investigation. The magnetic data indicate more structural complexity in underlying rocks than inferred by the structural interpretation of the area. The broad zones with long wavelength magnetic signatures on the east are interrupted further west by many small magnetic features whose sources may be attributed to undefined lithologic and/or structural elements in the Precambrian basement

  11. Glory on Venus and selection among the unknown UV absorbers

    Science.gov (United States)

    Petrova, Elena V.

    2018-05-01

    The comparison of the phase profiles of glories observed on the cloud top of Venus by the Venus Monitoring Camera (Venus Express) and the light-scattering characteristics of sulfuric acid droplets, containing admixtures with a high refractive index, makes it easier to choose between some candidates for the so-called unknown UV absorber in the Venus clouds. Since among the candidates there are materials wetted and not wetted by sulfuric acid, we analyze whether small submicron particles adhered to or embedded into the 1-μm H2SO4 droplets may actually change the glory pattern normally produced by homogeneous spherical particles and what the conditions are, under which the composite particles formed in heterogeneous nucleation may still produce a glory feature. We have found that one of the most frequently considered candidates, sulfur, can hardly be responsible for the contrasts observed at 0.365 μm on the upper clouds, since it is not wetted by sulfuric acid and submicron sulfur particles, serving as condensation nuclei for sulfuric acid, can only adhere to the H2SO4 droplets rather than be enveloped by them. Such droplets decorated by sulfur blobs substantially distort the glory feature characteristic of the scattering by spherical particles or even smooth it at all, while a glory pattern is practically always seen in the images of Venus taken at small phase angles. At the same time, the grains of the other UV absorbers that can be embedded in H2SO4 droplets, e.g., the widely discussed ferric chloride, pose no problem in terms of interpretation of the observations of glory.

  12. Dillon quadrangle, Montana and Idaho

    International Nuclear Information System (INIS)

    Wodzicki, A.; Krason, J.

    1981-04-01

    All geologic conditions in the Dillon quadrangle (Montana and Idaho) have been thoroughly examined, and, using National Uranium Resource Evaluation criteria, environments are favorable for uranium deposits along fractured zones of Precambrian Y metasediments, in the McGowan Creek Formation, and in some Tertiary sedimentary basins. A 9-m-wide quartz-bearing fractured zone in Precambrian Y quartzites near Gibbonsville contains 175 ppM uranium, probably derived from formerly overlying Challis Volcanics by supergene processes. The Mississippian McGowan Creek Formation consists of uraniferous, black, siliceous mudstone and chert. In the Melrose district it has been fractured by a low-angle fault, and uranium has been further concentrated by circulating ground water in the 2- to 6-m-thick brecciated zones that in outcrop contain 90 to 170 ppM uranium. The Wise River, northern Divide Creek, Jefferson River, Salmon River, Horse Prairie, Beaverhead River, and upper Ruby River Basins are considered favorable for uranium deposits in sandstone. Present are suitable uraniferous source rocks such as the Boulder batholith, rhyolitic flow breccia, laharic deposits, or strongly welded tuffs; permeable sediments, including most sandstones and conglomerates, providing they do not contain devitrified glass; suitable reductants such as lignite, pyrite, or low-Eh geothermal water; and uranium occurrences

  13. Investigating the Geophysics of Venus: Result of the post-Alpbach Summer School 2014

    Science.gov (United States)

    Koopmans, Robert-Jan; Łosiak, Anna; Białek, Agata; Donohoe, Anthony; Fernández Jiménez, María; Frasl, Barbara; Gurciullo, Antonio; Kleinschneider, Andreas; Mannel, Thurid; Muñoz Elorza, Iñigo; Nilsson, Daniel; Oliveira, Marta; Sørensen-Clark, Paul; Timoney, Ryan; van Zelst, Iris

    2015-04-01

    Venus has been investigated by only five dedicated mission programs since the beginning of space flight. This relatively low level of interest is remarkable when considering that mass and radius of Venus are very similar to Earth's, while at the same time characteristics such as spin rate, atmospheric composition, pressure and temperature, make Venus a very different, inhabitable world. The underlying causes of these differences are not well understood. Apprehending Venus' tectonics and internal structure would not only shed light on the question why those two planets evolved so differently, but also help refining current models of planetary systems formation. In order to answer the question about reasons for differences in evolution of those two planets a group of 15 young scientists and engineers designed a mission to Venus during a follow-up of the Alpbach Summer School 2014. The primary objective of this mission is to learn whether Venus is tectonically active and on what time scale. In order to accomplish this goal the mission will determine the crustal structure of Venus, the current activity and distribution of active volcanoes and the movement of continental plates. The secondary objective is to further constrain the models of Venus' internal structure and composition. To achieve this, the mission will investigate the size, state and composition of the core as well as the state and composition of the mantle. The proposed mission consists of an orbiter in a near-polar circular orbit around Venus and a balloon for in-situ measurements operating during the initial phase of the mission. The balloon carries a nephelometer, a magnetometer, a mass spectrometer and stereo microphones and meteorological package. The orbiter carries a gradiometer for determining the gravity field, a synthetic aperture radar for investigating small changes in surface topography and mapping microwave signals from the surface and an IR and UV spectrometer and IR camera for monitoring

  14. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    Science.gov (United States)

    Ekren, E.B.

    1984-01-01

    The Jibal Matalli quadrangle lies along the northern boundary of the Arabian Shield about 90 km west-southwest of Ha'il. The quadrangle consists of about 45 percent Precambrian bedrock, 50 percent Quaternary deposits, and 5 percent sedimentary cover rocks. The Precambrian rocks include volcaniclastic and volcanic rocks that are slightly metamorphosed and various granitic plutons. The volcaniclastic and volcanic rocks are correlated with the Hulayfah group and the Hadn formation. The older Hulayfah is principally basalt of probably submarine origin that has locally been metamorphosed to greenschist facies. The Hadn is composed of submarine and subaerial deposits. These consist of volcanic-derived sandstone and siltstone and lesser amounts of chiefly rhyolite volcanic rocks. In most areas, the Hadn shows little in the way of metamorphic effects, but locally it too has been metamorphosed to greenschist facies. The volcanic rocks of the Hadn include ash-flow tuffs; some appear to be water-laid, but others are subaerial. The oldest pluton is diorite, those of intermediate age are monzogranite and syenogranite, and the youngest are alkali feldspar granites. The largest pluton, a metaluminous, low-calcium, biotite monzogranite, occupies much of the southern part of the quadrangle. The alkali feldspar granites are mostly peralkaline; the two youngest are particularly so. The latter two are located in the southwest and southeast corners of the quadrangle, and both contain arfvedsonite and kataphorite. The pluton in the southeast grades outward from a peraluminous core to a peralkaline, comenditic peripheral zone and is inferred to be genetically related to a spectacular, west-trending comendite dike swarm in the southern half of the quadrangle.

  15. Digital bedrock geologic map of the Morrisville quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-1 Springston, G., Kim, J., and Applegate, G.S., 1998,�Digital bedrock geologic map of the Morrisville quadrangle,�Vermont: VGS Open-File...

  16. Lower Paleozoic carbonate rocks of Baird Mountains Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Dumoulin, J.A.; Harris, A.G.

    1985-04-01

    Lower Paleozoic carbonate rocks in the Baird Mountains quadrangle form a relatively thin (about 550 m), chiefly shallow-water succession that has been imbricately thrust and metamorphosed to lower greenschist facies. Middle and Upper Cambrian rocks - the first reported from the western Brooks Range - occur in the northeastern quarter of the quadrangle, south of Angayukaqsraq (formerly Hub) Mountain. They consist of marble grading upward into thin-bedded marble/dolostone couplets and contain pelagiellid mollusks, acetretid brachiopods, and agnostid trilobites. Sedimentologic features and the Pelagiellas indicate a shallow-water depositional environment. Overlying these rocks are Lower and Middle Ordovician marble and phyllite containing graptolites and conodonts of midshelf to basinal aspect. Upper Ordovician rocks in this area are bioturbated to laminated dolostone containing warm, shallow-water conodonts. In the Omar and Squirrel Rivers areas to the west, the Lower Ordovician carbonate rocks show striking differences in lithofacies, biofacies, and thickness. Here they are mainly dolostone with locally well-developed fenestral fabric and evaporite molds, and bioturbated to laminated orange- and gray-weathering dolomitic marble. Upper Silurian dolostone, found near Angayukaqsraq Mountain and on the central Squirrel River, contains locally abundant corals and stronmatoporoids. Devonian carbonate rocks are widely distributed in the Baird Mountains quadrangle; at least two distinct sequences have been identified. In the Omar area, Lower and Middle Devonian dolostone and marble are locally cherty and rich in megafossils. In the north-central (Nakolik River) area, Middle and Upper Devonian marble is interlayered with planar to cross-laminated quartz-carbonate metasandstone and phyllite.

  17. National Uranium Resource Evaluation: Lovelock Quadrangle, Nevada and California

    International Nuclear Information System (INIS)

    Berry, V.P.; Bradley, M.T.; Nagy, P.A.

    1982-08-01

    Uranium resources of the Lovelock Quadrangle, Nevada and California, were evaluated to a depth of 1500 m using available surface and subsurface geological information. Uranium occurrences reported in the literature and in reports of the Atomic Energy Commission were located, sampled, and described in detail. Areas of anomalous radioactivity, as interpreted from the aerial radiometric reconnaissance survey and from the hydrochemical and stream-sediment reconnaissance survey reports, were also investigated. A general reconnaissance of the geologic environments exposed in surface outcrops was carried out; and over 400 rock, sediment, and water geochemical analyses were made from the samples taken. Additionally, 119 rock samples were petrographically studied. A total of 21 occurrences were located, sampled, and described in detail. Six uranium occurrences, previously unreported in the literature, were located during hydrogeochemical and stream-sediment reconnaissance, aerial radiometric reconnaissance survey followup, or general outcrop reconnaissance. Nine areas of uranium favorability were delineated within the Lovelock Quadrangle. One area, which contains the basal units of the Hartford Hill Rhyolite, is favorable for hydroallogenic uranium deposits. Eight areas are favorable for uranium deposits in playa sediments. These playas are considered favorable for nonmarine carbonaceous sediment deposits and evaporative deposits. The total volume of rock in favorable areas of the Lovelock Quadrangle is estimated to be 190 km 3 . The remaining geologic units are considered to be unfavorable for uranium deposits. These include upper Paleozoic and Mesozoic volcanic, plutonic, sedimentary, and metamorphic rocks. Also unfavorable are Tertiary and Quaternary volcanic flows and intrusive phases, tuffs, and sediments

  18. VERITAS: a Discovery-Class Venus Surface Geology and Geophysics Mission

    Science.gov (United States)

    Freeman, Anthony; Smrekar, Suzanne E.; Hensley, Scott; Wallace, Mark; Sotin, Christophe; Darrach, Murray; Xaypraseuth, Peter; Helbert, Joern; Mazarico, Erwan

    2016-01-01

    Our understanding of solar system evolution is limited by a great unanswered question: How Earthlike is Venus? We know that these "twin" planets formed with similar bulk composition and size. Yet the evolutionary path Venus followed has diverged from Earth's, in losing its surface water and becoming hotter than Mercury. What led to this? The answer has profound implications for how terrestrial planets become habitable and the potential for life in the universe.

  19. VENUS Ranging Study

    Science.gov (United States)

    2014-12-01

    Majesté la Reine (en droit du Canada), telle que réprésentée par le ministre de la Défense nationale, 2014 Abstract The underwater acoustic propagation...50 km des capteurs sous-marins situés aux nœuds du réseau VENUS dont les données acoustiques et sismiques sont accessibles au public sur Internet...Southwest British Columbia, Geophysical Journal International , 170(2), 800–812. [15] Hamilton, E. L. (1979), Vp/Vs and Poisson’s ratios in marine

  20. NURE aerial gamma ray and magnetic reconnaissance survey, Thorpe area, Scranton NK18-8 Quadrangle. Volume I. Narrative report

    International Nuclear Information System (INIS)

    1978-02-01

    A rotary wing combined airborne high sensitivity gamma-ray and magnetic survey of four 1:250,000 quadrangles covering portions of Pennsylvania, New Jersey, and New York was made. The results are given for the Scranton NK18-8 quadrangle

  1. USGS 1:12000 (Quarter 7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — This is a mathematically generated grid in which each polygon represents one quarter of a standard USGS 7 1/2 minute quadrangle. The result is a 3 3/4 minute...

  2. Preliminary geologic map of the Thaniyat Turayf Quadrangle, sheet 29C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Meissner, C.R.; Dini, S.M.; Farasani, A.M.; Riddler, G.P.; Smith, G.H.; Griffin, M.B.; Van Eck, Marcel

    1990-01-01

    The Thaniyat Turayf quadrangle, sheet 29C, lies in the northwestern part of Saudi Arabia near the border with Jordan. The quadrangle is located between lat 29°00'-30°00' N. and long 37°30'-39°00' E. It includes the southwestern rim of the Sirhan-Turayf Basin and is underlain by Silurian to Miocene- Pliocene sedimentary rocks that are partly covered by surficial duricrust, sand, and gravel.

