WorldWideScience

Sample records for qso luminosity function

  1. High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function

    Science.gov (United States)

    Siana, Brian; Polletta, Maria del Carmen; Smith, Harding E.; Lonsdale, Carol J.; Gonzalez-Solares, Eduardo; Farrah, Duncan; Babbedge, Tom S. R.; Rowan-Robinson, Michael; Surace, Jason; Shupe, David; Fang, Fan; Franceschini, Alberto; Oliver, Seb

    2008-03-01

    We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z ~ 3 (U-dropout) QSO candidates with 19 dropout) sample suffers from both unreliability and incompleteness but present seven previously unidentified QSOs at 3.50 University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. properties and luminosity functions

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2007-01-01

    Full Text Available In this article, we present an investigation of a sample of 1072 stars extracted from the Villanova Catalog of Spectroscopically Identified White Dwarfs (2005 on-line version, studying their distribution in the Galaxy, their physical properties and their luminosity functions. The distances and physical properties of the white dwarfs are determined through interpolation of their (B-V or (b-y colors in model grids. The solar position relative to the Galactic plane, luminosity function, as well as separate functions for each white dwarf spectral type are derived and discussed. We show that the binary fraction does not vary significantly as a function of distance from the Galactic disk out to 100 pc. We propose that the formation rates of DA and non-DAs have changed over time and/or that DAs evolve into non-DA types. The luminosity functions for DAs and DBs have peaks possibly related to a star burst event.

  3. The luminosity function of quasars

    Science.gov (United States)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  4. The low-luminosity stellar mass function

    International Nuclear Information System (INIS)

    Kroupa, Pavel; Tout, C.A.; Gilmore, Gerard

    1990-01-01

    The stellar mass function for low-mass stars is constrained using the stellar luminosity function and the slope of the mass-luminosity relation. We investigate the range of mass functions for stars with absolute visual magnitude fainter than M V ≅ +5 which are consistent with both the local luminosity function and the rather poorly determined mass-absolute visual magnitude relation. Points of inflexion in the mass-luminosity relation exist because of the effects of H - , H 2 and of other molecules on the opacity and equation of state. The first two of these correspond to absolute magnitudes M V ≅ +7 and M V ≅ +12, respectively, at which structure is evident in the stellar luminosity function (a flattening and a maximum, respectively). Combining the mass-luminosity relation which shows these inflexion points with a peaked luminosity function, we test smooth mass functions in the mass range 0.9-0.1 the solar mass. (author)

  5. QSO evolution in the interaction model

    International Nuclear Information System (INIS)

    De Robertis, M.

    1985-01-01

    QSO evolution is investigated according to the interaction hypothesis described most recently by Stockton (1982), in which activity results from an interaction between two galaxies resulting in the transfer of gas onto a supermassive black hole (SBH) at the center of at least one participant. Explicit models presented here for interactions in cluster environments show that a peak QSO population can be formed in this way at zroughly-equal2--3, with little activity prior to this epoch. Calculated space densities match those inferred from observations for this epoch. Substantial density evolution is expected in such models, since, after virialization, conditions in the cores of rich clusters lead to the depletion of gas-rich systems through ram-pressure stripping. Density evolution parameters of 6--12 are easily accounted for. At smaller redshifts, however, QSOs should be found primarily in poor clusters or groups. Probability estimates provided by this model are consistent with local estimates for the observed number of QSOs per interaction. Significant luminosity-dependent evolution might also be expected in these models. It is suggested that the mean SBH mass increases with lookback time, leading to a statistical brightening with redshift. Undoubtedly, both forms of evolution contribute to the overall QSO luminosity function

  6. Correlation function of the luminosity distances

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-09-01

    We present the correlation function of the luminosity distances in a flat ΛCDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions in linear perturbation theory, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ( z ∼> 0.5) but only for small angular separation (θ ∼< 3°), while the velocity contribution dominates over the other contributions at low redshift or at larger separation. However, the gravitational potential contribution is always subdominant at all scale, if the correct gauge-invariant expression is used. The correlation function of the luminosity distances depends significantly on the matter content, especially for the lensing contribution, thus providing a novel tool of estimating cosmological parameters.

  7. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  8. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  9. The Faint End of the Quasar Luminosity Function at z ~ 4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing

    Science.gov (United States)

    Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo

    2011-02-01

    We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Evolution of the cluster x-ray luminosity function slope

    International Nuclear Information System (INIS)

    Henry, J.P.; Soltan, A.; Briel, U.; Gunn, J.E.

    1982-01-01

    We report the results of an X-ray survey of 58 clusters of galaxies at moderate and high redshifts. Using a luminosity-limited subsample of 25 objects, we find that to a redshift of 0.5 the slope (i.e., power-law index) of the luminosity function of distant clusters is independent of redshift and consistent with that of nearby clusters. The time scale for change in the slope must be greater than 9 billion years. We cannot measure the normalization of the luminosity function because our sample is not complete. We discuss the implications of our data for theoretical models. In particular, Perrenod's models with high Ω are excluded by the present data

  11. Altered luminosity functions for relativistically beamed objects. II - Distribution of Lorentz factors and parent populations with complex luminosity functions

    International Nuclear Information System (INIS)

    Urry, C.M.; Padovani, P.

    1991-01-01

    In a previous paper, Urry and Shafer (1984) showed that the observed luminosity function (LF) of objects that have part or all of their emission relativistically beamed was a double power law, flat at the faint end and steep at the bright end, so that the ratio of beamed sources to parents was a strong function of luminosity. These calculations are extended here for more realistic LFs required for actual tests of a unified theory of AGN. The observed LF of the beam-dominated objects is generally flatter than the parent LF, so that the number density ratio is a strong function of luminosity and can easily be greater than unity at high luminosities, even for gradual low-luminosity cutoffs in the parent LF. Several characteristic break points can be identified depending on the details of the parent LF. The calculations can be used to test unified theories by predicting the observed LF for aligned objects from the LF of the proposed parent population. 6 refs

  12. The quasar luminosity function from a variability-selected sample

    Science.gov (United States)

    Hawkins, M. R. S.; Veron, P.

    1993-01-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sign of the 'break' found in the recent UVX sample of Boyle et al. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved.

  13. The luminosity function and formation rate history of GRBs

    International Nuclear Information System (INIS)

    Firmani, C.; Avila-Reese, V.; Ghisellini, G.; Tutukov, A.V.

    2005-01-01

    The isotropic luminosity function (LF) and formation rate history (FRH) of long GRBs is by the first time constrained by using jointly both the observed GRB peak-flux and redshift distributions. Our results support an evolving LF and a FRH that keeps increasing after z = 2. We discuss some interesting implications related to these results

  14. The luminosity function for globular clusters, 4: M3

    International Nuclear Information System (INIS)

    Simoda, Mahiro; Fukuoka, Takashi

    1976-01-01

    The subgiant-turnoff portion (V = 17.2 - 20.0 mag) of the luminosity function for the globular cluster M3 has been determined from photometry of the stars within the annuli 3'-8' and 6'-8' for V = 17.2 - 19.0 mag and 19.0 - 20.0 mag, respectively, by using plates taken with the Kitt Peak 2.1-m reflector. Our result shows that the luminosity function for M3 has a similar steep rise in the subgiant portion as other clusters so far studied (M5, M13, and M92), in direct conflict with the result by SANDAGE (1954, 1957). A probable cause of this discrepancy is given. Comparison with theoretical luminosity functions by SIMODA and IBEN (1970) suggests that theory and observation are not inconsistent if the initial helium abundance of M3 stars is taken to be about 20 percent. It is suggested that M13 has a larger helium abundance than M3 and M92 from the intercomparison of their luminosity functions and color-magnitude diagrams. (auth.)

  15. Theoretical stellar luminosity functions and globular cluster ages and compositions

    International Nuclear Information System (INIS)

    Ratcliff, S.J.

    1985-01-01

    The ages and chemical compositions of the stars in globular clusters are of great interest, particularly because age estimates from the well-known exercise of fitting observed color-magnitude diagrams to theoretical predictions tend to yield ages in excess of the Hubble time (an estimate to the age of the Universe) in standard cosmological models, for currently proposed high values of Hubble's constant (VandenBerg 1983). Relatively little use has been made of stellar luminosity functions of the globular clusters, for which reliable observations are now becoming available, to constrain the ages or compositions. The comparison of observed luminosity functions to theoretical ones allows one to take advantage of information not usually used, and has the advantage of being relatively insensitive to our lack of knowledge of the detailed structure of stellar envelopes and atmospheres. A computer program was developed to apply standard stellar evolutionary theory, using the most recently available input physics (opacities, nuclear reaction rates), to the calculation of the evolution of low-mass Population II stars. An algorithm for computing luminosity functions from the evolutionary tracks was applied to sets of tracks covering a broad range of chemical compositions and ages, such as may be expected for globular clusters

  16. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-01-01

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M 1450 2 , then extend to lower luminosities (M 1450 2 of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 1450 * ∼-27). The bright-end slope is steep (β ∼ 1450 < –26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate ∼30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  17. Evolution of the cluster X-ray luminosity function

    DEFF Research Database (Denmark)

    Mullis, C.R.; Vikhlinin, A.; Henry, J.P.

    2004-01-01

    We report measurements of the cluster X-ray luminosity function out to z = 0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z similar to 0.6 at luminosities of less...... than a few times 10(44) h(50)(-2) ergs s(-1) (0.5 - 2.0 keV). However, for 0.6 cluster deficit using integrated number counts...... independently confirm the presence of evolution. Whereas the bulk of the cluster population does not evolve, the most luminous and presumably most massive structures evolve appreciably between z = 0.8 and the present. Interpreted in the context of hierarchical structure formation, we are probing sufficiently...

  18. IRAS bright galaxy sample. II. The sample and luminosity function

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Neugebauer, G.; Madore, B.F.; Danielson, G.E.; David Dunlap Observatory, Richmond Hill, Canada; Palomar Observatory; California Institute of Technology, Pasadena)

    1987-01-01

    A statistically complete sample of 324 of the brightest infrared galaxies discovered at 60 microns in the IRAS all-sky survey is described. The results show that far-infrared emission is a significant luminosity component in the local universe, representing 25 percent of the luminosity emitted by stars in the same volume. Above 10 to the 11th solar luminosities, the infrared luminous galaxies are the dominant population of objects in the universe, being as numerous as the Seyfert galaxies and more numerous than quasars at higher luminosities. The infrared luminosity appears to be independent of the optical luminosity of galaxies. Most infrared bright galaxies appear to require much of the interstellar matter to be contributing to the observed infrared luminosity. Approximately 60-80 percent of the far-infrared luminosity of the local universe can be attributed, directly or indirectly, to recent or ongoing star formation. 67 references

  19. Physics as a function of energy and luminosity

    International Nuclear Information System (INIS)

    Ellis, J.

    1984-01-01

    In this paper, a new physics in the range of mass up to TeV region is discussed. Most of the discussion concern hadron-hadron (hh) colliders, and also electron-positron colliders are discussed. The cross-sections for new particle production in hh colliders have the general Drell-Yan form, in which the differential luminosity for the collision of partons is included. The formulas with the parton distribution scaled up from present energy using the Altarelli-Parisi equations may be approximately correct within a factor of 2 for the production of particles. Some typical parton-parton luminosity functions for proton-proton and proton-antiproton collisions are presented. From the consideration of luminosity, it can be said that the pp colliders are to be preferred. The case studies of some of the possible new physics discussed by Zakharov, mainly on Higgs bosons and supersymmetric particles, but also a few remarks about technicolor are presented. It seems possible to detect technicolor at a large hh collider. The physics reaches of different possible hh colliders are summarized in tables. In the tables, the observable production of Higgses up to 1 TeV in mass, the observable masses for gluinos (squarks) and the technicolor observability are shown. The cleanliness of electron-positron colliders compared to hadron-hadron colliders is pled, a guess is given as to the appropriate conversion factors between the energy in the electron-positron and hh collisions, the complementarity of electron-positron and hh colliders is urged, and it is argued that a rational mix of world accelerators would include both. (Kato, T.)

  20. Luminosity function of the brightest galaxies in the IRAS survey

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Madore, B.F.; Neugebauer, G.; Persson, C.J.; Persson, S.E.; Rice, W.L.

    1987-01-01

    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume

  1. Statistical and physical evolution of QSO's

    International Nuclear Information System (INIS)

    Caditz, D.; Petrosian, V.

    1989-09-01

    The relationship between the physical evolution of discrete extragalactic sources, the statistical evolution of the observed population of sources, and the cosmological model is discussed. Three simple forms of statistical evolution: pure luminosity evolution (PLE), pure density evolution (PDE), and generalized luminosity evolution (GLE), are considered in detail together with what these forms imply about the physical evolution of individual sources. Two methods are used to analyze the statistical evolution of the observed distribution of QSO's (quasars) from combined flux limited samples. It is shown that both PLE and PDE are inconsistent with the data over the redshift range 0 less than z less than 2.2, and that a more complicated form of evolution such as GLE is required, independent of the cosmological model. This result is important for physical models of AGN, and in particular, for the accretion disk model which recent results show may be inconsistent with PLE

  2. THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Yan, Lin; Capak, Peter; Faisst, Andreas; Masters, Daniel [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena CA 91125 (United States); Diaz-Santos, Tanio [Nucleo de Astronomia de la Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito Libertador 441, Santiago (Chile); Armus, Lee, E-mail: shemmati@ipac.caltech.edu [Spitzer Science Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2017-01-01

    We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, based on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.

  3. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  4. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  5. The Evolution of the Type Ia Supernova Luminosity Function

    NARCIS (Netherlands)

    Shen, K.J.; Toonen, S.; Graur, O.

    2017-01-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia

  6. The Evolution in the Faint-End Slope of the Quasar Luminosity Function

    OpenAIRE

    Hopkins, Philip F.; Hernquist, Lars; Cox, Thomas J.; Di Matteo, Tiziana; Robertson, Brant; Springel, Volker

    2005-01-01

    (Abridged) Based on numerical simulations of galaxy mergers that incorporate black hole (BH) growth, we predict the faint end slope of the quasar luminosity function (QLF) and its evolution with redshift. Our simulations have yielded a new model for quasar lifetimes where the lifetime depends on both the instantaneous and peak quasar luminosities. This motivates a new interpretation of the QLF in which the bright end consists of quasars radiating at nearly their peak luminosities, but the fai...

  7. EVOLUTION OF GALAXY LUMINOSITY FUNCTION USING PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    Ramos, B. H. F.; Pellegrini, P. S.; Da Costa, L. N.; Maia, M. A. G.; Ogando, R. L. C.; De Simoni, F.; Benoist, C.; Makler, M.; Mesquita, A. A.

    2011-01-01

    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end, we compare the LFs obtained using photometric redshifts from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ∼4800 galaxies. We find that for z ≤ 2.0, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of the CFHTLS comprising ∼386,000 galaxies to compute the LF of the combined fields and directly estimate the error in the parameters based on the field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ∼0.7 mag from z ∼ 1.8 to z ∼ 0.3, while the characteristic density φ* increases by a factor of ∼4 in the same redshift interval. We use the galaxy classification provided by the template fitting program used to compute photometric redshifts and split the sample into galaxy types. We find that these Schechter parameters evolve differently for each galaxy type, an indication that their evolution is a combination of several effects: galaxy merging, star formation quenching, and mass assembly. All these results are compatible with those obtained by different spectroscopic surveys such as VVDS, DEEP2, and zCosmos, which reinforces the fact that photometric redshifts can be used to study galaxy evolution, at least for the redshift bins adopted so far. This is of great interest since future very large imaging surveys containing hundreds of millions of galaxies will allow us to obtain important precise measurements to constrain the evolution of the LF and to explore the dependence of this evolution on morphology and/or color helping constrain the mechanisms of galaxy evolution.

  8. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    International Nuclear Information System (INIS)

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil

    2014-01-01

    The relation between galaxy luminosity L and halo virial velocity v vir required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v rot . Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v rot and v vir by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v rot -v vir relation that we obtain in this way can fully account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v rot on v vir , which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.

  9. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey

    Science.gov (United States)

    Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro

    2018-01-01

    We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.

  10. QSO Pairs across Active Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...

  11. The Truncated Lognormal Distribution as a Luminosity Function for SWIFT-BAT Gamma-Ray Bursts

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2016-11-01

    Full Text Available The determination of the luminosity function (LF in Gamma ray bursts (GRBs depends on the adopted cosmology, each one characterized by its corresponding luminosity distance. Here, we analyze three cosmologies: the standard cosmology, the plasma cosmology and the pseudo-Euclidean universe. The LF of the GRBs is firstly modeled by the lognormal distribution and the four broken power law and, secondly, by a truncated lognormal distribution. The truncated lognormal distribution fits acceptably the range in luminosity of GRBs as a function of the redshift.

  12. CKM fits as a function of luminosity (Time)

    International Nuclear Information System (INIS)

    Hoecker, A.; Lacker, H.; Laplace, S.; Le Diberder, F.

    2001-05-01

    Possible scenarios for CKM fits in the years 2005 and 2010 are presented using B- and K - physics results from extrapolated luminosities for B-factories at the γ(4S), for the hadron machines at Tevatron and LHC and experiments for rare kaon decays. The study provides an estimate of what precision for the CKM matrix elements can be achieved if all relevant experiments and accelerators, including upgrades for the existing e + e - machines, reach their design goals. It is intended to give information used to explore which type of future experiments are needed to cover all relevant physics topics related to the CKM matrix and the search of physics beyond the Standard Model. (authors)

  13. Consistency between the luminosity function of resolved millisecond pulsars and the galactic center excess

    Energy Technology Data Exchange (ETDEWEB)

    Ploeg, Harrison; Gordon, Chris [Department of Physics and Astronomy, Rutherford Building, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Crocker, Roland [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek (Australia); Macias, Oscar, E-mail: harrison.ploeg@pg.canterbury.ac.nz, E-mail: chris.gordon@canterbury.ac.nz, E-mail: Roland.Crocker@anu.edu.au, E-mail: oscar.macias@vt.edu [Center for Neutrino Physics, Department of Physics, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States)

    2017-08-01

    Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used a Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.

  14. The European Large Area ISO Survey - IV. The preliminary 90-mu m luminosity function

    DEFF Research Database (Denmark)

    Serjeant, S.; Efstathiou, A.; Oliver, S.

    2001-01-01

    We present the luminosity function of 90-mum-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z = 0.3. Their luminosities are in the range 10(9)

  15. Luminosity and beta function measurement at the electron-positron collider ring LEP

    CERN Document Server

    Castro, P

    1996-01-01

    The optimization of luminosity needs a fast signal which is provided with the measurement of the rate of small angle Bhabba scattered e+ and e-. It is shown that, despite the excess of background particles received at the detectors, luminosity measurements are possible by using appropriate techniques. The results presented include examples of luminosity optimization with the adjustment of the vertical beam separation at interaction points. The correlation between changes in measured beam sizes and changes in luminosity is shown. In the second part, a new method to obtain precise optics measurements is presented. The procedure to measure the phase advance using 1000-turn orbit measurements of a horizontally or vertically excited beam is described. Beta, alpha and phase advance functions can be obtained exclusively from the phase advances at beam position monitors. This method has been used to measure optics imperfections at LEP. Results of these experiments are compared with simulation results using MAD Measur...

  16. The luminosity and mass functions of the Pleiades: low-mass stars and brown dwarfs

    International Nuclear Information System (INIS)

    Hambly, N.C.; Jameson, R.F.

    1991-01-01

    COSMOS measurements of R and I Schmidt plates are used to determine the luminosity function and hence mass function of the Pleiades open cluster. Star counts are made in the cluster and the field star contribution, measured outside the cluster, is subtracted. A lower limit of 30 brown dwarfs is found; the mass function is flat at the lowest masses. (author)

  17. On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters

    Science.gov (United States)

    Bailyn, Charles D.; Pinsonneault, Marc H.

    1995-01-01

    We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.

  18. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Cool, Richard J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Brown, Michael J. I.; Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S.; Dey, Arjun; Jannuzi, Buell T.; Moustakas, John

    2012-01-01

    We present the galaxy optical luminosity function for the redshift range 0.05 2 in the Boötes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z) (0.54±0.64) for red galaxies and (1 + z) (1.64±0.39) for blue galaxies.

  19. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard J. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, Buell T. [National Optical Astronomy Observatory, Tucson, AZ 85726 (United States); Moustakas, John [Center for Astrophysics and Space Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2012-03-20

    We present the galaxy optical luminosity function for the redshift range 0.05 < z < 0.75 from the AGN and Galaxy Evolution Survey, a spectroscopic survey of 7.6 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z){sup (0.54{+-}0.64)} for red galaxies and (1 + z){sup (1.64{+-}0.39)} for blue galaxies.

  20. VizieR Online Data Catalog: Quasar luminosity function (Hawkins+, 1993)

    Science.gov (United States)

    Hawkins, M. R. S.; Veron, P.

    1994-11-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sigh of the 'break' found in the recent UVX sample of Boyle, Shanks & Peterson. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved. (1 data file).

  1. The white dwarf luminosity function - A possible probe of the galactic halo

    Science.gov (United States)

    Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.

    1990-01-01

    The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.

  2. Constraints on the gamma-ray burst luminosity function from Pioneer Venus Orbiter and BATSE observations

    NARCIS (Netherlands)

    Ulmer, A.; Wijers, R.A.M.J.; Fenimore, E.E.

    1995-01-01

    We examine the width of the gamma ray burst luminosity function through the distribution of Gamma Ray Burst (GRB) peak fluxes as detected by the Pioneer Venus Orbiter (PVO) and the Burst and Transient Source Experiment (BATSE). The strength of the analysis is greatly enhanced by using a merged

  3. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    Energy Technology Data Exchange (ETDEWEB)

    Wylezalek, Dominika; Vernet, Joël; De Breuck, Carlos [European Southern Observatory, Karl-Schwarzschildstr.2, D-85748 Garching bei München (Germany); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Galametz, Audrey [INAF-Osservatorio di Roma, Via Frascati 33, I-00040, Monteporzio (Italy); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Jarvis, Matt [Astrophysics, Department of Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Hatch, Nina [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Seymour, Nick [CASS, P.O. Box 76, Epping, NSW, 1710 (Australia); Stanford, Spencer A. [Physics Department, University of California, Davis, CA 95616 (United States)

    2014-05-01

    We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = –1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (z{sub f} ∼ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ∼ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs—which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift—and they may therefore be older and more evolved systems than the general protocluster population.

  4. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    International Nuclear Information System (INIS)

    Wylezalek, Dominika; Vernet, Joël; De Breuck, Carlos; Stern, Daniel; Brodwin, Mark; Galametz, Audrey; Gonzalez, Anthony H.; Jarvis, Matt; Hatch, Nina; Seymour, Nick; Stanford, Spencer A.

    2014-01-01

    We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = –1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (z f ∼ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ∼ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs—which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift—and they may therefore be older and more evolved systems than the general protocluster population.

  5. Photometric studies of globular clusters in the Andromeda Nebula. Luminosity function for old globular clusters

    International Nuclear Information System (INIS)

    Sharov, A.S.; Lyutyj, V.M.

    1989-01-01

    The luminosity function for old globular clusters in M 31 is presented. The objects were selected according to their structural and photometric properties. At the usually accepted normal (Gaussian) distribution, the luminosity function is characterized by the following parameters: the mean magnitude, corrected for the extinction inside M 31, V-bar 0 =16 m ,38±0 m .08, and the absolute magnitude M-bar v =-8 m .29 assuming )m-M) v =23 m .67, standard deviation σ M v =1 m .16±0 m .08 and total object number N=300±17. Old globular clusters in M 31 are in the average about one magnitude more luminous then those in our Galaxy (M v ≅ -7 m .3). Intrinsic luminosity dispersions of globular clusters are nearly the same in both galaxies. Available data on globular clusters in the Local Group galaxies against the universality of globular luminosity function with identical parameters M v and σ M v

  6. The luminosity function for different morphological types in the CfA Redshift Survey

    Science.gov (United States)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  7. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  8. The Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; Shaw, M.S.; Romani, R.W.; Dermer, C.D.; Costamante, L.; King, O.G.; Max-Moerbeck, W.; Readhead, A.; Reimer, A.; Richards, J.L.; Stevenson, M.

    2012-04-16

    Fermi has provided the largest sample of {gamma}-ray selected blazars to date. In this work we use a complete sample of FSRQs detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similarly to that of radio-quiet AGN. Also using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution of FSRQs in the 10 keV-100GeV band and show that there is no correlation of the peak {gamma}-ray luminosity with {gamma}-ray peak frequency. The coupling of the SED and LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sub -1.0}{sup +1.6}% ({+-}3% systematic uncertainty) in the 0.1-100GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sub -2.2}{sup +3.3}, that most are seen within 5{sup o} of the jet axis, and that they represent only {approx}0.1% of the parent population.

  9. LFlGRB: Luminosity function of long gamma-ray bursts

    Science.gov (United States)

    Paul, Debdutta

    2018-04-01

    LFlGRB models the luminosity function (LF) of long Gamma Ray Bursts (lGRBs) by using a sample of Swift and Fermi lGRBs to re-derive the parameters of the Yonetoku correlation and self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. The GRB formation rate is modeled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass.

  10. A New Determination of the Luminosity Function of the Galactic Halo.

    Science.gov (United States)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  11. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  12. The Seven Sisters DANCe. I. Empirical isochrones, luminosity, and mass functions of the Pleiades cluster

    Science.gov (United States)

    Bouy, H.; Bertin, E.; Sarro, L. M.; Barrado, D.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Berihuete, A.; Olivares, J.; Beletsky, Y.

    2015-05-01

    Context. The DANCe survey provides photometric and astrometric (position and proper motion) measurements for approximately 2 million unique sources in a region encompassing ~80 deg2 centered on the Pleiades cluster. Aims: We aim at deriving a complete census of the Pleiades and measure the mass and luminosity functions of the cluster. Methods: Using the probabilistic selection method previously described, we identified high probability members in the DANCe (i ≥ 14 mag) and Tycho-2 (V ≲ 12 mag) catalogues and studied the properties of the cluster over the corresponding luminosity range. Results: We find a total of 2109 high-probability members, of which 812 are new, making it the most extensive and complete census of the cluster to date. The luminosity and mass functions of the cluster are computed from the most massive members down to ~0.025 M⊙. The size, sensitivity, and quality of the sample result in the most precise luminosity and mass functions observed to date for a cluster. Conclusions: Our census supersedes previous studies of the Pleiades cluster populations, in terms of both sensitivity and accuracy. Based on service observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Table 1 and Appendices are available in electronic form at http://www.aanda.orgDANCe catalogs (Tables 6 and 7) and full Tables 2-5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A148

  13. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    Science.gov (United States)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  14. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    International Nuclear Information System (INIS)

    Ansdell, Megan; Baranec, Christoph; Gaidos, Eric; Mann, Andrew W.; Lépine, Sebastien; James, David; Buccino, Andrea; Mauas, Pablo; Petrucci, Romina; Law, Nicholas M.; Riddle, Reed

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law

  15. Collapsar γ-ray bursts: how the luminosity function dictates the duration distribution

    Science.gov (United States)

    Petropoulou, Maria; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2017-12-01

    Jets in long-duration γ-ray bursts (GRBs) have to drill through the collapsing star in order to break out of it and produce the γ-ray signal while the central engine is still active. If the breakout time is shorter for more powerful engines, then the jet-collapsar interaction acts as a filter of less luminous jets. We show that the observed broken power-law GRB luminosity function is a natural outcome of this process. For a theoretically motivated breakout time that scales with jet luminosity as L-χ with χ ∼ 1/3-1/2, we show that the shape of the γ-ray duration distribution can be uniquely determined by the GRB luminosity function and matches the observed one. This analysis has also interesting implications about the supernova-central engine connection. We show that not only successful jets can deposit sufficient energy in the stellar envelope to power the GRB-associated supernovae, but also failed jets may operate in all Type Ib/c supernovae.

  16. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ansdell, Megan; Baranec, Christoph [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Mann, Andrew W. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Lépine, Sebastien [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); James, David [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Buccino, Andrea; Mauas, Pablo; Petrucci, Romina [Instituto de Astronomía y Física del Espacio, C1428EHA Buenos Aires (Argentina); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  17. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    International Nuclear Information System (INIS)

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C.; Trenti, Michele; Bradley, Larry D.; Stiavelli, Massimo; Oesch, Pascal A.; Holwerda, Benne W.; Shull, J. Michael

    2014-01-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin 2 of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin 2 of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m J ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M ⋆ =−20.15 −0.38 +0.29 , a faint-end slope of α=−1.87 −0.26 +0.26 , and a number density of log 10  ϕ ⋆ [Mpc −3 ]=−3.24 −0.24 +0.25 . Integrated down to M = –17.7, this luminosity function yields a luminosity density log 10  ϵ[erg s −1 Hz −1 Mpc −3 ]=25.52 −0.05 +0.05 . Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of reionization. By assuming theoretically motivated priors on the clumping factor and the photon

  18. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Bradley, Larry D.; Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oesch, Pascal A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Holwerda, Benne W. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Shull, J. Michael, E-mail: kschmidt@physics.ucsb.edu [CASA, Department of Astrophysical and Planetary Science, University of Colorado, Center for Astrophysics and Space Astronomy, 389-UCB, Boulder, CO 80309 (United States)

    2014-05-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin{sup 2} of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin{sup 2} of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m{sub J} ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M{sup ⋆}=−20.15{sub −0.38}{sup +0.29}, a faint-end slope of α=−1.87{sub −0.26}{sup +0.26}, and a number density of log{sub 10} ϕ{sup ⋆}[Mpc{sup −3}]=−3.24{sub −0.24}{sup +0.25}. Integrated down to M = –17.7, this luminosity function yields a luminosity density log{sub 10} ϵ[erg s{sup −1} Hz{sup −1} Mpc{sup −3}]=25.52{sub −0.05}{sup +0.05}. Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of

  19. Derivation of the stellar luminosity function in the direction of the south galactic pole by a statistical method

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, S L

    1981-12-01

    A method is developed to calculate absolute magnitude probability distributions for stars from a proper motion survey. This method uses ellipsoidal velocity distributions to predict tangential velocity distributions. The tangential velocity distributions are transformed into absolute magnitude distributions. The absolute magnitude distributions for the stars in a proper motion survey may be summed to produce a luminosity function. This method was applied to stars in the region of the south galactic pole and the resulting luminosity function is statistically identical to Luyten's 1968 luminosity function.

  20. Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1

    Science.gov (United States)

    Zhang, Keming; Schiminovich, David

    2018-01-01

    We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.

  1. Modelling the luminosity function of long gamma-ray bursts using Swift and Fermi

    Science.gov (United States)

    Paul, Debdutta

    2018-01-01

    I have used a sample of long gamma-ray bursts (GRBs) common to both Swift and Fermi to re-derive the parameters of the Yonetoku correlation. This allowed me to self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. This is the first time such a large sample of GRBs from these two instruments is used, both individually and in conjunction, to model the long GRB luminosity function. The GRB formation rate is modelled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass. An exponential cut-off power-law luminosity function fits the data reasonably well, with ν = 0.6 and Lb = 5.4 × 1052 ergs- 1, and does not require a cosmological evolution. In the case of a broken power law, it is required to incorporate a sharp evolution of the break given by Lb ∼ 0.3 × 1052(1 + z)2.90 erg s- 1, and the GRB formation efficiency (degenerate up to a beaming factor of GRBs) decreases with redshift as ∝ (1 + z)-0.80. However, it is not possible to distinguish between the two models. The derived models are then used as templates to predict the distribution of GRBs detectable by CZT Imager onboard AstroSat as a function of redshift and luminosity. This demonstrates that via a quick localization and redshift measurement of even a few CZT Imager GRBs, AstroSat will help in improving the statistics of GRBs both typical and peculiar.

  2. The Luminosity Functions of Old and Intermediate-Age Globular Clusters in NGC 3610

    OpenAIRE

    Whitmore, B. C.; Schweizer, F.; Kundu, A.; Miller, B. W.

    2002-01-01

    The WFPC2 Camera on board HST has been used to obtain high-resolution images of NGC 3610, a dynamically young elliptical galaxy. These observations supersede shorter, undithered HST observations where an intermediate-age population of globular clusters was first discovered. The new observations show the bimodal color distribution of globular clusters more clearly, with peaks at (V-I)o = 0.95 and 1.17. The luminosity function (LF) of the blue, metal-poor population of clusters in NGC 3610 turn...

  3. Intrinsic width and luminosity function of the M92 main sequence

    International Nuclear Information System (INIS)

    Sandage, A.; Katem, B.

    1983-01-01

    Measurements of B and V magnitudes of approx.475 identified stars in the magnitude interval 18.0 - 4 is too low. The luminosity function, obtained from the present data, is compared with that determined earlier by Tayler, by Hartwick, by van den Bergh, and with Fukuoka and Simoda, with good agreement. The evidence favors that phi(M/sub v/) flattens fainter than M/sub v/approx. =+6 as predicted in some dynamical models, due to loss of low mass stars

  4. A QSO with precessing jets: 2300 - 189

    International Nuclear Information System (INIS)

    Hunstead, R.W.; Murdoch, H.S.; Phillips, M.M.

    1984-01-01

    The QSO 2300-189 (z = 0.1287) is found to have a faint companion galaxy at the same redshift. The separation is 6.8 arcsec on the sky. A spectrum of the fuzz around the QSO shows absorption features typical of late-type stars, which argues for its occurence in a normal disc or E galaxy. Radio maps obtained with the VLA at 1465 MHz and 4885 MHz show inversion (or S-shaped) symmetry, which is explained as due to the ejection of jets along an axis which is precessing, probably due to the tidal influence of the nearby galaxy. Several kinematic parameters are deduced including an upper limit for the jet velocity. Further support for tidal interaction comes from the detection of extensive region of low-brightness optical emission in the vicinity of the QSO. (author)

  5. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    Science.gov (United States)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color-magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = -9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  6. PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1

    Energy Technology Data Exchange (ETDEWEB)

    Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Mendez, Alexander J. [Department of Physics, Center for Astrophysics and Space Sciences, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Aird, James [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bray, Aaron D.; Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cool, Richard J. [MMT Observatory, 1540 E Second Street, University of Arizona, Tucson, AZ 85721 (United States); Wong, Kenneth C. [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Zhu, Guangtun, E-mail: rskibba@ucsd.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-04-01

    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.

  7. Deep JHK Photometry and the Infrared Luminosity Function of the Galactic Bulge

    Science.gov (United States)

    Tiede, Glenn P.; Frogel, Jay A.; Terndrup, D. M.

    1995-03-01

    We derive the deepest, most complete near-IR luminosity function for Galactic bulge stars yet obtained based on new JHK photometry for stars in two fields of Baade's Window. When combined with previously published data, we are able to construct a luminosity function over the range 5.5 Blanco, V.M., & Whitford, A.E. 1990, ApJ, 353, 494). Between b = -3 and -12 we find a gradient in [Fe/H] of -0.06 +/- 0.03 dex/degree, consistent with other, independent derivations. We derive a helium abundance for Baade's Window with the R and R(') methods and find that Y = 0.27 +/- 0.03. Finally, we find that the bolometric corrections for bulge K giants (V - K >= 2) are in excellent agreement with empirical derivations based on observations of globular cluster and local field stars. However, for the redder M giants we find, as did Frogel and Whitford 1987, that the bolometric corrections differ by several tenths of a magnitude from those derived for field giants and adopted in the Revised Yale Isochrones. This difference most likely arises from the excess molecular blanketing in the V and I bands of the bulge giants relative to that seen in field stars.

  8. Recalculating the quasar luminosity function of the extended Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Caditz, David M.

    2017-12-01

    Aims: The extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey provides a uniform sample of over 13 000 variability selected quasi-stellar objects (QSOs) in the redshift range 0.68 based on this survey may be in error because the k-correction has apparently been misapplied, which results in underestimating the intrinsic brightness of roughly half of the eBOSS sources. This work provides new estimates of the QLF based on a corrected eBOSS dataset. Methods: Intrinsic luminosities were recalculated using the appropriate g-band k-correction function. The QLF was determined for the corrected dataset using a model-weighted estimator, and parametric models were refit to the corrected luminosity function. Projected number counts based on the corrected models are also provided. Results: At redshifts higher than the "pivot" redshift, zp = 2.2, the original and recalculated results differ significantly; in particular, the new results show stronger high-redshift evolution in the best-fit models than the original eBOSS analysis. A new seven-parameter QLF model is provided that fits the corrected eBOSS dataset.

  9. The infrared luminosity function of AKARI 90 μm galaxies in the local Universe

    Science.gov (United States)

    Kilerci Eser, Ece; Goto, Tomotsugu

    2018-03-01

    Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.

  10. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  11. Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function

    Science.gov (United States)

    Wood, M. A.

    1992-01-01

    The white dwarf disk luminosity function is explored using observational results of Liebert et al. (1988, 1989) as a template for comparison, and the cooling curves of Wood (1990, 1991) as the input basis functions for the integration. The star formation rate over the history of the Galaxy is found to be constant to within an order of magnitude, and the disk age lies in the range 6-13.5 Gyr, where roughly 40 percent of the uncertainty is due to the observational uncertainties. Using the best current estimates as inputs to the integration, the disk ages range from 7.5 to 11 Gyr, i.e., they are substantially younger than most estimates for the halo globular clusters but in reasonable agreement with those for the disk globular clusters and open clusters. The ages of these differing populations, taken together, are consistent with the pressure-supported collapse models of early spiral Galactic evolution.

  12. Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

    Science.gov (United States)

    Paul, Debdutta

    2018-04-01

    The luminosity function of short Gamma Ray Bursts (GRBs) is modelled by using the available catalogue data of all short GRBs (sGRBs) detected till October, 2017. The luminosities are estimated via the `pseudo-redshifts' obtained from the `Yonetoku correlation', assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. While the simple powerlaw is ruled out to high confidence, the data is fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs are derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks. Stringent lower limits of 1.87yr-1 for the aLIGO-VIRGO, and 3.11yr-1 for the upcoming aLIGO-VIRGO-KAGRA-LIGO/India configurations are thus derived for the BNSM rate at 68% confidence. The BNSM rates calculated from this work and that independently inferred from the observation of the only confirmed BNSM observed till date, are shown to have a mild tension; however the scenario that all BNSMs produce sGRBs cannot be ruled out.

  13. The Faint End of the Quasar Luminosity Function at z ~ 4

    Science.gov (United States)

    Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish

    2010-02-01

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Evolution of the Quasar Luminosity Function: Implications for EoR-21cm

    Science.gov (United States)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2018-05-01

    We present predictions for the spatial distribution of 21 cm brightness temperature fluctuations from high-dynamic-range simulations for AGN-dominated reionization histories that have been tested against available Lyα and CMB data. We model AGN by extrapolating the observed Mbh-σ relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. AGN-dominated reionization histories increase the variance of the 21 cm emission by a factor of up to ten compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK2 at scales accessible to experiments (k <~ 1 cMpc-1h). This is lower than the sensitivity reached by ongoing experiments by only a factor of about two or less. AGN dominated reionization should be easily detectable by LOFAR (and later HERA and SKA1) at their design sensitivity.

  15. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    Science.gov (United States)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  16. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    Science.gov (United States)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  17. Apparent luminosity function of galaxies to the twenty-first magnitude

    International Nuclear Information System (INIS)

    Brown, G.S.

    1979-01-01

    Galaxy counts to limiting magnitudes B=17.7 to 21.0 in 13 selected areas in the north galactic polar cap are presented. The photographs were taken with a reducing camera at the Cassegrain focus of the 91 cm and 205 cm reflectors of McDonald Observatory. Both galaxy and star images were counted and recorded. On each plate a few stars and galaxies were marked as representative of the plate limit. Selected brighter galaxies and stars were measured photoelectrically to fix the zero points. The B magnitude limits of each plate for stars and galaxies are obtained by a combination of photoelectric and photographic photometry. The resulting apparent luminosity functions of galaxies and stars are compared with earlier data. Sources of error in the counts are discussed in detail

  18. Galaxies at z ~ 6: The UV Luminosity Function and Luminosity Density from 506 HUDF, HUDF Parallel ACS Field, and GOODS i-Dropouts

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.; Franx, M.

