WorldWideScience

Sample records for qinghai-tibetan plateau endemic

  1. Mapping risk of plague in Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Qian, Quan; Zhao, Jian; Fang, Liqun; Zhou, Hang; Zhang, Wenyi; Wei, Lan; Yang, Hong; Yin, Wenwu; Cao, Wuchun; Li, Qun

    2014-07-10

    Qinghai-Tibetan Plateau of China is known to be the plague endemic region where marmot (Marmota himalayana) is the primary host. Human plague cases are relatively low incidence but high mortality, which presents unique surveillance and public health challenges, because early detection through surveillance may not always be feasible and infrequent clinical cases may be misdiagnosed. Based on plague surveillance data and environmental variables, Maxent was applied to model the presence probability of plague host. 75% occurrence points were randomly selected for training model, and the rest 25% points were used for model test and validation. Maxent model performance was measured as test gain and test AUC. The optimal probability cut-off value was chosen by maximizing training sensitivity and specificity simultaneously. We used field surveillance data in an ecological niche modeling (ENM) framework to depict spatial distribution of natural foci of plague in Qinghai-Tibetan Plateau. Most human-inhabited areas at risk of exposure to enzootic plague are distributed in the east and south of the Plateau. Elevation, temperature of land surface and normalized difference vegetation index play a large part in determining the distribution of the enzootic plague. This study provided a more detailed view of spatial pattern of enzootic plague and human-inhabited areas at risk of plague. The maps could help public health authorities decide where to perform plague surveillance and take preventive measures in Qinghai-Tibetan Plateau.

  2. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s.

    Science.gov (United States)

    Tang, Lingyi; Duan, Xiaofang; Kong, Fanjin; Zhang, Fan; Zheng, Yangfan; Li, Zhen; Mei, Yi; Zhao, Yanwen; Hu, Shuijin

    2018-05-09

    Qinghai-Tibetan Plateau is the most sensitive region to global warming on Earth. Qinghai Lake, the largest lake on the plateau, has experienced evident area variation during the past several decades. To quantify the area changes of Qinghai Lake, a satellite-based survey based on Landsat images from the 1980s to 2010s has been performed. In addition, meteorological data from all the seven available stations on Qinghai-Tibetan Plateau has been analyzed. Area of Qinghai Lake shrank ~2% during 1987-2005, and then increased ~3% from 2005-2016. Meanwhile, the average annual temperature increased 0.319 °C/10 y in the past 50 years, where the value is 0.415 °C/10 y from 2005-2016. The structural equation modeling (SEM) shows that precipitation is the primary factor influencing the area of Qinghai Lake. Moreover, temperature might be tightly correlated with precipitation, snow line, and evaporation, thereby indirectly causes alternations of the lake area. This study elucidated the significant area variation of water body on the Qinghai-Tibetan Plateau under global warming since 1980s.

  3. (Bos grunniens) in Qinghai-Tibetan Plateau

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-10-30

    Oct 30, 2012 ... Qinghai-Tibetan Plateau, as it represents a unique bovine species adapted to ..... al., 1993; Udina et al., 2003), mastitis caused by. Staphylococcus sp. ... for prevention and treatment in many cases (Gerald et al., 2003). But in ...

  4. Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Hu, Junhua; Broennimann, Olivier; Guisan, Antoine; Wang, Bin; Huang, Yan; Jiang, Jianping

    2016-09-07

    The role of ecological niche in lineage diversification has been the subject of long-standing interest of ecologists and evolutionary biologists. Gynandropaa frogs diversified into three independent clades endemic to the southeastern Qinghai-Tibetan Plateau. Here, we address the question whether these clades kept the same niche after separation, and what it tells us about possible diversification processes. We applied predictions in geographical (G)-space and tests of niche conservatism in environmental (E)-space. Niche models in G-space indicate separate regions with high suitability for the different clades, with some potential areas of sympatry. While the pair of central and eastern clades displayed the largest niche overlap for most variables, and strict niche equivalency was rejected for all clade-pairs, we found no strong evidence for niche divergence, but rather the signature of niche conservatism compared to null models in E-space. These results suggest a common ancestral ecological niche, and as such give good support to divergence through allopatric speciation, but alternative explanations are also possible. Our findings illustrate how testing for niche conservatism in lineage diversification can provide insights into underlying speciation processes, and how this information may guide further research and conservation practices, as illustrated here for amphibians on the Qinghai-Tibetan Plateau.

  5. [The epidemiology and etiology research of Tibetan sheep plague in Qinghai plateau].

    Science.gov (United States)

    Wei, Baiqing; Xiong, Haoming; Yang, Xiaoyan; Yang, Yonghai; Qi, Meiying; Jin, Juan; Xin, Youquan; Li, Xiang; Yang, Hanqing; Han, Xiumin; Dai, Ruixia

    2015-03-01

    To identify the epidemiology and etiology characteristics of Tibetan sheep plague in Qinghai plateau. The background materials of Qinghai Tibetan sheep plague found during 1975 to 2009 were summarized, the regional, time and interpersonal distribution, infection routes, ecological factors for the spread were used to analyze; followed by choosing 14 Yersinia pestis strains isolated from such sheep for biochemical test, toxicity test, virulence factors identification, plasmid analysis, and DFR genotype. From 1975 to 2009, 14 Yersinia pestis strains were isolated from Tibetan sheep in Qinghai province. Tibetan sheep, as the infection source, had caused 10 cases of human plague, 25 plague patients, and 13 cases of death. All of the initial cases were infected due to eating Tibetan sheep died of plague; followed by cases due to contact of plague patients, while all the initial cases were bubonic plague. Cases of bubonic plague developed into secondary pneumonic plague and septicemia plague were most popular and with high mortality. Most of the Tibetan sheep plague and human plague occurred in Gannan ecological zone in southern Gansu province, which was closely related to its unique ecological and geographical landscape. Tibetan sheep plague coincided with human plague caused by Tibetan sheep, especially noteworthy was that November (a time for marmots to start their dormancy) witnesses the number of Yersinia pestis strains isolated from Tibetan sheep and human plague cases caused by Tibetan sheep. This constituted the underlying cause that the epidemic time of Tibetan sheep plague lags obviously behind that of the Marmot plague. It was confirmed in the study that all the 14 strains were of Qinghai-Tibet Plateau ecotype, with virulence factors evaluation and toxicity test demonstrating strains as velogenic. As found in the (Different Region) DFR genotyping, the strains isolated from Yushu county and Zhiduo county were genomovar 5, the two strain isolated from Nangqian

  6. Intense uplift of the Qinghai-Tibetan Plateau triggered rapid diversification of Phyllolobium (Leguminosae) in the Late Cenozoic

    Science.gov (United States)

    Ming-Li Zhang; Yun Kang; Yang Zhong; Stewart C. Sanderson

    2012-01-01

    Phyllolobium, a recently established genus from subgenus Pogonophace of Astragalus, contains about 20 species and four sections, mostly endemic to the Qinghai-Tibetan Plateau (QTP). The uplift of the QTP undoubtedly affected organismic evolution in the region, but further molecular dating in a phylogenetic context is required to test whether diversification is linked...

  7. [Research progress on resources and quality evaluation of Tibetan medicine in Qinghai-Tibet Plateau].

    Science.gov (United States)

    Li, Xuan-Hao; Zhao, Cai-Yun; Liu, Yue; Wan, Li; Jia, Min-Ru; Xie, Cai-Xiang; Zhang, Yi

    2016-02-01

    With the development of Tibetan medicine industry, the demands for Tibetan medicine were rising sharply. In addition, with the eco-environment vulnerability of Qinghai-Tibet Plateau region and the phenomenon of synonymies and homonymies in Tibetan medicine, there were a lack of resources and varieties in the clinical application of Tibetan medicine. At present, the shortage of Tibetan medicine and the inadequacy of its quality standard have become the two major problems that seriously restricted the sustainable development of Tibetan medicine industry. Therefore, it is important to develop the resources investigation and quality evaluation for Tibetan medicine, which were contribute to its resources protection and sustainable utilization. In this paper, current status of resources investigation, quality standardization, artificial breeding and germplasm resources of Tibetan medicine were presented by the integrated application of the new technologies, such as DNA barcoding and 1H-NMR, which provided a reference information for resources protection, sustainable utilization, variety identification and quality standardization of Tibetan medicine resources in Qinghai-Tibet Plateau. Copyright© by the Chinese Pharmaceutical Association.

  8. Study on Sr-Nd isotopes of mesozoic-cenozoic granites in Qinghai-Tibetan plateau

    International Nuclear Information System (INIS)

    Qiu Ruizhao; Deng Jinfu; Zhou Su; Xiao Qinghui; Cai Zhiyong

    2003-01-01

    Mesozoic-Cenozoic magmatic activities were intensive in Qinghai-Tibetan plateau. Nd-Sr isotopic compositions of representative granitic plutons in western Qinghai-Tibetan plateau are reported in this paper. Combining with past isotopic data, which has reported in eastern Qinghai-Tibetan plateau, Sr-Nd isotopic compositions and material source and genesis of Mesozoic and Cenozoic granites in Qinghai-Tibetan plateau have been studied. The research result indicates there are three types of granite existing in Qinghai-Tibetan plateau, the granites of Late stage of Yanshan Period which distributing on north and south boundary of Gandes block (namely in north and south granitic belts of Dangdes) and cause of oceanic crust subduction, have ( 87 Sr/ 86 Sr)i of 0.7041-0.7064, ε (Nd) t of +2.5 - +5.7 and TDM age of 312-562 Ma, positive ε Nd, low ( 87 Sr/ 86 Sr)i ratio and young Nd model ages suggest relatively high contents of mantle-derived components in their sources, and this type granite might melt from subduction oceanic crust. The granites occurred intra-Gangdes block which were caused by collision of continent and post-collision, have ( 87 Sr/ 86 Sr)i of 0.706-0.719, ε (Nd) t of -5.3 - -8.3 and TDM age of 1323-1496 Ma, negative ε Nd, relative high ( 87 Sr/ 86 Sr)i ratio with an mid-Proterozoic Nd model ages, suggest granite has the mixing genesis of mantle-derived components and old crustal components in their sources. With relatively small variation range in ε (Nd) t and TDM age, it might imply granitic isotopic source in Gandes block to keep relative homogenization in long period. The granites in Himalayan block which there is not oceanic material to join in melting and to cause of intra-continental subduction, has most ( 87 Sr/ 86 Sr)i ratio more than 0.720, ε (Nd) t of -10.3 - -16.3 and TDM age of 1792-2206 Ma, high ( 87 Sr/ 86 Sr)i ratio, low negative ε (Nd)t with old Nd isotopic model ages and consistent with the Sr, Nd isotopic compositions of basement

  9. Water chemistry in the rives of the permafrost regions on the eastern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wu, X.; Ma, X.; Ye, L.; Liu, G.

    2017-12-01

    Qinghai-Tibetan is the largest middle-low latitude permafrost areas on the world. There are several large rivers in the plateau, and the changes of the water resources of these rivers are associated with the water resource security of more than 1.35 billion people. Due to the high gradients, these rivers have a tremendous amount of potential energy for electricity output. To promote economic and social development and provide clean energy, hydropower development has taken place on several rivers which originate on the Qinghai-Tibetan Plateau. Since dam construction affect the flow velocity, water temperature, sediments delivery as well as organic matter and nitrogen, it is important to investigate the river chemistry in the head rivers of the reservoirs. We examined the water physio-chemical characteristics in the rivers under the typical vegetation types in the eastern Qinghai-Tibetan Plateau, and further analyzed their relationship to vegetation. The results showed that the total suspended sediment in the rivers were higher within the catchment of alpine steppe, with the lowest dissolved organic carbon content. In contrast, the rivers within the meadow had the highest dissolved organic carbon and lowest total suspension sediment. The dissolved organic carbon significantly positively correlated with the proportions of the meadow and wet meadow in the catchment. The pH, turbidity, and SUVA254 and dissolved organic carbon also correlated with each other. The results suggest that the vegetation type strongly affect the water chemistry in the permafrost regions on the Qinghai-Tibetan Plateau.

  10. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Kun; Zhang, Li; Qiu, Yubao; Ji, Lei; Tian, Feng; Wang, Cuizhen; Wang, Zhiyong

    2013-01-01

    Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.

  11. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Gao, Qingzhu; Guo, Yaqi; Xu, Hongmei; Ganjurjav, Hasbagen; Li, Yue; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Liu, Shuo

    2016-06-01

    Changes in climate have caused impacts on ecosystems on all continents scale, and climate change is also projected to be a stressor on most ecosystems even at the rate of low- to medium-range warming scenarios. Alpine ecosystem in the Qinghai-Tibetan Plateau is vulnerable to climate change. To quantify the climate change impacts on alpine ecosystems, we simulated the vegetation distribution and net primary production in the Qinghai-Tibetan Plateau for three future periods (2020s, 2050s and 2080s) using climate projection for RCPs (Representative Concentration Pathways) RCP4.5 and RCP8.5 scenarios. The modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ model) was parameter and test to make it applicable to the Qinghai-Tibetan Plateau. Climate projections that were applied to LPJ model in the Qinghai-Tibetan Plateau showed trends toward warmer and wetter conditions. Results based on climate projections indicated changes from 1.3°C to 4.2°C in annual temperature and changes from 2% to 5% in annual precipitation. The main impacts on vegetation distribution was increase in the area of forests and shrubs, decrease in alpine meadows which mainly replaced by shrubs which dominated the eastern plateau, and expanding in alpine steppes to the northwest dominated the western and northern plateau. The NPP was projected to increase by 79% and 134% under the RCP4.5 and RCP8.5. The projected NPP generally increased about 200gC·m(-2)·yr(-1) in most parts of the plateau with a gradual increase from the eastern to the western region of the Qinghai-Tibetan Plateau at the end of this century. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Detours in long-distance migration across the Qinghai-Tibetan Plateau: individual consistency and habitat associations.

    Science.gov (United States)

    Liu, Dongping; Zhang, Guogang; Jiang, Hongxing; Lu, Jun

    2018-01-01

    Migratory birds often follow detours when confronted with ecological barriers, and understanding the extent and the underlying drivers of such detours can provide important insights into the associated cost to the annual energy budget and the migration strategies. The Qinghai-Tibetan Plateau is the most daunting geographical barrier for migratory birds because the partial pressure of oxygen is dramatically reduced and flight costs greatly increase. We analyzed the repeated migration detours and habitat associations of four Pallas's Gulls Larus ichthyaetus across the Qinghai-Tibetan Plateau over 22 migration seasons. Gulls exhibited notable detours, with the maximum distance being more than double that of the expected shortest route, that extended rather than reduced the passage across the plateau. The extent of longitudinal detours significantly increased with latitude, and detours were longer in autumn than in spring. Compared with the expected shortest routes, proximity to water bodies increased along autumn migration routes, but detour-habitat associations were weak along spring migration routes. Thus, habitat availability was likely one, but not the only, factor shaping the extent of detours, and migration routes were determined by different mechanisms between seasons. Significant between-individual variation but high individual consistency in migration timing and routes were revealed in both seasons, indicating a stronger influence of endogenous schedules than local environmental conditions. Gulls may benefit from repeated use of familiar routes and stopover sites, which may be particularly significant in the challenging environment of the Qinghai-Tibetan Plateau.

  13. Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau.

    Science.gov (United States)

    Zhang, Yuguang; Lu, Zhenmei; Liu, Shanshan; Yang, Yunfeng; He, Zhili; Ren, Zuohua; Zhou, Jizhong; Li, Diqiang

    2013-03-29

    GeoChip 3.0, a microbial functional gene array, containing ~28,000 oligonucleotide probes and targeting ~57,000 sequences from 292 functional gene families, provided a powerful tool for researching microbial community structure in natural environments. The alpine meadow is a dominant plant community in the Qinghai-Tibetan plateau, hence it is important to profile the unique geographical flora and assess the response of the microbial communities to environmental variables. In this study, Geochip 3.0 was employed to understand the microbial functional gene diversity and structure, and metabolic potential and the major environmental factors in shaping microbial communities structure of alpine meadow soil in Qinghai-Tibetan Plateau. A total of 6143 microbial functional genes involved in carbon degradation, carbon fixation, methane oxidation and production, nitrogen cycling, phosphorus utilization, sulphur cycling, organic remediation, metal resistance, energy process and other category were detected in six soil samples and high diversity was observed. Interestingly, most of the detected genes associated with carbon degradation were derived from cultivated organisms. To identify major environmental factors in shaping microbial communities, Mantel test and CCA Statistical analyses were performed. The results indicated that altitude, C/N, pH and soil organic carbon were significantly (P the microbial functional structure and a total of 80.97% of the variation was significantly explained by altitude, C/N and pH. The C/N contributed 38.2% to microbial functional gene variation, which is in accordance with the hierarchical clustering of overall microbial functional genes. High overall functional genes and phylogenetic diversity of the alpine meadow soil microbial communities existed in the Qinghai-Tibetan Plateau. Most of the genes involved in carbon degradation were derived from characterized microbial groups. Microbial composition and structures variation were

  14. Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China.

    Science.gov (United States)

    Li, Kun; Lan, Yanfang; Luo, Houqiang; Zhang, Hui; Liu, Dongyu; Zhang, Lihong; Gui, Rui; Wang, Lei; Shahzad, Muhammad; Sizhu, Suolang; Li, Jiakui; Chamba, Yangzom

    2016-10-01

    Toxocara vitulorum has been rarely reported in yaks at high altitudes and remote areas of Sichuan Province of Tibetan Plateau of China. The current study was designed to investigate the prevalence, associated risk factors, and phylogenetic characteristics of T. vitulorum in yak calves on the Qinghai Tibetan plateau. Fecal samples were collected from 891 yak calves and were examined for the presence of T. vitulorum eggs by the McMaster technique. A multivariable logistic regression model was employed to explore variables potentially associated with exposure to T. vitulorum infection. T. vitulorum specimens were collected from the feces of yaks in Hongyuan of Sichuan Province, China. DNA was extracted from ascaris. After PCR amplification, the sequencing of ND1 gene was carried out and phylogenetic analyses was performed by MEGA 6.0 software. The results showed that 64 (20.1%; 95% CI 15.8-24.9%), 75 (17.2; 13.8-21.1), 29 (40.9; 29.3-53.2), and 5 (7.6; 2.5-16.8) yak calves were detected out to excrete T. vitulorum eggs in yak calve feces in Qinghai, Tibet, Sichuan, and Gansu, respectively. The present study revealed that high infection and mortality by T. vitulorum is wildly spread on the Qinghai Tibetan plateau, China by fecal examination. Geographical origin, ages, and fecal consistencies are the risk factors associated with T. vitulorum prevalence by logistic regression analysis. Molecular detection and phylogenetic analysis of ND1 gene of T. vitulorum indicated that T. vitulorum in the yak calves on the Qinghai Tibetan plateau are homologous to preveiously studies reported.

  15. The first report of Cryptosporidium spp. in Microtus fuscus (Qinghai vole) and Ochotona curzoniae (wild plateau pika) in the Qinghai-Tibetan Plateau area, China.

    Science.gov (United States)

    Zhang, Xueyong; Jian, Yingna; Li, Xiuping; Ma, Liqing; Karanis, Gabriele; Karanis, Panagiotis

    2018-05-01

    Cryptosporidium is one of the most important genera of intestinal zoonotic pathogens, which can infect various hosts and cause diarrhoea. There is little available information about the molecular characterisation and epidemiological prevalence of Cryptosporidium spp. in Microtus fuscus (Qinghai vole) and Ochotona curzoniae (wild plateau pika) in the Qinghai-Tibetan Plateau area of Qinghai Province, Northwest China. Therefore, the aim of this study was to determine Cryptosporidium species/genotypes and epidemiological prevalence in these mammals by detecting the SSU rRNA gene by PCR amplification. The Cryptosporidium spp. infection rate was 8.9% (8/90) in Qinghai voles and 6.25% (4/64) in wild plateau pikas. Positive samples were successfully sequenced, and the following Cryptosporidium species were found: C. parvum, C. ubiquitum, C. canis and a novel genotype in Qinghai voles and C. parvum and a novel genotype in wild plateau pikas. This is the first report of Cryptosporidium infections in M. fuscus and wild O. curzoniae in Northwest China. The results suggest the possibility of Cryptosporidium species transmission among these two hosts, the environment, other animals and humans and provide useful molecular epidemiological data for the prevention and control of Cryptosporidium infections in wild animals and the surrounding environments. The results of the present study indicate the existence of Cryptosporidium species infections that have potential public health significance. This is the first report of Cryptosporidium multi-species infections in these animal hosts.

  16. Integrated assessment on the vulnerability of animal husbandry to snow disasters under climate change in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wei, Yanqiang; Wang, Shijin; Fang, Yiping; Nawaz, Zain

    2017-10-01

    Animal husbandry is a dominant and traditional source of livelihood and income in the Qinghai-Tibetan Plateau. The Qinghai-Tibetan Plateau is the third largest snow covered area in China and is one of the main snow disaster regions in the world. It is thus imperative to urgently address the issue of vulnerability of the animal husbandry sector to snow disasters for disaster mitigation and adaptation under growing risk of these disasters as a result of future climate change. However, there is very few literature reported on the vulnerability of animal husbandry in the Qinghai-Tibetan Plateau. This assessment aims at identifying vulnerability of animal husbandry at spatial scale and to identify the reasons for vulnerability for adaptive planning and disaster mitigation. First, historical snow disaster characteristics have been analyzed and used for the spatial weight for vulnerability assessment. Second, indicator-based vulnerability assessment model and indicator system have been established. We combined risk of snow hazard, sensitivity of livestock to disaster, physical exposure to disaster, and community capacity to adapt to snow disaster in an integrated vulnerability index. Lastly, vulnerability of animal husbandry to snow disaster on the Qinghai-Tibetan Plateau has been evaluated. Results indicate that high vulnerabilities are mainly concentrated in the eastern and central plateau and that vulnerability decreases gradually from the east to the west. Due to global warming, the vulnerability trend has eased to some extent during the last few decades. High livestock density exposure to blizzard-prone regions and shortages of livestock barn and forage are the main reasons of high vulnerability. The conclusion emphasizes the important role of the local government and community to help local pastoralists for reducing vulnerability to snow disaster and frozen hazard. The approaches presented in this paper can be used for snow disaster mitigation, resilience

  17. Prevalence of Circulating Antibodies to Bovine Herpesvirus 1 in Yaks (Bos grunniens) on the Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Han, Zhaoqing; Gao, Jianfeng; Li, Kun; Shahzad, Muhammad; Nabi, Fazul; Zhang, Ding; Li, Jiakui; Liu, Zhengfei

    2016-01-01

    Bovine Herpesvirus 1 (BoHV-1) causes infections with many clinical signs, including rhinotracheitis, encephalitis, and genital lesions. The virus occurs worldwide in bovines, and in recent years, it has been reported in yaks (Bos grunniens) inhabiting the Tibetan Plateau in China. However, there is little epidemiologic data describing BoHV-1 infections in China's yak herds. We conducted a cross-sectional study on the Qinghai-Tibetan Plateau (QTP) in China July 2011-July 2012 to estimate the prevalence of BoHV-1 antibody in yak herds. We collected 1,840 serum samples from yaks on the QTP, in Tibet (988 yaks), Qinghai (475 yaks), and Sichuan (377 yaks) Provinces. Using an enzyme-linked immunosorbent assay, we found that 381 (38.6%) of the Tibetan samples, 212 (44.6%) of the Qinghai samples, and 105 (27.9%) of the Sichuan samples had detectable antibodies to BoHV-1. Given that this high prevalence of infection in yaks could result in heavy economic losses, we suggest that an effective management program, including vaccination and strategies for infection control, be developed.

  18. Radiocarbon reservoir between charred seeds and fish bone in Neolithic sites, northeastern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhou, A.; Dong, G.; Ren, L.

    2017-12-01

    Many efforts have been done to understand the reservoir effect of Qinghai Lake, yet no agreement has been reached. Five archaeological sites, located around the junction between the estuary of Rivers and Qinghai Lake, are the earliest Neolithic Age sites in the Qinghai- Tibetan Plateau (QTP), which is critical for understanding patterns of prehistoric human inhabitation in the high plateau extreme environments. This study compares radiocarbon dates of fish bones and terrestrial plant remains uncovered from the same archaeological strata to see whether there was reservoir effect reference to reliable data. Results demonstrate that there were reservoir effects ranging from 300 to 600 years back to 3600 years ago, nevertheless, no reservoir was observed of the modern fish. Besides, stable isotopic analysis illustrated that modern fish consumed similar food to those of millennias ago.

  19. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of The Qinghai-Tibetan Plateau

    Science.gov (United States)

    Xue, X.

    2017-12-01

    Climatic warming is presumed to cause topsoil drought by increasing evapotranspiration and water infiltration, and by progressively inducing land degradation in alpine meadows of the Qinghai-Tibetan Plateau. However, how soil moisture and temperature patterns of degraded alpine meadows respond to climate warming remains unclear. A six-year continuous warming experiment was carried out in both degraded and undegraded alpine meadows in the source region of the Yangtze River. The goal was to identify the effects of climatic warming and land degradation on soil moisture (θ), soil surface temperature (Tsfc), and soil temperature (Ts). In the present study, land degradation significantly reduced θ by 4.5-6.1% at a depth of 0-100 cm (P soil surface. Experimental warming aggravated topsoil drought caused by land degradation, intensified the magnitude of degradation, and caused a positive feedback in the degraded alpine meadow ecosystem. Therefore, an immediate need exists to restore degraded alpine meadow grasslands in the Qinghai-Tibetan Plateau in anticipation of a warmer future.

  20. Shiga Toxin-Producing Escherichia coli in Plateau Pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Bai, Xiangning; Zhang, Wang; Tang, Xinyuan; Xin, Youquan; Xu, Yanmei; Sun, Hui; Luo, Xuelian; Pu, Ji; Xu, Jianguo; Xiong, Yanwen; Lu, Shan

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are an emerging group of zoonotic pathogens. Ruminants are the natural reservoir of STEC. In this study we determined the prevalence and characteristics of the STEC in plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China. A total of 1116 pika samples, including 294 intestinal contents samples, 317 fecal samples, and 505 intestinal contents samples, were collected from May to August in the years 2012, 2013, and 2015, respectively. Twenty-one samples (1.88%) yielded at least one STEC isolate; in total, 22 STEC isolates were recovered. Thirteen different O serogroups and 14 serotypes were identified. One stx 1 subtype (stx 1a) and three stx 2 subtypes (stx 2a, stx 2b, and stx 2d) were present in the STEC isolates. Fifteen, fourteen, and three STEC isolates harbored the virulence genes ehxA, subA, and astA, respectively. Adherence-associated genes iha and saa were, respectively, present in 72.73 and 68.18% of the STEC isolates. Twenty antibiotics were active against all the STEC isolates; all strains were resistant to penicillin G, and some to cephalothin or streptomycin. The 22 STEC isolates were divided into 16 pulsed-field gel electrophoresis patterns and 12 sequence types. Plateau pikas may play a role in the ongoing circulation of STEC in the Qinghai-Tibetan plateau. This study provides the first report on STEC in plateau pikas and new information about STEC reservoirs in wildlife. Based on the serotypes, virulence gene profiles and multi-locus sequence typing (MLST) analysis, the majority of these pika STECs may pose a low public health risk.

  1. Functional-trait ecology of the plateau pika Ochotona curzoniae (Hodgson, 1858) in the Qinghai-Tibetan Plateau ecosystem.

    Science.gov (United States)

    Smith, Andrew T; Badingqiuying; Wilson, Maxwell C; Hogan, Brigitte W

    2018-01-09

    Understanding a species' functional traits allows for a directed and productive perspective on the role a species plays in nature, thus its relative importance to conservation planning. The functional trait ecology of the plateau pika Ochotona curzoniae (Hodgson, 1858) is examined to better understand the resilience and sustainability of the high alpine grasslands of the Qinghai-Tibetan Plateau (QTP). The key functional traits of plateau pikas are their abundance and behavior of digging extensive burrow systems. Plateau pikas have been poisoned over a significant part of their original geographic distribution across the QTP, allowing comparison of ecological communities with and without pikas. Nearly all mammalian and avian carnivores, most of which are obligate predators on pikas, have been lost in regions where pikas have been poisoned. Most endemic birds on the QTP nest in pika burrows; when pikas are poisoned, burrows collapse, and these birds are greatly reduced in number. Due to the biopedturbation resulting from their burrows, regional plant species richness is higher in areas with pikas than without. The presence of pika burrows allows higher rates of infiltration during heavy monsoon rains compared to poisoned areas, possibly mitigating runoff and the potential for serious downslope erosion and flooding. Thus the functional traits of plateau pikas enhance native biodiversity and other important ecosystem functions; these traits are irreplaceable. As plateau pikas are not natural colonizers, active re-introduction programs are needed to restore pikas to areas from which they have been poisoned to restore the important functional ecological traits of pikas. This article is protected by copyright. All rights reserved.

  2. Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Liu, Yi; Liu, Guihua; Xiong, Ziqian; Liu, Wenzhi

    2017-12-01

    Wetlands emit a large quantity of greenhouse gases into the atmosphere and contribute significantly to global warming. The Qinghai-Tibetan Plateau, known as the ;Third Pole; of the earth, contains abundant and diverse wetlands. Due to increasing human-induced pressures such as reclamation, overgrazing and climate change, many plateau wetlands have been degraded or destroyed. Until now, the response of soil greenhouse gas emissions to extreme summer temperatures in the plateau wetlands remains unknown. In this study, we collected 36 soil samples from riverine, lacustrine and palustrine wetlands on the Qinghai-Tibetan Plateau. We compared the carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from soils incubated aerobically at 7, 12, and 19 °C. The results showed that the emissions of CH4 and N2O but not CO2 were significantly affected by the simulated temperature change. The N2O emission rate was considerably higher in palustrine wetlands compared with lacustrine and riverine wetlands. However, the CO2 and CH4 emissions did not differ significantly among the three wetland types. The ratio of CO2 to CH4 production increased with increasing incubation temperatures. The global warming potential of greenhouse gases at 19 °C was approximately 1.18 and 2.12 times greater than that at 12 and 7 °C, respectively. Our findings suggest that temperature change has a strong effect on soil greenhouse gas emissions and global warming potential of wetlands on the Qinghai-Tibetan Plateau, especially palustrine wetlands. Therefore, targeted strategies should be developed to mitigate the potential impacts of climate warming on the plateau.

  3. Characteristics of surface O3 over Qinghai Lake area in Northeast Tibetan Plateau, China

    International Nuclear Information System (INIS)

    Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Zhao, Zhuzi; Dong, Jungang; Wang, Linqing; Wang, Qiyuan; Li, Guohui; Liu, Suixin; Zhang, Qian

    2014-01-01

    Surface O 3 was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O 3 ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O 3 followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O 3 showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O 3 . It was found that O 3 was poorly correlated with solar radiation due to the insufficient NO x in the ambient air, thus limiting O 3 formation under strong solar radiation. In contrast, high O 3 levels always coincided with strong winds, suggesting that stratospheric O 3 and long range transport might be the main sources of O 3 in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O 3 was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O 3 chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O 3 and transport might be the main sources of O 3 in this area

  4. Recent geological events and intrinsic behavior influence the population genetic structure of the chiru and tibetan gazelle on the tibetan plateau.

    Science.gov (United States)

    Zhang, Fangfang; Jiang, Zhigang; Xu, Aichun; Zeng, Yan; Li, Chunwang

    2013-01-01

    The extent to which a species responds to environmental changes is mediated not only by extrinsic processes such as time and space, but also by species-specific ecology. The Qinghai-Tibetan Plateau uplifted approximately 3000 m and experienced at least four major glaciations during the Pleistocene epoch in the Quaternary Period. Consequently, the area experienced concurrent changes in geomorphological structure and climate. Two species, the Tibetan antelope (Pantholops hodgsonii, chiru) and Tibetan gazelle (Procapra picticaudata), both are endemic on the Qinghai-Tibetan Plateau, where their habitats overlap, but have different migratory behaviors: the chiru is inclined to have female-biased dispersal with a breeding migration during the calving season; in contrast, Tibetan gazelles are year-round residents and never migrate distantly. By using coalescence methods we compared mitochondrial control region DNA sequences and variation at nine microsatellite loci in these two species. Coalescent simulations indicate that the chiru and Tibetan gazelle do not share concordant patterns in their genealogies. The non-migratory Tibetan gazelle, that is more vulnerable to the impact of drastic geographic changes such as the elevation of the plateau, glaciations and so on, appears to have a strong population genetic structure with complicated demographic history. Specifically, the Tibetan gazelle population appears to have experienced isolation and divergence with population fluctuations since the Middle Pleistocene (0.781 Ma). However, it showed continued decline since the Upper Pleistocene (0.126 Ma), which may be attributed to the irreversible impact of increased human activities on the plateau. In contrast, the migratory chiru appears to have simply experienced population expansion. With substantial gene flow among regional populations, this species shows no historical population isolation and divergence. Thus, this study adds to many empirical studies that show historical

  5. Characteristics of surface O{sub 3} over Qinghai Lake area in Northeast Tibetan Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhenxing, E-mail: zxshen@mail.xjtu.edu.cn [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Cao, Junji [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Leiming [Air Quality Research Division, Environment Canada, Toronto (Canada); Zhao, Zhuzi [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Dong, Jungang [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Wang, Linqing [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Wang, Qiyuan; Li, Guohui; Liu, Suixin [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Qian [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2014-12-01

    Surface O{sub 3} was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O{sub 3} ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O{sub 3} followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O{sub 3} showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O{sub 3}. It was found that O{sub 3} was poorly correlated with solar radiation due to the insufficient NO{sub x} in the ambient air, thus limiting O{sub 3} formation under strong solar radiation. In contrast, high O{sub 3} levels always coincided with strong winds, suggesting that stratospheric O{sub 3} and long range transport might be the main sources of O{sub 3} in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O{sub 3} was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O{sub 3} chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O{sub 3} and transport might be the main sources of O{sub 3} in this area.

  6. Epidemiological investigation and risk factors of Echinococcus granulosus in yaks (Bos grunniens), Tibetan pigs and Tibetans on Qinghai Tibetan plateau.

    Science.gov (United States)

    Li, Kun; Zhang, Lihong; Zhang, Hui; Lei, Zhixin; Luo, Houqiang; Mehmood, Khalid; Shahzad, Muhammad; Lan, Yanfang; Wang, Meng; Li, Jiakui

    2017-09-01

    Echinococcus granulosus (E. granulosus) is a diverse zoonotic parasite and causes Cystic echinococcosis (CE) disease in humans and livestock. However, scare information is available about the epidemic situation of E. granulosus infection in yaks, Tibetan pigs and native Tibetans on the Qinghai Tibetan plateau. Therefore, a study was carried out to find prevalence and risk factors of E. granulosus in yaks, Tibetan pigs and Tibetans. Serum samples from yaks (1371), Tibetan pigs (454) and Tibetans (600) were collected and assessed by commercial ELISA kits. Multivariable logistic regression model was performed to find the variables possibly associated with exposure of E. granulosus infection in yaks, Tibetan pigs and Tibetan. The overall prevalence of E. granulosus in yaks was 6.49%. In different regions, the prevalence were ranged from 3.43% to 11.79%. In male and female yaks, the prevalence was 5.67% and 7.04%, respectively. In different ages, the prevalence were ranged from 2.20% to 10.9%. While, in different years, the prevalence was 3.61% in 2014, 9.66% in 2015, and 6.33% in 2016. According to the conditional stepwise logistic regression, three factors (region, age and year) were demonstrated to be risk factors influencing the prevalence of E. granulosus in yaks significantly (Pgranulosus with the distribution of 5.47, 5.70 and 13.27% prevalence in Gongbo'gvamda, Mainling, and Nyingchi region, respectively. In male and female Tibetan pigs, the prevalence was 7.12% and 7.49% respectively, while region was considered as a significant (Pgranulosus infection in Tibetan pigs. The total prevalence of E. granulosus infection in Tibetans was 1.83%, while in male and female Tibetans, the prevalence was 1.41% and 2.21%, respectively. In different ages, the prevalence were ranged from 0 to 3.21%. In Tibetans contacting animals or not was 2.41% and 0.54% respectively, and breeding dogs or not was 3.0% and 1.09%, respectively. Risk factors (gender age, contact animal and breed

  7. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Lu Wen

    Full Text Available The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC, and soil total nitrogen (TN were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  8. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  9. Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Xue, Dan; Chen, Huai; Zhao, Xinquan; Xu, Shixiao; Hu, Linyong; Xu, Tianwei; Jiang, Lin; Zhan, Wei

    2017-06-01

    Yak and Tibetan sheep are the major indigenous ruminants on the Qinghai-Tibetan Plateau in China. The aim of this work was to study the differences in ruminal fermentation parameters and rumen prokaryotic community composition between hosts and feeding paradigms. The 16S rRNA genes targeting bacteria and archaea were sequenced using the MiSeq platform. The results showed that the prokaryotic community structure between yak and Tibetan sheep was significantly different (PTibetan sheep of the two groups (P=0.026). The core prokaryotic populations that existed in the rumen mostly dominated the structure. There was an obvious correlation of the prokaryotic community composition at the phylum and genus levels with the host or the feeding pattern. In addition, Tibetan sheep showed significantly higher yields of volatile fatty acids (VFAs) than yak, as did the NG group compared with the TMR group. In conclusion, both the host and feeding pattern may influence rumen microbial ecology system, with host effects being more important than those of the feeding pattern. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    Science.gov (United States)

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan

  11. Socio-economic burden of parasitic infections in yaks from 1984 to 2017 on Qinghai Tibetan Plateau of China-A review.

    Science.gov (United States)

    Li, Kun; Shahzad, Muhammad; Zhang, Hui; Jiang, Xiong; Mehmood, Khalid; Zhao, Xiaodong; Li, Jiakui

    2018-04-05

    Yak is an important animal for the Tibetans at Qinghai-Tibetan Plateau of China. The burden of parasitic diseases has been a major threat to the health of yaks at this region presenting a considerable socio-economic losses and impact to yak production and local nomads. Keeping in view, we collected the published papers from 1984 to 2017 on major parasitic infections in yaks by electronic literature search from five databases including CNKI, Google, PubMed, Science Direct and Web of Science. The prevalence of Eimeria, Babesia, Theileria, Hypodermosis, Cystic echinococcosis, Alveolar echinococcosis, Toxoplasma gondii, Neospora caninum, Cryptosporidium, Giardia duodenalis, Enterocytozoon bieneusi, Toxocara vitulorum, and Fascioliasis infection in yaks was found to be 48.02%, 13.06%, 36.11%, 59.85%, 16.93%, 0.99%, 20.50%, 5.14%, 10.00%, 3.68%, 4.07%, 22.23% and 28.7% respectively. Data presented are contemplated to enhance our current understanding on the major parasitic diseases of yaks at Qinghai Tibetan plateau, China. The main aim of this effort is to ameliorate the effects of the parasitic burden in this specie; so that, the attempts are made to minimize the incidence of these infections in future to raise the socio-economic levels of local community. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yongcui Deng

    Full Text Available The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance, Actinobacteria (17.3% and Bacteroidetes (11% had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%. In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales. Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta and methanotrophs (mainly Methylocystis compared with the other two wetlands. Principal coordinate analysis (PCoA indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of

  13. Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Liu, Yang; Yan, Caiyu; Matthew, Cory; Wood, Brennon; Hou, Fujiang

    2017-01-01

    Greenhouse gas (GHG) emissions from livestock grazing systems are contributing to global warming. To examine the influence of yak grazing systems on GHG fluxes and relationships between GHG fluxes and environmental factors, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes over three key seasons in 2012 and 2013 from a range of potential sources, including: alpine meadows, dung patches, manure heaps and yak night pens, on the Qinghai-Tibetan Plateau. We also estimated the total annual global warming potential (GWP, CO2-equivalents) from family farm grazing yaks using our measured results and other published data. In this study, GHG fluxes per unit area from night pens and composting manure heaps were higher than from dung patches and alpine meadows. Increased moisture content and surface temperature of soil and manure were major factors increasing CO2 and CH4 fluxes. High contributions of CH4 and N2O (21.1% and 44.8%, respectively) to the annual total GWP budget (334.2 tonnes) strongly suggest these GHG other than CO2 should not be ignored when estimating GWP from the family farm grazing yaks on the Qinghai-Tibetan Plateau for the purposes of determining national and regional land use policies or compiling global GHG inventories.

  14. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Ji, Lei; Lei, Liping; Wang, Cuizhen; Yan, Dongmei; Li, Bin; Li, Jing

    2013-01-01

    The Qinghai-Tibetan Plateau has been experiencing a distinct warming trend, and climate warming has a direct and quick impact on the alpine grassland ecosystem. We detected the greenness trend of the grasslands in the plateau using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2009. Weather station data were used to explore the climatic drivers for vegetation greenness variations. The results demonstrated that the region-wide averaged normalized difference vegetation index (NDVI) increased at a rate of 0.036  yr−1. Approximately 20% of the vegetation areas, which were primarily located in the northeastern plateau, exhibited significant NDVI increase trend (p-value plateau. A strong positive relationship between NDVI and precipitation, especially in the northeastern plateau, suggested that precipitation was a favorable factor for the grassland NDVI. Negative correlations between NDVI and temperature, especially in the southern plateau, indicated that higher temperature adversely affected the grassland growth. Although a warming climate was expected to be beneficial to the vegetation growth in cold regions, the grasslands in the central and southwestern plateau showed a decrease in trends influenced by increased temperature coupled with decreased precipitation.

  15. Role of the Qinghai-Tibetan Plateau uplift in the Northern Hemisphere disjunction: evidence from two herbaceous genera of Rubiaceae.

    Science.gov (United States)

    Deng, Tao; Zhang, Jian-Wen; Meng, Ying; Volis, Sergei; Sun, Hang; Nie, Ze-Long

    2017-10-17

    To assess the role of the Qinghai-Tibetan Plateau uplift in shaping the intercontinental disjunction in Northern Hemisphere, we analyzed the origin and diversification within a geological timeframe for two relict herbaceous genera, Theligonum and Kelloggia (Rubiaceae). Phylogenetic relationships within and between Theligonum and Kelloggia as well as their relatives were inferred using five chloroplast markers with parsimony, Bayesian and maximum-likelihood approaches. Migration routes and evolution of these taxa were reconstructed using Bayesian relaxed molecular clock and ancestral area reconstruction. Our results suggest the monophyly of each Theligonum and Kelloggia. Eastern Asian and North American species of Kelloggia diverged at ca.18.52 Mya and the Mediterranean species of Theligonum diverged from eastern Asian taxa at ca.13.73 Mya. Both Kelloggia and Theligonum are Tethyan flora relicts, and their ancestors might have been occurred in warm tropical to subtropical environments along the Tethys coast. The Qinghai-Tibetan Plateau separated the eastern and western Tethyan area may contribute significantly to the disjunct distributions of Theligonum, and the North Atlantic migration appears to be the most likely pathway of expansion of Kelloggia to North America. Our results highlight the importance role of the QTP uplift together with corresponding geological and climatic events in shaping biodiversity and biogeographic distribution in the Northern Hemisphere.

  16. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Zhang, Chunlan; Quan, Qing; Wu, Yongjie; Chen, Youhua; He, Peng; Qu, Yanhua; Lei, Fumin

    2017-04-01

    Large-scale patterns of species richness have gained much attention in recent years; however, the factors that drive high species richness are still controversial in local regions, especially in highly diversified montane regions. The Qinghai-Tibetan Plateau (QTP) and the surrounding mountains are biodiversity hot spots due to a high number of endemic montane species. Here, we explored the factors underlying this high level of diversity by studying the relationship between species richness and environmental variables. The richness patterns of 758 resident bird species were summarized at the scale of 1°×1° grid cell at different taxonomic levels (order, family, genus, and species) and in different taxonomic groups (Passeriformes, Galliformes, Falconiformes, and Columbiformes). These richness patterns were subsequently analyzed against habitat heterogeneity (topographical heterogeneity and land cover), temperature amplitude (annual temperature, annual precipitation, precipitation seasonality, and temperature seasonality) and a vegetation index (net primary productivity). Our results showed that the highest richness was found in the southeastern part of the QTP, the eastern Himalayas. The lowest richness was observed in the central plateau of the QTP. Topographical heterogeneity and temperature amplitude are the primary factors that explain overall patterns of species richness in the QTP, although the specific effect of each environmental variable varies between the different taxonomic groups depending on their own evolutionary histories and ecological requirements. High species richness in the southeastern QTP is mostly due to highly diversified habitat types and temperature zones along elevation gradients, whereas the low species richness in the central plateau of the QTP may be due to environmental and energetic constraints, as the central plateau is harsh environment.

  17. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau

    International Nuclear Information System (INIS)

    Cui, Bu-Li; Li, Xiao-Yan

    2015-01-01

    The use of isotopic tracers is an effective approach for characterizing the moisture sources of precipitation in cold and arid regions, especially in the Tibetan Plateau (TP), an area of sparse human habitation with few weather and hydrological stations. This study investigated stable isotope characteristics of precipitation in the Qinghai Lake Basin, analyzed moisture sources using data sets from NCEP–NCAR, and calculated vapor contributions from lake evaporation to the precipitation in the basin using a two-component mixing model. Results showed that the Local Meteoric Water Line (LMWL) was defined as δ 2 H = 7.86 δ 18 O + 15.01, with a slope of less than 8, indicating that some non-equilibrium evaporation processes occurred when the drops fell below the cloud base. Temperature effects controlled δ 18 O and δ 2 H in precipitation in the basin, with high values in summer season and low values in winter season. Moisture in the basin was derived predominantly from the Southeast Asian Monsoon (SEAM) from June to August and the Westerly Circulation (WC) from September through May. Meanwhile, the transition in atmospheric circulation took place in June and September. The SEAM strengthened gradually, while the WC weakened gradually in June, and inversely in September. However, the Southwest Asian Monsoon (SWAM) did not reach the Qinghai Lake Basin due to the barrier posed by Tanggula Mountain. High d-excess (> 10‰) and significant altitude and lake effects of δ 18 O in precipitation suggested that the vapor evaporated from Qinghai Lake, strongly influenced annual precipitation, and affected the regional water cycle in the basin distinctly. The monthly contribution of lake evaporation to basin precipitation ranged from 3.03% to 37.93%, with an annual contribution of 23.42% or 90.54 mm, the majority of which occurred in the summer season. The findings demonstrate that the contribution of evaporation from lakes to atmospheric vapor is fundamental to water cycling

  18. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Bu-Li, E-mail: cuibuli@ieecas.cn [State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an 710061 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Li, Xiao-Yan [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2015-09-15

    The use of isotopic tracers is an effective approach for characterizing the moisture sources of precipitation in cold and arid regions, especially in the Tibetan Plateau (TP), an area of sparse human habitation with few weather and hydrological stations. This study investigated stable isotope characteristics of precipitation in the Qinghai Lake Basin, analyzed moisture sources using data sets from NCEP–NCAR, and calculated vapor contributions from lake evaporation to the precipitation in the basin using a two-component mixing model. Results showed that the Local Meteoric Water Line (LMWL) was defined as δ{sup 2}H = 7.86 δ{sup 18}O + 15.01, with a slope of less than 8, indicating that some non-equilibrium evaporation processes occurred when the drops fell below the cloud base. Temperature effects controlled δ{sup 18}O and δ{sup 2}H in precipitation in the basin, with high values in summer season and low values in winter season. Moisture in the basin was derived predominantly from the Southeast Asian Monsoon (SEAM) from June to August and the Westerly Circulation (WC) from September through May. Meanwhile, the transition in atmospheric circulation took place in June and September. The SEAM strengthened gradually, while the WC weakened gradually in June, and inversely in September. However, the Southwest Asian Monsoon (SWAM) did not reach the Qinghai Lake Basin due to the barrier posed by Tanggula Mountain. High d-excess (> 10‰) and significant altitude and lake effects of δ{sup 18}O in precipitation suggested that the vapor evaporated from Qinghai Lake, strongly influenced annual precipitation, and affected the regional water cycle in the basin distinctly. The monthly contribution of lake evaporation to basin precipitation ranged from 3.03% to 37.93%, with an annual contribution of 23.42% or 90.54 mm, the majority of which occurred in the summer season. The findings demonstrate that the contribution of evaporation from lakes to atmospheric vapor is

  19. A Complex System of Glacial Sub-Refugia Drives Endemic Freshwater Biodiversity on the Tibetan Plateau.

    Science.gov (United States)

    Clewing, Catharina; Albrecht, Christian; Wilke, Thomas

    2016-01-01

    Although only relatively few freshwater invertebrate families are reported from the Tibetan Plateau, the degree of endemism may be high. Many endemic lineages occur within permafrost areas, raising questions about the existence of isolated intra-plateau glacial refugia. Moreover, if such refugia existed, it might be instructive to learn whether they were associated with lakes or with more dynamic ecosystems such as ponds, wetlands, or springs. To study these hypotheses, we used pulmonate snails of the plateau-wide distributed genus Radix as model group and the Lake Donggi Cona drainage system, located in the north-eastern part of the plateau, as model site. First, we performed plateau-wide phylogenetic analyses using mtDNA data to assess the overall relationships of Radix populations inhabiting the Lake Donggi Cona system for revealing refugial lineages. We then conducted regional phylogeographical analyses applying a combination of mtDNA and nuclear AFLP markers to infer the local structure and demographic history of the most abundant endemic Radix clade for identifying location and type of (sub-)refugia within the drainage system. Our phylogenetic analysis showed a high diversity of Radix lineages in the Lake Donggi Cona system. Subsequent phylogeographical analyses of the most abundant endemic clade indicated a habitat-related clustering of genotypes and several Late Pleistocene spatial/demographic expansion events. The most parsimonious explanation for these patterns would be a scenario of an intra-plateau glacial refugium in the Lake Donggi Cona drainage system, which might have consisted of isolated sub-refugia. Though the underlying processes remain unknown, an initial separation of lake and watershed populations could have been triggered by lake-level fluctuations before and during the Last Glacial Maximum. This study inferred the first intra-plateau refugium for freshwater animals on the Tibetan Plateau. It thus sheds new light on the evolutionary history

  20. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    Science.gov (United States)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-03-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km2, accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent.

  1. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    International Nuclear Information System (INIS)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-01-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km 2 , accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent

  2. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yang, Chuntao; Gao, Peng; Hou, Fujiang; Yan, Tianhai; Chang, Shenghua; Chen, Xianjiang; Wang, Zhaofeng

    2018-04-02

    To better utilize native pasture at the high altitude region, three-consecutive-year feeding experiments and a total of seven metabolism trials were conducted to evaluate the impact of three forage stages of maturity on the chemical composition, nutrient digestibility, and energy metabolism of native forage in Tibetan sheep on the Qinghai-Tibetan Plateau (QTP). Forages were harvested from June to July, August to October, and November to December of 2011 to 2013, corresponding to the vegetative, bloom, and senescent stages of the annual forages. Twenty male Tibetan sheep were selected for each study and fed native forage ad libitum. The digestibility of DM, OM, CP, NDF, ADF, DE, DE/GE, and ME/GE were greatest (P digestibility and energy parameters correlated positively (linear, 0.422 to 0.778; quadratic, 0.568 to 0.815; P digestibility. Contrary to previous studies, in this study, ADF content had a greater linear relationship (0.766 vs. 0.563 to 0.732) with OM digestibility than the other parameters of nutrient digestibility. The quadratic relationship between forage CP content and CP digestibility indicates that when forage CP content exceeds the peak point (9.7% DM in the present study), increasing forage CP content could decrease CP digestibility when Tibetan sheep were offered native forage alone on the QTP. Additionally, using the forage CP, EE, NDF, and ADF content to predict DMI (g/kg BW·d) yielded the best fit equation for Tibetan sheep living in the northeast portion of the QTP.

  3. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia.

    Science.gov (United States)

    Qi, Delin; Chao, Yan; Zhao, Yongli; Xia, Mingzhe; Wu, Rongrong

    2018-04-01

    Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (Tibetan Plateau fish.

  4. Signals of pollution revealed by trace elements in recent snow from mountain glaciers at the Qinghai-Tibetan plateau.

    Science.gov (United States)

    Li, Yuefang; Li, Zhen; Cozzi, Giulio; Turetta, Clara; Barbante, Carlo; Huang, Ju; Xiong, Longfei

    2018-06-01

    In order to extract pollution signal of trace elements (TEs) in glacier snow at the Qinghai-Tibetan plateau of China by human activities, concentrations of 18 TEs (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y and Th in digested snow samples from five glaciers in April-May 2013 before monsoon season were measured. Results shown that higher TEs concentrations were found in glaciers at the northern plateau while lower concentrations in glaciers at the central and southern plateau. Discussion revealed that EF values calculated from elements with mass fraction TEs such as Sb, Sr, As, Cu and Pb etc. Analysis indicated that most TEs mainly originated from dust sources, whereas Pb, Cu, Mo and Sb showed occasionally significant contributions from polluted sources in three snow pits and the GRHK surface snow samples. The pollution probably originated from mining and smelting, road transport emissions on the plateau and some regions outside of the plateau. Dust provenance tracing results based on REEs indicated that Taklimakan Desert, Qaidam Basin, and Tibetan surface soil were the potential dust sources for the studied glaciers, while the Indian Thar Desert was an occasional dust sources for YZF,XDKMD and GRHK snow samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Bacterial community in the rumen of Tibetan sheep and Gansu alpine fine-wool sheep grazing on the Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Huang, Jinqiang; Li, Yongjuan; Luo, Yuzhu

    2017-05-12

    The rumen microbiome plays a vital role in ruminant nutrition and health, and its community is affected by environmental factors. However, little is known about the rumen bacterial community of ruminants living in the special ecological environment of the Qinghai-Tibetan Plateau (QTP) of China. The objectives of this study were to investigate the rumen bacterial community of the typical plateau sheep (Tibetan sheep, TS, and Gansu alpine fine-wool sheep, GS) grazing on the QTP, using 16S rRNA gene sequence analysis, and to evaluate the relationship between the rumen bacterial community and the QTP environment. A total of 116 sequences (201 clones) were examined and divided into 53 operational taxonomic units (OTUs) in the TS library and 46 OTUs in the GS library. Phylogenetic analysis showed that the sequences that belonged to the Firmicutes were the most predominant bacteria in both TS and GS libraries, representing 79.4% and 62.8% of the total clones, respectively. The remaining sequences belonged to Bacteroidetes, Proteobacteria, Actinobacteria, or were unclassified bacteria. Sequence analysis revealed that the TS and GS rumens harbored many novel sequences associated with uncultured bacteria that accounted for 63.6% and 46.8% of the total clones, respectively. Comparison of the composition and diversity of the TS and GS rumen bacteria revealed few overlapping known bacteria between the two breeds, and a higher diversity in TS. The rumen bacteria of the plateau sheep showed higher percentages of bacteria that belonged to Firmicutes and novel species compared with the low-elevation sheep. The unique bacterial community in the plateau sheep rumens is perhaps one of the major reasons that they can adapt to the harsh plateau environment. These results can help identify the rumen bacterial community of the ruminants in the QTP, and provide bacteria resources and basic data to improve ruminant productivity.

  6. Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515

  7. Shiga toxin-producing Escherichia coli in yaks (Bos grunniens from the Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Xiangning Bai

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC are recognized as important human pathogens of public health concern. Many animals are the sources of STEC. In this study we determined the occurrence and characteristics of the STEC in yaks (Bos grunniens from the Qinghai-Tibetan plateau, China. A total of 728 yak fecal samples was collected from June to August, 2012 and was screened for the presence of the stx 1 and stx 2 genes by TaqMan real-time PCR after the sample was enriched in modified Tryptone Soya Broth. Of the 138 (18.96% stx 1 and/or stx 2-positive samples, 85 (61.59% were confirmed to have at least 1 STEC isolate present by culture isolation, from which 128 STEC isolates were recovered. All STEC isolates were serotyped, genotyped by pulsed-field gel electrophoresis (PFGE and characterized for the presence of 16 known virulence factors. Fifteen different O serogroups and 36 different O:H serotypes were identified in the 128 STEC isolates with 21 and 4 untypable for the O and H antigens respectively. One stx 1 subtype (stx 1a and 5 stx 2 subtypes (stx 2a, stx 2b, stx 2c, stx 2d and stx 2g were present in these STEC isolates. Apart from lpfA O157/OI-141, lpfA O157/OI-154, lpfA O113, katP and toxB which were all absent, other virulence factors screened (eaeA, iha, efa1, saa, paa, cnf1, cnf2, astA, subA, exhA and espP were variably present in the 128 STEC isolates. PFGE were successful for all except 5 isolates and separated them into 67 different PFGE patterns. For the 18 serotypes with 2 or more isolates, isolates of the same serotypes had the same or closely related PFGE patterns, demonstrating clonality of these serotypes. This study was the first report on occurrence and characteristics of STEC isolated from yaks (Bos grunniens from the Qinghai-Tibetan plateau, China, and extended the genetic diversity and reservoir host range of STEC.