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Dickinson NTMS Quadrangle, North Dakota

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dickinson Quadrangle, North Dakota are reported. Field and laboratory data are presented for 544 groundwater and 554 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicates that scattered localities in the central portion of the quadrangle appear most promising for uranium mineralization. High values of uranium in this area are usually found in waters of the Sentinel Butte and Tongue River Formations. Uranium is believed to be concentrated in the lignite beds of the Fort Union Group, with concentrations increasing with proximity to the pre-Oligocene unconformity. Stream sediment data indicate high uranium values distributed over the central area of the quadrangle. Uranium in stream sediments does not appear to be associated with any particular geologic unit and is perhaps following a structural trend

  4. Studies of the atmosphere of Venus by means of spacecraft: Solved and unsolved problems

    Science.gov (United States)

    Moroz, V. I.

    Many spacecraft were used for exploration of the atmosphere of Venus. Their list consists of 25 items, including fly-by missions, orbiters, descent and landing probes and even balloons. VENERA-4 (1967) was near the beginning of this list, providing the first time in situ experiments on other planet. It started a long sequence of successful Soviet Venera missions. However after the year 1985 there were no missions to Venus in Russia. It probably was a strategic error. Now several groups of scientists in other countries work on proposals for new missions to Venus. The goal of this paper is to present a brief review of already solved and still unsolved problems in the studies of the Venus' atmosphere and to possible future aims in this field.

  5. The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Ambler River Quadrangle, Alaska

    Science.gov (United States)

    Mayfield, Charles F.; Tailleur, I.L.; Albert, N.R.; Ellersieck, Inyo; Grybeck, Donald; Hackett, S.W.

    1983-01-01

    The Ambler River quadrangle, consisting of 14,290 km2 (5,520 mi2) in northwest Alaska, was investigated by an interdisciplinary research team for the purpose of assessing the mineral resource potential of the quadrangle. This report provides background information for a folio of maps on the geology, reconnaissance geochemistry, aeromagnetics, Landsat imagery, and mineral resource evaluation of the quadrangle. A summary of the geologic history, radiometric dates, and fossil localities and a comprehensive bibliography are also included. The quadrangle contains jade reserves, now being mined, and potentially significant resources of copper, zinc, lead, and silver.

  6. Magnetic field overshoots in the Venus blow shock

    International Nuclear Information System (INIS)

    Tatrallyay, M.; Luhmann, J.G.; Russell, C.T.

    1984-01-01

    An examination of Pioneer Venus Orbiter fluxgate magnetometer data has shown that magnetic field overshoots occur not only behind quasi-perpendicular bow shocks but also behind quasi-parallel shocks. Overshoots are assocciated only with supercritical shocks. Their amplitudes increase with increasing fast Mach number. Solar wind beta has a lesser effect. The thickness of the overshoot increases with decreasing Theta-BN. The thickness of apparent overshoots detected behind 4 strong fast interplanetary shocks (M greater than M/crit) is about 3 orders of magnitude larger. Multiple crossings of the Venus bow shock were observed mainly at turbulent shocks. Their occurence is not influenced by Theta-BN. 15 references

  7. Abrir una Venus: Hablar con ella

    Directory of Open Access Journals (Sweden)

    Ginnette Barrantes Sáenz

    2013-09-01

    Se propone a Alicia como la Venus abierta que  incita, mediante  la  cita cinematográfica del cine mudo en el cine de Almodóvar, la no tan conocida figura de  amar a una  dormida( Allouch, 2005

  8. Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz

    2014-01-01

    For this map, we interpreted a 6-ft-resolution lidar digital elevation model combined with the geology depicted on the Geologic Map of the Poverty Bay 7.5' Quadrangle, King and Pierce Counties, Washington (Booth and others, 2004b). The authors of the 2004 map described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Poverty Bay 7.5' quadrangle.

  9. Venus - Phoebe Region

    Science.gov (United States)

    1990-01-01

    This Magellan radar image is of part of the Phoebe region of Venus. It is a mosaic of parts of revolutions 146 and 147 acquired in the first radar test on Aug. 16, 1990. The area in the image is located at 291 degrees east longitude, 19 degrees south latitude. The image shows an area 30 kilometers (19.6 miles) wide and 76 km (47 miles) long. On the basis of Pioneer Venus and Arecibo data, it is known that two major rift zones occur in southern Phoebe Regio and that they terminate at about 20 to 25 degrees south latitude, about 2,000 km (1,240 miles) apart. This image is of an area just north of the southern end of the western rift zone. The region is characterized by a complex geologic history involving both volcanism and faulting. Several of the geologic units show distinctive overlapping or cross cutting relationships that permit identification and separation of geologic events and construction of the geologic history of the region. The oldest rocks in this image form the complexly deformed and faulted, radar bright, hilly terrain in the northern half. Faults of a variety of orientations are observed. A narrow fault trough (about one-half to one km (three tenths to six tenths of a mile) wide is seen crossing the bright hills near the lower part in the middle of the image. This is one of the youngest faults in the faulted, hilly unit as it is seen to cut across many other structures. The fault trough in turn appears to be embayed and flooded by the darker plains that appear in the south half of the image. These plains are interpreted to be of volcanic origin. The dark plains may be formed of a complex of overlapping volcanic flows. For example, the somewhat darker region of plains in the lower left (southwest) corner of the image may be a different age series of plains forming volcanic lava flows. Finally, the narrow bright line crossing the image in its lower part is interpreted to be a fault which cross cuts both plains units and is thus the youngest event in

  10. Mineralogical Mapping of Quadrangle Av-2 (belicia) and Av-3 (caparronia) on 4 Vesta.

    Science.gov (United States)

    Stephan, K.; Frigeri, A.; Barucci, M. A.; Sunshine, J.; Jaumann, R.; Palomba, E.; Blewett, D. T.; Yingst, A.; Marchi, S.; De Sanctis, C. M.; Matz, K.-D.; Roatsch, Th.; Preusker, F.; Le Corre, L.; Reddy, V.; Russell, C. T.; Raymond, C. A.

    2012-04-01

    (howardite, eucrite and diogenite) meteorites. The prominent pyroxene absorptions near 0.9 and 1.9µm show different band depths and band centers, which are associated with the presence and abundance of the mafic minerals as well as grain size. Within the quadrangles Av-2 and Av3, band centers appear to shift slightly to shorter wavelength from W to E following the trend of the equatorial region. A similar trend can be observed with respect to the depth of the pyroxene absorptions with the absorption deepening eastward. Locally, bright material associated with strong pyroxene absorptions is observed on crater walls of a few relatively large impact craters with pronounced topography. Either these impact craters are relatively young or fresh material became exposed due mass wasting processes. The effects of photometry for under these illumination conditions are being assessed. The authors gratefully acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work is supported by NASA through the Dawn project and the German Space Agency (DLR).

  11. Did Ibn Sina Observe the Transit of Venus of 1032 CE?

    Science.gov (United States)

    Kapoor, R. C.

    2012-09-01

    The Persian polymath Abu Ali ibn Sina (980--1037 CE), known to early Western sources as Avicenna, records that ``I say that I saw Venus as a spot on the surface of the sun''. This statement has been quoted, for example, by Nasir al Din al Tusi (1201--1274 CE). A Transit of Venus indeed took place during ibn Sina's life time, that is on 24 May 1032 CE. Did ibn Sina see this Transit or did he merely see a sunspot? The question was addressed by Bernard R. Goldstein in 1969 who concluded that ``this Transit may not have been visible where he lived''. Goldstein based his conclusion on the input provided by Brian G Marsden who in turn used mathematical tables prepared by J. Meeus in 1958. I have begun re-examination of the question by employing Fred Espenak's Transit predictions. Preliminary work shows that ibn Sina could indeed have obtained a glimpse of the Transit of Venus just before sunset from places like Isfahan or Hamadan. In other words, when ibn Sina said he saw Venus on the surface of the Sun, he probably meant it.

  12. Strangeness enhancement at rapidity in Pb-Pb collisions at 158 A GeV/c: a comparision with VENUS and RQMD models

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 11, č. 1 (1999), s. 79-88 ISSN 1434-6044 Institutional research plan: CEZ:AV0Z1010920 Keywords : WA97 * VENUS 4.12 * RQMD 2.3 * enhancements * strageness content * central rapidity * p-Pb, Pb-Pb Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.872, year: 1999

  13. Asteroids and Meteorites from Venus? Only the Earth Goddess Knows

    Science.gov (United States)

    Dones, Henry; Zahnle, Kevin J.; Alvarellos, José L.

    2018-04-01

    No meteorites from Venus have been found; indeed, some find theirexistence unlikely because of the perceived difficulty of launchingrocks at speeds above 10 km/s and traversing the planet's 93 baratmosphere. [1] Nonetheless, we keep hope alive, since cosmochemistssay they can identify Cytherean meteorites, should candidates be found[2]. Gladman et al. [3] modeled the exchange of impact ejecta betweenthe terrestrial planets, but did not consider meteorites launched fromVenus in any detail. At the time of Gladman's work, no asteroids thatremained entirely within Earth's orbit were known. 14 suchEarth-interior objects with good orbits have now been discovered, andare known as Atiras, for the Pawnee goddess of the Earth. The largestknown member of the class is 163693 Atira, a binary whose componentshave diameters of approximately 4.8 and 1 km. Discovery of Atiras isvery incomplete because they can only be seen at small solarelongations [4]. Greenstreet et al. [5] modeled the orbitaldistribution of Atiras from main-belt asteroidal and cometary sourceregions, while Ribeiro et al. [6] mapped the stability region ofhypothetical Atiras and integrated the orbits of clones of 12 realAtiras for 1 million years. 97% of the clones survived for 1 Myrimpact with Venus was the most common fate of those that met theirends. We have performed orbital integrations of 1000 clones of each ofthe known Atiras, and of hypothetical ejecta that escape Venus afterasteroid impacts, for 10-100 Myr. The latter calculations usetechniques like those of Alvarellos et al. [7] and Zahnle et al. [8]for transfer amongst Jupiter's galilean satellites. Our goals are toestimate the fraction of Atiras that are ejecta launched from Venus,the time spent in space by hypothetical meteorites from Venus, and therate at which such meteorites strike the Earth.[1] Gilmore M., et al (2017). Space Sci. Rev. 212, 1511. [2] JourdanF., Eroglu E. (2017). MAPS 52, 884. [3] Gladman B.J., etal. (1996). Science 271, 1387. [4

  14. The Creation of a Beneficial Bioshpere from Co2 in the Clouds of Venus

    Science.gov (United States)

    Linaraki, D. L.; Oungrinis, K. A.

    2017-02-01

    This research resulted in an architectural design for a Venus colony based on multiple factors combination, such as psychology of space, predicted near-future technology, and the identified environmental conditions on Venus.

  15. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    International Nuclear Information System (INIS)

    1980-09-01

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources

  16. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-01-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R and D injector is the production of 240e(micro)A of U 30+ , a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e(micro)A of U 48+ , a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004

  17. New perspectives on the accretion and internal evolution of Venus

    Science.gov (United States)

    O'Rourke, J. G.

    2017-12-01

    Dichotomous conditions on Earth and Venus present one of the most compelling mysteries in our Solar System. Ongoing debate centers on how the internal dynamics of Venus have shaped its atmospheric composition, surface features, and even habitability over geologic time. In particular, Venus may have resembled Earth for billions of years before suffering catastrophic transformation, or perhaps some accretionary process set these twin planets on divergent paths from the beginning. Unfortunately, the limited quality of decades-old data—particularly the low resolution of radar imagery and global topography from NASA's Magellan mission—harms our ability to draw definite conclusions. But some progress is possible given recent advances in modeling techniques and improved topography derived from stereo images that are available for roughly twenty percent of the surface. Here I present simulations of the interior evolution of Venus consistent with all available constraints and, more importantly, identify future measurements that would dramatically narrow the range of acceptable scenarios. Obtaining high-resolution imagery and topography, along with any information about the temporal history of a magnetic field, is extremely important. Deformation of geologic features constrains the surface heat flow and lithospheric rheology during their formation. Determining whether craters with radar-dark floors (which comprise 80% of the population) are actually embayed by lava flows would finally settle the controversy over catastrophic versus equilibrium resurfacing. If the core of Venus has completely solidified, then the lack of an internally generated magnetic field today is unsurprising. We might expect dynamo action in the past since relatively high mantle temperatures may increase the rate of core cooling—unless a lack of giant impacts during accretion permitted chemical stratification that resists convection. In any case, uncertainty about our celestial cousin reveals a

  18. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    International Nuclear Information System (INIS)

    White, D.L.; Foster, M.