    2006-12-01

    We have detected 506 i-dropouts (z~6 galaxies) in deep, wide-area HST ACS fields: HUDF, enhanced GOODS, and HUDF parallel ACS fields (HUDF-Ps). The contamination levels are ~92% are at z~6). With these samples, we present the most comprehensive, quantitative analyses of z~6 galaxies yet and provide optimal measures of the UV luminosity function (LF) and luminosity density at z~6, and their evolution to z~3. We redetermine the size and color evolution from z~6 to z~3. Field-to-field variations (cosmic variance), completeness, flux, and contamination corrections are modeled systematically and quantitatively. After corrections, we derive a rest-frame continuum UV (~1350 Å) LF at z~6 that extends to M1350,AB~-17.5 (0.04L*z=3). There is strong evidence for evolution of the LF between z~6 and z~3, most likely through a brightening (0.6+/-0.2 mag) of M* (at 99.7% confidence), although the degree depends on the faint-end slope. As expected from hierarchical models, the most luminous galaxies are deficient at z~6. Density evolution (φ*) is ruled out at >99.99% confidence. Despite large changes in the LF, the luminosity density at z~6 is similar to (0.82+/-0.21 times) that at z~3. Changes in the mean UV color of galaxies from z~6 to z~3 suggest an evolution in dust content, indicating that the true evolution is substantially larger: at z~6 the star formation rate density is just ~30% of the z~3 value. Our UV LF is consistent with z~6 galaxies providing the necessary UV flux to reionize the universe. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9803. Observations have been carried out using the Very Large Telescope at the European Southern Observatory (ESO) Paranal Observatory, under program ID LP168.A-0485.

  19. Spectrophotometry of the QSO NRAO 530

    International Nuclear Information System (INIS)

    Junkkarinen, V.

    1984-01-01

    Spectrophotometry of the QSO NRAO 530 with the KPNO Cryogenic Camera is reported. A redshift of 0.902 is determined from the H-beta, H-gamma, and 3727 A forbidden O II emission lines, confirming a redshift that had been based on a single line, the 2798 A Mg II. The H-beta equivalent is smaller than in normal QSOs, which may be characteristic of optically variable QSOs. 16 references

  20. The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars

    Science.gov (United States)

    2012-05-11

    extensively studied at radio (Dunlop & Peacock 1990; Wall et al. 2005), soft X-ray (Giommi & Padovani 1994; Rector et al. 2000; Wolter & Celotti 2001...FSRQs) evolve positively (i.e., there were more blazars in the past, Dunlop & Peacock 1990) up to a redshift cutoff which depends on luminosity (e.g...luminosity of 1048 erg s−1. The LDDE model provides a good fit to the LAT data and is able to reproduce the observed distribution in Figure 2. The log

  1. A hot white dwarf luminosity function from the Sloan Digital Sky Survey

    Science.gov (United States)

    Krzesinski, J.; Kleinman, S. J.; Nitta, A.; Hügelmeyer, S.; Dreizler, S.; Liebert, J.; Harris, H.

    2009-12-01

    Aims. We present a hot white dwarf (WD) luminosity function (LF) using data taken from the Sloan Digital Sky Survey (SDSS) Data Release 4. We present and discuss a combined LF, along with separate DA and non-DA as LFs. We explore the completeness of our LFs and interpret a sudden drop in the non-DA LF near 2 M_bol as a transition of the non-DA WD atmosphere into the DA one during WD evolution. Our LF extends roughly between -0.5 T_eff > ˜25 000 K. Our LF should now be useful for estimates of recent star formation and for studies of neutrino and other potential particle emission losses in hot WDs. Methods: To create a sample whose completeness can be characterized fully, we used stars whose spectra were obtained via the SDSS's “hot standard” target selection criteria. The hot standard stars were purposefully targeted to a high level of completeness by the SDSS for calibration purposes. We are fortunate that many of them are hot white dwarfs stars. We further limited the sample to stars with fitted temperatures exceeding 23 500 K and log{g} > 7.0. We determined stellar distances for our sample based on their absolute SDSS g filter magnitudes, derived from WD stellar atmosphere model fits to the SDSS stellar spectra. Results: We compared our LF with those of other researchers where overlap occurs; however, our LFs are unique in their extension to the most luminous/hottest WDs. The cool end of our LF connects with the hot end of previously determined SDSS WD LFs and agreement here is quite good. It is also good with previous non-SDSS WD LFs. We note distinct differences between the DA and non-DA LFs and discuss the reliability of the DA LF at its hot end. We have extended the range of luminosities covered in the most recent WD LFs. The SDSS sample is understood quite well and its exploration should contribute to a number of new insights into early white dwarf evolution.

  2. Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6

    NARCIS (Netherlands)

    Popping, Gergö; van Kampen, Eelco; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S.; Trager, Scott C.

    2016-01-01

    Now that Atacama Large (Sub)Millimeter Array is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J =1-0 out to CO

  3. Carbon Isotopes in Globular Clusters Down to the Bump in the Luminosity Function

    Science.gov (United States)

    Shetrone, Matthew D.

    2003-03-01

    We find that the 12C/13C ratio evolves from high values (>20) below the bump in the luminosity function (BLF) to near the equilibrium value of the CNO cycle above the BLF in the globular clusters (GCs) NGC 6528 and M4. This is the first time that the predicted decline of the 12C/13C ratios due to the extra mixing at the BLF is detected in a GC. In M4, a slight decline from 12C/13C = 10 just above the BLF at MV=+0.5 to 12C/13C = 4 at MV=-0.6 is detected, suggesting that some additional mixing may occur beyond the BLF in this cluster. Isotope ratios are measured and found to be constant in the GCs NGC 6553 and 47 Tucanae down to just above the BLF of those GCs. Based on observations made in part at the W. M. Keck Observatory by the Gemini staff, supported by the Gemini Observatory, which is operated by the Association of Universities of Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the UK, and the US. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. The Faint End of the Lyman Alpha Luminosity Function at 2 < z < 3.8

    Science.gov (United States)

    Devarakonda, Yaswant; Livermore, Rachael; Indahl, Briana; Wold, Isak; Davis, Dustin; Finkelstein, Steven

    2018-01-01

    Most current models predict that our universe is mostly composed of small, dim galaxies. Due to these galaxies being so faint, it is very difficult to study these types of galaxies outside of our local universe. This is particularly an issue for studying how these small galaxies evolved over their lifetimes. With the benefit of gravitational lensing, however, we are able to observe galaxies that are farther and fainter than ever before possible. In this particular study, we focus on Lyman-Alpha emitting galaxies between the redshifts of 2-3.8, so that we may study these galaxies during the epoch of peak star formation in the universe. We use the McDonald Observatory 2.7, Harlan Smith telescope with the VIRUS-P IFU spectrograph to observe several Hubble Frontier Field lensing clusters to spectroscopically discover faint galaxies over this redshift range. In addition to providing insight into the faint-end slope of the Lyman alpha luminosity function, the spectroscopic redshifts will allow us to better constrain the mass models of the foreground clusters, such as Abell 370, so that we may better understand lensing effects for this and future studies.

  5. Planetary Nebulae in the Solar Neighbourhood: Statistics, Distance Scale and Luminosity Function

    Science.gov (United States)

    Frew, David J.

    2008-07-01

    An accurate census of the nearest planetary nebulae (PNe) is needed for calculations of the total number, space density, scale height, and birth rate of PNe in the Galaxy, to understand the dynamics of an evolving nebula and its relationship to the cooling history of the central star, and also to provide an unbiased sample to investigate the frequency of binary central stars and their role in the formation and shaping of these objects. This study presents the most refined volume-limited survey of PNe known to date. Integrated H-alpha fluxes for over 400 mostly evolved PNe are presented, based primarily on data from the Southern H-alpha Sky Survey Atlas (SHASSA) and the Virginia Tech Spectral-Line Survey (VTSS). Aperture photometry on the digital images was performed to extract H-alpha+[NII] fluxes. The [NII] contribution was then de-convolved using literature data, new data from slit spectra, or spectrophotometric data from the Wisconsin H-Alpha Mapper (WHAM) also obtained as part of this project. Comparison with previous work shows that the flux scale presented here has no significant zero-point error. The H-alpha fluxes are used to determine new Zanstra temperatures for those PNe with accurate central star photometry, calculating surface-brightness distances for each PN in the sample, and in conjunction with accurate [OIII] fluxes, new absolute PN magnitudes for delineating the faint end of the PN luminosity function. A spectroscopic survey of a range of MASH PNe is also presented. New emission-line intensities for 60 PNe are given, including a preliminary discussion of the chemical abundances of this sample. New distances have been determined for a large number of PNe, by either critically examining the literature, or by deriving new extinction and kinematic distances where suitable. For all PNe not amenable to these approaches, distances were estimated from a new H-alpha surface brightness-radius (SB-r) relation. The Hα SB-r relation covers >6 dex in SB, and

  6. Deep UV Luminosity Functions at the Infall Region of the Coma Cluster

    Science.gov (United States)

    Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.

    2011-01-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.

  7. DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.; Salim, S.; Smith, R.; Mobasher, B.; Miller, N.; Ferguson, H.

    2012-01-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M UV = –10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (α ≈ –1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of α ≈ –1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than α = –1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M UV ≈ –14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M * = 10 8 M ☉ . A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.

  8. Luminosity monitor

    International Nuclear Information System (INIS)

    Underwood, D. G.

    1998-01-01

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10 -3 raw asymmetry in an experiment, an error of 10 -4 in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, - and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come

  9. Statistics of the hubble diagram. II. The form of the luminosity function and density variations with application to quasars

    International Nuclear Information System (INIS)

    Turner, E.L.

    1979-01-01

    New techniques for deriving a luminosity function LF and a spatial density distribution rho (r) from magnitude-redshift data are presented. These techniques do not require iterative improvement of an initially guessed solution or the adoption of arbitrary analytic forms; instead, they provide explicit numerical estimates of the LF and rho (r). Thus, sources of systematic uncertainty are eliminated. This is achieved at the cost of an increase in the statistical noise. As in Paper I of this series, it is necessary to assume that the LF does not vary in functional form. An internal test of this assumption is described.These techniques are illustrated by application to a sample of 3 CR and 4C quasars. The radio luminosity function is found to be a steep power law with no features. The optical luminosity function is found to be a shallow power law cut off roughly exponentially above a characteristic luminosity L/sub opt/* (Z) corresponding roughly to M/sub B/=-22-6 log (1+Z) The comoving density evolution is not well fitted by any simple function of 1+Z [e.g., (1+Z) 6 errs by factors as large as approx.5 at some redshifts] but is well represented by an exponential of look-back time. Specific analytic fits and numerical tabulations are given for each of these functions. The constant LF form assumption is found to be a reasonable first approximation for the quasars.Other possible applications of the new methods to problems in extragalactic and stellar astronomy are suggested

  10. Stellar population samples at the galactic poles. IV. Luminosity function for the M-type dwarfs at the South Pole

    International Nuclear Information System (INIS)

    Eggen, O.J.

    1976-01-01

    The (UBVRI) photometry of all M dwarfs which are within 10degree of the South Galactic Pole and brighter than visual magnitude 15, and which have annual proper motions greater than 0/sup prime/./sub /096, are discussed. The observations themselves are listed and discussed in a recent Astrophysical Journal Supplement. The luminosity function is found to be very similar, in the overlapping sections, to that previously derived spectrophotometrically from the M stars near the Sun, and the extension to M/subV/ near +13 mag indicates that this luminosity is near the peak of that function. No support is found in these data for the recently suggested superabundance of low velocity M stars near the Sun

  11. Evolution of Galaxy Luminosity and Stellar-Mass Functions since $z=1$ with the Dark Energy Survey Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Capozzi, D.; et al.

    2017-07-27

    We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made of $\\sim 4\\times 10^{6}$ galaxies at $0functions against literature results obtained with spectroscopic redshifts; ii) we want to shed light on the way galaxies build up their masses over cosmic time. We find that both the ${\\it i}$-band galaxy luminosity and stellar mass functions are characterised by a double-Schechter shape at $z<0.2$. Both functions agree well with those based on spectroscopic redshifts. The DES GSMF agrees especially with those measured for the GAlaxy Mass Assembly and the PRism MUlti-object Survey out to $z\\sim1$. At $0.2luminosity and stellar-mass densities respectively to be constant ($\\rho_{\\rm L}\\propto (1+z)^{-0.12\\pm0.11}$) and decreasing ($\\rho_{\\rm Mstar}\\propto (1+z)^{-0.5\\pm0.1}$) with $z$. This indicates that, while at higher redshift galaxies have less stellar mass, their luminosities do not change substantially because of their younger and brighter stellar populations. Finally, we also find evidence for a top-down mass-dependent evolution of the GSMF.

  12. The properties of X-ray-selected active galactic nuclei. I - Luminosity function, cosmological evolution, and contribution to the diffuse X-ray background

    International Nuclear Information System (INIS)

    Maccacaro, T.; Della ceca, R.; Gioia, I.M.; Morris, S.L.; Stocke, J.T.

    1991-01-01

    X-ray luminosity functions (XLFs) and their implications for cosmological evolution are determined for 420 X-ray-selected active galactic nuclei (AGN). The local XLFs flatten considerably when L(x) is less than or equal to 5 x 10 to the 42nd ergs/s, and higher-luminosity XLF are demonstrated to fit a power-law approximation. Cosmological evolution in terms of two pure-luminosity evolutionary models is directly supported by model-independent AGN XLF, showing weak evolution when z is less than 0.4 and more pronounced evolution at higher z. The parameter C is determined for the two models, and the values support the 'slower' evolution of these AGN relative to QSOs selected optically. The deevolved XLF best-fit slope is found to be 3.05 for high luminosities and 1.35 for low luminosities, with no evidence of slope changes for other luminosities. 38 refs

  13. LFsGRB: Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

    Science.gov (United States)

    Paul, Debdutta

    2018-04-01

    LFsGRB models the luminosity function (LF) of short Gamma Ray Bursts (sGRBs) by using the available catalog data of all short GRBs (sGRBs) detected till 2017 October, estimating the luminosities via pseudo-redshifts obtained from the Yonetoku correlation, and then assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. The data are fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs is derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks.

  14. Maximal lens bounds on QSO-galaxy association

    International Nuclear Information System (INIS)

    Kovner, I.

    1989-01-01

    The maximal possible enhancement of QSO number counts that can be produced by any ensemble of lenses which conserve brightness and in which the magnification probability is negligibly correlated with the intrinsic QSO flux is obtained. Under the assumption of the Boyle et al. (1988) number-magnitude relation for the QSOs unaffected by lenses, the theory is applied to the QSO-galaxy association sample of Webster et al. (1988). The results suggest that the background QSOs of Webster et al. may be appreciably affected by lensing. 17 refs

  15. Effects of Galaxy collisions on the structure and evolution of Galaxy clusters. I. Mass and luminosity functions and background light

    International Nuclear Information System (INIS)

    Miller, G.E.; Department of Astronomy, University of Texas at Austin)

    1983-01-01

    The role of galaxy collisions in controlling the form of the galaxy mass and luminosity functions and in creating a diffuse background light is investigated by means of a direct computer simulation. Galaxy collisions are treated in a realistic manner, including both galaxy mergers and tidal encounters. A large number of theoretical studies of a galaxy collisions were consulted to formulate the basic input physics of collision cross sections. Despite this large number of studies, there remains considerable uncertainty in the effects of a collision on a galaxy due mainly to our lack of knowledge of the orbital distribution of matter in galaxies. To improve this situation, some methods of semiempirical calibration are suggested: for example, a survey of background light in clusters of different richness and morphological classes. If real galaxies are represented by galaxy models where the bulk of the matter is on radial, rather than circular, orbits, then tidal collisions are more damaging and there are a number of interesting effects: Repeated tidal encounters lead to galaxy mass and luminosity functions which are largely independent of model parameters and the initial galaxy mass function. It appears unlikely that the form of the average present-day luminosity function characteristic of both field and cluster galaxies is due to collisions, but certain observed deviations from the average found by Heiligman and Turner and by Dressler may be a signature of collisions, in particular a flat faint-end slope. The amount of luminous matter stripped from the galaxies in the simulations agrees with the amount of diffuse background light seen in the Coma Cluster

  16. A PHYSICAL MODEL FOR THE 0 {approx}< z {approx}< 8 REDSHIFT EVOLUTION OF THE GALAXY ULTRAVIOLET LUMINOSITY AND STELLAR MASS FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tacchella, Sandro; Carollo, C. Marcella [Department of Physics, Institute for Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland); Trenti, Michele, E-mail: tasandro@phys.ethz.ch [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2013-05-10

    We present a model to understand the redshift evolution of the UV luminosity and stellar mass functions of Lyman break galaxies. Our approach is based on the assumption that the luminosity and stellar mass of a galaxy is related to its dark-matter (DM) halo assembly and gas infall rate. Specifically, galaxies experience a burst of star formation at the halo assembly time, followed by a constant star formation rate, representing a secular star formation activity sustained by steady gas accretion. Star formation from steady gas accretion is the dominant contribution to the galaxy UV luminosity at all redshifts. The model is calibrated by constructing a galaxy luminosity versus halo mass relation at z = 4 via abundance matching. After this luminosity calibration, the model naturally fits the z = 4 stellar mass function, and correctly predicts the evolution of both luminosity and stellar mass functions from z = 0 to z = 8. While the details of star formation efficiency and feedback are hidden within our calibrated luminosity versus halo mass relation, our study highlights that the primary driver of galaxy evolution across cosmic time is the buildup of DM halos, without the need to invoke a redshift-dependent efficiency in converting gas into stars.

  17. Structure, shape, and evolution of radiatively accelerated QSO emission-line clouds

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Mathews, W.G.

    1979-01-01

    The possibility that the broad emission-line regions of QSOs and active galactic nuclei are formed by a multitude of small clouds which are radiatively accelerated is discussed. Although this model is by no means certain at present, it has four virtues: (1) Observed emission-line widths can be produced with observationally allowed electron densities, UV luminosities, and ionization levels. (2) The acceleration force is coherent in each cloud are found. (3) Reasonable line profiles can result for all emission lines. (4) Photoionization of hydrogen accounts for both heating and acceleration of the emission-line gas. A self-consistent model is developed for the structure, shape, and evolution of radiatively accelerated clouds. The shape varies with cloud mass, and two distinct types of clouds. Fully ionized clouds of very low mass approach a nearly spherical shape. However, all clouds having masses greater than some critical mass adopt a ''pancake'' shape. The condition for constant cloud mass in the cloud frame is shown to be equivalent to the equation of motion of a cloud in the rest frame of the QSO. The emission-line profiles can be sensitive to radial variations in the properties of the intercloud medium, and those properties that correspond to observed profiles are discussed. Finally, the covering factor of a system of pancake clouds is estimated along with the total number of clouds required--approximately 10 14 clouds in each QSO

  18. THE DARK SIDE OF QSO FORMATION AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Romano-Diaz, Emilio; Shlosman, Isaac; Trenti, Michele; Hoffman, Yehuda

    2011-01-01

    Observed high-redshift QSOs, at z ∼ 6, may reside in massive dark matter (DM) halos of more than 10 12 M sun and are thus expected to be surrounded by overdense regions. In a series of 10 constrained simulations, we have tested the environment of such QSOs. The usage of constrained realizations has enabled us to address the issue of cosmic variance and to study the statistical properties of the QSO host halos. Comparing the computed overdensities with respect to the unconstrained simulations of regions empty of QSOs, assuming there is no bias between the DM and baryon distributions, and invoking an observationally constrained duty cycle for Lyman break galaxies, we have obtained the galaxy count number for the QSO environment. We find that a clear discrepancy exists between the computed and observed galaxy counts in the Kim et al. samples. Our simulations predict that on average eight z ∼ 6 galaxies per QSO field should have been observed, while Kim et al. detect on average four galaxies per QSO field compared to an average of three galaxies in a control sample (GOODS fields). While we cannot rule out a small number of statistics for the observed fields to high confidence, the discrepancy suggests that galaxy formation in the QSO neighborhood proceeds differently than in the field. We also find that QSO halos are the most massive of the simulated volume at z ∼ 6 but this is no longer true at z ∼ 3. This implies that QSO halos, even in a case where they are the most massive ones at high redshifts, do not evolve into the most massive galaxy clusters at z = 0.

  19. The TESIS Project: Are Type 2 QSO Hidden in X-Ray Emitting EROs?

    Science.gov (United States)

    Severgnini, P.; Della Ceca, R.; Braito, V.; Saracco, P.; Longhetti, M.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    X-ray selected EROs are, on average, the hardest X-ray sources in medium and deep X-ray fields. This coupled with their extremely red colors (R-K > 5) suggest that they represent one of the most promising population where looking for high-luminosity (LX > 1044 erg s-1) and X-ray obscured (NH > 1022 cm-2) type2 AGNs, the so called QSO2 (e.g., [5]; [4]; Mignoli et al. submitted to A&A). These latter are predicted in large density by the synthesis model of the Cosmic X-ray background [9] even if only few observational evidences have been found so far (e.g., [1] and references therein; Caccianiga et al. A&A accepted).

  20. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer

    Science.gov (United States)

    Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.

    2011-04-01

    Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the online material accompanying this article, we present source catalogs at 24 μm and 70 μm for both the GOODS-North and -South fields. Appendices are only available in electronic form at http://www.aanda.orgFull Tables B1-B4 are only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A35

  1. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    Science.gov (United States)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  2. A COMPLETE SAMPLE OF BRIGHT SWIFT LONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION

    International Nuclear Information System (INIS)

    Salvaterra, R.; Campana, S.; Vergani, S. D.; Covino, S.; D'Avanzo, P.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Sbarufatti, B.; Tagliaferri, G.; Nava, L.; Flores, H.; Piranomonte, S.

    2012-01-01

    We present a carefully selected sub-sample of Swift long gamma-ray bursts (GRBs) that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, which are bright in the 15-150 keV Swift/BAT band, i.e., with 1-s peak photon fluxes in excess to 2.6 photons s –1 cm –2 . The sample is composed of 58 bursts, 52 of them with redshift for a completeness level of 90%, while another two have a redshift constraint, reaching a completeness level of 95%. For only three bursts we have no constraint on the redshift. The high level of redshift completeness allows us for the first time to constrain the GRB luminosity function and its evolution with cosmic times in an unbiased way. We find that strong evolution in luminosity (δ l = 2.3 ± 0.6) or in density (δ d = 1.7 ± 0.5) is required in order to account for the observations. The derived redshift distributions in the two scenarios are consistent with each other, in spite of their different intrinsic redshift distributions. This calls for other indicators to distinguish among different evolution models. Complete samples are at the base of any population studies. In future works we will use this unique sample of Swift bright GRBs to study the properties of the population of long GRBs.

  3. A COMPLETE SAMPLE OF BRIGHT SWIFT LONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Salvaterra, R. [INAF, IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Campana, S.; Vergani, S. D.; Covino, S.; D' Avanzo, P.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Sbarufatti, B.; Tagliaferri, G. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy); Nava, L. [SISSA, via Bonomea 265, I-34136 Trieste (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Univ. Paris-Diderot 5 place Jules Janssen, 92195 Meudon (France); Piranomonte, S., E-mail: ruben@lambrate.inaf.it [INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Rome (Italy)

    2012-04-10

    We present a carefully selected sub-sample of Swift long gamma-ray bursts (GRBs) that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, which are bright in the 15-150 keV Swift/BAT band, i.e., with 1-s peak photon fluxes in excess to 2.6 photons s{sup -1} cm{sup -2}. The sample is composed of 58 bursts, 52 of them with redshift for a completeness level of 90%, while another two have a redshift constraint, reaching a completeness level of 95%. For only three bursts we have no constraint on the redshift. The high level of redshift completeness allows us for the first time to constrain the GRB luminosity function and its evolution with cosmic times in an unbiased way. We find that strong evolution in luminosity ({delta}{sub l} = 2.3 {+-} 0.6) or in density ({delta}{sub d} = 1.7 {+-} 0.5) is required in order to account for the observations. The derived redshift distributions in the two scenarios are consistent with each other, in spite of their different intrinsic redshift distributions. This calls for other indicators to distinguish among different evolution models. Complete samples are at the base of any population studies. In future works we will use this unique sample of Swift bright GRBs to study the properties of the population of long GRBs.

  4. Cosmological implications of the redshift distribution of QSO absorption systems

    International Nuclear Information System (INIS)

    Khare-Joshi, P.; Perry, J.J.

    1982-01-01

    We have used the observational data on QSO absorption redshifts, as compiled by Perry, Burbidge and Burbidge (1978) (hereafter PB 2 ), Drew (1978) and Weyman et al. (1979) (hereafter W 2 PT), to study various selection effects likely to affect the distribution of absorption redshifts and, then to determine the probable number distribution of absorbers per redshift interval of 0.1, as a function of z. The distribution obtained, assuming all the observed absorption to be intervening, is found to be statistically incompatible with the redshift distribution of galaxies with constant cross-section for any Friedman cosmology with zero cosmological constant and q 0 >= 0. Therefore, in order to eliminate the absorption systems which are plausibly intrinsic, we have applied the criterion suggested by W 2 PT and by the analysis of the distribution of absorption systems as a function of the relative velocity between the emitting and the absorbing gas, for the PB 2 data set; to wit, we have analysed the distributions obtained by assuming that those systems with relative velocity greater than 0.02 c, 0.02 c but not equal to 0.1 c to 0.11 c and 0.06 c respectively, or those systems without O VI and N V lines, are produced by the intervening galaxies. The results are discussed. (author)

  5. M dwarfs in the Local Milky Way: The Field Low-Mass Stellar Luminosity and Mass Functions

    Energy Technology Data Exchange (ETDEWEB)

    Bochanski, Jr, John J. [Univ. of Washington, Seattle, WA (United States)

    2008-01-01

    Modern sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Two-Micron All Sky Survey, have revolutionized how Astronomy is done. With millions of photometric and spectroscopic observations, global observational properties can be studied with unprecedented statistical significance. Low-mass stars dominate the local Milky Way, with tens of millions observed by SDSS within a few kpc. Thus, they make ideal tracers of the Galactic potential, and the thin and thick disks. In this thesis dissertation, I present my efforts to characterize the local low-mass stellar population, using a collection of observations from the Sloan Digital Sky Survey (SDSS). First, low-mass stellar template spectra were constructed from the co-addition of thousands of SDSS spectroscopic observations. These template spectra were used to quantify the observable changes introduced by chromospheric activity and metallicity. Furthermore, the average ugriz colors were measured as a function of spectral type. Next, the local kinematic structure of the Milky Way was quantified, using a special set of SDSS spectroscopic observations. Combining proper motions and radial velocities (measured using the spectral templates), along with distances, the full UVW space motions of over 7000 low-mass stars along one line of sight were computed. These stars were also separated kinematically to investigate other observational differences between the thin and thick disks. Finally, this dissertation details a project designed to measure the luminosity and mass functions of low-mass stars. Using a new technique optimized for large surveys, the field luminosity function (LF) and local stellar density profile are measured simultaneously. The sample size used to estimate the LF is nearly three orders of magnitude larger than any previous study, offering a definitive measurement of this quantity. The observed LF is transformed into a mass function (MF) and compared to previous studies.

  6. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    Science.gov (United States)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  7. The Extremely Luminous Quasar Survey (ELQS) in SDSS and the high-z bright-end Quasar Luminosity Function

    Science.gov (United States)

    Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian

    2018-01-01

    Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i < 18.0) quasars in the redshift range of 2.8<= z<=5.0. It effectively uses Random Forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation.The ELQS is spectroscopically following up ~230 new quasar candidates in an area of ~12000 deg2 in the SDSS footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.

  8. On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons

    Science.gov (United States)

    van Velzen, S.

    2018-01-01

    The tidal disruption of a star by a massive black hole is expected to yield a luminous flare of thermal emission. About two dozen of these stellar tidal disruption flares (TDFs) may have been detected in optical transient surveys. However, explaining the observed properties of these events within the tidal disruption paradigm is not yet possible. This theoretical ambiguity has led some authors to suggest that optical TDFs are due to a different process, such as a nuclear supernova or accretion disk instabilities. Here we present a test of a fundamental prediction of the tidal disruption event scenario: a suppression of the flare rate due to the direct capture of stars by the black hole. Using a recently compiled sample of candidate TDFs with black hole mass measurements, plus a careful treatment of selection effects in this flux-limited sample, we confirm that the dearth of observed TDFs from high-mass black holes is statistically significant. All the TDF impostor models we consider fail to explain the observed mass function; the only scenario that fits the data is a suppression of the rate due to direct captures. We find that this suppression can explain the low volumetric rate of the luminous TDF candidate ASASSN-15lh, thus supporting the hypothesis that this flare belongs to the TDF family. Our work is the first to present the optical TDF luminosity function. A steep power law is required to explain the observed rest-frame g-band luminosity, {dN}/{{dL}}g\\propto {L}g-2.5. The mean event rate of the flares in our sample is ≈ 1× {10}-4 galaxy‑1 yr‑1, consistent with the theoretically expected tidal disruption rate.

  9. THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. III. THE LUMINOSITY FUNCTION AT z ∼ 6

    International Nuclear Information System (INIS)

    Su Jian; Stiavelli, Massimo; Bergeron, Eddie; Bradley, Larry; Dahlen, Tomas; Ferguson, Henry C.; Koekemoer, Anton; Lucas, Ray A.; Panagia, Nino; Pavlovsky, Cheryl; Oesch, Pascal; Carollo, Marcella; Lilly, Simon; Trenti, Michele; Giavalisco, Mauro; Mobasher, Bahram

    2011-01-01

    In this paper, we present a derivation of the rest-frame 1400 A luminosity function (LF) at redshift six from a new application of the maximum likelihood method by exploring the five deepest Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) fields, i.e., the Hubble Ultra Deep Field, two UDF05 fields, and two Great Observatories Origins Deep Survey fields. We work on the latest improved data products, which makes our results more robust than those of previous studies. We use unbinned data and thereby make optimal use of the information contained in the data set. We focus on the analysis to a magnitude limit where the completeness is larger than 50% to avoid possibly large errors in the faint end slope that are difficult to quantify. We also take into account scattering in and out of the dropout sample due to photometric errors by defining for each object a probability that it belongs to the dropout sample. We find the best-fit Schechter parameters to the z ∼ 6 LF are α = 1.87 ± 0.14, M * = -20.25 ± 0.23, and φ * = 1.77 +0.62 -0.49 x 10 -3 Mpc -3 . Such a steep slope suggests that galaxies, especially the faint ones, are possibly the main sources of ionizing photons in the universe at redshift six. We also combine results from all studies at z ∼ 6 to reach an agreement in the 95% confidence level that -20.45 * < -20.05 and -1.90 < α < -1.55. The luminosity density has been found not to evolve significantly between z ∼ 6 and z ∼ 5, but considerable evolution is detected from z ∼ 6 to z ∼ 3.

  10. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: VERY BRIGHT END OF THE LUMINOSITY FUNCTION AT z > 7

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan, Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Karoji, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tsai, Chao-Wei [Infrared Processing and Analysis Center, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2012-04-10

    The primary goal of the Taiwan ECDFS Near-Infrared Survey (TENIS) is to find well-screened galaxy candidates at z > 7 (z' dropout) in the Extended Chandra Deep Field-South (ECDFS). To this end, TENIS provides relatively deep J and K{sub s} data ({approx}25.3 ABmag, 5{sigma}) for an area of 0.5 Multiplication-Sign 0.5 deg. Leveraged with existing data at mid-infrared to optical wavelengths, this allows us to screen for the most luminous high-z objects, which are rare and thus require a survey over a large field to be found. We introduce new color selection criteria to select a z > 7 sample with minimal contaminations from low-z galaxies and Galactic cool stars; to reduce confusion in the relatively low angular resolution Infrared Array Camera (IRAC) images, we introduce a novel deconvolution method to measure the IRAC fluxes of individual sources. Illustrating perhaps the effectiveness at which we screen out interlopers, we find only one z > 7 candidate, TENIS-ZD1. The candidate has a weighted z{sub phot} of 7.8, and its colors and luminosity indicate a young (45M years old) starburst galaxy with a stellar mass of 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }. The result matches with the observational luminosity function analysis and the semianalytic simulation result based on the Millennium Simulations, which may over predict the volume density for high-z massive galaxies. The existence of TENIS-ZD1, if confirmed spectroscopically to be at z > 7, therefore poses a challenge to current theoretical models for how so much mass can accumulate in a galaxy at such a high redshift.

  11. Cosmological Evolution of QSO Absorption Systems

    Science.gov (United States)

    Stengler-Larrea, Erik

    1995-08-01

    First, the evolution with cosmic time of the hydrogen clouds which produce the Lyman-alpha absorption lines is studied in dependence on the strength of these lines. From the analysis it is concluded that the results show no evidence of a dependence in the sense of stronger lines evolving faster, although for the resolution at which the used observations were done, it can not be ruled out. Within the same analysis, a distribution of the Doppler parameter of the lines was obtained, with large values and a wide spread. This parameter being an indicator of the gas temperature, this result is in accordance with high temperatures and, consequently, large ionised fractions and a large fraction of the baryonic matter of the universe being associated with these clouds. However, recent high resolution studies seem to reveal that much lower temperatures are characteristic of the clouds. The main content of this thesis, however, focuses on the redshift evolution of the absorbing systems producing absorption at the Lyman limit and of the amount of CIV producing CIV absorption lines. Regarding the CIV absorbers, previous predictions on the effects underlying their redshift distribution pointed to an increase with redshift of the absorbing column densities. In this thesis the first direct measurements of such column densities by profile fitting of a large number of absorption systems (73) are presented, confirming the predictions of a decrease of at least a factor of 3 between z=1.5 and z=3.0. The study on the evolution of Lyman limit absorption systems (LLSs) puts an end to previous discrepancies between the results of different groups. Both a smooth single power law dependence of the LLS number density on redshift indicating no evolution in number density for 0.4 Team of the HST Key Project on QSO absorption lines, and in particular to estimate the necessary exposure times, the magnitudes of several of these objects had to be re-measured. The acquisition of their images and the

  12. QSO Pairs across Active Galaxies: Evidence of Blueshifts? D. Basu

    Indian Academy of Sciences (India)

    2006-12-04

    Dec 4, 2006 ... Abstract. Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spec- tra for both ...

  13. The distribution of QSO redshift (1 + Zi)/(1 + Zj)

    International Nuclear Information System (INIS)

    Drew, J.E.

    1978-01-01

    Following a general survey conducted by Burbidge and Burbidge (1975) to consider the case for line-Locking in QSO spectra and a later statistical study by Sargent and Boroson (1977), the method of the latter and the QSO sample of the former are investigated further. The results of Sargent and Boroson are confirmed and it is noted that uneven spectral resolution in the QSO sample has over-emphasized the 1.11 peak in the combined emission-absorption and absorption-absorption redshift ratio distribution. The sample is extended to include recently observed QSOs and the absorption redshift selection is designed to exclude all but the most certain absorption redshifts. Care is taken in the selection procedure to ensure that there is no personal bias either way regarding the line-locking hypothesis. A peak is found to occur in the distribution of (1 + sub(Zem))/(1 + sub(Zabs)), given by the extended sample, at 1.11 with a chance probability of 3 x 10 -5 . It is concluded that the present data suggests the peak is real and that a physical interaction between the QSO emission line regions and absorption systems concerned is required to explain its occurrence. However, the nature of the interaction is as yet unknown and there are difficulties with the possibility of line-locking. (orig.) [de

  14. THE Hα LUMINOSITY FUNCTION AND STAR FORMATION RATE VOLUME DENSITY AT z = 0.8 FROM THE NEWFIRM Hα SURVEY

    International Nuclear Information System (INIS)

    Ly Chun; Lee, Janice C.; Momcheva, Ivelina; Dale, Daniel A.; Staudaher, Shawn; Moore, Carolynn A.; Salim, Samir; Finn, Rose

    2011-01-01

    We present new measurements of the Hα luminosity function (LF) and star formation rate (SFR) volume density for galaxies at z ∼ 0.8. Our analysis is based on 1.18 μm narrowband data from the NEWFIRM Hα (NewHα) Survey, a comprehensive program designed to capture deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth (∼1.9 x 10 -17 erg s -1 cm -2 in Hα at 3σ) and areal coverage (0.82 deg 2 ) of the 1.18 μm observations complements other recent Hα studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as Hα emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields covered by the observations reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required for such analyses. The dust-corrected LF is well described by a Schechter function with L * = 10 43.00±0.52 erg s -1 , Φ * = 10 -3.20±0.54 Mpc -3 , and α = -1.6 ± 0.19. We compare our Hα LF and SFR density to those at z ∼ 3.4 , which we attribute to significant L * evolution. Our Hα SFR density of 10 -1.00±0.18 M sun yr -1 Mpc -3 is consistent with UV and [O II] measurements at z ∼ 1. We discuss how these results compare to other Hα surveys at z ∼ 0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure (for example, with simulations which try to simultaneously reproduce the observed Hα LF and

  15. z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions

    Science.gov (United States)

    Bouwens, Rychard J.; Illingworth, Garth D.; Franx, Marijn; Ford, Holland

    2008-10-01

    We use all available deep optical ACS and near-IR data over both the HUDF and the two GOODS fields to search for star-forming galaxies at zgtrsim 7 and constrain the UV LF within the first 700 Myr. Our data set includes ~23 arcmin2 of deep NICMOS J + H data and ~248 arcmin2 of ground-based (ISAAC+MOIRCS) data, coincident with ACS optical data of greater or equal depths. In total, we find eight ~ 7.3 z-dropouts in our search fields, but no z ~ 9 J-dropout candidates. A careful consideration of a wide variety of different contaminants suggest an overall contamination level of just ~12% for our z-dropout selection. After performing detailed simulations to accurately estimate the selection volumes, we derive constraints on the UV LFs at z ~ 7 and z ~ 9. For a faint-end slope α = - 1.74, our most likely values for MUV* and phiv* at z ~ 7 are -19.8 +/- 0.4 mag and 1.1+ 1.7-0.7 × 10-3 Mpc-3, respectively. Our search results for z ~ 9 J-dropouts set a 1 σ lower limit on MUV* of -19.6 mag assuming that phiv* and α are the same as their values at slightly later times. This lower limit on MUV* is 1.4 mag fainter than our best-fit value at z ~ 4, suggesting that the UV LF has undergone substantial evolution over this time period. No evolution is ruled out at 99% confidence from z ~ 7 to z ~ 6 and at 80% confidence from z ~ 9 to z ~ 7. We find that the mass-to-light ratio of halos evolves as ~(1 + z)-1 if we require that the observed brightening in MUV* with redshift [i.e., MUV* = (- 21.02 +/- 0.09) + (0.36 +/- 0.08) (z - 3.8) ] be consistent with the expected evolution in the halo mass function. Finally, we consider the shape of the UV LF at zgtrsim 5 and discuss the implications of the Schechter-like form of the observed LFs, particularly the unexpected abrupt cutoff at the bright end. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5

  16. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Richard, Johan [Centre de Recherche Astrophysique de Lyon, Université Lyon 1, 9 Avenue Charles André, F-69561 Saint Genis Laval Cedex (France); Stark, Daniel P.; Robertson, Brant [Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Teplitz, Harry I.; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Kewley, Lisa, E-mail: anahita.alavi@email.ucr.edu [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  17. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Quan; Libeskind, N. I. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Tempel, E., E-mail: qguo@aip.de [Tartu Observatory, Observatooriumi 1, 61602 Tõravere (Estonia)

    2015-02-20

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  18. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    International Nuclear Information System (INIS)

    Guo, Quan; Libeskind, N. I.; Tempel, E.

    2015-01-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. < M prim. + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation

  19. PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT z ∼> 7 USING HUBBLE SPACE TELESCOPE PURE PARALLEL OBSERVATIONS

    International Nuclear Information System (INIS)

    Yan Haojing; Yan Lin; Zamojski, Michel A.; Windhorst, Rogier A.; McCarthy, Patrick J.; Fan Xiaohui; Dave, Romeel; Roettgering, Huub J. A.; Koekemoer, Anton M.; Robertson, Brant E.; Cai Zheng

    2011-01-01

    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 arcmin 2 in total area. We have found three bright Y 098 -dropouts, which are candidate galaxies at z ∼> 7.4. One of these objects shows an indication of peculiar variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date (L>2L*). Such very luminous objects could be the progenitors of the high-mass Lyman break galaxies observed at lower redshifts (up to z ∼ 5). While our sample is still limited in size, it is much less subject to the uncertainty caused by 'cosmic variance' than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z ∼ 7.4 is not well explained by the current luminosity function (LF) estimates at z ∼ 8. However, its inferred surface density could be explained by the prediction from the LFs at z ∼ 7 if it belongs to the high-redshift tail of the galaxy population at z ∼ 7.