  8. Amphibians Testing Negative for Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans on the Qinghai-Tibetan Plateau, China

    Institute of Scientific and Technical Information of China (English)

    Supen WANG; Wei ZHU; Liqing FAN; Jiaqi LI; Yiming LI

    2017-01-01

    A disease caused by the fungi Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) is responsible for recent worldwide declines and extinctions of amphibian populations.The Qinghai-Tibetan Plateau (QTP) is aglobal biodiversity hotspot,yet little is known about the prevalence of Bd and Bsal in this region.In this study,we collected 336 non-invasive skin swabs from wild amphibians (including an exotic amphibian species) on the QTP.In addition,to assess the historical prevalence of Bd and Bsal on the QTP,we collected 117 non-invasive skin swabs from museum-archived amphibian samples (from 1964-1982) originating from the QTP.Our results showed all samples to be negative for Bd and Bsal.The government should ban the potentially harmful introduction of non-native amphibian species to the QTP and educate the public about the impacts of releasing exotic amphibians from chytrid-infected areas into native environments of the QTP.

  9. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  10. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu

    2018-02-01

    Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.

  11. Phylogeographic investigation and ecological niche modelling of the endemic frog species Nanorana pleskei revealed multiple refugia in the eastern Tibetan Plateau.

    Science.gov (United States)

    Wang, Bin; Xie, Feng; Li, Jiannan; Wang, Gang; Li, Cheng; Jiang, Jianping

    2017-01-01

    The largest plateau Tibetan Plateau supplied an excellent opportunity to investigate the influence of the Pleistocene events on the high-elevation species. To test for the alternative hypotheses of Pleistocene glacial refugia, we used partial sequences of two mitochondrial genes and one nuclear gene to examine the phylogeographic patterns of the endemic frog species Nanorana pleskei across its known range in the eastern Tibetan Plateau, and conducted species distribution modelling (SDM) to explore changes of its distribution range through current and paleo periods. In all data sets, the species was divided into lineage north occupying open plateau platform and lineage south colonizing the mountainous plateau. The divergence of two major clades was estimated at the early Pleistocene. In mtDNA, lineage north contained northeastern and northwestern sublineages, and lineage south had two overlapping-distributed sublineages. Different lineages possessed distinct demographic characteristics, i.e., subdivision in the northeastern sublineage, historical bottleneck effects and recent expansions in the northwestern sublineage and the southeastern sublineage. SDMs depicted that stable suitable habitats had existed in the upper-middle streams of the Yellow River, Dadu River, Jinsha River and Yalong River. These regions were also recognized as the ancestral areas of different lineages. In conclusion, Nanorana pleskei lineages have probably experienced long-term separations. Stable suitable habitats existing in upper-middle streams of major rivers on the eastern Tibetan Plateau and distinct demographic dynamics of different lineages indicated that the lineages possessed independent evolutionary processes in multiple glacial refugia. The findings verified the profound effects of Pleistocene climatic fluctuations on the plateau endemic species.

  12. Freshwater Biogeography and Limnological Evolution of the Tibetan Plateau - Insights from a Plateau-Wide Distributed Gastropod Taxon (Radix spp.)

    Science.gov (United States)

    von Oheimb, Parm Viktor; Albrecht, Christian; Riedel, Frank; Du, Lina; Yang, Junxing; Aldridge, David C.; Bößneck, Ulrich; Zhang, Hucai; Wilke, Thomas

    2011-01-01

    Background The Tibetan Plateau is not only the highest and largest plateau on earth; it is also home to numerous freshwater lakes potentially harbouring endemic faunal elements. As it remains largely unknown whether these lakes have continuously existed during the Last Glacial Maximum (LGM), questions arise as to whether taxa have been able to exist on the plateau since before the latest Pleistocene, from where and how often the plateau was colonized, and by which mechanisms organisms conquered remote high altitude lentic freshwater systems. In this study, species of the plateau-wide distributed freshwater gastropod genus Radix are used to answer these biogeographical questions. Methodology/Principal Findings Based on a broad spatial sampling of Radix spp. on the Tibetan Plateau, and phylogenetic analyses of mtDNA sequence data, three probably endemic and one widespread major Radix clade could be identified on the plateau. Two of the endemic clades show a remarkably high genetic diversity, indicating a relatively great phylogenetic age. Phylogeographical analyses of individuals belonging to the most widely distributed clade indicate that intra-plateau distribution cannot be explained by drainage-related dispersal alone. Conclusions/Significance Our study reveals that Radix spp. persisted throughout the LGM on the Tibetan Plateau. Therefore, we assume the continuous existence of suitable water bodies during that time. The extant Radix diversity on the plateau might have been caused by multiple colonization events combined with a relatively long intra-plateau evolution. At least one colonization event has a Palaearctic origin. In contrast to freshwater fishes, passive dispersal, probably by water birds, might be an important mechanism for conquering remote areas on the plateau. Patterns found in Radix spp. are shared with some terrestrial plateau taxa, indicating that Radix may be a suitable model taxon for inferring general patterns of biotic origin, dispersal and

  13. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  14. The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Wang, Cuizhen; Ji, Lei; Li, Jing; Wang, Kun; Dai, Lin

    2014-01-01

    The increased rate of annual temperature in the Qinghai-Tibetan Plateau exceeded all other areas of the same latitude in recent decades. The influence of the warming climate on the alpine ecosystem of the plateau was distinct. An analysis of alpine vegetation under changes in climatic conditions was conducted in this study. This was done through an examination of vegetation greenness and its relationship with climate variability using the Advanced Very High Resolution Radiometer satellite imagery and climate datasets. Vegetation in the plateau experienced a positive trend in greenness, with 18.0 % of the vegetated areas exhibiting significantly positive trends, which were primarily located in the eastern and southwestern parts of the plateau. In grasslands, 25.8 % of meadows and 14.1 % of steppes exhibited significant upward trends. In contrast, the broadleaf forests experienced a trend of degradation. Temperature, particularly summer temperature, was the primary factor promoting the vegetation growth in the plateau. The wetter and warmer climate in the east contributed to the favorable conditions for vegetation. The alpine meadow was mostly sensitive to temperature, while the steppes were sensitive to both temperature and precipitation. Although a warming climate was expected to be beneficial to vegetation growth in the alpine region, the rising temperature coupled with reduced precipitation in the south did not favor vegetation growth due to low humidity and poor soil moisture conditions.

  15. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird.

    Science.gov (United States)

    Pan, Shengkai; Zhang, Tongzuo; Rong, Zhengqin; Hu, Li; Gu, Zhongru; Wu, Qi; Dong, Shanshan; Liu, Qiong; Lin, Zhenzhen; Deutschova, Lucia; Li, Xinhai; Dixon, Andrew; Bruford, Michael W; Zhan, Xiangjiang

    2017-06-01

    Low oxygen and temperature pose key physiological challenges for endotherms living on the Qinghai-Tibetan Plateau (QTP). Molecular adaptations to high-altitude living have been detected in the genomes of Tibetans, their domesticated animals and a few wild species, but the contribution of transcriptional variation to altitudinal adaptation remains to be determined. Here we studied a top QTP predator, the saker falcon, and analysed how the transcriptome has become modified to cope with the stresses of hypoxia and hypothermia. Using a hierarchical design to study saker populations inhabiting grassland, steppe/desert and highland across Eurasia, we found that the QTP population is already distinct despite having colonized the Plateau adaptation to hypothermia. Our results exemplify synergistic responses between DNA polymorphism and RNA expression diversity in coping with common stresses, underpinning the successful rapid colonization of a top predator onto the QTP. Importantly, molecular mechanisms underpinning highland adaptation involve relatively few genes, but are nonetheless more complex than previously thought and involve fine-tuned transcriptional responses and genomic adaptation. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  16. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China

    Science.gov (United States)

    2012-01-01

    Background Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Results Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. Conclusion This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle

  17. Comparison of methanogen diversity of yak (Bos grunniens and cattle (Bos taurus from the Qinghai-Tibetan plateau, China

    Directory of Open Access Journals (Sweden)

    Huang Xiao

    2012-10-01

    Full Text Available Abstract Background Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak and normal animal (cattle in order to investigate the link between methanogen structure and low methane production. Results Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones and four cattle (205 clones from the Qinghai-Tibetan Plateau area (QTP. Overall, a total of 414 clones (i.e. sequences were examined and assigned to 95 operational taxonomic units (OTUs using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110 was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. Conclusion This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different

  18. Detection and genetic characterization of porcine deltacoronavirus in Tibetan pigs surrounding the Qinghai-Tibet Plateau of China.

    Science.gov (United States)

    Wang, M; Wang, Y; Baloch, A R; Pan, Y; Tian, L; Xu, F; Shivaramu, S; Chen, S; Zeng, Q

    2018-04-01

    Porcine deltacoronavirus (PDCoV) is a recently discovered RNA virus that belongs to the family Coronaviridae and genus Deltacoronavirus. This virus causes enteric disease in piglets that is characterized by enteritis and diarrhoea. In our present investigation, 189 diarrhoeic samples were collected between July 2016 and May 2017 from Tibetan pigs inhabiting in three different provinces surrounding the Qinghai-Tibet Plateau of China. We then applied the molecular-based method of reverse transcription polymerase chain reactions (RT-PCRs) to detect the presence of PDCoV in collected samples, and RT-PCR indicated that the prevalence of PDCoV was 3.70% (7/189) in Tibetan pigs. Four of 7 PDCoV-positive pigs were monoinfections of PDCoV, three samples were co-infections of PDCoV with porcine epidemic diarrhoea virus (PEDV), and 52 (27.51%) samples were positive for PEDV. Four strains with different full-length genomes were identified (CHN/GS/2016/1, CHN/GS/2016/2, CHN/GS-/2017/1 and CHN/QH/2017/1), and their genomes were used to analyse the characteristics of PDCoV currently prevalent in Tibetan pigs. We found a 3-nt insertion in the spike gene in four strains in Tibetan pigs. Phylogenetic analysis of the complete genome and spike and nucleocapsid gene sequences revealed that these strains shared ancestors with the strain CHN-AH-2004, which was found in pigs from the Anhui province of China mainland. However, PDCoV strains from Tibetan pigs formed different branches within the same cluster, implying continuous evolution in the field. Our present findings highlight the importance of epidemiologic surveillance to limit the spread of PDCoV in livestock at high altitudes in China. © 2018 Blackwell Verlag GmbH.

  19. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Wei, Y-Q; Yang, H-J; Luan, Y; Long, R-J; Wu, Y-J; Wang, Z-Y

    2016-03-01

    To obtain co-cultures of anaerobic fungi and their indigenously associated methanogens from the rumen of yaks grazing on the Qinghai-Tibetan Plateau and investigate their morphology features and ability to degrade lignocellulose. Twenty fungus-methanogen co-cultures were obtained by Hungate roll-tube technique. The fungi were identified as Orpinomyces, Neocallimastix and Piromyces genera based on the morphological characteristics and internal transcribed spacer 1 sequences analysis. All methanogens were identified as Methanobrevibacter sp. by 16S rRNA gene sequencing. There were four types of co-cultures: Neocallimastix with Methanobrevibacter ruminantium, Orpinomyces with M. ruminantium, Orpinomyces with Methanobrevibacter millerae and Piromyces with M. ruminantium among 20 co-cultures. In vitro studies with wheat straw as substrate showed that the Neocallimastix with M. ruminantium co-cultures and Piromyces with M. ruminantium co-cultures exhibited higher xylanase, filter paper cellulase (FPase), ferulic acid esterase, acetyl esterase activities, in vitro dry matter digestibility, gas, CH4 , acetate production, ferulic acid and p-coumaric acid releases. The Neocallimastix frontalis Yak16 with M. ruminantium co-culture presented the strongest lignocellulose degradation ability among 20 co-cultures. Twenty fungus-methanogen co-cultures were obtained from the rumen of grazing yaks. The N. frontalis with M. ruminantium co-cultures were highly effective combination for developing a fermentative system that bioconverts lignocellulose to high activity fibre-degrading enzyme, CH4 and acetate. The N. frontalis with M. ruminantium co-cultures from yaks grazing on the Qinghai-Tibetan Plateau present great potential in lignocellulose biodegradation industry. © 2015 The Society for Applied Microbiology.

  20. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Jian Gong

    2017-07-01

    Full Text Available Exploration of land use and land cover change (LULCC and its impacts on ecosystem services in Tibetan plateau is valuable for landscape and environmental conservation. In this study, we conduct spatial analysis on empirical land use and land cover data in the Qinghai Lake region for 1990, 2000, and 2010 and simulate land cover patterns for 2020. We then evaluate the impacts of LULCC on ecosystem service value (ESV, and analyze the sensitivity of ESV to LULCC to identify the ecologically sensitive area. Our results indicate that, from 1990 to 2010, the area of forest and grassland increased while the area of unused land decreased. Simulation results suggest that the area of grassland and forest will continue to increase and the area of cropland and unused land will decrease for 2010–2020. The ESV in the study area increased from 694.50 billion Yuan in 1990 to 714.28 billion Yuan in 2000, and to 696.72 billion Yuan in 2020. Hydrology regulation and waste treatment are the top two ecosystem services in this region. The towns surrounding the Qinghai Lake have high ESVs, especially in the north of the Qinghai Lake. The towns with high ESV sensitivity to LULCC are located in the northwest, while the towns in the north of the Qinghai Lake experienced substantial increase in sensitivity index from 2000–2010 to 2010–2020, especially for three regulation services and aesthetic landscape provision services.

  1. An EPAS1 haplotype is associated with high altitude polycythemia in male Han Chinese at the Qinghai-Tibetan plateau.

    Science.gov (United States)

    Chen, Yu; Jiang, Chunhua; Luo, Yongjun; Liu, Fuyu; Gao, Yuqi

    2014-12-01

    Hemoglobin concentration at high altitude is considered an important marker of high altitude adaptation, and native Tibetans in the Qinghai-Tibetan plateau show lower hemoglobin concentrations than Han people who have emigrated from plains areas. Genetic studies revealed that EPAS1 plays a key role in high altitude adaptation and is associated with the low hemoglobin concentration in Tibetans. Three single nucleotide polymorphisms (rs13419896, rs4953354, rs1868092) of noncoding regions in EPAS1 exhibited significantly different allele frequencies in the Tibetan and Han populations and were associated with low hemoglobin concentrations in Tibetans. To explore the hereditary basis of high altitude polycythemia (HAPC) and investigate the association between EPAS1 and HAPC in the Han population, these 3 single nucleotide polymorphisms were assessed in 318 male Han Chinese HAPC patients and 316 control subjects. Genotyping was performed by high resolution melting curve analysis. The G-G-G haplotype of rs13419896, rs4953354, and rs1868092 was significantly more frequent in HAPC patients than in control subjects, whereas no differences in the allele or genotype frequencies of the 3 single nucleotide polymorphisms were found between HAPC patients and control subjects. Moreover, genotypes of rs1868092 (AA) and rs4953354 (GG) that were not observed in the Chinese Han in the Beijing population were found at frequencies of 1.6% and 0.9%, respectively, in our study population of HAPC patients and control subjects. Carriers of this EPAS1 haplotype (G-G-G, rs13419896, rs4953354, and rs1868092) may have a higher risk for HAPC. These results may contribute to a better understanding of the pathogenesis of HAPC in the Han population. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  2. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  3. [Identification of ecological corridors for Tibetan antelope and assessment of their human disturbances in the alpine desert of Qinghai-Tibet Plateau].

    Science.gov (United States)

    Zhuge, Hai-jin; Lin, Dan-qi; Li, Xiao-wen

    2015-08-01

    The alpine desert of Qinghai-Tibet Plateau (QTP) provides the largest habitats for those endangered ungulates (e.g., Tibetan antelope, Tibetan Kiang and wild yak) on the earth. However, human disturbance especially infrastructure constructions (e.g., railway & highway) has increasingly fragmented the habitats of those endangered ungulates by disturbing and interrupting their ecological corridors for their seasonal migration. Aiming at identifying the potential ecological corridors for Tibetan antelope, a GIS-based model-Linkage Mapper was used to model and detect the potential ecological corridors of Tibetan antelope based on the principle of least cost path. Three categories of ecological corridors, i. e., closed (inside reserves), linking (linking the reserves) and open (starting from reserve but ending outside) corridors were distinguished by their spatial interactions with existing major national nature reserves (i.e., Altun, Kekexili and Qiangtang NNRs) in the alpine desert of QTP, and their spatial patterns, conservation status associated with human disturbance were also examined. Although our research indicated a general ecological integration of both habitats and ecological corridors in the alpine desert ecosystem, increasing human disturbance should not be ignored, which particularly partially undermined the functioning of those ecological corridors linking the nature reserves. Considering disadvantages of prevailing separate administrative structure of nature reserve on the effective conservation of ecological corridors for those endangered ungulates, a coordinative conservation network among these major national nature reserves should be established to ensure the unified trans-boundary conservation efforts and to enhance its overall conservation efficacy by sharing information, knowledge and optimizing conservation resources.

  4. Spatial pattern and variations in the prevalence of congenital heart disease in children aged 4-18 years in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ma, Li-Guang; Chen, Qiu-Hong; Wang, Yuan-Yuan; Wang, Jing; Ren, Zhou-Peng; Cao, Zong-Fu; Cao, Yan-Rong; Ma, Xu; Wang, Bin-Bin

    2018-06-15

    This study aimed to investigate the spatial distribution pattern of the prevalence of congenital heart disease (CHD) in children in Qinghai-Tibetan Plateau (QTP), a high-altitude region in China. Epidemiological data from a survey on the prevalence of CHD in Qinghai Province including 288,066 children (4-18 years) were used in this study. The prevalence and distribution pattern of CHD was determined by sex, CHD subtype, and nationality and altitude. Spatial pattern analysis using Getis-Ord Gi ⁎ was used to identify the spatial distribution of CHD. Bayesian spatial binomial regression was performed to examine the relationship between the prevalence of CHD and environmental risk factors in the QTP. The prevalence of CHD showed a significant spatial clustering pattern. The Tibetan autonomous prefecture of Yushu (average altitude > 4000 m) and the Mongolian autonomous county of Henan (average altitude > 3600 m) in Huangnan had the highest prevalence of CHD. Univariate analysis showed that with ascending altitude, the total prevalence of CHD, that in girls and boys with CHD, and that of the subtypes PDA and ASD increasing accordingly. Thus, environmental factors greatly contributed to the prevalence of CHD. The prevalence of CHD shows significant spatial clustering pattern in the QTP. The CHD subtype prevalence clustering pattern has statistical regularity which would provide convenient clues of environmental risk factors. Our results may provide support to make strategies of CHD prevention, to reduce the incidence of CHD in high altitude regions of China. Copyright © 2018. Published by Elsevier B.V.

  5. The first fossil brown lacewing from the Miocene of the Tibetan Plateau (Neuroptera, Hemerobiidae

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2018-01-01

    Full Text Available A new species of Hemerobiidae, Wesmaelius makarkini Yang, Pang & Ren, sp. n. is described from the Lower Miocene, Garang Formation of Zeku County, Qinghai Province (northeastern Tibetan Plateau, China. The species is assigned to the widely distributed extant genus Wesmaelius Krüger (Hemerobiinae. The species represents the first named fossil of this family from China, which sheds light on the historical distribution of Wesmaelius and early divergences within Hemerobiinae.

  6. Genetic evidence from mitochondrial DNA corroborates the origin of Tibetan chickens.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    Full Text Available Chicken is the most common poultry species and is important to human societies. Tibetan chicken (Gallus gallus domesticus is a breed endemic to China that is distributed mainly on the Qinghai-Tibet Plateau. However, its origin has not been well characterized. In the present study, we sequenced partial mitochondrial DNA (mtDNA control region of 239 and 283 samples from Tibetan and Sichuan indigenous chickens, respectively. Incorporating 1091 published sequences, we constructed the matrilineal genealogy of Tibetan chickens to further document their domestication history. We found that the genetic structure of the mtDNA haplotypes of Tibetan chickens are dominated by seven major haplogroups (A-G. In addition, phylogenetic and network analyses showed that Tibetan chickens are not distinguishable from the indigenous chickens in surrounding areas. Furthermore, some clades of Tibetan chickens may have originated from game fowls. In summary, our results collectively indicated that Tibetan chickens may have diverged from indigenous chickens in the adjacent regions and hybridized with various chickens.

  7. Selective Leaching of Dissolved Organic Matter From Alpine Permafrost Soils on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Yinghui; Xu, Yunping; Spencer, Robert G. M.; Zito, Phoebe; Kellerman, Anne; Podgorski, David; Xiao, Wenjie; Wei, Dandan; Rashid, Harunur; Yang, Yuanhe

    2018-03-01

    Ongoing global temperature rise has caused significant thaw and degradation of permafrost soils on the Qinghai-Tibetan Plateau (QTP). Leaching of organic matter from permafrost soils to aquatic systems is highly complex and difficult to reproduce in a laboratory setting. We collected samples from natural seeps of active and permafrost layers in an alpine swamp meadow on the QTP to shed light on the composition of mobilized dissolved organic matter (DOM) by combining optical measurements, ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry, radiocarbon (14C), and solid-state 13C nuclear magnetic resonance spectroscopy. Our results show that even though the active layer soils contain large amounts of proteins and carbohydrates, there is a selective release of aromatic components, whereas in the deep permafrost layer, carbohydrate and protein components are preferentially leached during the thawing process. Given these different chemical characteristics of mobilized DOM, we hypothesize that photomineralization contributes significantly to the loss of DOM that is leached from the seasonally thawed surface layer. However, with continued warming, biodegradation will become more important since biolabile materials such as protein and carbohydrate are preferentially released from deep-layer permafrost soils. This transition in DOM leachate source and associated chemical composition has ramifications for downstream fluvial networks on the QTP particularly in terms of processing of carbon and associated fluxes.

  8. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas.

    Science.gov (United States)

    Favre, Adrien; Päckert, Martin; Pauls, Steffen U; Jähnig, Sonja C; Uhl, Dieter; Michalak, Ingo; Muellner-Riehl, Alexandra N

    2015-02-01

    Biodiversity is unevenly distributed on Earth and hotspots of biodiversity are often associated with areas that have undergone orogenic activity during recent geological history (i.e. tens of millions of years). Understanding the underlying processes that have driven the accumulation of species in some areas and not in others may help guide prioritization in conservation and may facilitate forecasts on ecosystem services under future climate conditions. Consequently, the study of the origin and evolution of biodiversity in mountain systems has motivated growing scientific interest. Despite an increasing number of studies, the origin and evolution of diversity hotspots associated with the Qinghai-Tibetan Plateau (QTP) remains poorly understood. We review literature related to the diversification of organisms linked to the uplift of the QTP. To promote hypothesis-based research, we provide a geological and palaeoclimatic scenario for the region of the QTP and argue that further studies would benefit from providing a complete set of complementary analyses (molecular dating, biogeographic, and diversification rates analyses) to test for a link between organismic diversification and past geological and climatic changes in this region. In general, we found that the contribution of biological interchange between the QTP and other hotspots of biodiversity has not been sufficiently studied to date. Finally, we suggest that the biological consequences of the uplift of the QTP would be best understood using a meta-analysis approach, encompassing studies on a variety of organisms (plants and animals) from diverse habitats (forests, meadows, rivers), and thermal belts (montane, subalpine, alpine, nival). Since the species diversity in the QTP region is better documented for some organismic groups than for others, we suggest that baseline taxonomic work should be promoted. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge

  9. Summer moisture changes in the Lake Qinghai area on the northeastern Tibetan Plateau recorded from a meadow section over the past 8400 yrs

    Science.gov (United States)

    Li, Xiangzhong; Liu, Xiangjun; He, Yuxin; Liu, Weiguo; Zhou, Xin; Wang, Zheng

    2018-02-01

    Holocene climatic and environmental changes on the northeastern Tibetan Plateau (TP) have been widely discussed based on the climatic records from sedimentary cores. However, differences in the reconstructed climatic history from various studies in this region still exist, probably due to influence of climatic proxies from multiple factors and the chronological uncertainties in lacustrine sediments. Here we present records of terrestrial plant δ13C, soil color and total organic carbon content over the past 8400 years from a well-dated meadow section on the northeastern TP. The terrestrial plant δ13C value serves as a good summer precipitation/moisture indicator in the studied region. Soil color property and TOC content are also able to disentangle the moisture evolution history. All the data show much wet climates at 8400-7400 cal yr BP, dry climates at 7400-6000 cal yr BP and then wet conditions with fluctuation at 6000-3200 cal yr BP. Late Holocene moisture appears to be comparable with moist conditions from 6000 to 3200 cal yr BP. By further comparing the climatic variations in the Lake Qinghai area with records of the reconstructed summer temperature and the Asian Monsoon precipitation, we believe that the pattern of moisture/precipitation evolution in the Lake Qinghai area was not completely consistent with regions around Lake Qinghai, probably due to complicated interaction between the East Asian Summer Monsoon and the Indian Summer Monsoon.

  10. Cyprininae phylogeny revealed independent origins of the Tibetan Plateau endemic polyploid cyprinids and their diversifications related to the Neogene uplift of the plateau.

    Science.gov (United States)

    Wang, Xuzhen; Gan, Xiaoni; Li, Junbing; Chen, Yiyu; He, Shunping

    2016-11-01

    Origin and diversification of the Tibetan polyploid cyprinids (schizothoracins) may help us to explore relationships between diversification of the cyprinids and the Tibetan Plateau uplift. Cyprininae phylogeny was analyzed using mitochondrial and nuclear DNA sequences to trace origins of polyploidy and diversifications of schizothoracins. Ancestral states reconstruction for ploidy levels indicated that the Cyprininae was diploid origin and the schizothoracin clades tetraploid origins. There were two diversification rate shifts along with diversification of the cyprinine fishes in response to the Tibetan uplift. The unusual diversification shifts were located to branches subtending the clades of Tibetan polyploid cyprinids. Our analyses suggested that (i) phylogeny of Cyprininae recovered two independent origins of the Tibetan polyploidy schizothoracins; (ii) diversifications of the schizothoracins were closely related to the Neogene uplift of the Tibetan plateau in the following ways: the relatively ancient Late Oligocene-Middle Miocene adaptive radiation may be associated with the uplift of the southern Tibet and Himalaya; the Middle Miocene-Early Pleistocene lineage-specific diversification broadly coincident with major phase of the Neogene Tibetan uplift; and the most recent Pleistocene diversification shift in Schizothorax closely coincident with the successive Kunlun-Huanghe and Gonghe movements of the Tibetan uplift and the glaciation-induced climate oscillations on the plateau.

  11. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Fu-Sheng Yang

    Full Text Available The complex tectonic events and climatic oscillations in the Qinghai-Tibetan Plateau (QTP, the largest and highest plateau in the world, are thought to have had great effects on the evolutionary history of the native plants. Of great interest is to investigate plant population genetic divergence in the QTP and its correlation with the geologic and climatic changes. We conducted a range-wide phylogeographical analysis of M. integrifolia based on the chloroplast DNA (cpDNA trnL-trnF and trnfM-trnS regions, and defined 26 haplotypes that were phylogenetically divided into six clades dated to the late Tertiary. The six clades correspond, respectively, to highly differentiated population groups that do not overlap in geographic distribution, implying that the mountain ranges acting as corridors or barriers greatly affected the evolutionary history of the QTP plants. The older clade of M. integrifolia only occurs in the southwest of the species' range, whereas the distributions of younger clades extend northeastward in the eastern QTP, suggesting that climatic divergence resulting from the uplift of the QTP triggered the initial divergence of M. integrifolia native to the plateau. Also, the nrDNA ITS region was used to clarify the unexpected phylogenetic relationships of cpDNA haplotypes between M. integrifolia and M. betonicifolia. The topological incongruence between the two phylogenies suggests an ancestral hybridization between the two species. Our study indicates that geographic isolation and hybridization are two important mechanisms responsible for the population differentiation and speciation of Meconopsis, a species-rich genus with complex polyploids.

  12. Spiroides shrubs on Qinghai-Tibetan Plateau: Multilocus phylogeography and palaeodistributional reconstruction of Spiraea alpina and S. Mongolica (Rosaceae).

    Science.gov (United States)

    Khan, Gulzar; Zhang, Faqi; Gao, Qingbo; Fu, Pengcheng; Zhang, Yu; Chen, Shilong

    2018-06-01

    A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification. Using a multilocus approach, here we assessed the influence of Qinghai-Tibetan Plateau (QTP) uplift and fluctuating regional climate on genetic diversity of two sister spiroides shrubs, Spiraea alpina and S. mongolica. Combined with palaeodistributional reconstruction modelling, we investigated the current and past-predicted distribution of these species under different climatic episodes. The study demonstrated that continuous pulses of retreat and expansion during last glacial-interglacial episodes, combined with the uplifting of QTP shaped the current distribution of these species. All the populations showed high level of genetic diversity based on both cpDNA and SSR markers. The average gene diversity within populations based on cpDNA markers was 0.383 ± 0.052 for S. alpina and 0.477 ± 0.048 for S. mongolica. The observed and expected heterozygosities based on SSR for both Spiraea alpina and S. mongolicawere H E (0.72-0.90)/H O (0.35-0.78) and H E (0.77-0.92)/H O (0.47-0.77) respectively. Palaeodistributional reconstruction indicated species' preferences at southeastern edge of the plateau during last glacial maximum, at higher altitude areas of QTP and range expansion to central plateau during the interglacial episodes. Assignment tests in STRUCTURE, discriminant analysis of principal coordinates and Immigrants analysis in GENECLASS based on nuclear SSR markers did not support the hypothesis of gene flow between both the species. However, maximum likelihood approach based on cpDNA showed sharing of haplotypes between both species. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.P.; Yang, H.D.; Gong, P.; Zhao, X.; Wu, G.J.; Turner, S.; Yao, T.D. [Chinese Academy of Sciences, Beijing (China)

    2010-10-15

    Sediments from a remote lake of northeastern Tibetan Plateau were analyzed for polycyclic aromatic hydrocarbons (PAHs) and trace metals. USEPA priority PAHs, ranged from 11 in 1860 to 279 ng g{sup -1} in 2002, while, the deposition fluxes were in the range of 0.2-11.4 ng cm{sup -2} yr{sup -1}. Similarly, from 1860 to 2002, an increased trend of Hg flux was observed (0.5-3.2 ng cm{sup -2} yr{sup -1}). Remarkable increase of PAHs and Hg concentration began from 1970, nearly the same period of the 'Reform and Open' Policy had been embarked (1978) in China. Good correlations were found between concentrations of Pb, Zn, Cd, As, Hg, and PAHs, which suggested the sources of these chemicals in the sediment is analogous, likely from anthroprogenic sources. Based on isomer ratios, PAHs in core were dominantly from the incomplete combustion of coal. Owing to the proximity to dust source area (Qaidam Basin) and the close association between PAHs, Hg, Pb, and particle matters, atmospheric dust-transport and deposition might be the main pathways that pollutants enter into Qinghai Lake.

  14. Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau

    Science.gov (United States)

    Zhang, H.-P.; Craddock, W.H.; Lease, R.O.; Wang, W.-T.; Yuan, D.-Y.; Zhang, P.-Z.; Molnar, P.; Zheng, D.-W.; Zheng, W.-J.

    2012-01-01

    Magnetostratigraphy of sedimentary rock deposited in the Chaka basin (north-eastern Tibetan Plateau) indicates a late Miocene onset of basin formation and subsequent development of the adjacent Qinghai Nan Shan. Sedimentation in the basin initiated at ~11Ma. In the lower part of the basin fill, a coarsening-upward sequence starting at ~9Ma, as well as rapid sedimentation rates, and northward paleocurrents, are consistent with continued growth of the Ela Shan to the south. In the upper section, several lines of evidence suggest that thrust faulting and topographic development of the Qinghai Nan Shan began at ~6.1Ma. Paleocurrent indicators, preserved in the basin in the proximal footwall of the Qinghai Nan Shan, show a change from northward to southward flow between 6.5 and 3.8Ma. At the same location, sediment derived from the Qinghai Nan Shan appears at 6.1Ma. Finally, the initiation of progressively shallowing dips observed in deformed basin strata and a change to pebbly, fluvial deposits at 6.1Ma provide a minimum age for the onset of slip on the thrust fault that dips north-east beneath the Qinghai Nan Shan. We interpret a decrease in sediment accumulation rates since ~6Ma to indicate a reduction in Chaka basin accommodation space due to active faulting and folding along the Qinghai Nan Shan and incorporation of the basin into the wedge-top depozone. Declination anomalies indicate the beginning of counter-clockwise rotation since 6.1Ma, which we associate with local deformation, not regional block rotation. The emergence of the Qinghai Nan Shan near the end of the Miocene Epoch partitioned the once contiguous Chaka-Gonghe and Qinghai basin complex. In a regional framework, our study adds to a growing body of evidence that points to widespread initiation and/or reactivation of fault networks during the late Miocene across the north-eastern Tibetan Plateau. ?? 2011 The Authors. Basin Research ?? 2011 Blackwell Publishing Ltd, European Association of Geoscientists

  15. Prehistoric human settling on the Tibetan Plateau

    Science.gov (United States)

    Chen, F.; Zhang, D.; Dong, G.; Xia, H.

    2017-12-01

    When and where did human first settle down on the Tibetan Plateau is under hot debate among archaeologist, anthropologists, geneticist and paleo-geographers. Based on systematic archaeological, chronological and archaeo-botanical studies of 53 sites in Northeastern Tibetan Plateau, we propose that agriculture facilitated human permanent settlement on the Tibetan Plateau initially since 5200 years ago below 2500 masl and since 3600 years ago up to around 4000 masl, possibly assisted by domesticated animals (Chen et al. 2015). By redating the age of hand- and footprints in Chusang site in Tibet, Meyer et al. (2017) argue that hunter-gatherers permanently occupied central Tibetan Plateau in early Holocene (before 7.4 ka) without the help of agriculture. Except for the possible problem of dating, however, the limited hand- and footprints could only indicate the presence of prehistoric hunter-gatherers on the remote central Tibetan Plateau in the early Holocene, unable to support the permanent inhabitation assertion (Zhang et al., 2017). To better understand how human spread to, settle on and adapt to the Tibetan Plateau, we are closely working together with anthropologists, archaeologists and geneticists to do system Paleolithic surveys, full excavations, and genetic analysis of ancient and modern human, animals and plants. Our preliminary study show that human migrated to the Tibetan Plateau from the last Deglacial period to late Holocene mainly from North China via Yellow River valley and its tributary valleys in the Northeastern Tibetan Plateau (NETP). This migration is constituted of four stages (Upper Paleolithic, Epi-Paleolithic, Neolithic and Bronze Age) with different adaptation strategies, including microlithic technology, millet and barley farming, and sheep herding and so on (Zhang et al., 2016). In addition, our new finds in Tibet indicate that there are probably more migration routes from southeast and southwest Tibetan Plateau in the late Pleistocene or

  16. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau.

    Science.gov (United States)

    Zhang, Wenping; Fan, Zhenxin; Han, Eunjung; Hou, Rong; Zhang, Liang; Galaverni, Marco; Huang, Jie; Liu, Hong; Silva, Pedro; Li, Peng; Pollinger, John P; Du, Lianming; Zhang, XiuyYue; Yue, Bisong; Wayne, Robert K; Zhang, Zhihe

    2014-07-01

    The Tibetan grey wolf (Canis lupus chanco) occupies habitats on the Qinghai-Tibet Plateau, a high altitude (>3000 m) environment where low oxygen tension exerts unique selection pressure on individuals to adapt to hypoxic conditions. To identify genes involved in hypoxia adaptation, we generated complete genome sequences of nine Chinese wolves from high and low altitude populations at an average coverage of 25× coverage. We found that, beginning about 55,000 years ago, the highland Tibetan grey wolf suffered a more substantial population decline than lowland wolves. Positively selected hypoxia-related genes in highland wolves are enriched in the HIF signaling pathway (P = 1.57E-6), ATP binding (P = 5.62E-5), and response to an oxygen-containing compound (P≤5.30E-4). Of these positively selected hypoxia-related genes, three genes (EPAS1, ANGPT1, and RYR2) had at least one specific fixed non-synonymous SNP in highland wolves based on the nine genome data. Our re-sequencing studies on a large panel of individuals showed a frequency difference greater than 58% between highland and lowland wolves for these specific fixed non-synonymous SNPs and a high degree of LD surrounding the three genes, which imply strong selection. Past studies have shown that EPAS1 and ANGPT1 are important in the response to hypoxic stress, and RYR2 is involved in heart function. These three genes also exhibited significant signals of natural selection in high altitude human populations, which suggest similar evolutionary constraints on natural selection in wolves and humans of the Qinghai-Tibet Plateau.

  17. Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions.

    Science.gov (United States)

    Xu, Tingting; Abbott, Richard J; Milne, Richard I; Mao, Kangshan; Du, Fang K; Wu, Guili; Ciren, Zhaxi; Miehe, Georg; Liu, Jianquan

    2010-06-22

    Although allopatric speciation is viewed as the most common way in which species originate, allopatric divergence among a group of closely related species has rarely been examined at the population level through phylogeographic analysis. Here we report such a case study on eight putative cypress (Cupressus) species, which each have a mainly allopatric distribution in the Qinghai-Tibetan Plateau (QTP) and adjacent regions. The analysis involved sequencing three plastid DNA fragments (trnD-trnT, trnS-trnG and trnL-trnF) in 371 individuals sampled from populations at 66 localities. Both phylogenetic and network analyses showed that most DNA haplotypes recovered or haplotype-clustered lineages resolved were largely species-specific. Across all species, significant phylogeographic structure (N(ST) > G(ST), P allopatric divergence in Cupressus by restricting gene flow and fixing local, species-specific haplotypes in geographically isolated populations. The low levels of intraspecific diversity present in most species might stem from population bottlenecks brought about by recurrent periods of unfavorable climate and more recently by the negative impacts of human activities on species' distributions. Our findings shed new light on the importance of geographical isolation caused by the uplift of the QTP on the development of high plant species diversity in the QTP biodiversity hotspot.

  18. Vertebrate Fossils Imply Paleo-elevations of the Tibetan Plateau

    Science.gov (United States)

    Deng, T.; Wang, X.; Li, Q.; Wu, F.; Wang, S.; Hou, S.

    2017-12-01

    The uplift of the Tibetan Plateau remains unclear, and its paleo-elevation reconstructions are crucial to interpret the geodynamic evolution and to understand the climatic changes in Asia. Uplift histories of the Tibetan Plateau based on different proxies differ considerably, and two viewpoints are pointedly opposing on the paleo-elevation estimations of the Tibetan Plateau. One viewpoint is that the Tibetan Plateau did not strongly uplift to reach its modern elevation until the Late Miocene, but another one, mainly based on stable isotopes, argues that the Tibetan Plateau formed early during the Indo-Asian collision and reached its modern elevation in the Paleogene or by the Middle Miocene. In 1839, Hugh Falconer firstly reported some rhinocerotid fossils collected from the Zanda Basin in Tibet, China and indicated that the Himalayas have uplifted by more than 2,000 m since several million years ago. In recent years, the vertebrate fossils discovered from the Tibetan Plateau and its surrounding areas implied a high plateau since the late Early Miocene. During the Oligocene, giant rhinos lived in northwestern China to the north of the Tibetan Plateau, while they were also distributed in the Indo-Pakistan subcontinent to the south of this plateau, which indicates that the elevation of the Tibetan Plateau was not too high to prevent exchanges of large mammals; giant rhinos, the rhinocerotid Aprotodon, and chalicotheres still dispersed north and south of "Tibetan Plateau". A tropical-subtropical lowland fish fauna was also present in the central part of this plateau during the Late Oligocene, in which Eoanabas thibetana was inferred to be closely related to extant climbing perches from South Asia and Sub-Saharan Africa. In contrast, during the Middle Miocene, the shovel-tusked elephant Platybelodon was found from many localities north of the Tibetan Plateau, while its trace was absent in the Siwaliks of the subcontinent, which implies that the Tibetan Plateau had

  19. Diversity and Distribution of Archaea Community along a Stratigraphic Permafrost Profile from Qinghai-Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Shiping Wei

    2014-01-01

    Full Text Available Accompanying the thawing permafrost expected to result from the climate change, microbial decomposition of the massive amounts of frozen organic carbon stored in permafrost is a potential emission source of greenhouse gases, possibly leading to positive feedbacks to the greenhouse effect. In this study, the community composition of archaea in stratigraphic soils from an alpine permafrost of Qinghai-Tibetan Plateau was investigated. Phylogenic analysis of 16S rRNA sequences revealed that the community was predominantly constituted by Crenarchaeota and Euryarchaeota. The active layer contained a proportion of Crenarchaeota at 51.2%, with the proportion of Euryarchaeota at 48.8%, whereas the permafrost contained 41.2% Crenarchaeota and 58.8% Euryarchaeota, based on 16S rRNA gene sequence analysis. OTU1 and OTU11, affiliated to Group 1.3b/MCG-A within Crenarchaeota and the unclassified group within Euryarchaeota, respectively, were widely distributed in all sediment layers. However, OTU5 affiliated to Group 1.3b/MCG-A was primarily distributed in the active layers. Sequence analysis of the DGGE bands from the 16S rRNAs of methanogenic archaea showed that the majority of methanogens belonged to Methanosarcinales and Methanomicrobiales affiliated to Euryarchaeota and the uncultured ZC-I cluster affiliated to Methanosarcinales distributed in all the depths along the permafrost profile, which indicated a dominant group of methanogens occurring in the cold ecosystems.

  20. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoping, E-mail: wangxp@itpcas.ac.c [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China); Yang Handong [Environmental Change Research Centre, University College London, Pearson Building, Gower Street, London WC1E6BT (United Kingdom); Gong Ping; Zhao Xin; Wu Guangjian [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China); Turner, Simon [Environmental Change Research Centre, University College London, Pearson Building, Gower Street, London WC1E6BT (United Kingdom); Yao Tandong [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China)

    2010-10-15

    Sediments from a remote lake of northeastern Tibetan Plateau were analyzed for polycyclic aromatic hydrocarbons (PAHs) and trace metals. USEPA priority PAHs, ranged from 11 in 1860 to 279 ng g{sup -1} in 2002, while, the deposition fluxes were in the range of 0.2-11.4 ng cm{sup -2} yr{sup -1}. Similarly, from 1860 to 2002, an increased trend of Hg flux was observed (0.5-3.2 ng cm{sup -2} yr{sup -1}). Remarkable increase of PAHs and Hg concentration began from 1970, nearly the same period of the 'Reform and Open' Policy had been embarked (1978) in China. Good correlations were found between concentrations of Pb, Zn, Cd, As, Hg, and PAHs, which suggested the sources of these chemicals in the sediment is analogous, likely from anthroprogenic sources. Based on isomer ratios, PAHs in core were dominantly from the incomplete combustion of coal. Owing to the proximity to dust source area (Qaidam Basin) and the close association between PAHs, Hg, Pb, and particle matters, atmospheric dust-transport and deposition might be the main pathways that pollutants enter into Qinghai Lake. - The historical deposition records of PAHs and Hg followed the economical development stages of China and sources of PAHs and Hg are dominantly pyrogenic.

  1. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau

    International Nuclear Information System (INIS)

    Wang Xiaoping; Yang Handong; Gong Ping; Zhao Xin; Wu Guangjian; Turner, Simon; Yao Tandong

    2010-01-01

    Sediments from a remote lake of northeastern Tibetan Plateau were analyzed for polycyclic aromatic hydrocarbons (PAHs) and trace metals. USEPA priority PAHs, ranged from 11 in 1860 to 279 ng g -1 in 2002, while, the deposition fluxes were in the range of 0.2-11.4 ng cm -2 yr -1 . Similarly, from 1860 to 2002, an increased trend of Hg flux was observed (0.5-3.2 ng cm -2 yr -1 ). Remarkable increase of PAHs and Hg concentration began from 1970, nearly the same period of the 'Reform and Open' Policy had been embarked (1978) in China. Good correlations were found between concentrations of Pb, Zn, Cd, As, Hg, and PAHs, which suggested the sources of these chemicals in the sediment is analogous, likely from anthroprogenic sources. Based on isomer ratios, PAHs in core were dominantly from the incomplete combustion of coal. Owing to the proximity to dust source area (Qaidam Basin) and the close association between PAHs, Hg, Pb, and particle matters, atmospheric dust-transport and deposition might be the main pathways that pollutants enter into Qinghai Lake. - The historical deposition records of PAHs and Hg followed the economical development stages of China and sources of PAHs and Hg are dominantly pyrogenic.

  2. Early Human Occupation on the Northeast Tibetan Plateau

    Science.gov (United States)

    Rhode, D.; Madsen, D.; Brantingham, P.; Perrault, C.

    2010-12-01

    The Tibetan Plateau presents great challenges for human occupation: low oxygen, high ultraviolet radiation, harsh seasonal climate, low overall biological productivity. How and when early humans were able to cope physiologically, genetically, and behaviorally with these extremes is important for understanding the history of human adaptive flexibility. Our investigations of prehistoric human settlement on the northeast Tibetan Plateau focus on (a) establishing well-dated evidence for occupation of altitudes >3000 m, (b) the environmental context of high altitude adaptation, and (c) relations of hunting and pastoralism to lower-altitude agrarian systems. We observe two major prehistoric settlement patterns in the Qinghai Lake area. The earliest, ~15,000-7500 yr old, consists of small isolated firehearths with sparse associated stone tools and wild mammal remains (1). Numerous hearths often occur in the same localities, indicating repeated short-duration occupations by small hunting parties. A second pattern, ~9000-4000 yr old, was established during the Holocene climatic optimum. These sites represent prolonged seasonal residential occupation, containing dark anthropogenic midden, hearth and pit constructions, abundant stone tools, occasional ceramics, and abundant diverse faunal remains (including medium-large mammals but lacking domestic sheep/yak)(2). These Plateau-margin base camps allowed greater intensity of use of the high Plateau. Residential occupation was strongly influenced by nearby lower-altitude farming communities; development of the socioeconomic landscape along the Yellow River likely played at least as great a role in Plateau occupation patterns as did Holocene environmental changes. Holocene vegetation changes in the NE Tibetan Plateau have been attributed to climate (3) or anthropogenic modification (4). Our results document changes in shrub/tree presence from ~12,000-4000 BP, similar to pollen records, that likely reflect climate rather than

  3. DNA barcoding of Rhodiola (crassulaceae: a case study on a group of recently diversified medicinal plants from the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Zhang

    Full Text Available DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences - rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS - for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau.

  4. Phylogeography and allopatric divergence of cypress species (Cupressus L. in the Qinghai-Tibetan Plateau and adjacent regions

    Directory of Open Access Journals (Sweden)

    Ciren Zhaxi

    2010-06-01

    Full Text Available Abstract Background Although allopatric speciation is viewed as the most common way in which species originate, allopatric divergence among a group of closely related species has rarely been examined at the population level through phylogeographic analysis. Here we report such a case study on eight putative cypress (Cupressus species, which each have a mainly allopatric distribution in the Qinghai-Tibetan Plateau (QTP and adjacent regions. The analysis involved sequencing three plastid DNA fragments (trnD-trnT, trnS-trnG and trnL-trnF in 371 individuals sampled from populations at 66 localities. Results Both phylogenetic and network analyses showed that most DNA haplotypes recovered or haplotype-clustered lineages resolved were largely species-specific. Across all species, significant phylogeographic structure (NST >GST, P C. duclouxiana and C. chengiana, which are distributed in the eastern QTP region, contained more haplotypes and higher diversity than five species with restricted distributions in the western highlands of the QTP. The remaining species, C. funebris, is widely cultivated and contained very little cpDNA diversity. Conclusions It is concluded that the formation of high mountain barriers separating deep valleys in the QTP and adjacent regions caused by various uplifts of the plateau since the early Miocene most likely promoted allopatric divergence in Cupressus by restricting gene flow and fixing local, species-specific haplotypes in geographically isolated populations. The low levels of intraspecific diversity present in most species might stem from population bottlenecks brought about by recurrent periods of unfavorable climate and more recently by the negative impacts of human activities on species' distributions. Our findings shed new light on the importance of geographical isolation caused by the uplift of the QTP on the development of high plant species diversity in the QTP biodiversity hotspot.

  5. Alfa analysis of genetic diversity in populus cathayana rehd originating from south eastern Qinghai-Tibetan plateau of China

    International Nuclear Information System (INIS)

    Chen, K.; Peng, Y.

    2010-01-01

    The wide geographical and climatic distribution of Populus cathayana Rehd indicates that there is a large amount of genetic diversity available, which can be exploited for conservation, breeding programs and afforestation schemes. In our study, genetic diversity was evaluated in the natural populations of P. cathayana originating from southern and eastern areas of the Qinghai-Tibetan Plateau of China by means of AFLP markers. For four primer combinations, a total of 175 bands were obtained of which 173 (98.9%) were polymorphic. Six natural populations of P. cathayana possessed different levels of genetic diversity, high level of genetic differentiation existed among the populations (G/sub st) =0.489) of P. cathayana. Individuals cluster and PCO analysis based on Jaccards's similarity coefficient also showed evident population genetic structure with high level of population genetic differentiation. The long evolutionary process coupled with genetic drift within populations, rather than contemporary gene flow, are the major forces shaping genetic structure of P. cathayana populations. Moreover, there was no correspondence between geographical and genetic distances in the populations of P. cathayana, seldom gene exchange among the populations and different selection pressures may be the causes. Our findings of different levels of genetic diversity within populations and high level of genetic differentiation among the populations provided promising condition for further breeding and conservation programs. (author)

  6. Isolation and characterization of a new enterovirus F in yak feces in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    He, Huan; Tang, Cheng; Chen, Xinnuo; Yue, Hua; Ren, Yupeng; Liu, Yan; Zhang, Bin

    2017-02-01

    An enterovirus (EV) strain, designated as SWUN-AB001, was isolated in the Qinghai-Tibetan Plateau from a yak with severe diarrheal disease. The complete genome of strain SWUN-AB001 was 7,382 bp in length and shared 35.1-68.5% nt identities with bovine EVs belonging to a candidate new type EV-F7. Using the sequence difference values in the VP1 gene as a criterion for demarcating a new serotype/genotype in the Enterovirus genus, strain SWUN-AB001 had only a 71.1% nt and a 79.2% aa identity, in the VP1 region, with the most closely matched EV, further indicating that a new type of EV had been identified. Phylogenetic analysis of the nt sequence of the viral polyprotein and of VP1 genes demonstrated that the virus fell within the EV-F cluster, but was located in a unique lineage. Furthermore, a large-scale surveillance study indicated that the prevalence of this EV in yaks was 31.05% (95% CI = 25.5-37.6%) in 235 animals with diarrhea and 24.13% (95% CI = 17.4-32.4%) in 116 healthy yaks. However, there was no significant difference in virus prevalence between diarrheal and healthy samples. Interestingly, in the Tibet region, diarrheal feces had a higher incidence of EVs than feces of healthy yaks (odd ratios = 6.03, 95% CI = 1.93-18.86), indicating that the incidence of EV was potentially correlated with the clinical symptom of diarrhea in yaks.

  7. Gene Flow Results in High Genetic Similarity Between Sibiraea (Rosaceae species in the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Fu

    2016-10-01

    Full Text Available Studying closely related species and divergent populations provides insight into the process of speciation. Previous studies showed that the Sibiraea complex's evolutionary history on the Qinghai-Tibetan Plateau (QTP was confusing and could not be distinguishable on the molecular level. In this study, the genetic structure and gene flow of S. laevigata and S. angustata on the QTP was examined across 45 populations using 8 microsatellite loci. Microsatellites revealed high genetic diversity in Sibiraea populations. Most of the variance was detected within populations (87.45% rather than between species (4.39%. We found no significant correlations between genetic and geographical distances among populations. Bayesian cluster analysis grouped all individuals in the sympatric area of Sibiraea into one cluster and other individuals of S. angustata into another. Divergence history analysis based on the approximate Bayesian computation method indicated that the populations of S. angustata at the sympatric area derived from the admixture of 2 species. The assignment test assigned all individuals to populations of their own species rather than its congeneric species. Consistently, intraspecies were detected rather than interspecies first-generation migrants. The bidirectional gene flow in long-term patterns between the 2 species was asymmetric, with more from S. angustata to S. laevigata. In conclusion, the Sibiraea complex was distinguishable on the molecular level using microsatellite loci. We found that the high genetic similarity of these 2 species resulted from huge bidirectional gene flow, especially on the sympatric area where population admixtures between the species occurred.

  8. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Gao, Bing; Yang, Dawen; Qin, Yue; Wang, Yuhan; Li, Hongyi; Zhang, Yanlin; Zhang, Tingjun

    2018-02-01

    Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai-Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-term (1971-2013) changes in frozen ground its the effects on hydrology in the upper Heihe basin, northeastern QTP. The model was validated against data obtained from multiple ground-based observations. Based on model simulations, we analyzed spatio-temporal changes in frozen soils and their effects on hydrology. Our results show that the area with permafrost shrank by 8.8 % (approximately 500 km2), predominantly in areas with elevations between 3500 and 3900 m. The maximum depth of seasonally frozen ground decreased at a rate of approximately 0.032 m decade-1, and the active layer thickness over the permafrost increased by approximately 0.043 m decade-1. Runoff increased significantly during the cold season (November-March) due to an increase in liquid soil moisture caused by rising soil temperatures. Areas in which permafrost changed into seasonally frozen ground at high elevations showed especially large increases in runoff. Annual runoff increased due to increased precipitation, the base flow increased due to changes in frozen soils, and the actual evapotranspiration increased significantly due to increased precipitation and soil warming. The groundwater storage showed an increasing trend, indicating that a reduction in permafrost extent enhanced the groundwater recharge.

  9. Quantifying Species Diversity with a DNA Barcoding-Based Method: Tibetan Moth Species (Noctuidae) on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Jin, Qian; Han, Huilin; Hu, XiMin; Li, XinHai; Zhu, ChaoDong; Ho, Simon Y. W.; Ward, Robert D.; Zhang, Ai-bing

    2013-01-01

    With the ongoing loss of biodiversity, there is a great need for fast and effective ways to assess species richness and diversity: DNA barcoding provides a powerful new tool for this. We investigated this approach by focusing on the Tibetan plateau, which is one of the world's top biodiversity hotspots. There have been few studies of its invertebrates, although they constitute the vast majority of the region's diversity. Here we investigated species diversity of the lepidopteran family Noctuidae, across different environmental gradients, using measurements based on traditional morphology as well as on DNA barcoding. The COI barcode showed an average interspecific K2P distance of , which is about four times larger than the mean intraspecific distance (). Using six diversity indices, we did not detect any significant differences in estimated species diversity between measurements based on traditional morphology and on DNA barcoding. Furthermore, we found strong positive correlations between them, indicating that barcode-based measures of species diversity can serve as a good surrogate for morphology-based measures in most situations tested. Eastern communities were found to have significantly higher diversity than Western ones. Among 22 environmental factors tested, we found that three (precipitation of driest month, precipitation of driest quarter, and precipitation of coldest quarter) were significantly correlated with species diversity. Our results indicate that these factors could be the key ecological factors influencing the species diversity of the lepidopteran family Noctuidae on the Tibetan plateau. PMID:23741330

  10. [The pathogenic ecology research on plague in Qinghai plateau].