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint

  19. New Frontiers Science at Venus from Orbit plus Atmospheric Gas Sampling

    Science.gov (United States)

    Smrekar, Suzanne; Dyar, Melinda; Hensley, Scott; Helbert, Joern; VOX Science and Engineering Teams

    2017-10-01

    Venus remains the most Earth-like body in terms of size, composition, surface age, and insulation. Venus Origins Explorer (VOX) determines how Earth’s twin diverged, and enables breakthroughs in our understanding of rocky planet evolution and habitability. At the time of the Decadal Survey the ability to map mineralogy from orbit (Helbert et al.) and present-day radar techniques to detect active deformation were not fully appreciated. VOX leverages these methods and in-situ noble gases to answer New Frontiers science objectives:1. Atmospheric physics/chemistry: noble gases and isotopes to constrain atmospheric sources, escape processes, and integrated volcanic outgassing; global search for current volcanically outgassed water.2. Past hydrological cycles: global tessera composition to determine the role of volatiles in crustal formation.3. Crustal physics/chemistry: global crustal mineralogy/chemistry, tectonic processes, heat flow, resolve the catastrophic vs. equilibrium resurfacing debate, active geologic processes and possible crustal recycling.4. Crustal weathering: surface-atmosphere weathering reactions from redox state and the chemical equilibrium of the near-surface atmosphere.5. Atmospheric properties/winds: map cloud particle modes and their temporal variations, and track cloud-level winds in the polar vortices.6. Surface-atmosphere interactions: chemical reactions from mineralogy; weathering state between new, recent and older flows; possible volcanically outgassed water.VOX’s Atmosphere Sampling Vehicle (ASV) dips into and samples the well-mixed atmosphere, using Venus Original Constituents Experiment (VOCE) to measure noble gases. VOX’s orbiter carries the Venus Emissivity Mapper (VEM) and the Venus Interferometric Synthetic Aperture Radar (VISAR), and maps the gravity field using Ka-band tracking.VOX is the logical next mission to Venus because it delivers: 1) top priority atmosphere, surface, and interior science; 2) key global data for

  20. Purification and Characterization of Hemagglutinating Proteins from Poker-Chip Venus (Meretrix lusoria and Corbicula Clam (Corbicula fluminea

    Directory of Open Access Journals (Sweden)

    Chin-Fu Cheng

    2012-01-01

    Full Text Available Hemagglutinating proteins (HAPs were purified from Poker-chip Venus (Meretrix lusoria and Corbicula clam (Corbicula fluminea using gel-filtration chromatography on a Sephacryl S-300 column. The molecular weights of the HAPs obtained from Poker-chip Venus and Corbicula clam were 358 kDa and 380 kDa, respectively. Purified HAP from Poker-chip Venus yielded two subunits with molecular weights of 26 kDa and 29 kDa. However, only one HAP subunit was purified from Corbicula clam, and its molecular weight was 32 kDa. The two Poker-chip Venus HAPs possessed hemagglutinating ability (HAA for erythrocytes of some vertebrate animal species, especially tilapia. Moreover, HAA of the HAP purified from Poker-chip Venus was higher than that of the HAP of Corbicula clam. Furthermore, Poker-chip Venus HAPs possessed better HAA at a pH higher than 7.0. When the temperature was at 4°C–10°C or the salinity was less than 0.5‰, the two Poker-chip Venus HAPs possessed better HAA compared with that of Corbicula clam.

  1. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus

    Science.gov (United States)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.

    2017-12-01

    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  2. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly define the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features

  3. Earth-type planets (Mercury, Venus, and Mars)

    Science.gov (United States)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  4. A heat pipe mechanism for volcanism and tectonics on Venus

    International Nuclear Information System (INIS)

    Turcotte, D.L.

    1989-01-01

    A heat pipe mechanism is proposed for the transport of heat through the lithosphere on Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km thick. A thick crust and thick lithosphere can explain the high observed topography and large associated gravity anomalies. For a 150-km-thick lithosphere the required volcanic flux on Venus is 200 km 3 /yr; this is compared with a flux of 17 km 3 /yr associated with the formation of the oceanic crust on Earth. A thick basaltic crust on Venus is expected to transform to eclogite at a depth of 60 to 80 km; the dense eclogite would contribute the lithospheric delamination that returns the crust to the interior of the planet completing the heat pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Ma, and this implies an upper limit of 2 km 3 /yr for the surface volcanic flux. If the heat pipe mechanism was applicable on Earth in the Archean, it would provide the thick lithosphere implied by isotopic data from diamonds

  5. Two-dimensional coherence analysis of magnetic and gravity data from the Casper Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1981-01-01

    Volume II contains the following: gravity station location map; complete Bouguer gravity map; total magnetic map; gravity data copper area detrended continued 1 km; magnetic data Casper Wyoming continued 1 km; upward continued coherent gravity maps; magnetic field reduced to the pole/pseudo gravity map; geology map-Casper Quadrangle; magnetic interpretation map-Casper Quadrangle; gravity interpretation map; magnetic interpretation cross section; magnetic profiles; flight line map and uranium occurrences

  6. Aerial gamma ray and magnetic survey: Minnesota Project, Watertown quadrangle of South Dakota/Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    The Watertown 1:250,000 scale quadrangle of South Dakota/Minnesota is everywhere covered by variable thicknesses of Wisconsin age glacial deposits (drift). Bedrock is nowhere exposed, but is thought to be composed of primarily Cretaceous sediments. There are no known uranium deposits (or occurrences) within the quadrangle. Sixty-seven (67) groups of uranium samples were defined as anomalies and are discussed in the report. None of them are considered significant

  7. Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-DM1 Ratcliffe, NM, 1995, Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont, scale 1:24000, The bedrock...

  8. Applicability of ultralow-frequency global resonances for investigating lightning activity on Venus

    International Nuclear Information System (INIS)

    Nikolaenko, A.P.; Rabinovich, L.M.

    1987-01-01

    The application to experiments on Venus of methods of investigating global lightning activity that are used on earth in the ultralow-frequency range is discussed. Calculations of the electromagnetic fields in the range from a few Hertz to tens of Hertz are carried out in the framework of the model of the lower ionosphere of Venus, which generalizes the information about the planet's atmosphere which is presently available. The calculations showed that observations of global resonances on Venus must, as on the earth, allow one to obtain data about the global distribution of lightning in space and time, and to make the values of the parameters of the lower ionosphere model more precise

  9. Aeromagnetic maps of the Colorado River region including the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degrees quadrangles, California, Arizona, and Nevada

    Science.gov (United States)

    Mariano, John; Grauch, V.J.

    1988-01-01

    Aeromagnetic data for the Colorado river region have been compiled as part of the Pacific to Arizona Crustal Experiment (PACE) Project. The data are presented here in a series of six compilations for the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degree quadrangles, California, Arizona, and Nevada, at scales of 1:250,000 and 1:750,000. The scales and map areas are identical to those used by Mariano and others (1986) to display the Bouguer and isotatic residual gravity for this region. Data were compiled separately for the Kingman quadrangle, the Needles quadrangle, and an area covering the Salton Sea quadrangle and part of the El Centro quadrangle.

  10. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  11. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    International Nuclear Information System (INIS)

    Field, M.T.; Truesdell, D.B.

    1982-09-01

    The Albany 1 0 x 2 0 Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks

  12. Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results

    Science.gov (United States)

    Pegg, D. L.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We present the current status of geological mapping of the Debussy quadrangle. Mapping underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data in preparation for the BepiColombo mission.

  13. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the McGrath and Talkeetna NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Jacobsen, S.I.; Hill, D.E.

    1979-04-01

    During the summer of 1977, 1268 water and 1206 sediment samples were collected from 1292 lakes and streams throughout the two quadrangles in south-central Alaska. Each of the water samples was analyzed for uranium and 12 other elements and each of the sediment samples for uranium, thorium, and 41 other elements. Uranium concentrations in water samples range from below 0.02 ppB to 19.64 ppB. In general, lake waters contain somewhat less uranium than stream waters, and the highest concentrations in both sample types were found in or near the Alaska Range. Uranium concentrations in sediment samples range from 0.10 ppM to 172.40 ppM. The highest concentrations are found in samples collected in the Alaska Range near areas of felsic igneous rocks. Sediment samples having high thorium concentrations also come from areas underlain by felsic igneous rocks in the Alaska Range. The following areas were found to be most favorable for significant uranium mineralization: (1) the Windy Fork stock on the southeastern boundary of the McGrath quadrangle; (2) an area in the northwest corner of the Talkeetna quadrangle near the Mespelt prospects; (3) the Hidden River drainage in the northeast corner of the Talkeetna quadrangle; (4) an area near Chelatna Lake in the center of the Talkeetna quadrangle; (5) the Kichatna River drainage, near the western border of the Talkeetna quadrangle; and (6) an area near the Mount Estelle pluton in the extreme southwest corner of the Talkeetna quadrangle

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Lime Hills and Tyonek NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Jacobsen, S.I.; Aamodt, P.L.; Sharp, R.R. Jr.

    1979-01-01

    The U contents of the 671 waters from the Lime Hills quadrangle range from below 0.02 ppB to a high of 11.29 ppB. U contents of the 667 sediments from this quadrangle range from a low of 0.1 ppM to a high of 94.9 ppM. Both waters and sediments containing relatively high U concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tired Pup batholith and Mount Estelle pluton. The U contents of 575 waters from the Tyonek quadrangle range from below the detection limit to 13.13 ppB. Relatively high U concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 to 58 ppM. Most sediment samples having high U concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean U concentration (0.85 ppB) than those from the Western Lowland (0.34 ppB) or the Susitna Lowland (0.51 ppB). The mean U concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean U concentration (7.00 ppM) than sediment samples from either the Western Lowland (2.46 ppM) or the Susitna Lowland area

  16. Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-3 Springston, G., 2016, Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont:�Vermont Geological Survey Open File Report...

  17. Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Burton, WC, and Ratcliffe, NM, 2000, Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont: USGS Open-File...

  18. Parquet: Regions of areal plastic dislocations (on Venus)

    Science.gov (United States)

    Sukhanov, A. L.

    1986-01-01

    The extensive flat elevations of the Northern Hemisphere of Venus are covered with frequently intersecting lines of dislocations, resembling the outline of a giant parquet. In the internal sections of these regions we find grabens and regions of extension, and on the periphery lobe-shaped flow structures. The parquet was formed after the beginning of the formation of the lava plains, but covered by the youngest lava. These structures apparently arose partly because of the dragging of blocks of crust by the asthenospheric flows, and partly in the gravitational sliding of such heated blocks in the partial melting of their base. It is possible that these elevations occupy on Venus the place of the Earth's rift systems.

  19. Uranium and thorium content of some sedimentary and igneous rocks from the Rolla 10 x 20 quadrangle, Missouri

    International Nuclear Information System (INIS)

    Odland, S.K.; Millard, H.T. Jr.

    1979-01-01

    Uranium and thorium contents of 175 samples of Precambrian and overlying sedimentary rocks from 28 drill holes in the Rolla 1 0 x 2 0 quadrangle, Missouri, were determined in 1978 as part of the National Uranium Resource Evaluation (NURE) effort. The limited number of drill-hole samples analyzed and the great distance between drill holes does not provide sufficient analytical data for an evaluation of the uranium potential in this quadrangle. However, because NURE studies in the quadrangle have been recessed, the data at hand are being made available in this report. The 175 rock samples for uranium and thorium analyses were selected to determine the uranium and thorium content of lower Paleozoic stratigraphic units in the quadrangle, and to test the conceptual model of uranium accumulation in basal sandstones, conglomerates, and arkoses that onlap the Precambrian igneous rocks. The conceptual model of uranium in intragranitic veins was not tested, because not all drill holes penetrate Precambrian rocks and none penetrate them more than a few meters

  20. Aerial gamma ray and magnetic survey: Minnesota Project, New Ulm quadrangle of Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The New Ulm 1:250,000 scale quadrangle of southwestern Minnesota is entirely covered by variable thicknesses of Late Wisconsin age glacial deposits (drift). Precambrian bedrock is primarily exposed within the Minnesota River Valley, but only in very small, scattered outcrops. Approximately 50% of the bedrock is composed of Cretaceous sediments. There are no known uranium deposits (or occurrences) within the quadrangle. One hundred forty-six (146) groups of uranium samples were defined as anomalies and are discussed. None were considered significant

  1. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Duex, T.W.; Wilbert, W.P.

    1982-09-01

    The uranium favorability of the Marfa 1 0 by 2 0 Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable

  2. Submarine Volcanic Eruptions and Potential Analogs for Venus

    Science.gov (United States)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  3. THE JAMES MADISON WOOD QUADRANGLE, STEPHENS COLLEGE, COLUMBIA, MISSOURI.

    Science.gov (United States)

    MCBRIDE, WILMA

    THE JAMES MADISON WOOD QUADRANGLE AT STEPHENS COLLEGE IS A COMPLEX OF BUILDINGS DESIGNED TO MAKE POSSIBLE A FLEXIBLE EDUCATIONAL ENVIRONMENT. A LIBRARY HOUSES A GREAT VARIETY OF AUDIO-VISUAL RESOURCES AND BOOKS. A COMMUNICATION CENTER INCORPORATES TELEVISION AND RADIO FACILITIES, A FILM PRODUCTION STUDIO, AND AUDIO-VISUAL FACILITIES. THE LEARNING…

  4. Surficial geology of Hannibal Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of 10 kinds of surficial deposits in part of Hannibal quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for ground-water development at any specific location. (USGS)

  5. The 2004 Transit of Venus as a Space Science Education Opportunity

    Science.gov (United States)

    Odenwald, S.; Mayo, L.; Vondrak, R.; Thieman, J.; Hawkins, I.; Schultz, G.