  20. C-M diagram and luminosity function of the Galactic globular cluster NGC 7099. I. Photographic photometry

    International Nuclear Information System (INIS)

    Piotto, G.; Rosino, L.; Capaccioli, M.; Ortolani, S.; Alcaino, G.; Osservatorio Astronomico, Padua, Italy; Ministerio de Educacion de Chile, Instituto Isaac Newton, Santiago)

    1987-01-01

    New photographic photometry of about 4400 stars in the field of the Galactic globular cluster NGC 7099 = M30 is presented. A C-M diagram and a luminosity function are obtained from this photometry. The distance modulus is estimated at 14.5 + or - 0.5 assuming V(HB) = 15.11 + or - 0.10 and E(B-V) = 0.03 + or - 0.03. The metallicity is (Fe/H) = 1.9 + or - 0.3 based on the dereddened color index (B-V)0,g = 0.71 + or - 0.03. The theoretical isochrones of VandenBerg and Bell (1985) give a better fit to the observations assuming (Fe/H) = -1.8, (m-M)V = 14.6, and E(B-V) = 0.02. A fair fit is also obtained using isochrones of low iron content with an oxygen enhancement of 0.7. From the fit, an age of 17 + or - 4 Gyr is deduced. 41 references

  1. The Pulsar Luminosity Function

    OpenAIRE

    O. H. Guseinov; E. Yazgan; S. O. Tagieva

    2003-01-01

    Hemos construido y examinado la función de luminosidad para pulsares, usando una nueva lista la cual incluye datos de 1328 radio pulsares. En este trabajo, se construye por primera vez la función de luminosidad en 1400 MHz. También presentamos una función de luminosidad mejorada en 400 MHz. Se comparan las funciones de luminosidad en 400 y 1400 MHz. De igual manera se construyen las funciones de luminosidad excluyendo los pulsares binarios y los de campos magnéticos pequeños. S...

  2. The UV galaxy luminosity function at z = 3-5 from the CFHT Legacy Survey Deep fields

    Science.gov (United States)

    van der Burg, R. F. J.; Hildebrandt, H.; Erben, T.

    2010-11-01

    Aims: We measure and study the evolution of the UV galaxy luminosity function (LF) at z = 3-5 from the largest high-redshift survey to date, the Deep part of the CFHT Legacy Survey. We also give accurate estimates of the SFR density at these redshifts. Methods: We consider ~100 000 Lyman-break galaxies at z ≈ 3.1, 3.8 and 4.8 selected from very deep ugriz images of this data set and estimate their rest-frame 1600 Å luminosity function. Due to the large survey volume, cosmic variance plays a negligible role. Furthermore, we measure the bright end of the LF with unprecedented statistical accuracy. Contamination fractions from stars and low-z galaxy interlopers are estimated from simulations. From these simulations the redshift distributions of the Lyman-break galaxies in the different samples are estimated, and those redshifts are used to choose bands and calculate k-corrections so that the LFs are compared at the same rest-frame wavelength. To correct for incompleteness, we study the detection rate of simulated galaxies injected to the images as a function of magnitude and redshift. We estimate the contribution of several systematic effects in the analysis to test the robustness of our results. Results: We find the bright end of the LF of our u-dropout sample to deviate significantly from a Schechter function. If we modify the function by a recently proposed magnification model, the fit improves. For the first time in an LBG sample, we can measure down to the density regime where magnification affects the shape of the observed LF because of the very bright and rare galaxies we are able to probe with this data set. We find an increase in the normalisation, ϕ*, of the LF by a factor of 2.5 between z ≈ 5 and z ≈ 3. The faint-end slope of the LF does not evolve significantly between z ≈ 5 and z ≈ 3. We do not find a significant evolution of the characteristic magnitude in the studied redshift interval, possibly because of insufficient knowledge of the source

  3. Lyα EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION

    International Nuclear Information System (INIS)

    Kobayashi, Masakazu A. R.; Totani, Tomonori; Nagashima, Masahiro

    2010-01-01

    We present theoretical predictions of the UV continuum luminosity function (UV LF) and Lyα equivalent width (EW) distribution of Lyα emitters (LAEs) in the framework of the hierarchical clustering model of galaxy formation. The model parameters for the LAEs were determined by fitting to the observed Lyα LF at z = 5.7 in our previous study, and the fit indicates that extinction of Lyα photons by dust is significantly less effective than that of UV continuum photons, implying a clumpy dust distribution in the interstellar medium. We then compare the predictions about UV LFs and EW distributions with a variety of observations at z∼ 3-6, allowing no more free parameters and paying careful attention to the selection conditions of LAEs in each survey. We find that the predicted UV LFs and EW distributions are in nice agreement with observed data, and especially, our model naturally reproduces the existence of large EW LAEs (∼> 240 A) without introducing Pop III stars or top-heavy initial mass function. We show that both the stellar population (young age and low metallicity) and extinction by clumpy dust are the keys to reproducing large EW LAEs. The evidence of EW enhancement by clumpy dust is further strengthened by the quantitative agreement between our model and recent observations about a positive correlation between EW and extinction. The observed trend that brighter LAEs in the UV continuum tend to have smaller mean EW is also reproduced, and the clumpy dust plays an important role again for this trend. We suggested in our previous study that the transmission of the intergalactic medium for Lyα emission rapidly decreases from z ∼ 6 to 7 by fitting to Lyα LFs, and this evidence is quantitatively strengthened by the comparison with the UV LF and EW distribution at z ∼ 6.6.

  4. THE WYOMING SURVEY FOR Hα. II. Hα LUMINOSITY FUNCTIONS AT z∼ 0.16, 0.24, 0.32, AND 0.40

    International Nuclear Information System (INIS)

    Dale, Daniel A.; Cook, David O.; Moore, Carolynn A.; Staudaher, Shawn M.; Barlow, Rebecca J.; Cohen, Seth A.; Johnson, L. Clifton; Kattner, ShiAnne M.; Schuster, Micah D.

    2010-01-01

    The Wyoming Survey for Hα, or WySH, is a large-area, ground-based imaging survey for Hα-emitting galaxies at redshifts of z ∼ 0.16, 0.24, 0.32, and 0.40. The survey spans up to 4 deg 2 in a set of fields of low Galactic cirrus emission, using twin narrowband filters at each epoch for improved stellar continuum subtraction. Hα luminosity functions are presented for each Δz ∼ 0.02 epoch based on a total of nearly 1200 galaxies. These data clearly show an evolution with look-back time in the volume-averaged cosmic star formation rate. Integrals of Schechter fits to the incompleteness- and extinction-corrected Hα luminosity functions indicate star formation rates per comoving volume of 0.010, 0.013, 0.020, 0.022 h 70 M sun yr -1 Mpc -3 at z ∼ 0.16, 0.24, 0.32, and 0.40, respectively. Combined statistical and systematic measurement uncertainties are on the order of 25%, while the effects of cosmic variance are at the 20% level. The bulk of this evolution is driven by changes in the characteristic luminosity L * of the Hα luminosity functions, with L * for the earlier two epochs being a factor of 2 larger than L * at the latter two epochs; it is more difficult with this data set to decipher systematic evolutionary differences in the luminosity function amplitude and faint-end slope. Coupling these results with a comprehensive compilation of results from the literature on emission line surveys, the evolution in the cosmic star formation rate density over 0 ∼< z ∼< 1.5 is measured.

  5. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization

    Science.gov (United States)

    Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki

    2018-02-01

    We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.

  6. Probing Very Bright End of Galaxy Luminosity Function at z >~ 7 Using Hubble Space Telescope Pure Parallel Observations

    Science.gov (United States)

    Yan, Haojing; Yan, Lin; Zamojski, Michel A.; Windhorst, Rogier A.; McCarthy, Patrick J.; Fan, Xiaohui; Röttgering, Huub J. A.; Koekemoer, Anton M.; Robertson, Brant E.; Davé, Romeel; Cai, Zheng

    2011-02-01

    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 arcmin2 in total area. We have found three bright Y 098-dropouts, which are candidate galaxies at z >~ 7.4. One of these objects shows an indication of peculiar variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date (L>2L*). Such very luminous objects could be the progenitors of the high-mass Lyman break galaxies observed at lower redshifts (up to z ~ 5). While our sample is still limited in size, it is much less subject to the uncertainty caused by "cosmic variance" than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z ≈ 7.4 is not well explained by the current luminosity function (LF) estimates at z ≈ 8. However, its inferred surface density could be explained by the prediction from the LFs at z ≈ 7 if it belongs to the high-redshift tail of the galaxy population at z ≈ 7. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11700 and 11702.

  7. The UDF05 Follow-up of the Hubble Ultra Deep Field. III. The Luminosity Function at z ~ 6

    Science.gov (United States)

    Su, Jian; Stiavelli, Massimo; Oesch, Pascal; Trenti, Michele; Bergeron, Eddie; Bradley, Larry; Carollo, Marcella; Dahlen, Tomas; Ferguson, Henry C.; Giavalisco, Mauro; Koekemoer, Anton; Lilly, Simon; Lucas, Ray A.; Mobasher, Bahram; Panagia, Nino; Pavlovsky, Cheryl

    2011-09-01

    In this paper, we present a derivation of the rest-frame 1400 Å luminosity function (LF) at redshift six from a new application of the maximum likelihood method by exploring the five deepest Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) fields, i.e., the Hubble Ultra Deep Field, two UDF05 fields, and two Great Observatories Origins Deep Survey fields. We work on the latest improved data products, which makes our results more robust than those of previous studies. We use unbinned data and thereby make optimal use of the information contained in the data set. We focus on the analysis to a magnitude limit where the completeness is larger than 50% to avoid possibly large errors in the faint end slope that are difficult to quantify. We also take into account scattering in and out of the dropout sample due to photometric errors by defining for each object a probability that it belongs to the dropout sample. We find the best-fit Schechter parameters to the z ~ 6 LF are α = 1.87 ± 0.14, M * = -20.25 ± 0.23, and phi* = 1.77+0.62 -0.49 × 10-3 Mpc-3. Such a steep slope suggests that galaxies, especially the faint ones, are possibly the main sources of ionizing photons in the universe at redshift six. We also combine results from all studies at z ~ 6 to reach an agreement in the 95% confidence level that -20.45 Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 10632 and 11563.

  8. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z {approx} 8 LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, L. D.; Stiavelli, M.; Pirzkal, N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trenti, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Oesch, P. A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Treu, T. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bouwens, R. J. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Shull, J. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Holwerda, B. W. [European Space Agency (ESTEC), Keplerlaan 1, NL-2200 AG, Noordwijk (Netherlands)

    2012-12-01

    We report the discovery of 33 Lyman-break galaxy candidates at z {approx} 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin{sup 2}) with Y {sub 098} (or Y {sub 105}), J {sub 125}, and H {sub 160} band coverage needed to search for z {approx} 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y {sub 105} data (required to select z {approx} 8 sources). Our sample of 33 relatively bright Y {sub 098}-dropout galaxies have J {sub 125}-band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J {sub 125} {approx}< 27.4) z {approx} 8 galaxy candidates presented to date. Combining our data set with the Hubble Ultra-Deep Field data set, we constrain the rest-frame ultraviolet galaxy luminosity function at z {approx} 8 over the widest dynamic range currently available. The combined data sets are well fitted by a Schechter function, i.e., {phi} (L) = {phi}{sub *} (L/L{sub *}){sup {alpha}} e{sup -(}L{sup /L{sub *})}, without evidence for an excess of sources at the bright end. At 68% confidence, for h = 0.7 we derive {phi}{sub *} = (4.3{sup +3.5} {sub -2.1}) Multiplication-Sign 10{sup -4} Mpc{sup -3}, M {sub *} = -20.26{sup +0.29} {sub -0.34}, and a very steep faint-end slope {alpha} = -1.98{sup +0.23} {sub -0.22}. While the best-fit parameters still have a strong degeneracy, especially between {phi}{sub *} and M {sub *}, our improved coverage at the bright end has reduced the uncertainty of the faint-end power-law slope at z {approx} 8 compared to the best previous determination at {+-}0.4. With a future expansion of the BoRG survey, combined with planned ultradeep WFC3/IR observations, it will be possible to further reduce this uncertainty and clearly demonstrate the steepening of the faint-end slope compared

  9. The ultracool-field dwarf luminosity-function and space density from the Canada-France Brown Dwarf Survey

    Science.gov (United States)

    Reylé, C.; Delorme, P.; Willott, C. J.; Albert, L.; Delfosse, X.; Forveille, T.; Artigau, E.; Malo, L.; Hill, G. J.; Doyon, R.

    2010-11-01

    Context. Thanks to recent and ongoing large scale surveys, hundreds of brown dwarfs have been discovered in the last decade. The Canada-France Brown Dwarf Survey is a wide-field survey for cool brown dwarfs conducted with the MegaCam camera on the Canada-France-Hawaii Telescope. Aims: Our objectives are to find ultracool brown dwarfs and to constrain the field brown-dwarf luminosity function and the mass function from a large and homogeneous sample of L and T dwarfs. Methods: We identify candidates in CFHT/MegaCam i' and z' images and follow them up with pointed near infrared (NIR) imaging on several telescopes. Halfway through our survey we found ~50 T dwarfs and ~170 L or ultra cool M dwarfs drawn from a larger sample of 1400 candidates with typical ultracool dwarfs i'-z' colours, found in 780 square degrees. Results: We have currently completed the NIR follow-up on a large part of the survey for all candidates from mid-L dwarfs down to the latest T dwarfs known with utracool dwarfs' colours. This allows us to draw on a complete and well defined sample of 102 ultracool dwarfs to investigate the luminosity function and space density of field dwarfs. Conclusions: We found the density of late L5 to T0 dwarfs to be 2.0+0.8-0.7 × 10-3 objects pc-3, the density of T0.5 to T5.5 dwarfs to be 1.4+0.3-0.2 × 10-3 objects pc-3, and the density of T6 to T8 dwarfs to be 5.3+3.1-2.2 × 10-3 objects pc-3. We found that these results agree better with a flat substellar mass function. Three latest dwarfs at the boundary between T and Y dwarfs give the high density 8.3+9.0-5.1 × 10-3 objects pc-3. Although the uncertainties are very large this suggests that many brown dwarfs should be found in this late spectral type range, as expected from the cooling of brown dwarfs, whatever their mass, down to very low temperature. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by

  10. The luminosity function of star clusters in 20 star-forming galaxies based on Hubble legacy archive photometry

    International Nuclear Information System (INIS)

    Whitmore, Bradley C.; Bowers, Ariel S.; Lindsay, Kevin; Ansari, Asna; Evans, Jessica; Chandar, Rupali; Larsen, Soeren

    2014-01-01

    Luminosity functions (LFs) have been determined for star cluster populations in 20 nearby (4-30 Mpc), star-forming galaxies based on Advanced Camera for Surveys source lists generated by the Hubble Legacy Archive (HLA). These cluster catalogs provide one of the largest sets of uniform, automatically generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster LF can be approximated by a power law, dN/dL∝L α , with an average value for α of –2.37 and rms scatter = 0.18 when using the F814W ('I') band. A comparison of fitting results based on methods that use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum likelihood) method to give slightly more negative values of α for galaxies with steeper LFs. We find that galaxies with high rates of star formation (or equivalently, with the brightest or largest numbers of clusters) have a slight tendency to have shallower values of α. In particular, the Antennae galaxy (NGC 4038/39), a merging system with a relatively high star formation rate (SFR), has the second flattest LF in the sample. A tentative correlation may also be present between Hubble type and values of α, in the sense that later type galaxies (i.e., Sd and Sm) appear to have flatter LFs. Hence, while there do appear to be some weak correlations, the relative similarity in the values of α for a large number of star-forming galaxies suggests that, to first order, the LFs are fairly universal. We examine the bright end of the LFs and find evidence for a downturn, although it only pertains to about 1% of the clusters. Our uniform database results in a small scatter (≈0.4 to 0.5 mag) in the correlation between the magnitude of the brightest cluster (M brightest ) and log of the number

  11. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  12. Evolution of the cluster optical galaxy luminosity function in the CFHTLS: breaking the degeneracy between mass and redshift

    Science.gov (United States)

    Sarron, F.; Martinet, N.; Durret, F.; Adami, C.

    2018-06-01

    Obtaining large samples of galaxy clusters is important for cosmology: cluster counts as a function of redshift and mass can constrain the parameters of our Universe. They are also useful in order to understand the formation and evolution of clusters. We develop an improved version of the Adami & MAzure Cluster FInder (AMACFI), now the Adami, MAzure & Sarron Cluster FInder (AMASCFI), and apply it to the 154 deg2 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) to obtain a large catalogue of 1371 cluster candidates with mass M200 > 1014 M⊙ and redshift z ≤ 0.7. We derive the selection function of the algorithm from the Millennium simulation, and cluster masses from a richness-mass scaling relation built from matching our candidates with X-ray detections. We study the evolution of these clusters with mass and redshift by computing the i'-band galaxy luminosity functions (GLFs) for the early-type (ETGs) and late-type galaxies (LTGs). This sample is 90% pure and 70% complete, and therefore our results are representative of a large fraction of the cluster population in these redshift and mass ranges. We find an increase in both the ETG and LTG faint populations with decreasing redshift (with Schechter slopes αETG = -0.65 ± 0.03 and αLTG = -0.95 ± 0.04 at z = 0.6, and αETG = -0.79 ± 0.02 and αLTG = -1.26 ± 0.03 at z = 0.2) and also a decrease in the LTG (but not the ETG) bright end. Our large sample allows us to break the degeneracy between mass and redshift, finding that the redshift evolution is more pronounced in high-mass clusters, but that there is no significant dependence of the faint end on mass for a given redshift. These results show that the cluster red sequence is mainly formed at redshift z > 0.7, and that faint ETGs continue to enrich the red sequence through quenching of brighter LTGs at z ≤ 0.7. The efficiency of this quenching is higher in large-mass clusters, while the accretion rate of faint LTGs is lower as the more massive

  13. THE XMM-NEWTON X-RAY SPECTRA OF THE MOST X-RAY LUMINOUS RADIO-QUIET ROSAT BRIGHT SURVEY-QSOs: A REFERENCE SAMPLE FOR THE INTERPRETATION OF HIGH-REDSHIFT QSO SPECTRA

    International Nuclear Information System (INIS)

    Krumpe, M.; Markowitz, A.; Lamer, G.; Corral, A.

    2010-01-01

    We present the broadband X-ray properties of four of the most X-ray luminous (L X ≥ 10 45 erg s -1 in the 0.5-2 keV band) radio-quiet QSOs found in the ROSAT Bright Survey. This uniform sample class, which explores the extreme end of the QSO luminosity function, exhibits surprisingly homogenous X-ray spectral properties: a soft excess with an extremely smooth shape containing no obvious discrete features, a hard power law above 2 keV, and a weak narrow/barely resolved Fe Kα fluorescence line for the three high signal-to-noise ratio (S/N) spectra. The soft excess can be well fitted with only a soft power law. No signatures of warm or cold intrinsic absorbers are found. The Fe Kα centroids and the line widths indicate emission from neutral Fe (E = 6.4 keV) originating from cold material from distances of only a few light days or further out. The well-constrained equivalent widths (EW) of the neutral Fe lines are higher than expected from the X-ray Baldwin effect which has been only poorly constrained at very high luminosities. Taking into account our individual EW measurements, we show that the X-ray Baldwin effect flattens above L X ∼ 10 44 erg s -1 (2-10 keV band) where an almost constant (EW) of ∼100 eV is found. We confirm the assumption of having very similar X-ray active galactic nucleus properties when interpreting stacked X-ray spectra. Our stacked spectrum serves as a superb reference for the interpretation of low S/N spectra of radio-quiet QSOs with similar luminosities at higher redshifts routinely detected by XMM-Newton and Chandra surveys.

  14. Pseudoscalar-photon mixing and the large scale alignment of QsO ...

    Indian Academy of Sciences (India)

    physics pp. 679-682. Pseudoscalar-photon mixing and the large scale alignment of QsO optical polarizations. PANKAJ JAIN, sUKANTA PANDA and s sARALA. Physics Department, Indian Institute of Technology, Kanpur 208 016, India. Abstract. We review the observation of large scale alignment of QSO optical polariza-.

  15. Luminosity monitor at PEP

    International Nuclear Information System (INIS)

    Fox, J.D.; Franklin, M.E.B.

    1981-02-01

    The luminosity monitor system utilized by the MKII Detector and by the PEP operators is described. This system processes information from 56 photomultipliers and calculates independent luminosities for each of the 3 colliding bunches in PEP. Design considerations, measurement techniques, and sources of error in the luminosity measurement are discussed

  16. ROSAT X-ray luminosity functions of the Hyades dK and dM stars

    Science.gov (United States)

    Pye, John P.; Hodgkin, Simon T.; Stern, Robert A.; Stauffer, John R.

    1994-02-01

    Long-duration ROSAT PSPC pointed observations of the Hyades open star cluster are performed. The Hyades dK and XLFs from the present observations are compared with published Einstein dK/dM XLFs. The Hyades dK binaries have significantly higher L(X) than the Hyades dK stars. However, all these binaries have relatively long periods (greater than about 1 yr), and hence the L(X) levels cannot be attributed to the enhanced activity expected in short-period, 'BY Dra-type' systems. It is also shown that the effect cannot be due simply to the summed luminosities of the component stars.

  17. KECK SPECTROSCOPY OF LYMAN-BREAK GALAXIES AND ITS IMPLICATIONS FOR THE UV-CONTINUUM AND Lyα LUMINOSITY FUNCTIONS AT z > 6

    International Nuclear Information System (INIS)

    Jiang Linhua; Egami, Eiichi; Walth, Gregory; Kashikawa, Nobunari; Matsuda, Yuichi; Shimasaku, Kazuhiro; Nagao, Tohru; Ota, Kazuaki; Ouchi, Masami

    2011-01-01

    We present Keck spectroscopic observations of z > 6 Lyman-break galaxy (LBG) candidates in the Subaru Deep Field (SDF). The candidates were selected as i'-dropout objects down to z' = 27 AB magnitudes from an ultra-deep SDF z'-band image. With the Keck spectroscopy we identified 19 LBGs with prominent Lyα emission lines at 6 ≤ z ≤ 6.4. The median value of the Lyα rest-frame equivalent widths (EWs) is ∼50 Å, with four EWs >100 Å. This well-defined spectroscopic sample spans a UV-continuum luminosity range of –21.8 ≤ M UV ≤ –19.5 (0.6 ∼ 5 L* UV ) and a Lyα luminosity range of (0.3-3) × 10 43 erg s –1 (0.3-3 L* Lyα ). We derive the UV and Lyα luminosity functions (LFs) from our sample at (z) ∼ 6.2 after we correct for sample incompleteness. We find that our measurement of the UV LF is consistent with the results of previous studies based on photometric LBG samples at 5 6.

  18. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, Roberto; Walter, Fabian [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Aravena, Manuel; Assef, Roberto J. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Bouwens, Rychard [Leiden Observatory, Leiden University, P.O. Box 9513, NL2300 RA Leiden (Netherlands); Da Cunha, Elisabete [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Daddi, Emanuele [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex (France); Ivison, R. J.; Popping, Gergö [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Riechers, Dominik [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Smail, Ian R. [6 Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Swinbank, Mark [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-053121 Bonn (Germany); Weiss, Axel; Anguita, Timo, E-mail: decarli@mpia.de [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago (Chile); and others

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence of an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).

  19. THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES AT z < 0.8 AND THE ASSEMBLY OF THE CLUSTER RED SEQUENCE

    International Nuclear Information System (INIS)

    Rudnick, Gregory; Von der Linden, Anja; De Lucia, Gabriella; White, Simon; Pello, Roser; Aragon-Salamanca, Alfonso; Marchesini, Danilo; Clowe, Douglas; Halliday, Claire; Jablonka, Pascale; Milvang-Jensen, Bo; Poggianti, Bianca; Saglia, Roberto; Simard, Luc; Zaritsky, Dennis

    2009-01-01

    We present the rest-frame optical luminosity function (LF) of red-sequence galaxies in 16 clusters at 0.4 < z < 0.8 drawn from the ESO Distant Cluster Survey (EDisCS). We compare our clusters to an analogous sample from the Sloan Digital Sky Survey (SDSS) and match the EDisCS clusters to their most likely descendants. We measure all LFs down to M ∼ M * + (2.5-3.5). At z < 0.8, the bright end of the LF is consistent with passive evolution but there is a significant buildup of the faint end of the red sequence toward lower redshift. There is a weak dependence of the LF on cluster velocity dispersion for EDisCS but no such dependence for the SDSS clusters. We find tentative evidence that red-sequence galaxies brighter than a threshold magnitude are already in place, and that this threshold evolves to fainter magnitudes toward lower redshifts. We compare the EDisCS LFs with the LF of coeval red-sequence galaxies in the field and find that the bright end of the LFs agree. However, relative to the number of bright red galaxies, the field has more faint red galaxies than clusters at 0.6 < z < 0.8 but fewer at 0.4 < z < 0.6, implying differential evolution. We compare the total light in the EDisCS cluster red sequences to the total red-sequence light in our SDSS cluster sample. Clusters at 0.4 < z < 0.8 must increase their luminosity on the red sequence (and therefore stellar mass in red galaxies) by a factor of 1-3 by z = 0. The necessary processes that add mass to the red sequence in clusters predict local clusters that are overluminous as compared to those observed in the SDSS. The predicted cluster luminosities can be reconciled with observed local cluster luminosities by combining multiple previously known effects.

  20. Stellar Populations in the Central 0.5 pc of the Galaxy. I. A New Method for Constructing Luminosity Functions and Surface-density Profiles

    Science.gov (United States)

    Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.

    2013-02-01

    We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

  1. IMPACT OF H{sub 2}-BASED STAR FORMATION MODEL ON THE z {>=} 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jaacks, Jason; Thompson, Robert [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4002 (United States); Nagamine, Kentaro, E-mail: jaacksj@physics.unlv.edu [Visiting Scientist. Kavli Institute for the Physics and Mathematics for the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan. (Japan)

    2013-04-01

    We present the results of a numerical study examining the effect of an H{sub 2}-based star formation (SF) model on the rest-frame UV luminosity function and star formation rate function (SFRF) of z {>=} 6 galaxies, and the implications for reionization. Using cosmological hydrodynamical simulations outfitted with an H{sub 2}-SF model, we find good agreement with our previous results (non-H{sub 2} SF model) and observations at M{sub uv} {<=} -18. However, at M{sub uv} > -18, we find that the LF deviates from both our previous work and current observational extrapolations, producing significantly fewer low-luminosity galaxies and exhibiting additional turnover at the faint end. We constrain the redshift evolution of this turnover point using a modified Schechter function that includes additional terms to quantify the turnover magnitude (M{sub uv}{sup t}) and subsequent slope ({beta}). We find that M{sub uv}{sup t} evolves from M{sub uv}{sup t}=-17.33 (at z = 8) to -15.38 (z = 6), while {beta} becomes shallower by {Delta}{beta} = 0.22 during the same epoch. This occurs in an M{sub uv} range that will be observable by James Webb Space Telescope. By integrating the SFRF, we determine that even though the H{sub 2}-SF model significantly reduces the number density of low-luminosity galaxies at M{sub uv} > -18, it does not suppress the total SFR density enough to affect the capability of SF to maintain reionization.

  2. Spectrophotometry of the double QSO, 0957+561

    International Nuclear Information System (INIS)

    Wills, B.J.; Wills, D.

    1980-01-01

    We report new spectrophotometry of the double QSO, 0957+561, and show that the absorption line region in each light path is very similar in redshift (Δv +- 14 km s -1 rms), in column density of Fe + (approx.3 x 10 14 cm -2 ), and in velocity dispersion (approx.40 km s -1 ). The simplest interpretation of these results is a very massive object deflecting the light from a more distant QSO. Based on this hypothesis we find that the differences between the emission line and continuum spectra may be explained by differential reddening, implying a reddening-corrected flux ratio B/Aapprox. =2--4. This ratio is different from that found at radio wavelengths (0.7 at 6 cm), but can be explained, based on the gravitational lens hypothesis, by different flux variability at radio and optical wavelengths; however, we have found no evidence for optical variability. Another difficulty may be that a point-mass gravitational lens would need to have a mass-to-light ratio greater than 1000, if it is closer than z=0.4; at larger distances its mass would be very large (approx.10 14 M/sub sun/ at z=1.2). Observations obtained so far might be explained if two massive QSOs are actually closer together than appear to be, as a result of mutual gravitational deflection of the light. 1

  3. The luminosity of galactic components and morphological segregation

    International Nuclear Information System (INIS)

    Solanes, J. M.; Salvador-Sole, E.; Sanroma, M.

    1989-01-01

    The luminosities of the bulge and disk components of disk galaxies are analyzed, and the possible correlation of these luminosities with morphological type and local density is explored. Galaxies of different types are found to be located in distinct bands in the bulge-to-disk luminosity ratio vs total luminosity diagram, allowing the determination of the typical bulge luminosity function of disk galaxies of different types from their respective total luminosity functions, along with a better characterization of morphological segregation among disk galaxies. No evidence for any bulge luminosity segregation is found, and disks appear to be less luminous with increasing local density. 33 refs

  4. The evolution of the rest-frame J- and H-band luminosity function of galaxies to z=3.5

    OpenAIRE

    Stefanon, Mauro; Marchesini, Danilo

    2011-01-01

    We present the rest-frame J- and H-band luminosity function (LF) of field galaxies, based on a deep multi-wavelength composite sample from the MUSYC, FIRES and FIREWORKS survey public catalogues, covering a total area of 450 arcmin^2. The availability of flux measurements in the Spitzer IRAC 3.6, 4.5, 5.8, and 8 um channels allows us to compute absolute magnitudes in the rest-frame J and H bands up to z=3.5 minimizing the dependence on the stellar evolution models. We compute the LF in the fo...

  5. LHC Luminosity Performance

    CERN Document Server

    AUTHOR|(CDS)2091107; Fuchsberger, Kajetan; Papotti, Giulia

    This thesis adresses several approaches with the common goal of assessing, understanding and improving the luminosity of the Large Hadron Collider (LHC). To better exploit existing margins for maximum luminosity while fulfilling the requirements of the LHC experiments, new techniques for luminosity levelling are studied and developed to an operational state, such as changing the crossing angle or $\\beta^*$ (beam size) at the interaction points with the beams in collisions. In 2017 LHC operation, the crossing angle reduction in collisions improved the integrated luminosity by $\\mathrm{\\sim} 2\\,\\mathrm{fb^{-1}}$ ($\\mathrm{\\sim} 4\\,\\mathrm{\\%}$ of the yearly production). For additional diagnostics, a new method for measuring beam sizes and orbits for each circulating bunch using the luminosity measurement during beam separation scans is shown. The results of these Emittance Scans improved the understanding of the LHC luminosity reach and of the orbit offsets introduced by beam-beam long-range effects.

  6. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5-10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

    International Nuclear Information System (INIS)

    Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki; Kawamata, Ryota; Shimasaku, Kazuhiro; Oguri, Masamune

    2015-01-01

    We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ UV , at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ UV decrease trend can be reconciled with the large Thomson scattering optical depth, τ e , measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ UV decrease and the large τ e . It is possible that the ρ UV decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei

  7. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5-10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kawamata, Ryota; Shimasaku, Kazuhiro [Department of Astronomy, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Oguri, Masamune, E-mail: ishigaki@icrr.u-tokyo.ac.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-20

    We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ{sub UV}, at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ{sub UV} decrease trend can be reconciled with the large Thomson scattering optical depth, τ{sub e}, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ{sub UV} decrease and the large τ {sub e}. It is possible that the ρ{sub UV} decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.

  8. KECK SPECTROSCOPY OF LYMAN-BREAK GALAXIES AND ITS IMPLICATIONS FOR THE UV-CONTINUUM AND Ly{alpha} LUMINOSITY FUNCTIONS AT z > 6

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Linhua; Egami, Eiichi; Walth, Gregory [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Matsuda, Yuichi [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Shimasaku, Kazuhiro [Department of Astronomy, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Nagao, Tohru [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho, Matsuyama 790-8577 (Japan); Ota, Kazuaki [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Ouchi, Masami [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 77-8582 (Japan)

    2011-12-10

    We present Keck spectroscopic observations of z > 6 Lyman-break galaxy (LBG) candidates in the Subaru Deep Field (SDF). The candidates were selected as i'-dropout objects down to z' = 27 AB magnitudes from an ultra-deep SDF z'-band image. With the Keck spectroscopy we identified 19 LBGs with prominent Ly{alpha} emission lines at 6 {<=} z {<=} 6.4. The median value of the Ly{alpha} rest-frame equivalent widths (EWs) is {approx}50 A, with four EWs >100 A. This well-defined spectroscopic sample spans a UV-continuum luminosity range of -21.8 {<=} M{sub UV} {<=} -19.5 (0.6 {approx} 5 L*{sub UV}) and a Ly{alpha} luminosity range of (0.3-3) Multiplication-Sign 10{sup 43} erg s{sup -1} (0.3-3 L*{sub Ly{alpha}}). We derive the UV and Ly{alpha} luminosity functions (LFs) from our sample at (z) {approx} 6.2 after we correct for sample incompleteness. We find that our measurement of the UV LF is consistent with the results of previous studies based on photometric LBG samples at 5 < z < 7. Our Ly{alpha} LF is also generally in agreement with the results of Ly{alpha}-emitter surveys at z {approx} 5.7 and 6.6. This study shows that deep spectroscopic observations of LBGs can provide unique constraints on both the UV and Ly{alpha} LFs at z > 6.

  9. GALAXIES IN ΛCDM WITH HALO ABUNDANCE MATCHING: LUMINOSITY-VELOCITY RELATION, BARYONIC MASS-VELOCITY RELATION, VELOCITY FUNCTION, AND CLUSTERING

    International Nuclear Information System (INIS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Primack, Joel; Romanowsky, Aaron J.

    2011-01-01

    It has long been regarded as difficult if not impossible for a cosmological model to account simultaneously for the galaxy luminosity, mass, and velocity distributions. We revisit this issue using a modern compilation of observational data along with the best available large-scale cosmological simulation of dark matter (DM). We find that the standard cosmological model, used in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits—at least on average—all basic statistics of galaxies with circular velocities V circ > 80 km s –1 calculated at a radius of ∼10 kpc. Our primary observational constraint is the luminosity-velocity (LV) relation—which generalizes the Tully-Fisher and Faber-Jackson relations in allowing all types of galaxies to be included, and provides a fundamental benchmark to be reproduced by any theory of galaxy formation. We have compiled data for a variety of galaxies ranging from dwarf irregulars to giant ellipticals. The data present a clear monotonic LV relation from ∼50 km s –1 to ∼500 km s –1 , with a bend below ∼80 km s –1 and a systematic offset between late- and early-type galaxies. For comparison to theory, we employ our new ΛCDM 'Bolshoi' simulation of DM, which has unprecedented mass and force resolution over a large cosmological volume, while using an up-to-date set of cosmological parameters. We use HAM to assign rank-ordered galaxy luminosities to the DM halos, a procedure that automatically fits the empirical luminosity function and provides a predicted LV relation that can be checked against observations. The adiabatic contraction of DM halos in response to the infall of the baryons is included as an optional model ingredient. The resulting predictions for the LV relation are in excellent agreement with the available data on both early-type and late-type galaxies for the luminosity range from M r = –14 to M r = –22. We also compare our predictions for the 'cold' baryon mass (i

  10. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, Marijn; Ford, Holland

    2007-12-01

    We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and ~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B-, V-, and i-dropouts, respectively, and reach to extremely low luminosities [(0.01-0.04)L*z=3 or MUV~-16 to -17], allowing us to determine the rest-frame UV LF and faint-end slope α at z~4-6 to high accuracy. We find faint-end slopes α=-1.73+/-0.05, -1.66+/-0.09, and -1.74+/-0.16 at z~4, ~5, and ~6, respectively, suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*UV brightens considerably in the 0.7 Gyr from z~6 to ~4 (by ~0.7 mag from M*UV=-20.24+/-0.19 to -20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function, suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in φ* is not significant. The UV luminosity density at z~6 is modestly lower than (0.45+/-0.09 times) that at z~4 (integrated to -17.5 mag) although a larger change is seen in the dust-corrected SFR density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes α found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, recent search results for galaxies at z~7-8 are used to extend our estimates of the evolution of M* from z~7-8 to z~4. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 9425, 9575, 9803, 9978, 10189, 10339, 10340, and 10632.

  11. Newly discovered IRAS QSO close to the Galactic plane

    International Nuclear Information System (INIS)

    Strauss, M.A.; Kirhakos, S.D.; Yahil, A.

    1988-01-01

    CCD observations of the IRAS QSO candidate I09149-6206 performed at CTIO during December 1987 are reported, including 564-806-nm spectroscopy obtained with the 1.5-m telescope and direct UVBRI imaging obtained with the 0.91-m telescope. The data are presented in tables and graphs and characterized in detail. It is found that the source is surrounded by a faint fuzz with low surface brightness and strong forbidden O III lines. Parameters determined include redshift z = 0.0571, Galactic latitude -9.2 deg, V magnitude 13.55, Galactic reddening E(B-V) = about 0.23, and absolute V magnitude about -24.87. 33 references

  12. X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. I. X-RAY LUMINOSITY FUNCTION OF LOW-MASS X-RAY BINARIES

    International Nuclear Information System (INIS)

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2010-01-01

    We have compared the combined X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) detected in Chandra observations of young, post-merger elliptical galaxies with that of typical old elliptical galaxies. We find that the XLF of the 'young' sample does not present the prominent high-luminosity break at L X > 5 x 10 38 erg s -1 found in the old elliptical galaxy XLF. The 'young' and 'old' XLFs differ with a 3σ statistical significance (with a probability less than 0.2% that they derive from the same underlying parent distribution). Young elliptical galaxies host a larger fraction of luminous LMXBs (L X > 5 x 10 38 erg s -1 ) than old elliptical galaxies and the XLF of the young galaxy sample is intermediate between that of typical old elliptical galaxies and that of star-forming galaxies. This observational evidence may be related to the last major/minor mergers and the associated star formation.

  13. Measuring the stellar luminosity function and spatial density profile of the inner 0.5 pc of the Milky Way nuclear star cluster

    Science.gov (United States)

    Do, Tuan; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.; Yelda, Sylvana; Martinez, Gregory D.; Peter, Annika H. G.; Wright, Shelley; Bullock, James; Kaplinghat, Manoj; Matthews, K.

    2012-07-01

    We report on measurements of the luminosity function of early (young) and late-type (old) stars in the central 0.5 pc of the Milky Way nuclear star cluster as well as the density profiles of both components. The young (~ 6 Myr) and old stars (> 1 Gyr) in this region provide different physical probes of the environment around a supermassive black hole; the luminosity function of the young stars offers us a way to measure the initial mass function from star formation in an extreme environment, while the density profile of the old stars offers us a probe of the dynamical interaction of a star cluster with a massive black hole. The two stellar populations are separated through a near-infrared spectroscopic survey using the integral-field spectrograph OSIRIS on Keck II behind the laser guide star adaptive optics system. This spectroscopic survey is able to separate early-type (young) and late-type (old) stars with a completeness of 50% at K' = 15.5. We describe our method of completeness correction using a combination of star planting simulations and Bayesian inference. The completeness corrected luminosity function of the early-type stars contains significantly more young stars at faint magnitudes compared to previous surveys with similar depth. In addition, by using proper motion and radial velocity measurements along with anisotropic spherical Jeans modeling of the cluster, it is possible to measure the spatial density profile of the old stars, which has been difficult to constrain with number counts alone. The most probable model shows that the spatial density profile, n(r) propto r-γ, to be shallow with γ = 0.4 ± 0.2, which is much flatter than the dynamically relaxed case of γ = 3/2 to 7/4, but does rule out a 'hole' in the distribution of old stars. We show, for the first time, that the spatial density profile, the black hole mass, and velocity anisotropy can be fit simultaneously to obtain a black hole mass that is consistent with that derived from

  14. Missing mass from low-luminosity stars

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1986-01-01

    Results from a deep photometric survey for low-luminosity stars show a turnup to the luminosity function at faint magnitudes, and reopen the possibility that the missing mass in the solar neighbourhood is made up of stars after all. (author)

  15. Density- and luminosity-functions for UBV-photometric discand halo-stars in SA 54, compared with earlier RGU-results in this field

    Science.gov (United States)

    Fenkart, R.; Esin-Yilmaz, F.

    1983-12-01

    Space density- and luminosity-functions for the photometric halo- and disc-populations in the test-field SA 54 of the Basle Halo Program have been derived on the basis of UBV observations of the same 1377 stars used already for the corresponding RGU investigation by Fenkart (1968). The statistical method for separating the photometrically defined populations and for attributing absolute magnitudes to their members developed, described and first applied to SA 51 in RGU by Becker (1965) has been adapted for use in the UBV system. The (U-B, B- V) diagrams for consecutive intervals in apparent V-magnitude of figures 2a to f contain, contrary to what was first expected in this system, substantial numbers of stars in the covered by this investigation for halo and disc are given in tables IIa and b, and plotted in figures 3 and 4, respectively. The corresponding luminosity-functions within the partial volume up to 1 kpc from the sun over the same overall MVinterval are given together with Glieses (1969) solar values for population I, in table III, and plotted in figure 5. The overall density-functions (3m ≦ MV ≦ 7m) for both populations can be and are compared with the corresponding ones (3m ≦ MG ≦ 8m) in RGU (last column in table II) in figures 6 and 7, for halo and disc, respectively. The coincidence of the density results between UBV and RGU is much better for both populations than the mean misidentification rate per system derived in section 5 would let us expect, suggesting a statistically fairly repartition of the misidentifications with respect to absolute magnitudes and distances.