    Science.gov (United States)

    Dai, Rui-xia; Wei, Bai-qing; Li, Cun-xiang; Xiong, Hao-ming; Yang, Xiao-yan; Fan, Wei; Qi, Mei-ying; Jin, Juan; Wei, Rong-jie; Feng, Jian-ping; Jin, Xing; Wang, Zu-yun

    2013-12-01

    To study the pathogenic ecology characteristics of plague in Qinghai plateau. Applied molecular biology techniques, conventional technologies and geographic information system (GIS) to study phenotypic traits, plasmid spectrum, genotype, infected host and media spectrum etc.of 952 Yersinia pestis strains in Qinghai plateau plague foci, which were separated from different host and media in different regions during 1954 to 2012. The ecotypes of these strains were Qingzang plateau (91.49%, 871/952),Qilian mountain (6.41%, 61/952) and Microtus fuscus (1.26%, 12/952).83.6% (796/952) of these strains contained all the 4 virulence factors (Fr1, Pesticin1,Virulence antigen, and Pigmentation), 93.26% (367/392) were velogenic strains confirmed by virulence test.725 Yersinia pestis strains were separated from Qinghai plateau plague foci carried 9 kinds of plasmid, among which 713 strains from Marmot himalayan plague foci carried 9 kinds of plasmid, the Mr were 6×10(6), 7×10(6), 23×10(6), 27×10(6), 30×10(6), 45×10(6), 52×10(6), 65×10(6) and 92×10(6) respectively. 12 Yersinia pestis strains were separated from Microtus fuscus plague foci carried only 3 kinds of plasmid, the Mr were 6×10(6), 45×10(6), 65×10(6). Meanwhile, the strains carrying large plasmid (52×10(6), 65×10(6) and 92×10(6)) were only distributed in particular geographical location, which had the category property. The research also confirmed that 841 Yersinia pestis strains from two kinds of plague foci in Qinghai plateau had 11 genomovars. The strains of Marmot himalayan plague foci were given priority to genomovar 5 and 8, amounted to 611 strains, genomovar 8 accounted for 56.00% (471/841), genomovar 5 accounted for 23.07% (194/841). Besides, 3 new genomovars, including new 1(62 strains), new 2(52 strains), new 3(48 strains) were newly founded, and 12 strains of Microtus fuscus plague foci were genomovar 14. The main host and media of Qinghai plateau plague foci directly affected the spatial

  11. Does the climate warming hiatus exist over the Tibetan Plateau?

    Science.gov (United States)

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  12. Quantifying species diversity with a DNA barcoding-based method: Tibetan moth species (Noctuidae on the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Qian Jin

    Full Text Available With the ongoing loss of biodiversity, there is a great need for fast and effective ways to assess species richness and diversity: DNA barcoding provides a powerful new tool for this. We investigated this approach by focusing on the Tibetan plateau, which is one of the world's top biodiversity hotspots. There have been few studies of its invertebrates, although they constitute the vast majority of the region's diversity. Here we investigated species diversity of the lepidopteran family Noctuidae, across different environmental gradients, using measurements based on traditional morphology as well as on DNA barcoding. The COI barcode showed an average interspecific K2P distance of 9.45±2.08%, which is about four times larger than the mean intraspecific distance (1.85±3.20%. Using six diversity indices, we did not detect any significant differences in estimated species diversity between measurements based on traditional morphology and on DNA barcoding. Furthermore, we found strong positive correlations between them, indicating that barcode-based measures of species diversity can serve as a good surrogate for morphology-based measures in most situations tested. Eastern communities were found to have significantly higher diversity than Western ones. Among 22 environmental factors tested, we found that three (precipitation of driest month, precipitation of driest quarter, and precipitation of coldest quarter were significantly correlated with species diversity. Our results indicate that these factors could be the key ecological factors influencing the species diversity of the lepidopteran family Noctuidae on the Tibetan plateau.

  13. Genetic variation and phylogenetic relationships of the ectomycorrhizal Floccularia luteovirens on the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Xing, Rui; Gao, Qing-Bo; Zhang, Fa-Qi; Fu, Peng-Cheng; Wang, Jiu-Li; Yan, Hui-Ying; Chen, Shi-Long

    2017-08-01

    Floccularia luteovirens, as an ectomycorrhizal fungus, is widely distributed in the Qinghai-Tibet Plateau. As an edible fungus, it is famous for its unique flavor. Former studies mainly focus on the chemical composition and genetic structure of this species. However, the phylogenetic relationship between genotypes remains unknown. In this study, the genetic variation and phylogenetic relationship between the genotypes of F. luteovirens in Qinghai-Tibet Plateau was estimated through the analysis on two protein-coding genes (rpb1 and ef-1α) from 398 individuals collected from 24 wild populations. The sample covered the entire range of this species during all the growth seasons from 2011 to 2015. 13 genotypes were detected and moderate genetic diversity was revealed. Based on the results of network analysis, the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) analyses, the genotypes H-1, H-4, H-6, H-8, H-10, and H-11 were grouped into one clade. Additionally, a relatively higher genotype diversity (average h value is 0.722) and unique genotypes in the northeast edge of Qinghai- Tibet plateau have been found, combined with the results of mismatch analysis and neutrality tests indicated that Southeast Qinghai-Tibet plateau was a refuge for F. luteovirens during the historical geological or climatic events (uplifting of the Qinghai-Tibet Plateau or Last Glacial Maximum). Furthermore, the present distribution of the species on the Qinghai-Tibet plateau has resulted from the recent population expansion. Our findings provide a foundation for the future study of the evolutionary history and the speciation of this species.

  14. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  15. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2010-04-01

    Full Text Available Alpine wetland meadow could functions as a carbon sink due to it high soil organic content and low decomposition. However, the magnitude and dynamics of carbon stock in alpine wetland ecosystems are not well quantified. Therefore, understanding how environmental variables affect the processes that regulate carbon fluxes in alpine wetland meadow on the Qinghai-Tibetan Plateau is critical. To address this issue, Gross Primary Production (GPP, Ecosystem Respiration (Reco, and Net Ecosystem Exchange (NEE were examined in an alpine wetland meadow using the eddy covariance method from October 2003 to December 2006 at the Haibei Research Station of the Chinese Academy of Sciences. Seasonal patterns of GPP and Reco were closely associated with leaf area index (LAI. The Reco showed a positive exponential to soil temperature and relatively low Reco occurred during the non-growing season after a rain event. This result is inconsistent with the result observed in alpine shrubland meadow. In total, annual GPP were estimated at 575.7, 682.9, and 630.97 g C m−2 in 2004, 2005, and 2006, respectively. Meanwhile, the Reco were equal to 676.8, 726.4, 808.2 g C m−2, and thus the NEE were 101.1, 44.0 and 173.2 g C m−2. These results indicated that the alpine wetland meadow was a moderately source of carbon dioxide (CO2. The observed carbon dioxide fluxes in the alpine wetland meadow were higher than other alpine meadow such as Kobresia humilis meadow and shrubland meadow.

  16. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation.

    Science.gov (United States)

    Cun, Yu-Zhi; Wang, Xiao-Quan

    2010-09-01

    The Himalaya-Hengduan Mountains region (HHM) in the southern and southeastern Qinghai-Tibetan Plateau (QTP) is considered an important reservoir and a differentiation center for temperate and alpine plants in the Cenozoic. To reveal how plants responded to the Quaternary climatic oscillations in the QTP, the phylogeographical histories of a few subalpine and alpine plants have been investigated, but nearly all studies used only uniparentally inherited cytoplasmic DNA markers, and only a couple of them included sampling from the Himalaya. In this study, range-wide genetic variation of the Himalayan hemlock (Tsuga dumosa), an important forest species in the HHM, was surveyed using DNA markers from three genomes. All markers revealed genetic depauperation in the Himalaya and richness in the Hengduan Mountains populations. Surprisingly, population differentiation of this wind-pollinated conifer is very high in all three genomes, with few common and many private nuclear gene alleles. These results, together with fossil evidence, clearly indicate that T. dumosa recolonized the Himalaya from the Hengduan Mountains before the Last Glacial Maximum (LGM), accompanied with strong founder effects, and the influence of the earlier glaciations on demographic histories of the QTP plants could be much stronger than that of the LGM. The strong population differentiation in T. dumosa could be attributed to restricted gene flow caused by the complicated topography in the HHM that formed during the uplift of the QTP, and thus sheds lights on the importance of geographical isolation in the development of high plant species diversity in this biodiversity hotspot. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Relationships between climate and growth of Gymnocypris selincuoensis in the Tibetan Plateau.

    Science.gov (United States)

    Tao, Juan; Chen, Yifeng; He, Dekui; Ding, Chengzhi

    2015-04-01

    The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau-lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature-related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.

  18. Into Tibet: An Early Pliocene Dispersal of Fossil Zokor (Rodentia: Spalacidae) from Mongolian Plateau to the Hinterland of Tibetan Plateau.

    Science.gov (United States)

    Li, Qiang; Wang, Xiaoming

    2015-01-01

    This paper reports the fossil zokors (Myospalacinae) collected from the lower Pliocene (~4.4 Ma) of Zanda Basin, southwestern Tibet, which is the first record in the hinterland of Tibetan Plateau within the Himalayan Range. Materials include 29 isolated molars belonging to Prosiphneus eriksoni (Schlosser, 1924) by having characters including large size, highly fused roots, upper molars of orthomegodont type, m1 anterior cap small and centrally located, and first pair of m1 reentrants on opposing sides, high crowns, and high value of dentine tract parameters. Based on the cladistics analysis, all seven species of Prosiphneus and P. eriksoni of Zanda form a monophyletic clade. P. eriksoni from Zanda, on the other hand, is nearly the terminal taxon of this clade. The appearance of P. eriksoni in Zanda represents a significant dispersal in the early Pliocene from its center of origin in north China and Mongolian Plateau, possibly via the Hol Xil-Qiangtang hinterland in northern Tibet. The fast evolving zokors are highly adapted to open terrains at a time when regional climates had become increasingly drier in the desert zones north of Tibetan Plateau during the late Miocene to Pliocene. The occurrence of this zokor in Tibet thus suggests a rather open steppe environment. Based on fossils of large mammals, we have formulated an "out of Tibet" hypothesis that suggests earlier and more primitive large mammals from the Pliocene of Tibet giving rise to the Ice Age megafauna. However, fossil records for large mammals are still too poor to evaluate whether they have evolved from lineages endemic to the Tibetan Plateau or were immigrants from outside. The superior record of small mammals is in a better position to address this question. With relatively dense age intervals and numerous localities in much of northern Asia, fossil zokors provide the first example of an "into Tibet" scenario--earlier and more primitive taxa originated from outside of the Tibetan Plateau and the

  19. Remote sensing of severe convective storms over Qinghai-Xizang Plateau

    Science.gov (United States)

    Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.

    1984-01-01

    The American satellite, GOES-1 was moved to the Indian Ocean at 58 deg E during the First GARP Global Experiment (FGGE). The Qinghai-Xizang Plateau significantly affects the initiation and development of heavy rainfall and severe storms in China, just as the Rocky Mountains influence the local storms in the United States. Satelite remote sensing of short-lived, meso-scale convective storms is particularly important for covering a huge area of a high elevation with a low population density, such as the Qinghai-Xizang Plateau. Results of this study show that a high growth rate of the convective clouds, followed by a rapid collapse of the cloud top, is associated with heavy rainfall in the area. The tops of the convective clouds developed over the Plateau lie between the altitudes of the two tropopauses, while the tops of convective clouds associated with severe storms in the United States usually extend much above the tropopause.

  20. Oxygen-18 in present-day precipitation on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    章新平; 姚檀栋; 中尾正义

    2001-01-01

    The temporal and spatial variations of the δ18O in precipitation on the Tibetan Plateau are analyzed. There is no temperature effect in the southern Tibetan Plateau. Amount effect has been observed at Lhasa station. However, the seasonal variations of the δ18O in precipitation are different from that of precipitation intensity, showing that the precipitation intensity is not a main controlling factor on the stable isotopic compositions in precipitation in the southern Tibetan Plateau. There is notable temperature effect in the middle and northern Tibetan Plateau. The seasonal variations of the δ18O in precipitation are almost consistent with those of air temperature there, indicating that temperature is a main factor controlling the stable isotopic variations in precipitation. A meridional cross-section shows that a notable depletion of the stable isotopic ratio in precipitation takes place in the Himalayas due to very strong rainout of vapor as it rises over the Himalayas, then the δ18O remains basi

  1. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the tibetan plateau.

    Science.gov (United States)

    Qi, Xuebin; Cui, Chaoying; Peng, Yi; Zhang, Xiaoming; Yang, Zhaohui; Zhong, Hua; Zhang, Hui; Xiang, Kun; Cao, Xiangyu; Wang, Yi; Ouzhuluobu; Basang; Ciwangsangbu; Bianba; Gonggalanzi; Wu, Tianyi; Chen, Hua; Shi, Hong; Su, Bing

    2013-08-01

    Tibetans live on the highest plateau in the world, their current population size is approximately 5 million, and most of them live at an altitude exceeding 3,500 m. Therefore, the Tibetan Plateau is a remarkable area for cultural and biological studies of human population history. However, the chronological profile of the Tibetan Plateau's colonization remains an unsolved question of human prehistory. To reconstruct the prehistoric colonization and demographic history of modern humans on the Tibetan Plateau, we systematically sampled 6,109 Tibetan individuals from 41 geographic populations across the entire region of the Tibetan Plateau and analyzed the phylogeographic patterns of both paternal (n = 2,354) and maternal (n = 6,109) lineages as well as genome-wide single nucleotide polymorphism markers (n = 50) in Tibetan populations. We found that there have been two distinct, major prehistoric migrations of modern humans into the Tibetan Plateau. The first migration was marked by ancient Tibetan genetic signatures dated to approximately 30,000 years ago, indicating that the initial peopling of the Tibetan Plateau by modern humans occurred during the Upper Paleolithic rather than Neolithic. We also found evidences for relatively young (only 7-10 thousand years old) shared Y chromosome and mitochondrial DNA haplotypes between Tibetans and Han Chinese, suggesting a second wave of migration during the early Neolithic. Collectively, the genetic data indicate that Tibetans have been adapted to a high altitude environment since initial colonization of the Tibetan Plateau in the early Upper Paleolithic, before the last glacial maximum, followed by a rapid population expansion that coincided with the establishment of farming and yak pastoralism on the Plateau in the early Neolithic.

  2. Using multi-source satellite data to assess snow-cover change in Qinghai-Tibetan Plateau in last decade

    Science.gov (United States)

    Jiang, Y.; Chen, F.; Gao, Y.; Barlage, M. J.

    2017-12-01

    Snow cover in Qinghai-Tibetan Plateau (QTP) is a critical component of water cycle and affects regional climate of East Asia. Satellite data from three different sources (i.e., FY3A/B/C, MODIS and IMS) were used to analyze the QTP fractional-snow-cover (FSC) change and associated uncertainties in the last decade. To reduce the high percentage of cloud in FY3A/B/C and MODIS, a four-step cloud removal procedure was applied and effectively reduced the cloud percentage from 40.8-56.1% to 2.2­-­3.3%. The averaged error introduced by the cloud removal procedure was about 2% estimated by a random sampling method. Results show that the snow cover in QTP significantly decreased in recent 5 years. Three data sets (FY3B, MODIS and IMS) showed significant decreased annual FSC at all elevation bands from 2012-2016, and a significant shorter snow season with delayed snow onset and earlier melting. Both IMS and MODIS had a slightly decline annual FSC from 2000 to 3000 m, while MODIS FSC slightly decreased in 2002-2016 and IMS FSC slightly increased from 2006-2016 in the region with elevation higher than 3000 m. Results also show significant uncertainties among the five data sets (FY3A/B/C, MODIS, IMS), although they showed similar fluctuations of daily FSC. IMS had largest snow-cover extent and highest daily FSC due to its multi data sources. FY3A/C and MODIS (observed in the morning) had around 5% higher mean FSC than FY3B (observed in the afternoon) due to the 3 hours detection time gap. The relative error of daily FSC (taking MODIS as `truth') between FY3A/B/C, IMS and MODIS is 23%, -35%, 8% and 63%, respectively, averaged in five elevation bands in 2015-2017.

  3. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

    Science.gov (United States)

    Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua

    2018-03-01

    The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.

  4. Hexabromocyclododecane in alpine fish from the Tibetan Plateau, China

    International Nuclear Information System (INIS)

    Zhu, Nali; Fu, Jianjie; Gao, Yan; Ssebugere, Patrick; Wang, Yawei; Jiang, Guibin

    2013-01-01

    Hexabromocyclododecanes (HBCDs) has just been listed into Stockholm Convention as a persistent organic pollutant recently. This paper studied the HBCDs in 79 wild fish from high mountain lakes and rivers of the Tibetan Plateau. The ∑HBCDs in fish muscles ranged from non detectable levels to 13.7 ng/g lipid weight (lw) (mean value of 2.12 ng/g lw) with a high detection frequency of 65.8%. α-HBCD dominated among the isomers and accounted for 78.2% of the total burden. Concentrations of ∑HBCDs in the fish were significantly correlated with the lipid content . A decreasing trend was observed between α-HBCD and trophic level. Positive correlation was also noted between the HBCD levels in fish from lakes and the annual precipitation, and this implied the long-range atmospheric transport of HBCDs to the Tibet Plateau. This was the first work to widely explore HBCDs contamination in the aquatic ecosystems of the Tibetan Plateau. -- Highlights: •HBCDs were ubiquitous in fish of the Tibetan Plateau. •α-HBCD showed a negative correlation with TL in the Lhasa River aquatic food web. •Concentrations of ∑HBCD were significantly correlated with lipid contents of fish. -- HBCD was ubiquitous in fish of the Tibetan Plateau, and its concentration was significantly correlated with lipid content

  5. Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau

    Science.gov (United States)

    Craddock, William H.; Kirby, Eric; Zhang, Huiping; Clark, Marin K.; Champagnac, Jean-Daniel; Yuan, Daoyang

    2014-01-01

    The northeastern Tibetan Plateau constitutes a transitional region between the low-relief physiographic plateau to the south and the high-relief ranges of the Qilian Shan to the north. Cenozoic deformation across this margin of the plateau is associated with localized growth of fault-cored mountain ranges and associated basins. Herein, we combine detailed structural analysis of the geometry of range-bounding faults and deformation of foreland basin strata with geomorphic and exhumational records of erosion in hanging-wall ranges in order to investigate the magnitude, timing, and style of deformation along the two primary fault systems, the Qinghai Nan Shan and the Gonghe Nan Shan. Structural mapping shows that both ranges have developed above imbricate fans of listric thrust faults, which sole into décollements in the middle crust. Restoration of shortening along balanced cross sections suggests a minimum of 0.8–2.2 km and 5.1–6.9 km of shortening, respectively. Growth strata in the associated foreland basin record the onset of deformation on the two fault systems at ca. 6–10 Ma and ca. 7–10 Ma, respectively, and thus our analysis suggests late Cenozoic shortening rates of 0.2 +0.2/–0.1 km/m.y. and 0.7 +0.3/–0.2 km/m.y. along the north and south sides of Gonghe Basin. Along the Qinghai Nan Shan, these rates are similar to late Pleistocene slip rates of ∼0.10 ± 0.04 mm/yr, derived from restoration and dating of a deformed alluvial-fan surface. Collectively, our results imply that deformation along both flanks of the doubly vergent Qilian Shan–Nan Shan initiated by ca. 10 Ma and that subsequent shortening has been relatively steady since that time.

  6. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau.

    Science.gov (United States)

    Qu, Bin; Sillanpää, Mika; Li, Chaoliu; Kang, Shichang; Stubbins, Aron; Yan, Fangping; Aho, Kelly Sue; Zhou, Feng; Raymond, Peter A

    2017-01-01

    The role played by river networks in regional and global carbon cycle is receiving increasing attention. Despite the potential of radiocarbon measurements (14C) to elucidate sources and cycling of different riverine carbon pools, there remain large regions such as the climate-sensitive Tibetan Plateau for which no data are available. Here we provide new 14C data on dissolved organic carbon (DOC) from three large Asian rivers (the Yellow, Yangtze and Yarlung Tsangpo Rivers) running on the Tibetan Plateau and present the carbon transportation pattern in rivers of the plateau versus other river system in the world. Despite higher discharge rates during the high flow season, the DOC yield of Tibetan Plateau rivers (0.41 gC m-2 yr-1) was lower than most other rivers due to lower concentrations. Radiocarbon ages of the DOC were older/more depleted (511±294 years before present, yr BP) in the Tibetan rivers than those in Arctic and tropical rivers. A positive correlation between radiocarbon age and permafrost watershed coverage was observed, indicating that 14C-deplted/old carbon is exported from permafrost regions of the Tibetan Plateau during periods of high flow. This is in sharp contrast to permafrost regions of the Arctic which export 14C-enriched carbon during high discharge periods.

  7. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  8. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100

    International Nuclear Information System (INIS)

    Jin, Zhenong; Zhuang, Qianlai; Zhu, Xudong; He, Jin-Sheng; Song, Weimin

    2015-01-01

    Methane (CH 4 ) is a potent greenhouse gas (GHG) that affects the global climate system. Knowledge about land–atmospheric CH 4 exchanges on the Qinghai-Tibetan Plateau (QTP) is insufficient. Using a coupled biogeochemistry model, this study analyzes the net exchanges of CH 4 and CO 2 over the QTP for the period of 1979–2100. Our simulations show that the region currently acts as a net CH 4 source with 0.95 Tg CH 4 y −1 emissions and 0.19 Tg CH 4 y −1 soil uptake, and a photosynthesis C sink of 14.1 Tg C y −1 . By accounting for the net CH 4 emission and the net CO 2 sequestration since 1979, the region was found to be initially a warming source until the 2010s with a positive instantaneous radiative forcing peak in the 1990s. In response to future climate change projected by multiple global climate models (GCMs) under four representative concentration pathway (RCP) scenarios, the regional source of CH 4 to the atmosphere will increase by 15–77% at the end of this century. Net ecosystem production (NEP) will continually increase from the near neutral state to around 40 Tg C y −1 under all RCPs except RCP8.5. Spatially, CH 4 emission or uptake will be noticeably enhanced under all RCPs over most of the QTP, while statistically significant NEP changes over a large-scale will only appear under RCP4.5 and RCP4.6 scenarios. The cumulative GHG fluxes since 1979 will exert a slight warming effect on the climate system until the 2030s, and will switch to a cooling effect thereafter. Overall, the total radiative forcing at the end of the 21st century is 0.25–0.35 W m −2 , depending on the RCP scenario. Our study highlights the importance of accounting for both CH 4 and CO 2 in quantifying the regional GHG budget. (paper)

  9. Fukushima Nuclear Accident Recorded in Tibetan Plateau Snow Pits

    Science.gov (United States)

    Wang, Ninglian; Wu, Xiaobo; Kehrwald, Natalie; Li, Zhen; Li, Quanlian; Jiang, Xi; Pu, Jianchen

    2015-01-01

    The β radioactivity of snow-pit samples collected in the spring of 2011 on four Tibetan Plateau glaciers demonstrate a remarkable peak in each snow pit profile, with peaks about ten to tens of times higher than background levels. The timing of these peaks suggests that the high radioactivity resulted from the Fukushima nuclear accident that occurred on March 11, 2011 in eastern Japan. Fallout monitoring studies demonstrate that this radioactive material was transported by the westerlies across the middle latitudes of the Northern Hemisphere. The depth of the peak β radioactivity in each snow pit compared with observational precipitation records, suggests that the radioactive fallout reached the Tibetan Plateau and was deposited on glacier surfaces in late March 2011, or approximately 20 days after the nuclear accident. The radioactive fallout existed in the atmosphere over the Tibetan Plateau for about one month. PMID:25658094

  10. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu, Wenjie; Chen, Shengyun; Zhao, Qian; Ren, Jiawen; Qin, Dahe; Sun, Zhizhong

    2014-01-01

    The variation and control of soil organic carbon (SOC) and other nutrients in permafrost regions are critical for studying the carbon cycle and its potential feedbacks to climate change; however, they are poorly understood. Soil nutrients samples at depths of 0–10, 10–20, 20–30, and 30–40 cm, were sampled eight times in 2009 in alpine swamp meadow, alpine meadow and alpine steppe in permafrost regions of the central Qinghai-Tibetan Plateau. SOC and total nitrogen (TN) in the alpine swamp meadow and meadow decreased with soil depth, whereas the highest SOC content in the alpine steppe was found at depths of 20–30 cm. The vertical profiles of total and available phosphorus (P) and potassium (K) were relatively uniform for all the three grassland types. Correlation and linear regression analyses showed that soil moisture (SM) was the most important parameter for the vertical variation of SOC and other soil nutrients, and that belowground biomass (BGB) was the main source of SOC and TN. The spatial variations (including seasonal variation) of SOC and TN at plot scale were large. The relative deviation of SOC ranged from 7.18 to 41.50 in the alpine swamp meadow, from 2.88 to 35.91 in the alpine meadow, and from 9.33 to 68.38 in the alpine steppe. The spatial variations in the other soil nutrients varied among different grassland types. The most important factors for spatial variations (including seasonal variation) of SOC, TN, total P, available P, and both total and available K were: SM, SM and temperature, SM, air temperature, and SM and BGB, respectively. The large variation in the three grassland types implies that spatial variation at plot scale should be considered when estimating SOC storage and its dynamics. (letter)

  11. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ma, Xiaoliang; Liu, Guimin; Wu, Xiaodong; Smoak, Joseph M; Ye, Linlin; Xu, Haiyan; Zhao, Lin; Ding, Yongjian

    2018-07-15

    The Qinghai-Tibetan plateau (QTP) stores a large amount of soil organic carbon and is the headwater region for several large rivers in Asia. Therefore, it is important to understand the influence of environmental factors on river water quality and the dissolved organic carbon (DOC) export in this region. We examined the water physico-chemical characteristics, DOC concentrations and export rates of 7 rivers under typical land cover types in the Three Rivers Headwater Region during August 2016. The results showed that the highest DOC concentrations were recorded in the rivers within the catchment of alpine wet meadow and meadow. These same rivers had the lowest total suspended solids (TSS) concentrations. The rivers within steppe and desert had the lowest DOC concentrations and highest TSS concentrations. The discharge rates and catchment areas were negatively correlated with DOC concentrations. The SUVA 254 values were significantly negatively correlated with DOC concentrations. The results suggest that the vegetation degradation, which may represent permafrost degradation, can lead to a decrease in DOC concentration, but increasing DOC export and soil erosion. In addition, some of the exported DOC will rapidly decompose in the river, and therefore affect the regional carbon cycle, as well as the water quality in the source water of many large Asian rivers. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  13. Ecophysiological Responses of Three Tree Species to a High-Altitude Environment in the Southeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jirui Gong

    2018-01-01

    Full Text Available This paper measured the ecophysiological responses of Populus cathayana Rehd., Salix longistamina C. Wang et P. Y. Fu., and Ulmus pumila L. to high altitude in the Tibetan Plateau based on changes in water relations, gas exchange, and chlorophyll fluorescence. P. cathayana and U. pumila have higher survival rates than S. longistamina, but the latter has highest biomass. S. longistamina has higher water-use efficiency (WUE, lower transpiration rates (E, higher water potential (Ψ, highest light saturation point (LSP and higher photosystem II (PSII photochemistry efficiency (Fv’/Fm’ and non-photochemistry quenching (NPQ than the other species, and is thus adapted to its habitat for afforestation. U. pumila has lower E, light compensation point (LCP, dark respiration (Rd, Fv’/Fm’ and electron transport rate (ETR, with higher Ψ, apparent quantum yield (AQY, net photosynthetic rate (Pn and non-photochemical quenching (NPQ, which helps it maintain water balance and utilize weak light to survive at high altitude. Relative low WUE, Ψ, Rd, NPQ, with high E, Pn, Fv’/Fm’ and biomass, imply that P. cathayana is more suitable for shelterbelt forests than for a semi-arid habitat. These three species can adapt to high-altitude conditions by different physiological mechanisms and morphological characteristics, which can provide a theoretical basis for afforestation and forest management in the Qinghai Tibetan Plateau.

  14. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    Science.gov (United States)

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  15. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years.

    Science.gov (United States)

    Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng

    2018-09-01

    Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Vick-Majors, Trista J; Priscu, John C; Yao, Tandong; Kang, Shichang; Liu, Keshao; Cong, Ziyuang; Xiong, Jingbo; Li, Yang

    2017-06-01

    Cryoconite holes, water-filled pockets containing biological and mineralogical deposits that form on glacier surfaces, play important roles in glacier mass balance, glacial geochemistry and carbon cycling. The presence of cryoconite material decreases surface albedo and accelerates glacier mass loss, a problem of particular importance in the rapidly melting Tibetan Plateau. No studies have addressed the microbial community composition of cryoconite holes and their associated ecosystem processes on Tibetan glaciers. To further enhance our understanding of these glacial ecosystems on the Tibetan Plateau and to examine their role in carbon cycling as the glaciers respond to climate change, we explored the bacterial communities within cryoconite holes associated with three climatically distinct Tibetan Plateau glaciers using Illumina sequencing of the V4 region of the 16S rRNA gene. Cryoconite bacterial communities were dominated by Cyanobacteria, Chloroflexi, Betaproteobacteria, Bacteroidetes and Actinobacteria. Cryoconite bacterial community composition varied according to their geographical locations, exhibiting significant differences among glaciers studied. Regional beta diversity was driven by the interaction between geographic distance and environmental variables; the latter contributed more than geographic distance to the variation in cryoconite microbial communities. Our study is the first to describe the regional-scale spatial variability and to identify the factors that drive regional variability of cryoconite bacterial communities on the Tibetan Plateau. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Integrated geophysical study of the northeastern margin of Tibetan Plateau

    Science.gov (United States)

    Shi, L.; Meng, X.; Guo, L.

    2011-12-01

    Tibetan Plateau, the so-called "Roof of the World", is a direct consequence of collision of the Indian plate with the Eurasian plate starting in the early Cenozoic time. The continent-continent collision is still going on. The northeastern margin of Tibetan Plateau is the front part of the Tibetan Plateau extends to mainland and favorable area for studying uplift and deformation of the Tibetan Plateau. In the past decades, a variety of geophysical methods were conducted to study geodynamics and geological tectonics of this region. We assembled satellite-derived free-air gravity anomalies with a resolution of one arc-minute from the Scripps Institution of Oceanography, and reduced them to obtain Complete Bouguer Gravity Anomalies. Then we gridded Complete Bouguer Gravity Anomalies on a regular grid, and subsequently processed them with the preferential continuation method to attenuate high-frequency noise and analyzed regional and residual anomalies. We also calculated tilt-angle derivative of Complete Bouguer Gravity Anomalies to derive clearer geological structures with more details. Then we calculated the depth distribution of the Moho discontinuity surface in this area by 3D density interface inversion. From the results of preliminary processing, we analyzed the main deep faults and geological tectonics in this region. We extracted seven important profiles' data of Complete Bouguer Gravity Anomalies in this area, and then did forward modeling and inversion on each profile with constraints of geological information and other geophysical data. In the future, we will perform 3D constrained inversion of Complete Bouguer Gravity Anomalies in this region for better understanding deep structure and tectonics of the northeastern margin of Tibetan Plateau. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26 2011PY0184), and the National Natural Science Foundation

  18. Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    Piao, S.; Fang, J.; He, J. [Department of Ecology, College of Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871 (China)

    2006-01-15

    Vegetation net primary production (NPP) derived from a carbon model (Carnegie-Ames-Stanford Approach, CASA) and its interannual change in the Qinghai-Xizang (Tibetan) Plateau were investigated in this study using 1982-1999 time series data sets of normalized difference vegetation index (NDVI) and paired ground-based information on vegetation, climate, soil, and solar radiation. The 18-year averaged annual NPP over the plateau was 125 g C m-2 yr-1, decreasing from the southeast to the northwest, consistent with precipitation and temperature patterns. Total annual NPP was estimated between 0.183 and 0.244 Pg C over the 18 years, with an average of 0.212 Pg C (1 Pg = 1015 g). Two distinct periods (1982-1990 and 1991-1999) of NPP variation were observed, separated by a sharp reduction during 1990-1991. From 1982 to 1990, annual NPP did not show a significant trend, while from 1991 to 1999 a marked increase of 0.007 Pg C yr-2 was observed. NPP trends for most vegetation types resembled that of the whole plateau. The largest annual NPP increase during 1991-1999 appeared in alpine meadows, accounting for 32.3% of the increment of the whole region. Changes in solar radiation and temperature significantly influenced NPP variation, suggesting that solar radiation may be one of the major factors associated with changes in NPP.

  19. A canine purgation study and risk factor analysis for echinococcosis in a high endemic region of the Tibetan plateau.

    NARCIS (Netherlands)

    Budke, C.M.; Campos Ponce, M.; Qian, B.F.; Torgerson, P.R.

    2005-01-01

    The Tibetan plateau of western China has been shown to have a very high prevalence of human cystic echinococcosis (CE) caused by Echinococcus granulosus and human alveolar echinococcosis (AE) caused by Echinococcus multilocularis. The domestic dog is suspected to be the primary definitive host for

  20. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Mu, C.

    2017-12-01

    Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing-season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai-Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing-season carbon sink to a weak source, but decreasing feature-level CH4 and N2O flux. Temperature-corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5-fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems, and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important non-carbon permafrost climate feedback.

  1. Qinghai-Tibet Plateau crustal thickness derived from EGM2008 and CRSUT2.0

    Directory of Open Access Journals (Sweden)

    Zhou Hao

    2014-11-01

    Full Text Available Qinghai-Tibet Plateau is the most complex region for crustal thickness inversion, while high-resolution earth gravity model (EGM makes it possible to obtain high precision gravity anomaly, which is a key parameter to depict the Earth’s inner structure in geodesy domain. On the basis of this principle, we calculated the Bouguer gravity anomalies in Qinghai-Tibet Plateau with EGM2008 and SRTM6. 0 by efficient high-degree spherical harmonic synthesis algorithm. In order to obtain the gravity anomaly caused by Moho density mutant, the noises caused by the topography was removed by wavelet details. Then, the crustal thickness was corrected on the basis of CRUST 2. 0 with the deep-large-scale single density interface formula. The inversion result indicates that the crustal thickness in Qinghai-Tibet Plateau is between 50 km and 75 km, which is in correspondence with the recent science research result. Compared with the 2 degree CRUST 2. 0 model, the spatial resolution of crustal thickness in our research can reach 40 arc minutes. In addition, there is a positive relationship between the inversed crustal thickness and topography, which can prove the effectiveness of Airy-Heiskanen isostatic model in gravity reduction.

  2. Three-dimensional framework of vigor, organization, and resilience (VOR) for assessing rangeland health: a case study from the alpine meadow of the Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Li, Yuan-yuan; Dong, Shi-kui; Wen, Lu; Wang, Xue-xia; Wu, Yu

    2013-12-01

    Rangeland health assessments play an important role in providing qualitative and quantitative data about ecosystem attributes and rangeland management. The objective of this study is to test the feasible of a modified model and visualize the health in a three-dimensional model. A modified Costanza model was employed, and eight indicators, including the biomass, biodiversity, and carrying capacity [associated with the vigor, organization, and resilience (VOR)] were applied. An entropy method was also developed to calculate the weight of each indicator, and a three-dimensional framework was applied to visualize the indicators and health index. The conceptual model was demonstrated using data from a case study on the alpine rangeland of the Qinghai-Tibetan Plateau, one of the globally important grassland biomes being severely degraded by natural and human factors. The health indices of four grassland plots at different levels of degradation were calculated using a modified approach to measuring their VOR. The results indicated that the least disturbed plot was relatively healthy compared to the other plots. In addition, the health indices presented in the three-dimensional VOR framework decreased in a consistent manner across the four plots along the disturbance gradients. Such rangeland health assessments should be integrated with management efforts to insure their long-term sustainable use.

  3. Influence of long-range atmospheric transportation (LRAT) on mono-to octa-chlorinated PCDD/Fs levels and distributions in soil around Qinghai Lake, China

    DEFF Research Database (Denmark)

    Han, Ying; Liu, Wenbin; Hansen, Hans Chr. Bruun

    2016-01-01

    Long-range atmospheric transportation (LRAT) of persistent organic pollutants followed by their deposition in cold, arid regions is of wide concern. This problem occurs at Qinghai Lake in the northeastern Tibetan Plateau, a sparsely populated area with extreme weather conditions and little curren...

  4. Greenhouse gases emissions in rivers of the Tibetan Plateau.

    Science.gov (United States)

    Qu, Bin; Aho, Kelly Sue; Li, Chaoliu; Kang, Shichang; Sillanpää, Mika; Yan, Fangping; Raymond, Peter A

    2017-11-29

    Greenhouse gases (GHGs) emissions from streams are important to regional biogeochemical budgets. This study is one of the first to incorporate stream GHGs (CO 2 , CH 4 and N 2 O) concentrations and emissions in rivers of the Tibetan Plateau. With one-time sampling from 32 sites in rivers of the plateau, we found that most of the rivers were supersaturated with CO 2 , CH 4 and N 2 O during the study period. Medians of partial pressures of CO 2 (pCO 2 ), pCH 4 and pN 2 O were presented 864 μatm, 6.3 μatm, and 0.25 μatm respectively. Based on a scaling model of the flux of gas, the calculated fluxes of CO 2 , CH 4 and N 2 O (3,452 mg-C m 2 d -1 , 26.7 mg-C m 2 d -1 and 0.18 mg-N m 2 d -1 , respectively) in rivers of the Tibetan Plateau were found comparable with most other rivers in the world; and it was revealed that the evasion rates of CO 2 and CH 4 in tributaries of the rivers of the plateau were higher than those in the mainstream despite its high altitude. Furthermore, concentrations of GHGs in the studied rivers were related to dissolved carbon and nitrogen, indicating that riverine dissolved components could be used to scale GHGs envision in rivers of the Tibetan Plateau.

  5. Estimates of grassland biomass and turnover time on the Tibetan Plateau

    Science.gov (United States)

    Xia, Jiangzhou; Ma, Minna; Liang, Tiangang; Wu, Chaoyang; Yang, Yuanhe; Zhang, Li; Zhang, Yangjian; Yuan, Wenping

    2018-01-01

    The grassland of the Tibetan Plateau forms a globally significant biome, which represents 6% of the world’s grasslands and 44% of China’s grasslands. However, large uncertainties remain concerning the vegetation carbon storage and turnover time in this biome. In this study, we quantified the pool size of both the aboveground and belowground biomass and turnover time of belowground biomass across the Tibetan Plateau by combining systematic measurements taken from a substantial number of surveys (i.e. 1689 sites for aboveground biomass, 174 sites for belowground biomass) with a machine learning technique (i.e. random forest, RF). Our study demonstrated that the RF model is effective tool for upscaling local biomass observations to the regional scale, and for producing continuous biomass estimates of the Tibetan Plateau. On average, the models estimated 46.57 Tg (1 Tg = 1012g) C of aboveground biomass and 363.71 Tg C of belowground biomass in the Tibetan grasslands covering an area of 1.32 × 106 km2. The turnover time of belowground biomass demonstrated large spatial heterogeneity, with a median turnover time of 4.25 years. Our results also demonstrated large differences in the biomass simulations among the major ecosystem models used for the Tibetan Plateau, largely because of inadequate model parameterization and validation. This study provides a spatially continuous measure of vegetation carbon storage and turnover time, and provides useful information for advancing ecosystem models and improving their performance.

  6. Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change

    Science.gov (United States)

    Zhou, Dingwen; Fan, Guangzhou; Huang, Ronghui; Fang, Zhifang; Liu, Yaqin; Li, Hongquan

    2007-05-01

    The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982 2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.

  7. Sensitivity of LUCC on the Surface Temperature of Tibetan Plateau

    Science.gov (United States)

    Qi, W.; Deng, X.; Wu, F.

    2016-12-01

    The Tibetan Plateau has an important effect on the ecological security in China, even in Asia, which makes the region become the hot spot in recently research. Under the joint influence of global change and human activities, ecosystem destabilizing and the increasing pressure on resources and environment emerge on the Tibetan Plateau, but the potential spatial sensitivity of land use and land cover changes(LUCC) on surface temperature has not been quantitatively analyzed. This study analyzed the mainly types of LUCC, urbanization, grassland degradation, deforestation on Tibetan Plateau along with Representative Concentration Pathways (RCPs) of the Intergovernmental Panel on Climate Change (IPCC). The LUCC in recent decades was first quantitatively analyzed in this study to give the basic fact with a significant increase in temperatures, reduced precipitation and increased evaporation. This study focused on the future spatio-temporal heterogeneity of the temperature and precipitation. Finally, the influencing factors with LUCC on Tibetan Plateau were simulated with the Weather Research and Forecasting (WRF) model, and the sensitivity of different land use types was spatially analyzed with Singular Value Decomposition (SVD). The results indicate that the large-area alpine grassland plays a more important role in alleviating global warming than other vegetation types do. The changes of the landscape structure resulting from the urban expansion play a significant role in intensifying regional temperature increase. In addition, the effects of LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  8. A Comparative Study of the Electrical Structure of Circum Tibetan Plateau Orogenic Belts and its Tectonic Implications

    Science.gov (United States)

    Jin, Sheng; Zhang, Letian; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang; Yin, Yaotian

    2017-04-01

    The Tibetan Plateau, as known as "roof of the world", was created through the on-going continent-continent collision between the Indian and Eurasian plates since 55 Ma. As the process continues, the plateau is growing both vertically and horizontally. The horizontal expansion of the plateau is blocked by the Yangtze block in the east, the Tarim block in the north, and the Ordos block in the northeast, and consequently lead to the formation of the circum Tibetan plateau orogenic belts. To better understand the mechanism behind this process, we conducted a comparative study by collecting 7 magnetotelluric (MT) profiles over the margins of the Tibetan plateau, namely, the INDEPTH 100, 700 and 800 lines in the southern Tibet, the INDEPTH 4000 and 5000 lines across the Altyn Tagh fault on the northern margin of the plateau, as well as other two profiles across the Haiyuan fault and the Longmenshan fault on the northeastern and eastern margins of the plateau deployed under the framework of project SinoProbe. The electrical features of the stable blocks surrounding the Tibetan plateau are generally resistive, while crustal conductive layers are found to be wide spread within the plateau. The southern margin of the Tibetan plateau is characterized by large scale underthrust of the Indian lithosphere beneath the plateau. This intense converging process created the thrust fault system distributed along the southern margin of the Tibetan plateau over 1000 km. Crustal conductive layers discovered in southern Tibet are generally associated with the southward crustal flow that originated from the lower crust within the plateau and exhumed along the thrust belts in the Himalayas. On the eastern margin of the Tibetan plateau, the electrical structures suggest that the Yangtze block wedged into the Tibetan lithosphere and caused decoupling between the crust and upper mantel. Large scale conductors discovered beneath the Songpan-Ganze block reflect that the eastward crustal flow was

  9. Seasonal dynamics of the tick Haemaphysalis tibetensis in the Tibetan Plateau, China.

    Science.gov (United States)

    Liu, M; Li, T; Yu, Z J; Qiu, Z X; Yan, P; Li, Y; Liu, J

    2017-12-01

    The tick Haemaphysalis tibetensis (Acari: Ixodidae) Hoogstraal is an important arthropod vector widespread in the Qinghai-Tibet Plateau, and knowledge of its seasonal dynamics is still poor. The current study investigated the seasonal dynamics of the parasitic and non-parasitic H. tibetensis over a 2-year period from March 2014 to February 2016 in the Tibetan Plateau, China. During this timeframe, non-parasitic ticks were collected weekly by flag-dragging in grassland and shrubland areas, and parasitic ticks were removed weekly from selected sheep. Plateau pikas were captured using traps and examined for immature ticks between May to September 2014. Results suggest that non-parasitic H. tibetensis were mainly distributed in the grassland, and the parasitic adults and nymphs were found mostly on sheep. Larvae were usually found on Plateau pikas and the prevalence of infestation and mean parasitic intensity were 72.1 and 1.81%, respectively. Adults were observed from March to July with the major peak occurring in mid-April. Nymphs were found from March to August and reached a peak in late June. Larvae were collected from April to September, and their numbers peaked in late May. In the parasitic and non-parasitic period, the overall sex ratio of males to females was 1.62 and 1.30, respectively. Results show that H. tibetensis can complete one generation per year, with a population overlap between stages over the spring-summer months. These findings provide additional information on the biology and ecology of H. tibetensis as well as insights on its control in the environment and on sheep. © 2017 The Royal Entomological Society.

  10. Does the climate warming hiatus exist over the Tibetan Plateau?

    OpenAIRE

    Anmin Duan; Zhixiang Xiao

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–ra...

  11. Phylogeography of Schizopygopsis stoliczkai (Cyprinidae) in Northwest Tibetan Plateau area.

    Science.gov (United States)

    Wanghe, Kunyuan; Tang, Yongtao; Tian, Fei; Feng, Chenguang; Zhang, Renyi; Li, Guogang; Liu, Sijia; Zhao, Kai

    2017-11-01

    Schizopygopsis stoliczkai (Cyprinidae, subfamily Schizothoracinae) is one of the major freshwater fishes endemic to the northwestern margin of the Tibetan Plateau. In the current study, we used mitochondrial DNA markers cytochrome b (Cyt b ) and 16S rRNA (16S), as well as the nuclear marker, the second intron of the nuclear beta-actin gene (Act2), to uncover the phylogeography of S. stoliczkai . In total, we obtained 74 haplotypes from 403 mitochondrial concatenated sequences. The mtDNA markers depict the phylogenetic structures of S. stoliczkai , which consist of clade North and clade South. The split time of the two clades is dated back to 4.27 Mya (95% HPD = 1.96-8.20 Mya). The estimated split time is earlier than the beginning of the ice age of Pleistocene (2.60 Mya), suggesting that the northwestern area of the Tibetan Plateau probably contain at least two glacial refugia for S. stoliczkai . SAMOVA supports the formation of four groups: (i) the Karakash River group; (ii) The Lake Pangong group; (iii) the Shiquan River group; (iv) the Southern Basin group. Clade North included Karakash River, Lake Pangong, and Shiquan River groups, while seven populations of clade South share the haplotypes. Genetic diversity, star-like network, BSP analysis, as well as negative neutrality tests indicate recent expansions events of S. stoliczkai . Conclusively, our results illustrate the phylogeography of S. stoliczkai , implying the Shiquan River is presumably the main refuge for S. stoliczkai .

  12. Changes in effective moisture on the Tibetan Plateau during the period 1981-2010

    Science.gov (United States)

    Yin, Y.; Wu, S.; Zhao, D.

    2013-12-01

    Observed evaporative demand has decreased worldwide during the past several decades. This trend is also noted on the Tibetan Plateau, a region that is particularly sensitive to climate change. However, actual evapotranspiration trends and their relationship to drought stress on the Tibetan Plateau are poorly understood. We analyzed the spatiotemporal changes in potential evapotranspiration(PET), actual evapotranspiration(AET) and effective moisture (defined as AET/PET) during 1981-2010. Climate data from 80 meteorological stations on the Tibetan Plateau were compiled for the period 1981-2010. New plant functional types were defined for the Tibetan Plateau and evapotranspiration is simulated by the modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ). The results show regional trends towards decreasing PET and statistically significant increases in AET (p < 0.05) and effective moisture (p < 0.001) during the period 1981-2010. A transition from significant negative to positive PET occurred in 1997. Additionally, a pronounced increase in effective moisture occurred during the period 1981-1997 because of significant decreased PET before 1997.

  13. The relationship between the opening of South China Sea and the formation of the Tibetan Plateau (Invited)

    Science.gov (United States)

    Mo, X.

    2010-12-01

    The South China Sea is one of the largest marginal seas in western Pacific and underwent a complex history. Xu et al.(2004) suggested that the evolution of the South China Sea can be divided into two first order phases: Paleogene (—Early Miocene) rifting and Neogene post- rifting. An oceanic crust was formed during 32-17 Ma. Whether or not the opening of South China Sea were related to Indo-Eurasia collision and the formation of the Tibetan Plateau is one of challenging problem in Earth sciences. With an exception of the southwestern China, the Chinese continent has become an united continent in the Triassic by the Indosinian orogeny. However, the Qinghai-Tibet area in SW China was still an oceanic region, that is, the Neo-Tethys. During the period of 145-100 Ma, the Lhasa terrane collided with the Qiangtang terrane and added to the south margin of the Eurasian continent. On the other hand, the Indian plate subducted underneath the Eurasian continent since Jurassic- Cretaceous. Subsequently, collision between the two continents, India and Eurasia, were completed during 65-40 Ma, and went into a post-collisional stage, characterized by intra-continental movements, including intra-continental subduction, overthrust, strike-slip and so on. The Tibetan Plateau, the highest plateau in the world had been formed by multi-stage uplifts. Several huge strike-slip shear zone such as the Red River Fault and the Altyn were formed during that period. The >1000-km-long Oligocene—Miocene left-lateral Red River shear zone (RRSZ) and the Pliocene—active right-lateral Red River fault (RRF), stretching from SE Tibet to the South China Sea, has been cited as a lithospheric scale strike-slip fault. The age of RRSZ was recently determined no earlier than 31.9-24.2Ma and no later than 21.7 Ma (Searle et al., 2010). Many geologists believe that there possibly be close relationship between the opening of the South China Sea and Indo-Eurasia collision and the formation of the Tibetan

  14. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau.

    Science.gov (United States)

    Zeng, Xingquan; Long, Hai; Wang, Zhuo; Zhao, Shancen; Tang, Yawei; Huang, Zhiyong; Wang, Yulin; Xu, Qijun; Mao, Likai; Deng, Guangbing; Yao, Xiaoming; Li, Xiangfeng; Bai, Lijun; Yuan, Hongjun; Pan, Zhifen; Liu, Renjian; Chen, Xin; WangMu, QiMei; Chen, Ming; Yu, Lili; Liang, Junjun; DunZhu, DaWa; Zheng, Yuan; Yu, Shuiyang; LuoBu, ZhaXi; Guang, Xuanmin; Li, Jiang; Deng, Cao; Hu, Wushu; Chen, Chunhai; TaBa, XiongNu; Gao, Liyun; Lv, Xiaodan; Abu, Yuval Ben; Fang, Xiaodong; Nevo, Eviatar; Yu, Maoqun; Wang, Jun; Tashi, Nyima

    2015-01-27

    The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called "Qingke" in Chinese and "Ne" in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The diploid nature and adaptation to diverse environments of the highland give it unique resources for genetic research and crop improvement. Here we produced a 3.89-Gb draft assembly of Tibetan hulless barley with 36,151 predicted protein-coding genes. Comparative analyses revealed the divergence times and synteny between barley and other representative Poaceae genomes. The expansion of the gene family related to stress responses was found in Tibetan hulless barley. Resequencing of 10 barley accessions uncovered high levels of genetic variation in Tibetan wild barley and genetic divergence between Tibetan and non-Tibetan barley genomes. Selective sweep analyses demonstrate adaptive correlations of genes under selection with extensive environmental variables. Our results not only construct a genomic framework for crop improvement but also provide evolutionary insights of highland adaptation of Tibetan hulless barley.

  15. Fate of Glaciers in the Tibetan Plateau by 2100

    Science.gov (United States)

    Duan, K.

    2017-12-01

    As the third polar on the Earth, the Tibetan plateau holds more than 40,000 glaciers which have experienced a rapid retreat in recent decades. The variability of equilibrium line altitude (ELA) indicates expansion and wastage of glacier directly. Here we simulated the ELA variability in the Tibetan Plateau based on a full surface energy and mass balance model. The simulation results are agreement with the observations. The ELAs have risen at a rate of 2-8m/a since 1970 throughout the Plateau, especially in the eastern Plateau where the ELAs have risen to or over the top altitude of glacier, indicating the glaciers are accelerating to melting over there. Two glaciers, XD glacier in the center of the Plateau and Qiyi glacier in the Qilian Mountain, are chosen to simulate its future ELA variability in the scenarios of RCP2.6, RCP4.5 and RCP 8.5 given by IPCC. The results show the ELAs will arrive to its maximum in around 2040 in RCP2.6, while the ELAs will be over the top altitude of glaciers in 2035-2045 in RCP4.5 and RCP8.5, suggesting the glaciers in the eastern Plateau will be melting until the disappear of the glaciers by the end of 2100.

  16. Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on mtDNA D-Loop Sequences.

    Directory of Open Access Journals (Sweden)

    Jianbin Liu

    Full Text Available The molecular and population genetic evidence of the phylogenetic status of the Tibetan sheep (Ovis aries is not well understood, and little is known about this species' genetic diversity. This knowledge gap is partly due to the difficulty of sample collection. This is the first work to address this question. Here, the genetic diversity and phylogenetic relationship of 636 individual Tibetan sheep from fifteen populations were assessed using 642 complete sequences of the mitochondrial DNA D-loop. Samples were collected from the Qinghai-Tibetan Plateau area in China, and reference data were obtained from the six reference breed sequences available in GenBank. The length of the sequences varied considerably, between 1031 and 1259 bp. The haplotype diversity and nucleotide diversity were 0.992±0.010 and 0.019±0.001, respectively. The average number of nucleotide differences was 19.635. The mean nucleotide composition of the 350 haplotypes was 32.961% A, 29.708% T, 22.892% C, 14.439% G, 62.669% A+T, and 37.331% G+C. Phylogenetic analysis showed that all four previously defined haplogroups (A, B, C, and D were found in the 636 individuals of the fifteen Tibetan sheep populations but that only the D haplogroup was found in Linzhou sheep. Further, the clustering analysis divided the fifteen Tibetan sheep populations into at least two clusters. The estimation of the demographic parameters from the mismatch analyses showed that haplogroups A, B, and C had at least one demographic expansion in Tibetan sheep. These results contribute to the knowledge of Tibetan sheep populations and will help inform future conservation programs about the Tibetan sheep native to the Qinghai-Tibetan Plateau.

  17. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    Science.gov (United States)

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  18. Investigation of junior school student myopia in high-altitude Tibetan areas in Qinghai Province

    OpenAIRE

    Xia Han; Hai-Ling Miao; Dan Huang

    2014-01-01

    AIM: To know the rate of students' myopia in junior school and factors affecting its occurrence in high altitude Tibetan areas in Qinghai, and provide basis for the prevention of myopia. METHODS: Totally 2 209 junior school students were extracted as respondent with stratified cluster sampling method. The gender, age, ethnicity, grade, eye behavior, physical activity and parental visual conditions were collected by self-made questionnaire, and the curvature of the cornea, anterior chamber dep...

  19. Cenozoic Uplift and Climate Change of the Northeast Tibetan Plateau: Evidence from Leaf Wax Stable Isotopic Records

    Science.gov (United States)

    Hou, M.; Zhuang, G.; Wu, M.

    2017-12-01

    Topics about the deformation history and uplift mechanism of Tibetan Plateau have been largely debated in the past few decades. Different geodynamic models present different predictions on the mountain building processes and hence the surface uplift history. For example, one tectonic model suggests a rapid uplift (>1.0 to 2.0 km) of the Tibetan Plateau in the period of ca. 10 to 8 Ma as result of isostatic rebound due to the removal of over-thickened mental lithosphere beneath. Whilst the stepwise uplift model infers that the high topography was growing progressively from south to north with the Northeast Tibetan Plateau being built in the Pliocene to present. In this case, the timing of Cenozoic uplift of Northeast Tibetan Plateau would provide information for distinguishing competing geodynamic processes. The stable isotope based paleoaltimetry holds the key to answering when the high topography was built. Additionally, the evolution of Cenozoic Asian climate was argued to be closely related to the high topography built up on the Tibetan Plateau since the India-Asian collision and/or impacted by the global change. To understand when the high topography was built and how the growth of Tibetan Plateau impacted the climate, we reconstructed the long-term histories of paleohydrology from hinterland and foreland basins in the Northeast Tibetan Plateau. We applied the compound-specific isotope hydrogen analysis to leaf wax n-alkanes (δ2Hn-alk) that are preserved in well-dated stratigraphic series (ca. 24 Ma to the present) in the Northeast Tibetan Plateau. The newly reconstructed δ2Hn-alk supports the inference of high topography on the Northeast Tibetan Plateau was built during the middle to late Miocene. Our inference is consistent with sedimentary and basement rock studies that show fundamental changes in facies and provenance and exhumation history. The new δ2Hn-alk record also reveals that the regional climate became drier since the middle Miocene following the

  20. [Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on MaxEnt model and GIS].

    Science.gov (United States)

    Hu, Zhong-jun; Zhang, Yi-li; Yu, Hai-bin

    2015-02-01

    The impact of climate change on species distribution is a hot issue in biogeography research. This study utilized the constructive species Stipa purpurea as the research object, which was widely distributed in alpine meadow of the Tibetan Plateau, investigated its distribution in the Tibetan Plateau through the field survey and herbarium search, and used MaxEnt model to simulate its historical, current and future distribution trends to analyze its distribution pattern in each historical period and explore the cause of species distribution changes. Research results showed that diversity of Stipa species in alpine grassland of the Tibetan Plateau was high, its main distribution area was the hinterland of the Tibetan Plateau and areas along the Himalaya, and its distribution was strongly affected by precipitation of warmest quarter, precipitation of wettest quarter and annual precipitation. According to the distribution pattern of S. purpurea in the Last Glacial Maximum, and geographical and geological features of the Tibetan Plateau, this paper proposed that: North Tibet core area of South Qiangtang and Ali region of west Himalaya mountainous area were the core area of the potential distribution for S. purpurea, since these regions could provide more suitable habitats for S. purpurea than other regions and be the refugia where the current S. purpurea was migrated and differentiated from. The presence of refugia may contribute to the understanding of related issues of the alpine plants' origin and differentiation in the Tibetan Plateau.

  1. The Evolution of Eastern Himalayan Syntaxis of Tibetan Plateau

    Science.gov (United States)

    Zhang, S.; Wu, T.; Li, M.; Zhang, Y.; Hua, Y.; Zhang, B.