    2003-12-01

    We will present some of the programs and activities that NASA and its missions are preparing in order to support public and K12 education in space science and astronomy using the 2004 transit of Venus as a focal event. The upcoming transit of Venus on June 8 offers a unique opportunity to educate students and the general public about the scale of the solar system and the universe, as well as basic issues in comparative planetology. NASA's Sun-Earth Connection Education Forum is offering a number of programs to take advantage of this rare event. Among these are a live web cast from Spain of the entire transit, a series of radio and TV programs directed at students and the general public, a web cast describing extra-solar planet searches using the transit geometry, and archived observations produced by public observatories and student-operated solar viewers. The NASA/OSS Education Forums will also partner with science museums, planetaria and teachers across the country to bring the transit of Venus 'down to Earth'. In addition to offering enrichment activities in mathematics and space science, we also describe collaborations that have yielded unique historical resources including online archives of newspaper articles from the 1874 and 1882 transits. In addition, in collaboration with the Library of Congress Music Division, we have supported a modern re-orchestration of John Philip Sousa's Transit of Venus March which has not been performed since 1883. We anticipate that the transit of Venus will be a significant event of considerable public interest and curiosity, if the newspaper headlines from the transit seen in 1882 are any indication.

  6. Aerial gamma ray and magnetic survey: Minnesota Project, Fargo quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Fargo 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Eighty-two (82) groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  7. Venus's winds and temperatures during the MESSENGER's flyby: towards a three-dimensional instantaneous state of the atmosphere

    Science.gov (United States)

    Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.

    2017-09-01

    The atmosphere of the Earth or Mars globally rotates with a speed similar to the rotation of the planet (approximately 24 h). The rotation of Venus is of about 243 days, much slower than the Earth, but when scientists measured the winds by tracking the clouds of Venus, they discovered that the atmosphere rotates 60 times faster! No one has explained yet what originates this "superrotation", and we do not know well what happens either above or below the clouds. The technique of "Doppler shift" has been used to measure winds above the clouds, but results are "chaotic" and different to interpret. Thanks to a worldwide collaboration in June 2007 between NASA (MESSENGER), ESA (Venus Express), and many observatories (VLT in Chile, JCMT in Hawaii, HHSMT in Arizona, or IRAM in Spain), the authors combined the different data to obtain, for the first time, the instantaneous 3-D structure of the winds on Venus at the clouds and also above, very important for new Venus models to start "forecasts" of the Venus weather with "data assimilation". We also discovered that the superrotation seems unexpectedly different on the night of Venus and that it varies its altitude depending on the day.

  8. First operations of the SOIR occultation infrared spectrometer in Venus orbit.

    Science.gov (United States)

    Nevejans, D.; Neefs, E.; Vandaele, A. C.; Muller, C.; Fussen, D.; Berkenbosch, S.; Clairquin, R.; Korablev, O.; Federova, A.; Bertaux, J. L.

    Since May 2006, the Venus-Express spacecraft is in its nominal orbit around VENUS and the SPICAV optical package has begun to acquire spectra. The SOIR extension to SPICAV is an echelle spectrometer associated to an AOTF (Acousto-Optical Tunable Filter) for the order selection, which performs solar occultation measurements in the IR region (2.2-4.3 µm) at a resolution of 0.1 cm-1 . The detailed optical study and design as well as the manufacturing were performed at the BIRA/IASB in collaboration with its industrial partners OIP and PEDEO. It was funded by the Belgian Federal Science Policy Office under the ESA PRODEX programme. The wavelength range allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of gases. The first results look promising and will be qualitatively presented.

  9. First ever in situ observations of Venus' polar upper atmosphere density using the tracking data of the Venus Express Atmospheric Drag Experiment (VExADE)

    Science.gov (United States)

    Rosenblatt, P.; Bruinsma, S. L.; Müller-Wodarg, I. C. F.; Häusler, B.; Svedhem, H.; Marty, J. C.

    2012-02-01

    On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186-176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73-83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin's density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin's model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from

  10. /sup 9/Be(p,n)/sup 9/B reaction with polarized protons from 2. 4 to 2. 9 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, U [Basel Univ. (Switzerland); Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-04-19

    A polarized beam was used to measure angular distributions of the proton analyzing power of the /sup 9/Be(p,n)/sup 9/B reaction at six energies from 2.4 to 2.9 MeV. The data were measured typically to an accuracy of 0.02 with a target 23 keV thick at 2.5 MeV bombarding energy. The analyzing power can be fitted with three associated Legendre polynomials, the coefficients of which show considerable variation in the vicinity of the pair of degenerate states at 2.56 MeV. The coefficients of the odd polynomials are not zero over the energy range of these states, indicating that they are of opposite parity. Comparison of these analyzing power measurements with previous data for the neutron polarization induced with unpolarized protons shows near equality at all energies, as expected from Conzett's theorem.

  11. Photoelectron reflection and scattering at Venus: an upper limit on the "polar wind" ambipolar electric field, and a new source of top-side ionospheric heating

    Science.gov (United States)

    Collinson, Glyn; Glocer, Alex; Grebowsky, Joe; Peterson, William; Frahm, Rudy; Moore, Thomas; Gilbert, Lin; Coates, Andrew

    2015-04-01

    An important mechanism in the generation of Earth's polar wind is the ambipolar potential generated by the outflow along open field lines of superthermal electrons. This ≈20V electric potential assists ions in overcoming the gravitational potential, and is a key mechanism for Terrestrial ionospheric escape. At Venus, except in rare circumstances, every field line is open, and a similar outflow of ionospheric electrons is observed. It is thus hypothesized that a similar electric potential may be present at Venus, contributing to global ionospheric loss. However, a very sensitive electric field instrument would be required to directly measure this potential, and no such instrument has yet been flown to Venus. In this pilot study, we examine photoelectron spectra measured by the ASPERA-ELS instrument on the Venus Express to put an initial upper bound on the total potential drop above 350km of Φ current understanding, a "polar wind" like ambipolar electric field may not be as important a mechanism for atmospheric escape as previously suspected. Additionally, we find our spectra are consistent with the scattering of photoelectrons, the heating from which which we hypothesize may act as a source of top-side ionospheric heating, and may play a role in influencing the scale height of the ionosphere.

  12. Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-854A Ratcliffe, NM, 1997,�Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont: USGS Open-File Report 97-854, 1...

  13. Airborne gamma-ray spectrometer and magnetometer survey: Aberdeen quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Aberdeen, South Dakota map area. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  14. Airborne gamma-ray spectrometer and magnetometer survey: Harrison Bay Quadrangle, Alaska. Final report, Volume 1

    International Nuclear Information System (INIS)

    1981-02-01

    During the months of July and August of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 3 0 x 1 0 and one (1) 4 0 x 1 0 NTMS quadrangles of the Alaska North Slope. These include the Barrow, Wainwright, Meade River, Teshekpuk, Harrison Bay, Beechey Point, Point Lay, Utukok River, Lookout Ridge, Ikpikpuk River, Umiat, and Sagavanirktok quadrangles. This report discusses the results obtained over the Harrison Bay map area

  15. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Science.gov (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  16. Investigating gravity waves evidences in the Venus upper atmosphere

    Science.gov (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  17. Composition and Chemistry of the Neutral Atmosphere of Venus

    Science.gov (United States)

    Marcq, Emmanuel; Mills, Franklin P.; Parkinson, Christopher D.; Vandaele, Ann Carine

    2018-02-01

    This paper deals with the composition and chemical processes occurring in the neutral atmosphere of Venus. Since the last synthesis, observers as well as modellers have emphasised the spatial and temporal variability of minor species, going beyond a static and uniform picture that may have prevailed in the past. The outline of this paper acknowledges this situation and follows closely the different dimensions along which variability in composition can be observed: vertical, latitudinal, longitudinal, temporal. The strong differences between the atmosphere below and above the cloud layers also dictate the structure of this paper. Observational constraints, obtained from both Earth and Venus Express, as well as 1D, 2D and 3D models results obtained since 1997 are also extensively referred and commented by the authors. An non-exhaustive list of topics included follows: modelled and observed latitudinal and vertical profiles of CO and OCS below the clouds of Venus; vertical profiles of CO and SO2 above the clouds as observed by solar occultation and modelled; temporal and spatial variability of sulphur oxides above the clouds. As a conclusion, open questions and topics of interest for further studies are discussed.

  18. Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-121A Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont: USGS Open-File Report 98-121-A, 1...

  19. Aerial gama ray and magnetic survey: Lawrence Quadrangle of Kansas and Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Lawrence quadrangle covers approximately 7500 square miles in Kansas and Missouri over the western edge of the Ozark Uplift. Sediments in this area are mostly Pennsylvanian and Permian sandstone, shale, limestone, and coal. As mapped, these are the dominant units in the quadrangle. A search of available literature revealed no known uranium deposits. A total of 94 uranium anomalies were detected and are discussed briefly. Most appear to be related to cultural features. Those associated with coal mine tailings appear to be most significant. Magnetic data appears to relate to complexities in the Precambrian basement

  20. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    Science.gov (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  1. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    International Nuclear Information System (INIS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-01-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer

  2. Feasibility Study of Venus Surfuce Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options

  3. Feasibility Study of Venus Surface Cooling Using Chemical Reactions with the Atmosphere

    Science.gov (United States)

    Evans, Christopher

    2013-01-01

    A literature search and theoretical analysis were conducted to investigate the feasibility of cooling a craft on Venus through chemical reformation of materials from the atmosphere. The core concept was to take carbon dioxide (CO2) from the Venus atmosphere and chemically reform it into simpler compounds such as carbon, oxygen, and carbon monoxide. This process is endothermic, taking energy from the surroundings to produce a cooling effect. A literature search was performed to document possible routes for achieving the desired reactions. Analyses indicated that on Venus, this concept could theoretically be used to produce cooling, but would not perform as well as a conventional heat pump. For environments other than Venus, the low theoretical performance limits general applicability of this concept, however this approach to cooling may be useful in niche applications. Analysis indicated that environments with particular atmospheric compositions and temperatures could allow a similar cooling system to operate with very good performance. This approach to cooling may also be useful where the products of reaction are also desirable, or for missions where design simplicity is valued. Conceptual designs for Venus cooling systems were developed using a modified concept, in which an expendable reactant supply would be used to promote more energetically favorable reactions with the ambient CO2, providing cooling for a more limited duration. This approach does not have the same performance issues, but the use of expendable supplies increases the mass requirements and limits the operating lifetime. This paper summarizes the findings of the literature search and corresponding analyses of the various cooling options.

  4. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  5. Mars ionopause during solar minimum: A lesson from Venus

    International Nuclear Information System (INIS)

    Mahajan, K.K.; Mayr, H.G.

    1990-01-01

    The ion densities measured by the Viking landers (Hanson et al., 1977) do not show an abrupt falloff with height, giving the false impression that Mars has no ionopause. On the basis of knowledge gained from the solar wind interaction at Venus during solar minimum, they demonstrate that the observed O 2 + profile above about 160 km on Mars is a distributed photodynamical ionosphere and can produce an ionopause at around 325 km, similar to that observed on Venus during solar minimum. They conclude that the solar wind interacts directly with the Mars ionosphere, suggesting that the planet does not have an intrinsic magnetic field of any consequence

  6. Venus thermosphere and exosphere - First satellite drag measurements of an extraterrestrial atmosphere

    Science.gov (United States)

    Keating, G. M.; Tolson, R. H.; Hinson, E. W.

    1979-01-01

    Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.

  7. The effect of recent Venus transit on Earth’s atmosphere

    Directory of Open Access Journals (Sweden)

    H. P. Sardar

    2006-06-01

    Full Text Available Some experiments on June 8, 2004, the day of transit of Venus across the Sun, were undertaken at Kolkata (latitude: 22°34lN to observe the effect, if any, of transit of Venus on FWF, ELF and VLF amplitudes. The result shows a good correlation between their temporal variations during the transit. The observation was unbelievable as the Venus subtends only 1/32th of the cone subtended by Sun on Earth. This anomaly may be explained on the assumption that the height of Venusian atmosphere with high content of CO2, and nitrogen which absorbs electromagnetic and corpuscular radiations from Sun, depleting the solar radiation reaching the Earth to a considerable extent. As a result, relevant parameters of Earth’s atmosphere are modulated and here we show how these changes are reflected in identical behaviour of fair weather field and ELF and VLF spectra.

  8. National Uranium Resource Evaluation: Iron River Quadrangle, Michigan and Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, D

    1982-09-01

    No area within the Iron River 1/sup 0/ x 2/sup 0/ Quadrangle, Michigan and Wisconsin, appears to be favorable for the existence of a minimum of 100 tons of U/sub 3/O/sub 8/ at a grade of 0.01 percent or better.