  16. Confining hot spots in 3C 196 - implications for QSO-companion galaxies

    International Nuclear Information System (INIS)

    Brown, R.L.; Broderick, J.J.; Mitchell, K.J.; Virginia Polytechnic Institute and State Univ., Blacksburg; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1986-01-01

    VLBI observations of the extremely compact hot spot in the northern radio lobe of the QSO 3C 196 reveal the angular size of its smallest substructure to be 0.065 arcsec x 0.045 arcsec or about 300 pc at the redshift distance. The morphology of the hot spot and its orientation relative to the more diffuse radio emission suggest that it is formed by an oblique interaction between the nuclear QSO jet and circum-QSO cloud. The inferred density in this cloud, together with its apparent size, imply that the cloud contains a galactic mass, greater than a billion solar masses of gas. The effect of the jet will be to hasten gravitational collapse of the cloud. If many QSOs such as 3C 196 are formed or found in gas-rich environments, the QSO radio phase may commonly stimulate the metamorphosis of circum-QSO gas to QSO-companion galaxies or it may play a significant part in catalyzing star formation in existing companions. 30 references

  17. Luminosity measurement at AMY

    International Nuclear Information System (INIS)

    Kurihara, Y.

    1995-01-01

    A precise measurement of a luminosity is required by experiments with high statistics. The largest sources of a systematic error of a luminosity measurement are an alignment of the tube chambers which measure a polar angle of Bhabha events and a higher order correction for the Bhabha cross section calculation. We describe a resent study for these uncertainties and how to reduce the systematic errors from these sources. The total systematic error of the luminosity measurement of 1.8% can be reduced to 1.0% by this study. (author)

  18. Precision luminosity measurements at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-12-05

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at $\\sqrt{s}$ = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determin...

  19. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN

    International Nuclear Information System (INIS)

    Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Ono, Yoshiaki; Ouchi, Masami; Stark, Daniel P.; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Curtis-Lake, Emma; Rogers, Alexander B.; Cirasuolo, Michele; Koekemoer, Anton; Charlot, Stephane; Furlanetto, Steven R.

    2013-01-01

    We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z ≅ 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe ∼0.65 (0.25) mag fainter in absolute UV magnitude, at z ∼ 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z ∼ 7 and 27 at z ∼ 8. Incorporating brighter archival and ground-based samples, we measure the z ≅ 7 UV luminosity function to an absolute magnitude limit of M UV = –17 and find a faint end Schechter slope of α=-1.87 +0.18 -0.17 . Using a similar color-color selection at z ≅ 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z ≅ 8, α=-1.94 +0.21 -0.24 . We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique.

  20. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z {approx} 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, Matthew A.; Ellis, Richard S. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Robertson, Brant E.; Schneider, Evan [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ono, Yoshiaki; Ouchi, Masami; Stark, Daniel P. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan); McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Curtis-Lake, Emma; Rogers, Alexander B.; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ (United Kingdom); Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Furlanetto, Steven R., E-mail: schenker@astro.caltech.edu [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2013-05-10

    We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z {approx_equal} 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe {approx}0.65 (0.25) mag fainter in absolute UV magnitude, at z {approx} 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z {approx} 7 and 27 at z {approx} 8. Incorporating brighter archival and ground-based samples, we measure the z {approx_equal} 7 UV luminosity function to an absolute magnitude limit of M{sub UV} = -17 and find a faint end Schechter slope of {alpha}=-1.87{sup +0.18}{sub -0.17}. Using a similar color-color selection at z {approx_equal} 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z {approx_equal} 8, {alpha}=-1.94{sup +0.21}{sub -0.24}. We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique.

  1. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Qiu, Yanli; Liu, Jifeng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Bregman, Joel N., E-mail: songw@bao.ac.cn, E-mail: jfliu@bao.ac.cn [University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-20

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.

  2. The low-ion QSO absorption-line systems

    International Nuclear Information System (INIS)

    Lanzetta, K.M.

    1988-01-01

    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Lyα absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Lyα absorber toward Q1337 + 113 are presented

  3. Spectroscopy of 125 QSO candidates and radio galaxies

    International Nuclear Information System (INIS)

    Wills, B.J.; Wills, D.

    1980-01-01

    Spectroscopic observations of 125 QSO candidates and radio galaxies are reported, many of which are optical identifications of radio sources in the deep survey in progress at the University of Texas Radio Astronomy Observatory (UTRAO). The remainder include optical identifications of sources in other radio surveys and radio-quiet objects selected by their ultraviolet continua or optical variability. Optical positions are given with O''.5 accuracy for 56 of the objects.Forty objects are confirmed as QSOs; redshifts are given for 38 of them and for 18 galaxies. There are also seven objects with apparently continuous spectra: some of them were already known or suspected to be BL Lacertae objects. Twenty-nine objects were found to be Galactic stars, and the results for the remaining 31 are inconclusive, although 12 of them are probable QSOs and six are probable stars.Our spectroscopy of a sample of 90 blue stellar objects found within 3'' of the UTRAO radio positions (including results from two earlier papers) shows that 81 (90%) are QSOs, with inconclusive results fo the other nine; none of the 90 is known to be a star. Even within 5'' of the UTRAO positions, 111 of 128 blue objects (87%) are QSOs, and only five (4%) are known or suspected to be stars. Among 21 red or neutral-color, apparently stellar objects within 3'' of the UTRAO positions, six are QSOs or compact galaxies, 13 are stars, and the results for two more are inconclusive

  4. Luminosity measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The measurement of the luminosity delivered by the LHC is pivotal for several key physics analyses. During the first three years of running, tremendous steps forwards have been made in the comprehension of the subtleties related to luminosity monitoring and calibration, which led to an unprecedented accuracy at a hadron collider. The detectors and corresponding algorithms employed to estimate online and offline the luminosity in CMS are described. Details are given concerning the procedure based on the Van der Meer scan technique that allowed a very precise calibration of the luminometers from the determination of the LHC beams parameters. What is being prepared in terms of detector and online software upgrades for the next LHC run is also summarized.

  5. On the distinction between density and luminosity evolution

    International Nuclear Information System (INIS)

    Bahcall, J.N.

    1977-01-01

    It is shown that the assumptions of pure density evolution and pure luminosity evolution lead to observable differences in the distribution of sources for all convergent luminosity functions. The proof given is valid for sources with an arbitrary number of intrinisic luminosities (e.g., optical, infrared, and radio) and also holds in the special cases of mixed evolution that are considered. (author)

  6. CLIC Luminosity Monitoring

    CERN Document Server

    Apyan, Armen; Gschwendtner, Edda; Lefevre, Thibault; Tygier, Sam; Appleby, Robert B

    2012-01-01

    The CLIC post-collision line is designed to transport the un-collided beams and the products of the collided beams with a total power of 14 MW to the main beam dump. Luminosity monitoring for CLIC is based on high energy muons produced by beamstrahlung photons in the main dump. Threshold Cherenkov counters are proposed for the detection of these muons. The expected rates and layout for these detectors is presented. Another method for luminosity monitoring is to directly detect the beamstrahlung photons in the post-collision line. Full Monte Carlo simulation has been performed to address its feasibility.

  7. Luminosity enhancements at SLAC

    International Nuclear Information System (INIS)

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point

  8. An Anthropology of Luminosity

    DEFF Research Database (Denmark)

    Bille, Mikkel; Sørensen, Tim Flohr

    2007-01-01

    of luminosity in the practice of day-to-day activities. The article surveys an array of past conceptions of light within philosophy, natural science and more recent approaches to light in the fields of anthropology and material culture studies. A number of implications are discussed, and by way of three case...

  9. High luminosity particle colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  10. Luminosity measurement at CMS

    CERN Document Server

    Karacheban, Olena

    2017-01-01

    Luminosity is a key quantity of any collider, since it allows for the determinationof the absolute cross sections from the observed rates in a detector. Since theHiggs boson discovery in 2012, the highest priority at the Large Hadron Collider(LHC) has been given to an accurate understanding of the electroweak scale anda search for new physics. Precise luminosity measurements in such conditions areof crucial importance, as they determine the precision of any physics cross sectionmeasurement.To increase the production of particles of interest, usually of low cross section,the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 × 1034 cm−2 s−1was reached with 1011 protons per bunch and a bunch spacing of 25 ns. In suchconditions radiation hard detectors with extremely fast response time are required,especially for instrumentation near the beam.The Compact Muon Solenoid experiment is equipped with three online luminomet...

  11. A new detection of an UFO in the X-ray spectrum of a lensed QSO

    Science.gov (United States)

    Dadina, M.

    2017-10-01

    The discovery of the "M_{SMBH}-σ relation" indicated that a connection between the central black-hole and the hosting galaxies acted during the cosmic time. With the discovery in X-rays of the ultra-fast outflows in nearby AGN, we have most probably probed one of the ingredients that are needed to build-up this mechanism. At high-z, however, such measurements were possible only in an handful of objects and this was possible mainly for the presence of gravitational lenses that magnified otherwise X-ray weak QSO. Following this, we proposed a program to use XMM-Newton and gravitational lenses as telescopes to point bright, lensed and distant QSO to characterize in detail their X-ray spectrum and to detect blushifted absorption lines at E˜7-10 keV (rest frame). Here we present the preliminary results obtained for the z=2.64 QSO MG J0414+0534.

  12. THE MEGASECOND CHANDRA X-RAY VISIONARY PROJECT OBSERVATION OF NGC 3115. III. LUMINOSITY FUNCTIONS OF LMXBS AND DEPENDENCE ON STELLAR ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Irwin, Jimmy A. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Wong, Ka-Wah [Eureka Scientific, Inc., 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P. [University of California Observatories, Santa Cruz, CA 95064 (United States); Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139-4307 (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, MI 48824 (United States); Sivakoff, Gregory R., E-mail: dacheng.lin@unh.edu [Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 (Canada)

    2015-07-20

    We studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-ray Visionary Project Observation. With a total exposure time of ∼1.1 Ms, we constructed the XLF down to a limiting luminosity of ∼10{sup 36} erg s{sup −1}, which is much deeper than that typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL ∝ L{sup −2.2±0.4} above 5.5 × 10{sup 37} erg s{sup −1} to dN/dL ∝ L{sup −1.0±0.1} below it, although we could not rule out a fit with a higher break at ∼1.6 × 10{sup 38} erg s{sup −1}. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus, our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrupted GCs in the inner region. The XLF in the outer region is probably the XLF of primordial field LMXBs, exhibiting dN/dL ∝ L{sup −1.2±0.1} up to a break close to the Eddington limit of neutron star LMXBs (∼1.7 × 10{sup 38} erg s{sup −1}). The break of the GC LMXB XLF is lower, at ∼1.1 × 10{sup 37} erg s{sup −1}. We also confirm previous findings that the metal-rich/red GCs are more likely to host LMXBs than the metal-poor/blue GCs, which is more significant for more luminous LMXBs, and that more massive GCs are more likely to host LMXBs.

  13. The Evolution of the Faint End of the UV Luminosity Function during the Peak Epoch of Star Formation (1 < z < 3)

    Science.gov (United States)

    Alavi, Anahita; Siana, Brian; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Freeman, William R.; Scarlata, Claudia; Robertson, Brant; Stark, Daniel P.; Teplitz, Harry I.; Desai, Vandana

    2016-11-01

    We present a robust measurement of the rest-frame UV luminosity function (LF) and its evolution during the peak epoch of cosmic star formation at 1\\lt z\\lt 3. We use our deep near-ultraviolet imaging from WFC3/UVIS on the Hubble Space Telescope and existing Advanced Camera for Surveys (ACS)/WFC and WFC3/IR imaging of three lensing galaxy clusters, Abell 2744 and MACS J0717 from the Hubble Frontier Field survey and Abell 1689. Combining deep UV imaging and high magnification from strong gravitational lensing, we use photometric redshifts to identify 780 ultra-faint galaxies with {M}{UV}\\lt -12.5 AB mag at 1\\lt z\\lt 3. From these samples, we identified five new, faint, multiply imaged systems in A1689. We run a Monte Carlo simulation to estimate the completeness correction and effective volume for each cluster using the latest published lensing models. We compute the rest-frame UV LF and find the best-fit faint-end slopes of α =-1.56+/- 0.04, α =-1.72+/- 0.04, and α =-1.94+/- 0.06 at 1.0\\lt z\\lt 1.6, 1.6\\lt z\\lt 2.2, and 2.2\\lt z\\lt 3.0, respectively. Our results demonstrate that the UV LF becomes steeper from z˜ 1.3 to z˜ 2.6 with no sign of a turnover down to {M}{UV}=-14 AB mag. We further derive the UV LFs using the Lyman break “dropout” selection and confirm the robustness of our conclusions against different selection methodologies. Because the sample sizes are so large and extend to such faint luminosities, the statistical uncertainties are quite small, and systematic uncertainties (due to the assumed size distribution, for example) likely dominate. If we restrict our analysis to galaxies and volumes above \\gt 50 % completeness in order to minimize these systematics, we still find that the faint-end slope is steep and getting steeper with redshift, though with slightly shallower (less negative) values (α =-1.55+/- 0.06, -1.69 ± 0.07, and -1.79 ± 0.08 for z˜ 1.3, 1.9, and 2.6, respectively). Finally, we conclude that the faint star

  14. THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Brandon C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); Shen, Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-02-10

    We employ a flexible Bayesian technique to estimate the black hole (BH) mass and Eddington ratio functions for Type 1 (i.e., broad line) quasars from a uniformly selected data set of {approx}58, 000 quasars from the Sloan Digital Sky Survey (SDSS) DR7. We find that the SDSS becomes significantly incomplete at M {sub BH} {approx}< 3 Multiplication-Sign 10{sup 8} M {sub Sun} or L/L {sub Edd} {approx}< 0.07, and that the number densities of Type 1 quasars continue to increase down to these limits. Both the mass and Eddington ratio functions show evidence of downsizing, with the most massive and highest Eddington ratio BHs experiencing Type 1 quasar phases first, although the Eddington ratio number densities are flat at z < 2. We estimate the maximum Eddington ratio of Type 1 quasars in the observable universe to be L/L {sub Edd} {approx} 3. Consistent with our results in Shen and Kelly, we do not find statistical evidence for a so-called sub-Eddington boundary in the mass-luminosity plane of broad-line quasars, and demonstrate that such an apparent boundary in the observed distribution can be caused by selection effect and errors in virial BH mass estimates. Based on the typical Eddington ratio in a given mass bin, we estimate growth times for the BHs in Type 1 quasars and find that they are comparable to or longer than the age of the universe, implying an earlier phase of accelerated (i.e., with higher Eddington ratios) and possibly obscured growth. The large masses probed by our sample imply that most of our BHs reside in what are locally early-type galaxies, and we interpret our results within the context of models of self-regulated BH growth.

  15. Luminosity measurement at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena

    2017-10-15

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10{sup 34} cm{sup -2} s{sup -1} was reached with 10{sup 11} protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using

  16. Luminosity measurement at CMS

    International Nuclear Information System (INIS)

    Karacheban, Olena

    2017-10-01

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10 34 cm -2 s -1 was reached with 10 11 protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using van der Meer (Vd

  17. OLYMPUS luminosity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Ozgur [Hampton University, Hampton, Virginia (United States); Collaboration: OLYMPUS-Collaboration

    2013-07-01

    The OLYMPUS experiment at DESY has been measuring the ratio of positron-proton and electron-proton elastic scattering cross sections to quantify the effect of two-photon exchange, which is widely considered to be responsible for the discrepancy between measurements of the proton electric to magnetic form factor ratio with the Rosenbluth and polarization transfer methods. In order to control the systematic uncertainties to the percent level, the luminosities are monitored redundantly with high precision by measuring the rates for symmetric Moller and Bhabha scattering, and by measuring the ep-elastic count rates at forward angles and low momentum transfer with tracking telescopes based on GEM (Gas Electron Multiplier) and MWPC (Multi Wire Proportional Chamber) technology. During two data taking periods, performances of GEM and MWPC luminosity monitors are presented.

  18. Toward the standard population synthesis model of the X-ray background: Evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Yoshihiro [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Akiyama, Masayuki [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Hasinger, Günther [Institute for Astronomy, 2680 Woodlawn Drive Honolulu, HI 96822-1839 (United States); Miyaji, Takamitsu [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California (Mexico); Watson, Michael G. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-05-10

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  19. PHL 6625: A Minor Merger-associated QSO Behind NGC 247

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lian; Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Shen, Yue; Liu, Xin [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100087 (China); Ge, Junqiang [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Kaaret, Philip [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Mao, Shude [Center for Astrophysics, Tsinghua University, Beijing 100084 (China)

    2017-06-01

    PHL 6625 is a luminous quasi-stellar object (QSO) at z = 0.3954 located behind the nearby galaxy NGC 247 ( z = 0.0005). Hubble Space Telescope observations revealed an arc structure associated with it. We report on spectroscopic observations with the Very Large Telescope and multiwavelength observations from the radio to the X-ray band for the system, suggesting that PHL 6625 and the arc are a close pair of merging galaxies, instead of a strong gravitational lens system. The QSO host galaxy is estimated to be (4–28) × 10{sup 10} M {sub ☉} and the mass of the companion galaxy is estimated to be M {sub *} = (6.8 ± 2.4) × 10{sup 9} M {sub ☉}, suggesting that this is a minor merger system. The QSO displays typical broad emission lines, from which a black hole mass of about (2–5) × 10{sup 8} M {sub ☉} and an Eddington ratio of about 0.01–0.05 can be inferred. The system represents an interesting and rare case where a QSO is associated with an ongoing minor merger, analogous to Arp 142.

  20. The z = 1.6748 C I Absorber Toward the QSO PKS 1756+237

    Science.gov (United States)

    Roth, Katherine C.; Bauer, James M.; Jim, Kevin T. C.

    We have detected C I ground-state absorption at zabs = 1.6748 toward the QSO PKS 1756+237 (zem = 1.725), making this only the fourth known C I QSO absorber. The absence of excited-state fine-structure C I lines is compatible with the redshifted Cosmic Microwave Background Radiation at an expected temperature of TCMBR (1+z) = 7.291 K (Mather et al. 1994, ApJ, 354, L37). We find a 2 σ upper-limit on the C I excitation temperature of Tex <= 7.73(+0.53, -0.46) K (Roth & Bauer 1999, ApJ, submitted). Our Keck HIRES spectra (8.3 km s-1 FWHM) obtained in May 1997 also reveal the existence of Ni II and Fe II lines with a sub-solar Ni/Fe abundance ratio, presumably indicative of dust. We have obtained deep, high resolution (0.3'' FWHM) images in H+K' with the UH 2.2m Tip-Tilt system of the QSO field in order to identify the system responsible for the zabs = 1.6748 absorption. We detect two faint candidate systems within 1.5'' and 3'' (≅ 15 and 30 kpc, Hcirc = 65) of the QSO.

  1. Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV luminosity functions at z ˜ 4-7 derived with the half-million dropouts on the 100 deg2 sky

    Science.gov (United States)

    Ono, Yoshiaki; Ouchi, Masami; Harikane, Yuichi; Toshikawa, Jun; Rauch, Michael; Yuma, Suraphong; Sawicki, Marcin; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Oguri, Masamune; Willott, Chris; Akhlaghi, Mohammad; Akiyama, Masayuki; Coupon, Jean; Kashikawa, Nobunari; Komiyama, Yutaka; Konno, Akira; Lin, Lihwai; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nakajima, Kimihiko; Silverman, John; Tanaka, Masayuki; Taniguchi, Yoshiaki; Wang, Shiang-Yu

    2018-01-01

    We study the UV luminosity functions (LFs) at z ˜ 4, 5, 6, and 7 based on the deep large-area optical images taken by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). On the 100 deg2 sky of the HSC SSP data available to date, we take enormous samples consisting of a total of 579565 dropout candidates at z ˜ 4-7 by the standard color selection technique, 358 out of which are spectroscopically confirmed by our follow-up spectroscopy and other studies. We obtain UV LFs at z ˜ 4-7 that span a very wide UV luminosity range of ˜0.002-100 L_UV^\\ast (-26 2 σ significance, and require either double power-law functions or modified Schechter functions that consider a magnification bias due to gravitational lensing.

  2. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  3. THE EVOLUTION OF THE FAR-UV LUMINOSITY FUNCTION AND STAR FORMATION RATE DENSITY OF THE CHANDRA DEEP FIELD SOUTH FROM z = 0.2 TO 1.2 WITH SWIFT/UVOT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Lea M. Z.; Gronwall, Caryl; Wolf, Christopher; Siegel, Michael H.; Hagen, Alex [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Hoversten, Erik A. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Avenue, Chapel Hill, NC 27599 (United States); Page, Mathew, E-mail: lmz5057@psu.edu [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2015-08-01

    We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600–4000 Å) imaging of the Chandra Deep Field South to measure the rest-frame far-UV (FUV; 1500 Å) luminosity function (LF) in four redshift bins between z = 0.2 and 1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to construct and fit the LFs: the traditional V{sub max} method with bootstrap errors, and a maximum likelihood estimator. We observe luminosity evolution such that M* fades by ∼2 mag from z ∼ 1 to z ∼ 0.3, implying that star formation activity was substantially higher at z ∼ 1 than today. We integrate our LFs to determine the FUV luminosity densities and star formation rate densities (SFRDs) from z = 0.2 to 1.2. We find evolution consistent with an increase proportional to (1 + z){sup 1.9} out to z ∼ 1. Our luminosity densities and star formation rates are consistent with those found in the literature but are, on average, a factor of ∼2 higher than previous FUV measurements. In addition, we combine our UVOT data with the MUSYC survey to model the galaxies’ ultraviolet-to-infrared spectral energy distributions and estimate the rest-frame FUV attenuation. We find that accounting for the attenuation increases the SFRDs by ∼1 dex across all four redshift bins.

  4. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  5. The evolution of the cluster optical galaxy luminosity function between z = 0.4 and 0.9 in the DAFT/FADA survey

    Science.gov (United States)

    Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa

    2015-03-01

    Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field

  6. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  7. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2-3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS

    International Nuclear Information System (INIS)

    Reddy, Naveen A.; Steidel, Charles C.

    2009-01-01

    We use the deep ground-based optical photometry of the Lyman Break Galaxy (LBG) Survey to derive robust measurements of the faint-end slope (α) of the UV luminosity function (LF) at redshifts 1.9 ≤ z ≤ 3.4. Our sample includes >2000 spectroscopic redshifts and ∼31000 LBGs in 31 spatially independent fields over a total area of 3261 arcmin 2 . These data allow us to select galaxies to 0.07L* and 0.10L* at z ∼ 2 and z ∼ 3, respectively. A maximum-likelihood analysis indicates steep values of α(z = 2) = -1.73 ± 0.07 and α(z = 3) = -1.73 ± 0.13. This result is robust to luminosity-dependent systematics in the Lyα equivalent width and reddening distributions, and is similar to the steep values advocated at z ∼> 4, and implies that ∼93% of the unobscured UV luminosity density at z ∼ 2-3 arises from sub-L* galaxies. With a realistic luminosity-dependent reddening distribution, faint to moderately luminous galaxies account for ∼>70% and ∼>25% of the bolometric luminosity density and present-day stellar mass density, respectively, when integrated over 1.9 ≤ z 2 contrasts with the shallower slope inferred locally, suggesting that the evolution in the faint-end slope may be dictated simply by the availability of low-mass halos capable of supporting star formation at z ∼< 2.

  8. Flare colours and luminosities

    International Nuclear Information System (INIS)

    Cristaldi, S.; Rodono, M.

    1975-01-01

    Flare colours determined from simultaneous UBV observations made at Catania Observatory and from sequential UBV observations made at McDonald Observatory are presented. They fit fairly well with the theoretical colours computed according to the Gurzadian's (1970) non-thermal model. Only part of the observed flare colours are consistent with the solar type models by Gershberg (1967) and Kunkel (1970). From a B-band patrol of UV Cet-type stars carried out from 1967 to 1972, some quantitative estimates of flare frequencies and luminosities and their average contributions to the stellar radiation are given. The corresponding parameters for the Sun, which were estimated from 'white light' flare activity, are also given for comparison. The Sun and V 1216 Sgr can be regarded as low-activity flare stars of the type found by Kunkel (1973). (Auth.)

  9. A LARGE NUMBER OF z > 6 GALAXIES AROUND A QSO AT z = 6.43: EVIDENCE FOR A PROTOCLUSTER?

    International Nuclear Information System (INIS)

    Utsumi, Yousuke; Kashikawa, Nobunari; Miyazaki, Satoshi; Komiyama, Yutaka; Goto, Tomotsugu; Furusawa, Hisanori; Overzier, Roderik

    2010-01-01

    QSOs have been thought to be important for tracing highly biased regions in the early universe, from which the present-day massive galaxies and galaxy clusters formed. While overdensities of star-forming galaxies have been found around QSOs at 2 6 is less clear. Previous studies with the Hubble Space Telescope (HST) have reported the detection of small excesses of faint dropout galaxies in some QSO fields, but these surveys probed a relatively small region surrounding the QSOs. To overcome this problem, we have observed the most distant QSO at z = 6.4 using the large field of view of the Suprime-Cam (34' x 27'). Newly installed red-sensitive fully depleted CCDs allowed us to select Lyman break galaxies (LBGs) at z ∼ 6.4 more efficiently. We found seven LBGs in the QSO field, whereas only one exists in a comparison field. The significance of this apparent excess is difficult to quantify without spectroscopic confirmation and additional control fields. The Poisson probability to find seven objects when one expects four is ∼10%, while the probability to find seven objects in one field and only one in the other is less than 0.4%, suggesting that the QSO field is significantly overdense relative to the control field. These conclusions are supported by a comparison with a cosmological smoothed particle hydrodynamics simulation which includes the higher order clustering of galaxies. We find some evidence that the LBGs are distributed in a ring-like shape centered on the QSO with a radius of ∼3 Mpc. There are no candidate LBGs within 2 Mpc from the QSO, i.e., galaxies are clustered around the QSO but appear to avoid the very center. These results suggest that the QSO is embedded in an overdense region when defined on a sufficiently large scale (i.e., larger than an HST/ACS pointing). This suggests that the QSO was indeed born in a massive halo. The central deficit of galaxies may indicate that (1) the strong UV radiation from the QSO suppressed galaxy formation in

  10. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  11. The NuSTAR Extragalactic Survey: First Direct Measurements of the Greater Than Or Similar To 10 Kev X-Ray Luminosity Function For Active Galactic Nuclei At z > 0.1

    DEFF Research Database (Denmark)

    Aird, J.; Alexander, D. M.; Ballantyne, D. R.

    2015-01-01

    We present the first direct measurements of the rest-frame 10-40 keV X-ray luminosity function (XLF) of active galactic nuclei (AGNs) based on a sample of 94 sources at 0.1 ... program. Our results are consistent with the strong evolution of the AGN population seen in prior, lower-energy studies of the XLF. However, different models of the intrinsic distribution of absorption, which are used to correct for selection biases, give significantly different predictions for the total...... component (with a relative normalization of R ∼ 2 at all luminosities) can bring extrapolations of the XLF from 2-10 keV into agreement with our NuSTAR sample. Ultimately, X-ray spectral analysis of the NuSTAR sources is required to break this degeneracy between the distribution of absorbing column...

  12. Spectroscopy of QSO candidates from the Jodrell Bank 966 MHz survey

    International Nuclear Information System (INIS)

    Walsh, D.; Wills, B.J.; Wills, D.

    1979-01-01

    Forty-two QSO candidates from the Jodrell Bank 966 MHz survey have been observed spectroscopically at McDonald Observatory. Twenty-five are confirmed as QSOs, and redshifts are given for 19 of them. Two objects are compact galaxies, and another probably is; redshifts are given for these. Seven objects are stars. Of the remaining seven objects, six are probably QSOs and one is probably a star. (author)

  13. Damped Lyα system toward QSO1854+116: A new type of absorber?

    Directory of Open Access Journals (Sweden)

    Ćirković M.M.

    1999-01-01

    Full Text Available A puzzle of the low-redshift damped Lyα absorption system toward QSO 1854+116 is presented. Problems which conventional intepretation of damped Lyα systems encounters in this case are sketched and a possible explanation, based on transience of the phenomenon, is suggested. It is shown that the detailed Hα tomography can observationally resolve the controversy in the very near future.

  14. 0114 + 074 - A very asymmetric galaxy in the field of an intermediate-redshift QSO

    International Nuclear Information System (INIS)

    Akujor, C.E.

    1989-01-01

    New radio-continuum observations of 0114 + 074 (4C 07.4) are presented. It is shown that this radio source consists of two distinct objects: a point source identified with an 18.0 mag QSO and a highly asymmetric 18.5 mag galaxy. The patently asymmetric structure of the galaxy is most plausibly due to intrinsically asymmetric energy funding of the lobes by the central machine or nucleus, rather than external influences. 41 refs

  15. The most luminous z ∼ 9-10 galaxy candidates yet found: The luminosity function, cosmic star-formation rate, and the first mass density estimate at 500 Myr

    International Nuclear Information System (INIS)

    Oesch, P. A.; Illingworth, G. D.; Magee, D.; Bouwens, R. J.; Labbé, I.; Smit, R.; Franx, M.; Van Dokkum, P. G.; Momcheva, I.; Ashby, M. L. N.; Fazio, G. G.; Huang, J.-S.; Willner, S. P.; Gonzalez, V.; Trenti, M.; Brammer, G. B.; Skelton, R. E.; Spitler, L. R.

    2014-01-01

    We present the discovery of four surprisingly bright (H 160 ∼ 26-27 mag AB) galaxy candidates at z ∼ 9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z ∼ 10 galaxy candidates that are known, just ∼500 Myr after the big bang. Two similarly bright sources are also detected in a reanalysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5σ-6.2σ in the very deep Spitzer/IRAC 4.5 μm data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z = 10.2 ± 0.4) is robustly detected also at 3.6 μm (6.9σ), revealing a flat UV spectral energy distribution with a slope β = –2.0 ± 0.2, consistent with demonstrated trends with luminosity at high redshift. Thorough testing and use of grism data excludes known low-redshift contamination at high significance, including single emission-line sources, but as-yet unknown low redshift sources could provide an alternative solution given the surprising luminosity of these candidates. Finding such bright galaxies at z ∼ 9-10 suggests that the luminosity function for luminous galaxies might evolve in a complex way at z > 8. The cosmic star formation rate density still shows, however, an order-of-magnitude increase from z ∼ 10 to z ∼ 8 since the dominant contribution comes from low-luminosity sources. Based on the IRAC detections, we derive galaxy stellar masses at z ∼ 10, finding that these luminous objects are typically 10 9 M ☉ . This allows for a first estimate of the cosmic stellar mass density at z ∼ 10 resulting in log 10  ρ ∗ =4.7 −0.8 +0.5 M ☉ Mpc –3 for galaxies brighter than M UV ∼ –18. The remarkable brightness, and hence luminosity, of these z ∼ 9-10 candidates will enable deep spectroscopy to determine their redshift and nature, and highlights the opportunity for the James Webb Space Telescope to map the buildup of galaxies at redshifts much earlier than z ∼ 10.

  16. Luminosity class of neutron reflectometers

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru

    2016-10-21

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  17. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    Science.gov (United States)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  18. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  19. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  20. High Luminosity LHC Project Description

    CERN Document Server

    Apollinari, Giorgio; Rossi, Lucio

    2014-01-01

    The High Luminosity LHC (HL-LHC) is a novel configuration of the Large Hadron Collider, aiming at increasing the luminosity by a factor five or more above the nominal LHC design, to allow increasing the integrated luminosity, in the high luminosity experiments ATLAS and CMS, from the 300 fb-1 of the LHC original design up to 3000 fb-1 or more. This paper contains a short description of the main machine parameters and of the main equipment that need to be developed and installed. The preliminary cost evaluation and the time plan are presented, too. Finally, the international collaboration that is supporting the project, the governance and the project structure are discussed, too.

  1. Fast luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Pedis, D.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1994-01-01

    In 1990 the LEP-5 experiment measured luminosity at LEP by detecting the single bremsstrahlung photons emitted in the e + e - collisions. In 1991 the experiment was upgraded to exploit the intrinsic high speed of the method which allows luminosity measurement of the single bunches of LEP. In this paper the LEP-5 upgrade is described and the results of a test performed are discussed. ((orig.))

  2. A VLT/MUSE galaxy survey towards QSO Q1410: looking for a WHIM traced by BLAs in inter-cluster filaments†

    Science.gov (United States)

    Pessa, Ismael; Tejos, Nicolas; Barrientos, L. Felipe; Werk, Jessica; Bielby, Richard; Padilla, Nelson; Morris, Simon L.; Prochaska, J. Xavier; Lopez, Sebastian; Hummels, Cameron

    2018-03-01

    Cosmological simulations predict that a significant fraction of the low-z baryon budget resides in large-scale filaments in the form of a diffuse plasma at temperatures T ˜ 105 - 107 K. However, direct observation of this so-called warm-hot intergalactic medium (WHIM) has been elusive. In the ΛCDM paradigm, galaxy clusters correspond to the nodes of the cosmic web at the intersection of several large-scale filamentary threads. In previous work, we used HST/COS data to conduct the first survey of broad H I Lyα absorbers (BLAs) potentially produced by WHIM in inter-cluster filaments. We targeted a single QSO, namely Q1410, whose sight-line intersects 7 independent inter-cluster axes at impact parameters cluster axes, we found 3 without any galaxy counterpart to stringent luminosity limits (˜4 × 108 L⊙ ˜0.01 L*), providing further evidence that these BLAs may represent genuine WHIM detections. We combined this sample with other suitable BLAs from the literature and inferred the corresponding baryon mean density for these filaments in the range Ω ^fil_bar= 0.02-0.04. Our rough estimates are consistent with the predictions from numerical simulations but still subject to large systematic uncertainties, mostly from the adopted geometry, ionization corrections and density profile.

  3. The High Luminosity LHC Project

    Science.gov (United States)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  4. Queued Service Observing (QSO) at CFHT II. Queue Preparation and Observation Tools

    Science.gov (United States)

    Vermeulen, T.; Savalle, R.; Martin, P.; Shapiro, J.

    In order to maximize the scientific productivity of the CFH12K mosaic wide-field imager, a Queued Service Observing (QSO) mode of operations was implemented at CFHT . To support this new operational model, a two-tiered system consisting of a Swing-based Java client and a relational database was developed. The various software components were designed to handle selection, scheduling, execution, and validation of programs submitted by the investigators through the CFHT Phase 2 Tool (PH2). This paper will discuss the technical architecture, the reasons behind our choice of technology, and our experience implementing this system during the first two semesters of Queue observing.

  5. Luminosity with more bunches in PEP

    International Nuclear Information System (INIS)

    Corbett, W.J.

    1990-12-01

    The near term accelerator physics program for PEP includes experiments in a collider mode with up to 9 bunches in each beam. In this memo, luminosity data from the 3 x 3 configuration is first used to calculate vertical beam size, emittance and tune shift as a function of current. The data is then used to extrapolate to the case with either 6 x 6 or 9 x 9 bunches colliding in PEP. Vertical emittance growth from the separated bunch optics and dispersion at the IP are included in the calculations. The conclusion is that given a 90 mA current drive limitation in PEP, operating with 6 x 6 bunches yields the maximum luminosity. 9 refs., 6 figs

  6. Seeking the epoch of maximum luminosity for dusty quasars

    International Nuclear Information System (INIS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-01-01

    Infrared luminosities νL ν (7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL ν (7.8 μm) ≳ 10 47 erg s –1 ; luminosity functions show one quasar Gpc –3 having νL ν (7.8 μm) > 10 46.6 erg s –1 for all 2 luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν (0.25 μm), have the largest values of the ratio νL ν (0.25 μm)/νL ν (7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  7. LUCID: The ATLAS Luminosity Detector

    CERN Document Server

    Cabras, Grazia; The ATLAS collaboration

    2018-01-01

    After the long shut-down, the LHC Run2 has started with new running conditions with respect to Run1: in particular the centre of mass energy has reached 13 TeV and the bunch-spacing is now 25 ns. In order to cope with these changes, the ATLAS luminosity monitor LUCID and its electronics have been completely rebuilt. This note describes the new detector and electronics, the new luminosity algorithms and the new calibration systems, with a brief review of the first results about the stability of the measurement and evaluation of systematic uncertainties for the 2015 data-taking.

  8. LUCID: the ATLAS Luminosity Detector

    CERN Document Server

    Fabbri, Laura; The ATLAS collaboration

    2018-01-01

    A precise measurement of luminosity is a key component of the ATLAS program: its uncertainty is a systematics for all cross-section measurements, from Standard Model processes to new discoveries, and for some precise measurements it can be dominant. To be predictive a precision compatible with PDF uncertainty ( 1-2%) is desired. LUCID (LUminosity Cherenkov Integrating Detector) is sensitive to charged particles generated by the pp collisions. It is the only ATLAS dedicated detector for this purpose and the referred one during the second run of LHC data taking.

  9. Optimizing the night time with dome vents and SNR-QSO at CFHT

    Science.gov (United States)

    Devost, Daniel; Mahoney, Billy; Moutou, Claire; CFHT QSO Team, CFHT software Group

    2017-06-01

    Night time is a precious and costly commodity and it is important to get everything we can out of every second of every night of observing. In 2012 the Canada-France-Hawaii Telescope started operating 12 new vent doors installed on the dome over the course of the previous two years. The project was highly successful and seeing measurements show that venting the dome greatly enhances image quality at the focal plane. In order to capitalize on the gains brought by the new vents, the observatory started exploring a new mode of observation called SNR-QSO. This mode consist of a new implementation inside our Queued Service Observation (QSO) system. Exposure times are adjusted for each frame depending on the weather conditions in order to reach a specific depth, Signal to Noise Ratio (SNR) at a certain magnitude. The goal of this new mode is to capitalize on the exquisite seeing provided by Maunakea, complemented by the minimized dome turbulence, to use the least amount of time to reach the depth required by the science programs. Specific implementations were successfully tested on two different instruments, our wide field camera MegaCam and our high resolution spectrograph ESPaDOnS. I will present the methods used for each instrument to achieve SNR observing and the gains produced by these new observing modes in order to reach the scientific goals of accepted programs in a shorter amount of time.

  10. Observations of nickel, chromium, and zinc in QSO absorption-line systems

    International Nuclear Information System (INIS)

    Meyer, D.M.; Roth, K.C.

    1990-01-01

    New observations of Ni II, Cr II, and Zn II in several damped Ly-alpha QSO absorption-line systems at z about 2 are presented. Using the N(Zn II)/N(H I) ratio as a probe of the metallicity and N(Cr II)/N(Zn II) as a measure of the dust content, it is found that the heavy-element abundances in the z = 1.921 system toward the QSO 2206-199N are 20 percent solar and that the dust-to-gas ratio is 11 percent of the Galactic disk value. The observations of these species in the z = 2.309 system toward PHL 957 yield a more extreme metallicity (4 percent solar) and dust-to-gas ratio (3 percent Galactic). In addition, a depletion of Ni in the z = 2.039 absorber toward PKS 0458 - 020 and an absence of C I absorption in the z about 2 damped systems toward 1215 + 333 and 2359 - 022 are found which are consistent with a lack of dust. Among the four damped systems whose Ni, Cr, and Zn abundances have been examined quantitatively to date, all show convincing evidence of much lower metallicities and dust content than the Galactic disk. The implications of these results with regard to the interpretation of the high-redshift damped Ly-alpha systems as an evolving population of young galaxies are discussed. 41 refs

  11. Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshifts 0.4 and 0.8

    Science.gov (United States)

    Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer

    2010-03-01

    We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.