    2017-12-01

    Indian plate has been colliding with Eurasian plate since 50Ma years ago, resulting in the Tethys extinction, crust shortening and Tibetan plateau uplift. But it is still a debate how the Tibetan Plateau material escaped. This study tries to invert the distributions of dispersion phase velocity and anisotropy in Eastern Himalayan Syntaxis (EHS) based on the seismic data. We focused on the seven sub-blocks around EHS region. Sub-block "EHS" represents EHS corner with high velocity anomalies, significantly compressed in the axle and strike directions. Sub-blocks "LSD", "QTB" and "SP-GZB" are located at its northern areas with compressions also, and connected with low-velocity anomalies in both crustal and upper mantle rocks. Sub-block "ICB" is located at its southern area with low velocity anomaly, and connected with Tengchong volcano. Sub-blocks "SYDB" and "YZB" are located at its eastern areas with high velocity anomalies in both crustal and upper mantle rocks. Our results demonstrated that significant azimuthal anisotropy of crust (t£30s) and upper mantle (30s£t£60s). Crustal anisotropy indicates the orogenic belt matched well with the direction of fast propagation, and upper mantle anisotropy represents the lattic-preferred orientation (LPO) of mantle minerals (e.g. olivine and basalt), indicating the features of subducting Indian plate. Besides, Red River fault is a dextral strike fault, controlling the crustal and mantle migration. There is a narrow zone to be the channel flow of Tibetan crustal materials escaping toward Yunnan area. The evolution of EHS seems constrained by gravity isostatic mechanism. Keywords: Tibetan Plateau; Eastern Himalayan Syntaxis; Red River fault; crustal flow; surface wave; anisotropy

  2. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis

    Science.gov (United States)

    Xu, C.; Luo, Z.; Sun, R.; Li, Q.

    2017-12-01

    The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

  3. Coseismic Strain Steps of the 2008 Wenchuan Earthquake Indicate EW Extension of Tibetan Plateau and Increased Hazard South to Epicenter

    Science.gov (United States)

    Fu, G.; Shen, X.; Tang, J.; Fukuda, Y.

    2008-12-01

    The 2008 Wenchuan earthquake (Ms8.0) occurred at the east edge of Tibetan Plateau. It is the biggest seismic disaster in China since the 1976 Tangshan earthquake. To determine the effects of the earthquake on the deformation field of Tibetan Plateau, we collect and analyze continuing strain data of three stations before and after the earthquake in Tibetan Plateau observed by capacitance-type bore-hole strainmeters (Chi, 1985). We collect strain data in NS, EW, NE-SW and NW-NS directions at each borehole. Then we deduce the co-seismic strain steps at time point 14:28 of May 12, 2008 (at this time point the earthquake occurred) with the data before and after the earthquake using the least squares method. Our observation shows that in Tibetan Plateau significant co-seismic strain steps are accompanied with the 2008 Wenchuan earthquake. Extension in EW direction is observed at interior and north Tibetan Plateau which indicates a rapid EW extension of the whole Plateau. Field investigation shows that the 2008 Wenchuan earthquake is a manifestation of eastward growth of the Tibetan Plateau (Dong et al., 2008). Eastwards growth of the Tibetan Plateau results naturally in the extension of the Plateau in EW direction. Our co-seismic strain observation agrees well with the conclusion from surface rupture investigation. The magnitude of co-seismic strain step equals to five times of average year extensional strain rate throughout the plateau interior. Shortening in SE- NW direction is observed at the east edge of the Plateau. As hints that the eastward extension of Tibetan Plateau is resisted by Sichuan rigid basin which increases the potential earthquake hazard around the observation station, manifests the declaration from co-seismic stress changes calculation (Persons et al., 2008). Our observed co-seismic strain steps are in total lager than theoretical calculations of dislocation theories which indicate that magnitude of the great earthquake should be bigger than 7.9. Due

  4. Cenozoic mountain building on the northeastern Tibetan Plateau

    Science.gov (United States)

    Lease, Richard O.

    2014-01-01

    Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.

  5. Aeolian processes during the Holocene in Gannan Region, Eastern Tibetan Plateau

    Science.gov (United States)

    Yang, S.; Cheng, T.; Li, S.; Liang, M.

    2016-12-01

    Aeolian desertification occurring in the Tibetan Plateau has received attention recently for it has become a severe environmental problem by accelerating the grassland degradation and eco-environment damage. The Gannan Region is located in the northeastern Tibetan Plateau with a mean altitude of 3500m. It is highly sensitive to global environmental change and human disturbance. Serious soil erosion and desertification and extensive land degradation have caused heavy eco-environmental impacts. To investigate the evolution of the desertification in Holocene in the Plateau is of great importance for understanding the desertification trend under the global changes in the Tibetan Plateau. Loess and aeolian sands is a key geological archive related to desertification processes and the past environment changes. In this study a typical 8.5m-thick loess-sands profile named MQQ, was selected at the Maqu city. It is situated on the first terrace (T1) of the Yellow River. Detailed accelerator mass spectrometry (AMS) 14C dating of bulk organic matter content has shown the Aeolian sediments of the MQQ section occurring since the early Holocene. the mass-specific frequency-dependent magnetic susceptibility (χfd) and grainsize records show a clear upward increase in the contents of superparamagnetic grains and fine fractions in grain size, which indicates a gradual wetting trend during the Holocene.The sediment rates change from very high in the early Holocene to low values after 8.2 ka. The wetting process can be divided into three steps: 10.0-8.2 ka, 8.2-3.0 ka and 3.0-present. It indicates that the climate in the eastern Tibetan Plateau was dry during the early Holocene. After that the climate was getting wet gradually. The variations of the westerlies and the Asian monsoon may cause the environmental change in this region.

  6. Climate and its change over the Tibetan Plateau and its Surroundings in 1963-2015

    Science.gov (United States)

    Ding, J.; Cuo, L.

    2017-12-01

    Tibetan Plateau and its surroundings (TPS, 23°-43°N, 73°-106°E) lies in the southwest of China and includes Tibet Autonomous Region, Qinghai Province, southern Xinjiang Uygur Autonomous Region, part of Gansu Province, western Sichuan Province, and northern Yunnan Province. The region is of strategic importance in water resources because it is the headwater of ten large rivers that support more than 16 billion population. In this study, we use daily temperature maximum and minimum, precipitation and wind speed in 1963-2015 obtained from Climate Data Center of China Meteorological Administration and Qinghai Meteorological Bureau to investigate extreme climate conditions and their changes over the TPS. The extreme events are selected based on annual extreme values and percentiles. Annual extreme value approach produces one value each year for all variables, which enables us to examine the magnitude of extreme events; whereas percentile approach selects extreme values by setting 95th percentile as thresholds for maximum temperature, precipitation and wind speed, and 5th percentile for minimum temperature. Percentile approach not only enables us to investigate the magnitude but also frequency of the extreme events. Also, Mann-Kendall trend and mutation analysis were applied to analyze the changes in mean and extreme conditions. The results will help us understand more about the extreme events during the past five decades on the TPS and will provide valuable information for the upcoming IPCC reports on climate change.

  7. Four new Gammarus species from Tibetan Plateau with a key to Tibetan freshwater gammarids (Crustacea, Amphipoda, Gammaridae

    Directory of Open Access Journals (Sweden)

    Zhonge Hou

    2018-03-01

    Full Text Available Four new species of the genus Gammarus are described and illustrated from Tibetan Plateau. Gammarus altus sp. n. and G. limosus sp. n. are characterized by pereopods III–IV with a few short setae and uropod III with marginal spines accompanied by short setae. Gammarus kangdingensis sp. n. and G. gonggaensis sp. n. are characterized by pereopods III–IV with long straight setae on posterior margins and inner ramus of uropod III 0.4 times as long as outer ramus. Detailed morphological comparisons with related species are discussed. A key to 15 Gammarus species from the Tibetan Plateau and a map of their distributions are provided.

  8. A longitudinal cline characterizes the genetic structure of human populations in the Tibetan plateau

    Science.gov (United States)

    Peter, Benjamin M.; Basnyat, Buddha; Neupane, Maniraj; Beall, Cynthia M.; Childs, Geoff; Craig, Sienna R.; Novembre, John; Di Rienzo, Anna

    2017-01-01

    Indigenous populations of the Tibetan plateau have attracted much attention for their good performance at extreme high altitude. Most genetic studies of Tibetan adaptations have used genetic variation data at the genome scale, while genetic inferences about their demography and population structure are largely based on uniparental markers. To provide genome-wide information on population structure, we analyzed new and published data of 338 individuals from indigenous populations across the plateau in conjunction with worldwide genetic variation data. We found a clear signal of genetic stratification across the east-west axis within Tibetan samples. Samples from more eastern locations tend to have higher genetic affinity with lowland East Asians, which can be explained by more gene flow from lowland East Asia onto the plateau. Our findings corroborate a previous report of admixture signals in Tibetans, which were based on a subset of the samples analyzed here, but add evidence for isolation by distance in a broader geospatial context. PMID:28448508

  9. Contrast of lithospheric dynamics across the southern and eastern margins of the Tibetan Plateau: a numerical study

    Science.gov (United States)

    Sun, Yujun; Fan, Taoyuan; Wu, Zhonghai

    2018-05-01

    Both of the southern and eastern margins of the Tibetan Plateau are bounded by the cratonic blocks (Indian plate and Sichuan basin). However, there are many differences in tectonic deformation, lithospheric structure and surface heat flow between these two margins. What dynamics cause these differences? With the constraints of the lithospheric structure and surface heat flow across the southern and eastern margins of Tibetan Plateau, we constructed 2-D thermal-mechanical finite-element models to investigate the dynamics across these two margins. The results show that the delamination of mantle lithosphere beneath the Lhasa terrane in Oligocene and the rheological contrast between the Indian and Tibetan crust are the two main factors that control the subduction of the Indian plate. The dynamics across the eastern margin of the Tibetan Plateau are different from the southern margin. During the lateral expansion of the Tibetan Plateau, pure shear thickening is the main deformation characteristic for the Songpan-Ganzi lithosphere. This thickening results in the reduction of geothermal gradient and surface heat flow. From this study, it can be seen that the delamination of the mantle lithosphere and the rheological contrast between the Tibetan Plateau and its bounding blocks are the two main factors that control the lithospheric deformation and surface heat flow.

  10. [Comparisons of prevalence and clinical and environmental characteristics between Tibetan and Han Women with polycystic ovarian syndrome in Tibetan Plateau].

    Science.gov (United States)

    Zhai, K L; Zhuo, G; Chi, H B; Lan, Z

    2017-10-10

    Objective: By the preliminary comparison study on the constituent ratio and clinical characteristics of polycystic ovary syndrome (PCOS) in Tibetan and Han women in Tibetan Plateau, we aimed to find the relevance of its pathogenic factors, and to guide the treatment of PCOS in the plateau region and improve the prognosis. Methods: The general situation and clinical data of 165 patients who were diagnosed with PCOS from December 1, 2015 to November 30, 2016 in the Department of Obstetrics and Gynecology of the People's Hospital of Tibet Autonomous Region were analyzed retrospectively. The prevalence of PCOS among Tibetan and Han women in Tibetan Plateau were compared. Results: (1) A total of 1 520 patients were treated in the Tibet Autonomous Region People's Hospital gynecological endocrinology clinics in one year (Tibetan 865 cases, Han 617 cases, other ethnic groups 38 cases), of which patients with PCOS accounted for 10.9% (165/1520). (2) The incidence of Tibetan PCOS patients with oligomenorrhea, infertility, amenorrhea, acne, hairy, LH/FSH inverted, overweight (BMI≥24), and waist circumference >80 cm were 21.2% (35/165), 20.6% (34/165), 16.4% (27/165), 28.5% (47/165), 17% (28/165), 38.2% (63/165), 23.6% (39/165), and 36.4% (60/165), respectively. The incidence of Han PCOS patients with oligomenorrhea, infertility, amenorrhea, acne, hairy, LH/FSH inverted, overweight (BMI≥24), and waist circumference >80 cm were 7.9% (13/165), 10.3% (17/165), 9.1% (15/165), 15.2% (25/165), 9.7% (16/165), 14.5% (24/165), 10.9% (18/165) and 19.4% (32/165), respectively. The proportion of high testosterone in Tibetan PCOS patients was higher than that in Han PCOS patients with statistically significant. (3) The chief complaint of Tibetan PCOS patients were oligomenorrhea and infertility, and the chief complaint of Han PCOS patients were infertility and amenorrhea. (4) The constituent ratio of outpatient clinics in Nyingchi who were with PCOS at an average elevation of about 3

  11. Numberical Calculations of Atmospheric Conditions over Tibetan Plateau by Using WRF Model

    International Nuclear Information System (INIS)

    Qian, Xuan; Yao, Yongqiang; Wang, Hongshuai; Liu, Liyong; Li, Junrong; Yin, Jia

    2015-01-01

    The wind field, precipitable water vapor are analyzed by using the mesoscale numerical model WRF over Tibetan Plateau, and the aerosol is analyzed by using WRF- CHEM model. The spatial and vertical distributions of the relevant atmospheric factors are summarized, providing truth evidence for selecting and further evaluating an astronomical site. It has been showed that this method could provide good evaluation of atmospheric conditions. This study serves as a further demonstration towards astro-climate regionalization, and provides with essential database for astronomical site survey over Tibetan Plateau. (paper)

  12. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes

    International Nuclear Information System (INIS)

    Lin, Yongjie; Zheng, Mianping; Ye, Chuanyong

    2017-01-01

    The mineral hydromagnesite, Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O, is a common form of hydrated Mg-carbonate in alkaline lakes, yet the processes involved in its formation are not well understood. This study focuses on Dujiali Lake, in the central Qinghai-Tibetan Plateau (QTP), which is one of the few environments on the earth's surface with extensive Holocene precipitation of hydromagnesite. The hydrogeochemistry of surface waters, and the mineralogical, stable isotope (δ 13 C and δ 18 O), and radiogenic isotope content of hydromagnesite deposits were analyzed to investigate formation mechanisms. The chemical composition of surface water around Dujiali Lake evolved from the rock-weathering-type waters of T1 (Ca−Mg−HCO 3 water type) to more concentrated sodic waters of T2 (Na−SO 4 −Cl water type) due to evaporation. XRD results show that the mineralogical composition of samples is pure hydromagnesite. Analysis of oxygen isotopes in the hydromagnesite indicates that supergene formation with authigenic carbonate crystallization from evaporation water is the dominant precipitation process. Combined carbon-oxygen isotope analysis suggests atmospheric CO 2 provided a carbon source for the precipitation of hydromagnesite. These findings suggest that hydromagnesite precipitation at Lake Dujiali is mainly inorganic in nature, and the greenhouse gas, CO 2 , is trapped and stored in the hydromagnesite directly from the atmosphere. AMS radiocarbon dating of samples indicates CO 2 was sequestered between 5845 ± 30 to 6090 ± 25 cal a BP in the Dujiali Lake hydromagnesite deposit. The study contributes to improved understanding of hydromagnesite formation in modern and ancient playas. - Highlights: • The stable isotopes, radiogenic isotope data are firstly obtained from the hydromagnesite deposits of Lake Dujiali in QTP. • Hydromagnesite precipitation at Lake Dujiali is mainly inorganic. • δ 18 O indicates supergene formation with authigenic carbonate

  13. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness

    Directory of Open Access Journals (Sweden)

    X. Yin

    2017-09-01

    Full Text Available Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of  ∼ 5 years (January 2011 to October 2015, which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau

  14. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness

    Science.gov (United States)

    Yin, Xiufeng; Kang, Shichang; de Foy, Benjamin; Cong, Zhiyuan; Luo, Jiali; Zhang, Lang; Ma, Yaoming; Zhang, Guoshuai; Rupakheti, Dipesh; Zhang, Qianggong

    2017-09-01

    Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of ˜ 5 years (January 2011 to October 2015), which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation) was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a

  15. Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai-Tibet Plateau

    International Nuclear Information System (INIS)

    Wu Qingbai; Jiang Guanli; Zhang Peng

    2010-01-01

    Permafrost accounts for about 52% of the total area of the Qinghai-Tibet Plateau, and the permafrost area is about 140 x 10 4 km 2 . The mean annual ground temperature of permafrost ranges from -0.1 to -5 deg. C, and lower than -5 deg. C at extreme high-mountains. Permafrost thickness ranges from 10 to 139.4 m by borehole data, and more than 200 m by geothermal gradients. The permafrost geothermal gradient ranges from 1.1 deg. C/100 m to 8.0 deg. C/100 m with an average of 2.9 deg. C/100 m, and the geothermal gradient of the soil beneath permafrost is about 2.8-8.5 deg. C/100 m with an average of 6.0 deg. C/100 m in the Qinghai-Tibet Plateau. For a minimum of permafrost geothermal gradients of 1.1 deg. C/100 m, the areas of the potential occurrence of methane hydrate (sI) is approximately estimated to be about 27.5% of the total area of permafrost regions in the Qinghai-Tibet Plateau. For an average of permafrost geothermal gradients of 2.9 deg. C/100 m, the areas of the potential occurrence of methane hydrate (sI) is approximately estimated about 14% of the total area of permafrost regions in the Qinghai-Tibet Plateau. For the sII hydrate, the areas of the potential occurrence of sII hydrate are more than that of sI methane hydrate.

  16. a Research on Monitoring Surface Deformation and Relationships with Surface Parameters in Qinghai Tibetan Plateau Permafrost

    Science.gov (United States)

    Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.

    2017-09-01

    The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were

  17. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements

    International Nuclear Information System (INIS)

    Neckel, N; Kropáček, J; Hochschild, V; Bolch, T

    2014-01-01

    Glacier mass changes are a valuable indicator of climate variability and monsoon oscillation on the underexplored Tibetan Plateau. In this study data from the Ice Cloud and Elevation Satellite (ICESat) is employed to estimate elevation and mass changes of glaciers on the Tibetan Plateau between 2003 and 2009. In order to get a representative sample size of ICESat measurements, glaciers on the Tibetan Plateau were grouped into eight climatically homogeneous sub-regions. Most negative mass budgets of − 0.77 ± 0.35 m w.e. a −1 were found for the Qilian Mountains and eastern Kunlun Mountains while a mass gain of + 0.37 ± 0.25 m w.e. a −1 was found in the westerly-dominated north-central part of the Tibetan Plateau. A total annual mass budget of − 15.6 ± 10.1 Gt a −1 was estimated for the eight sub-regions sufficiently covered by ICESat data which represents ∼80% of the glacier area on the Tibetan Plateau. 13.9 ± 8.9 Gt a −1 (or 0.04 ± 0.02 mm a −1 sea-level equivalent) of the total mass budget contributed ‘directly’ to the global sea-level rise while 1.7 ± 1.9 Gt a −1 drained into endorheic basins on the plateau. (paper)

  18. Genetic diversity and sex-bias dispersal of plateau pika in Tibetan plateau.

    Science.gov (United States)

    Zhang, Liangzhi; Qu, Jiapeng; Li, Kexin; Li, Wenjing; Yang, Min; Zhang, Yanming

    2017-10-01

    Dispersal is an important aspect in organism's life history which could influence the rate and outcome of evolution of organism. Plateau pika is the keystone species in community of grasslands in Tibetan Plateau. In this study, we combine genetic and field data to character the population genetic pattern and dispersal dynamics in plateau pika ( Ochotona curzoniae ). Totally, 1,352 individual samples were collected, and 10 microsatellite loci were analyzed. Results revealed that plateau pika possessed high genetic diversity and inbreeding coefficient in a fine-scale population. Dispersal distance is short and restricted in about 20 m. An effective sex-biased dispersal strategy is employed by plateau pika: males disperse in breeding period for mating while females do it after reproduction for offspring and resource. Inbreeding avoiding was shown as the common driving force of dispersal, together with the other two factors, environment and resource. In addition, natal dispersal is female biased. More detailed genetic analyzes are needed to confirm the role of inbreeding avoidance and resource competition as ultimate cause of dispersal patterns in plateau pika.

  19. Interaction of CARD14, SENP1 and VEGFA polymorphisms on susceptibility to high altitude polycythemia in the Han Chinese population at the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Chen, Yu; Jiang, Chunhua; Luo, Yongjun; Liu, Fuyu; Gao, Yuqi

    2016-03-01

    High altitude polycythemia (HAPC) is a serious public health problem among Han Chinese immigrants to the Qinghai-Tibetan Plateau. This study aims to explore the genetic basis of HAPC in the Han Chinese population. 484 male subjects (234 patients and 250 controls) were enrolled in this study. Genotyping was performed for polymorphisms of I/D in ACE, C1772T and G1790A in exon 12 of HIF-1α, rs2567206 in CYP1B1, rs726354 in SENP1, rs3025033 in VEGFA, rs7251432 in HAMP, rs2075800 in HSPA1L and rs8065364 in CARD14. Gene-gene interaction was assessed by multifactor dimensionality reduction. A significant association was seen between CARD14 polymorphism rs8065364 and risk of HAPC development in male Han Chinese, and the C allele of rs8065364 was a risk factor (odds ratio (OR)=1.59, 95% confidence interval (95% CI)=1.21-2.08). Gene-gene interaction analysis indicated that a synergistic relationship existed between rs3025033 and rs8065364 (1.00%), rs3025033 and rs726354 (0.18%), and rs726354 and rs8065364 (0.17%). The combination of rs8065364 in CARD14, rs3025033 in VEGFA and rs726354 in SENP1 was the best model to predict HAPC development in this study (testing accuracy=0.6183, p=0.0010, cross-validated consistency=10/10). Genetic interactions of SNPs in CARD14, SENP1 and VEGFA might represent a functional mechanism in the pathogenesis of HAPC. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau

    Science.gov (United States)

    Yin, Yunhe; Wu, Shaohong; Zhao, Dongsheng

    2013-10-01

    evaporative demand has decreased worldwide during the past several decades. This trend is also noted on the Tibetan Plateau, a region that is particularly sensitive to climate change. However, patterns and trends of evapotranspiration and their relationship to drought stress on the Tibetan Plateau are complex and poorly understood. Here, we analyze spatiotemporal changes in evapotranspiration and effective moisture (defined as the ratio of actual evapotranspiration (ETa) to reference crop evapotranspiration (ETo)) based on the modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ). Climate data from 80 meteorological stations on the Tibetan Plateau were compiled for the period 1981-2010 and future climate projections were generated by a regional climate model through the 21st century. The results show regional trends towards decreasing ETo and statistically significant increases in ETa (p stress, because of generally increased effective moisture. Future regional differences are most pronounced in terms of effective moisture, which shows notable increases in the northwestern plateau and decreases in the southeastern plateau. Moreover, the reduced magnitude of effective moisture is likely to intensify in the long term, due mainly to increased evaporative demand.

  1. Phased uplift of the northeastern Tibetan Plateau inferred from a pollen record from Yinchuan Basin, northwestern China.

    Science.gov (United States)

    Li, Xinling; Hao, Qingzhen; Wei, Mingjian; Andreev, Andrei A; Wang, Junping; Tian, Yanyan; Li, Xiaolei; Cai, Maotang; Hu, Jianmin; Shi, Wei

    2017-12-21

    The uplift of the Tibetan Plateau (TP) significantly affected both regional and global climates. Although there is evidence that the Tibetan Plateau experienced uplift during the Quaternary, the timing and amplitude are poorly constrained. However, the increased availability of long sedimentary records of vegetation change provides an opportunity to reconstruct the timing of the uplift. Here, we present a well-dated, high-resolution pollen record for the last 2.6 Ma from the Yinchuan Basin, which was incised by the Yellow River with its source in the northeastern Tibetan Plateau. Variations in the Artemisia/Chenopodiaceae (A/C) ratio of the reveal changes in moisture conditions in the Yinchuan Basin during glacial-interglacial cycles, as well as a gradual long-term aridification trend which is consistent with progressive global cooling. However, fluctuations in the percentages of Picea and Abies differ from those of the A/C ratio and we propose that they reflect changes in the vegetation and environment of high elevation areas. The Picea and Abies records reveal two phases of increased representation, at 2.1 and 1.2 Ma, which may indicate phases in the uplift of the northeastern Tibetan Plateau. Thus, they provide independent evidence for the timing of the uplift of the Tibetan Plateau during the Quaternary.

  2. Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai-Tibetan Plateau?

    Science.gov (United States)

    Zhao, Zhenzhen; Dong, Shikui; Jiang, Xiaoman; Zhao, Jinbo; Liu, Shiliang; Yang, Mingyue; Han, Yuhui; Sha, Wei

    2018-06-01

    Fencing and grass plantation are two key interventions to preserve the degraded grassland on the Qinghai-Tibetan Plateau (QTP). Climate warming and N deposition have substantially affected the alpine grassland ecosystems. However, molecular composition of soil organic carbon (SOC), the indicator of degradation of SOC, and its responses to climate change are still largely unclear. In this study, we conducted the experiments in three types of land use on the QTP: alpine meadow (AM), alpine steppe (AS), and cultivated grassland (CG) under 2°C climatic warming, 5 levels of nitrogen deposition rates at 8, 24, 40, 56, and 72kg N ha -1 year -1 , as well as a combination of climatic warming and N deposition (8kg N ha -1 year -1 ). Our findings indicate that all three types of land use were dominated by O-alkyl carbon. The alkyl/O-alkyl ratio, aromaticity and hydrophobicity index of the CG were larger than those of the AM and AS, and this difference was generally stable under different treatments. Most of the SOC in the alpine grasslands was derived from fresh plants, and the carbon in the CG was more stable than that in the AM and AS. The compositions of all the alpine ecosystems were stable under short-term climatic changes, suggesting the short-term climate warming and nitrogen deposition likely did not affect the molecular composition of the SOC in the restored grasslands. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model.

    Science.gov (United States)

    Ma, Baibing; Sun, Jian

    2018-02-21

    The ecosystems across Tibetan Plateau are changing rapidly under the influence of climate warming, which has caused substantial changes in spatial and temporal environmental patterns. Stipa purpurea, as a dominant herbsage resource in alpine steppe, has a great influence on animal husbandry in the Tibetan Plateau. Global warming has been forecasted to continue in the future (2050s, 2070s), questioning the future distribution of S. purpurea and its response to climate change. The maximum entropy (MaxEnt) modeling, due to its multiple advantages (e.g. uses presence-only data, performs well with incomplete data, and requires small sample sizes and gaps), has been used to understand species environment relationships and predict species distributions across locations that have not been sampled. Annual mean temperature, annual precipitation, temperature seasonality, altitude, and precipitation during the driest month, significantly affected the distribution of S. purpurea. Only 0.70% of the Tibetan Plateau area included a very highly suitable habitat (habitat suitability [HS] = 0.8-1.0). Highly suitable habitat (HS = 0.6-0.8), moderately suitable habitat (HS = 0.4-0.6), and unsuitable habitat (HS = 0.2-0.4) occupied 6.20, 14.30 and 22.40% of the Tibetan Plateau area, respectively, and the majority (56.40%) of the Tibetan Plateau area constituted a highly unsuitable habitat (HS = 0-0.2). In addition, the response curves of species ecological suitability simulated by generalized additive model nearly corresponded with the response curves generated by the MaxEnt model. At a temporal scale, the habitat suitability of S. purpurea tends to increase from the 1990s to 2050s, but decline from the 2050s to 2070s. At a spatial scale, the future distribution of S. purpurea will not exhibit sweeping changes and will remain in the central and southeastern regions of the Tibetan Plateau. These results benefit the local animal husbandry and provide evidence for establishing

  4. Modern limnology of two lakes in the Tibetan Plateau - evidence from in-situ monitoring

    Science.gov (United States)

    Wang, M.; Li, X.; Lei, L.; He, Y.; Hou, J.

    2013-12-01

    The mechanisms of climate change in the Tibetan Plateau, known as the Third Pole, receive more and more attention due to its unique geographic location and the influence of multiple climate systems. Among the paleoclimate archives, widespread lakes provide abundant information on past climate changes and have been investigated for decades. Though many high-quality paleolimnological records have been reported in the Tibetan Plateau, little is known about the modern limnological processes in most Tibetan lakes as most lakes are difficult to access and not ready for long-term monitoring. We have installed a series of temperature data logger at different water levels in two Tibetan lakes, Bangong Co and Dagze Co in July 2012 to monitor hourly variability of temperature profile. Bangong Co (33.5°N, 79.8°E, 4245 m asl) is a freshwater lake (salinity ~0.5 g/L) in the westernmost Tibetan Plateau, receiving melt water from mountain glaciers in the basin. Dagze Co (31.9°N, 87.5°E, 4470 m asl) is saline lake (salinity ~15 g/L) in the central Tibetan Plateau, mostly fed by precipitation. In combination with the climate data in the nearby weather stations, we wish to understand the modern limnological processes in the two lakes and their potential effect on the lake biology, sedimentation, and sedimentary biomarkers. Based on the data collected for the first calendar year (Jul 2012 ~ Aug 2013), we anticipate to understand: 1) the influence of climate on the hydrological processes in high elevation lakes; 2) the difference in the metalimnion in meltwater-fed lake (Bangong Co) and precipitation-fed lake (Dagze Co) and their potential effect on the lake biology; 3) the difference in the spring turnover and fall turnover and the effect of meltwater and salinity.

  5. Impact of Cryosphere Hydrological Changes on the River Runoff in the Tibetan Plateau

    Science.gov (United States)

    Wang, Y.; Yang, D.

    2015-12-01

    The Tibetan Plateau is the headwaters of many major rivers in Asia, the change in streamflow is significant for social and economic development and natural ecology in the middle and lower reaches. Located in the alpine region, streamflow in the plateau is mainly affected by the cryosphere hydrological processes. Due to global warming in recent decades, the Tibetan Plateau is experiencing glaciers shrinking and permafrost degradation. Accelerated glacier melt led to the increasing meltwater, thus affecting the streamflow. Permafrost is an important factor in stabilizing the water cycle and streamflow, the ecological degradation and the significant changes of rivers, lakes, swamps, wetlands and other hydrological environment in recent decades in the Tibetan plateau is closely related to permafrost degradation. Therefore, it is important to explore the impact of cryosphere hydrological changes on the streamflow for the future water management. This study uses a method of base flow separation and a stepwise multiple regression model to investigate the reasons for the runoff changes in different regions of the Tibetan Plateau during 1960-2000. The contribution of glacier melt to annual runoff is particularly estimated to explore the possible influences of soil freezing and thawing on annual runoff changes. The results show an increasing trend of the annual runoff in the upstream of Nujiang River, Lancang River and Qilian Mountains, dominated by the increasing of base flow; and a decreasing trend of the runoff in the upper reach of the Yarlung Zangbo River, Yellow River and Yangtze River, dominated by the reduction of quick flow. Change in the amount of runoff was mainly due to change in precipitation. Rising temperature accelerates the melting of glaciers and increases the summer quick flow. In addition, rising temperature may reduce the quick flow and increase the base flow due to change of the active permafrost layers, which leads to the increase of soil water storage

  6. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    Science.gov (United States)

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.

  7. Current deformation in the Tibetan Plateau: a stress gauge in the large-scale India-Asia collision tectonics

    Science.gov (United States)

    Capitanio, F. A.

    2017-12-01

    The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.

  8. Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: new insights from Nd-Sr isotopic composition and size distribution

    Science.gov (United States)

    Dong, Z.

    2016-12-01

    This study presents the Nd-Sr isotopic compositions and size distributions of cryoconite deposited on the glaciers at different locations on the Tibetan Plateau, in order to trace its source areas and the provenance of long-range transported (LRT) Asian dust on the Tibetan Plateau. The result of SEM-EDS analysis indicated that mineral dust particles were dominant in the cryoconite. Most of the cryoconite samples from the Tibetan Plateau indicated different Sr and Nd isotopic composition compared with sand from large deserts (e.g., the Taklimakan and Qaidam deserts). Some cryoconite samples showed very similar Nd-Sr isotopic ratios compared with those of nearby glacier basins (e.g., at Laohugou Glacier No.12, Dongkemadi Glacier and Shiyi Glacier), indicating the potential input of local crustal dust to cryoconite. The volume-size distribution for the cryoconite particles also indicated bi-modal distribution graphs with volume median diameters ranging from 0.57 to 20 μm and from 20 to 100 μm, demonstrating the contribution of both LRT Asian dust and local dust inputs to cryoconite. Based on the particle size distribution, we calculated a mean number ratio of local dust contribution to cryoconite ranging from 0.7% (Baishui Glacier No.1) to 17.6% (Shiyi Glacier) on the Tibetan Plateau. In general, the marked difference in the Nd-Sr isotopic ratios of cryoconite compared with those of large deserts probably indicates that, materials from the western deserts have not been easily transported to the hinterland of Tibetan Plateau by the Westerlies under the current climatic conditions, and the arid deserts on the Tibetan Plateau are the most likely sources for cryoconite deposition. The resistance of the Tibetan Plateau to the Westerlies may have caused such phenomena, especially for LRT eolian dust transported over the Tibetan Plateau. Thus, this work is of great importance in understanding the large scale eolian dust transport and climate over the Tibetan Plateau.

  9. Shared and unique signals of high-altitude adaptation in geographically distinct Tibetan populations.

    Directory of Open Access Journals (Sweden)

    Tana Wuren

    Full Text Available Recent studies have used a variety of analytical methods to identify genes targeted by selection in high-altitude populations located throughout the Tibetan Plateau. Despite differences in analytic strategies and sample location, hypoxia-related genes, including EPAS1 and EGLN1, were identified in multiple studies. By applying the same analytic methods to genome-wide SNP information used in our previous study of a Tibetan population (n = 31 from the township of Maduo, located in the northeastern corner of the Qinghai-Tibetan Plateau (4200 m, we have identified common targets of natural selection in a second geographically and linguistically distinct Tibetan population (n = 46 in the Tuo Tuo River township (4500 m. Our analyses provide evidence for natural selection based on iHS and XP-EHH signals in both populations at the p<0.02 significance level for EPAS1, EGLN1, HMOX2, and CYP17A1 and for PKLR, HFE, and HBB and HBG2, which have also been reported in other studies. We highlight differences (i.e., stratification and admixture in the two distinct Tibetan groups examined here and report selection candidate genes common to both groups. These findings should be considered in the prioritization of selection candidate genes in future genetic studies in Tibet.

  10. Thickening the outer margins of the Tibetan Plateau: The role of crustal shortening

    Science.gov (United States)

    Lease, R. O.; Burbank, D. W.

    2012-12-01

    One of the most direct consequences of the collision of two buoyant continents is large-scale crustal thickening that results in the upward and outward growth of high terrain. As the stronger Indian continent has collided with weaker Asia over at least the past 50 Myr, widespread crustal thickening has occurred over an area that is approximately 2.5 million km^2 at present. The resultant Tibetan crust is the thickest observed on Earth today with an average thickness of 65 km and a maximum that may reach 90 km in places. The mechanisms by which Tibetan crust has thickened, however, as well as the timing and distribution of these mechanisms across the plateau, remain debatable. Two of the most popular mechanisms for thickening the crust beneath the margins of the Tibetan Plateau are: 1) pure shear with faulting and folding in the upper crust and horizontal shortening below; and 2) flow and inflation of lower or middle crust without significant shortening of the upper crust. To help discriminate between the relative contributions of these two mechanisms, well-constrained estimates of upper crustal shortening are needed. Here we document the Cenozoic shortening budget across the northeastern Tibetan Plateau margin near 36°N 102.5°E with several 100- to 145-km-long balanced cross sections. Thermochronological and magnetostratigraphic data indicate that modest NNE-SSW shortening began in middle Eocene time, shortly after initial India-Asia collision. Accelerated east-west shortening, however, did not commence until ~35 Myr later. A five-fold acceleration in shortening rates in middle Miocene-to-Recent time accounts for more than half of the total Cenozoic crustal shortening and thickening in this region. Overall, the balanced cross sections indicate 11 ± 2 % east-west shortening since middle Miocene time, and ~9 ± 2 % NNE-SSW shortening between middle Eocene and middle Miocene times. Given the present-day crustal thickness of 56 ± 4 km in northeastern Tibet, crustal

  11. A preliminary study of the heating effect of the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Yonghui Yao

    Full Text Available The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect of the plateau and its implications. This paper firstly collects climate data (2001-2007 from 109 observation stations and MODIS-based estimated monthly mean temperature data in the plateau and the neighboring Sichuan Basin, and conducts correlation and simple linear regression to reveal the altitudinal pattern of temperature. Then, according to the linear relationships of temperature and altitude for each month, it compares air temperature differences on the same elevation between the main plateau and surrounding mountains and the Sichuan Basin so as to quantify the heating effect and discuss its implication on timberline of the plateau. The results show that: 1 the heating effect of the plateau is significant. The temperature of the main plateau area was higher than that of free air on the same elevation above the neighboring areas; on the elevation of 4500 m (the main plateau, temperature is 1-6°C higher in the main Plateau than over the Sichuan Basin for different months and 5.9-10.7°C higher than in the Qilian Mountains in the northeastern corner of the plateau. 2 Even at altitudes of 5000-6000 m in the main Plateau, there are 4 months with a mean temperature above 0°C. The mean temperature of the warmest month (July can reach 10°C at about 4600-4700 m. This may help explain why the highest timberline in the northern hemisphere is on the southeastern Tibetan Plateau.

  12. Extensional Seismogenic Stress and Tectonic Movement on the Central Region of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiren Xu

    2009-01-01

    Full Text Available Various earthquake fault types, mechanism solutions and stress fields, as well as GPS and geothermal data are analyzed for the study of the crustal movements on the Tibetan plateau and their tectonic implications. The results show that a lot of the normal faulting type-event concentrated at altitudes greater than 4000 m on the central Tibetan plateau. The altitudes concentrating normal faulting type-events can be zoned two parts: the western part, the Lhasa block, and the eastern part, the Qiangtang-Changdu region. The azimuths of T-axes are in a general E-W direction in the Lhasa block and NW-SE or NNW-SSE in the Qiangtang-Changdu region at the altitudes of the Tibetan plateau. The tensional stresses in E-W direction and NW-SE direction predominate normal faulting earthquake occurrence in the Lhasa block and the Qiangtang-Changdu region, respectively. The slipping displacements of the normal-faulting-type events have great components in near E-W direction and NW-SE direction in the Lhasa block and the Qiangtang-Changdu region, respectively. The extensions are probably an eastward or southeastward extensional motion, being mainly tectonic activity phenomena in the plateau altitudes. The extensional motions due to normal-fault earthquakes are important tectonic activity regimes on the high altitudes of the plateau. The easterly crustal extensions on the plateau are attributable to the gravitational collapse of the high plateau and eastward extrusion of hotter mantle materials beneath the eastern boundary of the plateau. Numbers of thrust-fault and strike-slip-fault earthquakes with strong compressive stress in a general NNE-SSW direction occur on the edges of the plateau.

  13. Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau.

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Chen, Pengfei; Zhang, Guoshuai; Tripathee, Lekhendra

    2013-08-01

    In May 2009, snowpit samples were collected from a high-elevation glacier in the Mt. Nyainqêntanglha region on the southern Tibetan Plateau. A set of elements (Al, V, Cr, Mn, Co, Ni, Cu, Zn, Cd, Hg and Pb) was analyzed to investigate the concentrations, deposition fluxes of trace elements, and the relative contributions from anthropogenic and natural sources deposited on the southern Tibetan Plateau. Concentrations of most of the trace elements in snowpit samples from the Zhadang glacier are significantly lower than those examined from central Asia (e.g., eastern Tien Shan), with higher concentrations during the non-monsoon season than during the monsoon season. The elements of Al, V, Cr, Mn, Co, and Ni display low crustal enrichment factors (EFs), while Cu, Zn, Cd, Hg, and Pb show high EF values in the snow samples, suggesting anthropogenic inputs are potentially important for these elements in the remote, high-elevation atmosphere on the southern Tibetan Plateau. Together with the fact that the concentration levels of such elements in the Mt. Nyainqêntanglha region are significantly higher than those observed on the south edge of the Tibetan Plateau, our results suggest that the high-elevation atmosphere on the southern Tibetan Plateau may be more sensitive to variations in the anthropogenic emissions of atmospheric trace elements than that in the central Himalayas. Moreover, the major difference between deposition fluxes estimated in our snow samples and those recently measured at Nam Co Station for elements such as Cr and Cu may suggest that atmospheric deposition of some of trace elements reconstructed from snowpits and ice cores could be grossly underestimated on the Tibetan Plateau. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Eocene to Miocene Out-of-Sequence Deformation in the Eastern Tibetan Plateau: Insights From Shortening Structures in the Sichuan Basin

    Science.gov (United States)

    Tian, Yuntao; Kohn, Barry P.; Qiu, Nansheng; Yuan, Yusong; Hu, Shengbiao; Gleadow, Andrew J. W.; Zhang, Peizhen

    2018-02-01

    A distinctive NNE trending belt of shortening structures dominates the topography and deformation of the eastern Sichuan Basin, 300 km east of the Tibetan Plateau. Debate continues as to whether the structures resulted from Cenozoic eastward growth of the Tibetan Plateau. A low-temperature thermochronology (AFT and AHe) data set from four deep boreholes and adjacent outcrops intersecting a branch of the shortening structures indicates distinctive differential cooling at 35-28 Ma across the structure, where stratigraphy has been offset vertically by 0.8-1.3 km. This result forms the first quantitative evidence for the existence of a late Eocene-Oligocene phase of shortening in the eastern Sichuan Basin, synchronous with the early phase of eastward growth and extrusion of the Tibetan Plateau. Further, a compilation of regional Cenozoic structures reveals a Miocene retreat of deformation from the foreland basin to the hinterland areas. Such a tectonic reorganization indicates that Eocene to Miocene deformation in the eastern Tibetan Plateau is out-of-sequence and was probably triggered by enhanced erosion in the eastern Tibetan Plateau.

  15. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 徐柏青; 蒲健辰

    2001-01-01

    Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.

  16. Observation and calculation of the solar radiation on the Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu Jiandong; Liu Jingmiao; Linderholm, Hans W.; Chen Deliang; Yu Qiang; Wu Dingrong; Haginoya, Shigenori

    2012-01-01

    Highlights: ► Five years of continuous solar-radiation observations on the Tibetan Plateau were analyzed. ► Eight solar models were calibrated and validated in this highland region. ► A strategy for calculating solar radiation on the Tibetan Plateau was presented. - Abstract: Distribution of solar radiation is vital to locate the most suitable regions for harvesting solar energy, but solar radiation is only observed at few stations due to high costs and difficult maintenance. From 2001 to 2005, a set of pyranometer instruments were set up in Gaize, on the Tibetan Plateau, to test the hypothesis of high solar-radiation levels in this region, and find a suitable method for estimating the radiation. Over the 5-year observation period, the average daily radiation was 21 MJ m −2 day −1 with maximum daily values of 27 MJ m −2 day −1 occurring in June and minimum values of 14 MJ m −2 day −1 in December, which is much higher than those measured in other regions at similar latitudes. The observational data were used to validate a set of radiation models: five sunshine based and three temperature based. The results showed that of the five sunshine-based models, a newly developed “comprehensive” model performed the best, but that the “vapor revised Angstrom model” was recommended to use for its simplicity and easy operation. The temperature-based models performed worse than the sunshine-based ones, where the Wu model is to be preferred if a temperature-based model is the only option. Moreover, it was shown that when estimating the solar radiation based on time-dependent coefficients, consideration of the seasonal variation of the coefficients has little predictive value and is thus unnecessary. Based on the results of this study, a strategy for the calculation of solar radiation on the Tibetan Plateau was made for potential users.

  17. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.

    Science.gov (United States)

    Tian, Li; Chen, Jiquan; Zhang, Yangjian

    2017-01-01

    The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500-5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo.

  18. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Li Tian

    Full Text Available The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS and growing season (GS, respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500-5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo.

  19. Sources, atmospheric transport and deposition mechanism of organochlorine pesticides in soils of the Tibetan Plateau.

    Science.gov (United States)

    Chen, Laiguo; Feng, Qianhua; He, Qiusheng; Huang, Yumei; Zhang, Yu; Jiang, Guo; Zhao, Wei; Gao, Bo; Lin, Kui; Xu, Zhencheng

    2017-01-15

    Because of mountain cold-trapping, the soil in the Tibetan Plateau may be an important global sink of organochlorine pesticides (OCPs). However, there are limited data on OCPs in the soils of the Tibetan Plateau. In addition, the atmospheric transport and deposition mechanisms of OCPs also need to be further studied. In this study, the sampling area covered most regions of the Tibetan Plateau. The detection frequencies of ΣChlordane (sum of trans-chlordane, cis-chlordane and oxychlordane), HCB, ΣNonachlor (sum of trans- and cis-nonachlor), DDTs, ΣEndo (sum of endosulfan-I, endosulfan-II and endosulfate), aldrin, HCHs, ΣHeptachlor (sum of heptachlor and heptachlor epoxide), mirex and dieldrin were 100%, 98.3%, 96.6%, 94.8%, 89.7%, 87.9%, 62.1%, 55.2%, 32.8% and 6.9%, respectively. DDTs (with arithmetic mean values of 1050ngkg -1 dw) and HCHs (393ngkg -1 ) were the principal OCPs in cultivated soils, whereas ΣEndo (192ngkg -1 ) and ΣChlordane (152ngkg -1 ) were the principal OCPs in non-cultivated soils. Local use of DDTs, dicofol and HCHs may be an important source of OCP accumulation in the soil of the Tibetan Plateau. Aldrin and endosulfan are considered to be good indicators for studying atmospheric transport and deposition of OCPs from South Asia and Southeast Asia. Two zones with high OCP levels were found in the southeast and northwest of the Tibetan Plateau. The zones have dissimilar pollution sources of OCPs and are influenced by different factors that affect their precipitation scavenging efficiency. The amount of precipitation was the dominant factor in the southeast, whereas large differences in temperature and wind speed were the dominant factors in the northwest. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  1. Contributions of air pollution and climate warming to tufa wetland degradation in Jiuzhaigou National Nature Reserve, eastern rim of the Qinghai-Tibetan Plateau, China

    Science.gov (United States)

    Qiao, X.; Tang, Y.

    2017-12-01

    Massive deposition of calcium carbonate in ambient temperature waters forms magnificent tufa wetlands, many of which are designated as protected areas and are popular tourist destinations. There is a tufa wetland belt along the Eastern Rim of the Qinghai-Tibetan Plateau (ERQTP), and many of them are experiencing degradation, such as nutrient enrichment and tufa degradation. Meanwhile, there is also an air pollution belt in the ERQTP. This study was made to understand the correlation of tufa wetland degradation with climate change and air pollution for Jiuzhaigou National Nature Reserve (hereafter Jiuzhaigou). Atmospheric changes were first studied. The results show that annual mean air temperature increased by 1.2oC from 1951 to 2014. Anthropogenic emissions contributed to over 90% annual wet deposition fluxes of reactive sulfur and nitrogen and caused acid rain (pHpollutants. Then, the impacts of air pollution and climate warming on tufa wetlands were further investigated. We found that precipitation was calcite-unsaturated so it could dissolve exposed tufa and considerably reduce tufa deposition rate and even cause tufa dissolution in shallow waters. These effects enhanced as precipitation pH decreased. Annual volume-weighted mean concentration of reactive nitrogen in wet deposition and runoff were 26.1 and 14.8 µmol L-1, respectively, both exceeding China's national standard of total nitrogen in runoff for nature reserves (14.3 µmol L-1) and this suggested a nitrogen fertilization effect of wet deposition on green algae. As water temperature is the limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5 cm) of runoff (with a depthpollutants have contributed to tufa wetland degradation in Jiuzhaigou, but in order to better quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa wetland evolution.

  2. Spatiotemporal drought variability of the eastern Tibetan Plateau during the last millennium

    Science.gov (United States)

    Deng, Yang; Gou, Xiaohua; Gao, Linlin; Yang, Meixue; Zhang, Fen

    2017-09-01

    Tibetan Plateau is the headwater region of many major Asian rivers and very susceptive to climate change. Therefore, knowledge about climate and its spatiotemporal variability in this area is very important for ecological conservation, water resource management and social development. The aim of this study was to reconstruct and analyze the hydroclimate variation on eastern Tibetan Plateau (ETP) over many centuries and explore possible forcing factors on regional hydroclimate variability. We used 118 tree-ring chronologies from ETP to reconstruct the gridded May-July Standardized Precipitation Evapotranspiration Index for the ETP over the last millennium. The reconstruction was developed using an ensemble point-by-point reconstruction method, and a searching region method was used to locate the candidate tree-ring chronologies. The reconstructions have nicely captured the spatial and temporal features of the regional drought variation. The drought variations in south and north of 32.5°N are notably different, which may be related to the divergence influence of North Atlantic Oscillation on the climate systems in the south and north, as well as differences in local climate. Spectral analysis and series comparison suggest that the drought variation in the northeastern Tibetan Plateau has been possibly influenced by solar activity on centurial and longer time scale.

  3. Surveillance of Echinococcus isolates from Qinghai, China.

    Science.gov (United States)

    Ma, Junying; Wang, Hu; Lin, Gonghua; Zhao, Fang; Li, Chao; Zhang, Tongzuo; Ma, Xiao; Zhang, Yongguo; Hou, Zhibin; Cai, Huixia; Liu, Peiyun; Wang, Yongshun

    2015-01-15

    Echinococcosis is highly endemic over large parts of the Qinghai-Tibet Plateau (QTP), China. Based on a large number of samples, we present data on the current presence, host distribution, and genetic diversity of Echinococcus in the Qinghai Province, located in the northeastern corner of the QTP and constituting >25% of the area of the plateau. We used 521 samples (including 451 newly collected samples and 70 samples from our previous study) from humans, yaks, sheep, goats, dogs, fox, plateau pikas, and voles in 36 counties, and genotyped them using the mitochondrial DNA marker cytochrome oxidase subunit I (cox1) gene and the maximum parsimony and Bayesian reconstruction methods. Based on the 792 bp sequence matrix, we recorded 177 variable sites; 157 were parsimony-informative. A total of 105 haplotypes (H1-H105) were detected, of which H1-H15 and H90-H104, H16-H17, H18-H89, and H105 belonged to Echinococcus shiquicus, Echinococcus multilocularis, Echinococcus granulosus, and Echinococcus canadensis, respectively. Our results showed that, (i) the Qinghai Province was under a high burden of Echinococcus epidemiology; (ii) E. granulosus was the main echinococcosis threat to the local people, and the followed is E. multilocularis; (iii) there are a considerable number of haplotypes shared by domestic animals (sheep, yaks, and dogs) and humans, demonstrating the close relationship between human and domestic animals epidemiology; (iv) the threat of E. shiquicus on humans and livestock can be mostly ignored, while the infection risk of E. canadensis echinococcosis should not be neglected. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2011-03-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  5. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China.

    Science.gov (United States)

    Dong, Zhiwen; Kang, Shichang; Qin, Xiang; Li, Xiaofei; Qin, Dahe; Ren, Jiawen

    2015-10-01

    Trace element pollution resulting from anthropogenic emissions is evident throughout most of the atmosphere and has the potential to create environmental and health risks. In this study we investigated trace element deposition in the snowpacks at two different locations in the northern Tibetan Plateau, including the Laohugou (LHG) and the Tanggula (TGL) glacier basins, and its related atmospheric pollution information in these glacier areas, mainly focusing on 18 trace elements (Li, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Nb, Mo, Cd, Sb, Cs, Ba, Tl, and Pb). The results clearly demonstrate that pronounced increases of both concentrations and crustal enrichment factors (EFs) are observed in the snowpack at the TGL glacier basin compared to that of the LHG glacier basin, with the highest EFs for Sb and Zn in the TGL basin, whereas with the highest EFs for Sb and Cd in the LHG basin. Compared with other studies in the Tibetan Plateau and surrounding regions, trace element concentration showed gradually decreasing trend from Himalayan regions (southern Tibetan Plateau) to the TGL basin (central Tibetan Plateau), and to the LHG basin (northern Tibetan Plateau), which probably implied the significant influence of atmospheric trace element transport from south Asia to the central Tibetan Plateau. Moreover, EF calculations at two sites showed that most of the heavy metals (e.g., Cu, Zn, Mo, Cd, Sb, and Pb) were from anthropogenic sources and some other elements (e.g., Li, Rb, and Ba) were mainly originated from crustal sources. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm and CALIOP/CALIPSO transect showed significant influence of atmospheric pollutant transport from south Asia to the Tibetan Plateau, which probably caused the increased concentrations and EFs of trace element deposition in the snowpack on the TGL glacier basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    Science.gov (United States)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  7. Research on Time Selection of Mass Sports in Tibetan Areas Plateau of Gansu Province Based on Environmental Science

    Science.gov (United States)

    Gao, Jike

    2018-01-01

    Through using the method of literature review, instrument measuring, questionnaire and mathematical statistics, this paper analyzed the current situation in Mass Sports of Tibetan Areas Plateau in Gansu Province. Through experimental test access to Tibetan areas in gansu province of air pollutants and meteorological index data as the foundation, control related national standard and exercise science, statistical analysis of data, the Tibetan plateau, gansu province people participate in physical exercise is dedicated to providing you with scientific methods and appropriate time.

  8. 3-D mechanical modeling of the eastward escape flow pattern around the Northeastern Tibetan plateau and surrounding regions

    Science.gov (United States)

    Cheng, H.; Shi, Y.; Zhang, H.

    2016-12-01

    Since the last 50 million years, 2500km shorting of Indian Plate moving north collided with the Eurasian Plate has resulted in rapid uplift of the Tibetan Plateau shaped into the most intensive and extensive orogen on earth (Molnar and Tapponnier, 1975; Li et al., 2013). Based on previous geological and geophysical investigations (Royden et al., 1997; Clark and Royden, 2000), two end-member models of the entire Tibetan Plateau are proposed: thin visous sheet model and lateral escape model. However, when we scope into a special local area, for example, Northeastern Tibetan plateau and surrounding regions, end-member models could change to lower crustal flow model and upper crust shorting model. Recently, with vigorous geophysical observations, more data such as differential traveltime tomography and seismic velocity structure in the Tibetan Plateau actually reveal that the eastward crustal flow from the central Tibetan plateau is expected to divert north-eastward and south-eastward around the rigid Sichuan basin (Royden et al., 1997, 2008; Clark and Royden, 2000). Moreover, both the P-wave polarization tomography and gravitational anomaly and the GPS data from the intensive crustal movement monitoring network in China show that the north-eastward crustal flow divide two direction due to the Ordos Block as a barrier with rigid, cold and stable crust. In order to investigate mechanical of the eastward escape flow pattern around the Northeastern Tibetan plateau and surrounding regions, especially along the Xi'an-Taiyuan-Datong, we construct 3-D geological finite element model with high resolution topography and non-homogeneous strata. For the uncertainties of computational parameters, such as the depth and width and viscosity coefficient of the middle-lower crust, and the pressure differences, several models were tested to analyze the spatial distribution of curst flow and try to known about the uplift of Datong in Shanxi Province.

  9. Ecotone shift and major droughts during the mid-late Holocene in the central Tibetan Plateau.

    Science.gov (United States)

    Shen, Caiming; Liu, Kam-Biu; Morrill, Carrie; Overpeck, Jonathan T; Peng, Jinlan; Tang, Lingyu

    2008-04-01

    A well-dated pollen record from a large lake located on the meadow-steppe ecotone provides a history of ecotone shift in response to monsoonal climate changes over the last 6000 years in the central Tibetan Plateau. The pollen record indicates that the ecotone shifted eastward during 6000-4900, 4400-3900, and 2800-1600 cal. yr BP when steppes occupied this region, whereas it shifted westward during the other intervals when the steppes were replaced by meadows. The quantitative reconstruction of paleoclimate derived from the pollen record shows that monsoon precipitation fluctuated around the present level over the last 6000 years in the central Tibetan Plateau. Three major drought episodes of 5600-4900, 4400-3900, and 2800-2400 cal. yr BP are detected by pollen signals and lake sediments. Comparison of our record with other climatic proxy data from the Tibetan Plateau and other monsoonal regions shows that these episodes are three major centennial-scale monsoon weakening events.

  10. Mitochondrial genome sequence of the Tibetan wild ass (Equus kiang).

    Science.gov (United States)

    Luo, Yongjun; Chen, Yu; Liu, Fuyu; Jiang, Chunhua; Gao, Yuqi

    2011-02-01

    The Tibetan wild ass, or kiang (Equus kiang) is endemic to the cold and hypoxic (4000-7000 m above sea level) climates of the montane and alpine grasslands of the Tibetan Plateau. We report here the complete nucleotide sequence of the E. kiang mitochondrial genome. Our results show that E. kiang mitochondrial DNA is 16,634 bp long, and predicted to encode all the 37 genes that are typical for vertebrates.