  9. Aerial gamma ray and magnetic survey: Kansas City Quadrangle of Kansas and Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Kansas City quadrangle covers approximately 7400 square miles in northwestern Missouri and northeastern Kansas. It overlies the southeastern edge of the Forest City Basin, which contains predominantly Paleozoic sediments. Permian and Pennsylvanian formations cover much of the surface, but Quaternary sedimentation dominates certain regions of the quadrangle. A search of available literature revealed no known uranium deposits. A total of 102 uranium anomalies were detected and are discussed briefly. None were considered significant and all appear to be related to cultural features. Magnetic data appears to correlate directly with underlying Precambrian material

  10. Reconnaissance surficial geologic map of the Taylor Mountains quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2015-09-28

    This map and accompanying digital files are the result of the interpretation of aerial photographs from the 1950s as well as more modern imagery. The area, long considered a part of Alaska that was largely not glaciated (see Karlstrom, 1964; Coulter and others, 1965; or Péwé, 1975), actually has a long history reflecting local and more distant glaciations. An unpublished photogeologic map of the Taylor Mountains quadrangle from the 1950s by J.N. Platt Jr. was useful in the construction of this map. Limited new field mapping in the area was conducted as part of a mapping project in the Dillingham quadrangle to the south (Wilson and others, 2003); however, extensive aerial photograph interpretation represents the bulk of the mapping effort. The accompanying digital files show the sources for each line and geologic unit shown on the map.

  11. Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus

    Science.gov (United States)

    Colozza, Anthony J.

    2012-01-01

    The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.

  12. Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-7A Doolan, B, 1995,�Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont: VGS Open-File Report VG95-7A, 2 plates, scale...

  13. Electron plasma oscillations in the Venus foreshock

    Science.gov (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  14. Electron plasma oscillations in the Venus foreshock

    International Nuclear Information System (INIS)

    Crawford, G.K.; Strangeway, R.J.; Russell, C.T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations

  15. Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus

    Science.gov (United States)

    Hoogenboom, T.; Martin, P.; Housean, G. A.

    2005-01-01

    Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.

  16. Aerial gamma ray and magnetic survey: Minnesota Project, Grand Forks quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Grand Forks 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Seventy-eight (78) groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Atlin NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Altin NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Only 6 samples were taken in the Atlin Quadrangle. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. Chemical analysis and field data for water samples from this quadrangle were open filed by the DOE Grand Junction Office as GJX-166

  18. Kodus Venus, võõrsil Mars / Priit Simson

    Index Scriptorium Estoniae

    Simson Priit, 1977-

    2007-01-01

    Autor leiab, et Eestil ei pole enam vabandusi, miks ta ei peaks hankima rasket sõjatehnikat ja miks peaks keegi teine meie õhuruumi valvama. Autor vaatleb, milline relvastus on mõnedel väikeriikidel, kelle elanike arv ei ületa 6 mln. piiri, ning järeldab, et soovides olla maailma keskmisel tasemel, võiks Eesti muretseda 65 tanki

  19. Hydrogeochemical and stream sediment reconnaissance basic data for Iditarod Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1410 water samples from the Iditarod Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  20. Hydrogeochemical and stream sediment reconnaissance basic data for Nabesna Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1236 water samples from the Nebesna Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Beaver Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 642 water samples from the Beaver Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were done by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  2. Hydrogeochemical and stream sediment reconnaissance basic data for Ruby Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 693 water samples from the Ruby Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  3. Surficial geology of Panther Lake Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of eight kinds of surficial deposits in Panther Lake quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for groundwater development at any specific location. (USGS)

  4. Venus näitas lillekleite / Regina Hansen

    Index Scriptorium Estoniae

    Hansen, Regina

    2001-01-01

    Sunflower Beauty Contest esitles ööklubis Venus eluslilledest valmistatud kleite. Parimaks tunnistati kaupluse Annilill floristid tööga "My Bunny", teiseks tunnistati Katrin Pedaru ja Ninell Soosaare "C'est la vie", kolmanda koha pälvis Karina Saberi töö "Unistus"

  5. Mercury: Photomosaic of the Shakespeare Quadrangle (Northern Half) H-3

    Science.gov (United States)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the northern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the lower edge to the left of center. This portion of the quadrangle covers the geographic region from 45 to 70 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.The illuminated surface observed by Mariner 10 as it first approached Mercury is dominated by craters and basins. In marked contrast to this view, the surface photographed after the flyby exhibited features totally different, including large basins and extensive relatively smooth areas with few craters. The most striking feature in this region of the planet is a huge circular basin, 1300 kilometers in diameter, that was undoubtedly produced from a tremendous impact comparable to the event that formed the Imbrium basin on the Moon. This prominent Mercurian structure in the Shakespeare and Tolstoj quadrangles (lower left corner of this image), named Caloris Planitia, is filled with material forming a smooth surface or plain that appears similar in many respects to the lunar maria.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury, NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  6. Oxides of nitrogen and the clouds of Venus

    International Nuclear Information System (INIS)

    Watson, A.J.; Donahue, T.M.; Stedman, D.H.; Knollenberg, R.G.; Ragent, B.; Blamont, J.

    1979-01-01

    Nitric Oxide may be produced in the atmosphere of Venus by lightning storms in the clouds. Here we suggest that the odd nitrogen thus formed may play an important part in the chemistry of the clouds. Specifically, we estimate production rates for NO 2 in the limiting case of high NO concentrations. If the NO density is high we suggest that NO 2 may catalyse the production of sulfuric acid aerosol from sulfur dioxide and water vapor, and may also form nitrogen--sulfur compounds such as nitrosyl sulfuric acid, NOHSO 4 . The ''large particles'' seen by the Pioneer Venus sounder probe may contain considerable quantities of NOHSO 4 . If this is the case odd nitrogen must be present in the atmosphere in at least a parts-per-million mixing ratio

  7. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstones of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest

  8. Mineralogical Mapping of the Av-5 Floronia Quadrangle of Asteroid 4 Vesta

    Science.gov (United States)

    Combe, J.-Ph.; Fulchinioni, M.; McCord, T. B.; Ammannito, E.; De Sanctis, M. C.; Nathues, A.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Palomba, E.; Preusker, F.; Reddy, V.; Stephan, K.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    Asteroid 4 Vesta is currently under investigation by NASA's Dawn orbiter. The Dawn Science Team is conducting mineralogical mapping of Vesta's surface in the form of 15 quadrangle maps, and here we report results from the mapping of Floronia quadrangle Av-5. The maps are based on the data acquired by the Visible and Infrared Mapping Spectrometer (VIR-MS) and the Framing Camera (FC) (De Sanctis et al., this meeting). This abstract is focused on the analysis of band ratios, as well as the depth and position of the 2-µm absorption band of pyroxenes, but additional information will be presented. Absorption band depth is sensitive to abundance, texture and multiple scattering effects. Absorption band position is controlled by composition, shorter wavelength positions indicate less Calcium (and more Magnesium) in pyroxenes. The inferred composition is compared with that of Howardite, Eucite and Diogenite meteorites (HEDs). Diogenites are Mg-rich with large orthopyroxene crystals suggesting formation in depth; Eucrites are Ca-poor pyroxene, with smaller crystals. Av-5 Floronia Quadrangle is located between ~20-66˚N and 270˚-360˚E. It covers a portion of the heavily-cratered northern hemisphere of Vesta, and part of it is in permanent night, until August 2012. Long shadows make the visualization of albedo variations difficult, because of limited effectiveness of photometric corrections. Most of the variations of the band depth at 2 µm are partly affected by illumination geometry in this area. Only regional tendencies are meaningful at this time of the analysis. The 2-µm absorption band depth seems to be deeper towards the south of the quadrangle, in particular to the south of Floronia crater. It is not possible to interpret the value of the band depth in the floor the craters because of the absence of direct sunlight. However, the illuminated rims seem to have a deeper 2-µm absorption band, as does the ejecta from an unnamed crater located further south, within

  9. Observations of the 10-micron natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Espenak, F.; Deming, D.; Jennings, D.; Kostiuk, T.; Mumma, M.; Zipoy, D.

    1983-01-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74 percent of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.

  10. Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.

  11. Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus

    International Nuclear Information System (INIS)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M.J.

    1983-06-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T 204 + or - 10 K

  12. Aerial gamma ray and magnetic survey: Mason City quadrangle, Iowa and Minnesota. Final report

    International Nuclear Information System (INIS)

    1981-02-01

    The Mason City quadrangle covers 6900 miles of the northern Midwestern Physiographic Province in northern Iowa and southern Minnesota. The surface is largely covered by Quaternary glacial and related deposits. The subglacial surface is exposed only in the northeast and is composed of thin Mesozoic and Paleozoic sediments overlying Precambrian basement. A search of available literature revealed no known uranium deposits. A total of 89 uranium anomalies were detected and briefly described in this report. None were considered significant, and all appear to be related to cultural features. Concentrations of K, U, and T are extremely low throughout the quadrangle. Magnetic data appear to illustrate complexities in the underlying Precambrian

  13. Airborne gamma-ray spectrometer and magnetometer survey, Devils Lake quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Devil's Lake map area of North Dakota. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  14. 27 CFR 9.33 - Fennville.

    Science.gov (United States)

    2010-04-01

    ....33 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE...; (2) “Bangor Quadrangle, Michigan,” 15 minute series; and (3) “South Haven Quadrangle, Michigan,” 15... Black River, at the City of South Haven, north to the Kalamazoo River. (2) The northern boundary is the...

  15. Aerial gamma ray and magnetic survey: Minnesota Project, Thief River Falls quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Thief River Falls 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Sixty-six groups of uranium samples were defined as anomalies and are discussed briefly. None of them are considered significant

  16. Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-226A Walsh, G. J., and Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont: USGS...

  17. Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-330A Ratcliffe, N.M., and Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont: USGS...

  18. Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG2017-2 Thompson, P. J., and Thompson, T. B., 2017, Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont: VGS Open-File...

  19. Mineralogy of the Tertiary Clay Deposits in Makkah and Rabigh Quadrangles, West Central Arabian Shield, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M.H. Basyoni

    2002-06-01

    Full Text Available The mineralogy of the Tertiary clay deposits in Makkah and Rabigh quadrangles was thoroughly investigated by X-ray diffraction and differential thermal and thermogravimetric analyses in addition to other techniques. Results show that the investigated samples are predominantly composed of montmorillonite (Ca++ and/or Mg++ rich variety and kaolinite, associated with subordinate illite and minor chlorite. Mixed layer montmorillonite-illite is recorded only in two samples. The relative abundance of these minerals by X-ray diffraction analysis showed that the studied clay deposits are of three types. The first, which is the most common, is highly montmorillonitic, the second is made up of a mixture of montmorillonite followed by kaolinite and illite and the third is highly kaolinitic with some montmorillonite. Generally, kaolinite shows a southward increase in Makkah quadrangle while chlorite, as a minor component, shows a northward increase in Rabigh quadrangle.

  20. Magellan: A new view of Venus' geology and geophysics

    Science.gov (United States)

    Bindschadler, D. L.

    1995-07-01

    Within the past fifteen years, the surface of Venus has gone from being the least well understood of all the terrestrial planets to the most thoroughly mapped surface of any terrestrial planet, including the Earth. This is primarily due to the Magellan mission, which has collected a variety of data on the surface morphology, physical properties, and interior density structure of Venus amounting to more than 1 Terabit (1012 bits) of data. Synthetic aperture radar images have been obtained for over 95% of the surface; their high resolution reveals most surface features larger than 100-200 meters across. Using its radar altimeter, Magellan has collected data on surface elevations, sub-meter scale roughness, and radar reflectivity at a resolution of approximately 10 km. Further information on the physical properties of the surface was gathered by measuring the passive microwave emissivity of the surface [Pettengill et al, 1992]. Two-way Doppler tracking of the spacecraft has yielded line-of-sight (LOS) gravity data and a spherical harmonic model of gravity and geoid out to degree 75. Collection of high-resolution gravity data has been aided by an innovative aerobraking maneuver, which used Venus' atmosphere to brake the spacecraft and lower it from a highly elliptical orbit to a near-circular orbit.

  1. Uvmas: Venus Ultraviolet-visual Mapping Spectrometer

    Science.gov (United States)

    Bellucci, G.; Zasova, L.; Altieri, F.; Formisano, V.; Ignatiev, N.; Moroz, V.

    We present the concept of an instrument for remote sensing of Venus from a planetary orbiter. The main characteristics of the instrument are the following: A~é· Spectral range: 0.190 A~é­ 0.490 A~éµm A~é· Spectral resolution: 0.4 nm (/= 500 at 0.2 A~éµ m) A~é· Angular resolution: 0.4 mrad at max A~é· Spatial resolution: 200 meters at 500 Km A~é· Field of view = 5.7A~é° A~é· S/N: 70 at 0.2 A~éµ m at 1 sec exp time given albedo = 0.03. The scientific objectives are the following: Dynamic investigation (0.2 5 µm). Mapping facility will allow the tracking of the UV features and will define the velocities in the atmosphere near the cloud top level. Detailed mapping of velocities of UV features at high spatial resolution, their variation with latitude, altitude and local time will advance our knowledge in understanding the puzzles of Venus dynamics like how and what mechanism drives the Venus atmospheric mass from equator to pole against temperature gradient and what is the mechanism supporting the zonal superrotation. What is the polar vortex organization, at what latitudes there is the descending branch of the Hadley cell. SO2 and SO in the range 0.232 µm. In this spectral range the SO2 and SO bands are observed. They present unresolved features with 10 Å width. Vertical profiles of these components may be obtained above the cloud and below the upper cloud boundary. Vertical, horizontal, local time and temporal variation will be obtained. This allows to create a photochemical model of the atmosphere above the clouds, and to understand a mechanism of cloud aerosol formation. "Unknown" UV- absorber, in the range 0.3 5 µm. It absorbs 50 % of the solar energy deposited on Venus. It exists only in the upper clouds. It is not known if it is in gaseous phase or included in the aerosol particles. This absorber is not homogeneously distributed and is responsible for the UV atmospheric contrast from 0.32­0.5 µm; it correlates

  2. Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance.