  12. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7-8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744

    International Nuclear Information System (INIS)

    Atek, Hakim; Kneib, Jean-Paul; Richard, Johan; Clement, Benjamin; Jauzac, Mathilde; Schaerer, Daniel; Limousin, Marceau; Jullo, Eric; Natarajan, Priyamvada; Egami, Eiichi; Ebeling, Harald

    2015-01-01

    Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin 2 in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M UV ∼ –15.5. We find a characteristic magnitude of M UV ⋆ =−20.90 −0.73 +0.90  mag and a faint-end slope α=−2.01 −0.28 +0.20 , close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L * . Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L * . The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization

  13. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7-8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744

    Energy Technology Data Exchange (ETDEWEB)

    Atek, Hakim; Kneib, Jean-Paul [Laboratoire d' Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, CH-1290 Versoix (Switzerland); Richard, Johan; Clement, Benjamin [CRAL, Observatoire de Lyon, Université Lyon 1, 9 Avenue Ch. André, F-69561 Saint Genis Laval Cedex (France); Jauzac, Mathilde [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Schaerer, Daniel [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland); Limousin, Marceau; Jullo, Eric [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Natarajan, Priyamvada [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Egami, Eiichi [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ebeling, Harald [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-02-10

    Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin{sup 2} in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M {sub UV} ∼ –15.5. We find a characteristic magnitude of M{sub UV}{sup ⋆}=−20.90{sub −0.73}{sup +0.90} mag and a faint-end slope α=−2.01{sub −0.28}{sup +0.20}, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L {sup *}. Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L {sup *}. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization.

  14. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-01-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ∼5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P ∼> 3 x 10 24 W Hz -1 ) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ∼30% of the sample and ∼60% of all AGNs, and outnumbering radio-loud AGNs at ∼< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  15. Detectors and luminosity for hadron colliders

    International Nuclear Information System (INIS)

    Diebold, R.

    1983-01-01

    Three types of very high energy hadron-hadron coliders are discussed in terms of the trade-off between energy and luminosity. The usable luminosity depends both on the physics under study and the rate capabilities of the detector

  16. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  17. Size of the z = 0.437 H I absorption region toward the QSO 3C 196

    International Nuclear Information System (INIS)

    Brown, R.L.; Benson, J.M.; Broderick, J.J.; Johnston, K.J.; Mitchell, K.J.

    1988-01-01

    VLBI spectral line observations made at the frequency of the z = 0.437 H I absorption line toward the extended radio QSO 3C 196 demonstrate that the absorption does not occur against the more compact continuum structure in this object. Apparently the H I absorption line results from absorption of the lower brightness continuum emission by an intervening cloud with an angular diameter which must be greater than 0.63 arcsec. For a standard cosmology, this corresponds to a linear extent greater than 2.25 kpc. For a spherical cloud, the mass of absorbing gas is near 7 x 10 to the 7th solar masses. Thus this particular QSO absorbing cloud is surprisingly large and massive. 22 references

  18. THE EVOLUTION OF THE REST-FRAME V-BAND LUMINOSITY FUNCTION FROM z = 4: A CONSTANT FAINT-END SLOPE OVER THE LAST 12 Gyr OF COSMIC HISTORY

    International Nuclear Information System (INIS)

    Marchesini, Danilo; Stefanon, Mauro; Brammer, Gabriel B.; Whitaker, Katherine E.

    2012-01-01

    We present the rest-frame V-band luminosity function (LF) of galaxies at 0.4 ≤ z < 4.0, measured from a near-infrared selected sample constructed from the NMBS, the FIRES, the FIREWORKS, and the ultra-deep NICMOS and WFC3 observations in the HDFN, HUDF, and GOODS-CDFS, all having high-quality optical-to-mid-infrared data. This unique sample combines data from surveys with a large range of depths and areas in a self-consistent way, allowing us to (1) minimize the uncertainties due to cosmic variance; and (2) simultaneously constrain the bright and faint ends with unprecedented accuracy over the targeted redshift range, probing the LF down to 0.1L* at z ∼ 3.9. We find that (1) the faint end is fairly flat and with a constant slope from z = 4, with α = –1.27 ± 0.05; (2) the characteristic magnitude has dimmed by 1.3 mag from z ∼ 3.7 to z = 0.1; (3) the characteristic density has increased by a factor of ∼8 from z ∼ 3.7 to z = 0.1, with 50% of this increase from z ∼ 4 to z ∼ 1.8; and (4) the luminosity density peaks at z ≈ 1-1.5, increasing by a factor of ∼4 from z = 4.0 to z ≈ 1-1.5, and subsequently decreasing by a factor of ∼1.5 by z = 0.1. We find no evidence for a steepening of the faint-end slope with redshift out to z = 4, in contrast with previous observational claims and theoretical predictions. The constant faint-end slope suggests that the efficiency of stellar feedback may evolve with redshift. Alternative interpretations are discussed, such as different masses of the halos hosting faint galaxies at low and high redshifts and/or environmental effects.

  19. To High Luminosity and beyond!

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    This week marks a major milestone for the High Luminosity LHC (HL-LHC - see here) project, as it moves from the design study to the machine construction phase. HL-LHC will extend the LHC’s discovery potential, increasing luminosity by a factor of 10 beyond the original design value and allowing the scientific community to study new phenomena.    Composer Domenico Vicinanza (left) directs the musical performance of sonified LHC data during a special Hi-Lumi event (see box). The green light was given during the 5th Joint HiLumi LHC-LARP annual meeting that took place at CERN from 26 to 30 October 2015. The meeting saw the participation of more than 230 experts from all over the world to discuss the results and achievements of the HiLumi LHC Design Study. During the week, these experts approved the first version of the HL-LHC Technical Design Report – the document that, following the Preliminary Design Report issued in 2014, describes in detail how the LHC upgrade progra...

  20. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  1. ASAS-SN Discovery of an Unprecedented >1.5 Magnitude Optical Flare from QSO B0346-279

    Science.gov (United States)

    Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we have discovered an unprecedented optical brightening of QSO B0346-279 (z 0.9874).

  2. LHC Report: A new luminosity record

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    After about one month of operation, the LHC has already accumulated an integrated luminosity of 28 pb-1, which corresponds to over 50% of the total delivered to the experiments in 2010. This impressive start to the LHC run in 2011 bodes well for the rest of year.   Following careful collimator set-up and validation, the first phase of beam commissioning 2011 has come to an end. The first stable beams were declared on Sunday 13 March with a moderate 3 bunches per beam and an initial luminosity of 1.6 × 1030 cm-2s-1. Machine protection tests continued during the following week as the commissioning team made absolutely sure that all critical systems (beam dumps, beam interlock system, etc.) were functioning properly. When these tests had finished, the way was opened to increased intensity and the LHC quickly moved through the first part of its planned, staged intensity increase. Fills with increasing numbers of bunches were delivered to the experiments, culminating in a fill with 200...

  3. Evidence of Primordial Clustering around the QSO SDSS J1030+0524 at z=6.28

    Science.gov (United States)

    Stiavelli, M.; Djorgovski, S. G.; Pavlovsky, C.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Dickinson, M.; Panagia, N.; Meylan, G.

    2005-03-01

    We present tentative evidence of primordial clustering, manifested as an excess of color-selected objects in the field of the QSO SDSS J1030+0524 at redshift z=6.28. We have selected objects red in i775-z850 on the basis of Hubble Space Telescope Advanced Camera for Surveys imaging of a field centered on the QSO. Compared to data at comparable depth obtained by the Great Observatories Origins Deep Survey, we find an excess of objects with i775-z850>=1.5 in the QSO field. The significance of the detection is estimated to be ~97% on the basis of the counts alone and increases to 99.4% if one takes into account the color distribution. If confirmed, this would represent the highest redshift example of galaxy clustering and would have implications on models for the growth of structure. Bias-driven clustering of first luminous objects forming in the highest peaks of the primordial density field is expected in most models of early structure formation. The redshift of one of the candidates has been found to be z=5.970 by our spectroscopy with the Keck I Low Resolution Imaging Spectrometer, confirming the validity of our color selection. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Yet another UFO in the X-ray spectrum of a high-z lensed QSO

    Science.gov (United States)

    Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; Torresi, E.; De Marco, B.; Chartas, G.; Giustini, M.

    2018-02-01

    Aim. Ultra-fast outflows (UFO) appear to be common in local active galactic nuclei (AGN) and may be powerful enough (Ėkin ≥ 1% of Lbol) to effectively quench the star formation in their host galaxies. To test feedback models based on AGN outflows, it is mandatory to investigate UFOs near the peak of AGN activity, that is, at high-z where only a few studies are available to date. Methods: UFOs produce Fe resonant absorption lines measured above ≈7 keV. The most critical problem in detecting such features in distant objects is the difficulty in obtaining X-ray data with sufficient signal-to-noise. We therefore selected a distant QSO that gravitational lensing made bright enough for these purposes, the z = 2.64 QSO MG J0414+0534, and observed it with XMM-Newton for ≈78 ks. Results: The X-ray spectrum of MG J0414+0534 is complex and shows signatures of cold absorption (NH ≈ 4 × 1022 cm-2) and of the presence of an iron emission line (E ≈ 6.4 keV, EW = 95 ± 53 eV) consistent with it originating in the cold absorber. Our main result, however, is the robust detection (more than 5σ) of an absorption line at Eint ≈ 9.2 keV (Eobs ≈ 2.5 keV observer frame). If interpreted as due to FeXXVI, it implies gas outflowing at vout ≈ 0.3c. To our knowledge, this is the first detection of an UFO in a radio-loud quasar at z ≥ 1.5. We estimated that the UFO mechanical output is Ėkin ≈ 2.5Lbol with ṗout/ṗrad ≈ 17 indicating that it is capable of installing significant feedback between the super-massive black hole and the bulge of the host galaxy. We argue that this also suggests a magnetic driving origin of the UFO.

  5. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  6. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  7. LHCb: LHCb Muon System Performance at High Luminosity

    CERN Multimedia

    Pinci, D

    2013-01-01

    The LHCb detector was conceived to operate with an average Luminosity of $2 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. During the last year of LHC run, the whole apparatus has shown to be able to perfectly acquire and manage data produced at a Luminosity as high as $4 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. In these conditions, all sub-detectors operated at average particle rates higher than the design ones and in particular the Multi-Wire Proportional Chambers equipping the Muon System had to sustain a particle rate as high as 250 kHz/cm$^{2}$. In order to study the possibility of increasing the Luminosity of operation of the whole experiment several tests were performed. The effective beam Luminosity at the interaction point of LHCb was increased in several steps up to $10^{33}$ cm$^{-2}$ s$^{-1}$ and in each step the behavior of all the detectors in the Muon System was recorded. The data analysis has allowed to study the performance of the Muon System as a function of the LHC Luminosity and the results are r...

  8. The Physical Constraints on a New LoBAL QSO at z = 4.82

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Weimin; Bai, Jin-Ming [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Green, Richard; Fan, Xiaohui; Milne, Peter [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Wang, Tinggui; Yang, Chenwei [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China (China); Grier, Catherine J.; Trump, Jonathan R.; Brandt, William N. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Zuo, Wenwen [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yang, Jinyi; Wang, Feige; Wu, Xue-Bing; Jiang, Linhua; Yang, Qian [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Zhou, Hongyan [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China); Varricatt, Watson; Kerr, Tom; Benigni, Sam [UKIRT Observatory, Hilo, HI 96720 (United States); and others

    2017-04-01

    Very few low-ionization broad absorption line (LoBAL) QSOs have been found at high redshifts, to date. One high-redshift LoBAL QSO, J0122+1216, was recently discovered by the Lijiang 2.4 m Telescope, with an initial redshift determination of 4.76. Aiming to investigate its physical properties, we carried out follow-up observations in the optical and near-IR spectroscopy. Near-IR spectra from UKIRT and P200 confirm that it is a LoBAL, with a new redshift determination of 4.82 ± 0.01 based on the Mg ii emission-line. The new Mg ii redshift determination reveals strong blueshifts and asymmetry of the high-ionization emission lines. We estimate a black hole mass of ∼2.3 × 10{sup 9} M {sub ⊙} and Eddington ratio of ∼1.0 according to the empirical Mg ii-based single-epoch relation and bolometric correction factor. It is possible that strong outflows are the result of an extreme quasar environment driven by the high Eddington ratio. A lower limit on the outflowing kinetic power (>0.9% L {sub Edd}) is derived from both emission and absorption lines, indicating that these outflows play a significant role in the feedback process that regulates the growth of its black hole, as well as host galaxy evolution.

  9. The X-ray spectrum of QSO 0241+622. [OSO-8 observations

    Science.gov (United States)

    Worrall, D. M.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1980-01-01

    Proportional counters on the OsO-8 spacecraft measured the X-ray spectrum of QSR 0241+622 in the range 2-50 keV. The best power law fit has a proton spectral index and 90 percent errors gamma = 1.93 (+0.5, -0.3) and low energy absorption consistent with reported gas column densities, but a thermal bremsstrahlung form with temperature 13.1 keV cannot be excluded. No indication of spectral variability is found in three observations of the source with HEAO-A2, although a possible 15-30 percent intensity change over a period of 6 months was observed. The quasar is similar to 3C 273 in the proportion of energy emitted in various bands, excluding the radio, if reported radiation above 50 keV from its direction is indeed associated with QSO 0241+622. The two quasars are compared and possible energy generation scenarios are discussed. Implications concerning quasar contributions to the diffuse background are discussed.

  10. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    International Nuclear Information System (INIS)

    Pettini, M.; Boksenberg, A.

    1985-01-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references

  11. Luminosity monitoring and measurement at CDF

    International Nuclear Information System (INIS)

    Cronin-Hennessy, D.; Beretvas, A.; Derwent, P.F.

    2000-01-01

    Using two telescopes of beam-beam counters, CDF (Collider Detector at Fermilab) has measured the luminosity to an accuracy of 4.1% (3.6%) in run Ib (Ia). For run Ib (Ia) the average luminosity was 9.1(3.3)x10 30 cm -2 s -1 . For a typical data set the integrated luminosity was 86.47 (19.65) pb -1 in run Ib (Ia) resulting in a total integrated luminosity of 106.1±4.1 pb -1 . This paper shows how we have determined the accuracy of our results

  12. Machine constraints for experiments in an intermediate luminosity interaction region

    International Nuclear Information System (INIS)

    Groom, D.

    1989-05-01

    We summarize existing information about the luminosity as a function of clear space between the interaction point and the front of the final-focus triplet, and about the minimum beam pipe dimensions (stay-clear dimensions) in the region. 7 refs., 4 figs., 1 tab

  13. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  14. Evolution of solar ultraviolet luminosity

    International Nuclear Information System (INIS)

    Zahnle, K.J.; Walker, J.C.G.

    1982-01-01

    In view of the major role of the sun in defining the properties of planetary atmospheres, their evolution cannot be fully understood outside the context of an evolving sun. The ultraviolet radiation is especially interesting because of its strong interaction with planetary atmospheres. We use astronomical observation of stars that are analogous to the sun in order to reconstruct a tentative account of the evolution of solar UV luminosity. A wealth of evidence indicates that the young sun was a much more powerful source of energetic particles and radiation than it is today. While on the main sequence, solar activity has declined as an inverse power law of age (between t -5 and t/sup -1.2/) as a consequence of angular momentum loss to the solar wind. Recent IUE satellite observations of premain sequence stars suggest that before the sun reached the main sequence (at an age of about 50 m.y.), it may have emitted as much as 10 4 times as much ultraviolet radiation (γ<2000 A) than it does today. These results could impact our understanding of the photochemistry and escape of constituents of primordial planetary atmospheres

  15. Luminosity Tuning at the Large Hadron Collider

    CERN Document Server

    Wittmer, W

    2006-01-01

    By measuring and adjusting the beta-functions at the interaction point (IP the luminosity is being optimized. In LEP (Large Electron Positron Collider) this was done with the two closest doublet magnets. This approach is not applicable for the LHC (Large Hadron Collider) and RHIC (Relativistic Heavy Ion Collider) due to the asymmetric lattice. In addition in the LHC both beams share a common beam pipe through the inner triplet magnets (in these region changes of the magnetic field act on both beams). To control and adjust the beta-functions without perturbation of other optics functions, quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the so-called "tuning knobs" for the IP beta-functions. For a specific correction one of these knobs is scaled by a common multiplier. The different methods which were used to compute such knobs are discussed: (1) matching in MAD, (2)i...

  16. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  17. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-01-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  18. Luminosity performance reach after LS1

    International Nuclear Information System (INIS)

    Herr, W.

    2012-01-01

    Based on past experience (2010/2011), in particular expected limitations from beam-beam effects, and taking into account the expected beam quality from the LHC injectors, the peak and integrated luminosity at top energy is discussed for different scenarios (e.g. bunch spacing, beta*). In particular it will be shown which are the key parameters to reach the nominal luminosity and it is also shown that peak luminosities two times larger than nominal (or higher) are possible. Possible test in 2012 are discussed

  19. Luminosity Measurements at LHCb for Run II

    CERN Multimedia

    Coombs, George

    2018-01-01

    A precise measurement of the luminosity is a necessary component of many physics analyses, especially cross-section measurements. At LHCb two different direct measurement methods are used to determine the luminosity: the “van der Meer scan” (VDM) and the “Beam Gas Imaging” (BGI) methods. A combined result from these two methods gave a precision of less than 2% for Run I and efforts are ongoing to provide a similar result for Run II. Fixed target luminosity is determined with an indirect method based on the single electron scattering cross-section.

  20. The performance of the CDF luminosity monitor

    CERN Document Server

    Acosta, D; Konigsberg, J; Korytov, A; Mitselmakher, G; Necula, V; Nomerotski, A; Pronko, A; Sukhanov, A; Safonov, A; Tsybychev, D; Wang, S M; Wong, M

    2002-01-01

    We describe the initial performance of the detector used for the luminosity measurement in the CDF experiment in Run II at the Tevatron. The detector consists of low-mass gaseous Cherenkov counters with high light yield (approx 100 photoelectrons) and monitors the process of inelastic pp-bar scattering. It allows for several methods of precise luminosity measurements at peak instantaneous luminosities of 2x10 sup 3 sup 2 cm sup - sup 2 s sup - sup 1 , corresponding to an average of six pp-bar interactions per bunch crossing.

  1. Calculation of integrated luminosity for beams stored in the Tevatron collider

    International Nuclear Information System (INIS)

    Finley, D.A.

    1989-01-01

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing β function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs

  2. Online luminosity measurement at BES III

    International Nuclear Information System (INIS)

    Song Wenbo; Fu Chengdong; Mo Xiaohu; He Kanglin; Zhu Kejun; Li Fei; Zhao Shujun

    2010-01-01

    As a crucial parameter of both accelerator and detector, the realization of online luminosity measurement is of great importance. Several methods of luminosity measurement are recapitulated and the emphasis is laid on the algorithm of using e + e - and γγ final states. Taking into account the status at the beginning of the joint commissioning of detector and accelerator, the information from end cap electromagnetic calorimeter is used to select the good event. With the help of online Event filter, the luminosity is calculated and the monitoring of online cross section of hadron is realized. The preliminary results indicate that the online luminosity measurement is stable and its role for machine tuning and monitoring of the overall running status is indispensable. (authors)

  3. The HELLAS2XMM survey. IV. Optical identifications and the evolution of the accretion luminosity in the Universe

    Science.gov (United States)

    Fiore, F.; Brusa, M.; Cocchia, F.; Baldi, A.; Carangelo, N.; Ciliegi, P.; Comastri, A.; La Franca, F.; Maiolino, R.; Matt, G.; Molendi, S.; Mignoli, M.; Perola, G. C.; Severgnini, P.; Vignali, C.

    2003-10-01

    We present results from the photometric and spectroscopic identification of 122 X-ray sources recently discovered by XMM-Newton in the 2-10 keV band (the HELLAS2XMM 1dF sample). Their flux cover the range 8*E-15-4*E-13 erg cm-2 s-1 and the total area surveyed is 0.9 square degrees. One of the most interesting results (which is found also in deeper sourveys) is that about 20% of the hard X-ray selected sources have an X-ray to optical flux ratio (X/O) ten times or more higher than that of optically selected AGN. Unlike the faint sources found in the ultra-deep Chandra and XMM-Newton surveys, which reach X-ray (and optical) fluxes more than one order of magnitude lower than the HELLAS2XMM survey sources, many of the extreme X/O sources in our sample have Rprotect la25 and are therefore accessible to optical spectroscopy. We report the identification of 13 sources with X/Oprotect ga10 (to be compared with 9 sources known from the deeper, pencil-beam surveys). Eight of them are narrow line QSO (seemingly the extension to very high luminosity of the type 2 Seyfert galaxies), four are broad line QSO. The results from our survey are also used to make reliable predictions about the luminosity of the sources not yet spectroscopically identified, both in our sample and in deeper Chandra and XMM-Newton samples. We then use a combined sample of 317 hard X-ray selected sources (HELLAS2XMM 1dF, Chandra Deep Field North 1Msec, Chandra SSA13 and XMM-Newton Lockman Hole flux limited samples), 221 with measured redshifts, to evaluate the cosmological evolution of the hard X-ray source's number and luminosity densities. Looking backward in time, the low luminosity sources (log L2-10 keV=43-44 erg s-1) increase in number at a much slower rate than the very high luminosity sources (log L2-10 keV >44.5 erg s-1), reaching a maximum around z=1 and then levelling off beyond z=2. This translates into an accretion driven luminosity density which is dominated by sources with log L2-10 keV 44

  4. Detection of an apparent, distant cluster of galaxies associated with the radio-tail QSO 3C 275.1

    International Nuclear Information System (INIS)

    Hintzen, P.; Boeshaar, G.O.; Scott, J.S.

    1981-01-01

    Based on the suggestion that QSOs with distorted radio structures are likely to be members of clusters of galaxies (Hintzen and Scott), we have obtained deep direct observations of the fields containing 3C 270.1 and 3C 275.1, the most reliably substantiated cases of wide-angle radio tails associated with QSOs. Our 75'' square field centered on 3C 275.1 (z = 0.557) contains over three-dozen objects, many of which are nonstellar, between m/sub R/ = 19.8 and m/sub R/ = 23.5. The quasar itself lies at the center of an illiptical nebulosity. The size of this nebulosity and the magnitude distribution of the surrounding objects are consistent with the interpretation that the QSO is the nucleus of a giant elliptical galaxy which is a member of a cluster of galaxies at zapprox.0.55. Our observations of 3C 270.1 (z = 1.519) show no definitive evidence of an associated cluster of galaxies, which is consistent with the cosmological interpretation of QSO redshifts

  5. Reverberation Mapping of High-Luminosity Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Shai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Brandt, William N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Department of Physics, Pennsylvania State University, University Park, PA (United States); Maoz, Dan; Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Shemmer, Ohad, E-mail: shai@wise.tau.ac.il [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-10-30

    Over the past three decades reverberation mapping (RM) has been applied to about 100 AGNs. Their broad line region (BLR) sizes were measured and yielded mass estimates of the black holes in their center. However, very few attempts were carried out for high-luminosity quasars, at luminosities higher than 10{sup 46} erg/sec in the optical. Most of these attempts failed since RM of such quasars is difficult due to a number of reasons, mostly due to the long time needed to monitor these objects. During the past two decades we carried out a RM campaign on six high-luminosity quasars. This contribution presents some of the final light curves of that RM campaign in which we measured the BLR size in C iv of three of the objects (S5 0836+71, SBS 1116+603, and SBS 1425+606). We present the C iv BLR size and luminosity relation over eight orders of magnitude in luminosity, pushing the luminosity limit to its highest point so far.

  6. Luminosity Optimization Feedback in the SLC

    International Nuclear Information System (INIS)

    1999-01-01

    The luminosity optimization at the SLC has been limited by the precision with which one can measure the micron size beams at the Interaction Point. Ten independent tuning parameters must be adjusted. An automated application has been used to scan each parameter over a significant range and set the minimum beam size as measured with a beam-beam deflection scan. Measurement errors limited the accuracy of this procedure and degraded the resulting luminosity. A new luminosity optimization feedback system has been developed using novel dithering techniques to maximize the luminosity with respect to the 10 parameters, which are adjusted one at a time. Control devices are perturbed around nominal setpoints, while the averaged readout of a digitized luminosity monitor measurement is accumulated for each setting. Results are averaged over many pulses to achieve high precision and then fitted to determine the optimal setting. The dithering itself causes a small loss in luminosity, but the improved optimization is expected to significantly enhance the performance of the SLC. Commissioning results are reported

  7. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run 2

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into "telescopes", each consisting of three planes. It was installed during LS1 at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to identify events where a hit is registered in all three sensors in a telescope corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. In this talk, we will present results from 2016 running and preliminary 2017 results, including commissioning and operational history, luminosity calibration using Va...

  8. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run2

    CERN Document Server

    Lujan, Paul Joseph

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into telescopes, each consisting of three sensor planes. It was installed in CMS at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2 of the LHC. The online bunch-by-bunch luminosity measurement employs the fast-or capability of the pixel readout chip to identify events where a hit is registered in all three sensors in a telescope, corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. This paper presents results from the 2016 running of the PLT, including commissioning and operational history, luminosity calibration using Van der Meer scans, and...

  9. Operational results from the LHC luminosity monitors

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  10. An investigation of X-ray luminosity versus crystalline powder granularity

    International Nuclear Information System (INIS)

    Janecek, Martin; Borade, Ramesh; Bourret-Courchesne, Edith; Derenzo, Stephen E.

    2011-01-01

    At the High-Throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a “full-size” scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi 4 Ge 3 O 12 (BGO), Lu 2 SiO 5 :Ce 3+ (LSO), YAlO 3 :Ce 3+ (YAP:Ce), and CsBa 2 I 5 :Eu 2+ (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-μm crystal grain sizes for BGO and LSO, for 310- to 600-μm crystal grain sizes for CBI, and for crystal grains larger than 165 μm for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000-μm crystal grain size range down to the 20- to 36-μm range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-μm crystal grains to the 20- to 36-μm range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-μm crystal grain range to the 36- to 50-μm range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 μm.

  11. MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Bergmann, Benedikt; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel [IEAP CTU in Prague (Czech Republic); Ashba, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Bekhouche, Khaled [Biskra University (Algeria); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Lipniacka, Anna [Bergen University (Norway)

    2016-07-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s) =8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals.

  12. The period-luminosity relation for Cepheids

    International Nuclear Information System (INIS)

    Brodie, J.P.

    1980-01-01

    Numerical simulations of the empirical determination of the period-luminosity-colour relation for classical Cepheids are presented. In this study the quantitative effects of random errors, reddening, sample size and the presence of both colour and period cut-offs (imposed by the finite extent of the instability strip) on the observational redetermination of the original relation are evaluated. Both random errors in the photometry and correlated errors in the reddening corrections are shown to have systematic effects. Especially sensitive to these errors is the colour coefficient in the period-luminosity-colour relation, where the ratio of the error to the width of the instability strip is the determining factor. With present observations only broad confidence limits can be placed on present knowledge of the intrinsic period-luminosity-colour relation and/or its variations from galaxy to galaxy. (author)

  13. The BRAN luminosity detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Matis, H.S.; Placidi, M.; Ratti, A.; Turner, W.C. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bravin, E. [CERN, 1211 Geneva 23 (Switzerland); Miyamoto, R. [European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2017-03-11

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×10{sup 34} cm{sup −2} s{sup −1} with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  14. Powering the High-Luminosity Triplets

    Science.gov (United States)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  15. Luminosity Targets for FCC-hh

    CERN Document Server

    Zimmermann, F.; Buffat, X.; Schulte, D.

    2016-01-01

    We discuss the choice of target values for the peak and integrated luminosity of a future high-energy frontier circular hadron collider (FCC-hh). We review the arguments on the physics reach of a hadron collider. Next we show that accelerator constraints will limit the beam current and the turnaround time. Taking these limits into account, we derive an expression for the ultimate integrated luminosity per year, depending on a possible pile-up limit imposed by the physics experiments. We finally benchmark our result against the planned two phases of FCC-hh [1, 2, 3

  16. A Search for Low-Luminosity BL Lacertae Objects

    Science.gov (United States)

    Rector, Travis A.; Stocke, John T.; Perlman, Eric S.

    1999-05-01

    Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or value for the X-ray-selected EMSS BL Lac sample. Thus, these observations do not explain fully the discrepancy between the X-ray- and radio-selected BL Lac samples.

  17. KEKB B-Factory, the luminosity frontier

    International Nuclear Information System (INIS)

    Oide, Katsunobu

    2009-01-01

    The experiment at the KEKB B-Factory, as well as PEP-II, brought the final blow on the 2008 Nobel Prize in Physics for the Kobayashi-Maskawa theory. A few key issues will be described on the design and performance of KEKB to make the world's highest luminosity possible. (author)

  18. Luminosity Measurement at the Compact Linear Collider

    CERN Document Server

    Schwartz, Rina; Levy, Aharon

    The compact linear collider (CLIC) is a proposed high energy accelera- tor, planned to collide electrons with positrons at a maximal center-of-mass energy of 3 TeV, and a peak luminosity of 5.9·1034 cm−2s−1. Complementary to the large hadron collider, CLIC is to provide high precision measurements of both known and new physics processes. The required relative precision of luminosity measurement at the CLIC is 10−2. The measurement will be done by the luminosity calorimeter (Lumi- Cal), designed to measure the rate of low angles Bhabha scattering events, a process with well-known cross-section from electroweak theory. Beam-beam effects, which are of unprecedented intensity at the CLIC, influence the lumi- nosity spectrum shape and create a significant amount of background charge deposits in the LumiCal, thus setting a challenge on the requirement for precision. The ability of the LumiCal to provide accurate luminosity mea- surement depends on its ability to perform accurate energy reconstruction of Bhab...

  19. RHIC Proton Luminosity and Polarization Improvement

    International Nuclear Information System (INIS)

    Zhang, S. Y.

    2014-01-01

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  20. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  1. Recent improvements in luminosity at PEP

    International Nuclear Information System (INIS)

    Helm, R.; Allen, M.; Chao, A.

    1983-03-01

    We will describe improvements which have led to new records for peak and average luminosity at PEP. Comparison of recent results with several earlier lattice and optical modifications shows rather good correlation with the predictions of a beam-beam simulation program

  2. MPX Detectors as LHC Luminosity Monitor

    CERN Document Server

    Sopczak, Andre; Asbah, Nedaa; Bergmann, Benedikt; Bekhouche, Khaled; Caforio, Davide; Campbell, Michael; Heijne, Erik; Leroy, Claude; Lipniacka, Anna; Nessi, Marzio; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2015-01-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at sqrt(s) = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX lum...

  3. Luminosity Variations in Post-AGB Stars

    Science.gov (United States)

    Mesler, Robert; Henson, G.

    2007-12-01

    Although much is known about AGB stars and planetary nebulae, relatively little is known about the phase of a star's life in which it transitions between those two states. We have measured the variations in luminosity of a sample of known Post-AGB stars (as well as several candidates) relative to nearby, non-variable stars in order to compare them with theoretical models. The typical behavior of the observed variations is described and an attempt is made to discern whether any periodicity might be present. Luminosity variations were found to be on the order of a few hundredths to a few tenths of a magnitude for the stars that were surveyed, with occasional fluctuations of up to a magnitude. This agrees with current models of Post-AGB stars. Each star fell into one of three categories, which were termed groups 1, 2, and 3. Group 1 stars showed long term, non-periodic luminosity variations on the scale of weeks or longer and were most likely to display some sort of short term, coherent luminosity oscillation (each of which lasted for only a few cycles). Group 2 stars showed erratic, short-term magnitude variations occurring on scales of several days. Group 3 stars showed little or no variation in magnitude. Of the 27 Post-AGB stars that were sampled, five fell into group 1, fifteen fell into group 2, and seven fell into group 3. The luminosity variations tended to be color-independent, and occurred on timescales ranging nearly continuously from a few days to more than a year. No clear periodic behavior was found in any star in our sample. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  4. DISTRIBUTION OF MAXIMAL LUMINOSITY OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Taghizadeh-Popp, M.; Szalay, A. S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Ozogany, K.; Racz, Z. [Institute for Theoretical Physics-HAS, Eoetvoes University, Pazmany setany 1/a, 1117 Budapest (Hungary); Regoes, E., E-mail: mtaghiza@pha.jhu.edu [European Laboratory for Particle Physics (CERN), Geneva (Switzerland)

    2012-11-10

    Extreme value statistics is applied to the distribution of galaxy luminosities in the Sloan Digital Sky Survey. We analyze the DR8 Main Galaxy Sample (MGS), as well as the luminous red galaxies (LRGs). Maximal luminosities are sampled from batches consisting of elongated pencil beams in the radial direction of sight. For the MGS, results suggest a small and positive tail index {xi}, effectively ruling out the possibility of having a finite maximum cutoff luminosity, and implying that the luminosity distribution function may decay as a power law at the high-luminosity end. Assuming, however, {xi} = 0, a non-parametric comparison of the maximal luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for variables distributed by the Schechter fit) indicates a good agreement provided that uncertainties arising from both the finite batch size and the batch-size distribution are accounted for. For a volume-limited sample of LRGs, results show that they can be described as being the extremes of a luminosity distribution with an exponentially decaying tail, provided that the uncertainties related to batch-size distribution are taken care of.

  5. Robust Tracking at the High Luminosity LHC

    CERN Document Server

    Woods, Natasha Lee; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5×10^34cm^-2s^-1 which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  6. Recent luminosity improvements at the SLC

    International Nuclear Information System (INIS)

    Raimondi, P.; Usher, T.; Akre, R.

    1998-07-01

    The luminosity of the SLAC Linear Collider (SLC) has been increased by more than a factor of three during the 1997--98 run. Improved alignment and emittance tuning techniques throughout the accelerator resulted in minimal emittance growth from the damping rings to the final focus. In particular, a revised strategy for wakefield cancellation using precision beam size measurements at the entrance of the final focus proved effective for optimizing emittance. The final focus lattice was modified to provide stronger demagnification near the interaction point and to remove residual higher-order aberrations. Beam sizes as small as 1.5 by 0.65 microns were achieved at full beam intensity of 4 10 10 particles per pulse. With these parameters, the mutual focusing of the beams in collision becomes significant, resulting in a further increase in the luminosity. Recorded SLD event rates confirmed the theoretical calculations of the disruption enhancement which was typically 50 to 100%

  7. High luminosity muon scattering at FNAL

    International Nuclear Information System (INIS)

    Bazizi, K.; Conrad, J.; Fang, G.; Erdmann, M.; Geesaman, D.; Jackson, H.; Guyot, C.; Virchaux, M.; Holmgren, H.; Malensek, A.; Melanson, H.; Morfin, J.; Schellman, H.; Nickerson, R.

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity μ scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity μ scattering experiment is evaluated. The CERN and FNAL μ beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs

  8. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  9. Classical Cepheid luminosities from binary companions

    International Nuclear Information System (INIS)

    Evans, N.R.

    1991-01-01

    Luminosities for the classical Cepheids Eta Aql, W Sgr, and SU Cas are determined from IUE spectra of their binary companions. Spectral types of the companions are determined from the spectra by comparison with the spectra of standard stars. The absolute magnitude inferred from these spectral types is used to determine the absolute magnitude of the Cepheid, either directly or from the magnitude difference between the two stars. For the temperature range of the companions (A0 V), distinctions of a quarter of a spectral subclass can be made in the comparison between the companions and standard stars. The absolute magnitudes for Eta Aql and W Sgr agree well with the period-luminosity-color relation of Feast and Walker (1987). Random errors are estimated to be 0.3 mag. SU Cas, however, is overluminous for pulsation in the fundamental mode, implying that it is pulsating in an overtone. 58 refs

  10. High Luminosity LHC Studies with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to L = 7.5 $\\times$ 1034cm$^{-2}s$^{-1}$, corresponding to an average of 200 inelastic p-p collisions per bunch crossing ($\\mu$ = 200). Fast simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions. This talk will focus on the results of physics prospects studies for benchmark analyses involving in particular boosted hadronic objects (e.g. ttbar resonances, HH resonances), and on results of Jet/EtMiss studies of jet performance and pileup mitigation techniques that will be critical in HL-LHC analyses.

  11. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  12. K0 finding efficiencies in increasing luminosities

    International Nuclear Information System (INIS)

    Hassard, J.F.; Margetides S.

    1993-01-01

    In early LHC running it is anticipated that experiments will obtain luminosities of 10 32 cm -2 sec -1 , during which typically only one interaction per event will be obtained. But at higher luminosities, necessary for any Higgs and myriad other searches, experiments will have to deal with up to 50 distinct primary processes. Most will be minimum bias, and easily distinguished in terms of trigger. They can still, of course, confuse analysis of high P T events. When it comes to B events, the confusion even from minimum bias events becomes more acute, since B events are not open-quotes high P T close quotes in this environment. The need for vertex discrimination, particularly in z, is well understood; however, a collateral effect - the increasing difficulty in finding tracks at all - has received little attention. The authors show the distribution of the K 0 in the Pythia process B → J/ψK 0 in the space γ vs. η. Confusion in reconstructing the K 0 is acute for many reasons, not the least of which is the way their pions are boosted forward, and even out of acceptance. Extra luminosity merely increases the problems in finding K 0 's, so it must not be assumed that 10 33 cm -2 sec -1 is ten times better than 10 32 cm -2 sec -1

  13. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    Science.gov (United States)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  14. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-01-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec -2 . Light profiles were initially fitted with a Sersic's R 1/n model, but we found that 205 (∼48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n ∼ 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter (∼0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M R = -23.8 ± 0.6 mag for single profile BCGs and M R = -24.0 ± 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 ± 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a single = 3.29 ± 0.06 and a double = 2.79 ± 0.08. Also, the logarithmic slope of the metric luminosity α is higher in double profile BCGs (α double = 0.65 ± 0.12) than in single profile BCGs (α single = 0.59 ± 0.14). The mean isophote outer ellipticity (calculated at μ ∼ 24 mag arcsec -2 ) is higher in double profile BCGs (e double = 0.30 ± 0.10) than in single profile BCGs (e single = 0.26 ± 0.11). Similarly, the mean absolute value of inner minus outer ellipticity is also higher in double profile BCGs. From a

  15. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z ≈ 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    International Nuclear Information System (INIS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S.

    2012-01-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 10 12 L ☉ ). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10 11.6 L ☉ IR (8-1000 μm) 13.6 L ☉ . 90% of the Herschel-detected DOGs in this sample are ULIRGs and 30% have L IR > 10 13 L ☉ . The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ∼25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR (8-1000 μm)/νL ν (8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  16. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results

    Science.gov (United States)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Dzuba, V. A.; Churchill, C. W.; Prochaska, J. X.; Barrow, J. D.; Wolfe, A. M.

    2001-11-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a sensitive probe for variability of the fine-structure constant, α, over cosmological time-scales. We have previously developed and applied a new method providing an order-of-magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-α absorption systems. We also reanalyse our previous lower-redshift data and confirm our initial results. The constraints on α come from simultaneous fitting of absorption lines of subsets of the following species: Mgi, Mgii, Alii, Aliii, Siii, Crii, Feii, Niii and Znii. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range [formmu2]0.5quote above is the raw value, not corrected for any of these systematic effects. The only significant systematic effects so far identified, if removed from our data, would lead to a more significant deviation of [formmu5]Δα/α from zero.

  17. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    International Nuclear Information System (INIS)

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

    1980-07-01

    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10 4 K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated Lα/Hα line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/Hα ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped Hα photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(Hα) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations

  18. CORNELL: Bunch trains provide higher luminosity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The new colliding beam technique - ''bunch trains'' - at Cornell's electron-positron Storage Ring (CESR) has led to a new world record for colliding beam luminosity - 3.3 x 10 32 cm -2 s -1 . In the bid to increase reaction rate for any particular process, this luminosity is pushed as high as possible. Once all other luminosityincreasing cards have been played, the only practical way of making a large gain in luminosity is to increase the frequency of bunch-bunch collisions by increasing the number of bunches stored in the ring. However this is not without its own problems: • If the two beams travel the same orbit, the n bunches in one beam collide with the n bunches of the other at 2n points around the ring, and the resulting cumulative nonlinear beam-beam effect (tune shift) severely limits the luminosity attainable at any interaction point. • The destabilizing wakefield effects of bunches on each other increase as the number of bunches increases and the spacing between them decreases. • The synchrotron radiation emitted by the beams becomes a severe problem as the total beam current is raised: to overcome these effects means supplying radiofrequency power to maintain the beam energy, carrying away heat from the vacuum chamber walls, pumping out desorbed gases, and controlling Xray backgrounds in the experiment. In 1979, CESR was designed to run with a single bunch of electrons and a single bunch of positrons circulating on the same orbit and colliding head-on at two diametrically opposite points in the ring, where the CLEO and CUSB experiments were then located. Ideally one could store multiple bunches and solve the multiple collision point problem by using separate rings for the two beams, as in the CERN ISR proton-proton collider and in the original DORIS two-ring configuration at DESY, Hamburg, making the two beams intersect only at the experiments. A less expensive version of this two-ring scheme was accomplished at CESR in

  19. CORNELL: Bunch trains provide higher luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    The new colliding beam technique - ''bunch trains'' - at Cornell's electron-positron Storage Ring (CESR) has led to a new world record for colliding beam luminosity - 3.3 x 10{sup 32} cm{sup -2}s{sup -1}. In the bid to increase reaction rate for any particular process, this luminosity is pushed as high as possible. Once all other luminosityincreasing cards have been played, the only practical way of making a large gain in luminosity is to increase the frequency of bunch-bunch collisions by increasing the number of bunches stored in the ring. However this is not without its own problems: • If the two beams travel the same orbit, the n bunches in one beam collide with the n bunches of the other at 2n points around the ring, and the resulting cumulative nonlinear beam-beam effect (tune shift) severely limits the luminosity attainable at any interaction point. • The destabilizing wakefield effects of bunches on each other increase as the number of bunches increases and the spacing between them decreases. • The synchrotron radiation emitted by the beams becomes a severe problem as the total beam current is raised: to overcome these effects means supplying radiofrequency power to maintain the beam energy, carrying away heat from the vacuum chamber walls, pumping out desorbed gases, and controlling Xray backgrounds in the experiment. In 1979, CESR was designed to run with a single bunch of electrons and a single bunch of positrons circulating on the same orbit and colliding head-on at two diametrically opposite points in the ring, where the CLEO and CUSB experiments were then located. Ideally one could store multiple bunches and solve the multiple collision point problem by using separate rings for the two beams, as in the CERN ISR proton-proton collider and in the original DORIS two-ring configuration at DESY, Hamburg, making the two beams intersect only at the experiments. A less expensive version of this two-ring scheme was accomplished at CESR in 1983, using

  20. Luminosity distribution in galaxies. I. The elliptical galaxy NGC 3379 as a luminosity distribution standard

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; Capaccioli, M.