  11. Neoendemic ground beetles and private tree haplotypes: two independent proxies attest a moderate last glacial maximum summer temperature depression of 3-4 °C for the southern Tibetan Plateau

    Science.gov (United States)

    Schmidt, Joachim; Opgenoorth, Lars; Martens, Jochen; Miehe, Georg

    2011-07-01

    Previous findings regarding the Last Glacial Maximum LGM summer temperature depression (maxΔT in July) on the Tibetan Plateau varied over a large range (between 0 and 9 °C). Geologic proxies usually provided higher values than palynological data. Because of this wide temperature range, it was hitherto impossible to reconstruct the glacial environment of the Tibetan Plateau. Here, we present for the first time data indicating that local neoendemics of modern species groups are promising proxies for assessing the LGM temperature depression in Tibet. We used biogeographical and phylogenetic data from small, wingless edaphous ground beetles of the genus Trechus, and from private juniper tree haplotypes. The derived values of the maxΔT in July ranged between 3 and 4 °C. Our data support previous findings that were based on palynological data. At the same time, our data are spatially more specific as they are not bound to specific archives. Our study shows that the use of modern endemics enables a detailed mapping of local LGM conditions in High Asia. A prerequisite for this is an extensive biogeographical and phylogenetic exploration of the area and the inclusion of additional endemic taxa and evolutionary lines.

  12. [Carbon balance of household production system in the transition zone from the Loess Plateau to the Qinghai-Tibet Plateau, China].

    Science.gov (United States)

    Wu, Chao Chao; Gao, Xiao Ye; Hou, Fu Jiang

    2017-10-01

    The transition zone from the Loess Plateau to the Qinghai-Tibet Plateau is one of the regions with most dramatic changes in agricultural production mode and most sensitive response to the carbon balance effect. This paper analyzed the carbon balance of the agriculture system along the altitude gradient in Tongwei, Weiyuan and Xiahe counties. The results showed that with the increase of altitude, the carbon emission, carbon fixation and carbon sink capacity of crops per unit area decreased accordingly, while the average carbon emission, carbon fixation and carbon source capacity of each household in livestock system increased. The integrated crop-livestock production system changed from carbon sink to carbon source. The average carbon emission of each household rose with altitude, but the carbon fixation was the opposite. The change of percentage ofhousehold in the transition zone from the Loess Plateau to the Qinghai-Tibet Plateau with carbon balance could be fitted with Logistic equation. In the crop system of Tongwei, Weiyuan and Xiahe with the altitude increase, carbon emission at the inflection point where the household percentage accounted for 50.0% was 1491, 857 and 376 kg CE·household -1 , and carbon fixation was 6187, 3872 and 778 kg CE·household -1 , respectively. For the livestock system, carbon emission was 2218, 3725 and 49511 kg CE·household -1 , and carbon fixation was 138, 230 and 2706 kg CE·household -1 , respectively. For the integrated crop-livestock system, carbon emission was 3615, 4583 and 49918 kg CE·household -1 , and carbon fixation was 6289, 4113 and 3819 kg CE·household -1 , respectively, which could be the key point for the regulation of regional carbon balance.

  13. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange

    International Nuclear Information System (INIS)

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2014-01-01

    There are limited data on polycyclic aromatic hydrocarbons (PAHs) in both the atmosphere and soil of the Tibetan Plateau (TP). Concentrations of PAHs were therefore measured in 13 XAD resin-based passive air samplers and 41 surface (0–5 cm) soil samples across the TP. The average concentration of atmospheric PAHs was 5.55 ng/m 3 , which was lower than that reported for other background areas, but higher than the Arctic. Concentrations in the soils fell in a wide range from 5.54 to 389 ng/g, with an average of 59.9 ng/g. Elevation was found to play an important role in determining the spatial distribution of soil PAHs. The air–soil exchange state showed that the soils of the TP will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs. Highlights: • The levels of PAHs in air and soil of the Tibetan Plateau were relatively lower than other background region of world. • The soil PAHs concentration decreased with the increase of elevation. • The Tibetan Plateau will likely remain as a sink for high molecular weight PAHs. • The Tibetan Plateau may become a potential “secondary source” for low molecular weight PAHs. -- The Tibetan soil will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs

  14. Toward Quantitative Understanding of the Atmospheric Heating over the Tibetan Plateau (Invited)

    Science.gov (United States)

    Koike, T.; Tamura, T.; Rasmy, M.; Seto, R.

    2010-12-01

    There are different ideas on the atmospheric heating over the Tibetan Plateau. Yanai et al. (1992) and Yanai and Li (1994) concluded this sensible heat flux from the surface is the major source of heating on the plateau before the summer rain commences. On the other hand, Ueda et al. (2003) also showed the importance of condensation heating in the heat balance during the pre-onset-phase of the summer monsoon over the western part of the Tibetan Plateau. The first intensive in situ observation in early spring was implemented on the plateau in April 2004 under the framework of the Coordinated Enhanced Observing Period (CEOP) (Koike, 2004). Taniguchi and Koike (2007) revealed the importance of cumulus activity in atmospheric temperature increases in the upper troposphere even in April by in situ and satellite observations and numerical simulations. They concluded that sensible heat transfer by dry convection is insufficient to warm the upper layer over the plateau and that the development of cloud convection is indispensable for atmospheric heating in the upper troposphere over the plateau during early spring. Then, Taniguchi and Koike (2008) investigated the seasonal variation in the cloud activity over the eastern part of the Tibetan Plateau, and the vertical profile of the atmosphere and moist condition causing the cloud. They showed cumulus convections easily occur under the adiabatically neutral condition of the first phase of the active convections in April. During a resting phase before the second active phase, the atmosphere is conditionally unstable but an unsaturated condition restrains cloud activity, while during second phase, the atmosphere is inclined to be saturated and cloud activity begins again. From early May to mid June, there is a resting period of cumulus convective activity. However, the tropospheric temperature at 200 hPa increases rapidly from late April. Such rapid tropospheric warming without significant cumulus convective activity is

  15. Land–biosphere–atmosphere interactions over the Tibetan plateau from MODIS observations

    International Nuclear Information System (INIS)

    Jin, Menglin S; Mullens, Terrence J

    2012-01-01

    Eleven years (2000–10) of monthly observations from the National Aeronautics and Space Administration (NASA) Terra Moderate-resolution Imaging Spectroradiometer (MODIS) show the diurnal, seasonal, and inter-annual variations of skin temperature over the Tibetan plateau (75–100°E, 27–45°N) at 0.05° × 0.05° resolution. A slight warming trend is observed during this period of time, although the relatively short duration of the observation makes such a trend uncertain. More importantly, using the most recent climatology of land skin temperature, spatially high correlation coefficients are found among normalized difference vegetation index (NDVI), water vapor and cloud relations, indicating that the land surface, vegetation and atmosphere influence one another. Such a quantitative understanding of these relationships at high spatial resolution would be helpful for modeling the biosphere–atmosphere–land surface interaction processes over the Tibetan plateau. (letter)

  16. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?

    Science.gov (United States)

    Yamazaki, Eriko; Falandysz, Jerzy; Taniyasu, Sachi; Hui, Ge; Jurkiewicz, Gabriela; Yamashita, Nobuyoshi; Yang, Yong-Liang; Lam, Paul K S

    2016-01-01

    Perfluorinated surfactants and repellents are synthetic substances that have found numerous industrial and customer applications. Due to their persistence, at least two groups of these substances-perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs)-are diffused widely in the environment. It is hypothesized that the Tibetan Plateau, is one of few unique places on the Earth, due to its topography, specifically the vast space and high elevation above sea level, geographic location, climate, high solar radiation, lack of industry, little urbanization and general lack of significant direct sources of pollution. There it is believed possible to gain an insight into atmospheric fate (possible photochemical degradation of higher molecular mass and formation of lower molecular mass PFCAs and PFSAs) of PFASs under un-disturbed environmental conditions. Ultratrace analytical method for PFCAs and PFSAs and use of transportation and field blanks, laboratory blanks and isotopically labelled surrogates for recovery control has allowed the determination of nine perfluorinated carboxylic acids and six perfluorinated sulfonic acids at ultra-trace levels in water based samples from the alpine dimension regions of the Tibetan Plateau, the eastern slope of Minya Konka peak at the eastern edge of the Tibetan Plateau, and also from the city of Chengdu from the lowland of the Sichuan Province in China. The specific compositional pattern of PFCAs and PFSAs and low levels of pollution with those compounds were observed in the central region of the Tibetan Plateau and in the region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau. The fingerprint of the compositional pattern of PFCAs and PFSAs in water samples in the central region of the Tibetan Plateau and in the alpine region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau may be explained by the result of photochemical degradation with dealkylation of longer chain

  17. IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaoxia; Tozuka, Tomoki; Yamagata, Toshio [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan)

    2012-10-15

    Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Nino, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated. (orig.)

  18. Soil Nitrogen Storage, Distribution, and Associated Controlling Factors in the Northeast Tibetan Plateau Shrublands

    Directory of Open Access Journals (Sweden)

    Xiuqing Nie

    2017-11-01

    Full Text Available Although the soils in the Tibetan Plateau shrublands store large amounts of total nitrogen (N, the estimated values remain uncertain because of spatial heterogeneity and a lack of field observations. In this study, we quantified the regional soil N storage, spatial and vertical density distributions, and related climatic controls using 183 soil profiles sampled from 61 sites across the Northeast Tibetan Plateau shrublands during the period of 2011–2013. Our analysis revealed a soil N storage value of 132.40 Tg at a depth of 100 cm, with an average density of 1.21 kg m−2. Soil N density was distributed at greater levels in alpine shrublands, compared with desert shrublands. Spatially, soil N densities decreased from south to north and from east to west, and, vertically, the soil N in the upper 30 and 50 cm accounted for 42% and 64% of the total soil N stocks in the Tibetan Plateau. However, compared with desert shrublands, the surface layers in alpine shrublands exhibited a larger distribution of soil N stocks. Overall, the soil N density in the top 30 cm increased significantly with the mean annual precipitation (MAP and tended to decrease with the mean annual temperature (MAT, although the dominant climatic controls differed among shrubland types. Specifically, MAP in alpine shrublands, and MAT in desert shrubland, had a weak effect on N density. Soil pH can significant affect soil N density in the Tibetan Plateau shrublands. In conclusion, changes in soil N density should be monitored over the long term to provide accurate information about the effects of climatic factors.

  19. The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective

    Science.gov (United States)

    Ge, Fei; Sielmann, Frank; Zhu, Xiuhua; Fraedrich, Klaus; Zhi, Xiefei; Peng, Ting; Wang, Lei

    2017-12-01

    The thermal forcing of the Tibetan Plateau (TP) is analyzed to investigate the formation and variability of Tibetan Plateau Summer Monsoon (TPSM), which affects the climates of the surrounding regions, in particular the Indian summer monsoon precipitation. Dynamic composites and statistical analyses indicate that the Indian summer monsoon precipitation is less/greater than normal during the strong/weak TPSM. Strong (weak) TPSM is associated with an anomalous near surface cyclone (anticyclone) over the western part of the Tibetan Plateau, enhancing (reducing) the westerly flow along its southern flank, suppressing (favoring) the meridional flow of warm and moist air from the Indian ocean and thus cutting (providing) moisture supply for the northern part of India and its monsoonal rainfall. These results are complemented by a dynamic and thermodynamic analysis: (i) A linear thermal vorticity forcing primarily describes the influence of the asymmetric heating of TP generating an anomalous stationary wave flux. Composite analysis of anomalous stationary wave flux activity (after Plumb in J Atmos Sci 42:217-229, 1985) strongly indicate that non-orographic effects (diabatic heating and/or interaction with transient eddies) of the Tibetan Plateau contribute to the generation of an anomalous cyclone (anti-cyclone) over the western TP. (ii) Anomalous TPSM generation shows that strong TPSM years are related to the positive surface sensible heating anomalies over the eastern TP favoring the strong diabatic heating in summer. While negative TPSM years are associated with the atmospheric circulation anomalies during the preceding spring, enhancing northerly dry-cold air intrusions into TP, which may weaken the condensational heat release in the middle and upper troposphere, leading to a weaker than normal summer monsoon over the TP in summer.

  20. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau.

    Science.gov (United States)

    Liang, Eryuan; Eckstein, Dieter

    2009-09-01

    Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated. Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data. The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation. The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.

  1. Modeling impacts of climate change and grazing effects on plant biomass and soil organic carbon in the Qinghai-Tibetan grasslands

    Science.gov (United States)

    Zhang, Wenjuan; Zhang, Feng; Qi, Jiaguo; Hou, Fujiang

    2017-12-01

    The Qinghai Province supports over 40 % of the human population of the Qinghai-Tibetan Plateau (QTP) but occupies about 29 % of its land area, and thus it plays an important role in the plateau. The dominant land cover is grassland, which has been severely degraded over the last decade due to a combination of increased human activities and climate change. Numerous studies indicate that the plateau is sensitive to recent global climate change, but the drivers and consequences of grassland ecosystem change are controversial, especially the effects of climate change and grazing patterns on the grassland biomass and soil organic carbon (SOC) storage in this region. In this study, we used the DeNitrification-DeComposition (DNDC) model and two climate change scenarios (representative concentration pathways: RCP4.5 and RCP8.5) to understand how the grassland biomass and SOC pools might respond to different grazing intensities under future climate change scenarios. More than 1400 grassland biomass sampling points and 46 SOC points were used to validate the simulated results. The simulated above-ground biomass and SOC concentrations were in good agreement with the measured data (R2 0.71 and 0.73 for above-ground biomass and SOC, respectively). The results showed that climate change may be the major factor that leads to fluctuations in the grassland biomass and SOC, and it explained 26.4 and 47.7 % of biomass and SOC variation, respectively. Meanwhile, the grazing intensity explained 6.4 and 2.3 % variation in biomass and SOC, respectively. The project average biomass and SOC between 2015 and 2044 was significantly smaller than past 30 years (1985-2014), and it was 191.17 g C m-2, 63.44 g C kg-1 and 183.62 g C m-2, 63.37 g C kg-1 for biomass and SOC under RCP4.5 and RCP8.5, respectively. The RCP8.5 showed the more negative effect on the biomass and SOC compared with RCP4.5. Grazing intensity had a negative relationship with biomass and positive relationship with SOC

  2. Seroprevalence and Risk Factors of Bluetongue Virus Infection in Tibetan Sheep and Yaks in Tibetan Plateau, China.

    Science.gov (United States)

    Ma, Jian-Gang; Zhang, Xiao-Xuan; Zheng, Wen-Bin; Xu, Ying-Tian; Zhu, Xing-Quan; Hu, Gui-Xue; Zhou, Dong-Hui

    2017-01-01

    Bluetongue (BT), caused by bluetongue virus (BTV), is an arthropod-borne viral disease in ruminants. However, information about BTV infection in yaks in China is limited. Moreover, no such data concerning BTV in Tibetan sheep is available. Therefore, 3771 serum samples were collected from 2187 Tibetan sheep and 1584 yaks between April 2013 and March 2014 from Tibetan Plateau, western China, and tested for BTV antibodies using a commercially available ELISA kit. The overall seroprevalence of BTV was 17.34% (654/3771), with 20.3% (443/2187) in Tibetan sheep and 13.3% (211/1584) in yaks. In the Tibetan sheep group, the seroprevalence of BTV in Luqu, Maqu, Tianzhu, and Nyingchi Prefecture was 20.3%, 20.8%, 20.5%, and 19.1%, respectively. The seroprevalence of BTV in different season groups varied from 16.5% to 23.4%. In the yak group, BTV seroprevalence was 12.6%, 15.5%, and 11.0% in Tianzhu, Maqu, and Luqu counties, respectively. The seroprevalence in different seasons was 12.6%, 15.5%, 15.4%, and 9.0% in spring, summer, autumn, and winter, respectively. The season was the major risk factor concerning BTV infection in yaks ( P Tibetan sheep and yaks provides baseline information for controlling BT in ruminants in western China.

  3. Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau.

    Science.gov (United States)

    Gao, Tanguang; Zhang, Tingjun; Guo, Hong; Hu, Yuantao; Shang, Jianguo; Zhang, Yulan

    2018-01-01

    The paucity of studies on permafrost runoff generation processes, especially in mountain permafrost, constrains the understanding of permafrost hydrology and prediction of hydrological responses to permafrost degradation. This study investigated runoff generation processes, in addition to the contribution of summer thaw depth, soil temperature, soil moisture, and precipitation to streamflow in a small upland permafrost basin in the northern Tibetan Plateau. Results indicated that the thawing period and the duration of the zero-curtain were longer in permafrost of the northern Tibetan Plateau than in the Arctic. Limited snowmelt delayed the initiation of surface runoff in the peat permafrost in the study area. The runoff displayed intermittent generation, with the duration of most runoff events lasting less than 24 h. Precipitation without runoff generation was generally correlated with lower soil moisture conditions. Combined analysis suggested runoff generation in this region was controlled by soil temperature, thaw depth, precipitation frequency and amount, and antecedent soil moisture. This study serves as an important baseline to evaluate future environmental changes on the Tibetan Plateau.

  4. Evidence for northeastern Tibetan Plateau uplift between 25 and 20Ma in the sedimentary archive of the Xining Basin, Northwestern China

    NARCIS (Netherlands)

    Xiao, G.; Guo, Z.; Dupont-Nivet, G.; Lu, H.; Wu, N.; Ge, J.; Hao, Q.; Peng, S.; Li, F.; Abels, H.A.; Zhang, K.

    2011-01-01

    The growth history of the Tibetan Plateau provides a valuable natural laboratory to understand tectonic processes of the India–Asia collision and their impact on and interactions with Asian and global climate change. However, both Tibetan Plateau growth and Asian paleoenvironments are generally

  5. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations: Cloud Microphysics over Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Pacific Northwest National Laboratory, Richland Washington USA; Sui, Chung-Hsiung [Department of Atmospheric Sciences, National Taiwan University, Taipei Taiwan; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Hu, Zhiqun [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Zhong, Lingzhi [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China

    2016-11-27

    Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolution of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.

  6. Black Carbon Radiative Forcing over the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  7. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the tibetan plateau.

    Science.gov (United States)

    Wang, Guo-Dong; Fan, Ruo-Xi; Zhai, Weiwei; Liu, Fei; Wang, Lu; Zhong, Li; Wu, Hong; Yang, He-Chuan; Wu, Shi-Fang; Zhu, Chun-Ling; Li, Yan; Gao, Yun; Ge, Ri-Li; Wu, Chung-I; Zhang, Ya-Ping

    2014-08-01

    The high-altitude hypoxic environment represents one of the most extreme challenges for mammals. Previous studies of humans on the Tibetan plateau and in the Andes Mountains have identified statistical signatures of selection in different sets of loci. Here, we first measured the hemoglobin levels in village dogs from Tibet and those from Chinese lowlands. We found that the hemoglobin levels are very similar between the two groups, suggesting that Tibetan dogs might share similar adaptive strategies as the Tibetan people. Through a whole-genome sequencing approach, we have identified EPAS1 and HBB as candidate genes for the hypoxic adaptation on the Tibetan plateau. The population genetic analysis shows a significant convergence between humans and dogs in Tibet. The similarities in the sets of loci that exhibit putative signatures of selection and the hemoglobin levels between humans and dogs of the same environment, but not between human populations in different regions, suggests an extraordinary landscape of convergent evolution between human beings and their best friend on the Tibetan plateau. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Combining CHAMP and Swarm Satellite Data to Invert the Lithospheric Magnetic Field in the Tibetan Plateau.

    Science.gov (United States)

    Qiu, Yaodong; Wang, Zhengtao; Jiang, Weiping; Zhang, Bingbing; Li, Fupeng; Guo, Fei

    2017-01-26

    CHAMP and Swarm satellite magnetic data are combined to establish the lithospheric magnetic field over the Tibetan Plateau at satellite altitude by using zonal revised spherical cap harmonic analysis (R-SCHA). These data are integrated with geological structures data to analyze the relationship between magnetic anomaly signals and large-scale geological tectonic over the Tibetan Plateau and to explore the active tectonic region based on the angle of the magnetic anomaly. Results show that the model fitting error is small for a layer 250-500 km high, and the RMSE of the horizontal and radial geomagnetic components is better than 0.3 nT. The proposed model can accurately describe medium- to long-scale lithospheric magnetic anomalies. Analysis indicates that a negative magnetic anomaly in the Tibetan Plateau significantly differs with a positive magnetic anomaly in the surrounding area, and the boundary of the positive and negative regions is generally consistent with the geological tectonic boundary in the plateau region. Significant differences exist between the basement structures of the hinterland of the plateau and the surrounding area. The magnetic anomaly in the Central and Western Tibetan Plateau shows an east-west trend, which is identical to the direction of the geological structures. The magnetic anomaly in the eastern part is arc-shaped and extends along the northeast direction. Its direction is significantly different from the trend of the geological structures. The strongest negative anomaly is located in the Himalaya block, with a central strength of up to -9 nT at a height of 300 km. The presence of a strong negative anomaly implies that the Curie isotherm in this area is relatively shallow and deep geological tectonic activity may exist.

  9. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  10. Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China.

    Science.gov (United States)

    Guo, Bixi; Liu, Yongqin; Zhang, Fan; Hou, Juzhi; Zhang, Hongbo; Li, Chaoliu

    2018-02-01

    Heavy metal contamination has affected many regions in the world, particularly the developing countries of Asia. We investigated 8 heavy metals (Cu, Zn, Cd, Pb, Cr, Co, Ni, and As) in the surface sediments of 18 lakes on the Tibetan Plateau. It was found that the distributions of the heavy metals showed no clear spatial pattern on the plateau. The results indicated that the mean concentrations of these metals in the sediment samples diminished as follows: Cr > As > Zn > Ni > Pb > Cu > Co > Cd. The results of geoaccumulation index (I geo ) and potential ecological risk factor (E i r ) assessments showed that the sediments were moderately polluted by Cd and As, which posed much higher risks than the other metals. The values of the potential ecological risk index (RI) showed that lake Bieruoze Co has been severely polluted by heavy metals. Principal component analysis, hierarchical cluster analysis, and Pearson correlation analysis results indicated that the 8 heavy metals in the lake surface sediments of the Tibetan Plateau could be classified into four groups. Group 1 included Cu, Zn, Pb, Co, and Ni which were mainly derived from both natural and traffic sources. Group 2 included Cd which mainly originated from anthropogenic sources like alloying, electroplating, and dyeing industries and was transported to the Tibetan Plateau by atmospheric circulation. Group 3 included Cr and it might mainly generate from parent rocks of watersheds. The last Group (As) was mainly from manufacturing, living, and the striking deterioration of atmospheric environment of the West, Central Asia, and South Asia.

  11. The dating and interpretation of Chusang indicates permanent human occupation of the interior of the Tibetan Plateau in the early Holocene

    Science.gov (United States)

    Meyer, Michael; Aldenderfer, Mark; Wang, Zhijun; Hoffmann, Dirk; Dahl, Jenny; Degering, Detlev; Haas, Randy; Schlütz, Frank; Gliganic, Luke; May, Jan-Hendrik

    2017-04-01

    The nature and timing of a permanent human settlement on the Tibetan Plateau and the accompanying cultural and physiological responses, including genetic high-altitude adaptations, are subject to ongoing debate (1-3). The latest genetic data (based on extensive analysis of the modern Tibetan genome) suggest a main wave of human migration onto the plateau between 15 and 8 ka but genetic traces that hint to an even earlier initial occupation (dating to 65 ka) have to be considered too (4, 5). The archaeological record against which these genetic data can be compared to remains scant. The few archaeological sites with a chronometric age are all located on the northeastern margin of the plateau and range in date from 9 to 15 ka. These sites typically are at medium to low elevations (≤ 3300 masl) and are believed to have been short-term, seasonal occupations monitored from lower-elevation base camps (1). It is widely believed that permanent peopling of the interior (higher-elevation zones) of the Tibetan Plateau was only facilitated by an agricultural lifeway at 3.6 thousand calibrated carbon-14 years before present (2). The climatic and paleoenvironmental constraints on this colonization process are poorly understood (1-3). Here we report a reanalysis of the chronology and paleoenvironmental significance of the Chusang site, located on the central Tibetan Plateau at an elevation of 4270 meters above sea level (3). The site is known for its hot springs and extensive hydrothermal carbonate (travertine) formations and also preserves 19 human hand- and footprints on the surface of a fossil travertine sheet. The minimum age of the site is fixed at 7.4 thousand years (thorium-230/uranium dating), with a maximum age between 8.20 and 12.67 thousand calibrated carbon-14 years before present based on radiocarbon and OSL single-grain dating. Travel cost modeling and archaeological data suggest that the site was part of an annual, permanent, preagricultural occupation of the

  12. Observational Evidence of EHP Effects on the Melting of Snowpack over the Tibetan Plateau

    Science.gov (United States)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Lee, Woo-Seop

    2012-01-01

    Observational evidences are presented showing that the Indo-Gangetic Plain (IGP) regions, bounded by the high altitude Himalayan mountains, are subject to heavy loading of absorbing aerosols, i.e., black carbon and dust, which can lead to widespread enhancement warming over the Tibetan Plateau and accelerated snowmelt in the western Tibetan Plateau (WTP) and Himalayas. The two pre-monsoon seasons of 2004 and 2005 were strikingly contrasting in terms of the aerosol loading over IGP. The warming of the TP in 2004 relative to 2005 was widespread, covering most of the WTP and Himalayas. This warming is closely linked to patterns of the snow melt. Consistent with the Elevated Heat Pump hypothesis, we find that increased loading of absorbing aerosols over IGP in the pre-monsoon season is associated with increased heating of the upper troposphere by dynamical feedback induced by aerosol heating, and enhances the rate of snowmelt over Himalayas and the WTP in April-May. Composite analysis with more contrasting years also shows that the heating of the troposphere by elevated dust and black carbon aerosols in the boreal spring can lead to widespread enhanced land-atmosphere warming, and accelerated snow melt in the Himalayas and Tibetan Plateau.

  13. The impact of afforestation on soil organic carbon sequestration on the Qinghai Plateau, China.

    Directory of Open Access Journals (Sweden)

    Sheng-wei Shi

    Full Text Available Afforestation, the conversion of non-forested land into forest, is widespread in China. However, the dynamics of soil organic carbon (SOC after afforestation are not well understood, especially in plateau climate zones. For a total of 48 shrub- and/or tree-dominated afforestation sites on the Qinghai Plateau, Northwestern China, post-afforestation changes in SOC, total nitrogen (TN, the carbon-to-nitrogen ratio (C/N and soil bulk density (BD were investigated to a soil depth of 60 cm using the paired-plots method. SOC and TN accumulated at rates of 138.2 g C m(-2 yr(-1 and 4.6 g N m(-2 yr(-1, respectively, in shrub-dominated afforestation sites and at rates of 113.3 g C m(-2 yr(-1 and 6.7 g N m(-2 yr(-1, respectively, in tree-dominated afforestation sites. Soil BD was slightly reduced in all layers in the shrub-dominated afforestation plots, and significantly reduced in soil layers from 0-40cm in the tree-dominated afforestation plots. The C/N ratio was higher in afforested sites relative to the reference sites. SOC accumulation was closely related to TN accumulation following afforestation, and the inclusion of N-fixing species in tree-dominated afforestation sites additionally increased the soil accumulation capacity for SOC (p < 0.05. Multiple regression models including the age of an afforestation plot and total number of plant species explained 75% of the variation in relative SOC content change at depth of 0-20 cm, in tree-dominated afforestation sites. We conclude that afforestation on the Qinghai Plateau is associated with great capability of SOC and TN sequestration. This study improves our understanding of the mechanisms underlying SOC and TN accumulation in a plateau climate, and provides evidence on the C sequestration potentials associated with forestry projects in China.

  14. Seasonal variations of stable isotope in precipitation and moisture transport at Yushu,eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.

  15. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau

    International Nuclear Information System (INIS)

    Zhou, Xiaocheng; Liu, Lei; Chen, Zhi; Cui, Yueju; Du, Jianguo

    2017-01-01

    The southeast Tibetan Plateau is a region with high level seismic activity and strong hydrothermal activity. Several large (7.5 > M > 7) historical earthquakes have occurred in the Litang fault zone (LFZ), eastern Tibetan Plateau since 1700. Litang Ms 5.1 earthquake occurred On Sept 23, 2016, indicating the reactivation of the LFZ. This study was undertaken to elucidate spatial-temporal variations of the hot spring gas geochemistry along the LFZ from Jun 2010 to April 2016. The chemical components, He, Ne and C isotropic ratios of bubbling gas samples taken from 18 hot springs along LFZ were investigated. Helium isotope ratios ( 3 He/ 4 He) measured in hot springs varied from 0.06 to 0.93 Ra (Ra = air 3 He/ 4 He = 1.39 × 10 −6 ), with mantle-derivd He up to 11.1% in the LFZ (assuming R/Ra = 8 for mantle) indicated the fault was a crustal-scale feature that acts as a conduit for deep fluid from the mantle. CO 2 concentrations of the majority of hot spring gas samples were ≥80 vol%, CO 2 / 3 He ratios varied from 1.4 to 929.5 × 10 10 , and δ 13 C CO2 values varied from −19.2‰ to −2.3‰ (vs. PDB). The proportions of mantle-derived CO 2 varied from 0 to 1.8%. Crustal marine limestone was the major contributor (>75%) to the carbon inventory of the majority of hot spring gas samples. Before Litang Ms 5.1 earthquake, the 3 He/ 4 He ratios obviously increased in the Heni spring from May 2013 to Apr 2016. The geographical distribution of the mantle-derivd He decreased from east to west along 30°N in the southeast Tibetan Plateau relative to a corresponding increase in the radiogenic component. The gas geochemical data suggested that the upwelling mantle fluids into the crust play an important role in seismic activity in the strike-slip faults along 30°N in the southeast Tibetan Plateau. - Highlights: • Gas geochemistry of hot springs along Litang fault, Southeast Tibetan Plateau were surveyed. • Mantle-derived He decreased from east to

  16. Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau

    NARCIS (Netherlands)

    Su, Zhongbo; de Rosnay, P.; Wen, J.; Wang, Lichun; Zeng, Yijian

    2013-01-01

    An analysis is carried out for two hydrologically contrasting but thermodynamically similar areas on the Tibetan Plateau, to evaluate soil moisture analysis based on the European Centre for Medium‐Range Weather Forecasts (ECMWF) previous optimum interpolation scheme and the current point‐wise

  17. Satellite precipitation estimation over the Tibetan Plateau

    Science.gov (United States)

    Porcu, F.; Gjoka, U.

    2012-04-01

    Precipitation characteristics over the Tibetan Plateau are very little known, given the scarcity of reliable and widely distributed ground observation, thus the satellite approach is a valuable choice for large scale precipitation analysis and hydrological cycle studies. However,the satellite perspective undergoes various shortcomings at the different wavelengths used in atmospheric remote sensing. In the microwave spectrum often the high soil emissivity masks or hides the atmospheric signal upwelling from light-moderate precipitation layers, while low and relatively thin precipitating clouds are not well detected in the visible-infrared, because of their low contrast with cold and bright (if snow covered) background. In this work an IR-based, statistical rainfall estimation technique is trained and applied over the Tibetan Plateau hydrological basin to retrive precipitation intensity at different spatial and temporal scales. The technique is based on a simple artificial neural network scheme trained with two supervised training sets assembled for monsoon season and for the rest of the year. For the monsoon season (estimated from June to September), the ground radar precipitation data for few case studies are used to build the training set: four days in summer 2009 are considered. For the rest of the year, CloudSat-CPR derived snowfall rate has been used as reference precipitation data, following the Kulie and Bennartz (2009) algorithm. METEOSAT-7 infrared channels radiance (at 6.7 and 11 micometers) and derived local variability features (such as local standard deviation and local average) are used as input and the actual rainrate is obtained as output for each satellite slot, every 30 minutes on the satellite grid. The satellite rainrate maps for three years (2008-2010) are computed and compared with available global precipitation products (such as C-MORPH and TMPA products) and with other techniques applied to the Plateau area: similarities and differences are

  18. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes.

    Science.gov (United States)

    Wang, Ying; Yang, Liandong; Zhou, Kun; Zhang, Yanping; Song, Zhaobin; He, Shunping

    2015-10-09

    Triplophysa fishes are the primary component of the fish fauna on the Tibetan Plateau and are well adapted to the high-altitude environment. Despite the importance of Triplophysa fishes on the plateau, the genetic mechanisms of the adaptations of these fishes to this high-altitude environment remain poorly understood. In this study, we generated the transcriptome sequences for three Triplophysa fishes, that is, Triplophysa siluroides, Triplophysa scleroptera, and Triplophysa dalaica, and used these and the previously available transcriptome and genome sequences from fishes living at low altitudes to identify potential genetic mechanisms for the high-altitude adaptations in Triplophysa fishes. An analysis of 2,269 orthologous genes among cave fish (Astyanax mexicanus), zebrafish (Danio rerio), large-scale loach (Paramisgurnus dabryanus), and Triplophysa fishes revealed that each of the terminal branches of the Triplophysa fishes had a significantly higher ratio of nonsynonymous to synonymous substitutions than that of the branches of the fishes from low altitudes, which provided consistent evidence for genome-wide rapid evolution in the Triplophysa genus. Many of the GO (Gene Ontology) categories associated with energy metabolism and hypoxia response exhibited accelerated evolution in the Triplophysa fishes compared with the large-scale loach. The genes that exhibited signs of positive selection and rapid evolution in the Triplophysa fishes were also significantly enriched in energy metabolism and hypoxia response categories. Our analysis identified widespread Triplophysa-specific nonsynonymous mutations in the fast evolving genes and positively selected genes. Moreover, we detected significant evidence of positive selection in the HIF (hypoxia-inducible factor)-1A and HIF-2B genes in Triplophysa fishes and found that the Triplophysa-specific nonsynonymous mutations in the HIF-1A and HIF-2B genes were associated with functional changes. Overall, our study provides

  19. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  20. Evaluation of the Township Proper Carrying Capacity over Qinghai-Tibet plateau by CASA model

    Science.gov (United States)

    Wu, Chengyong; Cao, Guangchao; Xue, Huaju; Jiang, Gang; Wang, Qi; Yuan, Jie; Chen, Kelong

    2018-01-01

    The existing study of proper carrying capacity (PCC) has mostly focused on province or county administrative units, which can only macroscopically master the quantitative characteristics of PCC, but could not effectively take some animal husbandry management measures that are pertinent and operational. At town-scale, this paper used CASA model to estimate the PCC in Mongolian Autonomous County of Henan, Qinghai province, China,with serious grassland degeneration that mainly caused by overgrazing. The results showed that the PCC throughout the County was 950,417 sheep unit. For the township, the PCC of Saierlong and Duosong were the largest (247,100 sheep unit) and the smallest (82,016 sheep unit) respectively. This study will provide reference data for developing sustainable development of town-scale pasture policies and also will help to evaluate the health status of the alpine grassland ecosystem on Qinghai-Tibet plateau.

  1. Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau

    Science.gov (United States)

    Li, Yuhang; Liu, Mian; Wang, Qingliang; Cui, Duxin

    2018-04-01

    The three-dimensional present-day crustal deformation and strain partitioning in northeastern Tibetan Plateau are analyzed using available GPS and precise leveling data. We used the multi-scale wavelet method to analyze strain rates, and the elastic block model to estimate slip rates on the major faults and internal strain within each block. Our results show that shear strain is strongly localized along major strike-slip faults, as expected in the tectonic extrusion model. However, extrusion ends and transfers to crustal contraction near the eastern margin of the Tibetan Plateau. The strain transfer is abrupt along the Haiyuan Fault and diffusive along the East Kunlun Fault. Crustal contraction is spatially correlated with active uplifting. The present-day strain is concentrated along major fault zones; however, within many terranes bounded by these faults, intra-block strain is detectable. Terranes having high intra-block strain rates also show strong seismicity. On average the Ordos and Sichuan blocks show no intra-block strain, but localized strain on the southwestern corner of the Ordos block indicates tectonic encroachment.

  2. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    Science.gov (United States)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  3. Water quality in the Tibetan Plateau: Metal contents of four selected rivers

    International Nuclear Information System (INIS)

    Huang Xiang; Sillanpaeae, Mika; Duo Bu; Gjessing, Egil T.

    2008-01-01

    The water used by 85% of the Asian population originates in Tibetan Plateau. During April and May of 2006, water samples were collected from four major Asian rivers in the Plateau (i.e. the Salween, Mekong, Yangtze River and Yarlung Tsangpo) and analyzed for Cu, Pb, Zn, Ag, Mo, Cd, Co, Cr, Ni, Li, Mn, Al, Fe, Mg and Hg. The results showed that elements such as Mg were rather high in Tibetan rivers, giving a mean electrical conductance of 36 mS/m. In a few locations, the results also showed relatively high concentrations of Al and Fe (>1 mg/L). However, the concentrations of Cu, Zn, Ag, Cd, and Cr were generally low. Contamination with Pb was identified at a few locations in the Salween and Ni at a few sites in the Yangtze River. - For the first time, total dissolved metal contents in source water of four major Asian rivers were evaluated at the same time

  4. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction

    Science.gov (United States)

    Li, Lin; Garzione, Carmala N.

    2017-02-01

    Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work suggest that stable isotope-based paleoaltimetry studies are reliable in the southern through eastern Plateau margins; towards the central-northern Plateau, this method cannot be applied without additional

  5. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    Directory of Open Access Journals (Sweden)

    L. Jin

    2009-08-01

    Full Text Available The impacts of various scenarios of a gradual snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP–0 kyr BP are studied by using the Earth system model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases over most of Eurasia but in the Southern Asia temperature response is opposite. With the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP–0 kyr BP, the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 kyr BP to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results suggest that the development of snow and ice cover over Tibetan Plateau represents an additional important climate feedback, which amplify orbital forcing and produces a significant synergy with the positive vegetation feedback.

  6. Differentiation analysis for estimating individual ancestry from the Tibetan Plateau by an archaic altitude adaptation EPAS1 haplotype among East Asian populations.

    Science.gov (United States)

    Jiang, Li; Peng, Jianxiong; Huang, Meisha; Liu, Jing; Wang, Ling; Ma, Quan; Zhao, Hui; Yang, Xin; Ji, Anquan; Li, Caixia

    2018-02-10

    Tibetans have adapted to the extreme environment of high altitude for hundreds of generations. A highly differentiated 5-SNP (Single Nucleotide Polymorphism) haplotype motif (AGGAA) on a hypoxic pathway gene, EPAS1, is observed in Tibetans and lowlanders. To evaluate the potential usage of the 5-SNP haplotype in ancestry inference for Tibetan or Tibetan-related populations, we analyzed this haplotype in 1053 individuals of 12 Chinese populations residing on the Tibetan Plateau, peripheral regions of Tibet, and plain regions. These data were integrated with the genotypes from the 1000 Genome populations and populations in a previously reported paper for population structure analyses. We found that populations representing highland and lowland groups have different dominant ancestry components. The core Denisovan haplotype (AGGAA) was observed at a frequency of 72.32% in the Tibetan Plateau, with a frequency range from 9.48 to 21.05% in the peripheral regions and Tibetan Plateau carried the archaic haplotype, while < 5% of the Chinese Han people carried the haplotype. Our findings indicate that the 5-SNP haplotype has a special distribution pattern in populations of Tibet and peripheral regions and could be integrated into AISNP (Ancestry Informative Single Nucleotide Polymorphism) panels to enhance ancestry resolution.

  7. Phenological characteristics of the main vegetation types on the Tibetan Plateau based on vegetation and water indices

    International Nuclear Information System (INIS)

    Peng, D L; Huang, W J; Zhou, B; Li, C J; Wu, Y P; Yang, X H

    2014-01-01

    Plant phenology is considered one of the most sensitive and easily observable natural indicators of climate change, though few studies have focused on the heterogeneities of phenology across the different vegetation types. In this study, we tried to find the phenological characteristics of the main vegetation types on the Tibetan Plateau. MCD12Q1 images over the Tibetan Plateau from 2001 to 2010 were used to extract the main vegetation types. The Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) were calculated using surface reflectance values from the blue, red, near-infrared, short-wave infrared (SWIR) 6 (for LSIW6), and SWIR7 (for LSIW7) bands derived from MOD09A1 and used to explore the phenological characteristics of the main vegetation types on the Tibetan Plateau. The results showed that there were eight constant vegetation types on the Tibetan Plateau from 2001 to 2010 demonstrating multiple phenological characteristics. Evergreen needleleaf forest, evergreen broadleaf forest, and permanent wetland had the minimum NDVI values during the summer season, while open shrubland and grassland had the maximum NDVI/EVI values during this period. NDVI and EVI of cropland/natural vegetation had two peaks for their seasonal variations. EVI showed a more significant correlation with LSWI6/LSWI7 than NDVI. Compared to LSWI7, larger EVI values occurred in evergreen needleleaf forest, evergreen broadleaf forest, mixed forest, and permanent wetland, while smaller values occurred in shrubland and barren or sparsely vegetated cover, and nearly equal values occurred in grassland and cropland

  8. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    Science.gov (United States)

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  9. Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau

    Science.gov (United States)

    Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.

    2017-12-01

    Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.

  10. Late-Miocene thrust fault-related folding in the northern Tibetan Plateau: Insight from paleomagnetic and structural analyses of the Kumkol basin

    Science.gov (United States)

    Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing

    2018-05-01

    Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.

  11. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    International Nuclear Information System (INIS)

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  13. Intracontinental Deformation in the NW Iranian Plateau and Comparisons with the Northern Margin of the Tibetan Plateau

    Science.gov (United States)

    Chen, L.; Jiang, M.; Talebian, M.; Wan, B.; Ai, Y.; Ghods, A.; Sobouti, F.; Xiao, W.; Zhu, R.

    2017-12-01

    This study investigates the intracontinental deformation and its relationship with the structure of the crust and uppermost mantle in the NW Iranian plateau by combining new seismic and geological observations, to understand how this part of the plateau deformed to accommodate the Arabia-Eurasia plate collision and how the property of the lithosphere controls the deformation pattern. In contrast to the adjacent Anatolian block that exhibits westward large-scale extrusion, the northwesternmost part of the Iranian plateau shows dispersed intracontinental deformations with the development of numerous small-scale and discontinuous right-lateral strike-slip faults. The dispersed surface structures and deformation pattern correspond well to the active volcanism and seismically slow crust and uppermost mantle, and hence a weak lithosphere of the area. Further to the southeast are the western part of the Alborz Mountains and the southern Caspian Sea, both of which are characterized by stronger and more rigid lithosphere with relatively fast crust and uppermost mantle and absence of Quaternary volcanoes. A sharp Moho offset of 18 km has been imaged at the border of the Alborz and southern Caspian Sea using teleseismic receiver function data from a dense seismic array deployed under a collaborative project named "China-Iran Geological and Geophysical Survey in the Iranian Plateau (CIGSIP)". The sharp Moho offset and the minor undulations of the Moho on both sides indicate insignificant intracrustal deformation but mainly relative crustal movements between the Alborz Mountains and southern Caspian Sea, a behavior consistent with the relatively rigid nature of the lithosphere. Similar Moho offsets and lithospheric structures have been reported at the borders between the Kunlun Mountains and Qaidam or Tarim Basins in the northern margin of the Tibetan plateau, suggesting the occurrence of relative crustal movements with the effects of rigid continental lithosphere in the region

  14. The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau

    OpenAIRE

    Hatsuki, Fujinami; Tetsuzo, Yasunari; Institute of Geoscience, University of Tsukuba; Institute of Geoscience, University of Tsukuba

    2001-01-01

    Seasonal variation of diurnal cloud activity(abbreviated DCA)over the Tibetan Plateau throughout the year is examined using 3-hourly geostationary meteorological satellite(GMS)data for 6-years(1989-1994). The DCA shows two distinct variance maxima in the seasonal cycle. One is in spring(pre-monsoon season), and the other is in the summer monsoon season. The DCA begins in late January, and reaches its maximum from March through April. The active DCA extends over almost the whole of the plateau...

  15. The Spatial and Temporal Variation of Temperature in the Qinghai-Xizang (Tibetan Plateau during 1971–2015

    Directory of Open Access Journals (Sweden)

    Zhaochen Liu

    2017-11-01

    Full Text Available The Tibetan Plateau (TP, which is well known as “The Third Pole”, is of great importance to climate change in East Asia, and even the whole world. In this paper, we selected the monthly temperature (including the monthly mean and the maximum and minimum temperature during 1971–2015 from 88 meteorological stations on the TP. The data were tested and corrected by using Penalized Maximal F Test (PMFT based on RHtest. Afterwards, based on the Mann-Kendall test, we analyzed the seasonal and time-interval characteristics on each station in detail. The results show that the TP has experienced significant warming during 1971–2015. When comparing the selected elements, the warming rate of minimum temperature (Tmin is the largest, the mean temperature (Tmean comes second, and the maximum temperature (Tmax is the smallest. The warming trends in four seasons are significant, and the highest warming rate occurs in winter. The warming trend on the TP has a prominent spatial difference, with a large warming rate on the eastern parts and a small one on the central regions. In different seasons, the warming trends on the TP have different characteristics in the time interval. Since 1998, the warming rate in spring increased markedly, spring has displaced winter as the season with the highest warming rate recently.

  16. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    Science.gov (United States)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  17. Molecular identification of Echinococcus granulosus on the Tibetan Plateau using mitochondrial DNA markers.

    Science.gov (United States)

    Hu, D; Song, X; Wang, N; Zhong, X; Wang, J; Liu, T; Jiang, Z; Dawa, T; Gu, X; Peng, X; Yang, G

    2015-10-30

    Cystic echinococcosis (CE) is an important worldwide zoonotic disease that causes large economic losses and human suffering. Echinococcus granulosus, the causative agent of CE, exhibits different genotypes in different locations. In order to identify its genotypes and analyze its genetic structure on the Tibetan Plateau, we collected 72 hydatid cysts from different intermediate hosts and amplified and sequenced their mitochondrial cytochrome c oxidase subunit 2 (cox2) genes. Seventy isolates were identified as the E. granulosus G1 genotype, while two isolates belonged to the G6 genotype. There were 18 haplotypes among the 70 E. granulosus isolates, which exhibited a star-like network pattern and shared a common haplotype (H1). There was little difference between geographical sub-populations. Our results suggest that a recent E. granulosus population expansion occurred on the Tibetan Plateau, suggesting that E. granulosus was introduced into China. This study increases the basic molecular data needed for the molecular diagnosis, epidemiology, prevention, and control of Echinococcus diseases.

  18. The Rock Art of Upper Tibet and Ladakh: Inner Asian cultural adaptation, regional differentiation and the Western Tibetan Plateau Style

    OpenAIRE

    Bruneau , Laurianne; Bellezza , John V.

    2013-01-01

    International audience; This paper examines common thematic and esthetic features discernable in the rock art of the western portion of the Tibetan plateau. This rock art is international in scope; it includes Ladakh (La-dwags) (under Indian jurisdiction), Tö (Stod) and the Changthang (Byang-thang) (under Chinese administration) hereinafter called Upper Tibet. This work sets out the relationship of this art to other regions of Inner Asia and defines what we call the 'Western Tibetan Plateau S...

  19. No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, Xufeng; Xiao, Jingfeng; Li, Xin; Cheng, Guodong; Ma, Mingguo; Che, Tao; Dai, Liyun; Wang, Shaoying; Wu, Jinkui

    2017-12-01

    Vegetation phenology is a sensitive indicator of climate change and has significant effects on the exchange of carbon, water, and energy between the terrestrial biosphere and the atmosphere. The Tibetan Plateau, the Earth's "third pole," is a unique region for studying the long-term trends in vegetation phenology in response to climate change because of the sensitivity of its alpine ecosystems to climate and its low-level human disturbance. There has been a debate whether the trends in spring phenology over the Tibetan Plateau have been continuously advancing over the last two to three decades. In this study, we examine the trends in the start of growing season (SOS) for alpine meadow and steppe using the Global Inventory Modeling and Mapping Studies (GIMMS)3g normalized difference vegetation index (NDVI) data set (1982-2014), the GIMMS NDVI data set (1982-2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data set (2001-2014), the Satellite Pour l'Observation de la Terre Vegetation (SPOT-VEG) NDVI data set (1999-2013), and the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) NDVI data set (1998-2007). Both logistic and polynomial fitting methods are used to retrieve the SOS dates from the NDVI data sets. Our results show that the trends in spring phenology over the Tibetan Plateau depend on both the NDVI data set used and the method for retrieving the SOS date. There are large discrepancies in the SOS trends among the different NDVI data sets and between the two different retrieval methods. There is no consistent evidence that spring phenology ("green-up" dates) has been advancing or delaying over the Tibetan Plateau during the last two to three decades. Ground-based budburst data also indicate no consistent trends in spring phenology. The responses of SOS to environmental factors (air temperature, precipitation, soil temperature, and snow depth) also vary among NDVI data sets and phenology retrieval methods. The increases in winter and spring

  20. Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau.

    Science.gov (United States)

    Guan, Zhen-Huan; Li, Xiao Gang; Wang, Lin

    2018-03-01

    The effects of human activities on heavy metal pollution in soil have been less investigated on the Tibetan Plateau. The present study was designed to assess the effects of highway traffic on Cu, Zn, Pb, and Cd enrichments in the 0-60-cm soil profile in the eastern Tibetan Plateau. Soils were sampled at four transects (with an altitude range of 2643-2911 m) across the G212 highway and five transects (3163-3563 m) across the G213 highway. Background concentrations of Cu, Zn, Pb, and Cd to the 60-cm soil depth (measured at each transect 400 m away from highways) varied greatly among transects and between highways. However, this spatial variation in the heavy metal concentrations was not related to the altitude of the investigated areas. On each the left and right sides of G212 or G213, Cu, Zn, and Pb concentrations to the 60-cm depth, at 5, 10, 20, and 50 m away from the highway, were all generally greater than the respective metal background concentrations. Cd concentrations to the 20 cm on G212 or 60-cm soil depth on G213 increased prominently within a distance of 20 m away from the highways, compared to background values in different depths. From the curb to 400 m away from highways, concentrations of Cu, Zn, Pb, and Cd were generally higher in the upper than in the lower soil layers. This may suggest that other factors such as atmospheric deposition were also contributable to the accumulation of heavy metals in soil. The contamination factor (C f ) calculation showed that roadside soils to the 60-cm depth, within a distance of 50 m from the curbs of both G212 and G213, were moderately (1 ≤ C f  Tibetan Plateau. For assessment of heavy metal pollutions in soil in mountainous areas, it is necessary to in situ identify the background values.

  1. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    Science.gov (United States)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Modulation of the diurnal variations in the convective activities associated with day-by-day changes of surface flux and soil moisture was observed in the beginning of the monsoon season on the central Tibetan plateau (Sugimoto et al., 2008) which indicates the importance of land-atmosphere interactions in determining convective activities over the Tibetan plateau. Detailed interaction processes need to be studied by experiments designed to evaluate a set of hypotheses on mechanisms and linkages of these interactions. A possible function of vegetation to increase precipitation in cases of Tibetan High type was suggested by Yamada and Uyeda (2006). Use of satellite derived plateau scale soil moisture (Wen et al., 2003) enables the verification of these hypotheses (e.g. Trier et al. 2004). To evaluate these feedbacks, the mesoscale WRF model will be used because several numerical experiments are being conducted to improve the soil physical parameterization in the Noah land surface scheme in WRF so that the extreme conditions on the Tibetan plateau could be adequately represented (Van der Velde et al., 2009) such that the impacts on the structure of the atmospheric boundary layer can be assessed and improved. The Tibetan Observational Research Platform (TORP) operated by the Institute of Tibetan Plateau (Ma et al., 2008) will be fully utilized to study the characteristics of the plateau climate and different aspects of the WRF model will be evaluated using this extensive observation platform (e.g. Su et al., 2012). Recently, advanced studies on energy budget have been done by combining field and satellite measurements over the Tibetan Plateau (e.g. Ma et al., 2005). Such studies, however, were based on a single satellite observation and for a few days over an annual cycle, which are insufficient to reveal the relation between the land surface energy budget and the Asian monsoon over the Tibetan plateau. Time series analysis of satellite observations will provide the

  2. The Climate Effect of the Topographies at the Northern Margin of the Tibetan Plateau

    Science.gov (United States)

    Sha, Y.; Shi, Z.; Liu, X.

    2017-12-01

    The Tibetan Plateau play a crucial role in the formation and evolution of the Asian monsoon-interior aridity climate system. However, the climate effect of other relatively smaller topographies receives less attention. Based on high-resolved general circulation models, we conducted a series of sensitive experiments as with/without mountains, which include the Mongolian Plateau and the Tian Shan Mountains. The numerical simulations reveal the important impacts of the mountain ranges at the northern margins of the Tibetan Plateau. Compared to the main body of the Tibetan Plateau, the uplift of the Mongolian Plateau is essential for the establishment of the strong Siberian High. The East Asian winter monsoon and the westerly jet over the North Pacific Ocean are also significantly strengthened. At present, the Tian Shan Mountains geographically separate the arid interior Asia to the west and east sub-regions. However, the arid west sub-region (Central Asia) and the east sub-region (arid northwestern China) was connected as one large arid region before the uplift of the Tian Shan Mountains. The large arid interior land shares the same precipitation seasonality, with most rains fall in spring and winter while lowest precipitation in summer. After the uplift of the Tian Shan, the large arid region is divided into the west and east sub-regions by the wetter uplifted mountain ranges. More importantly, the precipitation seasonality in the east of the Tian Shan is reversed to be the summer-peak type, which is opposite to that in the Central Asia. The precipitation alteration corresponds well with the change of vertical motion. By the conservation of potential vorticity, the atmosphere stationary waves are modulated. Thus, the remote East Asian monsoon is also modulated. Though enhanced southerly wind blows over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean is significantly reduced as an anticyclonic circulation appears

  3. Quartz OSL Dating of the loess deposit in the eastern Tibetan Plateau and its environment implications since the Last Glaciation

    Science.gov (United States)

    Yang, S.; Cheng, T.; Liu, W.; Fang, X.

    2017-12-01

    Loess deposit is widespread in the Chuanxi Plateau, the eastern Tibetan Plateau, which is a critical archive for understanding the aeolian process, the evolution of the westerly and the environment changes on the Plateau. Previous studies have shown its aeolian origin, and mainly transported by wind from the western part of the Tibetan Plateau. However, the aeolian processes of the loess and its environment implications are not well understood mainly due to lack of detailed age controls. We carry out a combined quartz optically stimulated luminescence (OSL) dating and accelerator mass spectrometry radiocarbon dating (AMS 14-C) for the loess deposits in Garzê and Jinchuan. The results indicate that the quartz OSL dating can provide reliable age controls for the loess-paleosol sequences from the Chuanxi Plateau, showing the potential of OSL to date loess in the high altitude region. The results indicate that the OSL ages are in agreement with the observed stratigraphy in the field. The constructed OSL and AMS 14-C chronology of the Garzê loess reveals that the widespread loess in Ganzi Region deposited since the Last Glacial. The dust accumulation is rapid during marine isotope stage (MIS) 3 and 2, and a relative low accumulation rate in the Holocene, which may related with the desertification processes of the inner Tibetan Plateau.

  4. Deformation Mechanism of the Northern Tibetan Plateau as Revealed by Magnetotelluric Data

    Science.gov (United States)

    Zhang, Letian; Wei, Wenbo; Jin, Sheng; Ye, Gaofeng; Xie, Chengliang

    2017-04-01

    As a unique geologic unit on the northern margin of the Tibetan Plateau, the Qaidam Basin plays a significant role in constraining the vertical uplift and horizontal expansion of the northern and northeastern Tibetan Plateau. However, due to its complex evolution history and difficult logistic condition, deformation mechanism of the lithosphere beneath the Qaidam Basin is still highly debated. To better understand the lithospheric electrical structure and deformation mechanism of the Qaidam Basin, A 250 km long, NE-SW directed Magnetotelluric (MT) profile was finished in the northern portion of the Basin, which is roughly perpendicular to the thrust fault systems on the western and eastern margins of the Basin, as well as anticlinorium systems within the Basin. The profile consists of 20 broad-band MT stations and 5 long-period MT stations. Original time series data is processed with regular robust routines. Dimensionality and regional strike direction are determined for the dataset through data analysis. Based on the analysis results, 2D inversions were performed to produce a preferred model of the lithospheric electrical structure beneath the northern Qaidam Basin. Uncertainty analysis of the 2D inversion model was also conducted based on a data resampling approach. The outcome 2D electrical model was further used to estimate the distribution of temperature and melt fraction in the upper mantle based on laboratory-determined relationships between the electrical conductivity and temperature of nominally anhydrous minerals and basaltic melt by using the mixing law of Hashin-Shtrikman's bounds. All these results suggest that: (1) the crust-mantle boundary is imaged as a conductive layer beneath the western Qaidam Basin, with its temperature estimated to be 1200-1300 °C and melt fraction 5-8%, indicating decoupling deformation of the crust and upper mantle. (2) A large-scale east-dipping conductor is imaged beneath the eastern Qaidam Basin. This conductor extends

  5. Desertification in 1957-2015 Estimated from Vegetation Coverage and Climate Conditions on the Tibetan Plateau

    Science.gov (United States)

    Cuo, L.