    Science.gov (United States)

    Kohli, Manish; Ho, Yeung; Hillman, David W; Van Etten, Jamie L; Henzler, Christine; Yang, Rendong; Sperger, Jamie M; Li, Yingming; Tseng, Elizabeth; Hon, Ting; Clark, Tyson; Tan, Winston; Carlson, Rachel E; Wang, Liguo; Sicotte, Hugues; Thai, Ho; Jimenez, Rafael; Huang, Haojie; Vedell, Peter T; Eckloff, Bruce W; Quevedo, Jorge F; Pitot, Henry C; Costello, Brian A; Jen, Jin; Wieben, Eric D; Silverstein, Kevin A T; Lang, Joshua M; Wang, Liewei; Dehm, Scott M

    2017-08-15

    Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3' terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31-12.2; P = 0.02). Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704-15. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. National Uranium Resource Evaluation: Crystal City Quadrangle, Texas

    International Nuclear Information System (INIS)

    Greimel, T.C.

    1982-08-01

    The uranium resources of the Crystal City Quadrangle, Texas, were evaluated to a depth of 1500 m using surface and subsurface geologic information. Uranium occurrences reported in the literature, in reports of the US Atomic Energy Commission and the US Geological Survey Computerized Resources Information Bank, were located, described, and sampled. Geochemical anomalies interpreted from hydrogeochemical and stream-sediment reconnaissance were also investigated and sampled in detail. Areas of uranium favorability in the subsurface were located through interpretation of lithofacies patterns and structure derived from electric-log data. Gamma-ray well logs and results of geochemical sample analyses were used as supportive data in locating these areas. Fifteen surface and subsurface favorable areas were delineated in the quadrangle. Eight are in fluvial and genetically associated facies of the Pliocene Goliad Sandstone, Miocene Oakville Sandstone, Miocene Catahoula Tuff, and Oligocene Frio Clay. One area encompasses strand plain-barrier bar, fluvial-deltaic, and lagoonal-margin facies of the Eocene Jackson Group. Two areas are in strand plain-barrier bar and probable fluvial facies of the Eocene Yegua Formation. Four areas are in fluvial-deltaic, barrier-bar, and lagoonal-margin facies of the Eocene Queen City Formation and stratigraphically equivalent units. Seventeen geologic units are considered unfavorable, and seven are unevaluated due to lack of data

  4. Novel Architecture for a Long-Life, Lightweight Venus Lander

    International Nuclear Information System (INIS)

    Bugby, D.; Seghi, S.; Kroliczek, E.; Pauken, M.

    2009-01-01

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO 2 Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to: (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high

  5. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    Science.gov (United States)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  6. Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-03�Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont: VGS Open-File Report VG96-3A, 2 plates, scale...

  7. New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope

    Science.gov (United States)

    Leverington, David

    2001-02-01

    Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.

  8. Overview of the conceptual design of the future VENUS beamline at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Herwig, Kenneth W [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL

    2015-01-01

    VENUS will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to m). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beamline 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS

  9. National uranium resource evaluation: Nogales Quadrangle, Arizona

    International Nuclear Information System (INIS)

    Luning, R.H.; Brouillard, L.A.

    1982-04-01

    Literature research, surface geologic investigations, rock sampling, and radiometric surveys were conducted in the Nogales Quadrangle, Arizona, to identify environments and to delineate areas favorable for uranium deposits according to criteria formulated during the National Uranium Resource Evaluation program. The studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment surveys. No favorable environments were identified. Environments that do display favorable characteristics include magmatic-hydrothermal and authigenic environments in Precambrian and Jurassic intrusives, as well as in certain Mesozoic and Cenozoic igneous and sedimentary rocks

  10. Venus, the goddess of fertility, numerologically 15 in Babylon and the origin of the Chinese system of 8 designs, called Pa-Kua.

    Science.gov (United States)

    Mahdihassan, S

    1987-01-01

    In Babylonia, numerology was invented and Venus, as the goddess of fertility, was first depicted as a 6-cornered star. But, numerologically she was designated 15. As a 6-cornered star, its make-up shows two opposite triangles interpenetrated. This was changed to two squares fused into one where geometrically the shape became a square. It created 9 cells which were so numbered that the numbers counted in any row gave the sum 15. Venus thus became a Magic Square of 15. Geometrically it was a Magic Square, but numerologically it was 15. In the make-up the squares were two and opposites. As goddess of fertility she especially helped the pregnant to an easy delivery. Some 8 variants of the Magic Square, with different arrangements of numbers, represented 4 cosmic elements and 4 cosmic qualities. The Magic Squares, which represented elements, had the numbers 1, 3, 5 and 8 near one another forming a miniature square by themselves. A Magic Square representing a quality did not have the numbers 1, 3, 5 and 8, as a consolidated unit. This explains the importance of the numbers 1, 3, 5 and 8, a mystery which had remained unsolved. Venus was also the star of copper. When copper technology migrated from Babylon to China, the occult science associated with Venus also reached China. Here the 8 Magic Squares were translated into a system of whole and broken lines, called Pa-Kua, meaning 8 designs.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  12. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this

  13. 27 CFR 9.199 - Jahant.

    Science.gov (United States)

    2010-04-01

    ... is on the Lodi North map at the intersection of Peltier Road and the Mokelumne River, section 16... Quadrangle); then (6) Proceed south 4.5 miles on Elliott Road to its intersection with Peltier Road at the southeast corner of section 14, T4N, R7E (Lockeford Quadrangle); and (7) Proceed west 8.3 miles on Peltier...

  14. Ba9V3Se15: a novel compound with spin chains

    Science.gov (United States)

    Zhang, Jun; Liu, Min; Wang, Xiancheng; Zhao, Kan; Duan, Lei; Li, Wenmin; Zhao, Jianfa; Cao, Lipeng; Dai, Guangyang; Deng, Zheng; Feng, Shaomin; Zhang, Sijia; Liu, Qingqing; Yang, Yi-feng; Jin, Changqing

    2018-05-01

    In this work, a novel compound Ba9V3Se15 with one-dimensional (1D) spin chains was synthesized under high-pressure and high-temperature conditions. It was systematically characterized via structural, magnetic, thermodynamic and transport measurements. Ba9V3Se15 crystallizes into a hexagonal structure with a space group of P-6c2 (188) and the lattice constants of a  =  b  =  9.5745(7) Å and c  =  18.7814(4) Å. The crystal structure consists of face-sharing octahedral VSe6 chains along c axis, which are trimeric and arranged in a triangular lattice in ab-plane. Ba9V3Se15 is a semiconductor and undergoes complex magnetic transitions. In the zero-field-cooled (ZFC) process with magnetic field of 10 Oe, Ba9V3Se15 sequentially undergoes ferrimagnetic and spin cluster glass transition at 2.5 K and 3.3 K, respectively. When the magnetic field exceeds 50 Oe, only the ferrimagnetic transition can be observed. Above the transition temperature, the specific heat contains a significant magnetic contribution that is proportional to T 1/2. The calculation suggests that the nearest neighbor (NN) intra-chain antiferromagnetic exchange J 1 is much larger than the next nearest neighbor (NNN) intra-chain ferromagnetic exchange J 2. Therefore, Ba9V3Se15 can be regarded as an effective ferromagnetic chains with effective spin-1/2 by the formation of the V(2)(↓) V(1)(↑) V(2)(↓) cluster.

  15. Map showing thickness of saturated Quaternary deposits, Sugar House quadrangle, Salt Lake County, Utah, February 1972

    Science.gov (United States)

    Mower, R.W.

    1973-01-01

    Saturated Quaternary deposits in the Sugar Horse quadrangle supply significant quantities of water to wells from which water is withdrawn for domestic, municipal, industrial, and irrigation uses. The deposits consist of clay, silt, sand, and gravel; individual beds range from a few inches to several tens of feet thick. The principal aquifer, which is almost completely within the Quaternary deposits, supplied about 4 percent, or 9,000 acre-feet, of the municipal and industrial water used annually in Salt Lake County during 1964-68.As a general rule, more water is stored and more water will be yielded to a well where aquifers are thicker. This map can be used as a general guide to those areas where greatest amounts of water are stored in the aquifer, and where yields to wells may be greater. Local variations in the ability of saturated deposits to transmit water can alter the general relationship between aquifer thickness and yield of wells.The thickness of saturated Quaternary deposits within the area of the Sugar Horse quadrangle ranges from zero to about 650 feet, as shown on the map. The thickest section of these deposits is near the southwestern corner of the quadrangle, and the thinnest section is along the mountain front adjacent to the approximate eastern limit of saturated Quaternary deposits.The thickness of saturated Quaternary deposits shown on this map is based on drillers’ logs for 55 deep wells (which show the thickness of the Quaternary deposits) and on water-level measurements made in February 1972 in wells in unconfined shallow aquifers.Reports in the following list of selected references contain other information about the saturated Quaternary deposits in this and adjacent parts of Jordan Valley, Utah. The basic-data reports and releases contain well logs, water-level measurements, and other types of basic ground-water data. The interpretive repots contain discussions of the occurrence of ground water, tests to determine hydraulic properties of

  16. Infrasound as a Geophysical Probe Using Earth as a Venus Analog

    Science.gov (United States)

    Komjathy, A.; Cutts, J. A.; Pauken, M.; Kedar, S.; Smrekar, S. E.; Hall, J. R.

    2016-12-01

    JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude 3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise. In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere. We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.

  17. Aerosol properties in the upper clouds of Venus from glory observations by the Venus Monitoring Camera (Venus Express mission)

    Science.gov (United States)

    Markiewicz, Wojciech J.; Petrova, Elena V.; Shalygina, Oksana S.

    2018-01-01

    From the angular positions of the glory features observed on the upper cloud deck of Venus in three VMC channels (at 0.365, 0.513, and 0.965 μm), the dominating sizes of cloud particles and their refractive indices have been retrieved, and their spatial and temporal variations have been analyzed. For this, the phase profiles of brightness were compared to the single-scattering phase functions of particles of different sizes, since diffuse multiple scattering in the clouds does not move the angular positions of the glory, which is produced by the single scattering by cloud particles, but only makes them less pronounced. We presented the measured phase profiles in two ways: they were built for individual images and for individual small regions observed in series of successive images. The analysis of the data of both types has yielded consistent results. The presently retrieved radii of cloud particle average approximately 1.0-1.2 μm (though some values reach 1.4 μm) and demonstrate a variable pattern versus latitude and local solar time (LST). The decrease of particle sizes at high latitudes (down to 0.6 μm at 60°S) earlier found from the 0.965-μm and partly 0.365-μm data has been definitely confirmed in the analysis of the data of all three channels considered. To obtain the consistent estimates of particle sizes from the UV glory maximum and minimum positions, we have to vary the effective variance of the particle sizes, while it was fixed constant in our previous studies. The twofold increase of this parameter (from 0.07 to 0.14) diminishes the estimates of particle sizes by 10-15%, while the effect on the retrieved refractive index is negligible. The obtained estimates of the refractive index are more or less uniformly distributed over the covered latitude and LST ranges, and most of them are higher than those of concentrated sulfuric acid solution. This confirms our previous result obtained only at 0.965 μm, and now we may state that the cases of a

  18. Propagation of the trip behavior in the VENUS vertex chamber

    International Nuclear Information System (INIS)

    Ohama, Taro; Yamada, Yoshikazu.

    1995-03-01

    The high voltage system of the VENUS vertex chamber occasionally trips by a discharge somewhere among cathode electrodes during data taking. This trip behavior induces often additional trips at other electrodes such as the skin and the grid electrodes in the vertex chamber. This propagation mechanism of trips is so complicated in this system related with multi-electrodes. Although the vertex chamber is already installed inside the VENUS detector and consequently the discharge is not able to observe directly, a trial to estimate the propagation has been done using only the information which appears around the trip circuits and the power supply of the vertex chamber. (author)

  19. National uranium resource evaluation. Raton Quadrangle New Mexico and Colorado. Final report

    International Nuclear Information System (INIS)

    Reid, B.E.; Griswold, G.B.; Jacobsen, L.C.; Lessard, R.H.