    1979-01-01

    A standard mean luminosity profile in the B band of the El galaxy NGC 3379 along its east-west x-axis is derived from four sets of medium- and low-resolution photographic and photoelectric McDonald data. The 154 mean points cover a range in excess of 11 mag down to μ/sub B/=27.8 mag arcsec -2 (x=7'.3), with possible detection out to x=16'.3 (μ/sub B/approx. =30.9).The profile is presented within +- 0.08 mag at all x>10'' by μ 1 =14.076+3.0083 x/sup 1/4/ (x in arcsec). Near the center the galaxy is brighter than μ 1 by up to 0.35 mag; the excess can be represented by a Gaussian core μ/sub II/=18.565+0.03965 r 2 (r in arcsec) contributing 19.8% of the integrated magnitude B=11.97 within r* =12'' and 4.0% of the total magnitude B/sub T/=10.225 of the galaxy.This two-component model convolved by the appropriate point spread function represents the data within a standard deviation of 0.04 mag over the whole range. Other analytical formulae give generally poorer fits. There is no evidence for a tidal cutoff or a tidal extension.The integrated magnitudes derived from the model agree with aperture photometry (47 values) within 0.05 mag

  1. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xinfa [School of Science, Nanchang University, Jiangxi 330031 (China); Yu Guisheng [Department of Natural Science, Nanchang Teachers College, Jiangxi 330103 (China)

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  2. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  3. An Investigation of X-ray Luminosity versus Crystalline Powder Granularity

    Energy Technology Data Exchange (ETDEWEB)

    Borade, Ramesh; Bourret-Courchesne, Edith; ,

    2012-03-07

    At the High-throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a "full-size" scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi{sub 4}Ge{sub 3}O{sub 12} (BGO), Lu{sub 2}SiO{sub 5}:Ce (LSO), YAlO{sub 3}:Ce (YAP:Ce), and CsBa{sub 2}I{sub 5}:Eu{sup 2+} (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-{micro}m crystal grain sizes for BGO and LSO, for 310- to 600-{micro}m crystal grain sizes for CBI, and for crystal grains larger than 165{micro}m for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000- {micro}m crystal grain size range down to the 20- to 36-{micro}m range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-{micro}m crystal grains to the 20- to 36-{micro}m range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-{micro}m crystal grain range to the 36- to 50-{micro}m range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 {micro}m.

  4. Luminosity Determination in $pp$ Collisions at $\\sqrt{s}$ = 7 TeV using the ATLAS Detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Ackers, Mario; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Jose; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arms, Kregg; Armstrong, Stephen Randolph; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Guimaraes da Costa, J.Barreiro; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Belhorma, Bouchra; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bischof, Reinhard; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Boaretto, Christian; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Bock, Rudolf; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; B{oser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Booth, Richard; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Braccini, Saverio; Bracinik, Juraj; Braem, Andre; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Caprio, Mario; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Montoya, German D.Carrillo; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Cerna, Cedric; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervetto, Mario; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Clark, Allan G.; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Correard, Sebastien; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; La Cruz-Burelo, Eduard De; de la Taille, Christophe; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedes, George; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Dennis, Chris; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diaz Gomez, Manuel Maria; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferguson, Douglas; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Ferro, Fabrizio; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fohlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Garcia Navarro, Jose Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gildemeister, Otto; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gollub, Nils Peter; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Gonella, Laura; Gong, Chenwei; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Gorski, Boguslaw Tomasz; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanere, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hartel, Roland; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jrgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harper, Robert; Harrington, Robert; Harris, Orin; Harrison, Karl; Hart, John; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Hendriks, Patrick John; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Hens, Tobias; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hindson, Daniel; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Hollins, Ivan; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homer, Jim; Homma, Yasuhiro; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Mark; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joo, Kwang; Joram, Christian; Jorge, Pedro; Jorgensen, Sigrid; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Konig, Stefan; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Serguei; Kotov, Vladislav; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Krobath, Gernot; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambacher, Marion; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Celine; Lechowski, Matthieu; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lehto, Mark; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepidis, Johannes; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lynn, James; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maasen, Michael; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandi{c, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Mangin-Brinet, Mariane; Manjavidze, Ioseb; Mann, Alexander; Mann, Anthony; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mas, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGarvie, Scott; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McMahon, Tania; McMahon, Tom; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Merkl, Doris; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Migliaccio, Agostino; Mijovi{c, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Miscetti, Stefano; Misiejuk, Andrzej; Mitra, Ankush; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moye, Tamsin; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nasteva, Irina; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Nauyock, Farah; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neukermans, Lionel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nicholson, Caitriana; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norniella Francisco, Olga; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Odino, Gian Andrea; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, Concepcion; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ottewell, Brian; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Oye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Palmer, Matt; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadopoulou, Theodora; Paramonov, Alexander; Park, Su-Jung; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peeters, Simon Jan Marie; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petereit, Emil; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottlander, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Ruhr, Frederik; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schweiger, Dietmar; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sj{olin, J{orgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Stefanidis, Efstathios; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockmanns, Tobias; Stockton, Mark; Stodulski, Marek; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Gary; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Ventura, Silvia; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vertogardov, Leonid; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sebastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Joshua C.; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Stephanie; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zdrazil, Marian; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovi{c, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of mu, the average number of inelastic interactions per bunch crossing. Residual time- and mu-dependence between the methods is less than 2% for 0luminosity calibrations, performed using beam separation scans, have a common systematic uncertainty of +/-11, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most +/-2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detect...

  5. Selected issues for the LHC luminosity upgrade

    International Nuclear Information System (INIS)

    Laface, E.

    2008-12-01

    The Large Hadron Collider started its operations on September 10. 2008. In a realistic forecast it is supposed to demonstrate (or confute) the existence of the Higgs boson for the year 2014. After this date the physics of rare events will be explored more in details and an upgrade of the luminosity can make an important difference in the program of experiments at CERN. This thesis proposes several ideas to increase the luminosity of ATLAS and CMS experiments and the acceptance of TOTEM experiment. The main object of study is the Interaction Region, that consists in the set of magnets in charge to provide the final beam focalization for the collisions. The Interaction Region is studied with the methods of beam optics and beam dynamics to design new layouts for the upgrade. These layouts are also explored from the point of view of integrability in the existing experiments developing the analysis of energy deposition and misalignment tolerances. This study was performed with the use of analytical methods for the general considerations and numerical methods for the parameters optimization. (author)

  6. LHC Report: a break from luminosity production

    CERN Multimedia

    Jan Uythoven for the LHC team

    2016-01-01

    The LHC has been in great shape over the last few months, delivering over 20 fb-1 of integrated luminosity before the ICHEP conference in Chicago at the beginning of August. This is not much below the 25 fb-1 target for the whole of 2016. With this success in mind, a break in luminosity production was taken for six days, starting on 26 July 2016, for a machine development period.   This year, 20 days of the LHC schedule are devoted to machine development with the aim of carrying out detailed studies of the accelerator. The 20 days are divided over five different periods, called MD blocks. They can be seen as an investment in the future, so the machine can produce collisions more efficiently in the months and years to come. A detailed programme is worked out for each MD block, whereby different specialist teams are assigned periods of four to twelve hours, depending on the topic, to perform their previously approved tests. The MD program continues 24 hours per day, as in normal physics operation. One...

  7. Thermodynamics and luminosities of rainbow black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Benrong [Physics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu (China); Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn [Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, No. 24 South Section 1 Yihuan Road, Chengdu (China)

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  8. High Luminosity LHC: challenges and plans

    Science.gov (United States)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  9. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  10. High Luminosity LHC: Challenges and plans

    International Nuclear Information System (INIS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.

    2016-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3 Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  11. Statistics of the Hubble diagram. I. Determination of q2 and luminosity evolution with application to quasars

    International Nuclear Information System (INIS)

    Turner, E.L.

    1979-01-01

    A rank statistic version of the magnitude-redshift q 0 test is developed. It may be applied to the Hubble diagram of objects with an arbitrary and unknown luminosity function; in particular, the objects need not be ''standard candles.'' Only the single restriction that the objects' luminosity function does not vary in functional form is placed on the sources' intrinsic properties. Density and/or luminosity evolution are taken into account. Corrections for sample selection biases are incorporated into the analysis. Tests for the presence of luminosity evolution are given. Methods for determining either q 0 or the luminosity evolution when the other is a priori known are described.Application of these techniques to a sample of 119 3CR and 4C quasars leads to the following results: The radio Hubble diagram is consistent with all values of q 0 , suggesting that the quasar radio luminosity function is a featureless power law. The optical Hubble diagram indicates one of these possibilities: (1) the value of q 0 is in the range 2--32, probably near 5; (2) the value of q 0 is more reasonable and there is strong optical luminosity evolution [e.g., if q/sub o/ approx. = 0.05, then the characteristic optical luminosity scales like approx. (1 + Z)/sup 7/3/]; or (3) the data are a low-probability (< or =0.05) statistical fluctuation. The second interpretation is probably the most sensible one.Generalizations of the rank statistic magnitude-redshift test are suggested for application to a variety of extragalactic and stellar problems. Specific examples of applications to unorthodox cosmologies are given. Even for the unfavorable (very broad luminosity function) case of the optical quasar data, the rank statistic analysis is sensitive to relative variations in the distance-modulus-redshift relation as small as approx.0.4 mag for 1/2 < or = Z < or = 2

  12. THE BIVARIATE SIZE-LUMINOSITY RELATIONS FOR LYMAN BREAK GALAXIES AT z {approx} 4-5

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Su, Jian [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ravindranath, Swara, E-mail: kuanghan@pha.jhu.edu [The Inter-University Center for Astronomy and Astrophysics, Pune University Campus, Pune 411007, Maharashtra (India)

    2013-03-01

    We study the bivariate size-luminosity distribution of Lyman break galaxies (LBGs) selected at redshifts around 4 and 5 in GOODS and the HUDF fields. We model the size-luminosity distribution as a combination of log-normal distribution (in size) and Schechter function (in luminosity), therefore it enables a more detailed study of the selection effects. We perform extensive simulations to quantify the dropout-selection completenesses and measurement biases and uncertainties in two-dimensional size and magnitude bins, and transform the theoretical size-luminosity distribution to the expected distribution for the observed data. Using maximum-likelihood estimator, we find that the Schechter function parameters for B {sub 435}-dropouts and are consistent with the values in the literature, but the size distributions are wider than expected from the angular momentum distribution of the underlying dark matter halos. The slope of the size-luminosity (RL) relation is similar to those found for local disk galaxies, but considerably shallower than local early-type galaxies.

  13. THE BIVARIATE SIZE-LUMINOSITY RELATIONS FOR LYMAN BREAK GALAXIES AT z ∼ 4-5

    International Nuclear Information System (INIS)

    Huang, Kuang-Han; Su, Jian; Ferguson, Henry C.; Ravindranath, Swara

    2013-01-01

    We study the bivariate size-luminosity distribution of Lyman break galaxies (LBGs) selected at redshifts around 4 and 5 in GOODS and the HUDF fields. We model the size-luminosity distribution as a combination of log-normal distribution (in size) and Schechter function (in luminosity), therefore it enables a more detailed study of the selection effects. We perform extensive simulations to quantify the dropout-selection completenesses and measurement biases and uncertainties in two-dimensional size and magnitude bins, and transform the theoretical size-luminosity distribution to the expected distribution for the observed data. Using maximum-likelihood estimator, we find that the Schechter function parameters for B 435 -dropouts and are consistent with the values in the literature, but the size distributions are wider than expected from the angular momentum distribution of the underlying dark matter halos. The slope of the size-luminosity (RL) relation is similar to those found for local disk galaxies, but considerably shallower than local early-type galaxies.

  14. LIGHT and LUMINOSITY, from Einstein to LHC

    CERN Multimedia

    CERN. Geneva; Prof. ROSSI, Lucio

    2015-01-01

    After an introduction on the concept of light in physics, this talk will focus on CERN’s High Luminosity LHC project, aiming at extending the discovery potential of CERN’s flagship accelerator by increasing its “luminosity” (ie the number of particles that can be squeezed inside the accelerator to maximize the number of collisions). To achieve this objective, many new technologies are being developed at CERN and many collaborating institutes worldwide, especially in the field of superconductivity. Lucio Rossi, the main speaker, is the head of the HL-LHC project, based at CERN. Giorgio Apollinari, Director for the LHC Accelerator Research Program (LARP) will speak through a videoconference from Fermilab (USA). The event is webcast live and will be followed by Fermilab and other institutes in the USA.

  15. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    International Nuclear Information System (INIS)

    Khare, Pushpa; Daniel, Vanden Berk; Rahmani, Hadi; York, Donald G.

    2014-01-01

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s –1 ; in units of velocity of light, β, ≤0.01) with 0.4 ≤z abs ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10 9 M ☉ than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z abs > z em , which could be infalling galaxies.

  16. Hubble Space Telescope Observations of Extended [O III]λ 5007 Emission in Nearby QSO2s: New Constraints on AGN Host Galaxy Interaction

    Science.gov (United States)

    Fischer, Travis C.; Kraemer, S. B.; Schmitt, H. R.; Longo Micchi, L. F.; Crenshaw, D. M.; Revalski, M.; Vestergaard, M.; Elvis, M.; Gaskell, C. M.; Hamann, F.; Ho, L. C.; Hutchings, J.; Mushotzky, R.; Netzer, H.; Storchi-Bergmann, T.; Straughn, A.; Turner, T. J.; Ward, M. J.

    2018-04-01

    We present a Hubble Space Telescope survey of extended [O III] λ5007 emission for a sample of 12 nearby (z continuing to be kinematically influenced by the central active galactic nucleus (AGN) out to an average radius of ∼1130 pc. These findings question the effectiveness of AGNs being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O III] radial extent and nuclear FWHM, where QSO2s with compact [O III] morphologies typically possess broader nuclear emission lines.

  17. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  18. Protogalaxy interactions in newly formed clusters: Galaxy luminosities, colors, and intergalactic gas

    International Nuclear Information System (INIS)

    Silk, J.

    1978-01-01

    The role of protogalaxy interactions in galactic evolution is studied during the formation of galaxy clusters. In the early stages of the collapse, coalescent encounters of protogalaxies lead to the development of a galactic luminosity function. Once galaxies acquire appreciable random motions, mutual collisions between galaxies in rich clusters will trigger the collapse of interstellar clouds to form stars. This provides both a source for enriched intracluster gas and an interpretation of the correlation between luminosity and color for cluster elliptical galaxies. Other observational consequences that are considered include optical, X-ray, and diffuse nonthermal radio emission from newly formed clusters of galaxies

  19. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    Science.gov (United States)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5account our varying intrinsic Lyα line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyα luminosity function to unprecedented limits of 1040 ergs s -1, corresponding to a star formation rate of 0.01 Msolar yr-1. Our cumulative z~=5 Lyα luminosity function is consistent with a power-law form n(>L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR -L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α= 0.533 +0.035 -0.033 , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR -L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  1. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Denney, Kelly D.; Vestergaard, Marianne [Dark Cosmology Center, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li Weidong [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gates, Elinor L. [University of California Observatories/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Peyton Hall - Ivy Lane, Princeton, NJ 08544 (United States); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Woo, Jong-Hak, E-mail: bentz@chara.gsu.edu [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  2. Detector Performance and Upgrade Plans of the Pixel Luminosity Telescope for Online per-Bunch Luminosity Measurement at CMS

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors. It was installed during LS1 and has been providing luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to quickly identify likely tracks at the full 40MHz interaction rate. In addition, the full pixel information is read out at a lower rate, allowing for more detailed offline analysis. In this talk, we will present details of the commissioning, performance and operational history of the currently installed hardware and upgrade plans for LS2.

  3. Intrinsic luminosities of the Jovian planets

    International Nuclear Information System (INIS)

    Hubbard, W.B.

    1980-01-01

    We review available data and theories on the size and nature of interior power sources in the Jovian planets. Broad band infrared measurements indicate that Jupiter and Saturn have interior heat fluxes about 150 and 50 times larger, respectively, than the terrestrial value. While Neptune has a modest heat flux (approx.5 times terrestrial), it is clearly detected by earth-based measurements. Only Uranus seems to lack a detectable interior heat flow. Various models, ranging from simple cooling to gravitational layering to radioactivity, are discussed. Current evidence seems to favor a cooling model in which the escape of heat is regulated by the atmosphere. This model seems capable of explaining phenomena such as the uniformity of effective temperature over Jupiter's surface and the different emission rates of Uranus and Neptune. In such a model the heat radiated from the atmosphere may derived from depletion of a thermal reservoir in the interior, or it may derive from separation of chemical elements during formation of a core. Calculations indicate that in the earlier stages of cooling, Jupiter and Saturn may have more homogeneous abundances of hydrogen and helium and radiate energy derived from simple cooling. At a subsequent phase (which may be later than the present time), hydrogen and helium will separate and supply grativational energy. Either model is consistent with a hot, high-luminosity origin for the Jovian Planets

  4. ATLAS gets its own luminosity detector

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    During the winter shutdown, the ATLAS collaboration has completed the installation of ALFA, the detector system that aims at the LHC absolute luminosity at Point 1 analysing the elastic scattering of protons at small angles.   Upper and lower ALFA Roman Pots as installed in sector 8-1 of the LHC tunnel, 240 metres from the ATLAS Interaction Point. The detectors of the ALFA system are installed at ± 240 meters from the interaction point 1, on either side of the ATLAS detector. The whole system consists of four stations, two on each side of the interaction point. Each station is equipped with two Roman Pots; each pot – that is separated from the vacuum of the accelerator by a thin window but is connected with bellows to the beam-pipe – can be moved very close to the beam. “The Roman Pot technique has been used successfully in the past for the measurement of elastic scattering very close to the circulating beam,” says Patrick Fassn...

  5. Higher luminosities via alternative incident channels

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1985-04-01

    We show that PEP provides some unique opportunities for one and two photon physics with real photons as well as for QCD studies with internal targets. Photon beams would avoid the major limitation on the luminosity of present machines and could provide PEP an ideal b-physics factory producing the full range of J/sub c//sup PC/ and J/sub b//sup PC/ states that may not be observable otherwise as well as allow a whole new class of ''missing-mass'' experiments. These latter particles are the pseudo-Goldstone bosons and their supersymmetric counterparts. These and related possibilities like a single-pass, ''free electron laser'' facility or even synchrotron radiation beam lines all favor a mini-maxi configuration for the low-beta insertions in PEP. This allows more diverse experiments without excluding any ongoing experimental programs. Such possibilities have interesting implications for a number of proposed facilities including the SSC. Some systematic machine physics studies over a range of energies are suggested. 24 refs., 6 figs

  6. Flavour Physics with High-Luminosity Experiments

    CERN Document Server

    2016-01-01

    With the first dedicated B-factory experiments BaBar (USA) and BELLE (Japan) Flavour Physics has entered the phase of precision physics. LHCb (CERN) and the high luminosity extension of KEK-B together with the state of the art BELLE II detector will further push this precision frontier. Progress in this field always relied on close cooperation between experiment and theory, as extraction of fundamental parameters often is very indirect. To extract the full physics information from existing and future data, this cooperation must be further intensified. This MIAPP programme aims in particular to prepare for this task by joining experimentalists and theorists in the various relevant fields, with the goal to build the necessary tools in face of the challenge of new large data sets. The programme will begin with a focus on physics with non-leptonic final states, continued by semileptonic B meson decays and Tau decays, and on various aspects of CP symmetry violation closer to the end. In addition, in the final ...

  7. Overview of a high luminosity μ+μ- collider

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of a 4 TeV high luminosity μ + μ - collider, and of a 0.5 TeV lower luminosity demonstration machine. The authors discuss the various systems in such muon colliders

  8. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  9. VY Canis Majoris: The Astrophysical Basis of Its Luminosity

    Science.gov (United States)

    Gehrz, Robert D.; Humphreys, R. M.; Jones, T. J.

    2006-12-01

    The luminosity of the famous red supergiant VY CMa ( L = 4 5 x 105 L ) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Implications for its location on the HR Diagram and its apparent size are discussed.

  10. Physics at high luminosity muon colliders and a facility overview

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Physics potentials at future colliders including high luminosity μ + μ - colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included

  11. High Luminosity LHC (HL-LHC) general infographics

    CERN Multimedia

    Landua, Fabienne

    2016-01-01

    The High-Luminosity LHC, which is expected to be operational after 2025, will increase the LHC’s luminosity by a factor of 10. To achieve this major upgrade, several technologies, some of which are completely innovative, are being developed.

  12. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Pushpa [CSIR Emeritus Scientist, IUCAA, Ganeshkhind, Pune 411007 (India); Daniel, Vanden Berk [Physics Department, St. Vincent College, Latrobe, PA 15650 (United States); Rahmani, Hadi [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); York, Donald G., E-mail: pushpakhare@gmail.com [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-10-10

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s{sup –1}; in units of velocity of light, β, ≤0.01) with 0.4 ≤z {sub abs} ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10{sup 9} M {sub ☉} than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z {sub abs} > z {sub em}, which could be infalling galaxies.

  13. Comparison of ionospheric conductances and auroral luminosities observed simultaneously with the Chatanika radar and the DE 1 auroral imagers

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.; Craven, J.D.; Frank, L.A.; Miller, K.

    1989-01-01

    Auroral luminosities at vacuum ultraviolet (VUV) wavelengths are combined with simultaneous and coincident ionospheric electron density measurements made by the Chatanika radar to relate ionospheric conductances to optical emissions. The auroral luminosities are obtained along the magnetic meridian through Chatanika with the auroral imaging photometers on the Dynamics Explorer 1 (DE 1) satellite as the radar scans in the magnetic meridian to measure electron density and conductivity as a function of altitude and latitude. The observations are used to determine an empirical relationship between the luminosities measured at VUV wavelengths and the Hall and Pedersen conductances. Of particular interest is the response of the photometer when using the VUV filter designated 123W. This filter admits the 130.4- and 135.6-nm emissions of atomic oxygen and the Lyman-Birge-Hopfield (LBH) bands of N 2 . Model calculations of the LBH and O I (135.6 nm) contributions to the total measured luminosity indicate that the relation between 123W luminosity and Pedersen conductance is less sensitive to the average energy of the precipitating electrons than the corresponding relation between the Hall conductance and 123W luminosity. This is because both the luminosity and Pedersen conductance decrease with increasing electron energy. The luminosity decreases with increasing energy because the emissions are more strongly absorbed by O 2 above the region of production. The Pedersen conductance decreases with increasing energy because the Pedersen mobility maximizes at an altitude of about 140 km. In contrast, the Hall conductance increases with increasing electron energy, so that the relation between Hall conductance and luminosity depends on the hardness of the precipitation

  14. Challenges in Finding AGNs in the Low Luminosity Regime

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  15. Possible relationship between metal abundance and luminosity for disk galaxies

    International Nuclear Information System (INIS)

    Bothun, G.D.; Romanishin, W.; Strom, S.E.; Strom, K.M.

    1984-01-01

    Near-infrared colors have been measured for a sample of 31 late-type galaxies in the Pegasus I and Pisces clusters; system luminosities in the sample cover the range -19< M/sub H/<-23.5. The color index (J-K) correlates strongly with the absolute H magnitude; lower-luminosity systems have bluer colors. These observations are consistent with the assumption that the mean metal abundance of the old disk population decreases systematically with luminosity. The systematic variation of (B-H) with absolute H magnitude reported recently by Tully et al. derives in part from this proposed systematic change of metallicity with luminosity. However, one must still posit a relative increase in the number of newly formed stars and/or a systematic smaller age for lower-luminosity disks in order to fully explain the observed (B-H), H relation

  16. Spatial distribution, luminosity function and cosmological evolution of quasars

    International Nuclear Information System (INIS)

    Mathez, G.

    1981-01-01

    The different ways of studying quasars statistics and evolution are reviewed. Attempt is given to deduce, from the observed evolution, some constraints on physical models of energy sources in quasars [fr

  17. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    International Nuclear Information System (INIS)

    Krolewski, Alex G.; Eisenstein, Daniel J.

    2015-01-01

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h −1 Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity

  18. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    Energy Technology Data Exchange (ETDEWEB)

    Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-04-10

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.

  19. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  20. The spectrometer system for measuring ZEUS luminosity at HERA

    International Nuclear Information System (INIS)

    Helbich, M.; Ning, Y.; Paganis, S.; Ren, Z.; Schmidke, W.B.; Sciulli, F.; Schneekloth, U.; Buettner, C.; Caldwell, A.; Sutiak, J.

    2006-01-01

    The upgrade of the HERA accelerator has provided much increased collider luminosity. In turn, the improvements have necessitated a new design for the ZEUS luminosity measurements. The intense synchrotron radiation field, as well as the high probability of a bremsstrahlung photon in each bunch crossing, posed new experimental constraints. In this report, we describe how these challenges were met with the ZEUS luminosity spectrometer system. The design, testing and commissioning of the device are described, and the results from the initial operational experience are reported

  1. High precision measurements of the luminosity at LEP

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The art of the luminosity measurements at LEP is presented. First generation LEP detectors have measured the absolute luminosity with the precision of 0.3-0.5%. The most precise present detectors have reached the 0.07% precision and the 0.05% is not excluded in future. Center-of-mass energy dependent relative precision of the luminosity detectors and the use of the theoretical cross-section in the LEP experiments are also discussed. (author). 18 refs., 6 figs., 6 tabs

  2. Physics potential of ATLAS detector with high luminosity

    International Nuclear Information System (INIS)

    Zhou, Bing

    2004-01-01

    The ATLAS detector is designed to exploit the full physics potential in the TeV energy region opened up by the Large Hadron Collider at a center of mass energy of 14 TeV with very high luminosities. The physics performance of the ATLAS detector on Higgs, extra-dimension and strong symmetry breaking scenario is summarized in this note. ATLAS experiment has great discovery potential for these new phenomena with high luminosity. Triple gauge couplings are very sensitive for probing new physics at TeV scale. We show that ATLAS can measure these couplings very precisely with high luminosity. (orig.)

  3. Luminosity Optimization With Offset, Crossing Angle, and Distortion

    CERN Document Server

    Wu, Juhao

    2005-01-01

    In a linear collider, sources of beam jitter due to kicker noise, quadrupole vibration and long-range transverse wakefields will lead to beam offsets and tilts at the Intersection Point (IP). In addition, sources of emittance dilution such as short-range transverse wakefields or dispersive errors will lead to internal beam distortions. When the IP disruption parameter is large, these beam imperfections will be amplified by a single bunch kink instability which will lead to luminosity loss. In this paper, we study the luminosity loss and then the optimization required to cancel the luminosity loss first analytically and then with simulation.

  4. The fraction of AGNs in major merger galaxies and its luminosity dependence

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.

    2018-05-01

    We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.

  5. Correction of beam-beam effects in luminosity measurement at ILC

    CERN Document Server

    Lukic, S

    2015-01-01

    Three methods for handling beam-beam effects in luminosity measurement at ILC are tested and evaluated in this work. The first method represents an optimization of the LEPtype asymmetric selection cuts that reduce the counting biases. The second method uses the experimentally reconstructed shape of the √ s ′ spectrum to determine the Beamstrahlung component of the bias. The last, recently proposed, collision-frame method relies on the reconstruction of the collision-frame velocity to define the selection function in the collision frame both in experiment and in theory. Thus the luminosity expression is insensitive to the difference between the CM frame of the collision and the lab frame. The collision-frame method is independent of the knowledge of the beam parameters, and it allows an accurate reconstruction of the luminosity spectrum above 80% of the nominal CM energy. However, it gives no precise infromation about luminosity below 80% of the nominal CM energy. The compatibility of diverse selection cut...

  6. THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE

    International Nuclear Information System (INIS)

    Singal, J.; Petrosian, V.; Stawarz, Ł.; Lawrence, A.

    2013-01-01

    We determine the radio and optical luminosity evolutions and the true distribution of the radio-loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining Sloan Digital Sky Survey optical and Faint Images of the Radio Sky at Twenty cm (FIRST) radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio-loudness parameter R is found to be quite different from the observed one and is smooth with no evidence of a bimodality in radio loudness for log R ≥ –1. The results we find are in general agreement with the previous analysis of Singal et al., which used POSS-I optical and FIRST radio data.

  7. Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field

    Science.gov (United States)

    Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.

    2018-05-01

    We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.

  8. A NEW LUMINOSITY RELATION FOR GAMMA-RAY BURSTS AND ITS IMPLICATION

    International Nuclear Information System (INIS)

    Qi Shi; Lu Tan

    2010-01-01

    Gamma-ray bursts (GRBs) are the most luminous astrophysical events observed so far. They are conventionally classified into long and short ones depending on their time duration, T 90 . Because of the advantage that their high redshifts offer, many efforts have been made to apply GRBs to cosmology. The key to this is to find correlations between some measurable properties of GRBs and the energy or the luminosity of GRBs. These correlations are usually referred to as luminosity relations and are helpful in understanding the GRBs themselves. In this paper, we explored such correlations in the X-ray emission of GRBs. The X-ray emission of GRBs observed by Swift has the exponential functional form in the prompt phase and relaxes to a power-law decay at time T p . We have assumed a linear relation between log L X,p (with L X,p being the X-ray luminosity at T p ) and log [T p /(1 + z)], but there is some evidence for curvature in the data and the true relationship between L X,p and T p /(1 + z) may be a broken power law. The limited GRB sample used in our analysis is still not sufficient for us to conclude whether the break is real or just an illusion caused by outliers. We considered both cases in our analysis and discussed the implications of the luminosity relation, especially on the time duration of GRBs and their classification.

  9. LOW CO LUMINOSITIES IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Schruba, Andreas; Walter, Fabian; Sandstrom, Karin; Leroy, Adam K.; Bigiel, Frank; Brinks, Elias; De Blok, W. J. G.; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl; Usero, Antonio; Weiss, Axel; Wiesemeyer, Helmut

    2012-01-01

    We present maps of 12 COJ = 2-1 emission covering the entire star-forming disks of 16 nearby dwarf galaxies observed by the IRAM HERACLES survey. The data have 13'' angular resolution, ∼250 pc at our average distance of D = 4 Mpc, and sample the galaxies by 10-1000 resolution elements. We apply stacking techniques to perform the first sensitive search for CO emission in dwarf galaxies outside the Local Group ranging from individual lines of sight, stacking over IR-bright regions of embedded star formation, and stacking over the entire galaxy. We detect five galaxies in CO with total CO luminosities of L CO2-1 = (3-28) × 10 6 K km s –1 pc 2 . The other 11 galaxies remain undetected in CO even in the stacked images and have L CO2-1 ∼ 6 K km s –1 pc 2 . We combine our sample of dwarf galaxies with a large sample of spiral galaxies from the literature to study scaling relations of L CO with M B and metallicity. We find that dwarf galaxies with metallicities of Z ≈ 1/2-1/10 Z ☉ have L CO of 2-4 orders of magnitude smaller than massive spiral galaxies and that their L CO per unit L B is 1-2 orders of magnitude smaller. A comparison with tracers of star formation (FUV and 24 μm) shows that L CO per unit star formation rate (SFR) is 1-2 orders of magnitude smaller in dwarf galaxies. One possible interpretation is that dwarf galaxies form stars much more efficiently: we argue that the low L CO /SFR ratio is due to the fact that the CO-to-H 2 conversion factor, α CO , changes significantly in low-metallicity environments. Assuming that a constant H 2 depletion time of τ dep = 1.8 Gyr holds in dwarf galaxies (as found for a large sample of nearby spirals) implies α CO values for dwarf galaxies with Z ≈ 1/2-1/10 Z ☉ that are more than one order of magnitude higher than those found in solar metallicity spiral galaxies. Such a significant increase of α CO at low metallicity is consistent with previous studies, in particular those of Local Group dwarf

  10. Unified treatment of the luminosity distance in cosmology

    International Nuclear Information System (INIS)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio

    2016-01-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  11. Unified treatment of the luminosity distance in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio, E-mail: jyoo@physik.uzh.ch, E-mail: fulvio@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Zürich (Switzerland)

    2016-09-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  12. Improvement to the D0 luminosity monitor constant

    International Nuclear Information System (INIS)

    Bantley, J.

    1996-03-01

    The D0 experiment has previously calculated its luminosity using the visible cross section (luminosity monitor constant) for its Level 0 trigger, σ L0 = 48.2 mb, based on the world average pp inelastic cross sections at √s = 1.8 TeV. The error on luminosity had been set at 12%. Recent studies using the MBR and DTUJET Monte Carlo event generators and unbiased D0 data samples have resulted in a more precise determination of the D0 luminosity monitor constant. The result, σ L0 = 46.7 ± 2.5 mb, lowers the central value by 3.1% and reduces the error to 5.4%. 12 refs., 7 figs., 9 tabs

  13. The CMS Outer Tracker Upgrade for the High Luminosity LHC

    CERN Document Server

    Luetic, Jelena

    2017-01-01

    The era of the High Luminosity Large Hadron Collider will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is $5$x$10^{34} $ cm$^{-2}$s$^{-1}$, reaching an integrated luminosity of more than 3000 fb$^{-1}$ by the end of 2037. The CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The new detector will provide robust tracking as well as input for the first level trigger. This report is focusing on the replacement of the CMS Outer Tracker system, describing the new layout and technological choices together with some highlights of research and development activities.

  14. Physics potential of precision measurements of the LHC luminosity

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The uncertainty in the determination of the LHC luminosity is rapidly becoming a limiting factor for the analysis and interpretation of many important LHC processes. In this talk first of all we discuss the theoretical accuracy of total cross sections and examine in which cases the luminosity error is or will be dominant. We then review the impact of LHC data in PDF determinations, with enphasis on the effects of the luminosity uncertainty. We explore the requirements for the accuracy of the 2011 luminosity determination from the point of view of standard candle cross section and other important processes. Finally we discuss what we can learn from the accurate measurement of cross section ratios at different center of mass energies for processes like W, ttbar and dijet production.

  15. The low-luminosity end of the radius-luminosity relationship for active galactic nuclei

    DEFF Research Database (Denmark)

    Bentz, M.C.; Denney, K.D.; Vestergaard, Marianne

    2013-01-01

    fit to the relationship using a Bayesian analysis finds a slope of , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy...... with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new...... results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts....

  16. Triggering at high luminosity: fake triggers from pile-up

    International Nuclear Information System (INIS)

    Johnson, R.

    1983-01-01

    Triggers based on a cut in transverse momentum (p/sub t/) have proved to be useful in high energy physics both because they indicte that a hard constituent scattering has occurred and because they can be made quickly enough to gate electronics. These triggers will continue to be useful at high luminosities if overlapping events do not cause an excessive number of fake triggers. In this paper, I determine if this is indeed a problem at high luminosity machines

  17. VY Canis Majoris: The Astrophysical Basis of Its Luminosity

    OpenAIRE

    Humphreys, Roberta M.

    2006-01-01

    The luminosity of the famous red supergiant VY CMa (L ~ 4 - 5 x 10e5 Lsun) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Both contradict a recent paper by Massey, Levesque and Plez (2006). Implications for its location on the HR Diagram and its apparent size are discussed.

  18. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  19. Performance of the new high precision luminosity monitor of DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.; Benvenuti, A.C.; Giordano, V.; Guerzoni, M.; Navarria, F.L.; Perrotta, A.; Camporesi, T.; Obraztsov, V.; Paganoni, M.; Vallazza, E.; Bozzo, M.; Cereseto, R.; Barreira, G.; Espirito Santo, M.C.; Maio, A.; Onofre, A.; Peralta, L.; Pimenta, M.; Tome, B.; Carling, H.; Falk, E.; Hedberg, V.; Jarlskog, G.; Kronkvist, I.; Bonesini, M.; Chignoli, F.; Ferrari, P.; Gumenyuk, S.; Leoni, R.; Mazza, R.; Negri, P.; Petrovykh, L.; Terranova, F.; Dharmasiri, D.R.; Nossum, B.; Read, A.L.; Skaali, B.; Rohne, O.; Castellani, L.; Pegoraro, M.; Fenyuk, A.; Ivanyushenkov, I.; Karyukhin, A.; Konopliannikov, A.; Shalanda, N.; Sen'ko, V.; Vlasov, E.; Zaitsev, A.; Bigi, M.; Cassio, V.; Gamba, D.; Gouz, I.; Migliore, E.; Romero, A.; Simonetti, L.; Trapani, P.P.; Bari, M.; Della Ricca, G.; Lanceri, L.; Poropat, P.; Prest, M.

    1997-01-01

    The STIC calorimeter was installed in the DELPHI detector in 1994. The main goal is to measure the luminosity with an accuracy better than 0.1%. The calorimeter was built using the ''Shashlik'' technique. The light is collected by wavelength shifting fibers and readout by phototetrodes that can operate inside the magnetic field. The detector performance during the 1994-1995 data taking is presented. The different contributions to the systematic error on the luminosity measurement are discussed. (orig.)

  20. Precision of MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Benes, Petr; Bergmann, Benedikt; Biskup, Bartolomej; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek [IEAP CTU in Prague (Czech Republic); Asbah, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Kladiva, Edward [IEP SAS Kosice (Slovakia)

    2015-07-01

    A network consisting of MPX detectors based on Medipix2 silicon pixel devices were originally adapted for measuring the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. We demonstrate that the MPX network, which consists of 16 MPX detectors, is a self-contained luminosity monitor system. As the MPX detectors are collecting data independently of the ATLAS data-recording chain, they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors close enough to the primary interaction point are used to perform van der Meer calibration scans with good precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s)=8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The variations of the MPX luminosity measurements around the fitted curve lead to a relative uncertainty on the luminosity measurement below 0.3% for one minute time intervals.

  1. Challenges on the high luminosity frontier of e+ e-

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1993-05-01

    For phi factories, tau-charm factories, and B factories to meet their respective luminosity goals, the circulating currents that typify e + e - colliders must be raised an order of magnitude. At the same time the beam size at the interaction point must be decreased. The approaches to realizing these conditions include increasing the charge per bunch, increasing the number of bunches in the collider, increasing the crossing angle for rapid bunch separation, tilting the bunch with respect to the direction of motion at the interaction point (''crab-crossing''), and minimizing the β function at the interaction point. The technological challenges implied by such strategies include the development of (1) novel rf-cavity designs to suppress higher order modes and to provide large rf-voltages for longitudinal focusing, (2) a new generation of powerful feedback electronics to control multi-bunch instabilities, and (3) vacuum chambers and pumping schemes suitable for operation with very high levels of synchrotron radiation. In high current colliders the design of the interaction region poses special problems of allowing rapid beam separation and avoiding excessive scattering of background radiation into the detector

  2. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    Carbone, Ryne Michael; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at the full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubble form...

  3. Conceptual design of a high luminosity 510 MeV collider

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cornacchia, M.