    2017-12-01

    Desert is an area that receives less than 25 cm precipitation in cold climate or 50 cm precipitation in hot climate (Miller, 1961). Others defined true desert as a region having no recorded precipitation in 12 consecutive months (McGinnies et al., 1968). According to Koppen-Gieger climate classification system, if mean annual precipitation is less than 50% of the value A calculated by mean annual temperature times 20 plus 280 if 70% or more precipitation falls in April-September, the region has desert climate; if the mean annual precipitation is within 50%-100% of the value A, the region has semi-arid or steppe climate. On the Tibetan Plateau, the above definitions will result in no desert at all or the majority of the region falling into the category of desert which is not consistent with reality based on field exploration. In this study, the fractional vegetation coverage (FPC), precipitation, soil moisture and extreme wind days are used as indices to define areas of various degrees of desertification which produces much more realistic distribution of desert areas on the plateau. The Lund-Potsdam-Jena Dynamic Vegetation model (LPJ) is used to simulate vegetation growth, succession and vegetation properties such as FPC and soil moisture on the Tibetan Plateau. Gridded daily climate data are generated to drive the model and to analyze the status and changes of various deserts including light desert, medium desert, severe desert, extremely severe desert and desert proned area. The study will reveal the status and changes of possible driving factors of desertification, as well as various kinds of desert on the Tibetan Plateau during 1957-2015.

  6. Role of Tibetan Buddhist monasteries in snow leopard conservation.

    Science.gov (United States)

    Li, Juan; Wang, Dajun; Yin, Hang; Zhaxi, Duojie; Jiagong, Zhala; Schaller, George B; Mishra, Charudutt; McCarthy, Thomas M; Wang, Hao; Wu, Lan; Xiao, Lingyun; Basang, Lamao; Zhang, Yuguang; Zhou, Yunyun; Lu, Zhi

    2014-02-01

    The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia, including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China's Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km(2) of snow leopard habitat in the Sanjiangyuan region, of which 7674 km(2) lay within Sanjiangyuan Nature Reserve's core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km(2) ) through social norms and active patrols than the nature reserve's core zones. We conducted 144 household interviews to identify local herders' attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards. © 2013 Society for Conservation Biology.

  7. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  8. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland.

    Science.gov (United States)

    Cong, Nan; Shen, Miaogen; Yang, Wei; Yang, Zhiyong; Zhang, Gengxin; Piao, Shilong

    2017-08-01

    Vegetation activity on the Tibetan Plateau grassland has been substantially enhanced as a result of climate change, as revealed by satellite observations of vegetation greenness (i.e., the normalized difference vegetation index, NDVI). However, little is known about the temporal variations in the relationships between NDVI and temperature and precipitation, and understanding this is essential for predicting how future climate change would affect vegetation activity. Using NDVI data and meteorological records from 1982 to 2011, we found that the inter-annual partial correlation coefficient between growing season (May-September) NDVI and temperature (R NDVI-T ) in a 15-year moving window for alpine meadow showed little change, likely caused by the increasing R NDVI-T in spring (May-June) and autumn (September) and decreasing R NDVI-T in summer (July-August). Growing season R NDVI-T for alpine steppe increased slightly, mainly due to increasing R NDVI-T in spring and autumn. The partial correlation coefficient between growing season NDVI and precipitation (R NDVI-P ) for alpine meadow increased slightly, mainly in spring and summer, and R NDVI-P for alpine steppe increased, mainly in spring. Moreover, R NDVI-T for the growing season was significantly higher in those 15-year windows with more precipitation for alpine steppe. R NDVI-P for the growing season was significantly higher in those 15-year windows with higher temperature, and this tendency was stronger for alpine meadow than for alpine steppe. These results indicate that the impact of warming on vegetation activity of Tibetan Plateau grassland is more positive (or less negative) during periods with more precipitation and that the impact of increasing precipitation is more positive (or less negative) during periods with higher temperature. Such positive effects of the interactions between temperature and precipitation indicate that the projected warmer and wetter future climate will enhance vegetation activity

  9. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Carbon dioxide (CO2 exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE of a cultivated pasture in the Three-River Source Region (TRSR on the Qinghai-Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were -7.89 and 5.03 μmol CO2 m-2 s-1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (-2.91 g C m-2 d-1 and July 28 (5.04 g C m-2 day-1, respectively. The annual total NEE and Re were -140.01 and 403.57 g C m-2 year-1, respectively. The apparent quantum yield (α was -0.0275 μmol μmol-1 for the entire growing period, and the α values for the pasture's light response curve varied with the leaf area index (LAI, air temperature (Ta, soil water content (SWC and vapor pressure deficit (VPD. Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10 was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon

  10. The influence of climatic changes on distribution pattern of six typical Kobresia species in Tibetan Plateau based on MaxEnt model and geographic information system

    Science.gov (United States)

    Hu, Zhongjun; Guo, Ke; Jin, Shulan; Pan, Huahua

    2018-01-01

    The issue that climatic change has great influence on species distribution is currently of great interest in field of biogeography. Six typical Kobresia species are selected from alpine grassland of Tibetan Plateau (TP) as research objects which are the high-quality forage for local husbandry, and their distribution changes are modeled in four periods by using MaxEnt model and GIS technology. The modeling results have shown that the distribution of these six typical Kobresia species in TP was strongly affected by two factors of "the annual precipitation" and "the precipitation in the wettest and driest quarters of the year". The modeling results have also shown that the most suitable habitats of K. pygmeae were located in the area around Qinghai Lake, the Hengduan-Himalayan mountain area, and the hinterland of TP. The most suitable habitats of K. humilis were mainly located in the area around Qinghai Lake and the hinterland of TP during the Last Interglacial period, and gradually merged into a bigger area; K. robusta and K. tibetica were located in the area around Qinghai Lake and the hinterland of TP, but they did not integrate into one area all the time, and K. capillifolia were located in the area around Qinghai Lake and extended to the southwest of the original distributing area, whereas K. macrantha were mainly distributed along the area of the Himalayan mountain chain, which had the smallest distribution area among them, and all these six Kobresia species can be divided into four types of "retreat/expansion" styles according to the changes of suitable habitat areas during the four periods; all these change styles are the result of long-term adaptations of the different species to the local climate changes in regions of TP and show the complexity of relationships between different species and climate. The research results have positive reference value to the protection of species diversity and sustainable development of the local husbandry in TP.

  11. Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Kang, Shichang; Liu, Yajun; Li, Yang; Huang, Jie; Qin, Xiang

    2016-08-01

    Cryoconite deposited on mountain glacier surfaces is significant for understanding regional atmospheric environments, which could influence the albedo and energy balance of the glacier basins, and maintain the glacial microbiology system. Field observations were conducted on the glaciers of western China, including Laohugou Glacier No.12 (LHG), Tanggula Dongkemadi Glacier (TGL), Zhadang Glacier (ZD), and Baishui Glacier No.1 in the Yulong Mountains (YL), as well as Urumqi Glacier No.1 in the Tianshan Mountains (TS) for comparison with locations in the Tibetan Plateau, in addition to laboratory TEM-EDX analysis of the individual cryoconite particles filtered on lacey carbon (LC) and calcium-coated carbon (Ca-C) TEM grids. This work provided information on the morphology and chemical composition, as well as a unique record of the particle's physical state, of cryoconite deposition on the Tibetan Plateau. The result showed that there is a large difference in the cryoconite particle composition between various locations on the Tibetan Plateau. In total, mineral dust particles were dominant (>50%) in the cryoconite at all locations. However, more anthropogenic particles (e.g., black carbon (BC) and fly ash) were found in YL (38%) and ZD (22%) in the Ca-C grids in the southern locations. In TGL, many NaCl and MCS particles (>10%), as well as few BC and biological particles (<5%), were found in cryoconite in addition to mineral dust. In TS, the cryoconite is composed primarily of mineral dust, as well as BC (<5%). Compared with other sites, the LHG cryoconite shows a more complex composition of atmospheric deposition with sufficient NaCl, BC, fly ash and biological particles (6% in LC grid). The higher ratio of anthropogenic particles in the southern Tibetan Plateau is likely caused by atmospheric pollutant transport from the south Asia to the Tibetan Plateau. Cryoconite in the northern locations (e.g., TGL, LHG, and TS) with higher dust and salt particle ratio are

  12. Annual ecosystem respiration variability of alpine peatland on the eastern Qinghai-Tibet Plateau and its controlling factors.

    Science.gov (United States)

    Peng, Haijun; Hong, Bing; Hong, Yetang; Zhu, Yongxuan; Cai, Chen; Yuan, Lingui; Wang, Yu

    2015-09-01

    Peatlands are widely developed in the eastern Qinghai-Tibet Plateau, but little is known about carbon budgets for these alpine peatland ecosystems. In this study, we used an automatic chamber system to measure ecosystem respiration in the Hongyuan peatland, which is located in the eastern Qinghai-Tibet Plateau. Annual ecosystem respiration measurements showed a typical seasonal pattern, with the peak appearing in June. The highest respiration was 10.43 μmol CO2/m(2)/s, and the lowest was 0.20 μmol CO2/m(2)/s. The annual average ecosystem respiration was 2.06 μmol CO2/m(2)/s. The total annual respiration was 599.98 g C/m(2), and respiration during the growing season (from May to September) accounted for 78 % of the annual sum. Nonlinear regression revealed that ecosystem respiration has a significant exponential correlation with soil temperature at 10-cm depth (R (2) = 0.98). The Q 10 value was 3.90, which is far higher than the average Q 10 value of terrestrial ecosystems. Ecosystem respiration had an apparent diurnal variation pattern in growing season, with peaks and valleys appearing at approximately 14:00 and 10:00, respectively, which could be explained by soil temperature and soil water content variation at 10-cm depth.

  13. Distributional patterns of anemophilous tree pollen indicating the pathways of Indian monsoon through Qinghai–Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Zhang

    2017-10-01

    Full Text Available The distribution pattern of vegetation on Qinghai–Tibetan Plateau is fundamentally influenced by the plateau climate, which is mainly controlled by Indian monsoon during summer. The long distance transportation of pollen (mostly anemophilous taxa produced by trees on the plateau has been recorded by modern pollen samples in previous studies, and hypothesized to be a good indicator of monsoon dynamics. Here we use 270 surface pollen samples from Qinghai–Tibetan Plateau to test the distribution patterns of the anemophilous tree pollen. Meanwhile factors related to Indian monsoon affecting pollen transportation are simulated and analyzed. Results show that depositional patterns of anemophilous tree pollen, especially Abies, Pinus, Quercus and Betula are completely controlled by the pathways of Indian monsoon. This is reflected by climatic indicators of the atmospheric pressure pattern over June–July–August, by the precipitation pattern over June–July–August and by the topographic feature of the plateau. The spatial interpolation of thin plate spline results also display two depositional centers (ca. 30°N, 95°E and 30°N, 105°E of the anemophilous tree pollen. In contrast to previous conclusion that pollen distributional pattern is determined by mean annual precipitation, we argue that Indian monsoon is the essential controller because of the synchronization between timing of monsoon wind and timing of plants flowering. Our finding strongly suggests that distributional pattern of anemophilous tree pollen on the plateau is a good proxy of Indian monsoon.

  14. Molecular identification of Echinococcus species from eastern and southern Qinghai, China, based on the mitochondrial cox1 gene.

    Science.gov (United States)

    Ma, Junying; Wang, Hu; Lin, Gonghua; Craig, Philip S; Ito, Akira; Cai, Zhenyuan; Zhang, Tongzuo; Han, Xiumin; Ma, Xiao; Zhang, Jingxiao; Liu, Yufang; Zhao, Yanmei; Wang, Yongshun

    2012-07-01

    The Qinghai-Tibetan Plateau (QTP, in western China), which is the largest and highest plateau on Earth, is a highly epidemic region for Echinococcus spp. We collected 70 Echinococcus samples from humans, dogs, sheep, yaks, plateau pikas, and voles in eastern and southern Qinghai and genotyped them using the mitochondrial DNA marker cytochrome oxidase subunit I gene and maximum parsimony and Bayesian reconstruction methods. Based on the 792-bp sequence matrix, we recorded 124 variable sites, of which, 115 were parsimony-informative. Thirty-four haplotypes (H1-H34) were detected, of which H1-H15, H16-H17, and H18-H34 belonged to Echinococcus shiquicus, Echinococcus multilocularis, and Echinococcus granulosus, respectively. Within 26 human isolates, three were identified as E. multilocularis and 23 were E. granulosus. We also detected a dual infection case in a dog with E. multilocularis and E. granulosus. The intraspecific haplotype (Hd ± SD) and nucleotide (Nd ± SD) diversity of E. shiquicus (0.947 ± 0.021; 0.00441 ± 0.00062) was higher than that for E. granulosus (0.896 ± 0.038; 0.00221 ± 0.00031) and E. multilocularis (0.286 ± 0.196; 0.00036 ± 0.00025). Moreover, the haplotype network of E. shiquicus showed a radial feature rather than a divergent feature in a previous study, indicating this species in the QTP has also evolved with bottleneck effects.

  15. AMDO TIBETAN TONGUE TWISTERS

    Directory of Open Access Journals (Sweden)

    Blo rtan rdo rje

    2009-06-01

    Full Text Available Tibetan tongue twisters are a distinctive and significant part of Tibetan oral folk literature. They are made up of words and phrases related to what people see and experience in daily life. These words are strung together and are difficult to articulate rapidly and fluently, often because of a succession of questions and/ or similar consonantal sounds. This article sheds light on this poorly studied, vanishing, aspect of Tibetan tradition by focusing on tongue twisters that were once popular in Pha bzhi (Hayu 哈 玉 , a subdivision of Skya rgya (Jiajia 贾 加 Administrative Village, Skya rgya Township, Gcan tsha (Jianzha 尖扎 County, Rma lho (Huangnan 黄南 Tibetan Autonomous Prefecture, Mtsho sngon (Qinghai 青海 Province, PR China.

  16. Monitoring LongBao Wetland Ecosystem in Tibetan Plateau using time-series SAR and Optical dataset

    Science.gov (United States)

    Brisco, B.; Wei, Q.; Xie, C.; Shao, Y.; Tian, B.; Li, K.

    2017-12-01

    As a highly productive and sensitive ecosystem, plateau wetlands provide indispensable habitats for the black-necked crane, an endangered species of crane. In this research, we focus on Longbao plateau wetland, the only habitat of black-necked crane in Tibetan Plateau, located in Yushu, Qinghai province, with an area of about 100 km2 and elevation about 4100 4200m. Monitoring Longbao wetland during the past 30 years using time series SAR and optical dataset and analysis its effect on black-necked crane have great significance for endangered species protection. Water and vegetation resources are two important indicators of wetland productivity. In this study, we aim at providing the open water area dynamics and the variation of vegetation during the past 30 years using SAR and optical imageries and analyzing their effect on black-necked cranes. The changes of the open water area and NDVI reflect the environment variety of Longbao wetland. And the relationship between these biological parameters and climates were analyzed, especially their influence on the black-necked cranes, which is the only kind of crane in the world that grows and breeds in the plateau. The method of level set segmentation with KummerU distribution was applied to open water bodies (wetlands) delimitation using time series SAR dataset, including Envisat-ASAR acquired from 2003 to 2010 and Radasat-2 from 2013 to 2014. Also the NDVI is calculated from Landsat images (acquired during 2003-2015) using google earth engine which is a cloud-based platform for planetary-scale environmental data analysis.The results indicate that the open water area fluctuates with seasons and reaches the maximum in summer. While in the spring and winter the wetland is usually covered by ice and snow. The highest values of NDVI occurred in years with a sufficient amount of precipitation. The abundant vegetation, water and suitable temperature of Longbao wetland in summer effectively promote the boost and growth of the

  17. Multilayer Densities Using a Wavelet-based Gravity Method and Their Tectonic Implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-03-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the center and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted 6-layer densities from 0 km to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 km to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 km to 110 km depth can be also observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  18. Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-06-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding of tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the centre and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted six-layer densities from 0 to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 to 110 km depth can also be observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  19. Rock magnetism of the offshore soils of Lake Qinghai in the western China

    Directory of Open Access Journals (Sweden)

    Peng eZhang

    2016-05-01

    Full Text Available Lake Qinghai is the largest lake in China and situated in an important climate-sensitive zone on the northeastern margin of the Tibetan Plateau, making it an ideal place to study the environmental evolution of the northwest China as well as the interplay between the Asian monsoon and the westerlies in late Quaternary. In this study, detailed rock magnetic measurements were carried out on the offshore soils of Lake Qinghai. The dry grassland samples have higher magnetic susceptibility than that of the wet grassland samples, which suggests a higher concentration of magnetic minerals in the dry grassland and lower concentration of magnetic minerals in the wet grassland near the lake edge. The high concentration of the superparamagnetic (SP magnetic minerals related to pedogenesis may also contribute to the high magnetic susceptibility of the dry grassland. The low magnetic susceptibility of the wet grassland may result from the conversion of strongly to weakly magnetic minerals and/or the dissolution of magnetic minerals. In addition, the Hm/(Gt+Hm value has a positive correlation with the water content, thus can be taken as an effective proxy for the soil moisture.

  20. Religious Burning as a Major Source of Atmospheric Fine Aerosols in Lhasa city in the Tibetan Plateau

    Science.gov (United States)

    Liu, S.; Cui, Y.; Zhixuan, B.; Bian, J.; McKeen, S. A.; Watts, L. A.; Ciciora, S. J.; Gao, R. S.

    2017-12-01

    Measurements of aerosols in the Tibetan Plateau are scant due to the high altitude and harsh climate. To bridge this gap, we carried out the first field measurements of aerosol size distributions in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and reduced air quality. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 µg m-3 and the high values exceeding 50 µg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that is likely induced by religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at 500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that more attention should be paid to religious burning, a currently under-studied source, in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.

  1. Crustal anisotropy from Moho converted Ps wave splitting and geodynamic implications in Northeastern margin of Tibetan Plateau

    Science.gov (United States)

    Xie, Z.; Wu, Q.; Zhang, R.

    2017-12-01

    Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.

  2. Survey, Culture, and Genome Analysis of Ocular Chlamydia trachomatis in Tibetan Boarding Primary Schools in Qinghai Province, China.

    Science.gov (United States)

    Feng, Le; Lu, Xinxin; Yu, Yonghui; Wang, Tao; Luo, Shengdong; Sun, Zhihui; Duan, Qing; Wang, Ningli; Song, Lihua

    2016-01-01

    Trachoma, the leading infectious cause of blindness worldwide, is an ancient human disease. Its existence in China can be traced back to as early as the twenty-seventh century BC. In modern China, the overall prevalence of trachoma has dramatically reduced, but trachoma is still endemic in many areas of the country. Here, we report that 26 (8%) of 322 students from two rural boarding schools of Qinghai province, west China, were identified as having ocular C. trachomatis infection; and 15 ocular C. trachomatis strains were isolated from these trachoma patients. Chlamydiae in 37 clinical samples were genotyped as type B based on ompA gene analyses. Three ompA variants with one or two in-between SNP differences in the second or fourth variable domain were found. C. trachomatis strains QH111L and QH111R were from the same patient's left and right conjunctival swabs, respectively, but their ompA genes have a non-synonymous base difference in the second variable domain. Moreover, this SNP only exists in this single sample, suggesting QH111L is a newly emerged ompA variant. Interestingly, chromosomal phylogeny analysis found QH111L clusters between a branch of two type B strains and a branch of both A and C strains, but is significantly divergent from both branches. Comparative chromosome analysis found that compared to sequences of reference B/TZ1A828/OT strain, 12 of 22 QH111L's chromosomal genes exhibiting more than nine SNPs have the best homology with reciprocal genes of UGT strains while 9 of 22 genes are closest to those of type C strains. Consistent with findings of UGT-type genetic features in the chromosome, the QH111L plasmid appears to be intermediate between UGT and classical ocular plasmids due to the existence of UGT-type SNPs in the QH111L plasmid. Moreover, the QH111L strain has a unique evolutionarily older cytotoxin region compared to cytotoxin regions of other C. trachomatis strains. The genome analyses suggest that the QH111L strain is derived from

  3. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent

    Science.gov (United States)

    Dong, Wenhao; Lin, Yanluan; Wright, Jonathon S.; Ming, Yi; Xie, Yuanyu; Wang, Bin; Luo, Yong; Huang, Wenyu; Huang, Jianbin; Wang, Lei; Tian, Lide; Peng, Yiran; Xu, Fanghua

    2016-01-01

    Despite the importance of precipitation and moisture transport over the Tibetan Plateau for glacier mass balance, river runoff and local ecology, changes in these quantities remain highly uncertain and poorly understood. Here we use observational data and model simulations to explore the close relationship between summer rainfall variability over the southwestern Tibetan Plateau (SWTP) and that over central-eastern India (CEI), which exists despite the separation of these two regions by the Himalayas. We show that this relationship is maintained primarily by ‘up-and-over' moisture transport, in which hydrometeors and moisture are lifted by convective storms over CEI and the Himalayan foothills and then swept over the SWTP by the mid-tropospheric circulation, rather than by upslope flow over the Himalayas. Sensitivity simulations confirm the importance of up-and-over transport at event scales, and an objective storm classification indicates that this pathway accounts for approximately half of total summer rainfall over the SWTP. PMID:26948491

  4. Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau.

    Science.gov (United States)

    Shao, Jun-Juan; Liu, Cheng-Bin; Zhang, Qing-Hua; Fu, Jian-Jie; Yang, Rui-Qiang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-06-01

    The accumulation and species of mercury (Hg) in mosses and lichens collected from high-altitude Tibetan Plateau were studied. The altitudes of the sampling sites spanned from 1983 to 5147 m, and a total of 130 mosses and 52 lichens were analyzed. The total mercury (THg) contents in mosses and lichens were in the ranges of 13.1-273.0 and 20.2-345.9 ng/g, respectively. The average ratios of methylmercury (MeHg) in THg in mosses and lichens were 2.4 % (0.3-11.1 %) and 2.7 % (0.4-9.6 %), respectively, which were higher than those values reported in other regions. The contents of THg in both mosses and lichens were not correlated with the THg in soils (p > 0.05). The lipid contents displayed a significantly positive correlation with concentrations of MeHg in mosses (r = 0.461, p Tibetan Plateau.

  5. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations

    International Nuclear Information System (INIS)

    Liu Xiaodong; Bai Aijuan; Liu Changhai

    2009-01-01

    The diurnal patterns of variation of summertime precipitation over the Tibetan Plateau were first investigated using the TRMM multi-satellite precipitation analysis product for five summer seasons (i.e. June to August for 2002-2006). Both hourly precipitation amount and precipitation frequency exhibit pronounced daily variability with an overall late-afternoon-evening maximum and a dominant morning minimum. A notable exception is the prevalent nocturnal maximum around the periphery of the Plateau. In terms of the normalized harmonic amplitude, the diurnal signal shows significant regional contrast with the strongest manifestation over the central Plateau and the weakest near the periphery. This remarkable spatial dependence in daily rainfall cycles is clear evidence of orographic and heterogeneous land-surface impacts on convective development. Using six-hourly NCEP FNL data, we then examined the diurnal variability in the atmospheric circulation and thermodynamics in this region. The results show that the Plateau heats (cools) the overlying atmosphere during the day (night) more than the surrounding areas, and as a consequence a relatively stronger confluent circulation in this region occurs during the day than during the night, consistent with the diurnal rainfall cycles. Moreover, the regions with large low-level convergence and upper-level divergence correspond to the strong diurnal rainfall variations. The reversed daily alterations of convergence-divergence patterns in the vicinity of the Plateau edges are in agreement with the observed nighttime rainfall peak therein. This study further demonstrates the importance of the Tibetan Plateau in regulating regional circulation and precipitation.

  6. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  7. Aerosol vertical distribution characteristics over the Tibetan Plateau

    International Nuclear Information System (INIS)

    Deng, Z Q; Han, Y X; Zhao, Q; Li, J

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products are widely used in climatic characteristic studies and stratospheric aerosol pattern research. Some SAGE II products, e.g., temperature, aerosol surface area density, 1020 nm aerosol extinction coefficient and dust storm frequency, from ground-based observations were analysed from 1984 to 2005. This analysis explored the time and spatial variations of tropospheric and stratospheric aerosols on the Tibet Plateau. The stratospheric aerosol extinction coefficient increased more than two orders of magnitude because of a large volcanic eruption. However, the tropospheric aerosol extinction coefficient decreased over the same period. Removing the volcanic eruption effect, the correlation coefficient for stratospheric AOD (Aerosol Optical Depth) and tropospheric AOD was 0.197. Moreover, the correlation coefficient for stratospheric AOD and dust storm frequency was 0.315. The maximum stratospheric AOD was attained in January, the same month as the tropospheric AOD, when the Qaidam Basin was the centre of low tropospheric AOD and the large mountains coincided with high stratospheric AOD. The vertical structure generated by westerly jet adjustment and the high altitude of the underlying surface of the Tibetan Plateau were important factors affecting winter stratospheric aerosols

  8. Radar-derived quantitative precipitation estimation in complex terrain over the eastern Tibetan Plateau

    Science.gov (United States)

    Gou, Yabin; Ma, Yingzhao; Chen, Haonan; Wen, Yixin

    2018-05-01

    Quantitative precipitation estimation (QPE) is one of the important applications of weather radars. However, in complex terrain such as Tibetan Plateau, it is a challenging task to obtain an optimal Z-R relation due to the complex spatial and temporal variability in precipitation microphysics. This paper develops two radar QPE schemes respectively based on Reflectivity Threshold (RT) and Storm Cell Identification and Tracking (SCIT) algorithms using observations from 11 Doppler weather radars and 3264 rain gauges over the Eastern Tibetan Plateau (ETP). These two QPE methodologies are evaluated extensively using four precipitation events that are characterized by different meteorological features. Precipitation characteristics of independent storm cells associated with these four events, as well as the storm-scale differences, are investigated using short-term vertical profile of reflectivity (VPR) clusters. Evaluation results show that the SCIT-based rainfall approach performs better than the simple RT-based method for all precipitation events in terms of score comparison using validation gauge measurements as references. It is also found that the SCIT-based approach can effectively mitigate the local error of radar QPE and represent the precipitation spatiotemporal variability better than the RT-based scheme.

  9. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy

    Science.gov (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter

    2012-01-01

    Background and Aims Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Methods Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Key Results Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May–June. Conclusions Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world. PMID:22210848

  10. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy.

    Science.gov (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter

    2012-03-01

    Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May-June. Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world.

  11. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau

    NARCIS (Netherlands)

    Li, Shihu; Deng, Chenglong; Yao, Haitao; Huang, Sheng; Liu, Chengying; He, Huaiyu; Pan, Yongxin; Zhu, Rixiang

    [1] The rotation pattern and fault activity in the southeast margin of the Tibetan Plateau (SEMTP) provide meaningful constraints on the geodynamic evolution of the plateau. However, the lack of Cenozoic paleomagnetic studies and accurate age constraints on Neogene sediments prevents a better

  12. Long-term strain accommodation in the eastern margin of the Tibetan Plateau: Insights from 3D thermo-kinematic modelling

    Science.gov (United States)

    Tian, Y.; Vermeesch, P.; Carter, A.; Zhang, P.

    2017-12-01

    The Cenozoic deformation of the Tibetan Plateau were dominated by the north-south collision between the Indian and Eurasian continents since Early Cenozoic time. Numerous lines of evidence suggest that the plateau has expanded outward after the collision, forming a diverging stress-regime from the collisional belt to plateau margins. When and how the expansional strain had propagated to the current plateau margins has been hotly debated. This work presents results of an on-going projects for understanding the long-term strain history along the Longmen Shan, the eastern margin of the Tibetan Plateau, where deformation is controlled by three parallel NW-dipping faults. From foreland (southeast) to hinterland (northwest), the main faults are the Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maowen fault. Exhumation pattern constrained by one-dimensional modelling made from a compilation of published and unpublished thermochronometry data shows a strong structural control, with highest amounts of exhumation in the hinterland region, a pattern that is characteristic of out-of-sequence reverse faulting (Tian et al., 2013, Tectonics, doi:10.1002/tect.20043; Tian et al., 2015, Geophys. Res. Lett., doi:10.1002/2014GL062383). Three-dimensional thermo-kinematic modelling of these data suggests that the Longmen Shan faults are listric in geometry, merging into a detachment at a depth of 20-30 km. The models require a marked decrease in slip-rate along the frontal Yingxiu-Beichuan in the late Miocene, whereas the slip-rate along the hinterland Wenchuan-Maowen fault remained relatively constant since early Miocene time. The long-term pattern of strain accommodation revealed by the three-dimensional thermo-kinematic modelling have important implications for distinguishing geodynamic models proposed for explaining the eastward growth of the Tibetan Plateau.

  13. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau

    Science.gov (United States)

    Zhou, X.; Beljaars, A.; Wang, Y.; Huang, B.; Lin, C.; Chen, Y.; Wu, H.

    2017-09-01

    Weather Research and Forecasting (WRF) simulations with different selections of subgrid orographic drag over the Tibetan Plateau have been evaluated with observation and ERA-Interim reanalysis. Results show that the subgrid orographic drag schemes, especially the turbulent orographic form drag (TOFD) scheme, efficiently reduce the 10 m wind speed bias and RMS error with respect to station measurements. With the combination of gravity wave, flow blocking and TOFD schemes, wind speed is simulated more realistically than with the individual schemes only. Improvements are also seen in the 2 m air temperature and surface pressure. The gravity wave drag, flow blocking drag, and TOFD schemes combined have the smallest station mean bias (-2.05°C in 2 m air temperature and 1.27 hPa in surface pressure) and RMS error (3.59°C in 2 m air temperature and 2.37 hPa in surface pressure). Meanwhile, the TOFD scheme contributes more to the improvements than the gravity wave drag and flow blocking schemes. The improvements are more pronounced at low levels of the atmosphere than at high levels due to the stronger drag enhancement on the low-level flow. The reduced near-surface cold bias and high-pressure bias over the Tibetan Plateau are the result of changes in the low-level wind components associated with the geostrophic balance. The enhanced drag directly leads to weakened westerlies but also enhances the a-geostrophic flow in this case reducing (enhancing) the northerlies (southerlies), which bring more warm air across the Himalaya Mountain ranges from South Asia (bring less cold air from the north) to the interior Tibetan Plateau.

  14. A world-class target for ICDP drilling at Lake Nam Co, Tibetan Plateau, China: progresses and perspectives

    Science.gov (United States)

    Zhu, L.; Wang, J.; Daut, G.; Spiess, V.; Haberzettl, T.; Schulze, N.; Ju, J.; Lü, X.; Bergmann, F.; Haberkern, J.; Schwalb, A.; Mäusbacher, R.

    2017-12-01

    Lake Nam Co (ca. 2000 km2, 4718 m a.s.l., maximum depth: 100 m) is located at the interaction zone of the Westerlies and the Indian monsoon on the central Tibetan Plateau. It was part of a mega-lake during Marine Isotope Stage (MIS) 3 before the Last Glacial Maximum. A long term sedimentary record from Nam Co could therefore provide an excellent paleo-environmental sequence for regional and global comparative studies. This will to deepen our understanding of large scale atmospheric circulation shifts and the environmental links between the Tibetan Plateau at low latitudes and the North Atlantic region at high latitudes. A Nam Co deep drilling will fill the gap in two large scale ICDP/IODP drilling transects (N-S: Lake Baikal, Lake Qinghai, Bay of Bengal; W-E: Lake Van, Lake Issyk-Kul, South China Sea, Lake Towuti), which will show the great significance of monsoon dynamics on a long-term scale. Multidisciplinary researches have been conducted since 2005 by a Sino-German cooperative team. The progresses during the last decade are: 1) Detailed bathymetric surveying, including a shallow sediment profiler investigation (Innomar SES 2000 light, ca. 30 m sediment penetration); 2) Paleo-environmental reconstructions covering the past 24 ka; 3) Modern sediment distribution covering the entire lake; 4) Monitoring including water temperature profiles, sediment traps, seasonal airborne pollen collection; 5) Deep seismic survey penetrating up to 800 meters of lake sediments. Based on sediment rates from reference core NC08/01, seismic results show that an age of 500 ka may be reached at 500 m, and >1 Ma at the observed base. Faulting can be clearly detected in the seismic profiles, especially from MIS 5 to early Holocene, and shows the characteristics of normal faults or strike-slip faults. Both rotation of the layers and the close spacing, along with negative and positive offsets of the faults make a transtensional origin of the basin likely. An ICDP workshop proposal was

  15. Isotopic evidences for provenances of east asian dust

    International Nuclear Information System (INIS)

    Yang Jiedong; Chen Jun; Li Gaojun; Ji Junfeng; Rao Wenbo

    2007-01-01

    Based on systematical investigations on Nd-Sr isotopes of both the <75μm and <5μm silicate fractions of loess, sand, river and lacustrine sediment samples for ten major deserts, gobi, the Loess Plateau, and the northeast part of the Tibetan-Qinghai Plateau, the following results are obtained. (1) Three isotopic regions of Chinese deserts are identified. Region A (Aland A2), which is the deserts on the northern boundary of China with the highest ε Nd (0)>-7.0. Region B, which is the deserts on the northern margin of Tibetan Plateau with ε Nd (0) ranges form -11.9 to -7.4. Region C, which is the deserts on the Ordos Plateau with the lowest ε nd (0)<-11.5. The distribution of the three isotopic regions is controlled by the tectonic setting in North China. (2) The reliable isotope ranges of the Loess Plateau are 87 Sr/ 86 Sr from 0.71784 to 0.71944, ε Nd (0) from -9.2 to -11.3, which fall in Region B of the Qaiham Desert, Badain Jaran Desert and Tengger Desert. This indicates that the possibility of the Gurbantunggut Desert, Hunlun Buir sandy land, Onqin Daga sandy land, Horqin sandy land, the Hobq Desert and Mu Us Desert, as provenances for the loess are excluded. The isotopic range of the northeast part of the Tibetan-Qinghai Plateau coincides with those of the Badain Jaran Desert and Tengger Desert, and loess in the Loess Plateau, suggesting that the predominant source area of the Loess Plateau is most likely to be the northeast part of the Tibetan-Qinghai Plateau, and the Qaidam Desert, Badain Jaran Desert and Tengger Desert are middle transport stations of loess materials. (3) The comparison with isotopic data of dust extracted from snow deposits at Greenland and sediments of North Pacific confirms the Badain Jaran Desert, Tengger Desert and the Tibetan-Qinghai Plateau to be main source. (4) The analyzed results for dust samples in Beijing region demonstrate that aeolian dust in normal time in 2006 is mostly derived from mixing of Region B and bed rock soil

  16. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau.

    Science.gov (United States)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian; Cao, Junji; Tie, Xuexi; Wang, Hailong; Zhu, Chongshu; Yang, Wei

    2016-12-15

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations show a winter (November-February) high (413.2ngm -3 ) and spring (March-June) low (139.1ngm -3 ) at Ranwu, but in contrast a winter low and spring high at Beiluhe (204.8 and 621.6ngm -3 , respectively). By examining the meteorological conditions at various scales, we found that the monthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation at both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. The winter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwu sampling site showed a significant diurnal cycle with a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian; Cao, Junji; Tie, Xuexi; Wang, Hailong; Zhu, Chongshu; Yang, Wei

    2016-12-01

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m$-$3) and spring (March–June) low(139.1 ng m$-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m$-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation at both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.

  18. Analyzing the Velocity of Vegetation Phenology Over the Tibetan Plateau Using Gimms NDVI3g Data

    Science.gov (United States)

    Zhou, Y. K.

    2018-05-01

    Global environmental change is rapidly altering the dynamics of terrestrial vegetation, and phenology is a classic proxy to detect the response of vegetation to the changes. On the Tibetan Plateau, the earlier spring and delayed autumn vegetation phenology is widely reported. Remotely sensed NDVI can serve as a good data source for vegetation phenology study. Here GIMMS NDVI3g data was used to detect vegetation phenology status on the Tibetan Plateau. The spatial and temporal gradients are combined to depict the velocity of vegetation expanding process. This velocity index represents the instantaneous local velocity along the Earth's surface needed to maintain constant vegetation condition. This study found that NDVI velocity show a complex spatial pattern. A considerable number of regions display a later starting of growing season (SOS) and earlier end of growing season (EOS) reflected by the velocity change, particularly in the central part of the plateau. Nearly 74 % vegetation experienced a shortened growing season length. Totally, the magnitude of the phenology velocity is at a small level that reveals there is not a significant variation of vegetation phenology under the climate change context.

  19. Effects of Absorbing Aerosols on Accelerated Melting of Snowpack in the Hindu-Kush-Himalayas-Tibetan Plateau Region

    Science.gov (United States)

    Lau, William K.; Kyu-Myong, Kim; Yasunari, Teppei; Gautam, Ritesh; Hsu, Christina

    2011-01-01

    The impacts of absorbing aerosol on melting of snowpack in the Hindu-Kush-Himalayas-Tibetan Plateau (HKHT) region are studied using in-situ, satellite observations, and GEOS-5 GCM. Based on atmospheric black carbon measurements from the Pyramid observation ( 5 km elevation) in Mt. Everest, we estimate that deposition of black carbon on snow surface will give rise to a reduction in snow surface albedo of 2- 5 %, and an increased annual runoff of 12-34% for a typical Tibetan glacier. Examination of satellite reflectivity and re-analysis data reveals signals of possible impacts of dust and black carbon in darkening the snow surface, and accelerating spring melting of snowpack in the HKHT, following a build-up of absorbing aerosols in the Indo-Gangetic Plain. Results from GCM experiments show that 8-10% increase in the rate of melting of snowpack over the western Himalayas and Tibetan Plateau can be attributed to the elevated-heat-pump (EHP) feedback effect, initiated from the absorption of solar radiation by dust and black carbon accumulated to great height ( 5 km) over the Indo-Gangetic Plain and Himalayas foothills in the pre-monsoon season (April-May). The accelerated melting of the snowpack is enabled by an EHP-induced atmosphere-land-snowpack positive feedback involving a) orographic forcing of the monsoon flow by the complex terrain, and thermal forcing of the HKHT region, leading to increased moisture, cloudiness and rainfall over the Himalayas foothills and northern India, b) warming of the upper troposphere over the Tibetan Plateau, and c) an snow albedo-temperature feedback initiated by a transfer of latent and sensible heat from a warmer atmosphere over the HKHT to the underlying snow surface. Results from ongoing modeling work to assess the relative roles of EHP vs. snow-darkening effects on accelerated melting of snowpack in HKHT region will also be discussed.

  20. Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau

    International Nuclear Information System (INIS)

    Xiao Hang; Shen Li; Su, Yushan; Barresi, Enzo; DeJong, Maryl; Hung, Hayley; Lei, Ying-Duan; Wania, Frank; Reiner, Eric J.; Sverko, Ed; Kang, Shi-Chang

    2012-01-01

    Atmospheric concentrations of halogenated flame retardants (FRs) were monitored for approximately one year at two remote stations, namely Nam Co on the Tibetan Plateau and Alert in the Canadian High Arctic. BDE-47 and 99 were the dominant polybrominated diphenyl ether (PBDE) congeners at both sites. Atmospheric PBDE concentrations in Nam Co were generally lower than those at Alert. While significant seasonal variations were observed for PBDEs at Alert, the FR concentrations at Nam Co showed no significant seasonality, even though air masses originated from distinctly different regions during different seasons. This suggests that FRs in Tibet do not have regional sources, but are reflective of truly global background contamination. Three new FRs, namely 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (EHTeBB) and bis(2-ethyl-1-hexyl)tetrabromophthalate (TBPH) were detected at relatively high concentrations at both sites. This is the first report of these FRs in the remote global atmosphere and suggests significant potential for long-range atmospheric transport. - Highlights: ► First year-round measurements of FRs in the atmosphere of the Tibetan Plateau. ► PBDEs in Tibet are reflective of truly global background levels. ► Orographic precipitation limits the transport of particle-bound chemicals. ► First study of BTBPE, EHTeBB and TBPH in the Arctic and Tibetan air. ► These new FRs may have significant long-range atmospheric transport potential. - Several brominated flame retardants (BTBPE, EHTeBB, TBPH) were present in the atmosphere of the Arctic and the Tibetan Plateau at levels similar to those of the PBDEs.

  1. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, Pinsects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host

  2. Light absorption properties of brown carbon over the southeastern Tibetan Plateau.

    Science.gov (United States)

    Zhu, Chong-Shu; Cao, Jun-Ji; Huang, Ru-Jin; Shen, Zhen-Xing; Wang, Qi-Yuan; Zhang, Ning-Ning

    2018-06-01

    We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (b abs365 ) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC 365 ) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Crustal deformation mechanism in southeastern Tibetan Plateau: Insights from numerical modeling

    Science.gov (United States)

    Li, Y.; Liu, S.; Chen, L.

    2017-12-01

    The Indo-Asian collision developed the complicated crustal deformation around the southeastern Tibetan plateau. Numerous models have proposed to explain the crustal deformation, but the mechanism remains controversial, especially the increasing multi-geophysics data, which demonstrate the existence of lower velocity, lower resistivity and high conductivity, implying that lower crustal flow is responsible for the crustal deformation, arguing for the lower crust flow model. To address the relations between the crust flow and the surface deformation, we employ a three-dimensional viscoelastic finite model to investigate the possible influence on the surface deformation, and discuss the stress field distribution under the model. Our preliminary results suggest that lower crustal flow plays an important role in crustal deformation in southeastern Tibetan plateau. The best fitting is achieved when the flow velocity of the lower crust is approximately 10-11 mm/a faster than that of the upper crust. Crustal rheological properties affect regional crustal deformation, when the viscosity of the middle and lower crust in the South China block reaches 1022 and 1023 Pa.s, respectively; the predicted match observations well, especially for the magnitude within the South China block. The maximum principal stress field exhibits clear zoning, gradually shifting from an approximately east-west orientation in the northern Bayan Har block to southeast in the South China block, southwest in the western Yunnan block, and a radially divergent distribution in the Middle Yunnan and Southern Yunnan blocks.

  4. Deformation Mechanism on the Northern Margin of the Tibetan Plateau Inferred from Magnetotelluric Data

    Science.gov (United States)

    Zhang, L.; Jin, S.; Wei, W.; Ye, G.; Xie, C.

    2017-12-01

    As a unique geologic unit on the northern margin of the Tibetan Plateau, the Qaidam Basin plays a significant role in constraining the vertical uplift and horizontal expansion of the plateau. However, deformation mechanism of the lithosphere beneath the Qaidam Basin is still highly debated. To better understand the lithospheric electrical structure and deformation mechanism of the Qaidam Basin, A 250 km long, NE-SW directed Magnetotelluric (MT) profile was finished in the northern portion of the Basin, which is roughly perpendicular to the thrust fault systems on the western and eastern margins of the Basin. The profile consists of 20 broad-band MT stations and 5 long-period MT stations. Original time series data is processed with regular robust routines. Dimensionality and regional strike direction are determined for the dataset through data analysis. 2D inversions were performed to produce a preferred model of the lithospheric electrical structure. Uncertainty analysis of the 2D inversion model was also conducted based on a data resampling approach. The outcome 2D electrical model was further used to estimate the distribution of temperature and melt fraction in the upper mantle based on laboratory-determined relationships between the electrical conductivity and temperature of nominally anhydrous minerals and basaltic melt by using the mixing law of Hashin-Shtrikman's bounds. These results suggest that: (1) the crust-mantle boundary is imaged as a conductive layer beneath the western Qaidam Basin, with its temperature estimated to be 1200-1300 ° and melt fraction 5-8%, indicating decoupling deformation of the crust and upper mantle. (2) A large-scale east-dipping conductor is imaged beneath the eastern Qaidam Basin extending from the upper crust to upper mantle, implying vertical coherent deformation of the lithosphere. Melt fraction of this conductive region is estimated to be as high as 10%, which might accommodates a major portion of the thrust deformation on

  5. The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau

    Science.gov (United States)

    Chen, Xuelong; Añel, Juan A.; Su, Zhongbo; de la Torre, Laura; Kelder, Hennie; van Peet, Jacob; Ma, Yaoming

    2013-01-01

    In this study the depth of the atmospheric boundary layer (ABL) over the Tibetan Plateau was measured during a regional radiosonde observation campaign in 2008 and found to be deeper than indicated by previously measurements. Results indicate that during fair weather conditions on winter days, the top of the mixed layers can be up to 5 km above the ground (9.4 km above sea level). Measurements also show that the depth of the ABL is quite distinct for three different periods (winter, monsoon-onset, and monsoon seasons). Turbulence at the top of a deep mixing layer can rise up to the upper troposphere. As a consequence, as confirmed by trajectory analysis, interaction occurs between deep ABLs and the low tropopause during winter over the Tibetan Plateau. PMID:23451108

  6. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Sillanpää, Mika; Wang, Yongjie; Sun, Shiwei; Sun, Xuejun; Tripathee, Lekhendra

    2015-11-01

    Accurate measurements of wet mercury (Hg) deposition are critically important for the assessment of ecological responses to pollutant loading. The Hg in wet deposition was measured over a 3-year period in the southeastern Tibetan Plateau. The volume-weighted mean (VWM) total Hg (HgT) concentration was somewhat lower than those reported in other regions of the Tibetan Plateau, but the VWM methyl-Hg concentration and deposition flux were among the highest globally reported values. The VWM HgT concentration was higher in non-monsoon season than in monsoon season, and wet HgT deposition was dominated by the precipitation amount rather than the scavenging of atmospheric Hg by precipitation. The dominant Hg species in precipitation was mainly in the form of dissolved Hg, which indicates the pivotal role of reactive gaseous Hg within-cloud scavenging to wet Hg deposition. Moreover, an increasing trend in precipitation Hg concentrations was synchronous with the recent economic development in South Asia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoxiong; Liu, Yimin; Duan, Anmin; Bao, Qing [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China); Dong, Buwen [University of Reading, Department of Meteorology, National Centre for Atmospheric Science, Reading (United Kingdom); Liang, Xiaoyun [China Meteorological Administration, National Climate Center, Beijing (China); Yu, Jingjing [China Meteorological Administration, National Meteorological Information Center, Beijing (China)

    2012-09-15

    Numerical experiments with different idealized land and mountain distributions are carried out to study the formation of the Asian monsoon and related coupling processes. Results demonstrate that when there is only extratropical continent located between 0 and 120 E and between 20/30 N and the North Pole, a rather weak monsoon rainband appears along the southern border of the continent, coexisting with an intense intertropical convergence zone (ITCZ). The continuous ITCZ surrounds the whole globe, prohibits the development of near-surface cross-equatorial flow, and collects water vapor from tropical oceans, resulting in very weak monsoon rainfall. When tropical lands are integrated, the ITCZ over the longitude domain where the extratropical continent exists disappears as a consequence of the development of a strong surface cross-equatorial flow from the winter hemisphere to the summer hemisphere. In addition, an intense interaction between the two hemispheres develops, tropical water vapor is transported to the subtropics by the enhanced poleward flow, and a prototype of the Asian monsoon appears. The Tibetan Plateau acts to enhance the coupling between the lower and upper tropospheric circulations and between the subtropical and tropical monsoon circulations, resulting in an intensification of the East Asian summer monsoon and a weakening of the South Asian summer monsoon. Linking the Iranian Plateau to the Tibetan Plateau substantially reduces the precipitation over Africa and increases the precipitation over the Arabian Sea and the northern Indian subcontinent, effectively contributing to the development of the South Asian summer monsoon. (orig.)

  8. Regional environmental change and human activity over the past hundred years recorded in the sedimentary record of Lake Qinghai, China.

    Science.gov (United States)

    Sha, ZhanJiang; Wang, Qiugui; Wang, Jinlong; Du, Jinzhou; Hu, Jufang; Ma, Yujun; Kong, Fancui; Wang, Zhuan

    2017-04-01

    Environmental change and human activity can be recorded in sediment cores in aquatic systems such as lakes. Information from such records may be useful for environmental governance in the future. Six sediment cores were collected from Lake Qinghai, China and its sublakes during 2012 and 2013. Measurements of sediment grain-size fractions indicate that sedimentation in the north and southwest of Lake Qinghai is dominated by river input, whereas that in Lake Gahai and Lake Erhai is dominated by dunes. The sedimentation rates in Lake Qinghai were calculated to be 0.101-0.159 cm/y, similar to the rates in other lakes on the Qinghai-Tibetan Plateau. Using these data and sedimentation rates from the literature, we compiled the spatial distribution of sedimentation rates. Higher values were obtained in the three main areas of Lake Qinghai: two in river estuaries and one close to sand dunes. Lower values were measured in the center and south of the lake. Measurements of total organic carbon (TOC), total nitrogen (TN), phosphorus concentrations, and TOC/TN ratios in three cores (QH01, QH02, and Z04) revealed four horizons corresponding to times of increased human activity. These anthropogenic events were (1) the development of large areas of cropland in the Lake Qinghai watershed in 1960, (2) the beginning of nationwide fertilizer use and increases in cropland area in the lake watershed after 1970, (3) the implementation of the national program "Grain to Green," and (4) the rapid increase in the tourism industry from 2000. Profiles of Rb, Sr concentrations, the Rb/Sr ratio, and grain-size fraction in core Z04 indicate that the climate has become drier over the past 100 years. Therefore, we suggest that lake sediments such as those in Lake Qinghai are useful media for high-resolution studies of regional environmental change and human activity.

  9. Black Carbon Concentrations from ~1850-1980 from a High-Resolution Ice Core from Geladandong, Central Tibetan Plateau

    Science.gov (United States)

    Jenkins, M.; Kaspari, S.; Kang, S.; Grigholm, B. O.; Mayewski, P. A.

    2011-12-01

    Black carbon (BC), produced by the incomplete combustion of fossil and bio-fuels, is estimated to be the second largest contributor to global warming behind CO2; when deposited on snow and ice BC reduces albedos, potentially enhancing surface melt and glacial retreat. The study of BC's past and present variability is imperative in order to better understand and estimate its potential impact on climate and water resources. This is especially important in the Himalaya/Tibetan Plateau, a region that provides fresh water to over a billion people and where BC's climatic effects are estimated to be the largest (Flanner et al., 2007; Ramanathan and Carmichael, 2008). To more accurately constrain BC's past variability in this sensitive region, an ice core recovered in 2005 from Mt. Geladandong (5800 m a.s.l.) on the central Tibetan Plateau was analyzed for BC at high resolution using a Single Particle Soot Photometer (SP2). Results indicate that 1) average BC concentrations at this location are higher than at other locations closer to BC sources and analyzed by the same method (Mt. Everest by Kaspari et al., 2011 and Muztagh Ata by Wang et al., in prep), and 2) BC exists in peak concentrations high enough (>10 μg/L) to cause a >1% reduction in surface albedo at the sampling location (Ming et al., 2009; Hadley et al., 2010). Potential causes of the higher BC concentrations at the Geladandong site include lower annual precipitation and the mechanical trapping and concentration of BC caused by surface melt and/or sublimation (Conway et al., 1996; Huang et al., 2011). Preliminary dating (Grigholm et al., in prep) has dated the top of the core to ~1980, suggesting that annual mass loss at the site has removed the upper portion of the record. This supports the findings of Kehrwald et al. (2008) who reported that glaciers below ~6050 m a.s.l. in the Himalaya/Tibetan Plateau are losing mass annually. Presented here is the record of BC on the central Tibetan Plateau over the time

  10. Development of SSR markers for a Tibetan medicinal plant, Lancea tibetica (Phrymaceae), based on RAD sequencing.

    Science.gov (United States)

    Tian, Zunzhe; Zhang, Faqi; Liu, Hairui; Gao, Qingbo; Chen, Shilong

    2016-11-01

    Lancea tibetica (Phrymaceae), a Tibetan medicinal plant, is endemic to the Qinghai-Tibet Plateau. The over-exploitation of wild L. tibetica has led to the destruction of many populations. To enhance protection and management, biological research, especially population genetic studies, should be carried out on L. tibetica . Simple sequence repeat (SSR) markers of L. tibetica were developed to analyze population diversity. Four thousand four hundred and forty-one SSR loci were identified for L. tibetica based on restriction-site associated DNA (RAD) sequencing on the Illumina HiSeq platform. One hundred SSR loci were arbitrarily selected for primer design, and 38 of them were successfully amplified. These markers were tested on 56 individuals from three populations of L. tibetica , and 10 markers displayed polymorphisms. The total number of alleles per locus ranged from three to eight, and observed and expected heterozygosities ranged from 0.200 to 1.000 and 0.683 to 0.879, respectively. We tested for cross-amplification of these 10 markers in the related species L. hirsuta and found that nine could be successfully amplified. The SSR markers characterized here are the first to be developed and tested in L. tibetica . They will be useful for future population genetic studies on L. tibetica and closely related species.

  11. Investigation of junior school student myopia in high-altitude Tibetan areas in Qinghai Province

    Directory of Open Access Journals (Sweden)

    Xia Han

    2014-05-01

    Full Text Available AIM: To know the rate of students' myopia in junior school and factors affecting its occurrence in high altitude Tibetan areas in Qinghai, and provide basis for the prevention of myopia. METHODS: Totally 2 209 junior school students were extracted as respondent with stratified cluster sampling method. The gender, age, ethnicity, grade, eye behavior, physical activity and parental visual conditions were collected by self-made questionnaire, and the curvature of the cornea, anterior chamber depth and axial length were detected. RESULTS: The prevalence of myopia was 48.02%, including the mild myopia, moderate myopia and high myopia were 40.74%, 35.31% and 23.96% respectively. Curvature of the cornea, anterior chamber depth and axial length had statistical difference between normal vision and different degrees of myopia(PPCONCLUSION: Incorrect sitting posture, parental myopia, visual near distance <20cm, incorrect eye exercises and less time for outdoor activities are the main reasons that cause myopia of junior students. The effective prevention and controlled measures should be taken for these factors.

  12. Spatial-Temporal Patterns and Controls of Evapotranspiration across the Tibetan Plateau (2000–2012

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-01-01

    Full Text Available Evapotranspiration (ET is a key factor to further our understanding of climate change processes, especially on the Tibetan Plateau, which is sensitive to global change. Herein, the spatial patterns of ET are examined, and the effects of environmental factors on ET at different scales are explored from the years 2000 to 2012. The results indicated that a steady trend in ET was detected over the past decade. Meanwhile, the spatial distribution shows an increase of ET from the northwest to the southeast, and the rate of change in ET is lower in the middle part of the Tibetan Plateau. Besides, the positive effect of radiation on ET existed mainly in the southwest. Based on the environment gradient transects, the ET had positive correlations with temperature (R>0.85, p 0.89, p 0.75, p < 0.0001, but a negative correlation between ET and radiation (R = 0.76, p < 0.0001 was observed. We also found that the relationships between environmental factors and ET differed in the different grassland ecosystems, which indicated that vegetation type is one factor that can affect ET. Generally, the results indicate that ET can serve as a valuable ecological indicator.

  13. Hydrogeochemical Characteristics and Evolution of Hot Springs in Eastern Tibetan Plateau Geothermal Belt, Western China: Insight from Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Zheming Shi

    2017-01-01

    Full Text Available The eastern Tibetan Plateau geothermal belt is one of the important medium-high temperature geothermal belts in China. However, less work has been done on the hydrochemical characteristic and its geological origin. Understanding the chemical characteristics and the hydrochemical evolution processes is important in evaluating the geothermal energy potential in this area. In the present study, we discussed the hydrochemical properties and their origins of 39 hot springs located in the eastern Tibetan Plateau geothermal belt (Kangding-Litang-Batang geothermal belt. Cluster analysis and factor analysis are employed to character the hydrochemical properties of hot springs in different fault zones and the possible hydrochemical evolution processes of these hot springs. Our study shows that the hot springs can be divided into three groups based on their locations. The hot springs in the first group mainly originate from the volcanic rock and the springs in the second group originate from the metamorphic rock while the springs in the third group originate from the result of mixture of shallow water. Water-rock interaction, cation exchange, and the water environment are the three dominant factors that control the hydrochemical evolution process in the eastern Tibetan Plateau. These results are also in well agreement with the isotopic and chemical analysis.

  14. On the relationship between the early spring Indian Ocean's sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer

    Science.gov (United States)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Li, Yu; Jiang, Tingchen; San Liang, X.

    2018-05-01

    In this study, we evaluated the effects of springtime Indian Ocean's sea surface temperature (SST) on the Tibetan Plateau's role as atmospheric heat source (AHS) in summer. The SST data of the National Oceanic and Atmospheric Administration (NOAA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) and the reanalysis data of the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) for 33 years (from 1979 to 2011) were used to analyze the relationship between the Indian Ocean SST and the Tibetan Plateau's AHS in summer, using the approaches that include correlation analysis, and lead-lag analysis. Our results show that some certain strong oceanic SSTs affect the summer plateau heat, specially finding that the early spring SSTs of the Indian Ocean significantly affect the plateau's ability to serve as a heat source in summer. Moreover, the anomalous atmospheric circulation and transport of water vapor are related to the Plateau heat variation.