    1980-12-01

    Using National Uranium Resource Evaluation criteria, the Raton Quadrangle (New Mexico and Colorado) contains one environment favorable for uranium deposits, the permeable arkosic sandstone members of the Pennsylvanian-Permian Sangre de Cristo Formation for either peneconcordant or roll-type deposits. The favorable parts of the Sangre de Cristo lie mostly in the subsurface in the Raton and Las Vegas Basins in the eastern part of the quadrangle. An area in the Costilla Peak Massif was investigated for uranium by determining geochemical anomalies in stream sediments and spring waters. Further work will be required to determine plutonic environment type. Environments unfavorable for uranium deposits include the Ogallala, Raton, and Vermejo Formations, the Trinidad Sandstone, the Pierre Shale, the Colorado Group, the Dakota Sandstone, the Morrison Formation, the Entrada and Glorieta Sandstones, Mississippian and Pennsylvanian rocks, quartz-pebble conglomerates, pegmatities, and Tertiary granitic stocks

  20. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  1. A correlated-k model of radiative transfer in the near-infrared windows of Venus

    International Nuclear Information System (INIS)

    Tsang, C.C.C.; Irwin, P.G.J.; Taylor, F.W.; Wilson, C.F.

    2008-01-01

    We present a correlated-k-based model for generating synthetic spectra in the near-infrared window regions, from 1.0 to 2.5 μm, emitted from the deep atmosphere of Venus on the nightside. This approach is applicable for use with any near-infrared instrument, ground-based and space-borne, for analysis of the thermal emissions in this spectral range. We also approach this work with the view of using the model, in conjunction with a retrieval algorithm, to retrieve minor species from the Venus Express/VIRTIS instrument. An existing radiative-transfer model was adapted for Venusian conditions to deal with the prevailing high pressures and temperatures and other conditions. A comprehensive four-modal cloud structure model based on Pollack et al. [Near-infrared light from venus' nightside: a spectroscopic analysis. Icarus 1993;103:1-42], using refractive indices for a 75% H 2 SO 4 25% H 2 O mixture from Palmer and Williams [Optical constants of sulfuric acid; application to the clouds of Venus? Appl Opt 1975;14(1):208-19], was also implemented. We then utilized a Mie scattering algorithm to account for the multiple scattering effect between cloud and haze layers that occur in the Venusian atmosphere. The correlated-k model is shown to produce good agreement with ground-based spectra of Venus in the near infrared, and to match the output from a line-by-line radiative-transfer model to better than 10%

  2. Geologic Map of the Challis 1°x2° Quadrangle, Idaho

    Data.gov (United States)

    Department of the Interior — The paper version of The geology of the Challis 1°x2° quadrangle, was compiled by Fred Fisher, Dave McIntyre and Kate Johnson in 1992. The geology was compiled on a...

  3. National uranium resource evaluation, Hot Springs Quadrangle, South Dakota and Nebraska

    International Nuclear Information System (INIS)

    Truesdell, D.B.; Daddazio, P.L.; Martin, T.S.

    1982-06-01

    The Hot Springs Quadrangle, South Dakota and Nebraska, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The evaluation used criteria developed by the National Uranium Resource Evaluation program. Surface reconnaissance was conducted using a portable scintillometer and a gamma spectrometer. Geochemical sampling was carried out in all geologic environments accessible within the quadrangle. Additional investigations included the followup of aerial radiometric and hydrogeochemical anomalies and a subsurface study. Environments favorable for sandstone-type deposits occur in the Inyan Kara Group and Chadron Member of the White River Group. Environments favorable for marine black-shale deposits occur in the Hayden Member of the Minnelusa Formation. A small area of the Harney Peak Granite is favorable for authigenic deposits. Environments considered unfavorable for uranium deposits are the Precambrian granitic and metasedimentary rocks and Paleozoic, Mesozoic, and Tertiary sedimentary rocks other than those previously mentioned

  4. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  5. Aerial gamma ray and magnetic survey: Marion quadrangle, Ohio. Final report

    International Nuclear Information System (INIS)

    1981-06-01

    The Marion quadrangle covers a 7200 square mile area of central Ohio located within the Midwestern Physiographic Province. Up to 5000 feet of Paleozoic strata overlie the east dipping Precambrian basement. Flat lying Quaternary glacial sediments cover most of the surface within the quadrangle. A search of available literature revealed no known uranium deposits. Ninety-nine uranium anomalies were detected and are duscussed briefly. Radiometric data appear to reflect a preference for uranium occurrences in glacial moraine tills, and a minimum likelihood of occurrence in Paleozoic bedrock. Some of the largest anomalies appear to be culturally induced and no anomaly was considered to represent a significant amount of naturally occurring uranium. The magnetic data contrast somewhat with the existing structural interpretation of the area. The generally increasng magnetic gradient from west to east is interrupted by many features whose sources may be attributed to undefined lithologic and/or structural elements in the Precambrian basement

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Dodge City NTMS Quadrangle, Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dodge City Quadrangle are reported. Field and laboratory data are presented for 756 groundwater and 321 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising areas for uranium mineralization are as follows: (1) in the north central area of the quadrangle within close proximity to the Arkansas River, mostly from waters of the Ogallala Formation; (2) in the west central area, from groundwater samples of the Dakota and the Ogallala Formations; and (3) between the North Fork of the Cimarron River and the main Cimarron River, mostly in waters from the Ogallala Formation. Associated with the high uranium values are high concentrations for magnesium, strontium, and sulfate. Of the groundwater samples taken 81% were collected from the Ogallala Formation. Stream sediment data indicate high uranium concentrations in scattered samples in the northwestern, central, and southwestern areas of the quadrangle. Most of the samples with high uranium values were collected from the Quaternary alluvium. Associated with the high uranium values are high concentrations of barium, cerium, iron, manganese, titanium, vanadium, yttrium, and zirconium

  7. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Science.gov (United States)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    powerful tool to obtain information about planetary atmospheres, such as density profiles of electrons or other components. Our model may also be useful to extend some studies about the chemical impact of EMP pulses in the terrestrial atmosphere [4]. References [1] Luque, A., D. Dubrovin, F. J. Gordillo-Vázquez, U. Ebert, F. C. Parra-Rojas, Y. Yair, and C. Price (2014), Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses, J. Geophys. Res. (Space Phys), 119, 8705, doi: 10.1002/2014JA020457. [2] Pérez-Invernón, F. J., A. Luque, and F. J. Gordillo-Vázquez (2016), Mesospheric optical signatures of possible lightning on Venus, J. Geophys. Res. (Space Phys), 121, 7026, doi: 10.1029/2016JA022886. [3] Lee, J. H., and D. K. Kalluri (1999), Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma, IEEE Transactions on Antennas and Propagation, 47, 1146, doi:10.1109/8.785745. [4] Marshall, R. A., U. S. Inan, and V. S. Glukhov (2010), Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges, J. Geophys. Res. (Space Phys), 115, A00E17, doi:10.1029/2009JA014469.

  8. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.

  9. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    International Nuclear Information System (INIS)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives

  10. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Candidate Earth Entry Trajectories to Mimic Venus Aerocapture Using a Lifting ADEPT

    Science.gov (United States)

    Williams, Jimmy

    2017-01-01

    A Lifting ADEPT is considered for aerocapture at Venus. Analysis concerning the heating environment leads to an initial sizing estimate. In tandem, a direct entry profile at Earth is considered to act as a facsimile for the Venus aerocapture heating environment. The bounds of this direct entry profile are determined and it is found that a trajectory from a Geostationary Transfer Orbit with a Lifting ADEPT capable of fitting on a rideshare opportunity is capable of matching certain aspects of this heating environment.

  13. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    Plouff, Donald

    1992-01-01

    These gravity maps are part of a folio of maps of the Tonopah 1 degree by 2 degrees quadrangle, Nevada, prepared under the Conterminous United States Mineral Assessment Program. Each product of the folio is designated by a different letter symbol, starting with A, in the MF-1877 folio. The quadrangle encompasses an area of about 19,500 km2  in the west central part of Nevada.

  14. Mineralogical Analysis of the Oppia Quadrangle of Asteroid (4) Vesta: Evidence for Occurrence of Moderate-Reflectance Hydrated Minerals

    Science.gov (United States)

    Tosi, F.; Frigeri, A.; Combe, J.-Ph.; Zambon, F.; De Sanctis, M. C.; Ammannito, E.; Longobardo, A.; Hoffmann, M.; Nathues, A.; Garry, W. B.; hide

    2015-01-01

    Quadrangle Av-10 'Oppia' is one of five quadrangles that cover the equatorial region of asteroid (4) Vesta. This quadrangle is notable for the broad, spectrally distinct ejecta that extend south of the Oppia crater. These ejecta exhibit the steepest ('reddest') visible spectral slope observed across the asteroid and have distinct color properties as seen in multispectral composite images. Compared to previous works that focused on the composition and nature of unusual ('orange') ejecta found on Vesta, here we take into account a broader area that includes several features of interest, with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR). Our analysis shows that the older northern and northeastern part of Av-10 is dominated by howardite-like material, while the younger southwestern part, including Oppia and its ejecta blanket, has a markedly eucritic mineralogy. The association of the mineralogical information with the geologic and topographic contexts allows for the establishment of relationships between the age of the main formations observed in this quadrangle and their composition. A major point of interest in the Oppia quadrangle is the spectral signature of hydrous material seen at the local scale. This material can be mapped by using high-resolution VIR data, combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Hydrated mineral phases studied previously on Vesta generally correlate with low-albedo material delivered by carbonaceous asteroids. However, our analysis shows that the strongest OH signature in Av-10 is found in a unit west of Oppia, previously mapped as 'light mantle material' and showing moderate reflectance and a red visible slope. With the available data we cannot yet assess the presence of water in this material. However, we offer a possible explanation for its origin.

  15. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    Science.gov (United States)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  16. Pioneer Venus Star Sensor. [active despin control application

    Science.gov (United States)

    Gutshall, R. L.; Thomas, G.

    1979-01-01

    The design predictions and orbital performance verification of the solid state star scanner used in the Onboard Attitude Control of the Pioneer Venus Orbiter and Multiprobe are presented. The star sensor extended the scanner use to active despin control, and it differs from previous sensors in solid state detection, redundant electronics for reliability, larger field of view, and large dynamic spin range. The star scanner hardware and design performance based on the ability to predict all noise sources, signal magnitudes, and expected detection probability are discussed. In-flight data collected to verify sensor ground calibration are tabulated and plotted in predicted accuracy curves. It is concluded that the Pioneer Venus Star Sensor has demonstrated predictable star calibration in the range of .1 magnitude uncertainties and usable star catalogs of 100 stars with very high probabilities of detection, which were much better than expected and well within the mission requirements.

  17. Preliminary radar systems analysis for Venus orbiter missions

    Science.gov (United States)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  18. Geologic map of the Fort Morgan 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-06-08

    The Fort Morgan 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the late Pliocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Fort Morgan quadrangle. Distribution and characteristics of the alluvial deposits indicate that during the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling a deep paleochannel near the south edge of the quadrangle. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at and near their confluences, forming a broad, low-gradient fan composed of sidestream alluvium that could have occasionally dammed the river for short periods of time. Wildcat Creek, also originating on the Colorado Piedmont, and the small drainage of Cris Lee Draw dissect the map area north of the river. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the

  19. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  20. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    Science.gov (United States)

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  1. Airborne gamma-ray spectrometer and magnetometer survey: New Rockford quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the New Rockford Quadrangle in North Dakota

  2. Venus - 3D Perspective View of Latona Corona and Dali Chasma

    Science.gov (United States)

    1992-01-01

    This computer-generated perspective view of Latona Corona and Dali Chasma on Venus shows Magellan radar data superimposed on topography. The view is from the northeast and vertical exaggeration is 10 times. Exaggeration of relief is a common tool scientists use to detect relationships between structure (i.e. faults and fractures) and topography. Latona Corona, a circular feature approximately 1,000 kilometers (620 miles) in diameter whose eastern half is shown at the left of the image, has a relatively smooth, radar-bright raised rim. Bright lines or fractures within the corona appear to radiate away from its center toward the rim. The rest of the bright fractures in the area are associated with the relatively deep (approximately 3 kilometers or 1.9 miles) troughs of Dali Chasma. The Dali and Diana Chasma system consist of deep troughs that extend for 7,400 kilometers (4,588 miles) and are very distinct features on Venus. Those chasma connect the Ovda and Thetis highlands with the large volcanoes at Atla Regio and thus are considered to be the 'Scorpion Tail' of Aphrodite Terra. The broad, curving scarp resembles some of Earth's subduction zones where crustal plates are pushed over each other. The radar-bright surface at the highest elevation along the scarp is similar to surfaces in other elevated regions where some metallic mineral such as pyrite (fool's gold) may occur on the surface.

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Harrison Bay quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 328 water samples from the Harrison Bay Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  4. Hydrogeochemical and stream sediment reconnaissance basic data for Meade River quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 515 water samples from the Meade River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  5. Hydrogeochemical and stream sediment reconnaissance basic data for St. Michael Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 159 water samples from the St. Michael Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Charley River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1322 water samples from the Charley River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  7. Hydrogeochemical and stream sediment reconnaissance basic data for Big Delta Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1380 water samples from the Big Delta Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  8. Regional mantle upwelling on Venus: The Beta-Atla-Themis anomaly and correlation with global tectonic patterns

    Science.gov (United States)

    Crumpler, L. S.; Head, J. W.; Aubele, Jayne C.