    1991-01-01

    The authors discuss the magnetic lattice design of a high luminosity 510 MeV electron-positron collider, based on high field superconduction bending dipoles. The design criteria are flexibility in the choice of the tune and beta functions at the interaction point, horizontal emittance larger than 1 mm mrad to produce a luminosity larger than 10 32 cm -2 s -1 , large synchrotron radiation damping rate, and large momentum compaction. The RF system parameter are chosen to provide a short bunch length also when the beam energy spread is determined by the microwave instability. A satisfactory ring dynamic aperature, and a simultaneous small value of the horizontal and vertical beta function at the interaction point, the authors expect will be achieved by using Cornacchia-Halbach modified sextupoles

  4. Luminosity distance for Born-Infeld electromagnetic waves propagating in a cosmological magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, Matias; Bengochea, Gabriel R; Ferraro, Rafael, E-mail: aiello@iafe.uba.ar, E-mail: gabriel@iafe.uba.ar, E-mail: ferraro@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2008-06-15

    Born-Infeld electromagnetic waves interacting with a static magnetic background in an expanding universe are studied. The non-linear character of Born-Infeld electrodynamics modifies the relation between the energy flux and the distance to the source, which gains a new dependence on the redshift that is governed by the background field. We compute the luminosity distance as a function of the redshift and compare with Maxwellian curves for supernovae type Ia.

  5. The clustering of QSOs and the dark matter halos that host them

    Science.gov (United States)

    Zhao, Dong-Yao; Yan, Chang-Shuo; Lu, Youjun

    2013-10-01

    The spatial clustering of QSOs is an important measurable quantity which can be used to infer the properties of dark matter halos that host them. We construct a simple QSO model to explain the linear bias of QSOs measured by recent observations and explore the properties of dark matter halos that host a QSO. We assume that major mergers of dark matter halos can lead to the triggering of QSO phenomena, and the evolution of luminosity for a QSO generally shows two accretion phases, i.e., initially having a constant Eddington ratio due to the self-regulation of the accretion process when supply is sufficient, and then declining in rate with time as a power law due to either diminished supply or long term disk evolution. Using a Markov Chain Monte Carlo method, the model parameters are constrained by fitting the observationally determined QSO luminosity functions (LFs) in the hard X-ray and in the optical band simultaneously. Adopting the model parameters that best fit the QSO LFs, the linear bias of QSOs can be predicted and then compared with the observational measurements by accounting for various selection effects in different QSO surveys. We find that the latest measurements of the linear bias of QSOs from both the SDSS and BOSS QSO surveys can be well reproduced. The typical mass of SDSS QSOs at redshift 1.5 < z < 4.5 is ~ (3 - 6) × 1012 h-1 Msolar and the typical mass of BOSS QSOs at z ~ 2.4 is ~ 2 × 1012 h-1 Msolar. For relatively faint QSOs, the mass distribution of their host dark matter halos is wider than that of bright QSOs because faint QSOs can be hosted in both big halos and smaller halos, but bright QSOs are only hosted in big halos, which is part of the reason for the predicted weak dependence of the linear biases on the QSO luminosity.

  6. The clustering of QSOs and the dark matter halos that host them

    International Nuclear Information System (INIS)

    Zhao Dong-Yao; Yan Chang-Shuo; Lu Youjun

    2013-01-01

    The spatial clustering of QSOs is an important measurable quantity which can be used to infer the properties of dark matter halos that host them. We construct a simple QSO model to explain the linear bias of QSOs measured by recent observations and explore the properties of dark matter halos that host a QSO. We assume that major mergers of dark matter halos can lead to the triggering of QSO phenomena, and the evolution of luminosity for a QSO generally shows two accretion phases, i.e., initially having a constant Eddington ratio due to the self-regulation of the accretion process when supply is sufficient, and then declining in rate with time as a power law due to either diminished supply or long term disk evolution. Using a Markov Chain Monte Carlo method, the model parameters are constrained by fitting the observationally determined QSO luminosity functions (LFs) in the hard X-ray and in the optical band simultaneously. Adopting the model parameters that best fit the QSO LFs, the linear bias of QSOs can be predicted and then compared with the observational measurements by accounting for various selection effects in different QSO surveys. We find that the latest measurements of the linear bias of QSOs from both the SDSS and BOSS QSO surveys can be well reproduced. The typical mass of SDSS QSOs at redshift 1.5 12 h −1 M s un and the typical mass of BOSS QSOs at z ∼ 2.4 is ∼ 2 × 10 12 h −1 M s un. For relatively faint QSOs, the mass distribution of their host dark matter halos is wider than that of bright QSOs because faint QSOs can be hosted in both big halos and smaller halos, but bright QSOs are only hosted in big halos, which is part of the reason for the predicted weak dependence of the linear biases on the QSO luminosity

  7. THE ARECIBO METHANOL MASER GALACTIC PLANE SURVEY. III. DISTANCES AND LUMINOSITIES

    International Nuclear Information System (INIS)

    Pandian, J. D.; Menten, K. M.; Goldsmith, P. F.

    2009-01-01

    We derive kinematic distances to the 86 6.7 GHz methanol masers discovered in the Arecibo Methanol Maser Galactic Plane Survey. The systemic velocities of the sources were derived from 13 CO (J = 2-1), CS (J = 5-4), and NH 3 observations made with the ARO Submillimeter Telescope, the APEX telescope, and the Effelsberg 100 m telescope, respectively. Kinematic distance ambiguities were resolved using H I self-absorption with H I data from the VLA Galactic Plane Survey. We observe roughly three times as many sources at the far distance compared to the near distance. The vertical distribution of the sources has a scale height of ∼ 30 pc, and is much lower than that of the Galactic thin disk. We use the distances derived in this work to determine the luminosity function of 6.7 GHz maser emission. The luminosity function has a peak at approximately 10 -6 L sun . Assuming that this luminosity function applies, the methanol maser population in the Large Magellanic Cloud and M33 is at least 4 and 14 times smaller, respectively, than in our Galaxy.

  8. A luminosity measurement at LEP using the L3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N.

    1996-06-25

    To perform high precision measurements at particle colliders it is crucial to know the exact intensity of the colliding beams. In particle physics this quantity is generally referred to as the luminosity. The determination of the luminosity in one of the experiments (L3) is the topic of this thesis. The implementation and the use of a silicon strip detector in L3, will be described in detail. In chapter one the most important parameters measured at LEP are discussed, preceded by a short introduction to the Standard Model. The process generally used for luminosity measurements in electron positron colliders is small angle Bhabha scattering. This process is discussed at the end of chapter one. In chapter two the characteristics of the collider and the L3 experiment are given. Together with the signature of the small angle Bhabha scattering, these experimental conditions determine the specifications for the design of the luminosity monitor. The general features of silicon strip detectors for their application in high energy physics are presented in chapter three. Some special attention is given to the behaviour of the sensors used for the tracking detector in the luminosity monitor. The more specific design details of the luminosity monitor are constricted to chapter four. In chapter five the conversion from detector signals into ccordinates relevant for the analysis is explained. The selection of the small angle Bhabha scattering events and the subsequent determination of the luminosity, are presented in chapter six. Systematic uncertainties are carefully studied. Important for a good understanding of the Bhabha selection are the events where a photon is produced in the scattering process. These events are separately studied. In chapter seven a comparison is presented between the radiative events observed in the data and their modelling in the Bhlumi Monte Carlo programme. (orig.).

  9. A luminosity measurement at LEP using the L3 detector

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    1996-01-01

    To perform high precision measurements at particle colliders it is crucial to know the exact intensity of the colliding beams. In particle physics this quantity is generally referred to as the luminosity. The determination of the luminosity in one of the experiments (L3) is the topic of this thesis. The implementation and the use of a silicon strip detector in L3, will be described in detail. In chapter one the most important parameters measured at LEP are discussed, preceded by a short introduction to the Standard Model. The process generally used for luminosity measurements in electron positron colliders is small angle Bhabha scattering. This process is discussed at the end of chapter one. In chapter two the characteristics of the collider and the L3 experiment are given. Together with the signature of the small angle Bhabha scattering, these experimental conditions determine the specifications for the design of the luminosity monitor. The general features of silicon strip detectors for their application in high energy physics are presented in chapter three. Some special attention is given to the behaviour of the sensors used for the tracking detector in the luminosity monitor. The more specific design details of the luminosity monitor are constricted to chapter four. In chapter five the conversion from detector signals into ccordinates relevant for the analysis is explained. The selection of the small angle Bhabha scattering events and the subsequent determination of the luminosity, are presented in chapter six. Systematic uncertainties are carefully studied. Important for a good understanding of the Bhabha selection are the events where a photon is produced in the scattering process. These events are separately studied. In chapter seven a comparison is presented between the radiative events observed in the data and their modelling in the Bhlumi Monte Carlo programme. (orig.)

  10. Notes on LEP luminosity performance in July and August

    CERN Document Server

    Assmann, R W

    1998-01-01

    The LEP luminosity performance at 94.5 GeV is examined for two periods of the 1998 run. The analysis is meant to complement other ongoing studies. The studies presented here analyze the performance in terms of specific luminosity. The large amount of available data is filtered through quality cuts and appropriate averaging and binning algorithms. The results show that the beam-beam limit is being a pproached in high current LEP operation. This is seen in an increase of vertical beam size and a reduction of specific luminosity with current. Though the effect is clear for both analyzed periods of time, it is also shown that the full beam-beam limit is not yet reached. Over a fill the reduction of specific luminosity with beam current is less than half of the one expected in the fully beam-beam limited regime. It is shown that the measured positron lifetime can be fully explained from the beam-beam interaction. It turns out that the beam lifetime is indeed an excellent way to measure the ab solute luminosity in ...

  11. An early separation scheme for the LHC luminosity upgrade

    CERN Document Server

    Sterbini, G

    2010-01-01

    The present document is organized in five chapters. In the first chapter the framework of the study is described, developing the motivations, the goals and the requirements for the LHC Luminosity Upgrade. We analyze the need for the crossing angle and its impact on the peak luminosity of the collider. After having introduced the Early Separation Scheme, we explain how it may overcome some limitations of the present machine. We compare the nominal LHC crossing scheme with the proposed one underlining its potential in terms of performance and its issues with respect to the integration in the detectors. An analysis of the integrated magnetic field required is given. In the second chapter we introduce one of the most powerful aspect of the scheme: the luminosity leveling. After the description of the physical model adopted, we compare the results of its analytical and numerical solutions. All the potential improvement due to the Early Separation Scheme are shown on the luminosity plane (peak luminosity versus int...

  12. Very high-luminosity infrared galaxies - are they very young?

    International Nuclear Information System (INIS)

    Burbidge, G.

    1986-01-01

    It is proposed that most of the very high-luminosity IRAS galaxies, those which emit greater than or equal to 10 to the 12th solar luminosities nearly all in the far infrared out to 100 microns, are very young systems with ages less than or equal to 10 to the 9th years. The luminosity comes largely from stars with masses near 100 solar masses which evolve rapidly, ejecting much of their mass as elements heavier than hydrogen. The gas ejected condenses into dust in circumstellar shells. The prototype star in the Galaxy which shows all of these attributes is Eta Car. It is shown that total masses of order 10 to the 7th-10 to the 8th solar masses condensed into such stars can produce the observed luminosities, and that 10-100 generations of such stars will produce enough dust (about 10 to the 8th solar masses) to explain the observed infrared luminosities. If this hypothesis is correct the composition of gas and dust may well be highly anomalous, and there should be no old stars with ages about 10 to the 10th years present. Initial star formation is probably triggered by interactions with close companion galaxies. 40 references

  13. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  14. ATLAS Future Plans: Upgrade and the Physics with High Luminosity

    Directory of Open Access Journals (Sweden)

    Rajagopalan S.

    2013-05-01

    Full Text Available The ATLAS experiment is planning a series of detector upgrades to cope with the planned increases in instantaneous luminosity and multiple interactions per crossing to maintain its physics capabilities. During the coming decade, the Large Hadron Collider will collide protons on protons at a center of mass energy up to 14 TeV with luminosities steadily increasing in a phased approach to over 5 × 1034 cm−2s−1. The resulting large data sets will significantly enhance the physics reach of the ATLAS detector building on the recent discovery of the Higgs-like boson. The planned detector upgrades being designed to cope with the increasing luminosity and its impact on the ATLAS physics program will be discussed.

  15. High luminosity μ+ μ- collider: Report of a feasibility study

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.; Tollestrup, A.; Sessler, A.

    1996-12-01

    Parameters are given of 4 TeV and 0.5 TeV (c-of-m) high luminosity μ + μ - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are analyzed. Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. We briefly mention the luminosity requirements of hadrons and lepton machines and their high-energy-physics advantages and disadvantages in reference to their effective center of mass energy. Finally, we present an R ampersand D plan to determine whether such machines are practical

  16. Reduction of beta* and increase of luminosity at RHIC

    International Nuclear Information System (INIS)

    Pilat, F.; Bai, M.; Bruno, D.; Cameron, P.; Della Penna, A.; Drees, A.; Litvinenko, V.; Luo, Y.; Malitsky, N.; Marr, G.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.

    2009-01-01

    The reduction of β* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1m achieved a 30% increase in delivered luminosity. The key ingredients allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation, to minimize beam losses in the final focus triplets, the main aperture limitations for the collision optics. We will describe the operational strategy used to reduce the β*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase. We will conclude with future plans for the beta squeeze

  17. Report of the Working Group on High Luminosities at LEP

    International Nuclear Information System (INIS)

    Blucher, E.; Jowett, J.; Merritt, F.; Mikenberg, G.; Panman, J.; Renard, F.M.; Treille, D.

    1991-01-01

    The availability of an order-of-magnitude increase in the luminosity of LEP (CERN's Large Electron-Positron Collider) can dramatically increase its physics output. With the help of a pretzel scheme, it should be possible to increase the peak luminosity beyond 10 32 cm -2 s -1 at the Z energy and to significantly increase the luminosity around the W-pari threshold. This report spells out the physics possibilities opened up by the availability of several 10 7 Z events. The three domains of physics that benefit mostly from this abundance are very accurate measurements of Standard Model parameters, rare decays of the Z, and the physics of fermion-antifermion states such as B physics. The possibilities and implications for the machine and the experiments are presented. The physics possibilities are explored and compared with those at other accelerators. (orig.)

  18. The LUCID detector ATLAS luminosity monitor and its electronic system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00378808; The ATLAS collaboration

    2016-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  19. Luminosity Anti-leveling with Crossing Angle (MD 1669)

    CERN Document Server

    Gorzawski, Arkadiusz; Ponce, Laurette; Salvachua Ferrando, Belen Maria; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    A significant fraction of the LHC luminosity ($\\sim$30\\% in 2016) is lost due to the presence (and necessity) of the crossing angles at the IPs. At the LHC the crossing angle is typically set to a value that provides sufficient separation of the beams at the start of fills for the peak bunch intensities. As the bunch intensity decays during a fill, it is possible to reduce the crossing angle and recover some luminosity. A smooth crossing angle reduction procedure must be developed to take advantage of this option during stable beam operation. During this MD a smooth procedure for luminosity leveling with crossing angle was tested. It was demonstrated that the orbit was well controlled, beam losses were low and the offset leveled experiments ALICE and LHCb were not affected by crossing angle leveling in ATLAS and CMS.

  20. LUCID Upgrade for ATLAS Luminosity Measurement in Run II.

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor LUCID and its read-out electronics has been completely rebuilt for the 2015 LHC run in order to cope with a higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive Bi$^{207}$ sources that produces internal conversion electrons above the Cherenkov threshold in quartz. The new electronics can count particle hits above a threshold but also the integrated pulseheight of the signals from the particles which makes it possible to measure luminosity with new methods. The new detector, calibration system and electronics will be covered by the contribution as well as the results of the luminosity measurements with the detector in 2015.

  1. LUCID Upgrade for ATLAS Luminosity Measurement in Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444244; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor, LUCID, and its read-out electronics have been completely rebuilt for the LHC Run II in order to cope with a higher center of mass energy ($\\sqrt{s}$=13 TeV) and the 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive $^{207}$Bi sources that produce internal-conversion electrons with energy above the Cherenkov threshold in quartz. The new electronics can count signals with amplitude above a predefined threshold (hits) as well as the integrated pulseheight of the signals, which makes it possible to measure luminosity with complementary methods. The new detector, calibration system and electronics will be described, together with the results of the 2015 luminosity measurement.

  2. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  3. PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Moscibrodzka, M.; Gammie, C. F.; Dolence, J. C.; Shiokawa, H.

    2011-01-01

    Electron-positron pairs may be produced near accreting black holes by a variety of physical processes, and the resulting pair plasma may be accelerated and collimated into a relativistic jet. Here, we use a self-consistent dynamical and radiative model to investigate pair production by γγ collisions in weakly radiative accretion flows around a black hole of mass M and accretion rate M-dot . Our flow model is drawn from general relativistic magnetohydrodynamic simulations, and our radiation field is computed by a Monte Carlo transport scheme assuming the electron distribution function is thermal. We argue that the pair production rate scales as r -6 M -1 M-dot 6 . We confirm this numerically and calibrate the scaling relation. This relation is self-consistent in a wedge in M, M-dot parameter space. If M-dot is too low the implied pair density over the poles of the black hole is below the Goldreich-Julian density and γγ pair production is relatively unimportant; if M-dot is too high the models are radiatively efficient. We also argue that for a power-law spectrum the pair production rate should scale with the observables L X ≡ X-ray luminosity and M as L 2 X M -4 . We confirm this numerically and argue that this relation likely holds even for radiatively efficient flows. The pair production rates are sensitive to black hole spin and to the ion-electron temperature ratio which are fixed in this exploratory calculation. We finish with a brief discussion of the implications for Sgr A* and M87.

  4. Online calculation of the Tevatron collider luminosity using accelerator instrumentation

    International Nuclear Information System (INIS)

    Hahn, A.A.

    1997-07-01

    The luminosity of a collision region may be calculated if one understands the lattice parameters and measures the beam intensities, the transverse and longitudinal emittances, and the individual proton and antiproton beam trajectories (space and time) through the collision region. This paper explores an attempt to make this calculation using beam instrumentation during Run 1b of the Tevatron. The instrumentation used is briefly described. The calculations and their uncertainties are compared to luminosities calculated independently by the Collider Experiments (CDF and D0)

  5. Modified use of Van de Meer method for luminosity determination

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1975-01-01

    Modifications are suggested which should improve the accuracy of the Van de Meer method of determining beam luminosity at the CERN ISR. Four bending magnets would be inserted between the quadrupoles of a given experimental straight section, connected in series, and shimmed so that the machine parameters are not affected. The magnets would be driven with a zigzag current power supply with a uniform rate of current change. Experiments requiring accurate luminosity determination would be run while the deflection magnets are being driven with the oscillatory current pattern. (U.S.)

  6. Electron-positron annihilation at high luminosity colliding beams

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Khodzhamiryan, A.Yu.

    1977-01-01

    Experiments are discussed, which can be carried out at the electron-positron storage rings with increased luminosity (up to 10 34 cm -2 sec -1 ) and corresponding improvement of detectors at total energy region up to 10 GeV. This improvement of the experimental conditions may provide valuable physical information from the theoretical point of view. The comparison is made with analogous experimental possibilities of the projected high energy e + e - storage rings with luminosity up to 10 32 cm -2 sec -1

  7. Physics of a high-luminosity Tau-Charm Factory

    International Nuclear Information System (INIS)

    King, M.E.

    1992-10-01

    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity (∼10 33 cm -2 s -1 ) e + e - collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in τ and charm physics are emphasized

  8. Attaining high luminosity in linear e+e- colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1990-11-01

    The attainment of high luminosity in linear colliders is a complex problem because of the interdependence of the critical parameters. For instance, changing the number of particles per bunch affects the damping ring design and thus the emittance; it affects the wakefields in the linac and thus the momentum spread; the momentum spread affects the final focus design and thus the final β*; but the emittance change also affects the final focus design; and all these come together to determine the luminosity, disruption and beamstrahlung at the intersection. Changing the bunch length, or almost any other parameter, has a similar chain reaction. Dealing with this problem by simple scaling laws is very difficult because one does not know which parameter is going to be critical, and thus which should be held constant. One can only maximize the luminosity by a process of search and iteration. The process can be facilitated with the aid of a computer program. Examples can then be optimized for maximum luminosity, and compared to the optimized solutions with different approaches. This paper discusses these approaches

  9. Gauge-invariance and infrared divergences in the luminosity distance

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-04-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  10. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  11. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    In this talk for BEAUTY 2018 the ATLAS upgrade plans for the high-luminosity phase of the LHC are presented. Especially, prospects for the flagship B physics analyses $B_s^0 \\to J/\\psi \\phi$ (with $J/\\psi \\to \\mu^+\\mu^-$) and $B_{(s)}^0 \\to \\mu^+\\mu^-$ analyses are discussed.

  12. TOTAL INFRARED LUMINOSITY ESTIMATION OF RESOLVED AND UNRESOLVED GALAXIES

    International Nuclear Information System (INIS)

    Boquien, M.; Calzetti, D.; Bendo, G.; Dale, D.; Engelbracht, C.; Kennicutt, R.; Lee, J. C.; Van Zee, L.; Moustakas, J.

    2010-01-01

    The total infrared (TIR) luminosity from galaxies can be used to examine both star formation and dust physics. We provide here new relations to estimate the TIR luminosity from various Spitzer bands, in particular from the 8 μm and 24 μm bands. To do so, we use data for 45'' subregions within a subsample of nearby face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) that have known oxygen abundances as well as integrated galaxy data from the SINGS, the Local Volume Legacy survey (LVL), and Engelbracht et al. samples. Taking into account the oxygen abundances of the subregions, the star formation rate intensity, and the relative emission of the polycyclic aromatic hydrocarbons at 8 μm, the warm dust at 24 μm, and the cold dust at 70 μm and 160 μm, we derive new relations to estimate the TIR luminosity from just one or two of the Spitzer bands. We also show that the metallicity and the star formation intensity must be taken into account when estimating the TIR luminosity from two wave bands, especially when data longward of 24 μm are not available.

  13. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  14. Gauge-invariance and infrared divergences in the luminosity distance

    International Nuclear Information System (INIS)

    Biern, Sang Gyu; Yoo, Jaiyul

    2017-01-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  15. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  16. Emittance scans for CMS luminosity calibration in 2017

    CERN Document Server

    CMS Collaboration

    2018-01-01

    Emittance scans are short van der Meer type scans performed at the beginning and at the end of LHC fills. The beams are scanned against each other in X and Y planes in 7 displacement steps. These scans are used for LHC diagnostics and since 2017 for a cross check of the CMS luminosity calibration. An XY pair of scans takes around 3 minutes. The BRIL project provides to LHC three independent online luminosity measurement from the Pixel Luminosity Telescope (PLT), the Fast Beam Condition Monitor (BCM1F) and the Forward calorimeter (HF). The excellent performance of the BRIL detector front-ends, fast back-end electronics and CMS XDAQ based data processing and publication allow the use of emittance scans for linearity and stability studies of the luminometers. Emittance scans became a powerful tool and dramatically improved the understanding of the luminosity measurement during the year. Since each luminometer is independently calibrated in every scan the measurements are independent and ratios of luminometers ca...

  17. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  18. Pixel-Cluster Counting Luminosity Measurement In ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)782710; The ATLAS collaboration

    2017-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measure- ments of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster- counting method a...

  19. LHC Report: Boost in bunches brings record luminosity

    CERN Multimedia

    2011-01-01

    Having hit a luminosity of around 8.4x1032 cm-2 s-1 with 768 bunches per beam, the LHC went into a 5-day machine development (MD) program on Wednesday 4 May. Operators are now working on increasing the number of particle bunches in the machine towards a 2011 maximum of around 1380 bunches. The team is already hitting major milestones, recording another record-breaking peak luminosity on Monday 23 May.   Former LHC Project Leader Lyn Evans (to the right) and Laurette Ponce, the engineer-in-charge when the recent luminosity record was achieved. The MD periods improve our understanding of the machine, with the aim of increasing its short- and long-term performance. This one also included tests of the machine’s configurations for special physics runs and a future high luminosity LHC. It was an intense program and overall it went very well, with most measurements carried out successfully. Highlights included: commissioning a dedicated machine setup for TOTEM and ALFA; succe...

  20. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution HST images of all 35 AGNs with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measureme...

  1. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2006-01-01

    We have obtained high resolution images of the central regions of 14 reverberation-mapped active galactic nuclei (AGN) using the Hubble Space Telescope Advanced Camera for Surveys High Resolution Camera to account for host-galaxy starlight contamination of measured AGN luminosities. We measure th...

  2. NGC 5548 in a Low-Luminosity State

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Denney, Kelly D.; Cackett, Edward M.

    2007-01-01

    between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive expectation for the broad line region for an assumed form of r ~ L^alpha. This value is also consistent with the slope recently determined by Bentz et al. for the population...

  3. Fast and precise luminosity measurement at the international linear ...

    Indian Academy of Sciences (India)

    6. — journal of. December 2007 physics pp. 1151–1157. Fast and precise luminosity measurement ... The fast investigation of the collision quality for intrabunch feedback and the ... consisting of the sensor, the absorber and an interconnection structure. 2. ... outer radius of BeamCal is increased to keep the angular overlap.

  4. Spectral-luminosity evolution of active galactic nuclei (AGN)

    Science.gov (United States)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  5. Fast and precise luminosity measurement at the international linear

    Indian Academy of Sciences (India)

    The detectors of the ILC will feature a calorimeter system in the very forward region. The system comprises mainly two electromagnetic calorimeters: LumiCal, which is dedicated to the measurement of the absolute luminosity with highest precision and BeamCal, which uses the energy deposition from beamstrahlung pairs ...

  6. A Size-Luminosity Relationship for Protoplanetary Disks in Lupus

    Science.gov (United States)

    Terrell, Marie; Andrews, Sean

    2018-01-01

    The sizes of the 340 GHz continuum emission from 56 protoplanetary disks in the Lupus star-forming region were measured by modeling their ALMA visibility profiles. We describe the mechanism for these measurements and some preliminary results regarding the correlation between the continuum luminosities and sizes.

  7. A new record peak luminosity for the LHC

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Two weeks of dedicated machine development paid off last weekend when the LHC ran for physics with three nominal intensity (∼1011 protons) bunches in each beam.   This brought a new record peak luminosity of around 8×1029 cm-2 s-1, and allowed the LHC to double the integrated luminosity delivered to the experiments since 30 March from 16 to 32 inverse nanobarns over the weekend. After a few more fills in this configuration, the number of bunches will be raised to six per beam, which will in turn allow the peak luminosity to break the 1030 cm-2 s-1 barrier for the first time, well on the way to achieving the 2010 objective of 1032 cm-2 s-1. This peak luminosity goal requires 800 nominal bunches per beam squeezed to a beta of 3.5 metres. The plan for 2011 is to run the LHC in this configuration over about 10 months, thus achieving the objective of recording one inverse femtobarn of data in total. The machine development period also allowed the TOTEM detectors to be set up with 45...

  8. Upgrade of the CMS Tracker for the High Luminosity LHC

    CERN Document Server

    Auzinger, Georg

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $ 5 \\times 10^{34}$cm$^{-2}$s$^{-1}$ in 2028, possibly reaching an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker, including both inner pixel and outer strip systems, is already running beyond design specifications and will not be able to survive HL-LHC radiation conditions. CMS will need a completely new device in order to fully exploit the demanding operating conditions and the delivered luminosity. The upgrade plan includes extending the Pixel Detector in the forward region from the current coverage of $ \\lvert \\eta \\rvert < 2.4 $ to $ \\lvert \\eta \\rvert < 4$, where up to seven forward- and four extension disks will compose the new detector. Additionally, the new outer system should also have trigger capabilities. To achieve such goals, R\\&...

  9. Introductory Overview of Intermediate-luminosity X-ray Objects

    Science.gov (United States)

    Colbert, E. J. M.

    2001-05-01

    Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.

  10. A Single Bremsstrahlung Monitor to Measure Luminosity at LEP

    CERN Multimedia

    2002-01-01

    The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...

  11. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  12. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  13. Precision luminosity measurement at LHCb with beam-gas imaging

    International Nuclear Information System (INIS)

    Barschel, Colin

    2014-01-01

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy √(s)=8 TeV and √(s)=2.76 TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. Therefore, a new method has been developed using all reconstructed vertices in order to improve the understanding of the vertex resolution. In addition to the overlap integral, the knowledge of the colliding bunch populations is required to measure the luminosity. The determination of the bunch populations relies on LHC instruments to measure the bunch population fractions and the total beam intensity. Studies performed as part of this work resulted in a reduction of the bunch current normalization uncertainty from ±2.7% to ±0.2% and making it possible to achieve precision luminosity measurements at all LHC experiments. Furthermore, information on beam-gas interactions not originating from nominally filled bunches was analyzed to determine the charge fraction not participating in bunch collisions. The knowledge of this fraction is required to correct the total beam intensity. The reference cross-section of pp interactions with at least two tracks in the vertex detector

  14. DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Danielle A.; Skillman, Evan D. [Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Marble, Andrew R.; Engelbracht, Charles W. [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Van Zee, Liese [Astronomy Department, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Lee, Janice C. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, 1000 E. University, Laramie, WY 82071 (United States); Johnson, Benjamin D., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: cengelbracht@as.arizona.edu, E-mail: amarble@nso.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jlee@stsci.edu, E-mail: calzetti@astro.umass.edu, E-mail: ddale@uwyo.edu, E-mail: johnson@iap.fr [Institut d' Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris (France)

    2012-08-01

    We present MMT spectroscopic observations of H II regions in 42 low luminosity galaxies in the Spitzer Local Volume Legacy survey. For 31 of the 42 galaxies in our sample, we were able to measure the temperature sensitive [O III] {lambda}4363 line at a strength of 4{sigma} or greater, and thus determine oxygen abundances using the 'direct' method. Our results provide the first 'direct' estimates of oxygen abundance for 19 of these galaxies. 'Direct' oxygen abundances were compared to B-band luminosities, 4.5 {mu}m luminosities, and stellar masses in order to characterize the luminosity-metallicity and mass-metallicity relationships at low luminosity. We present and analyze a 'Combined Select' sample composed of 38 objects (drawn from a sub-set of our parent sample and the literature) with 'direct' oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). Consistent with previous studies, the B band and 4.5 {mu}m luminosity-metallicity relationships for the 38 objects were found to be 12 + log(O/H) = (6.27 {+-} 0.21) + (- 0.11 {+-} 0.01)M{sub B} and 12 + log(O/H) = (6.10 {+-} 0.21) + (- 0.10 {+-} 0.01)M{sub [4.5]} with dispersions of {sigma} = 0.15 and 0.14, respectively. The slopes of the optical and near-IR L-Z relationships have been reported to be different for galaxies with luminosities greater than that of the LMC. However, the similarity of the slopes of the optical and near-IR L-Z relationships for our sample probably reflects little influence by dust extinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity relationship of 12 + log(O/H) = (5.61 {+-} 0.24) + (0.29 {+-} 0.03)log (M{sub *}), which agrees with previous studies; however, the dispersion ({sigma} = 0.15) is not significantly lower than that of the L-Z relationships. Because of the low dispersions in these relationships, if an accurate distance is available

  15. Triggered lightning return stroke luminosity to 1 km in two optical bands

    Science.gov (United States)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Wilkes, R.; Kotovsky, D. A.; Hare, B.

    2017-12-01

    Measured luminosity waveforms are presented and analyzed as a function of time and channel height using two types of avalanche photodiodes (APDs) for 19 triggered-lightning return strokes during summer 2016. APD type I had an optical bandwidth from 200 nm to 1,000 nm, with peak response at 600 nm (green light), and APD type II had an optical bandwidth from 400 nm to 1,000 nm with a peak response at 800 nm (red light). Ten channel heights ranging from 0 to 1 km (in 100 m increments) were observed by both types of APDs, 20 total, and measured the luminosity in vertical channel slices of approximately 3 m. For APD type I, the return stroke luminosity waveforms generally decay faster following its singular initial peak (IP) than the waveforms recorded by APD type II. APD type II waveforms often exhibit a second maxima (SM) following the IP. Although the wave shapes recorded by each APD type diverge after the IP, the risetime of the initial luminosity wave front preceding the IP for both types of APDs agrees well. The divergence in the luminosity wave shapes following the IP indicates that APD type II is capable of recording spectral lines that are excited or enhanced after the IP more effectively than APD type I. In addition, the SM/IP ratio increases as a function of channel height, indicating that the spectral range better captured by APD type II is more predominant at the top of the channel than at the bottom. Finally, because APD type II responds better to longer wavelengths than APD type I, and because the SM occurs a few microseconds after the IP (at the channel-bottom), we conjecture that the SM following the IP is a consequence of spectral lines excited during the cooling of the channel, following the initial high-temperature/pressure stage. Our data suggests that the initial optical radiation during the return stroke is dominated by ionized atomic species (e.g. four NII lines between 450 and 600 nm, better captured by APD type I) radiated at higher

  16. A new method to determine large scale structure from the luminosity distance

    International Nuclear Information System (INIS)

    Romano, Antonio Enea; Chiang, Hsu-Wen; Chen, Pisin

    2014-01-01

    The luminosity distance can be used to determine the properties of large scale structure around the observer. To this purpose we develop a new inversion method to map luminosity distance to a Lemaitre–Tolman–Bondi (LTB) metric based on the use of the exact analytical solution for Einstein equations. The main advantages of this approach are an improved numerical accuracy and stability, an exact analytical setting of the initial conditions for the differential equations which need to be solved and the validity for any sign of the functions determining the LTB geometry. Given the fully analytical form of the differential equations, this method also simplifies the calculation of the red-shift expansion around the apparent horizon point where the numerical solution becomes unstable. We test the method by inverting the supernovae Ia luminosity distance function corresponding to the best fit ΛCDM model. We find that only a limited range of initial conditions is compatible with observations, or a transition from red to blue-shift can occur at relatively low red-shift. Despite LTB solutions without a cosmological constant have been shown not to be compatible with all different set of available observational data, those studies normally fit data assuming a special functional ansatz for the inhomogeneity profile, which often depend only on few parameters. Inversion methods on the contrary are able to fully explore the freedom in fixing the functions which determine a LTB solution. Another important possible application is not about LTB solutions as cosmological models, but rather as tools to study the effects on the observations made by a generic observer located in an inhomogeneous region of the Universe where a fully non perturbative treatment involving exact solutions of Einstein equations is required. (paper)

  17. GAMMA-RAY BURST LUMINOSITY RELATIONS: TWO-DIMENSIONAL VERSUS THREE-DIMENSIONAL CORRELATIONS

    International Nuclear Information System (INIS)

    Yu Bo; Qi Shi; Lu Tan

    2009-01-01

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons that prevent the extensive applications of GRBs in cosmology. In this paper, we extend the two-dimensional (2D) luminosity relations with τ lag , V, E peak , and τ RT as the luminosity indicators to three dimensions (3D) using the same set of luminosity indicators to explore the possibility of decreasing the intrinsic scatters. We find that, for the 3D luminosity relations between the luminosity and an energy scale (E peak ) and a timescale (τ lag or τ RT ), their intrinsic scatters are considerably smaller than those of corresponding 2D luminosity relations. Enlightened by the result and the definition of the luminosity (energy released in units of time), we discussed possible reasons behind this result, which may give us helpful suggestions on seeking more precise luminosity relations for GRBs in the future.

  18. Dust Absorption and the Ultraviolet Luminosity Density at z ~ 3 as Calibrated by Local Starburst Galaxies

    Science.gov (United States)

    Meurer, Gerhardt R.; Heckman, Timothy M.; Calzetti, Daniela

    1999-08-01

    We refine a technique to measure the absorption-corrected ultraviolet (UV) luminosity of starburst galaxies using rest-frame UV quantities alone and apply it to Lyman-limit U dropouts at z~3 found in the Hubble Deep Field (HDF). The method is based on an observed correlation between the ratio of far-infrared (FIR) to UV fluxes with spectral slope β (a UV color). A simple fit to this relation allows the UV flux absorbed by dust and reprocessed to the FIR to be calculated, and hence the dust-free UV luminosity to be determined. International Ultraviolet Explorer spectra and Infrared Astronomical Satellite fluxes of local starbursts are used to calibrate the FFIR/F1600 versus β relation in terms of A1600 (the dust absorption at 1600 Å) and the transformation from broadband photometric color to β. Both calibrations are almost completely independent of theoretical stellar-population models. We show that the recent marginal and nondetections of HDF U dropouts at radio and submillimeter wavelengths are consistent with their assumed starburst nature and our calculated A1600. This is also true of recent observations of the ratio of optical emission-line flux to UV flux density in the brightest U dropouts. This latter ratio turns out not to be a good indicator of dust extinction. In U dropouts, absolute magnitude M1600,0 correlates with β: brighter galaxies are redder, as is observed to be the case for local starburst galaxies. This suggests that a mass-metallicity relationship is already in place at z~3. The absorption-corrected UV luminosity function of U dropouts extends up to M1600,0~-24 AB mag, corresponding to a star formation rate ~200 \\Mscrsolar yr-1 (H0=50 km s-1 Mpc-3 and q0=0.5 are assumed throughout). The absorption-corrected UV luminosity density at z~3 is ρ1600,0>=1.4×1027 ergs-1 Hz-1 Mpc-1. It is still a lower limit since completeness corrections have not been done and because only galaxies with A1600dropouts. The luminosity-weighted mean dust

  19. Detector Developments for the High Luminosity LHC Era (2/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  20. Absolute luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam-Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used *van der Meer scan* method (VDM). The technique has been used in 10 LHC fills during 2012 including and also provided a first luminosity measurement for proton-lead collisions. This talk presents the principles of the gas injection and the improvements reached with the increased pressure. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch. Those uncertainties are becoming the dominating factor because the uncertainty on the total beam current have been reduced.

  1. SLC-2000: A luminosity upgrade for the SLC

    International Nuclear Information System (INIS)

    Breidenbach, M.; Decker, F.-J.; Helm, R.; Napoly, O.; Phinney, N.; Raimondi, P.; Raubenheimer, T.O.; Siemann, R.; Zimmermann, F.; Hertzbach, S.

    1996-01-01

    We discuss a possible upgrade to the Stanford Linear Collider (SLC), whose objective is to increase the SLC luminosity by at least a factor 7, to an average Z production rate of more than 35,000 per week. The centerpiece of the upgrade is the installation of a new superconducting final doublet with a field gradient of 240 T/m, which will be placed at a distance of only 70 cm from the interaction point. In addition, several bending magnets in each final focus will be lengthened and two octupole correctors are added. A complementary upgrade of damping rings and bunch compressors will allow optimum use of the modified final focus and can deliver, or exceed, the targeted luminosity. The proposed upgrade will place the SLC physics program in a very competitive position, and will also enable it to pursue its pioneering role as the first and only linear collider. (author)

  2. Temperatures and luminosities of white dwarfs in dwarf novae

    International Nuclear Information System (INIS)

    Smak, J.

    1984-01-01

    Far ultraviolet radiation observed in dwarf novae at minimum can only be attributed to their white dwarfs. In three systems white dwarfs are detected directly through their eclipses. These data are used to determine the effective temperatures and luminosities of white dwarfs. The resulting temperatures range from about logT e = 4.1 to about 4.9, with typical values of about 4.5. The luminosities range from about logL 1 = 31.0 to about 33.5 and show correlation with the average accretion rates. Radiation from white dwarfs is likely to be the source of excitation of the emission lines from disks. It is also argued that the heating by the white dwarf can significantly modify the structure of the innermost parts of the disk and, particularly, inhibit the incidence of thermal instability in that region. 26 refs., 2 figs., 1 tab. (author)

  3. The CMS High Granularity Calorimeter for the High Luminosity LHC

    CERN Document Server

    Sauvan, Jean-baptiste

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities...

  4. Using Micromegas in ATLAS to Monitor the Luminosity

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    Five small prototype micromegas detectors were positioned in the ATLAS detector during LHC running at $\\sqrt{s} = 8\\, \\mathrm{TeV}$. A $9\\times 4.5\\, \\mathrm{cm^2}$ two-gap detector was placed in front of the electromagnetic calorimeter and four $9\\times 10\\, \\mathrm{cm^2}$ detectors on the ATLAS Small Wheels, the first station of the forward muon spectrometer. The one attached to the calorimeter was exposed to interaction rates of about $70\\,\\mathrm{kHz/cm^2}$ at ATLAS luminosity $\\mathcal{L}=5\\times 10^{33}\\,\\mathrm{cm^{-2}s^{-1}}$ two orders of magnitude higher than the rates in the Small Wheel. We compare the currents drawn by the detector installed in front of the electromagnetic calorimeter with the luminosity measurement in ATLAS experiment.