  15. Influences of subtropical jet and Tibetan Plateau on precipitation pattern in Asia : Insights from regional climate modeling

    NARCIS (Netherlands)

    Sato, Tomonori

    2009-01-01

    Large topographic features, like the Tibetan Plateau (TP) and the Rocky Mountains, have significant impacts on Earth's climate. Numerical experiments were carried out using a regional climate model in order to study the sensitivity of rainfall distribution to the TP's thermal/dynamic effects and

  16. AHP 10: CHILDBIRTH AND CHILDCARE IN RDO SBIS TIBETAN TOWNSHIP

    Directory of Open Access Journals (Sweden)

    Klu mo tshe ring ཀླུ་མོ་ཚེ་རིང་།

    2011-06-01

    Full Text Available Rdo sbis (Daowei 道帏 Tibetan Autonomous Township, Xunhua 循化 Salar Autonomous County, Haidong 海东 Region, is located in eastern Qinghai 青海 Province, PR China. Knowledge, beliefs, and behavior associated with childbirth, midwifery, and childcare in Rdo sbis Township Tibetan communities are described, focusing on a single village as a case-study.

  17. Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae, an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C and cold (5±1°C acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau.

  18. Effects of animal's rumen juice on seed germination of Vicia ...

    African Journals Online (AJOL)

    To help understand the effects of grazing on seed germination characteristics of Vicia angustifolia L., we conducted a laboratory germination experiment of V. angustifolia L., which is a main companion species of Leguminosae family in alpine grassland of the Qinghai-Tibetan Plateau, using Yak and Tibetan sheep rumen ...

  19. The relationship between soil physical properties and alpine plant diversity on Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-04-01

    Full Text Available Through a large-scale research, we examined the heterogeneity of soil properties and plant diversity, as well as their relationships across alpine grassland types on Qinghai-Tibet Plateau. The soil pH and EC value increased with the constant deepening of the soil in all the three alpine grassland types which in order of absolute value in every soil layer were alpine desert steppe, alpine steppe and alpine meadow. Among the three grassland types, the alpine meadow possessed the highest SM but the lowest SBD. For plant diversity, alpine meadow was the highest, alpine desert steppe ranked the second and alpine steppe was the last. SM and SBD were the highest influential soil physical properties to species richness, but with opposite effects.

  20. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau.

    Science.gov (United States)

    Deng, Yongcui; Liu, Yongqin; Dumont, Marc; Conrad, Ralf

    2017-01-01

    Lakes are widely distributed on the Tibetan Plateau, which plays an important role in natural methane emission. Aerobic methanotrophs in lake sediments reduce the amount of methane released into the atmosphere. However, no study to date has analyzed the methanotroph community composition and their driving factors in sediments of these high-altitude lakes (>4000 m). To provide new insights on this aspect, the abundance and composition in the sediments of six high-altitude alkaline lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied. The quantitative PCR, terminal restriction fragment length polymorphism, and 454-pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies ranged 10 4 -10 6 per gram fresh sediment. Type I methanotrophs predominated in Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-sequencing data from lake sediments of other regions, a significant salinity and alkalinity effect (P = 0.001) was detected, especially salinity, which explained ∼25% of methanotroph community variability. The main effect was Methylomicrobium being dominant (up to 100%) in saline lakes only. In freshwater lakes, however, methanotroph composition was relatively diverse, including Methylobacter, Methylocystis, and uncultured type Ib clusters. This study provides the first methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity is a driving factor for the community composition of aerobic methanotrophs.

  1. The chromium in timberline forests in the eastern Tibetan Plateau.

    Science.gov (United States)

    Luo, Ji; Tang, Ronggui; She, Jia; Chen, Youchao; Gong, Yiwen; Zhou, Jun; Yu, Dong

    2013-10-01

    In order to study the regional distribution, trait and possible source of chromium in the eastern Tibetan Plateau, we collected samples of xylem, bark, leaves and twigs in two parallel northwest-southeast belt transects (TA and TB) from the Hengduan Mountains. According to the Cr mean concentration, organ/tissue was split into two groups: the high-level organ/tissue (twigs: 1.476 mg kg(-1)) and the low-level organ/tissue (bark: 0.413 mg kg(-1), leaves: 0.340 mg kg(-1) and xylem: 0.194 mg kg(-1)). The mean Cr concentrations of twigs and leaves in TB samples were higher than those in the TA samples, and the mean Cr concentration in both sites gradually reduced from southeast to northwest. Both the southeasterly and southwesterly monsoons could be significant, influential factors in this connection. The top three mean Cr concentrations were S7, S1 and S8, which were closer to the developed city. Mean Cr concentrations in S3, S4 and S5, (remote, high mountains) were relatively low. The high mountains acting as a barrier to the monsoon and the distance from the big city may play important roles in the distribution of Chromium. Furthermore, the relationship between the mean Cr concentration and precipitation, timberline trees as bio-monitors of chromium pollution in polluted areas and the possible source of Cr in the eastern Tibetan Plateau are also discussed. This study may provide reliable proof of Cr contamination processes, and so help in future to prevent further Cr pollution, and also be helpful in understanding the important function of forest ecosystems in relation to atmospheric pollution and global change. To better understand the characteristics of temporal and spatial distribution of Cr concentration, we found that tree ring, fine roots and soil samples are good choices.

  2. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    Science.gov (United States)

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  3. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition

    OpenAIRE

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang; Zhao, Guohui

    2015-01-01

    Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understanding how methane emissions from the Zoige wetland is fundamental to elucidate the carbon cycle in a...

  4. Uplifting model of the Longmenshan mountain in the eastern margin of Tibetan plateau

    Science.gov (United States)

    Zhang, S.; Ding, R.; Mao, C.

    2010-12-01

    Longmenshan mountain is a vivid manifestation of the Cenozoic orogenesis in the eastern margin of the Tibetan plateau, and a key to understand the geodynamics of eastward extending of the plateau. Thus the uplift mechanism of Longmenshan mountain became a hot spot issue of geosciences about the Tibetan plateau. Two entirely different hypotheses, i.e., crustal shortening and lower crustal channel flow, were put forward, but the solution is open. Further discussion need our deeper understanding about the uplifting features of the Longmenshan mountain. Fortunately, the uplifting processes were recorded objectively by peneplains and river landforms. We first analysed the peneplains and pediplanes of Longmenshan mountain and its surrounding areas, and surveyed the terraces of Dadu river running across the mountain. Then we studied the uplifting features of the study areas in late Cenozoic time on the basis of landform geometries. Finaly we discussed the possible mechanisms for the uplifting. There are two levels of peneplains whose peneplanations may begin in early Cenozoic time and end at late Miocene when the final fluctuations of elevations were possibly less than one kilometers. The valley of Dadu river is incised into the peneplains and has a staircase of no less than ten levels of terraces. The highest terrace is a strath which was contemporary with the pediplane in the piedmont formed in late Pliocene or in early Pleistocene. Due to their originally flat features, the peneplains and the strath terraces were used as datum planes for judging neotectonic deformations. Since late Miocene, the southeastern side of Longmenshan mountain has been dominated by thrust-faulting with a total vertical displacement of about 4500 m against the Sichuan basin, meantime the northwest side has been maintained flexural uplift with syncline hinge approximately following the Longriba fault. As a landform barrier between Tibetan plateau and Sichuan basin, the crest lines of the

  5. Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau

    Science.gov (United States)

    Zou, Mijun; Zhong, Lei; Ma, Yaoming; Hu, Yuanyuan; Feng, Lu

    2018-05-01

    As a critical component of the energy and water cycle, terrestrial actual evapotranspiration (ET) can be influenced by many factors. This study was mainly devoted to providing accurate and continuous estimations of actual ET for the Tibetan Plateau (TP) and analyzing the effects of its impact factors. In this study, summer observational data from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) for 2003 to 2004 was selected to determine actual ET and investigate its relationship with energy, hydrological, and dynamical parameters. Multiple-layer air temperature, relative humidity, net radiation flux, wind speed, precipitation, and soil moisture were used to estimate actual ET. The regression model simulation results were validated with independent data retrieved using the combinatory method. The results suggested that significant correlations exist between actual ET and hydro-meteorological parameters in the surface layer of the Nagqu river basin, among which the most important factors are energy-related elements (net radiation flux and air temperature). The results also suggested that how ET is eventually affected by precipitation and two-layer wind speed difference depends on whether their positive or negative feedback processes have a more important role. The multivariate linear regression method provided reliable estimations of actual ET; thus, 6-parameter simplified schemes and 14-parameter regular schemes were established.

  6. The Coupling of Treeline Elevation and Temperature is Mediated by Non-Thermal Factors on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yafeng Wang

    2017-04-01

    Full Text Available Little is known about the relationships between treeline elevation and climate at regional and local scales. It is compelling to fill this research gap with data from the Tibetan Plateau where some of the highest alpine treelines in the world are found. This research question partially results from the lack of in situ temperature data at treeline sites. Herein, treeline variables (e.g., elevation, topography, tree species and temperature data were collected from published investigations performed during this decade on the Tibetan Plateau. Temperature conditions near treeline sites were estimated using global databases and these estimates were corrected by using in situ air temperature measurements. Correlation analyses and generalized linear models were used to evaluate the effects of different variables on treeline elevation including thermal (growing-season air temperatures and non-thermal (latitude, longitude, elevation, tree species, precipitation, radiation factors. The commonality analysis model was applied to explore how several variables (July mean temperature, elevation of mountain peak, latitude were related to treeline elevation. July mean temperature was the most significant predictor of treeline elevation, explaining 55% of the variance in treeline elevation across the Tibetan Plateau, whereas latitude, tree species, and mountain elevation (mass-elevation effect explained 30% of the variance in treeline elevation. After considering the multicollinearity among predictors, July mean temperature (largely due to the influence of minimum temperature still showed the strongest association with treeline elevation. We conclude that the coupling of treeline elevation and July temperature at a regional scale is modulated by non-thermal factors probably acting at local scales. Our results contribute towards explaining the decoupling between climate warming and treeline dynamics.

  7. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau.

    Science.gov (United States)

    Wu, Jun; Lu, Jian; Li, Leiming; Min, Xiuyun; Luo, Yongming

    2018-06-01

    The Qinghai-Tibet Plateau, especially the northeastern region, is not a pure land any more due to recently increasing anthropogenic activities. This study collected soil samples from 70 sites of the northeastern Qinghai-Tibet Plateau to evaluate pollution, ecological-health risks, and possible pollution sources of heavy metals. The concentrations of heavy metals in soil were relatively high. Values of geo-accumulation index exhibited that Hg pollution was the most serious meanwhile Hg possessed the strongest enrichment feature based on enrichment factor values. The modified degrees of contamination showed that about 54.3% and 17.1% of sampling sites were at moderate and high contamination degree while pollution load indexes illustrated that 72.9% and 27.1% of sampling sites possessed moderate and high contamination level, respectively. Ecological risk indexes of heavy metals in soil ranged from 234.6 to 3759.0, suggesting that most of sites were under considerable/very high risks. Cancer risks for adults and children were determined as high and high-very high levels while non-cancer risks for children were high although those for adults were low. Industrial source contributed to the main fraction of ecological and health risks. Summarily speaking, heavy metals in soil of the study area has caused significantly serious pollution and exerted high potential ecological and health risks, especially for children who are more susceptible to hurt from pollutants. Therefore, more efficient and strict pollution control and management in study area should be put out as soon as possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    Directory of Open Access Journals (Sweden)

    Qing-Mei Quan

    Full Text Available The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05 was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable

  9. Numerical Study of a Southwest Vortex Rainstorm Process Influenced by the Eastward Movement of Tibetan Plateau Vortex

    Directory of Open Access Journals (Sweden)

    Xiaoli Liu

    2018-01-01

    Full Text Available A number of studies revealed the possible eastward movement of the Tibetan Plateau low-pressure system in summer and indicated the enhancement effect of this process on the southwest vortex in the Sichuan Basin, which can induce strong convective precipitation and flood events in China. In this study, a numerical simulation of a southwest vortex rainstorm process was performed. The results show that the low-pressure system originated from the Tibetan Plateau affects the southwest vortex mainly at the middle level, causing the strength increase of southwest vortex (SWV, and acts as a connection between the positive vorticity centers at the upper and lower layers. For the microscopic cloud structure, the vertical updraft of the cloud cluster embedded in the SWV increases as the low-pressure system from the plateau arrives at the Sichuan Basin. Vapor and liquid cloud water at the lower level are transported upward, based on which the ice cloud at the upper level and the warm cloud at the lower level are joined to create favorable conditions for the growth of ice crystals. As the ice crystals grow up, snow and graupel particles form, which substantially elevates the precipitation. This effect leads to the rapid development of SWV rainstorm clouds and the occurrence of precipitation. In addition to the effect of the plateau vortex, the subsequent merging of the convective clouds is another important factor for heavy rainfall because it also leads to development of convective clouds, causing heavy rainfall.

  10. Characteristics of Water Vapor in the UTLS over the Tibetan Plateau Based on AURA/MLS Observations

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2017-01-01

    Full Text Available Water vapor (WV has a vital effect on global climate change. Using satellite data observed by AURA/MLS and ERA-Interim reanalysis datasets, the spatial distributions and temporal variations of WV were analyzed. It was found that high WV content in the UTLS over the southern Tibetan Plateau is more apparent in summer, due to monsoon-induced strong upward motions. The WV content showed the opposite distribution at 100 hPa, though, during spring and winter. And a different distribution at 121 hPa indicated that the difference in WV content between the northern and southern plateau occurs between 121 and 100 hPa in spring and between 147 and 121 hPa in winter. In the UTLS, it diminishes rapidly with increase in altitude in these two seasons, and it shows a “V” structure in winter. There has been a weak increasing trend in WV at 100 hPa, but a downtrend at 147 and 215 hPa, during the past 12 years. At the latter two heights, the WV content in summer has been much higher than in other seasons. Furthermore, WV variation showed a rough wave structure in spring and autumn at 215 hPa. The variation of WV over the Tibetan Plateau is helpful in understanding the stratosphere-troposphere exchange (STE and climate change.

  11. Morphologies and elemental compositions of local biomass burning particles at urban and glacier sites in southeastern Tibetan Plateau: Results from an expedition in 2010.

    Science.gov (United States)

    Hu, Tafeng; Cao, Junji; Zhu, Chongshu; Zhao, Zhuzi; Liu, Suixin; Zhang, Daizhou

    2018-07-01

    Many studies indicate that the atmospheric environment over the southern part of the Tibetan Plateau is influenced by aged biomass burning particles that are transported over long distances from South Asia. However, our knowledge of the particles emitted locally (within the plateau region) is poor. We collected aerosol particles at four urban sites and one remote glacier site during a scientific expedition to the southeastern Tibetan Plateau in spring 2010. Weather and backward trajectory analyses indicated that the particles we collected were more likely dominated by particles emitted within the plateau. The particles were examined using an electron microscope and identified according to their sizes, shapes and elemental compositions. At three urban sites where the anthropogenic particles were produced mainly by the burning of firewood, soot aggregates were in the majority and made up >40% of the particles by number. At Lhasa, the largest city on the Tibetan Plateau, tar balls and mineral particles were also frequently observed because of the use of coal and natural gas, in addition to biofuel. In contrast, at the glacier site, large numbers of chain-like soot aggregates (~25% by number) were noted. The morphologies of these aggregates were similar to those of freshly emitted ones at the urban sites; moreover, physically or chemically processed ageing was rarely confirmed. These limited observations suggest that the biomass burning particles age slowly in the cold, dry plateau air. Anthropogenic particles emitted locally within the elevated plateau region may thus affect the environment within glaciated areas in Tibet differently than anthropogenic particles transported from South Asia. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet plateau, China

    International Nuclear Information System (INIS)

    Yuan, W.-M.; Zhang, X.-T.; Dong, J.-Q.; Tang, Y.-H.; Yu, F.-S.; Wang, S.-C.

    2003-01-01

    Based on apatite fission track ages (FTA) of 41 samples collected from a south-north transect of the eastern Kunlun mountains, Qinghai-Tibet Plateau, China, this paper shows that (1) the FTA in different blocks increases with the distance from the South-Kunlun fault and Mid-Kunlun faults, respectively, indicating the control of the main faults on the tectonic evolution of this region; and (2) the thermal histories are characterized by slow cooling from ∼160 deg. C to ∼80 deg. C at ∼240 to ∼20 Ma, followed by rather rapid cooling to surface temperatures

  13. Evaluation and comparison of the processing methods of airborne gravimetry concerning the errors effects on downward continuation results: Case studies in Louisiana (USA) and the Tibetan Plateau (China)

    DEFF Research Database (Denmark)

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng

    2017-01-01

    and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method...... in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA......) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic...

  14. Evolutionary history of enigmatic bears in the Tibetan Plateau-Himalaya region and the identity of the yeti.

    Science.gov (United States)

    Lan, Tianying; Gill, Stephanie; Bellemain, Eva; Bischof, Richard; Nawaz, Muhammad Ali; Lindqvist, Charlotte

    2017-12-13

    Although anecdotally associated with local bears ( Ursus arctos and U. thibetanus ), the exact identity of 'hominid'-like creatures important to folklore and mythology in the Tibetan Plateau-Himalaya region is still surrounded by mystery. Recently, two purported yeti samples from the Himalayas showed genetic affinity with an ancient polar bear, suggesting they may be from previously unrecognized, possibly hybrid, bear species, but this preliminary finding has been under question. We conducted a comprehensive genetic survey of field-collected and museum specimens to explore their identity and ultimately infer the evolutionary history of bears in the region. Phylogenetic analyses of mitochondrial DNA sequences determined clade affinities of the purported yeti samples in this study, strongly supporting the biological basis of the yeti legend to be local, extant bears. Complete mitochondrial genomes were assembled for Himalayan brown bear ( U. a. isabellinus ) and black bear ( U. t. laniger ) for the first time. Our results demonstrate that the Himalayan brown bear is one of the first-branching clades within the brown bear lineage, while Tibetan brown bears diverged much later. The estimated times of divergence of the Tibetan Plateau and Himalayan bear lineages overlap with Middle to Late Pleistocene glaciation events, suggesting that extant bears in the region are likely descendants of populations that survived in local refugia during the Pleistocene glaciations. © 2017 The Authors.

  15. Human occupation and environmental change in Holocene from a case of XDW2 relic site in the Tibetan Plateau at above 4000 meters above sea level.

    Science.gov (United States)

    Hou, G.; Li, F.; Zhu, Y.

    2017-12-01

    XDW2 is an important microlithic cultural relics with continuous stratum that is located in the the Tibetan plateau at above 4,000 masl, wich is a window of revealing the evolution of early human activities and the response and adaptation to extreme environmental in the principal part of Tibetan plateau. So it has important research significance. The analysis on human activity indicator(stoneware, potsherds) and environmental indicators(magnetic susceptibility, color, granularity and pollen) showed: the winter wind and dust storm intensity is weak in this area during 7.0-6 cal. Ka BP, pedogenesis is strong, the climate is humid, environment is suitable relatively, when is Holocene Megathermal; the active phase of microlithic human activities occurred during 7.2-6 cal. ka BP, and quickly weakened after 6 cal. ka BP. The number of stone tools reveal that human activities are concentrated before and after 7-6.2 cal. ka BP, charcoal fragmental concentration indicates that microlithic human activity reached the peak at around 6.7 cal. ka BP. Thus relatively suitable environment during Holocene Megathermal is the important motivating factor of active hunter-gatherer activities in the principal part of Tibetan plateau. After 6 cal. ka BP, summer monsoon weakened rapidly, agricultural growers in the Loess Plateau began to expand towards the plateau, under the effect of environmental degradation and new technologies, microlithic hunter-gatherers in the principal part of plateau moved towards the river valley at low altitude, and learnt settlement and plantation, microlithic activity in the main plateau began to decline.

  16. Extinction vs. Rapid Radiation: The Juxtaposed Evolutionary Histories of Coelotine Spiders Support the Eocene-Oligocene Orogenesis of the Tibetan Plateau.

    Science.gov (United States)

    Zhao, Zhe; Li, Shuqiang

    2017-11-01

    Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic

  17. Levels and spatial distributions of levoglucosan and dissolved organic carbon in snowpits over the Tibetan Plateau glaciers.

    Science.gov (United States)

    Li, Quanlian; Wang, Ninglian; Barbante, Carlo; Kang, Shichang; Yao, Ping; Wan, Xin; Barbaro, Elena; Del Carmen Villoslada Hidalgo, Maria; Gambaro, Andrea; Li, Chaoliu; Niu, Hewen; Dong, Zhiwen; Wu, Xiaobo

    2018-01-15

    In this study, we collected 60 snowpit samples in nine glaciers from the northern to the southern Tibetan Plateau (TP), to study the levels and spatial distributions of levoglucosan and dissolved organic carbon (DOC). The lowest concentration of levoglucosan was found in the Yuzhufeng (YZF) glacier with a mean value of 0.24±0.08ngmL -1 , while the highest concentration of levoglucosan was detected in the Gurenhekou (GRHK) glacier with a mean value of 11.72±15.61ngmL -1 . However, the average DOC concentration in TP glaciers were comparable, without significant regional differences. The levoglucosan/DOC ratio ranged from 0.02 to 6.03% in the Tibetan Plateau glaciers. This ratios and the correlations between levoglucosan and DOC suggested that biomass burning products contributed only marginally to DOC levels in the TP glaciers. Moreover, the analysis of air mass backward trajectories suggested that levoglucosan and DOC in TP glaciers should be transported from the northwestern TP, internal TP, Central Asia, South and East Asia regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phosphorus and Defoliation Interact and Improve the Growth and Composition of the Plant Community and Soil Properties in an Alpine Pasture of Qinghai-Tibet Plateau.

    Science.gov (United States)

    Qi, Juan; Nie, Zhongnan; Jiao, Ting; Zhang, Degang

    2015-01-01

    Pasture degradation caused by overgrazing and inappropriate fertiliser management is a major production and environmental threat in Qinghai-Tibet Plateau. Previous research has focused on the effects of mixed nitrogen (N) and phosphorus (P) fertiliser and reduced grazing pressure on the plant community of the grassland; however, the role of P and how it interacts with various defoliation (the process of the complete or partial removal of the above-ground parts of plants by grazing or cutting) intensities on the plant and soil of the grassland ecosystem have not been quantified. A field experiment was conducted to quantify how P application in combination of defoliation pressure could impact the dynamic change of the plant and soil in a native alpine grassland ecosystem of the Qinghai-Tibet Plateau, China, from May 2012 to September 2014. A split-plot design with 4 replicates and repeated measures was used to determine the growth and composition of plant community and soil physical and chemical properties under various levels of P fertiliser and defoliation intensity. The results showed that applying 20 kg P/ha increased the herbage yield of Melissitus ruthenica by 68% and total pasture yield by 25%. Close defoliation favoured the growth and plant frequency of the shorter species, whereas lax defoliation favoured that of the taller plant species. Medium P rate and cutting to 3 cm above ground gave an overall best outcome in pasture yield, quality and frequency and soil moisture and nutrient concentration. Application of P fertiliser with a moderate defoliation pressure to promote legume growth and N fixation has the potential to achieve multiple benefits in increasing pasture and livestock production and improving environmental sustainability in the alpine pasture of Qinghai-Tibet Plateau, a fragile and P-deficient ecosystem zone in China and its western neighbouring countries.

  19. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects

    Science.gov (United States)

    Wu, Guoxiong; He, Bian; Duan, Anmin; Liu, Yimin; Yu, Wei

    2017-10-01

    To cherish the memory of the late Professor Duzheng YE on what would have been his 100th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau (TP) meteorology, this review paper provides an assessment of the atmospheric heat source (AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land-sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan-Iranian Plateau plays a significant role in generating the Asian summer monsoon (ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon-type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.

  20. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.

    Science.gov (United States)

    Liu, Shiliang; Cheng, Fangyan; Dong, Shikui; Zhao, Haidi; Hou, Xiaoyun; Wu, Xue

    2017-06-23

    Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000-2012 were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated using a combined analysis of the slope values and the Hurst exponent. The results showed high sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain in degradation, with most of them distributing in Tibet.

  1. Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonic–sedimentary evolution of the western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Yadong Wang

    2012-03-01

    Full Text Available Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a the southern fault terrace zone, (b a central Yingxiongling orogenic belt, and (c the northern fold-thrust belt; divided by the XI fault (Youshi fault and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India–Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene–Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fm., 43.8–22 Ma, and peaked in the Early Oligocene (Upper Xia Ganchaigou Fm., 31.5 Ma. The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fm. and Qigequan Fm., 14.9–0 Ma, and was stronger than the first phase. The tectonic–sedimentary evolution and the orientation of surface structures in the western Qaidam Basin resulted from the Tibetan

  2. Porphyry copper assessment of the Tibetan Plateau, China: Chapter F in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Hammarstrom, Jane M.; Robinson, Gilpin R.; Mars, John L.; Miller, Robert J.

    2012-01-01

    The U.S. Geological Survey collaborated with the China Geological Survey to conduct a mineral-resource assessment of resources in porphyry copper deposits on the Tibetan Plateau in western China. This area hosts several very large porphyry deposits, exemplified by the Yulong and Qulong deposits, each containing at least 7,000,000 metric tons (t) of copper. However, large parts of the area are underexplored and are likely to contain undiscovered porphyry copper deposits.

  3. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data

    Science.gov (United States)

    Xiang, Longwei; Wang, Hansheng; Steffen, Holger; Wu, Patrick; Jia, Lulu; Jiang, Liming; Shen, Qiang

    2016-09-01

    Understanding groundwater storage (GWS) changes is vital to the utilization and control of water resources in the Tibetan Plateau. However, well level observations are rare in this big area, and reliable hydrology models including GWS are not available. We use hydro-geodesy to quantitate GWS changes in the Tibetan Plateau and surroundings from 2003 to 2009 using a combined analysis of satellite gravity and satellite altimetry data, hydrology models as well as a model of glacial isostatic adjustment (GIA). Release-5 GRACE gravity data are jointly used in a mascon fitting method to estimate the terrestrial water storage (TWS) changes during the period, from which the hydrology contributions and the GIA effects are effectively deducted to give the estimates of GWS changes for 12 selected regions of interest. The hydrology contributions are carefully calculated from glaciers and lakes by ICESat-1 satellite altimetry data, permafrost degradation by an Active-Layer Depth (ALD) model, soil moisture and snow water equivalent by multiple hydrology models, and the GIA effects are calculated with the new ICE-6G_C (VM5a) model. Taking into account the measurement errors and the variability of the models, the uncertainties are rigorously estimated for the TWS changes, the hydrology contributions (including GWS changes) and the GIA effect. For the first time, we show explicitly separated GWS changes in the Tibetan Plateau and adjacent areas except for those to the south of the Himalayas. We find increasing trend rates for eight basins: + 2.46 ± 2.24 Gt/yr for the Jinsha River basin, + 1.77 ± 2.09 Gt/yr for the Nujiang-Lancangjiang Rivers Source Region, + 1.86 ± 1.69 Gt/yr for the Yangtze River Source Region, + 1.14 ± 1.39 Gt/yr for the Yellow River Source Region, + 1.52 ± 0.95 Gt/yr for the Qaidam basin, + 1.66 ± 1.52 Gt/yr for the central Qiangtang Nature Reserve, + 5.37 ± 2.17 Gt/yr for the Upper Indus basin and + 2.77 ± 0.99 Gt/yr for the Aksu River basin. All these

  4. The impact of afforestation on soil organic carbon sequestration on the Qinghai Plateau, China.

    Science.gov (United States)

    Shi, Sheng-wei; Han, Peng-fei; Zhang, Ping; Ding, Fan; Ma, Cheng-lin

    2015-01-01

    Afforestation, the conversion of non-forested land into forest, is widespread in China. However, the dynamics of soil organic carbon (SOC) after afforestation are not well understood, especially in plateau climate zones. For a total of 48 shrub- and/or tree-dominated afforestation sites on the Qinghai Plateau, Northwestern China, post-afforestation changes in SOC, total nitrogen (TN), the carbon-to-nitrogen ratio (C/N) and soil bulk density (BD) were investigated to a soil depth of 60 cm using the paired-plots method. SOC and TN accumulated at rates of 138.2 g C m(-2) yr(-1) and 4.6 g N m(-2) yr(-1), respectively, in shrub-dominated afforestation sites and at rates of 113.3 g C m(-2) yr(-1) and 6.7 g N m(-2) yr(-1), respectively, in tree-dominated afforestation sites. Soil BD was slightly reduced in all layers in the shrub-dominated afforestation plots, and significantly reduced in soil layers from 0-40cm in the tree-dominated afforestation plots. The C/N ratio was higher in afforested sites relative to the reference sites. SOC accumulation was closely related to TN accumulation following afforestation, and the inclusion of N-fixing species in tree-dominated afforestation sites additionally increased the soil accumulation capacity for SOC (p sequestration. This study improves our understanding of the mechanisms underlying SOC and TN accumulation in a plateau climate, and provides evidence on the C sequestration potentials associated with forestry projects in China.

  5. Frequency of Polycythemia and Other Abnormalities in a Tibetan Herdsmen Population Residing in the Kham Area of Sichuan Province, China.

    Science.gov (United States)

    Zhang, Jian-Bo; Wang, Lin; Chen, Jie; Wang, Zhi-Ying; Cao, Mei; Yie, Shang-Mian; Yang, Hua; Yao, Xiao-Qin; Zeng, Yi; Yang, Yong-Chang; Xie, Chun-Bao; Zhao, Tai-Qiang

    2018-03-01

    The Kham Tibetans are one of several Tibetan ethnic subgroups living in the Kham area of China. Because studies on the high-altitude adaptation of the Kham people are scant, the main aim of this study is to investigate whether the response to hypoxia, especially polycythemia status, in the Kham Tibetans is different from other Tibetan ethnic subgroups. The primary investigation was conducted on 346 native Kham Tibetan adults (268 men and 78 women) from 3 herdsmen villages located in Hongyuan County situated at an altitude of greater than 3600 m. The participants were aged 46.2±14.1 (21-82; mean±SD with range) years. Anthropometric measurements such as weight, height, waist circumference, body mass index, and blood pressure, as well as laboratory blood tests such as glycosylated hemoglobin, hemoglobin, total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and uric acid were analyzed. The concentrations of hemoglobin were 171.3±12.9 (66-229) mg·L -1 and 151.4±16.4 (86-190) mg·L -1 in men and women, respectively. The frequency of polycythemia was found to be 25.5 and 21.8% in men and women, respectively. Polycythemia was found to be significantly associated with glycosylated hemoglobin concentrations, hypertension, and hyperuricemia (P=0.002, 0.023, and 0.009, respectively). There is a higher frequency of polycythemia in the Kham Tibetans when compared with reported studies from other Tibetan ethnic subgroups living on the Qinghai-Tibet plateau. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  6. Increased precipitation accelerates soil organic matter turnover associated with microbial community composition in topsoil of alpine grassland on the eastern Tibetan Plateau.

    Science.gov (United States)

    Han, Conghai; Wang, Zongli; Si, Guicai; Lei, Tianzhu; Yuan, Yanli; Zhang, Gengxin

    2017-10-01

    Large quantities of carbon are stored in alpine grassland of the Tibetan Plateau, which is extremely sensitive to climate change. However, it remains unclear whether soil organic matter (SOM) in different layers responds to climate change analogously, and whether microbial communities play vital roles in SOM turnover of topsoil. In this study we measured and collected SOM turnover by the 14 C method in alpine grassland to test climatic effects on SOM turnover in soil profiles. Edaphic properties and microbial communities in the northwestern Qinghai Lake were investigated to explore microbial influence on SOM turnover. SOM turnover in surface soil (0-10 cm) was more sensitive to precipitation than that in subsurface layers (10-40 cm). Precipitation also imposed stronger effects on the composition of microbial communities in the surface layer than that in deeper soil. At the 5-10 cm depth, the SOM turnover rate was positively associated with the bacteria/fungi biomass ratio and the relative abundance of Acidobacteria, both of which are related to precipitation. Partial correlation analysis suggested that increased precipitation could accelerate the SOM turnover rate in topsoil by structuring soil microbial communities. Conversely, carbon stored in deep soil would be barely affected by climate change. Our results provide valuable insights into the dynamics and storage of SOM in alpine grasslands under future climate scenarios.

  7. Some practical notes on the land surface modeling in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    K. Yang

    2009-05-01

    Full Text Available The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere, CoLM (Common Land Model, and Noah. They are run at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau.

    The identified key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models, when using default parameters, significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; an advanced scheme for soil water flow is implemented in a LSM, based on which the soil resistance is determined from soil water content and meteorological conditions. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature gradient, which would result in higher net radiation, lower soil heat fluxes and thus higher sensible heat fluxes in the models. A parameterization scheme for this resistance has been shown to be effective to remove these biases.

  8. Analysis of turbulence characteristics over the northern Tibetan Plateau area

    Science.gov (United States)

    Li, M. S.; Ma, Y. M.; Ma, W. Q.; Hu, Z. Y.; Ishikawa, H.; Su, Z. B.; Sun, G. L.

    2006-07-01

    Based on CATOP/Tibet [Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CA-IMP) on the Tibetan Plateau) turbulent data collected at the Bujiao (BJ) site of the Nagqu area, the turbulent structure and transportation characteristics in the near surface layer during summer are analyzed. The main results show that the relationship between the normalized standard deviation of 3D wind speed and stability satisfies the similarity law tinder both unstable and stable stratifications. The relations of normalized standard deviation of temperature and specific humidity to stability only obey the "-1/3 power law." tinder unstable conditions. In the case of stable stratifications, their relations to stability are dispersing. The sensible heat dominates in the dry period, while in the wet period, the latent heat is larger than the sensible heat.

  9. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow

    Science.gov (United States)

    The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...

  10. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    Science.gov (United States)

    Ding, Jinzhi; Li, Fei; Yang, Guibiao; Chen, Leiyi; Zhang, Beibei; Liu, Li; Fang, Kai; Qin, Shuqi; Chen, Yongliang; Peng, Yunfeng; Ji, Chengjun; He, Honglin; Smith, Pete; Yang, Yuanhe

    2016-08-01

    The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region. © 2016 John Wiley & Sons Ltd.

  11. A Communal Sign Post of Snow Leopards (Panthera uncia and Other Species on the Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Juan Li

    2013-01-01

    Full Text Available The snow leopard is a keystone species in mountain ecosystems of Central Asia and the Tibetan Plateau. However, little is known about the interactions between snow leopards and sympatric carnivores. Using infrared cameras, we found a rocky junction of two valleys in Sanjiangyuan area on the Tibetan Plateau where many mammals in this area passed and frequently marked and sniffed the site at the junction. We suggest that this site serves as a sign post to many species in this area, especially snow leopards and other carnivores. The marked signs may also alert the animals passing by to temporally segregate their activities to avoid potential conflicts. We used the Schoener index to measure the degree of temporal segregation among the species captured by infrared camera traps at this site. Our research reveals the probable ways of both intra- and interspecies communication and demonstrates that the degree of temporal segregation may correlate with the degree of potential interspecies competition. This is an important message to help understand the structure of animal communities. Discovery of the sign post clarifies the importance of identifying key habitats and sites of both snow leopards and other species for more effective conservation.

  12. Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf from the Tibetan Plateau.

    Science.gov (United States)

    Miao, Benpeng; Wang, Zhen; Li, Yixue

    2017-03-01

    The Tibetan Mastiff (TM), a native of the Tibetan Plateau, has quickly adapted to the extreme highland environment. Recently, the impact of positive selection on the TM genome was studied and potential hypoxia-adaptive genes were identified. However, the origin of the adaptive variants remains unknown. In this study, we investigated the signature of genetic introgression in the adaptation of TMs with dog and wolf genomic data from different altitudes in close geographic proximity. On a genome-wide scale, the TM was much more closely related to other dogs than wolves. However, using the 'ABBA/BABA' test, we identified genomic regions from the TM that possibly introgressed from Tibetan gray wolf. Several of the regions, including the EPAS1 and HBB loci, also showed the dominant signature of selective sweeps in the TM genome. We validated the introgression of the two loci by excluding the possibility of convergent evolution and ancestral polymorphisms and examined the haplotypes of all available canid genomes. The estimated time of introgression based on a non-coding region of the EPAS1 locus mostly overlapped with the Paleolithic era. Our results demonstrated that the introgression of hypoxia adaptive genes in wolves from the highland played an important role for dogs living in hypoxic environments, which indicated that domestic animals could acquire local adaptation quickly by secondary contact with their wild relatives. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau.

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Li, Chaoliu; Gao, Tanguang; Cong, Zhiyuan; Sprenger, Michael; Liu, Yajun; Li, Xiaofei; Guo, Junming; Sillanpää, Mika; Wang, Kun; Chen, Jizu; Li, Yang; Sun, Shiwei

    2017-12-31

    Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Snowmelt Pattern and Lake Ice Phenology around Tibetan Plateau Estimated from Enhanced Resolution Passive Microwave Data

    Science.gov (United States)

    Xiong, C.; Shi, J.; Wang, T.

    2017-12-01

    Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.

  15. Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhangdong [Chinese Academy of Sciences (CAS), Beijing (China); National Cheng Kung Univ., Tainan City (Taiwan); You, Chen-Feng [National Cheng Kung Univ., Tainan City (Taiwan); Wang, Yi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Yuewei [Bureau of Hydrology and Water Resources of Qinghai Province, Xining (China)

    2009-12-04

    Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca 2+ and DIC for river waters and groundwater. Groundwater contribution to major dissolved constituents is relatively small (4.2 ± 0.5%). Wet atmospheric deposition contributes annually 7.4–44.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na+, Cl-, Mg 2+ , and K+ in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca 2+ into the bottom sediments of the lake, resulting in very low Ca 2+ in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past.

  16. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    Science.gov (United States)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  17. The effects of Southeast Asia fire activities on tropospheric ozone, trace gases and aerosols at a remote site over the Tibetan Plateau of Southwest China

    International Nuclear Information System (INIS)

    Chan, C.Y.; Wong, K.H.; Li, Y.S.; Chan, L.Y.

    2006-01-01

    Tropospheric ozone (O 3 ), carbon monoxide (CO), total reactive nitrogen (NO y ) and aerosols (PM 2.5 and PM 10 ) were measured on the southeastern Tibetan Plateau at Tengchong (25.01 deg N, 98.3 deg E, 1960 m a.s.l.) in Southwest China, where observational data is scarce, during a field campaign of the TAPTO-China (Transport of Air Pollutants and Tropospheric O 3 over China) in the spring of 2004. Fire maps derived from satellite data and backward air trajectories were used to trace the source regions and transport pathways of pollution. Ozone, CO, NO y , PM 10 and PM 2.5 had average concentrations of 26 ± 8 ppb, 179 ± 91 ppb, 2.7 ± 1.2 ppb and 34 ± 23 and 28 ± 19 μg/m 3 , respectively. The measured O 3 level is low when compared with those reported for similar longitudinal sites in Southeast (SE) Asia and northeastern Tibetan Plateau in Northwest China suggesting that there exist complex O 3 variations in the Tibetan Plateau and its neighbouring SE Asian region. High levels of pollution with hourly averages of O 3 , CO, NO y , PM 10 and PM 2.5 concentrations up to 59, 678 and 7.7 ppb and 158 and 137 μg/m 3 , respectively, were observed. The increase of pollutants in the lower troposphere was caused by regional built-up and transport of pollution from active fire regions of the SE Asia subcontinent and from northern South Asia. Our results showed that pollution transport from SE Asia and South Asia had relatively stronger impacts than that from Central and South China on the abundance of O 3 , trace gases and aerosols in the background atmosphere of the Tibetan Plateau of Southwest China

  18. An assessment of the impact of ATMS and CrIS data assimilation on precipitation prediction over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Xue

    2017-07-01

    Full Text Available Using the National Oceanic and Atmospheric Administration's Gridpoint Statistical Interpolation data assimilation system and the National Center for Atmospheric Research's Advanced Research Weather Research and Forecasting (WRF-ARW regional model, the impact of assimilating Advanced Technology Microwave Sounder (ATMS and Cross-track Infrared Sounder (CrIS satellite data on precipitation prediction over the Tibetan Plateau in July 2015 was evaluated. Four experiments were designed: a control experiment and three data assimilation experiments with different data sets injected: conventional data only, a combination of conventional and ATMS satellite data, and a combination of conventional and CrIS satellite data. The results showed that the monthly mean of precipitation is shifted northward in the simulations and showed an orographic bias described as an overestimation upwind of the mountains and an underestimation in the south of the rain belt. The rain shadow mainly influenced prediction of the quantity of precipitation, although the main rainfall pattern was well simulated. For the first 24 h and last 24 h of accumulated daily precipitation, the model generally overestimated the amount of precipitation, but it was underestimated in the heavy-rainfall periods of 3–5, 13–16, and 22–25 July. The observed water vapor conveyance from the southeastern Tibetan Plateau was larger than in the model simulations, which induced inaccuracies in the forecast of heavy rain on 3–5 July. The data assimilation experiments, particularly the ATMS assimilation, were closer to the observations for the heavy-rainfall process than the control. Overall, based on the experiments in July 2015, the satellite data assimilation improved to some extent the prediction of the precipitation pattern over the Tibetan Plateau, although the simulation of the rain belt without data assimilation shows the regional shifting.

  19. ESR dating of geyserites from intermittent geyser sites on the Tibetan Plateau

    International Nuclear Information System (INIS)

    Chen, Y.; Feng, J.

    1993-01-01

    Thirteen geyserite samples obtained from two intermittent geyser sites on the Tibetan Plateau were dated by the ESR technique. ESR spectra of geyserite display two sets of signals. One is a set of triplet signals assigned to organic radical X-C-radicalH 2 by Griffiths et al. (1982), another is a mixed signal produced from E'-type defect centres of the silica minerals in geyserite, such as opal, cristobalite, tridymite and quartz. The ages obtained using the mixed E'-type signal are approximately consistent with the stratigraphy and the silica diagenetic sequence. The correlation between the thermal stability of E'-type signal and the mineral association of geyserite was investigated by annealing experiments. (author)

  20. The character and mechanism of glacial variation in the peripheral Tibetan Plateau

    Science.gov (United States)

    Yi, S.; Wang, Q.; Sun, W.

    2016-12-01

    Global warming has accelerated glacier retreat in the peripheral Tibetan Plateau. Our study demonstrates consistent glacier variation in time series constructed by laser altimetry and space gravimetry in these regions. It largely enhances reliability of glacier changes and narrows down significant inconsistent in previous studies. The glacial melt is roughly weakening from southeast to northwest: from Nyenchen Tanglha to Himalaya then to Pamir even a positive gain in the Western Kunlun. A sharp melt of glacier on Nyenchen Tanglha is primarily caused by high temperature and rapid rise rather than decreasing in annual precipitation as previously thought. Glaciers on Hindu Kush, Karakoram and Western Kun even Pamir are less affect by slow rise of local temperature.

  1. Vegetation Response to Climate Change in the Southern Part of Qinghai-Tibet Plateau at Basinal Scale

    Science.gov (United States)

    Liu, X.; Liu, C.; Kang, Q.; Yin, B.

    2018-04-01

    Global climate change has significantly affected vegetation variation in the third-polar region of the world - the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change), the Normalized Difference Vegetation Index (NDVI) is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging spectroradiometer (MODIS). After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982-2013), 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The spatial heterogeneity of

  2. Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations.

    Science.gov (United States)

    He, Minhui; Yang, Bao; Shishov, Vladimir; Rossi, Sergio; Bräuning, Achim; Ljungqvist, Fredrik Charpentier; Grießinger, Jussi

    2018-04-01

    The response of the growing season to the ongoing global warming has gained considerable attention. In particular, how and to which extent the growing season will change during this century is essential information for the Tibetan Plateau, where the observed warming trend has exceeded the global mean. In this study, the 1960-2014 mean length of the tree-ring growing season (LOS) on the Tibetan Plateau was derived from results of the Vaganov-Shashkin oscilloscope tree growth model, based on 20 composite study sites and more than 3000 trees. Bootstrap and partial correlations were used to evaluate the most significant climate factors determining the LOS in the study region. Based on this relationship, we predicted the future variability of the LOS under three emission scenarios (Representative Concentration Pathways (RCP) 2.6, 6.0, and 8.5, representing different concentrations of greenhouse gasses) derived from 17 Earth system models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The averaged LOS on the Tibetan Plateau is 103 days during the period 1960-2014, and April-September minimum temperature is the strongest factor controlling the LOS. We detected a general increase in the LOS over the twenty-first century under all the three selected scenarios. By the middle of this century, LOS will extend by about 3 to 4 weeks under the RCPs 2.6 and 6.0, and by more than 1 month (37 days) under the RCP 8.5, relative to the baseline period 1960-2014. From the middle to the end of the twenty-first century, LOS will further extend by about 3 to 4 weeks under the RCPs 6.0 and 8.5, respectively. Under the RCP 2.6 scenario, however, the extension reaches a plateau at around 2050 and about 2 weeks LOS extension. In total, we found an average rate of 2.1, 3.6, and 5.0 days decade -1 for the LOS extension from 2015 to 2100 under the RCPs 2.6, 6.0, and 8.5, respectively. However, such estimated LOS extensions may be offset by other ecological

  3. Adaption to High Altitude: An Evaluation of the Storage Quality of Suspended Red Blood Cells Prepared from the Whole Blood of Tibetan Plateau Migrants.

    Science.gov (United States)

    Zhong, Rui; Liu, Hua; Wang, Hong; Li, Xiaojuan; He, Zeng; Gangla, Meiduo; Zhang, Jingdan; Han, Dingding; Liu, Jiaxin

    2015-01-01

    Hypoxia has been reported to cause the significant enhancement of hemoglobin (Hb) and hematocrit (Hct), which stabilizes at relatively high levels after an individual ascends to a high altitude. However, the quality of the suspended red blood cells (SRBCs) obtained from individuals at high altitudes such as Tibetan plateau migrants after storage has not been studied. In this study, we compared the storage quality of SRBCs prepared from Tibetan plateau and Deyang lowland populations by adding a normal volume of mannitol-adenine-phosphate (MAP), which is a common additive solution used in blood storage in Asian countries. The storage cell characteristics were examined on days 1, 7, 14 and 35.We found higher Hct and Hb levels and viscosity in the high altitude samples. The metabolic rates, including those for electrolytes and lactate, were higher in plateau SRBCs than in lowland SRBCs; these findings were consistent with the higher osmotic fragility and hemolysis of plateau SRBCs throughout the entire storage period. In addition, the reduction rates of 2,3-diphosphoglycerate (2,3-DPG) and oxygen tension to attain 50% oxygen saturation of Hb (P50) in plateau SRBCs were higher than those in lowland SRBCs, and the oxygen delivering capacity in plateau SRBCs was weaker than that in lowland SRBCs. We concluded that the storage quality of plateau SRBCs was inferior to that of lowland SRBCs when using the same concentration of MAP. We suggested that the optimal formula, including the MAP concentration or even a new additive solution, to store the plateau SRBCs must be assessed and regulated.

  4. Adaption to High Altitude: An Evaluation of the Storage Quality of Suspended Red Blood Cells Prepared from the Whole Blood of Tibetan Plateau Migrants

    Science.gov (United States)

    Wang, Hong; Li, Xiaojuan; He, Zeng; Gangla, Meiduo; Zhang, Jingdan; Han, Dingding; Liu, Jiaxin

    2015-01-01

    Hypoxia has been reported to cause the significant enhancement of hemoglobin (Hb) and hematocrit (Hct), which stabilizes at relatively high levels after an individual ascends to a high altitude. However, the quality of the suspended red blood cells (SRBCs) obtained from individuals at high altitudes such as Tibetan plateau migrants after storage has not been studied. In this study, we compared the storage quality of SRBCs prepared from Tibetan plateau and Deyang lowland populations by adding a normal volume of mannitol-adenine-phosphate (MAP), which is a common additive solution used in blood storage in Asian countries. The storage cell characteristics were examined on days1, 7, 14 and 35.We found higher Hct and Hb levels and viscosity in the high altitude samples. The metabolic rates, including those for electrolytes and lactate, were higher in plateau SRBCs than in lowland SRBCs; these findings were consistent with the higher osmotic fragility and hemolysis of plateau SRBCs throughout the entire storage period. In addition, the reduction rates of 2,3-diphosphoglycerate (2,3-DPG) and oxygen tension to attain 50% oxygen saturation of Hb (P50) in plateau SRBCs were higher than those in lowland SRBCs, and the oxygen delivering capacity in plateau SRBCs was weaker than that in lowland SRBCs. We concluded that the storage quality of plateau SRBCs was inferior to that of lowland SRBCs when using the same concentration of MAP. We suggested that the optimal formula, including the MAP concentration or even a new additive solution, to store the plateau SRBCs must be assessed and regulated. PMID:26637115

  5. Adaption to High Altitude: An Evaluation of the Storage Quality of Suspended Red Blood Cells Prepared from the Whole Blood of Tibetan Plateau Migrants.

    Directory of Open Access Journals (Sweden)

    Rui Zhong

    Full Text Available Hypoxia has been reported to cause the significant enhancement of hemoglobin (Hb and hematocrit (Hct, which stabilizes at relatively high levels after an individual ascends to a high altitude. However, the quality of the suspended red blood cells (SRBCs obtained from individuals at high altitudes such as Tibetan plateau migrants after storage has not been studied. In this study, we compared the storage quality of SRBCs prepared from Tibetan plateau and Deyang lowland populations by adding a normal volume of mannitol-adenine-phosphate (MAP, which is a common additive solution used in blood storage in Asian countries. The storage cell characteristics were examined on days 1, 7, 14 and 35.We found higher Hct and Hb levels and viscosity in the high altitude samples. The metabolic rates, including those for electrolytes and lactate, were higher in plateau SRBCs than in lowland SRBCs; these findings were consistent with the higher osmotic fragility and hemolysis of plateau SRBCs throughout the entire storage period. In addition, the reduction rates of 2,3-diphosphoglycerate (2,3-DPG and oxygen tension to attain 50% oxygen saturation of Hb (P50 in plateau SRBCs were higher than those in lowland SRBCs, and the oxygen delivering capacity in plateau SRBCs was weaker than that in lowland SRBCs. We concluded that the storage quality of plateau SRBCs was inferior to that of lowland SRBCs when using the same concentration of MAP. We suggested that the optimal formula, including the MAP concentration or even a new additive solution, to store the plateau SRBCs must be assessed and regulated.

  6. TIBETAN WOMEN'S DAILY LIFE: FIRE, FUEL, WATER COLLECTION, COOKING, AND CHILDCARE

    Directory of Open Access Journals (Sweden)

    Rdo rje don 'grub རྡོ་རྗེ་དོན་འགྲུབ། Duojieduanzhi 多杰端智

    2018-05-01

    Full Text Available The daily lives of Lha mtsho skyid, Klu mo, and Tshe thar skyid, Tibetan women living in impoverished A bo rgyud (Awubuju Tibetan Village, Gser gzhung (Jinyuan Township, Dpal lung (Hualong Hui Autonomous County, Mtsho shar (Haidong City, Mtsho sngon (Qinghai Province in May 2011 are described. Aspects of fuel collection, family relationships, food preparation, child care, schooling, water collection, and day-to-day anxieties are described, illustrating the reality of their daily existence.

  7. Modeling and Mapping Soil Moisture of Plateau Pasture Using RADARSAT-2 Imagery

    Directory of Open Access Journals (Sweden)

    Xun Chai

    2015-01-01

    Full Text Available Accurate soil moisture retrieval of a large area in high resolution is significant for plateau pasture. The object of this paper is to investigate the estimation of volumetric soil moisture in vegetated areas of plateau pasture using fully polarimetric C-band RADARSAT-2 SAR (Synthetic Aperture Radar images. Based on the water cloud model, Chen model, and Dubois model, we proposed two developed algorithms for soil moisture retrieval and validated their performance using experimental data. We eliminated the effect of vegetation cover by using the water cloud model and minimized the effect of soil surface roughness by solving the Dubois equations. Two experimental campaigns were conducted in the Qinghai Lake watershed, northeastern Tibetan Plateau in September 2012 and May 2013, respectively, with simultaneous satellite overpass. Compared with the developed Chen model, the predicted soil moisture given by the developed Dubois model agreed better with field measurements in terms of accuracy and stability. The RMSE, R2, and RPD value of the developed Dubois model were (5.4, 0.8, 1.6 and (3.05, 0.78, 1.74 for the two experiments, respectively. Validation results indicated that the developed Dubois model, needing a minimum of prior information, satisfied the requirement for soil moisture inversion in the study region.

  8. Climatic Changes on Tibetan Plateau Based on Ice Core Records

    Science.gov (United States)

    Yao, T.

    2008-12-01

    Climatic changes have been reconstructed for the Tibetan Plateau based on ice core records. The Guliya ice core on the Tibetan Plateau presents climatic changes in the past 100,000 years, thus is comparative with that from Vostok ice core in Antarctica and GISP2 record in Arctic. These three records share an important common feature, i.e., our climate is not stable. It is also evident that the major patterns of climatic changes are similar on the earth. Why does climatic change over the earth follow a same pattern? It might be attributed to solar radiation. We found that the cold periods correspond to low insolation periods, and warm periods to high insolation periods. We found abrupt climatic change in the ice core climatic records, which presented dramatic temperature variation of as much as 10 °C in 50 or 60 years. Our major challenge in the study of both climate and environment is that greenhouse gases such as CO2, CH4 are possibly amplifying global warming, though at what degree remains unclear. One of the ways to understand the role of greenhouse gases is to reconstruct the past greenhouse gases recorded in ice. In 1997, we drilled an ice core from 7100 m a.s.l. in the Himalayas to reconstruct methane record. Based on the record, we found seasonal cycles in methane variation. In particular, the methane concentration is high in summer, suggestiing active methane emission from wet land in summer. Based on the seasonal cycle, we can reconstruct the methane fluctuation history in the past 500 years. The most prominent feature of the methane record in the Himalayan ice core is the abrupt increase since 1850 A.D.. This is closely related to the industrial revolution worldwide. We can also observe sudden decrease in methane concentration during the World War I and World War II. It implies that the industrial revolution has dominated the atmospheric greenhouse gas emission for about 100 years. Besides, the average methane concentration in the Himalayan ice core is

  9. Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport

    International Nuclear Information System (INIS)

    Li Chaoliu; Kang Shichang; Zhang Qianggong

    2009-01-01

    The Tibetan Plateau (TP) is an ideal place for monitoring the atmospheric environment of low to mid latitudes. In total 54 soil samples from the western TP were analyzed for major and trace elements. Results indicate that concentrations of some typical 'pollution' elements (such as As) are naturally high here, which may cause incorrect evaluation for the source region of these elements, especially when upper continental crust values are used to calculate enrichment factors. Because only particles <20 μm are transportable as long distances, elemental concentrations of this fraction of the TP soils are more reliable for the future aerosol related studies over the TP. In addition, REE compositions of the TP soils are unusual, highly characteristic and can be used as an effective index for identifying dust aerosol from the TP. - High concentrations of some elements of the Tibetan soils can cause incorrect evaluation for the source region of these elements during aerosol related study.

  10. Diverse range dynamics and dispersal routes of plants on the Tibetan Plateau during the late Quaternary.

    Directory of Open Access Journals (Sweden)

    Haibin Yu

    Full Text Available Phylogeographical studies have suggested that several plant species on the Tibetan Plateau (TP underwent recolonization during the Quaternary and may have had distinct range dynamics in response to the last glacial. To further test this hypothesis and locate the possible historical dispersal routes, we selected 20 plant species from different parts of the TP and modeled their geographical distributions over four time periods using species distribution models (SDMs. Furthermore, we applied the least-cost path method together with SDMs and shared haplotypes to estimate their historical dispersal corridors. We identified three general scenarios of species distribution change during the late Quaternary: the 'contraction-expansion' scenario for species in the northeastern TP, the 'expansion-contraction' scenario for species in the southeast and the 'stable' scenario for widespread species. During the Quaternary, we identified that these species were likely to recolonize along the low-elevation valleys, huge mountain ranges and flat plateau platform (e.g. the Yarlung Zangbo Valley and the Himalaya. We inferred that Quaternary cyclic glaciations along with the various topographic and climatic conditions of the TP could have resulted in the diverse patterns of range shift and dispersal of Tibetan plant species. Finally, we believe that this study would provide valuable insights for the conservation of alpine species under future climate change.