    1993-01-01

    The morphology and global distribution of volcanic centers and their association with other geological characteristics offers significant insight into the global patterns of geology, tectonic style, thermal state, and interior dynamics of Venus. Magellan data permit the detailed geological interpretation necessary to address questions about interior dynamics of Venus particularly as they reflect relatively physical, chemical, and thermal conditions of the interior. This paper focuses on the distribution of anomalous concentrations of volcanic centers on Venus and regional patterns of tectonic deformation as it may relate to the identification of global internal anomalies, including mantle dynamic, petrological, or thermal patterns.

  9. Terrestrial spreading centers under Venus conditions - Evaluation of a crustal spreading model for Western Aphrodite Terra

    Science.gov (United States)

    Sotin, C.; Senske, D. A.; Head, J. W.; Parmentier, E. M.

    1989-01-01

    The model of Reid and Jackson (1981) for terrestrial spreading centers is applied to Venus conditions. On the basis of spreading rate, mantle temperature, and surface temperature, the model predicts both isostatic topography and crustal thickness. The model and Pioneer Venus altimetry and gravity data are used to test the hypothesis of Head and Crumpler (1987) that Western Aphrodite Terra is the location of crustal spreading on Venus. It is concluded that a spreading center model for Ovda Regio in Western Aphrodite Terra could account for the observed topography and line-of-sight gravity anomalies found in the Pioneer data.

  10. Venus spherical harmonic gravity model to degree and order 60

    Science.gov (United States)

    Konopliv, Alex S.; Sjogren, William L.

    1994-01-01

    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  11. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    Science.gov (United States)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  12. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Sanuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Humphries, Seth D [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Vaniman, D. T. [Los Alamos National Laboratory; Sharma, S. K. [UNIV OF HAWAII; Misra, A. K. [UNIV OF HAWAII; Dyar, M. D. [MT. HOLYOKE COLLEGE; Smrekar, S. E. [JET PROPULSION LAB.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  13. Lakshmi Planum, Venus: Assessment of models using observations from geological mapping

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2008-09-01

    Introduction: Lakshmi Planum is a highstanding plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus [1-6]. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes. Lakshmi was studied with Venera-15/16 [7-10, 5,11] and Magellan data [12-14], resulting in two classes of models, divergent and convergent, to explain its unusual characteristics. Divergent models explain Lakshmi as a site of mantle upwelling [10,15-18] due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction [19,11,20-29]. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50- 75N, 300-360E; scale 1:5M) that allows testing the proposed models for Lakshmi. Material units: Eleven material units make up the V-7 quadrangle. (1) Tessera (t), exposed inside and outside Lakshmi appears to be the oldest material. (2) Densely lineated plains (pdl) postdate tessera and form one of the oldest units; patches occur outside Lakshmi Planum. (3) Ridged plains (pr) postdate pdl and occur outside Lakshmi. (4) Shield plains (psh) display abundant small shields

  14. The need for New In Situ Measurements to Understand the Climate, Geology and Evolution of Venus.

    Science.gov (United States)

    Grinspoon, D. H.

    2017-12-01

    Many measurements needed to address outstanding questions about current processes and evolution of Venus can only be made from in situ platforms such as entry probes, balloons or landers. Among these are precise determination of the value and altitude dependence of the deuterium-to-hydrogen ratio, an important tracer of water history which, while clearly greatly elevated compared to the terrestrial ratio, is still unknown within a large range of uncertainty and appears, based on Venus Express results, to display an enigmatic altitude dependence. Rare gas abundances and isotopes provide clues to volatile sources and histories of outgassing and exospheric escape. Modern mass spectrometry at Venus would yield abundances of the eight stable xenon isotopes, bulk abundances of krypton, and isotopes of neon. Altitude profiles of sulfur-containing chemical species would illuminate global geochemical cycles, including cloud formation, outgassing rates and surface-atmosphere interactions. The altitude profile of wind speeds and radiation fluxes, interpreted in light of the Venus Express and Akatsuki data, would enrich understanding of the global circulation and climate dynamics of Venus. Descent and surface images of carefully chosen locations would lend ground truth to interpretations of the near-global Magellan data sets and provide context for global remote sensing data obtained by future orbiter missions. Landed instruments would provide refinement and calibration for chemical abundance measurements by historical missions as well as direct mineralogical measurements of Venusian surface and subsurface rocks. In concert with atmospheric measurements these would greatly constrain geologic history as well as the nature of surface-atmosphere interactions. Such a suite of measurements will deepen our understanding of the origin and evolution of Venus in the context of Solar System and extrasolar terrestrial planets, determine the level and style of current geological activity

  15. Venus' night side atmospheric dynamics using near infrared observations from VEx/VIRTIS and TNG/NICS

    Science.gov (United States)

    Mota Machado, Pedro; Peralta, Javier; Luz, David; Gonçalves, Ruben; Widemann, Thomas; Oliveira, Joana

    2016-10-01

    We present night side Venus' winds based on coordinated observations carried out with Venus Express' VIRTIS instrument and the Near Infrared Camera (NICS) of the Telescopio Nazionale Galileo (TNG). With NICS camera, we acquired images of the continuum K filter at 2.28 μm, which allows to monitor motions at the Venus' lower cloud level, close to 48 km altitude. We will present final results of cloud tracked winds from ground-based TNG observations and from coordinated space-based VEx/VIRTIS observations.The Venus' lower cloud deck is centred at 48 km of altitude, where fundamental dynamical exchanges that help maintain superrotation are thought to occur. The lower Venusian atmosphere is a strong source of thermal radiation, with the gaseous CO2 component allowing radiation to escape in windows at 1.74 and 2.28 μm. At these wavelengths radiation originates below 35 km and unit opacity is reached at the lower cloud level, close to 48 km. Therefore, it is possible to observe the horizontal cloud structure, with thicker clouds seen silhouetted against the bright thermal background from the low atmosphere. By continuous monitoring of the horizontal cloud structure at 2.28 μm (NICS Kcont filter), it is possible to determine wind fields using the technique of cloud tracking. We acquired a series of short exposures of the Venus disk. Cloud displacements in the night side of Venus were computed taking advantage of a phase correlation semi-automated technique. The Venus apparent diameter at observational dates was greater than 32" allowing a high spatial precision. The 0.13" pixel scale of the NICS narrow field camera allowed to resolve ~3-pixel displacements. The absolute spatial resolution on the disk was ~100 km/px at disk center, and the (0.8-1") seeing-limited resolution was ~400 km/px. By co-adding the best images and cross-correlating regions of clouds the effective resolution was significantly better than the seeing-limited resolution. In order to correct for

  16. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    Science.gov (United States)

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  17. Two-proton correlations from 158 A GeV Pb + Pb central collisions

    CERN Document Server

    Appelshauser, H.; Bailey, S.J.; Barna, D.; Barnby, L.S.; Bartke, J.; Barton, R.A.; Betev, L.; Bialkowska, H.; Billmeier, A.; Blyth, C.O.; Bock, R.; Boimska, B.; Bormann, C.; Brady, F.P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H.L.; Carr, L.D.; Cebra, D.A.; Cooper, G.E.; Cramer, J.G.; Cristinziani, M.; Csato, P.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Ferguson, M.I.; Fischer, H.G.; Flierl, D.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gazdzicki, M.; Geist, Walter M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hegyi, S.; Henkel, T.; Hill, L.A.; Hummler, H.; Igo, G.; Irmscher, D.; Jacobs, P.; Jones, P.G.; Kadija, K.; Kolesnikov, V.I.; Kowalski, M.; Lasiuk, B.; Lednicky, R.; Levai, P.; Malakhov, A.I.; Margetis, S.; Markert, C.; Melkumov, G.L.; Mock, A.; Molnar, J.; Nelson, John M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Porter, R.J.; Poskanzer, Arthur M.; Prindle, D.J.; Puhlhofer, F.; Susa, T.; Reid, J.G.; Renfordt, R.; Retyk, W.; Ritter, H.G.; Rohrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Semenov, A.Yu.; Schafer, E.; Schmischke, D.; Schmitz, N.; Schonfelder, S.; Seyboth, P.; Sikler, F.; Skrzypczak, E.; Snellings, R.; Squier, G.T.A.; Stock, R.; Strobele, H.; Struck, Chr.; Szentpetery, I.; Sziklai, J.; Toy, M.; Trainor, T.A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Voloshin, S.; Vranic, D.; Wang, F.; Weerasundara, D.D.; Wenig, S.; Whitten, C.; Wood, L.; Xu, N.; Yates, T.A.; Zimanyi, J.; Zhu, X.Z.; Zybert, R.

    1999-01-01

    The two-proton correlation function at midrapidity from Pb+Pb central collisions at 158 AGeV has been measured by the NA49 experiment. The results are compared to model predictions from static thermal Gaussian proton source distributions and transport models RQMD and VENUS. An effective proton source size is determined by minimizing CHI-square/ndf between the correlation functions of the data and those calculated for the Gaussian sources, yielding 3.85 +- 0.15 (stat.) +- 0.15 (syst.) fm. The RQMD model overpredicts the effective source size, while the VENUS model underpredicts the effective source size.

  18. Mars, High-Resolution Digital Terrain Model Quadrangles on the Basis of Mars-Express HRSC Data

    Science.gov (United States)

    Dumke, A.; Spiegel, M.; van Gasselt, S.; Neu, D.; Neukum, G.

    2010-05-01

    Introduction: Since December 2003, the European Space Agency's (ESA) Mars Express (MEX) orbiter has been investigating Mars. The High Resolution Stereo Camera (HRSC), one of the scientific experiments onboard MEX, is a pushbroom stereo color scanning instrument with nine line detectors, each equipped with 5176 CCD sensor elements [1,2]. One of the goals for MEX HRSC is to cover Mars globally in color and stereoscopically at high-resolution. So far, HRSC has covered half of the surface of Mars at a resolution better than 20 meters per pixel. HRSC data allows to derive high-resolution digital terrain models (DTM), color-orthoimage mosaics and additionally higher-level 3D data products. Past work concentrated on producing regional data mosaics for areas of scientific interest in a single strip and/or bundle block adjustment and deriving DTMs [3]. The next logical step, based on substantially the same procedure, is to systematically expand the derivation of DTMs and orthoimage data to the 140 map quadrangle scheme (Q-DTM). Methods: The division of the Mars surface into 140 quadrangles is briefly described in Greeley and Batson [4] and based upon the standard MC 30 (Mars Chart) system. The quadrangles are named by alpha-numerical labels. The workflow for the determination of new orientation data for the derivation of digital terrain models takes place in two steps. First, for each HRSC orbits covering a quadrangle, new exterior orientation parameters are determined [5,6]. The successfully classified exterior orientation parameters become the input for the next step in which the exterior orientation parameters are determined together in a bundle block adjustment. Only those orbit strips which have a sufficient overlap area and a certain number of tie points can be used in a common bundle block adjustment. For the automated determination of tie points, software provided by the Leibniz Universität Hannover [7] is used. Results: For the derivation of Q-DTMs and ortho

  19. Social Media Planning for the June 5, 2012 transit of Venus

    Science.gov (United States)

    Young, C.; Wawro, M.; Cline, T. D.; Schenk, L. C.; Durscher, R.

    2012-12-01

    On June 5, 2012 at sunset on the East Coast of North America and earlier for other parts of the U.S., the planet Venus made its final trek across the face of the sun as seen from Earth until the year 2117! The NASA Goddard Sun-Earth Day and Solar Dynamics Observatory EPO teams developed a social media strategy to support NASAs Transit of Venus event and webcast from Mauna Kea, Hawaii, on June 5, 2012. Our goal was to connect our contacts with a growing and vibrant social media community during all phases of this celestial event! We also wanted to help spread the word about the Transit of Venus by sharing content, facts, videos, images and links about the transit with our networks. Although social media events occurred throughout the world, our strategy was to provide an additional focus on NASA related events in key locations including those events happening in Hawaii, Alaska, and NASA Ames thereby amplifying our outreach efforts while ensuring that a strong connection existed across geographical and cultural borders. We also wanted to provide the public with information that would help them understand the importance of staying connected via social media even if viewing the transit was possible from their own locations. The social media strategy and the transit of Venus events were a great success and well as a learning experience for future social media events. We present the results of our plan as well as ways to improve and expand for future events. In addition, we present our social media template developed for the transit and now used by other heliophysics EPO teams.

  20. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1973: ERTS as an aid in a nationwide program for mapping general land use. [Phoenix Quadrangle, Arizona

    Science.gov (United States)

    Place, J. L.

    1974-01-01

    Changes in land use between 1970 and 1973 in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a standard land use classification system proposed for use with ERTS images. Types of changes detected have been: (1) new residential development of former cropland and rangeland; (2) new cropland from the desert; and (3) new reservoir fill-up. The seasonal changing of vegetation patterns in ERTS has complemented air photos in delimiting the boundaries of some land use types. ERTS images, in combination with other sources of information, can assist in mapping the generalized land use of the fifty states by the standard 1:250,000 quadrangles. Several states are already working cooperatively in this type of mapping.