  5. SLHC, the High-Luminosity Upgrade (public event)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  6. Luminosity Measurement at ATLAS with a Scintillating Fiber Tracker

    CERN Document Server

    Ask, S

    2007-01-01

    We are reporting about a scintillating fiber tracking detector which is proposed for a precise determination of the absolute luminosity of the CERN LHC at interaction point 1 where the ATLAS experiment is located. The detector needs to track protons elastically scattered under micro-radian angles in direct vicinity to the LHC beam. It is based on square shaped scintillating plastic fibers read out by multi-anode photomultiplier tubes and is housed in Roman Pots. We describe the design and construction of prototype detectors and the results of two beam test experiments carried out at DESY and at CERN. The excellent detector performance established in these tests validates the detector design and supports the feasibility of the proposed challenging method of luminosity measurement. All results from the CERN beam test should be considered as preliminary.

  7. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    International Nuclear Information System (INIS)

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-01-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  8. ATLAS Fast Tracker Status and Tracking at High luminosity LHC

    CERN Document Server

    Ilic, Nikolina; The ATLAS collaboration

    2018-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. This talk describes the electronics system used for the FTK’s massive parallelization. The installation, commissioning and running of the system is happening in 2016, and is detailed in this talk. Tracking at High luminosity LHC is also presented.

  9. Symmetric Moeller/Bhabha luminosity monitor for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi; Maas, Frank; Perez Benito, Roberto; Rodriguez Pineiro, David [Helmholtz-Institut Mainz, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); O' Connor, Colton [Massachusetts Institute of Technology, Cambridge, MA (United States); Diefenbach, Juergen; Glaeser, Boris [Institut fuer Kernphysik, Mainz (Germany); Khaneft, Dmitry [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Ma, Yue [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    The OLYMPUS experiment is motivated by the discrepancy between the proton electric to magnetic form factor ratio measured using unpolarized and polarized electron scattering. This discrepancy can be explained by a two-photon exchange (TPE) contribution in lepton-hadron scattering. Measuring the ratio of electron-proton and positron-proton elastic scattering cross sections the contribution of the TPE can be determined. For this purpose, very precise measurements of the relative luminosity have to be performed. The symmetric Moeller/Bhabha luminosity monitor, made of calorimetric lead fluoride (PbF{sub 2}) Cherenkov detectors, provides precise data from counting coincidences Moeller and Bhabha events. High sensitivity to the geometrical acceptance and alignment requires accurate study of systematic uncertainties.

  10. Stellar bars and the spatial distribution of infrared luminosity

    International Nuclear Information System (INIS)

    Devereux, N.

    1987-01-01

    Ground-based 10 micron observations of the central region of over 100 infrared luminous galaxies are presented. A first order estimate of the spatial distribution of infrared emission in galaxies is obtained through a combination of ground-based and Infrared Astronomy Satellite (IRAS) data. The galaxies are nearby and primarily noninteracting, permitting an unbiased investigation of correlations with Hubble type. Approximately 40% of the early-type barred galaxies in this sample are associated with enhanced luminosity in the central (approximately 1 kpc diameter) region. The underlying luminosity source is attributed to both Seyfert and star formation activity. Late-type spirals are different in that the spatial distribution of infrared emission and the infrared luminoisty are not strongly dependent on barred morphology

  11. Study of the mass-luminosity in binary stars

    International Nuclear Information System (INIS)

    Gimenez, A.; Zamorano, J.

    1986-01-01

    The results of a study of the mass-luminosity relation for main-sequence stars are presented as obtained from the latest data provided by the analysis of eclipsing and visual binary systems. The derived numerical values are discussed in light of their practical use and possible parametrizations indicated by internal structure homologous models. Finally, the astrophysical significance of our results is evaluated and they are compared to available theoretical models. (author)

  12. High-field Magnet Development toward the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio [Fermilab

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  13. Progenitors of low-luminosity Type II-Plateau supernovae

    Science.gov (United States)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2018-01-01

    The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.

  14. Physics potential and experimental challenges of the LHC luminosity upgrade

    CERN Document Server

    Gianotti, F.; Virdee, T.; Abdullin, S.; Azuelos, G.; Ball, A.; Barberis, D.; Belyaev, A.; Bloch, P.; Bosman, M.; Casagrande, L.; Cavalli, D.; Chumney, Pamela R.K.; Cittolin, S.; Dasu, S.; De Roeck, A.; Ellis, N.; Farthouat, P.; Fournier, D.; Hansen, J.B.; Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; van der Bij, J.; Watson, A.; Wielers, M.

    2005-01-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10**35 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes

  15. LHC abort gap cleaning studies during luminosity operation

    CERN Document Server

    Bartmann, W; Bracco, C; Bravin, E; Goddard, B; Höfle, W; Jacquet, D; Jeff, A; Kain, V; Meddahi, M; Roncarolo, F; Uythoven, J; Valuch, D; Gianfelice-Wendt, E

    2012-01-01

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  16. RESOLVING THE LUMINOSITY PROBLEM IN LOW-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Vorobyov, Eduard I., E-mail: michael.dunham@yale.edu, E-mail: eduard.vorobiev@univie.ac.at [Institute of Astronomy, University of Vienna, Vienna 1180 (Austria)

    2012-03-01

    We determine the observational signatures of protostellar cores by coupling two-dimensional radiative transfer calculations with numerical hydrodynamical simulations that predict accretion rates that both decline with time and feature short-term variability and episodic bursts caused by disk gravitational instability and fragmentation. We calculate the radiative transfer of the collapsing cores throughout the full duration of the collapse, using as inputs the core, disk, protostellar masses, radii, and mass accretion rates predicted by the hydrodynamical simulations. From the resulting spectral energy distributions, we calculate standard observational signatures (L{sub bol}, T{sub bol}, L{sub bol}/L{sub smm}) to directly compare to observations. We show that the accretion process predicted by these models reproduces the full spread of observed protostars in both L{sub bol}-T{sub bol} and L{sub bol}-M{sub core} space, including very low luminosity objects, provides a reasonable match to the observed protostellar luminosity distribution, and resolves the long-standing luminosity problem. These models predict an embedded phase duration shorter than recent observationally determined estimates (0.12 Myr versus 0.44 Myr), and a fraction of total time spent in Stage 0 of 23%, consistent with the range of values determined by observations. On average, the models spend 1.3% of their total time in accretion bursts, during which 5.3% of the final stellar mass accretes, with maximum values being 11.8% and 35.5% for the total time and accreted stellar mass, respectively. Time-averaged models that filter out the accretion variability and bursts do not provide as good of a match to the observed luminosity problem, suggesting that the bursts are required.

  17. Luminosity geometric reduction factor from colliding bunches with different lengths

    Energy Technology Data Exchange (ETDEWEB)

    Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-29

    In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.

  18. Electron-cloud effects in high-luminosity colliders

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.

    1998-01-01

    Electron-cloud instabilities are expected to be important in most high-luminosity double-ring colliders. In this report, the author describes a few parameter regimes and some critical parameter dependences of this type of instability, and illustrate these with simulation results for the PEP-II and KEK B factories, the LHC, the VLHC, and DAPHNE. In addition, the author studies the possibility and the potential impact of an electron cloud in the interaction region.

  19. Dynamic Aperture Studies for the LHC High Luminosity Lattice

    CERN Document Server

    De Maria, R; Giovannozzi, Massimo; Mcintosh, Eric; Cai, Y; Nosochkov, Y; Wang, M H

    2015-01-01

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  20. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  1. High-Luminosity LHC moves to the next phase

    CERN Multimedia

    2015-01-01

    This week saw several meetings vital for the medium-term future of CERN.    From Monday to Wednesday, the Resource Review Board, RRB, that oversees resource allocation in the LHC experiments, had a series of meetings. Thursday then saw the close-out meeting for the Hi-Lumi LHC design study, which was partially funded by the European Commission. These meetings focused on the High Luminosity upgrade for the LHC, which responds to the top priority of the European Strategy for Particle Physics adopted by the CERN Council in 2013. This upgrade will transform the LHC into a facility for precision studies, the logical next step for the high-energy frontier of particle physics. It is a challenging upgrade, both for the LHC and the detectors. The LHC is already the highest luminosity hadron collider ever constructed, generating up to a billion collisions per second at the heart of the detectors. The High Luminosity upgrade will see that number rise by a factor of five from 2025. For the detectors...

  2. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  3. Beam dynamics studies to develop LHC luminosity model

    CERN Document Server

    Campogiani, Giovanna; Papaphilippou, Ioannis

    The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...

  4. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  5. EU supports the LHC high-luminosity study

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The design collision energy and luminosity of the LHC are already at record numbers, making the machine one of the most complex scientific instruments ever built. However, to extend its discovery potential even further, a major upgrade of the LHC will be required around 2020. This will increase its average luminosity by a factor of 5 to 10 beyond its design value. Fifteen worldwide institutions and the European Union are supporting the initial design phase of the project through the HiLumi LHC programme, whose kick-off meeting will take place on 16-18 November.   The CERN team that has successfully built and tested the Short Magnet Coil – a small 40 cm long magnet capable of producing a 12.5 T magnetic field. The upgrade of the LHC will require about 10 years of design, construction and implementation. The new machine configuration will be called “High Luminosity LHC” (HL-LHC). The similarly named “HiLumi LHC” is the EU programme that supports...

  6. The GRB variability/peak luminosity correlation: new results

    International Nuclear Information System (INIS)

    Guidorzi, C.; Rossi, F.; Hurley, K.; Mundell, C.G.

    2005-01-01

    We test the correlation between time variability and isotropic-equivalent peak luminosity found by Reichart et al. (ApJ, 552 (2001) 57) using a set of 26 Gamma-Ray Bursts (GRBs) with known redshift. We confirm the correlation, thought with a larger spread around the best-fit power-law obtained by Reichart et al. which in turn does not provide an acceptable description any longer. In addiction, we find no evidence for correlation between variability and beaming-corrected peak luminosity for a subset of 14 GRBs whose beaming angles have been taken from Ghirlanda et al. (ApJ, 616 (2004) 331). Finally, we investigate the possible connection for some GRBs between the location in the variability/peak luminosity space and some afterglow properties, such as the detectability in the optical band, by adding some GRBs whose redshifts, unknown from direct measurements, have been derived assuming the Amati at al. (AeA, 390 (2002) 81) relationship

  7. Precision luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, Colin

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy $\\sqrt{s}=8$ TeV and $\\sqrt{s}=2.76$ TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. There...

  8. The Dependence of galaxy colors on luminosity and environment at z~0.4

    Energy Technology Data Exchange (ETDEWEB)

    Yee, H.K.C.; /Toronto U., Astron. Dept.; Hsieh, B.C.; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Lin, Huan; /Fermilab; Gladders, M.D.; /Carnegie Inst.

    2005-08-01

    The authors analyze the B-R{sub c} colors of galaxies as functions of luminosity and local galaxy density using a large photometric redshift catalog based on the Red-Sequence Cluster Survey. They select two samples of galaxies with a magnitude limit of M{sub R{sub e}} < -18.5 and redshift ranges of 0.2 {le} z < 0.4 and 0.4 {le} x < 0.6 containing 10{sup 5} galaxies each. they model the color distributions of subsamples of galaxies and derive the red galaxy fraction and peak colors of red and blue galaxies as functions of galaxy luminosity and environment. The evolution of these relationships over the redshift range of x {approx} 0.5 to z {approx} 0.05 is analyzed in combination with published results from the Sloan Digital Sky Survey. They find that there is a strong evolution in the restframe peak color of bright blue galaxies in that they become redder with decreasing redshift, while the colors of faint blue galaxies remain approximately constant. This effect supports the ''downsizing'' scenario of star formation in galaxies. While the general dependence of the galaxy color distributions on the environment is small, they find that the change of red galaxy fraction with epoch is a function of the local galaxy density, suggesting that the downsizing effect may operate with different timescales in regions of different galaxy densities.

  9. A composite plot of far-infrared versus radio luminosity, and the origin of far-infrared luminosity in quasars

    International Nuclear Information System (INIS)

    Sopp, H.M.; Alexander, P.

    1991-01-01

    We have constructed a composite plot of far-infrared versus radioluminosity for late-type galaxies, Seyferts, quasars and radio galaxies. The most striking result is that the radio and far-infrared luminosities of radio-quiet quasars are correlated and follow the same correlation as normal star-forming galaxies and ultra-luminous infrared galaxies, whereas the radio-loud quasars have luminosities in both bands similar to those of radio galaxies. We conclude that the far-infrared emission from radio-quiet quasars is from star-forming host galaxies and not from active galactic nuclei. The far-infrared radio plot may be a powerful discriminator between host galaxy type. (author)

  10. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kamber R.; Shirley, Yancy L. [Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  11. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    International Nuclear Information System (INIS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-01-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int ≤ 0.1 L ☉ ). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D 12 CO and 13 CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  12. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Yun-A Jo

    2016-12-01

    Full Text Available An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs. We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV. We also found that peak luminosity is positively correlated with peak energy.

  13. Average and dispersion of the luminosity-redshift relation in the concordance model

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, I. [DESY Hamburg (Germany). Theory Group; Gasperini, M. [Bari Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Bari (Italy); Marozzi, G. [College de France, 75 - Paris (France); Geneve Univ. (Switzerland). Dept. de Physique Theorique and CAP; Nugier, F. [Ecole Normale Superieure CNRS, Paris (France). Laboratoire de Physique Theorique; Veneziano, G. [College de France, 75 - Paris (France); CERN, Geneva (Switzerland). Physics Dept.; New York Univ., NY (United States). Dept. of Physics

    2013-03-15

    Starting from the luminosity-redshift relation recently given up to second order in the Poisson gauge, we calculate the effects of the realistic stochastic background of perturbations of the so-called concordance model on the combined light-cone and ensemble average of various functions of the luminosity distance, and on their variance, as functions of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from infrared and ultraviolet divergences, making our results robust with respect to changes of the corresponding cutoffs. Our main conclusions, in part already anticipated in a recent letter for the case of a perturbation spectrum computed in the linear regime, are that such inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent, in principle, the determination of its parameters down to an accuracy of order 10{sup -3} - 10{sup -5}, depending on the averaged observable and on the regime considered for the power spectrum. However, taking into account the appropriate corrections arising in the non-linear regime, we predict an irreducible scatter of the data approaching the 10% level which, for limited statistics, will necessarily limit the attainable precision. The predicted dispersion appears to be in good agreement with current observational estimates of the distance-modulus variance due to Doppler and lensing effects (at low and high redshifts, respectively), and represents a challenge for future precision measurements.

  14. Sky luminosity for Rio de Janeiro City - Brazil

    International Nuclear Information System (INIS)

    Corbella, O.D.

    1995-12-01

    This paper presents sky luminosity data for Rio de Janeiro City, useful to be used in daylighting design in architecture. The data are presented as monthly graphics that correlate sunshine-hours with the frequency of occurrence during the day of a specific type of sky, that would present one of five defined characteristics (among clear and overcast sky). These results were derived from the knowledge of daily solar radiation and sunshine-hours data, for every day for a twelve year period. (author). 10 refs, 13 figs, 16 tabs

  15. Cosmological perturbation effects on gravitational-wave luminosity distance estimates

    Science.gov (United States)

    Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Matarrese, Sabino

    2018-06-01

    Waveforms of gravitational waves provide information about a variety of parameters for the binary system merging. However, standard calculations have been performed assuming a FLRW universe with no perturbations. In reality this assumption should be dropped: we show that the inclusion of cosmological perturbations translates into corrections to the estimate of astrophysical parameters derived for the merging binary systems. We compute corrections to the estimate of the luminosity distance due to velocity, volume, lensing and gravitational potential effects. Our results show that the amplitude of the corrections will be negligible for current instruments, mildly important for experiments like the planned DECIGO, and very important for future ones such as the Big Bang Observer.

  16. Physics potential and experimental challenges of the LHC luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, F.; Ball, A.; Bloch, P.; Casagrande, L.; Cittolin, S.; Roeck, A. de; Ellis, N.; Farthouat, P.; Hansen, J.-B. [CERN, Experimental Physics Division, Geneva (Switzerland); Mangano, M.L. [CERN, Theoretical Physics Division, Geneva (Switzerland); Virdee, T. [CERN, Experimental Physics Division, Geneva (Switzerland); Imperial College, London (United Kingdom); Abdullin, S. [University of Maryland (United States); Azuelos, G. [University of Montreal, Group of Particle Physics, Montreal (Canada); Barberis, D. [Universita di Genova, Dipartimento di Fisica and INFN (Italy); Belyaev, A. [Florida State University, Tallahassee, FL (United States); Bosman, M. [IFAE, Barcelona (Spain); Cavalli, D. [INFN, Milano (Italy); Chumney, P.; Dasu, S. [Univ. of Wisconsin, Madison, WI (United States); Fournier, D. [LAL, Orsay (France); Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; Bij, J. van der; Watson, A.; Wielers, M.

    2004-02-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10{sup 35} cm{sup -2}s{sup -1}. The detector R and D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes. (orig.)

  17. ATLAS Higgs Physics Prospects at the High Luminosity LHC

    CERN Document Server

    Varol, Tulin; The ATLAS collaboration

    2017-01-01

    The Higgs physics prospects at the high-luminosity LHC are presented, assuming an energy of $\\sqrt s = 14$ TeV and a data sample of 3000-4000 fb$^{-1}$. In particular, the ultimate precision attainable on the couplings measurements of the 125 GeV Higgs boson with SM fermions and bosons is discussed, as well as perspectives on the search for the Standard Model di-Higgs production, which could lead to the measurement of the Higgs boson self-coupling.

  18. Prospects for physics at high luminosity with CMS

    Directory of Open Access Journals (Sweden)

    Varela João

    2013-05-01

    Full Text Available The precision measurements of the properties of the recently discovered Higgs-like boson will be central to the future LHC physics program. In parallel the search for New Physics beyond the SM will continue. Higher luminosity will extend the mass reach and allow sensitive searches for possible subtle signatures for new physics. In this paper we review the potential sensitivity of CMS to a selection of relevant future physics scenarios accessible with the LHC upgrades and a correspondingly upgraded CMS detector.

  19. The luminosity monitor of the HERMES experiment at DESY

    CERN Document Server

    Benisch, T; Devitsin, E G; Kozlov, V; Potashov, S Yu; Rith, K; Terkulov, A R; Weiskopf, C

    2001-01-01

    A detector is described which measures the luminosity of the HERMES experiment at DESY. It is based on the coincident detection of electron-positron and photon pairs, or electron pairs, originating from the interaction of the beam positrons, or electrons, with the electrons of the atomic gas target. It consists of two calorimeters with radiation hard NaBi(WO sub 4) sub 2 crystals. Properties of the monitor, investigated in an electron test beam, and its performance in the experiment are presented.

  20. THE CLUSTERING OF GALAXIES IN THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOSITY AND COLOR DEPENDENCE AND REDSHIFT EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hong; Zehavi, Idit [Department of Astronomy, Case Western Reserve University, OH 44106 (United States); Zheng Zheng [Department of Physics and Astronomy, University of Utah, UT 84112 (United States); Weinberg, David H. [Department of Astronomy and CCAPP, Ohio State University, Columbus, OH 43210 (United States); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Blanton, Michael [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Chen Yanmei [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Eisenstein, Daniel J.; McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Ho, Shirley; Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kazin, Eyal [Center for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia); Manera, Marc; Maraston, Claudia; Percival, Will J.; Ross, Ashley J.; Samushia, Lado [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Nuza, Sebastian E. [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Padmanabhan, Nikhil; Parejko, John K. [Department of Physics, Yale University, 260 Whitney Ave, New Haven, CT 06520 (United States); and others

    2013-04-20

    We measure the luminosity and color dependence and the redshift evolution of galaxy clustering in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Ninth Data Release. We focus on the projected two-point correlation function (2PCF) of subsets of its CMASS sample, which includes about 260,000 galaxies over {approx}3300 deg{sup 2} in the redshift range 0.43 < z < 0.7. To minimize the selection effect on galaxy clustering, we construct well-defined luminosity and color subsamples by carefully accounting for the CMASS galaxy selection cuts. The 2PCF of the whole CMASS sample, if approximated by a power-law, has a correlation length of r{sub 0} = 7.93 {+-} 0.06 h {sup -1} Mpc and an index of {gamma} = 1.85 {+-} 0.01. Clear dependences on galaxy luminosity and color are found for the projected 2PCF in all redshift bins, with more luminous and redder galaxies generally exhibiting stronger clustering and steeper 2PCF. The color dependence is also clearly seen for galaxies within the red sequence, consistent with the behavior of SDSS-II main sample galaxies at lower redshifts. At a given luminosity (k + e corrected), no significant evolution of the projected 2PCFs with redshift is detected for red sequence galaxies. We also construct galaxy samples of fixed number density at different redshifts, using redshift-dependent magnitude thresholds. The clustering of these galaxies in the CMASS redshift range is found to be consistent with that predicted by passive evolution. Our measurements of the luminosity and color dependence and redshift evolution of galaxy clustering will allow for detailed modeling of the relation between galaxies and dark matter halos and new constraints on galaxy formation and evolution.

  1. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  2. The CMS High Granularity Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  3. Detector development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  4. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    Despite the excellent performance of the Large Hadron Collider (LHC) at CERN an upgrade to a High-Luminosity LHC (HL-LHC) with a peak instantaneous luminosity of up to $7.5\\times 10^{34}$ fb$^{-1}$ will be required after collecting a total dataset of approximately 300 fb$^{-1}$ by the end of Run 3 (in 2023). The upgrade will substantially increase the statistics available to the experiments for addressing the remaining open puzzles of particle physics. The HL-LHC is expected to start operating in 2026 and to deliver up to 4000 fb$^{-1}$ within twelve years. The corresponding upgrades of the ATLAS detector and the ATLAS beauty physics program at the HL-LHC are being discussed. As examples, preliminary results on the expected sensitivities for the search for CP-violation in the decay channel $B^0_s \\to J/\\psi \\,\\phi$ using the parameters $\\Delta\\Gamma_s$ and $\\phi_s$ as well as projections for the branching fractions of the rare decays $B^0_s \\to \\mu^+\\mu^-$ and $B^0\\to\\mu^+\\mu^-$ are provided.

  5. ATLAS Higgs Physics Prospects at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218105; The ATLAS collaboration

    2016-01-01

    The High-Luminosity Large Hadron Collider will provide an unprecedented opportunity to study the properties of the Higgs boson and eventually probe for new physics beyond the Standard Model. The large anticipated data sample will allow for more precise investigations of topics already studied with earlier data samples, as well as for studies of processes that are accessible only with the much larger statistics. Rates and signal strengths will be measured for a variety of Higgs-boson production and decay modes, allowing extraction of the Higgs boson couplings. Particular final states will allow differential cross-sections to be measured for all production modes, and for studies of the Higgs width and CP properties, as well as the tensor structure of its coupling to bosons. An important part of the High-Luminosity LHC experimental program will be investigations of the Higgs self-coupling, which is accessible via studies of di-Higgs production. In this note the projections of the ATLAS physics reach in the Higgs...

  6. Disk accretion onto a black hole at subcritical luminosity

    International Nuclear Information System (INIS)

    Bisnovatyi-Kogan, G.S.; Blinnikov, S.I.

    1977-01-01

    The influence of radiation pressure on the structure of an accretion disk is considered when the total luminosity L approaches the Eddington limit Lsub(c). The motion of particles in the disk radiation field and gravitational field of a nonrotating black hole is investigated. It is shown that the disk accretion is destroyed when L approximately equal to (0.6 / 1.0) Lsub(c). Matter outflow from the central parts of the disk to infinity then sets in. We conclude that the luminosity cannot significantly exceed the Eddington limit. We show that for L > approximately 0.1 Lsub(c) the plasma in the upper layers of the central region of the disk is heated up to temperatures T approximately 10 9 K and the disk becomes thicker as compared with the standard theory. It is shown that the radiative force can generate magnetic fields B approximately 100 G. We find that convection is the main energy transfer mechanism along z-coordinate in the central parts of the disk. The convection generates an acoustic flux which dissipates in the upper, optically thin layers of the disk and heats them. The comptonization of soft photons going from layers to the hot upper layers and variable accretion rate may explain the spectrum and variations of X-ray emission of the CygX-1. (orig.) [de

  7. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439268; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 1034 cm−2s−1, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and expected ...

  8. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00421104; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 \\times 10^{34} cm^{-2}s^{-1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture an...

  9. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    George, Simon; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 10^{34} cm^{−2}s^{−1}, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and ...

  10. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    Balunas, William Keaton; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 × 10^{34}$ cm$^{−2}$s$^{−1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architectur...

  11. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; Buscher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; Mattig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Schafer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nuclear Research (CERN) in Switzerland. It is designed to observe phenomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4 10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5 micro seconds. It is primarily composed of the Calori...

  12. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; B\\"{u}scher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; M\\"{a}ttig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Sch\\"{a}fer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nu- clear Research (CERN) in Switzerland. It is designed to observe phe- nomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4×10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the AT- LAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5μs. It is primarily composed of the Calorimete...

  13. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  14. ATLAS Physics Prospects at the High-Luminosity LHC

    CERN Document Server

    Bindi, Marcello; The ATLAS collaboration

    2017-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  15. LHC Report: spring cleaning over, bunches of luminosity

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Scrubbing was completed on Wednesday 13 April. The run had seen over 1000 bunches per beam successfully circulating at 450 GeV. Measurements showed that electron cloud activity in the cold regions had been suppressed. A decrease of vacuum activity in the warm regions demonstrated that the cleaning had also achieved the required results there. As discussed in the last Bulletin, the scrubbing was performed with high intensity bunches with 50 nanosecond spacing. Given the potential luminosity performance with this spacing (more bunches, higher bunch intensity from the injectors) and in the light of the results of the scrubbing run, the decision was taken to continue the 2011 physics run with this bunch spacing.   A few issues with 50 nanosecond spacing had to be resolved when standard operations for luminosity production resumed. Once things had been tidied up, stable beams were provided for the experiments, firstly with 228 bunches per beam and then with 336 bunches per beam. The 336 bunch fill that w...

  16. Luminosity Optimization for a Higher-Energy LHC

    CERN Document Server

    Dominguez, O

    2011-01-01

    A Higher-Energy Large Hadron Collider (HE-LHC) is an option to further push the energy frontier of particle physics beyond the present LHC. A beam energy of 16.5 TeV would require 20 T dipole magnets in the existing LHC tunnel, which should be compared with 7 TeV and 8.33 T for the nominal LHC. Since the synchrotron radiation power increases with the fourth power of the energy, radiation damping becomes significant for the HE-LHC. It calls for transverse and longitudinal emittance control vis-a-vis beam-beam interaction and Landau damping. The heat load from synchrotron radiation, gas scattering, and electron cloud also increases with respect to the LHC. In this paper we discuss the proposed HE-LHC beam parameters; the time evolution of luminosity, beam-beam tune shifts, and emittances during an HE-LHC store; the expected heat load; and luminosity optimization schemes for both round and flat beams.

  17. Radio and optical studies of high luminosity Iras galaxies

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Parker, Q.A.; Savage, A.; MacGillivray, H.T.; Leggett, S.K.; Clowes, R.G.; Unger, S.W.; Pedlar, A.; Heasley, J.N.; Menzies, J.W.

    1987-01-01

    Follow-up observations of a complete sample of 154 IRAS galaxies, optically identified down to B=21, indicate that between 3 and 9% of the sample are ultraluminous depending on the choice of H 0 . VLA observations at 20 cm of the complete sample indicate that 85% are detected above 1mJy and for the most part the radio emission is centrally concentrated. The tight linear relation between radio and infrared luminosities is valid at the highest luminosities. Of the 11 most luminous objects one is a quasar: it fits the radio infrared relation very well which suggests that the infrared and radio emission has the same origin as in the other IRAS galaxies, ie. it probably originates primarily in regions of star formation in the host galaxy. The other 10 very luminous galaxies are either close but resolved mergers or double galaxies, presumably interacting. Radio observations of the 10 original empty field sources in our sample with no optical counterpart (B ≤ 21) allow us to conclude that 4 of these are fainter galaxies just outside the IRAS error ellipse with high values of L IR /L B . One other object, with a radio source at the edge of the error ellipse but no optical counterpart brighter than B = 23, may prove to be a highly luminous galaxy with L IR /L B > ∼ 1250

  18. The Discovery of Low-Luminosity BL Lacs

    Science.gov (United States)

    Rector, Travis A.; Stocke, John T.

    1995-12-01

    Many of the properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis whereby BL Lacs are ``highly beamed'' FR-I radio galaxies (i.e. our line of sight to these objects is nearly along the jet axis). Further, radio-selected BL Lacs (RBLs) are believed to be seen nearly ``on-axis'' (the line-of-sight angle theta ~ 8deg ) while X-ray selected BL Lacs (XBLs) are seen at larger angles (theta ~ 30deg ; the X-ray emitting jet is believed to be less collimated). However, a major problem with this model was that a transition population between beamed BL Lacs and unbeamed FR-Is had not been detected. Low-luminosity BL Lacs may be such a transition population, and were predicted to exist by Browne and Marcha (1993). We present ROSAT HRI images, VLA radio maps and optical spectra which confirm the existence of low-luminosity BL Lacs, objects which were previously mis-identified in the EMSS catalog as clusters of galaxies. Thus our results strengthen the relativistic beaming hypothesis.

  19. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    CERN Document Server

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  20. A luminosity monitor for LHC [notes of a thesis

    CERN Document Server

    Perrot, Anne Laure

    2000-01-01

    LHC luminosity will reach 10/sup 34/ cm/sup -2/ s/sup -1/ but special runs at 10/sup 28/ cm/sup -2/ s/sup -1/ are foreseen. Thus a luminosity monitor must have a dynamic range of six orders of magnitude. A good tolerance to radiation is also required. A detector using both ionisation and secondary emission techniques has been studied in this context. Its design is based on monitors used previously at the CERN PS and SPS. Special attention was devoted to minimise leakage currents. Linearity in both Secondary Emission Counter (SEC) and Ionisation Chamber (IC) modes has been tested from ~10/sup 4/ incident particles to ~10/sup 8/ incident particles. SEC is linear above ~5.10/sup 6/ incident particles while IC is linear over the full studied range. However, because of the radiation environment at LHC, the SEC mode is much preferred at high intensity. A solution actually foreseen is to switch from IC to SEC mode when the intensity is around 5.10/sup 6/ incident particles per second corresponding to an LHC luminosi...

  1. Luminosity on development and flowering of Dendrobium nobile Lindl.

    Directory of Open Access Journals (Sweden)

    Yara Brito Chaim Jardim Rosa

    2014-09-01

    Full Text Available This study, conducted at Jardinocultura area of Faculdade de Ciências Agrárias of UFGD during the period from September of 2010 to August of 2011, had as aim evaluate the cultivation and flowering of Dendrobium nobile Lindl., under five levels of luminosity (83, 104, 115, 154 e 237 μmol m-2 s-1 . During 12 months the plants were irrigated and fertilized with NPK 10-10-10 and after this period they were evaluated for the number, length and diameter of pseudobulbs, being calculated the increments in relation to initial data. At flowering time it was counted the total buds, reproductive buds, vegetative buds and undifferentiated buds and registered the anthesis at each light intensity. The experimental was arranged at completely randomized design with five treatments and seven replicates with two plants and the averages were compared by Tukey test at 5% probability. All the lighting conditions were favorable to the D. nobile cultivation, being registered increases of 36,7%, 16,0% e 16,2% in the number, diameter and length of pseudobulbs, respectively. The largest number of reproductive buds was observed at 104 μmol m-2 s-1. D. nobile can be cultivated in the light conditions varying between 83 and 237 μmol m-2 s-1, recommending the luminosity of 104 μmol m-2 s-1 to promote their flowering.

  2. Radio variability survey of very low luminosity protostars

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  3. Physics prospects at the high luminosity LHC with ATLAS

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration

    2016-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  4. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379172; The ATLAS collaboration

    2016-01-01

    Run 1 at the LHC was very successful with the discovery of a new boson. The boson’s properties are found to be compatible with those of the Standard Model Higgs boson. It is now revealing the mechanism of electroweak symmetry breaking and (possibly) the discovery of physics beyond the Standard Model that are the primary goals of the just restarted LHC. The ultimate precision will be reached at the high-luminosity LHC run with a proton-proton centre-of-mass energy of 14 TeV. In this contribution physics prospects are presented for ATLAS for the integrated luminosities 300 and 3000 fb−1: the ultimate precision attainable on measurements of the Higgs boson couplings to elementary fermions and bosons, its trilinear self-coulping, as well as perspectives on the searches for partners associated with it. Benchmark studies are presented to show how the sensitivity improves at the future LHC runs. For all these studies, a parameterised simulation of the upgraded ATLAS detector is used and expected pileup condition...

  5. Wavelet Space-Scale-Decomposition Analysis of QSO's Ly$\\alpha$ Absorption Lines: Spectrum of Density Perturbations

    OpenAIRE

    Pando, Jesus; Fang, Li-Zhi

    1995-01-01

    A method for measuring the spectrum of a density field by a discrete wavelet space-scale decomposition (SSD) has been studied. We show how the power spectrum can effectively be described by the father function coefficients (FFC) of the wavelet SSD. We demonstrate that the features of the spectrum, such as the magnitude, the index of a power law, and the typical scales, can be determined with high precision by the FFC reconstructed spectrum. This method does not require the mean density, which...

  6. GALAXY CLUSTERING AND PROJECTED DENSITY PROFILES AS TRACED BY SATELLITES IN PHOTOMETRIC SURVEYS: METHODOLOGY AND LUMINOSITY DEPENDENCE

    International Nuclear Information System (INIS)

    Wang Wenting; Jing, Y. P.; Li Cheng; Okumura, Teppei; Han Jiaxin

    2011-01-01

    We develop a new method which measures the projected density distribution w p (r p )n of photometric galaxies surrounding a set of spectroscopically identified galaxies and simultaneously the projected cross-correlation function w p (r p ) between the two populations. In this method, we are able to divide the photometric galaxies into subsamples in luminosity intervals even when redshift information is unavailable, enabling us to measure w p (r p )n and w p (r p ) as a function of not only the luminosity of the spectroscopic galaxy, but also that of the photometric galaxy. Extensive tests show that our method can measure w p (r p ) in a statistically unbiased way. The accuracy of the measurement depends on the validity of the assumption inherent to the method that the foreground/background galaxies are randomly distributed and are thus uncorrelated with those galaxies of interest. Therefore, our method can be applied to the cases where foreground/background galaxies are distributed in large volumes, which is usually valid in real observations. We have applied our method to data from the Sloan Digital Sky Survey (SDSS) including a sample of 10 5 luminous red galaxies at z ∼ 0.4 and a sample of about half a million galaxies at z ∼ 0.1, both of which are cross-correlated with a deep photometric sample drawn from the SDSS. On large scales, the relative bias factor of galaxies measured from w p (r p ) at z ∼ 0.4 depends on luminosity in a manner similar to what is found for those at z ∼ 0.1, which are usually probed by autocorrelations of spectroscopic samples in previous studies. On scales smaller than a few Mpc and at both z ∼ 0.4 and z ∼ 0.1, the photometric galaxies of different luminosities exhibit similar density profiles around spectroscopic galaxies at fixed luminosity and redshift. This provides clear observational support for the assumption commonly adopted in halo occupation distribution models that satellite galaxies of different luminosities are

  7. Present and past neutrino luminosity of the sun

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J K; Cleveland, B T; Davis, R Jr; Hampel, W; Kirsten, T

    1979-01-01

    The neutrino radiation from the sun can give direct information on the basic nuclear fusion processes that provide the solar energy. Results are reported which have been obtained over the last seven years with the Brookhaven solar neutrino detector that depends upon the neutrino capture reaction, /sup 37/Cl(..nu..,e/sup -/)/sup 37/ Ar. These results do not agree with the predictions of the standard solar model. It is of great interest to know whether the lack of agreement between the measurements and theoretical expectation could possibly be explained by a secular variation in the rate of the fusion process. Two radiochemical neutrino detection techniques have been proposed previously that could in principle record the neutrino flux of the past. An analysis of the expected background processes for these experiments is given. These and other possible methods of recording the past solar neutrino luminosity are discussed in relation to variations expected from theoretical solar models. 2 figures, 6 tables, 36 references.

  8. High luminosity liquid-argon calorimeter test beam

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga; Straessner, Arno [TU Dresden, IKTP (Germany)

    2016-07-01

    In the future HL-LHC the luminosity will increase by factor of 5-7 with respect to the original LHC design. The HiLum collaboration studied the impact on small-sized modules of the ATLAS electromagnetic, hadronic, and forward calorimeters also instrumented by various intensity and position detectors. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. Results from the last test beam campaign in 2013 on the signal shape analysis from the calorimeter modules are compared with MC simulations. The correlation between high-voltage return currents of the electromagnetic calorimeter and beam intensity is used to estimate critical parameters and compared with predictions.

  9. Preliminary accelerator plans for maximizing the integrated LHC luminosity

    CERN Document Server

    Benedikt, Michael; Ruggiero, F; Ostojic, R; Scandale, Walter; Shaposhnikova, Elena; Wenninger, J

    2006-01-01

    A working group on "Proton Accelerators for the Future" (PAF) has been created in May 2005 by the CERN direction to elaborate a baseline scenario of the possible development and upgrade of the present Proton Accelerator Complex. This report is the result of the investigation conducted until the end of 2005, in close connection with the working group on "Physics Opportunities with Future Proton Accelerators" (POFPA) and is consistent with their recommendations. Focused on the goal of maximizing the integrated luminosity for the LHC experiments, a scenario of evolution is proposed, subject to further refinement using the future experience of commissioning and running-in the collider and its injector complex. The actions to be taken in terms of consolidation, R & D and improvement are outlined. The benefits for other types of physics are mentioned and will be investigated in more detail in the future.

  10. Beam-beam effect and luminosity in SPEAR

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1980-07-01

    Measurements performed at SPEAR have been discussed and scaling laws for the maximum luminosity and the maximum linear tune shift parameter with energy are shown. There are two distinct regimes, one below 2 GeV where the linear tune shift parameter scales like xi/sub y/ approx. E 2 4 and the other regime where this parameter is constant xi/sub y/ approx. = 0.05 to 0.06. In the lower energy regime the limit is reached when the vertical beam size is blown up to the acceptance of the storage ring. A significant (< 10%) horizontal beam blow up is not observed and the value of the horizontal linear tune shift parameter xi/sub x/ does not seem to be related to the beam-beam limit

  11. SLHC, the high-luminosity upgrade (public event)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    In the morning of February 26th a public event is organised in CERN's main auditorium with the aim of informing the particle physics community about the current status of preparation work for the future LHC luminosity upgrade (Phase 1 and Phase 2). The presentations will provide an overview of the various accelerator sub-projects, the physics potential and the experiment upgrade plans. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the SLHC project. Informing the public about the overall status of SLHC is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  12. An Upgraded ATLAS Central Trigger for 2015 Luminosities

    International Nuclear Information System (INIS)

    Poettgen, Ruth; Gutenberg, Johannes

    2013-06-01

    The Central Trigger Processor (CTP) is a core unit of the first of three levels that constitute the ATLAS trigger system. Based on information from calorimeter and muon trigger processors as well as from some additional systems it produces the level-1 trigger decision and prompts the read-out of the sub-detectors. The increase in luminosity at the LHC has pushed the CTP operation to its design limits. In order to still satisfy the physics goals of the experiment after the shutdown of the LHC of 2013/2014 the CTP will be upgraded during this period. This article discusses the current Central Trigger Processor, the motivation for the upgrade, and the changes foreseen to meet the requirements of the post-2014 physics runs at the LHC. (authors)

  13. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel

    2005-01-01

    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  14. The distribution in luminosity of OB stars and evolutionary timescales

    International Nuclear Information System (INIS)

    Bisiacchi, F.; Carrasco, L.; Costero, R.; Firmani, C.; Rayo, J.F.

    1979-01-01

    The authors have obtained the observed fraction of supergiant (luminosity classes I and II), giant (III) and dwarf (IV-V) stars of spectral types B2 and earlier. The stellar sample used was formed with all the stars with bidimensional spectral classification listed in the Catalogue of Galactic O stars by Cruz-Gonzalez et al. (1974) , and unpublished compilation of BO and BO.5 stars by J. F. Rayo, and the B1-B2 stars listed by Morgan et at. (1955). The results are listed together with the total number of stars considered in each spectral interval. A prominent conclusion is drawn from the table: The fractions remain approximately constant all over the spectral range considered. (Auth.)

  15. The Physics Landscape of the High Luminosity LHC

    CERN Document Server

    Mangano, M

    2015-01-01

    We review the status of HEP after the first run of the LHC and discuss the opportunities offered by the HL-LHC, in light of the needs for future progress that are emerging from the data. The HL-LHC will push to the systematic limit the precision of most measurements of the Higgs boson, and will be necessary to firmly establish some of the more rare decays foreseen by the Standard Model, such as the decays to dimuons and to