  11. Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Wenbin Zhu

    2014-10-01

    Full Text Available The knowledge of water storage variations in ungauged lakes is of fundamental importance to understanding the water balance on the Tibetan Plateau. In this paper, a simple framework was presented to monitor the fluctuation of inland water bodies by the combination of satellite altimetry measurements and optical satellite imagery without any in situ measurements. The fluctuation of water level, surface area, and water storage variations in Lake Qinghai were estimated to demonstrate this framework. Water levels retrieved from ICESat (Ice, Cloud, and and Elevation Satellite elevation data and lake surface area derived from MODIS (Moderate Resolution Imaging Spectroradiometer product were fitted by linear regression during the period from 2003 to 2009 when the overpass time for both of them was coincident. Based on this relationship, the time series of water levels from 1999 to 2002 were extended by using the water surface area extracted from Landsat TM/ETM+ images as inputs, and finally the variations of water volume in Lake Qinghai were estimated from 1999 to 2009. The overall errors of water levels retrieved by the simple method in our work were comparable with other globally available test results with r = 0.93, MAE = 0.07 m, and RMSE = 0.09 m. The annual average rate of increase was 0.11 m/yr, which was very close to the results obtained from in situ measurements. High accuracy was obtained in the estimation of surface areas. The MAE and RMSE were only 6 km2, and 8 km2, respectively, which were even lower than the MAE and RMAE of surface area extracted from Landsat TM images. The estimated water volume variations effectively captured the trend of annual variation of Lake Qinghai. Good agreement was achieved between the estimated and measured water volume variations with MAE = 0.4 billion m3, and RMSE = 0.5 billion m3, which only account for 0.7% of the total water volume of Lake Qinghai. This study demonstrates that it is feasible to monitor

  12. Estimation of the Land Surface Temperature over the Tibetan Plateau by Using Chinese FY-2C Geostationary Satellite Data.

    Science.gov (United States)

    Hu, Yuanyuan; Zhong, Lei; Ma, Yaoming; Zou, Mijun; Xu, Kepiao; Huang, Ziyu; Feng, Lu

    2018-01-28

    During the process of land-atmosphere interaction, one of the essential parameters is the land surface temperature (LST). The LST has high temporal variability, especially in its diurnal cycle, which cannot be acquired by polar-orbiting satellites. Therefore, it is of great practical significance to retrieve LST data using geostationary satellites. According to the data of FengYun 2C (FY-2C) satellite and the measurements from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet), a regression approach was utilized in this research to optimize the split window algorithm (SWA). The thermal infrared data obtained by the Chinese geostationary satellite FY-2C over the Tibetan Plateau (TP) was used to estimate the hourly LST time series. To decrease the effects of cloud, the 10-day composite hourly LST data were obtained through the approach of maximal value composite (MVC). The derived LST was used to compare with the product of MODIS LST and was also validated by the field observation. The results show that the LST retrieved through the optimized SWA and in situ data has a better consistency (with correlation coefficient (R), mean absolute error (MAE), mean bias (MB), and root mean square error (RMSE) values of 0.987, 1.91 K, 0.83 K and 2.26 K, respectively) than that derived from Becker and Li's SWA and MODIS LST product, which means that the modified SWA can be applied to achieve plateau-scale LST. The diurnal variation of the LST and the hourly time series of the LST over the Tibetan Plateau were also obtained. The diurnal range of LST was found to be clearly affected by the influence of the thawing and freezing process of soil and the summer monsoon evolution. The comparison between the seasonal and diurnal variations of LST at four typical underlying surfaces over the TP indicate that the variation of LST is closely connected with the underlying surface types as well. The diurnal variation of LST is

  13. Characterization of atmospheric trace elements in the Puruogangri ice core: a preliminary account of Tibetan Plateau environmental and contamination histories

    Science.gov (United States)

    Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.

    2014-12-01

    Asia is facing enormous challenges including large-scale environmental changes, rapid population growth and industrialization. The inherent generated pollution contributes to half of all Earth's anthropogenic trace metals emissions that, when deposited to glaciers of the surrounding mountains of the Third Pole region, leave a characteristic chemical fingerprint. Records of past atmospheric deposition preserved in snow and ice from Third Pole glaciers provide unique insights into changes of the chemical composition of the atmosphere and into the nature and intensity of the regional atmospheric circulation systems. The determination of the elemental composition of aeolian dust stored in Himalayan and Tibetan Plateau glaciers can help to qualify the potential contamination of glacial meltwater as a part of the greater fresh Asian water source. The 215 m long Puruogangri ice core retrieved in 2000 at 6500 m a.s.l. in central Tibetan Plateau (Western Tanggula Shan, China) provides one of the first multi-millennium-long environmental archives (spanning the last 7000 years and annually resolved for the last 400 years) obtained from the Tibetan Plateau region. The Puruogangri's area is climatologically of particular interest because of its location at the boundary between the monsoon (wet) and the westerly (dry) dominated atmospheric circulation. The major objective of this study is to determine the concentration of trace and ultra-trace elements in the Puruogangri ice core between 1600 and 2000 AD in order to characterize the atmospheric aerosols entrapped in the ice. Particular attention is given to assess the amount of trace elements originating from anthropogenic sources during both the pre-industrial and industrial periods. The distinction between the anthropogenic contribution and the crustal background may rely on the precise decoupling of the dry and wet seasons signals, the former being largely influenced by dust contribution.

  14. TMPA Products 3B42RT & 3B42V6: Evaluation and Application in Qinghai-Tibet Plateau

    Science.gov (United States)

    Hao, Z.; Sun, L.; Wang, J.

    2012-04-01

    Hydrological researchers in Qinghai-Tibet Plateau tend to be haunted by deficiency of station gauged precipitation data for the sparse and uneven distribution of local meteorological stations. Fortunately, alternative data can be obtained from TRMM (Tropic Rainfall Measurement Mission) satellite. Preliminary evaluation and necessary correction of TRMM satellite rainfall products is required for the sake of reliability and suitability considering that TRMM precipitation is unconventional and natural condition in Qinghai-Tibet Plateau is unusually complicated. 3B42RT and 3B42V6 products from TRMM Multisatellite Precipitation Analysis(TMPA) are evaluated in northeast Qinghai-Tibet Plateau with 50 stations quality-controlled gauged daily precipitation as the benchmark precipitation set. It is found that the RT data overestimates the actual precipitation greatly while V6 only overestimates it slightly. RT data shows different seasonal and inter-annual accuracies. Summer and autumn see better accuracies than winter and spring and wet years see higher accuracies than dry years. Latitude is believed to be an important factor that influences the accuracy of satellite precipitation. Both RT and V6 can reflect the general pattern of the spatial distribution of precipitation even though RT overestimates the quantity greatly. A new parameter, accumulated precipitation weight point (APWP), was introduced to describe the temporal-spatial pattern evolution of precipitation. The APWP of both RT and V6 were moving from south to north in the past decade, but they are all in the west of station gauged precipitation APWP(s).V6 APWP track fit gauged precipitation perfectly while RT APWP track has over-exaggerated legs, indicating that spatial distribution of RT precipitation experienced unreasonable sharp changes. A practical and operational procedure to correct satellite precipitation data is developed. For RT, there are two steps. Step 1, the downscaling, original daily precipitation

  15. Land-use intensification can exaggerate the reduction of functionality with increasing soil biodiversity loss in an alpine meadow on eastern Tibetan Plateau

    Science.gov (United States)

    Liu, Manqiang; Chen, Xiaoyun; Chen, Chenying; Hu, Zhengkun; Guo, Hui; Li, Junyong; Du, Guozhen; Li, Huixin; Hu, Feng

    2017-04-01

    Soil biota plays a pivotal role in ecosystem functionality which is of central importance to sustainable services such as food and fiber production. Intensive land use is associated with species loss and subsequent the related functionality loss. Currently, the claim that negligible effects of soil biodiversity loss due to high functional redundancy has been questioned in the face of intense human activities. Recent studies corroborated that soil biodiversity guaranteed functionality following perturbation. Few studies have, however, attempted to explore the intensive land use on the relationship between soil biodiversity and function particularly for the region susceptible to human perturbation and climate change. With increasing demands for livestock on the Qinghai-Tibetan Plateau, extensive fertilization is a common way to fill the gap of grass productivity in the alpine meadow. However, excess chemical fertilizer can lead to the species loss and functionality degradation. Do the fertilizer-induced changes in soil biota lead to a higher risk of functionality? We predicted that fertilization would exacerbate effects of biodiversity-loss on the reduction of functionality. Herein, a dilution-to-extinction approach was used to set up soil biodiversity loss by inoculating serially diluted soil suspension (ranging from 100 to 10-8 levels) from two long-term fertilization treatments to the sterilized soil that has never been fertilized. The two fertilization treatments represented two distinct intensification land use including the unfertilized control (NP0) and a fertilized treatment (NP120) amended with (NH4)2HPO4 annually (120 kg ha-1 yr-1) since 2002 in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Soil microcosms of 2 fertilization levels crossing 8 biodiversity levels were incubated for 8 months. Then, soil community and multi-functionality parameters including carbon (C)and nutrient mineralization, plant growth and functional stability were determined

  16. Snow fraction products evaluation with Landsat-8/OLI data and its spatial scale effects over the Tibetan Plateau

    Science.gov (United States)

    Jiang, L.

    2016-12-01

    Snow cover is one of important elements in the water supply of large populations, especially in those downstream from mountainous watershed. The cryosphere process in the Tibetan Plateau is paid much attention due to rapid change of snow amount and cover extent. Snow mapping from MODIS has been increased attention in the study of climate change and hydrology. But the lack of intensive validation of different snow mapping methods especially at Tibetan Plateau hinders its application. In this work, we examined three MODIS snow products, including standard MODIS fractional snow product (MOD10A1) (Kaufman et al., 2002; Salomonson & Appel, 2004, 2006), two other fractional snow product, MODSCAG (Painter et al., 2009) and MOD_MESMA (Shi, 2012). Both these two methods are based on spectral mixture analysis. The difference between MODISCAG and MOD_MESMA was the endmember selection. For MODSCAG product, snow spectral endmembers of varying grain size was obtained both from a radiative transfer model and spectra of vegetation, rock and soil collected in the field and laboratory. MOD_MESMA was obtained from automated endmember extraction method using linear spectral mixture analysis. Its endmembers are selected in each image to enhance the computational efficiency of MESMA (Multiple Endmember Spectral Analysis). Landsat-8 Operatinal Land Imager (OLI) data from 2013-2015 was used to evaluate the performance of these three snow fraction products in Tibetan Plateau. The effect of land cover types including forest, grass and bare soil was analyzed to evaluate three products. In addition, the effects of relatively flat surface in internal plateau and high mountain areas of Himalaya were also evaluated on the impact of these snow fraction products. From our comparison, MODSCAG and MOD10A1 overestimated snow cover, while MOD_MESMA underestimated snow cover. And RMSE of MOD_MESMA at each land cover type including forest, grass and mountain area decreased with the spatial resolution

  17. Statistics of optical and geometrical properties of cirrus cloud over tibetan plateau measured by lidar and radiosonde

    Directory of Open Access Journals (Sweden)

    Dai Guangyao

    2018-01-01

    Full Text Available Cirrus clouds affect the energy budget and hydrological cycle of the earth’s atmosphere. The Tibetan Plateau (TP plays a significant role in the global and regional climate. Optical and geometrical properties of cirrus clouds in the TP were measured in July-August 2014 by lidar and radiosonde. The statistics and temperature dependences of the corresponding properties are analyzed. The cirrus cloud formations are discussed with respect to temperature deviation and dynamic processes.

  18. Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-mei; BAO Wei-kai; PANG Xue-yong; WU Ning; ZHOU Guo-yi

    2005-01-01

    Six soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase ) were chosen for investigation under different spruce forests with restoration ages of 4,10,16 years and an old-growth spruce forest over 400 years old in the eastern Qinghai-Tibet Plateau, China. Results showed that the activities of invertase, phosphatase, proteinase, catalase and peroxidase decreased in newly restored forests except for pholyphenoloxidase. With the development of forests after restoration, the activities of invertase, acid phosphadase, proteinase increased gradually. Our study also indicated that the soil enzyme activities were associated with surface soils and decreased with depths. This result suggested that in the earlier restoration stage the application of organic fertilizer may be more effective by surface addition to soils than deep addition.

  19. Religious burning as a potential major source of atmospheric fine aerosols in summertime Lhasa on the Tibetan Plateau

    Science.gov (United States)

    Cui, Yu Yan; Liu, Shang; Bai, Zhixuan; Bian, Jianchun; Li, Dan; Fan, Kaiyu; McKeen, Stuart A.; Watts, Laurel A.; Ciciora, Steven J.; Gao, Ru-Shan

    2018-05-01

    We carried out field measurements of aerosols in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and industrialization. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 μg m-3 and the high values exceeding 50 μg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that likely represented religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at ∼500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that further studies of religious burning, a currently under-studied source, are needed in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.

  20. What controls the partitioning between baseflow and mountain block recharge in the Qinghai-Tibet Plateau?

    Science.gov (United States)

    Yao, Yingying; Zheng, Chunmiao; Andrews, Charles; Zheng, Yi; Zhang, Aijing; Liu, Jie

    2017-08-01

    Mountainous areas are referred to as "water towers" since they are the source of water for many low-lying communities. The hydrologic budgets of these areas, which are particularly susceptible to climate change, are typically poorly constrained. To address this, we analyzed the partitioning between baseflow and mountain block recharge (MBR) using a regional groundwater model of the northern Qinghai-Tibet Plateau run with multiple scenarios. We found that 19% of precipitation is recharged, approximately 35% of which becomes MBR, while 65% discharges as baseflow. This partitioning is relatively independent of the recharge rate but is sensitive to exponential depth decrease of hydraulic conductivity (K). The MBR is more sensitive to this exponential decrease in K than baseflow. The proportion of MBR varies from twice to half of baseflow as the decay exponent increases by more than fivefold. Thus, the depth dependence of K is critical for quantifying hydrologic partitioning in these sensitive areas.

  1. Variation of Maximum Tree Height and Annual Shoot Growth of Smith Fir at Various Elevations in the Sygera Mountains, Southeastern Tibetan Plateau

    Science.gov (United States)

    Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan

    2012-01-01

    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range. PMID:22396738

  2. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  3. Hor - A Sedentarisation Success for Tibetan Pastoralists in Qinghai?

    Czech Academy of Sciences Publication Activity Database

    Ptáčková, Jarmila

    2015-01-01

    Roč. 19, č. 2 (2015), s. 221-240 ISSN 0822-7942 Institutional support: RVO:68378009 Keywords : Sedentarisation, resettlement, Tibetan pastoralists, grassland development, vocational training Subject RIV: AC - Archeology, Anthropology, Ethnology

  4. Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: an example from the NE Tibetan Plateau

    NARCIS (Netherlands)

    Wang, X.; Vandenberghe, J.F.; Yi, S; van Balen, R.T.; Lu, H.

    2015-01-01

    The substantial tectonic uplift (1000-2500. m in a few million years) of the Northeastern Tibetan Plateau (NETP), together with the major climatic changes during the Quaternary, provides an opportunity to study the impact of tectonic and climatic changes on the morphological development and

  5. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China.

    Science.gov (United States)

    Yun, Juanli; Ju, Yiwen; Deng, Yongcui; Zhang, Hongxun

    2014-08-01

    Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 10(10) 16S rRNA gene copies per gram of wet soil in both wetlands, with 10(8) pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.

  6. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau.

    Science.gov (United States)

    Bing, Haijian; Zhou, Jun; Wu, Yanhong; Luo, Xiaosan; Xiang, Zhongxiang; Sun, Hongyang; Wang, Jipeng; Zhu, He

    2018-07-01

    Anthropogenic metals adsorbed on suspended fine particles can be deposited on remote and inaccessible high mountains by long-range atmospheric transport. In this study, we investigated the cadmium (Cd) and lead (Pb) in the soils, mosses and rainfall of three transects on the Gongga Mountain, eastern Tibetan Plateau, to understand the mountain interception effects on their atmospheric transport. The concentrations of Cd and Pb in the soils and mosses displayed a pattern of eastern transect>northern transect>western transect. The distribution of Cd and Pb on the eastern transect increased from 2000 to 2900m a.s.l. (above sea level), decreased toward the timberline, and increased again with altitude; on the northern transect, it generally decreased with altitude whereas a distribution trend was not clearly observed on the western transect. The Cd and Pb concentrations in the rainfall of the eastern transect generally decreased with altitude, and they were higher inside forests than outside forests and temporally higher in the winter than the summer. The Pb isotopic ratios coupled with moss bio-monitoring distinguished anthropogenic sources of Cd and Pb on the eastern and northern transects, whereas bedrock weathering was the main source of Cd and Pb on the western transect. We proposed a conceptual model to delineate the effects of terrain, local climate and vegetation on the transport of atmospheric metals. Our results highlighted the high mountains in the eastern Tibetan Plateau as an effective natural barrier limiting atmospheric metal transport. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

    International Nuclear Information System (INIS)

    Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Ding, Yongjian; Xiang, Bo

    2014-01-01

    Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai–Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai–Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost. (letter)

  8. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Sillanpää, Mika; Wang, Yongjie; Sun, Shiwei

    2015-01-01

    Accurate measurements of wet mercury (Hg) deposition are critically important for the assessment of ecological responses to pollutant loading. The Hg in wet deposition was measured over a 3-year period in the southeastern Tibetan Plateau. The volume-weighted mean (VWM) total Hg (Hg_T) concentration was somewhat lower than those reported in other regions of the Tibetan Plateau, but the VWM methyl-Hg concentration and deposition flux were among the highest globally reported values. The VWM Hg_T concentration was higher in non-monsoon season than in monsoon season, and wet Hg_T deposition was dominated by the precipitation amount rather than the scavenging of atmospheric Hg by precipitation. The dominant Hg species in precipitation was mainly in the form of dissolved Hg, which indicates the pivotal role of reactive gaseous Hg within-cloud scavenging to wet Hg deposition. Moreover, an increasing trend in precipitation Hg concentrations was synchronous with the recent economic development in South Asia. - Highlights: • The lowest Hg_T concentration in precipitation was found at Southeast Tibet Station. • MeHg concentration and wet deposition flux were among the highest at our study site. • Hg_D dominated the concentration and flux of Hg_T in wet Hg deposition. • A long-term increasing trend in the Hg_T concentration was found at our study site. - An increasing trend in the precipitation Hg concentrations was synchronous with the recent economic development in South Asia.

  9. Abundance, composition and source of atmospheric PM2.5 at a remote site in the Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Jian Jun Li

    2013-09-01

    Full Text Available Two months of PM2.5 samples were collected during the summer of 2010 at Qinghai Lake (3200 m a.s.l. in the northeastern part of the Tibetan Plateau, China and determined for organic compounds, elemental carbon, organic carbon (OC and inorganic ions to explore the characteristics of aerosols in the continental atmosphere of China. Approximately 100 organic compounds in the samples were detected with an average of 61±36 ng m−3 in total, accounting for 2.6±1.0% of OC. n-Alkanes (19±12 ng m−3, fatty alcohols (12±7.6 ng m−3, polyols and polyacids (7.5±3.6 ng m−3, sugars (6.5±4.8 ng m−3, and biogenic secondary organic aerosols (BSOA (6.3±4.4 ng m−3 are the major compounds in the samples, while phthalates (1.9±1.2 ng m−3, polycyclic aromatic hydrocarbons (PAHs (0.7±0.5 ng m−3 and phthalic acids (2.6±1.5 ng m−3 are minor and one to three orders of magnitude lower than those in urban and rural regions over China. Our results showed that 2-methyltetrols in the PM2.5 samples, two key tracers for isoprene photo-oxidation, positively correlated with ambient temperature, which can be explained by enhancements in biogenic emission and photochemical oxidation when temperature increases. However, we also found that 2-methyltetrols in the samples negatively correlated with relative humidity (RH. Aerosol inorganic model (AIM calculation showed that in situ acidity of the fine particles decreased along with an increase of RH, which results in a decrease in BSOA production due to acid-catalysed particle-phase reactions inefficient under higher RH conditions.

  10. VEGETATION RESPONSE TO CLIMATE CHANGE IN THE SOUTHERN PART OF QINGHAI-TIBET PLATEAU AT BASINAL SCALE

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available Global climate change has significantly affected vegetation variation in the third-polar region of the world – the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change, the Normalized Difference Vegetation Index (NDVI is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS Advanced Very High Resolution Radiometer (AVHRR and Moderate-Resolution Imaging spectroradiometer (MODIS. After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982–2013, 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The

  11. Convective removal of the Tibetan Plateau mantle lithosphere by 26 Ma

    Science.gov (United States)

    Lu, Haijian; Tian, Xiaobo; Yun, Kun; Li, Haibing

    2018-04-01

    During the late Oligocene-early Miocene there were several major geological events in and around the Tibetan Plateau (TP). First, crustal shortening deformation ceased completely within the TP before 25 Ma and instead adakitic rocks and potassic-ultrapotassic volcanics were emplaced in the Lhasa terrane since 26-25 Ma. Several recent paleoelevation reconstructions suggest an Oligocene-early Miocene uplift of 1500-3000 m for the Qiangtang (QT) and Songpan-Ganzi (SG) terranes, although the exact timing is unclear. As a possible response to this uplift, significant desertification occurred in the vicinity of the TP at 26-22 Ma, and convergence between India and Eurasia slowed considerably at 26-20 Ma. Subsequently, E-W extension was initiated no later than 18 Ma in the Lhasa and QT terranes. In contrast, the tectonic deformation around the TP was dominated by radial expansion of shortening deformation since 25-22 Ma. The plateau-wide near-synchroneity of these events calls for an internally consistent model which can be best described as convective removal of the lower mantle lithosphere. Geophysical and petrochemical evidence further confirms that this extensive removal occurred beneath the QT and SG terranes. The present review concludes that, other than plate boundary stress, the internal stress within the TP lithosphere could have contributed to rapid wholesale uplift and a series of concomitant tectonic events, accompanied by major aridification, since 26 Ma.

  12. Saline Playas on Qinghai-Tibet Plateau as Mars Analog for the Formation-Preservation of Hydrous Salts and Biosignatures

    Science.gov (United States)

    Wang, A.; Zheng, M.; Kong, F.; Sobron, P.; Mayer, D. P.

    2010-12-01

    Qinghai-Tibet (QT) Plateau has the highest average elevation on Earth (~ 4500 m, about 50-60% of atmospheric pressure at sea-level). The high elevation induces a tremendous diurnal (and seasonal) temperature swing caused by high level of solar irradiation during the day and low level of atmospheric insulation during the evening. In addition, the Himalaya mountain chain (average height >6100 m) in the south of the QT Plateau largely blocks the pathway of humid air from the Indian Ocean, and produces a Hyperarid region (Aridity Index, AI ~ 0.04), the Qaidam Basin (N32-35, E90-100) at the north edge of the QT Plateau. Climatically, the low P, T, large ΔT, high aridity, and high UV radiation all make the Qaidam basin to be one of the most similar places on Earth to Mars. Qaidam basin has the most ancient playas (up to Eocene) and the lakes with the highest salinity on QT Plateau. More importantly, Mg-sulfates appear in the evaporative salts within the most ancient playas (Da Langtang) at the northwest corner of Qaidam basin, which mark the final stage of the evaporation sequence of brines rich in K, Na, Ca, Mg, Fe, C, B, S, and Cl. The evaporation minerals in the saline playas of Qaidam basin, their alteration and preservation under hyperarid conditions can be an interesting analog for the study of Martian salts and salty regolith. We conducted a field investigation at Da Langtan playa in Qaidam basin, with combined remote sensing (ASTER on board of NASA’s Terra satellite, 1.656, 2.167, 2.209, 2.62, 2.336, 2.40 µm), in situ sensing of a portable NIR spectrometer (WIR, 1.25-2.5 µm continuous spectral range), and the laboratory analyses of collected samples from the field (ASD spectrometer, 0.4 -2.5 µm, and Laser Raman spectroscopy). The results indicate that the materials contributing the high albedo layers in playa deposits are carbonate-gypsum-bearing surface soils, salt-clay-bearing exhaumed Pleistocene deposits, dehydrated Na-sulfates, hydrous Mg

  13. Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments.

    Science.gov (United States)

    Yang, Handong; Battarbee, Richard W; Turner, Simon D; Rose, Neil L; Derwent, Richard G; Wu, Guangjian; Yang, Ruiqiang

    2010-04-15

    The Tibetan Plateau is described as the "Roof of the World" averaging over 4000 m above sea level; it is remote, isolated, and presumed to be a pristine region. In order to study the history of atmospheric mercury (Hg) pollution and its spatial variation across the Plateau, lakes were chosen from three areas forming a north to south transect. Sediment cores were taken from three sites in each area and dated using the radionuclides 210Pb and 137Cs. Analysis of the cores yielded the first comprehensive Hg reconstructions for the Plateau, showing clear Hg pollution at all sites. The first indication of Hg pollution is much earlier than the onset of the industrial revolution in Europe, but the most significant pollution increase is from the 1970s, followed by a further marked increase from the 1990s. The mean post-2000 atmospheric pollution Hg accumulation rates for the sampling sites were estimated at between 5.1 and 7.9 microg m(-2) yr(-1). The increase in Hg pollution over the last few decades is synchronous with the recent economic development in Asia (especially China and India), and pollution Hg levels continue to increase. Furthermore, contemporary sediment Hg accumulation rate data are in broad agreement with Hg deposition values derived from global models that attribute pollution to sources mainly within southeast Asia. As most of the sites are exceptionally remote and situated above the atmospheric boundary layer, these results underline the need to understand the local Hg cycle in both regional and global context.

  14. A chronology of the PY608E-PC sediment core (Lake Pumoyum Co, southern Tibetan Plateau) based on radiocarbon dating of total organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Takahiro, E-mail: twatanabe@geo.kankyo.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578 (Japan); Nakamura, Toshio [Center for Chronological Research, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601 (Japan); Matsunaka, Tetsuya [School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-0902 (Japan); Nara, Fumiko Watanabe [Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578 (Japan); Zhu Liping; Wang Junbo [Institute of Tibetan Plateau Research, Chinese Academy of Science, No. 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Kakegawa, Takeshi [Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578 (Japan); Nishimura, Mitsugu [School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-0902 (Japan)

    2013-01-15

    Paleoclimatic records from the Tibetan Plateau provide important clues for understanding the Asian monsoon and Asian climate systems. To reconstruct climatic and environmental changes in the southern Tibetan Plateau, a 3.77-m-long sediment core (PY608E-PC) was taken from the southeastern part of Lake Pumoyum Co in August 2006. Because terrestrial plant residues are extremely rare in this core, we performed radiocarbon dating on the total organic carbon fraction. We also estimated the old carbon effect and radiocarbon reservoir age of the total organic carbon fraction. Using these estimates, we propose a new radiocarbon chronology for past climatic changes from ca. 12,500 to 700 cal BP. The linear sedimentation rate of the core was founded to be constant at 32.0 cm/kyr, indicating stable sedimentation conditions in Lake Pumoyum Co from the period of the Younger Dryas to the Holocene.

  15. A chronology of the PY608E–PC sediment core (Lake Pumoyum Co, southern Tibetan Plateau) based on radiocarbon dating of total organic carbon

    International Nuclear Information System (INIS)

    Watanabe, Takahiro; Nakamura, Toshio; Matsunaka, Tetsuya; Nara, Fumiko Watanabe; Zhu Liping; Wang Junbo; Kakegawa, Takeshi; Nishimura, Mitsugu

    2013-01-01

    Paleoclimatic records from the Tibetan Plateau provide important clues for understanding the Asian monsoon and Asian climate systems. To reconstruct climatic and environmental changes in the southern Tibetan Plateau, a 3.77-m-long sediment core (PY608E–PC) was taken from the southeastern part of Lake Pumoyum Co in August 2006. Because terrestrial plant residues are extremely rare in this core, we performed radiocarbon dating on the total organic carbon fraction. We also estimated the old carbon effect and radiocarbon reservoir age of the total organic carbon fraction. Using these estimates, we propose a new radiocarbon chronology for past climatic changes from ca. 12,500 to 700 cal BP. The linear sedimentation rate of the core was founded to be constant at 32.0 cm/kyr, indicating stable sedimentation conditions in Lake Pumoyum Co from the period of the Younger Dryas to the Holocene.

  16. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  17. Diurnal variation of summer precipitation over the Tibetan Plateau. A cloud-resolving simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianyu; Zhang, Bing; Wang, Minghuan [China Meteorological Administration, Wuhan (China). Wuhan Inst. of Heavy Rain; Wang, Huijuan [Weather Modification Office of Hubei Province, Wuhan (China)

    2012-07-01

    In this study, the Weather Research and Forecasting model was used to simulate the diurnal variation in summer precipitation over the Tibetan Plateau (TP) at a cloudresolving scale. Compared with the TRMM, precipitation data shows that the model can well simulate the diurnal rainfall cycle with an overall late-afternoon maximum precipitation in the central TP and a nighttime maximum in the southern edge. The simulated diurnal variations in regional circulation and thermodynamics are in good correspondence with the precipitation diurnal cycles in the central and southern edge of TP, respectively. A possible mechanism responsible for the nocturnal precipitation maximum in the southern edge has been proposed, indicating the importance of the TP in regulating the regional circulation and precipitation. (orig.)

  18. Southern Hemisphere origins for interannual variations of Tibetan Plateau snow cover in boreal summer

    Science.gov (United States)

    Wu, Z.

    2017-12-01

    The climate response to the Tibetan Plateau (TP) snow cover (TPSC) has been receiving extensive concern. However, relatively few studies have devoted to revealing the potential factors that can contribute to the TPSC variability on the interannual time scale. Especially during the boreal summer, snow cover can persist over the TP at high elevations, which exerts profound influences on the local and remote climate change. The present study finds that May Southern Hemisphere (SH) annular mode (SAM), the dominating mode of atmospheric circulation variability in the SH extratropics, exhibits a significant positive relationship with the boreal summer TPSC interannual variability. Observational analysis and numerical experiments manifest that the signal of May SAM can be "prolonged" by a meridional Indian Ocean tripole (IOT) sea surface temperature anomaly (SSTA) via atmosphere-ocean interaction. The IOT SSTA pattern persists into the following summer and excites anomalous local-scale zonal vertical circulation. Subsequently, a positive (or negative) tropical dipole rainfall (TDR) mode is induced with deficient (or sufficient) precipitation in tropical western Indian Ocean and sufficient (or deficient) precipitation in eastern Indian Ocean-Maritime continent. Rossby wave source diagnosis reveals that the wave energies, generated by the latent heat release of the TDR mode, propagate northward into western TP. As a response, abnormal cyclonic circulation and upward movement are triggered and prevail over western TP, providing favorable dynamical conditions for more TPSC, and vice versa. Hence, the IOT SSTA plays an "ocean bridge" role and the TDR mode acts as an "atmosphere bridge" role in the process of May SAM impacting the following summer TPSC variability. The results of our work may provide new insight about the cross-equatorial propagation of the SAM influence. Keywords Southern Hemisphere annular mode; Tibetan Plateau snow cover; Rossby wave source

  19. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  20. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake

    Science.gov (United States)

    Ryder, I.; Burgmann, R.; Pollitz, F.

    2011-01-01

    In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 ?? 1017 Pa s, steady-state viscosity 1 ?? 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 ?? 1017 Pa s. The viscosities estimated for the

  1. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets

    Science.gov (United States)

    Liu, Wenbin; Sun, Fubao; Li, Yanzhong; Zhang, Guoqing; Sang, Yan-Fang; Lim, Wee Ho; Liu, Jiahong; Wang, Hong; Bai, Peng

    2018-01-01

    The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982-2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June-October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.

  2. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    Science.gov (United States)

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  3. Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau.

    Science.gov (United States)

    Zhu, Chong-Shu; Cao, Jun-Ji; Hu, Ta-Feng; Shen, Zhen-Xing; Tie, Xue-Xi; Huang, Hong; Wang, Qi-Yuan; Huang, Ru-Jin; Zhao, Zhu-Zi; Močnik, Griša; Hansen, Anthony D A

    2017-07-15

    We present a study of aerosol light absorption by using a 7-wavelength Aethalometer model AE33 at an urban site (Lhasa) and a remote site (Lulang) in the Tibetan Plateau. Approximately 5 times greater aerosol absorption values were observed at Lhasa (53±46Mm -1 at 370nm and 20±18Mm -1 at 950nm, respectively) in comparison to Lulang (15±19Mm -1 at 370nm and 4±5Mm -1 at 950nm, respectively). Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths. The brown carbon (BrC) absorption at 370nm is 32±15% of the total aerosol absorption at Lulang, whereas it is 8±6% at Lhasa. Higher value of absorption Ångström exponent (AAE, 370-950nm) was obtained for Lulang (1.18) than that for Lhasa (1.04) due to the presence of BrC. The AAEs (370-950nm) of BrC were directly extracted at Lulang (3.8) and Lhasa (3.3). The loading compensation parameters (k) increased with wavelengths for both sites, and lower values were obtained at Lulang than those observed at Lhasa for all wavelengths. This study underlines the relatively high percentage of BrC absorption contribution in remote area compared to urban site over the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 210Pb and 137Cs dating of sediments from Zigetang Lake, Tibetan Plateau

    International Nuclear Information System (INIS)

    Yao, S.C.; Li, S.J.; Zhang, H.C.

    2008-01-01

    Zigetang Lake located in the central Tibetan Plateau was selected for the purpose of understanding of recent sedimentation rates. Based on 137 Cs dating marker, the sediment rate was 0.077 cm x yr -1 . The sedimentation rate was calculated to be 0.071 cm x yr -1 and 0.029 g x cm -2 x yr -1 on the basis of 210 Pb CIC model. 210 Pb CRS model was also used for understanding of recent sedimentation change. The sediment accumulation rates for the CRS model ranged from 0.022 to 0.038 g x cm -2 x yr -1 with an irregular high value of 0.12 g x cm -2 x yr -1 around 1932 at Zigetang Lake core in the past eighty years. (author)

  5. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes

    Science.gov (United States)

    Zhang, Chunfu; Wang, Yang; Li, Qiang; Wang, Xiaoming; Deng, Tao; Tseng, Zhijie J.; Takeuchi, Gary T.; Xie, Gangpu; Xu, Yingfeng

    2012-06-01

    The timing history and driving mechanisms of C4 expansion and Tibetan uplift are hotly debated issues. Paleoenvironmental evidence from within the Tibetan Plateau is essential to help resolve these issues. Here we report results of stable C and O isotope analyses of tooth enamel samples from a variety of late Cenozoic mammals, including deer, giraffe, horse, rhino, and elephant, from the Qaidam Basin in the northeastern Tibetan Plateau. The enamel-δ13C values are diets and only a few individuals (besides the exceptional rhino CD0722) may have consumed some C4 plants. Based on geological evidence, however, the Qaidam Basin was probably warmer and more humid during the late Miocene and early Pliocene than today. Thus, these δ13C values likely indicate that many individuals had significant dietary intakes of C4 plants, and the Qaidam Basin had more C4 plants in the late Miocene and early Pliocene than today. Moreover, the Qaidam Basin likely had much denser vegetation at those times in order to support such large mammals as rhinos and elephants. While the δ18O values did not increase monotonously with time, the range of variation seems to have increased considerably since the early Pliocene, indicating increased aridification in the basin. The mean δ18O values of large mammals and those reconstructed for local meteoric waters display a significant negative shift in the late Miocene, consistent with the marine δ18O record which shows a cooling trend in the same period. Taken together, the isotope data suggest a warmer, wetter, and perhaps lower Qaidam Basin during the late Miocene and early Pliocene. Increased aridification after the early Pliocene is likely due to a combined effect of regional tectonism, which resulted in a more effective barrier preventing moisture from the Indian Ocean or Bay of Bengal from reaching the basin, and global cooling.

  6. Depolarization Ratio Profiles Calibration and Observations of Aerosol and Cloud in the Tibetan Plateau Based on Polarization Raman Lidar

    Directory of Open Access Journals (Sweden)

    Guangyao Dai

    2018-03-01

    Full Text Available A brief description of the Water vapor, Cloud and Aerosol Lidar (WACAL system is provided. To calibrate the volume linear depolarization ratio, the concept of “ Δ 90 ° -calibration” is applied in this study. This effective and accurate calibration method is adjusted according to the design of WACAL. Error calculations and analysis of the gain ratio, calibrated volume linear depolarization ratio and particle linear depolarization ratio are provided as well. In this method, the influences of the gain ratio, the rotation angle of the plane of polarization and the polarizing beam splitter are discussed in depth. Two groups of measurements with half wave plate (HWP at angles of (0 ° , 45 ° and (22.5 ° , −22.5 ° are operated to calibrate the volume linear depolarization ratio. Then, the particle linear depolarization ratios measured by WACAL and CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization during the simultaneous observations were compared. Good agreements are found. The calibration method was applied in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III in 2013 and 2014 in China. Vertical profiles of the particle depolarization ratio of clouds and aerosol in the Tibetan Plateau were measured with WACAL in Litang (30.03° N, 100.28° E, 3949 m above sea level (a.s.l. in 2013 and Naqu (31.48° N, 92.06° E, 4508 m a.s.l. in 2014. Then an analysis on the polarizing properties of the aerosol, clouds and cirrus over the Tibetan Plateau is provided. The particle depolarization ratio of cirrus clouds varies from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. Cirrus clouds occurred between 5.2 and 12 km above ground level (a.g.l.. The cloud thickness ranges from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km. It is found that the particle depolarization ratio of cirrus clouds become larger as the height increases. However, the increase rate of the particle depolarization ratio becomes smaller as

  7. Geometric dependency of Tibetan lakes on glacial runoff

    NARCIS (Netherlands)

    Phan Hien, V.; Lindenbergh, R.C.; Menenti, M.

    2013-01-01

    The Tibetan Plateau is an essential source of water for Southeast Asia. The runoff from its ~34 000 glaciers, which occupy an area of ~50 000 km2, feeds Tibetan lakes and major Asian rivers like the Indus and Brahmaputra. Reported glacial shrinkage likely has an impact on the runoff. Unfortunately,

  8. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau

    Science.gov (United States)

    Wu, Yang; Huang, Anning; Huang, Danqing; Chen, Fei; Yang, Ben; Zhou, Yang; Fang, Dexian; Zhang, Lujun; Wen, Lijuan

    2017-12-01

    Based on the hourly gauge-satellite merged precipitation product with the horizontal resolution of 0.1° latitude/longitude during 2008-2014, diurnal variations of the summer precipitation amount (PA), frequency (PF), and intensity (PI) with different duration time over the regions east to Tibetan Plateau have been systematically revealed in this study. Results indicate that the eight typical precipitation diurnal patterns identified by the cluster analysis display pronounced regional features among the plateaus, basins, plains, hilly and coastal areas. The precipitation diurnal cycles are significantly affected by the sub-grid terrain fluctuations. The PA, PF and PI of the total rainfall show much more pronounced double diurnal peaks with the sub-grid topography standard deviation (SD) decreased. Meanwhile, the diurnal peaks of PA and PF (PI) strengthen (weaken) with the sub-grid topography SD enhanced. Over the elevated mountain ranges, southeastern hilly and coastal regions, the PA and PF diurnal patterns of the total rainfall generally show predominant late-afternoon peaks, which are closely associated with the short-duration (≤slant 3 h) rainfall. Along the Tibetan Plateau to its downstream, the diurnal peaks of PA, PF and PI for the total rainfall all exhibit obvious eastward phase time delay mainly due to the diurnal evolutions of long-duration (> 6 h) rainfall. However, the 4-6 h rainfall leads to the eastward phase time delay of the total rainfall along the Taihang Mountains to its downstream. Further mechanism analysis suggests that the midnight to morning diurnal evolution of the long-duration rainfall is closely associated with the diurnal variations of the upward branches of thermally driven mountain-plain solenoids and the water vapor transport associated with the accelerated nocturnal southwesterly winds. The late-afternoon peak of the short-duration PA over the southeastern hilly and coastal regions is ascribed to the strong local thermal

  9. Impacts of meteorological parameters and emissions on decadal, interannual, and seasonal variations of atmospheric black carbon in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yu-Hao Mao

    2016-09-01

    Full Text Available We quantified the impacts of variations in meteorological parameters and emissions on decadal, interannual, and seasonal variations of atmospheric black carbon (BC in the Tibetan Plateau for 1980–2010 using a global 3-dimensional chemical transport model driven by the Modern Era Retrospective-analysis for Research and Applications (MERRA meteorological fields. From 1980 to 2010, simulated surface BC concentrations and all-sky direct radiative forcing at the top of the atmosphere due to atmospheric BC increased by 0.15 μg m−3 (63% and by 0.23 W m−2 (62%, respectively, averaged over the Tibetan Plateau (75–105°E, 25–40°N. Simulated annual mean surface BC concentrations were in the range of 0.24–0.40 μg m−3 averaged over the plateau for 1980–2010, with the decadal trends of 0.13 μg m−3 per decade in the 1980s and 0.08 in the 2000s. The interannual variations were −5.4% to 7.0% for deviation from the mean, 0.0062 μg m−3 for mean absolute deviation, and 2.5% for absolute percent departure from the mean. Model sensitivity simulations indicated that the decadal trends of surface BC concentrations were mainly driven by changes in emissions, while the interannual variations were dependent on variations of both meteorological parameters and emissions. Meteorological parameters played a crucial role in driving the interannual variations of BC especially in the monsoon season.

  10. Temperature and snowfall trigger alpine vegetation green-up on the world's roof.

    Science.gov (United States)

    Chen, Xiaoqiu; An, Shuai; Inouye, David W; Schwartz, Mark D

    2015-10-01

    Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth

  11. Population Spatial Dynamics of Larix potaninii in Alpine Treeline Ecotone in the Eastern Margin of the Tibetan Plateau, China

    OpenAIRE

    Jia’nan Cui; Jihong Qin; Hui Sun

    2017-01-01

    The high-altitude treeline is known to be sensitive to climate variability, and is thus considered as a bio-monitoring indicator of climate change. However, our understanding of the population dynamics and the cumulative climate-change effects on the alpine treeline ecotone in recent decades is limited. Here, we investigated the population dynamics of Larix potainii on the south- and north-facing slopes in the alpine treeline ecotone in the eastern margin of the Tibetan Plateau, China, includ...

  12. Distribution and transport of water vapor in the UTLS over the Tibetan Plateau as inferred from the MLS satellite data and WRF model simulations

    Science.gov (United States)

    Jain, S.; Kar, S. C.

    2016-12-01

    Water vapor is an important minor constituent in the lower stratosphere as it influences the stratospheric chemistry and total radiation budget. The spatial distribution of water vapor mixing ratio (WVMR) obtained from Aura Microwave Limb Sounder (MLS) satellite at 100 hPa level shows prominent maxima over the Tibetan Plateau during August 2015. The Asian monsoon upper level anticyclone is also known to occur over this region during this period. The Indian Meteorological Department (IMD) and National Centre of Medium Range Weather Forecasting (NCMRWF) observed daily gridded rainfall data shows moderate to heavy rainfall over the Tibetan Plateau, suggesting active convection from 26 July to 10 August 2015. The atmospheric conditions are simulated over the Asian region for the 15-day period using the Weather Research Forecasting (WRF) model. The simulations are carried out using two nested domains with resolution of 12 km and 4 km. The initial and boundary conditions are taken from the NGFS (up-graded version of the NCEP GFS) data. The WRF WVMR profiles are observed to be comparatively moist than the MLS profiles in the UTLS region over the Tibetan Plateau. This may be due to the relatively higher temperatures (1-2 K) simulated in the WRF model near 100 hPa level. It is noted that the WRF model has a drying tendency at all the levels. The UTLS WVMR and temperatures show poor sensitivity to the convective schemes. The parent domain and the explicit convective scheme simulate almost same moisture over time in the inner domain. The cloud micro-physics is observed to play a rather important role in controlling the UTLS water vapor content. The WSM-6 convective scheme is observed to simulate the UTLS moisture comparatively well and therefore the processes associated with the formation of ice, snow and graupel formation may be of much more importance in controlling the UTLS WVMR in the WRF model. The 24 hr, 48 hr and 72 hr forecast averaged for the 15-day period shows that

  13. Identifying the Relative Contributions of Climate and Grazing to Both Direction and Magnitude of Alpine Grassland Productivity Dynamics from 1993 to 2011 on the Northern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yunfei Feng

    2017-02-01

    Full Text Available Alpine grasslands on the Tibetan Plateau are claimed to be sensitive and vulnerable to climate change and human disturbance. The mechanism, direction and magnitude of climatic and anthropogenic influences on net primary productivity (NPP of various alpine pastures remain under debate. Here, we simulated the potential productivity (with only climate variables being considered as drivers; NPPP and actual productivity (based on remote sensing dataset including both climate and anthropogenic drivers; NPPA from 1993 to 2011. We denoted the difference between NPPP and NPPA as NPPpc to quantify how much forage can be potentially consumed by livestock. The actually consumed productivity (NPPac by livestock were estimated based on meat production and daily forage consumption per standardized sheep unit. We hypothesized that the gap between NPPpc and NPPac (NPPgap indicates the direction of vegetation dynamics, restoration or degradation. Our results show that growing season precipitation rather than temperature significantly relates with NPPgap, although warming was significant for the entire study region while precipitation only significantly increased in the northeastern places. On the Northern Tibetan Plateau, 69.05% of available alpine pastures showed a restoration trend with positive NPPgap, and for 58.74% of alpine pastures, stocking rate is suggested to increase in the future because of the positive mean NPPgap and its increasing trend. This study provides a potential framework for regionally regulating grazing management with aims to restore the degraded pastures and sustainable management of the healthy pastures on the Tibetan Plateau.

  14. Early middle Miocene tectonic uplift of the northwestern part of the Qinghai–Tibetan Plateau evidenced by geochemical and mineralogical records in the western Tarim Basin

    NARCIS (Netherlands)

    Wang, Chaowen; Hong, Hanlie; Abels, Hemmo A.|info:eu-repo/dai/nl/304848018; Li, Zhaohui; Cao, Kai; Yin, Ke; Song, Bowen; Xu, Yadong; Ji, Junliang; Zhang, Kexin

    The Tarim Basin in western China has been receiving continuous marine to lacustrine deposits during the Cenozoic as a foreland basin of the Qinghai–Tibetan Plateau (QTP). Clay mineralogy and geochemical proxy data from these sedimentary archives can shed light on climate and tectonic trends. Here we

  15. The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Yi, Shuhua; Chen, Jianjun; Qin, Yu; Xu, Gaowei

    2016-11-01

    There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika) on alpine grassland on the Qinghai-Tibet Plateau (QTP). On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ˜ m2), our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ˜ 1000 m2) by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1) the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2) pika consumed 8-21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.

  16. Importance of dynamic topography in Himalaya-Tibetan plateau region

    Science.gov (United States)

    Ghosh, A.; Singh, S.

    2017-12-01

    Himalaya-Tibetan plateau region has the highest topography in the world. Various studies have been done to understand the mechanisms responsible for sustaining this high topography. However, the existence of dynamic topography in this region is still uncertain, though there have been some studies exploring the role of channel flow in lower crust leading to some topography. We investigated the role of radial mantle flow in this region by studying the relationship between geoid and topography. High geoid-to-topography ratios (GTR) were observed along the Himalayas suggesting deeper compensation mechanisms. However, further north, the geoid and topography relationship became a lot more complex as high as well as low GTR values were observed. The high GTR regions also coincided with area of high filtered free air gravity anomalies, indicating dynamic support. We also looked at the spectral components of gravity, geoid and topography, and calculated response functions to distinguish between different compensation mechanisms. We estimated the average elastic thickness of the whole region to be around 40 km from coherence and admittance studies. The GTR and admittance-coherence studies suggest deeper mass anomalies playing a role in supporting the topography along Himalayas and the area between Altyn Tagh and Kunlun faults.

  17. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau

    Science.gov (United States)

    Wang, Lei; Liu, Huizhi; Shao, Yaping; Liu, Yang; Sun, Jihua

    2018-01-01

    Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, the water and CO2 fluxes were compared over a semiarid alpine steppe (Bange, Tibetan Plateau) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau and its surrounding region. During the wet season, the evaporative fraction (EF) was strongly and linearly correlated with the soil water content (SWC) at Bange because of its sparse green grass cover. In contrast, the correlation between the EF at Lijiang and the SWC and the normalized difference vegetation index (NDVI) was very low because the atmosphere was close to saturation and the EF was relatively constant. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). The annual total NEE in 2015 was 21.8 and -230.0 g C m-2 yr-1 at Bange and Lijiang, respectively, and the NEE was tightly controlled by the NDVI at the two sites. The distinct differences in the water and CO2 fluxes at Bange and Lijiang are attributed to the large SWC difference and its effect on vegetation growth.

  18. Organochlorine pesticides and polychlorinated biphenyls in air, grass and yak butter from Namco in the central Tibetan Plateau

    International Nuclear Information System (INIS)

    Wang, Chuanfei; Wang, Xiaoping; Yuan, Xiaohua; Ren, Jiao; Gong, Ping

    2015-01-01

    Limited studies on bioaccumulation of persistent organic pollutants (POPs) along terrestrial food chains were conducted. The food chain air–grass–yak (butter) in the pasture region of Namco in the central Tibetan Plateau (TP) was chosen for study. The air, grass and butter POPs in the TP were at the lower end of the concentrations generally found around the globe. HCB was the main pollutant in air and butter. Besides HCB, β-HCH and p,p′-DDE were the other major compounds in butter. Along the food chain, DDTs and high molecular weight PCB-138, 153 and 180 had higher Biological Concentration Factor values. The air–butter transfer factors of POPs were derived and demonstrated the practical advantage in predicting the atmospheric OCPs and PCBs to the TP. This study sheds light on the transfer and accumulation of POPs along the terrestrial food chain of the TP. - Highlights: • Air, grass and butter POPs in the Tibetan Plateau (TP) were at the lower end of the global levels. • The pasture of the TP was found to be a “sink” of DDTs. • Bioaccumulation of OCPs and PCBs happened along the food chain: air–grass–yak. • The TF A:B was tested to be an excellent tool to predict air OCPs and PCBs in the TP. - Transfer and bioaccumulation of OCPs and PCBs happened along the terrestrial food chain: air–grass–yak (butter)

  19. In vivo and in vitro development of Tibetan antelope (Pantholops hodgsonii interspecific cloned embryos

    Directory of Open Access Journals (Sweden)

    Guanghua SU,Lei CHENG,Yu GAO,Kun LIU,Zhuying WEI,Chunling BAI,Fengxia YIN,Li GAO,Guangpeng LI,Shorgan BOU

    2014-02-01

    Full Text Available The Tibetan antelope is endemic to the Tibetan Plateau, China, and is now considered an endangered species. As a possible rescue strategy, the development of embryos constructed by interspecies somatic cell nuclear transfer (iSCNT was examined. Tibetan antelope fibroblast cells were transferred into enucleated bovine, ovine and caprine oocytes. These cloned embryos were then cultured in vitro or in the oviducts of intermediate animals. Less than 0.5% of the reconstructed antelope-bovine embryos cultured in vitro developed to the blastocyst stage. However, when the cloned antelope-bovine embryos were transferred to caprine oviducts, about 1.6% of the embryos developed to the blastocyst stage. In contrast, only 0.7% of the antelope-ovine embryos developed to the morula stage and none developed to blastocysts in ovine oviducts. The treatment of donor cells and bovine oocytes with trichostatin A did not improve the embryo development even when cultured in the oviducts of ovine and caprine. When the antelope-bovine embryos, constructed from oocytes treated with roscovitine or trichostatin A, were cultured in rabbit oviducts 2.3% and 14.3% developed to blastocysts, respectively. It is concluded that although some success was achieved with the protocols used, interspecies cloning of Tibetan antelope presents difficulties still to be overcome. The mechanisms resulting in the low embryo development need investigation and progress might require a deeper understanding of cellular reprogramming.

  20. The Development in modeling Tibetan Plateau Land/Climate Interaction

    Science.gov (United States)

    Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio

    2015-04-01

    Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP

  1. Himalayan uplift shaped biomes in Miocene temperate Asia: evidence from leguminous Caragana

    Science.gov (United States)

    Ming-Li Zhang; Xiao-Guo Xiang; Juan-Juan Xue; Stewart C. Sanderson; Peter W. Fritsch

    2016-01-01

    Caragana, with distinctive variation in leaf and rachis characters, exhibits three centers of geographic distribution, i.e., Central Asia, the Qinghai-Tibetan Plateau (QTP), and East Asia, corresponding to distinct biomes. Because Caragana species are often ecologically dominant components of the vegetation in these regions, it is regarded as a key taxon for...

  2. Co-seismic strain changes of Wenchuan Mw7. 9 earthquake recorded by borehole strainmeters on Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Fu Guangyu

    2011-08-01

    Full Text Available Co-seismic strain changes of the Wenchuan Mw7. 9 earthquake recorded with three four-component borehole strainmeters showed NW-SE and roughly EW extensions, respectively, at two locations in the interior and northern part of Tibetan plateau, and NS shortening at a location south of the epicenter, in agreement with the tectonic stress field of this region. The observed values of as much as 10−7 are, however, larger than theoretical values obtained with half-space and spherical-earth dislocation theories, implying the existence of other effects, such as local crustal structure and initial stress.

  3. Spring Soil Temperature Anomalies over Tibetan Plateau and Summer Droughts/Floods in East Asia

    Science.gov (United States)

    Xue, Y.; Li, W.; LI, Q.; Diallo, I.; Chu, P. C.; Guo, W.; Fu, C.

    2017-12-01

    Recurrent extreme climate events, such as droughts and floods, are important features of the climate of East Asia, especially over the Yangtze River basin. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST) anomaly. In addition, snow in the Tibetan Plateau has also been considered as one of the factors affecting the Asian monsoon variability. However, studies have consistently shown that SST along is unable to explain the extreme climate events fully and snow has difficulty to use as a predictor. Remote effects of observed large-scale land surface temperature (LST) and subsurface temperature variability in Tibetan Plateau (TP) on East Asian regional droughts/floods, however, have been largely ignored. We conjecture that a temporally filtered response to snow anomalies may be preserved in the LST anomaly. In this study, evidence from climate observations and model simulations addresses the LST/SUBT effects. The Maximum Covariance Analysis (MCA) of observational data identifies that a pronounce spring LST anomaly pattern over TP is closely associated with precipitation anomalies in East Asia with a dipole pattern, i.e., negative/positive TP spring LST anomaly is associated with the summer drought/flood over the region south of the Yangtze River and wet/dry conditions to the north of the Yangtze River. Climate models were used to demonstrate a causal relationship between spring cold LST anomaly in the TP and the severe 2003 drought over the southern part of the Yangtze River in eastern Asia. This severe drought resulted in 100 x 106 kg crop yield losses and an economic loss of 5.8 billion Chinese Yuan. The modeling study suggests that the LST effect produced about 58% of observed precipitation deficit; while the SST effect produced about 32% of the drought conditions. Meanwhile, the LST and SST effects also simulated the observed flood over to the north of the Yangtze River. This suggests that inclusion of

  4. Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission

    Science.gov (United States)

    Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Sun, Zhongchang; Guo, Bin

    2016-04-01

    We use GRACE gravity data released by the Center for Space Research (CSR) and the Groupe de Recherches en Geodesie Spatiale (GRGS) to detect the water storage changes over the Tibetan Plateau (TP). A combined filter strategy is put forward to process CSR RL05 data to remove the effect of striping errors. After the correction for GRACE by GLDAS and ICE-5G, we find that TP has been overall experiencing the water storage increase during 2003-2012. During the same time, the glacier over the Himalayas was sharply retreating. Interms of linear trends, CSR's results derived by the combined filter are close to GRGS RL03 with the Gaussian filter of 300-km window. The water storage increasing rates determined from CSR's RL05 products in the interior TP, Karakoram Mountain, Qaidam Basin, Hengduan Mountain, and middle Himalayas are 9.7, 6.2, 9.1,-18.6, and-20.2 mm/yr, respectively. These rates from GRGS's RL03 products are 8.6, 5.8, 10.5,-19.3 and-21.4 mm/yr, respectively.

  5. Contemporary Surface Seasonal Oscillation and Vertical Deformation in Tibetan Plateau and Nepal Derived from the GPS, Leveling and GRACE Data

    Science.gov (United States)

    Shen, W.; Pan, Y.; Hwang, C.; Ding, H.

    2015-12-01

    We use 168 Continuous Global Positioning System (CGPS) stations distributed in the Tibetan Plateau (TP) and Nepal from lengths of 2.5 to 14 years to estimate the present-day velocity field in this area, including the horizontal and vertical deformations under the frame ITRF2008. We estimate and remove common mode errors in regional GPS time series using the principal component analysis (PCA), obtaining a time series with high signal to noise ratio. Following the maximum estimation analysis, a power law plus white noise stochastic model are adopted to estimate the velocity field. The highlight of Tibetan region is the crust vertical deformation. GPS vertical time series present seasonal oscillations caused by temporal mass loads, hence GRACE data from CSR are used to study the mass loads change. After removing the mass load deformations from GPS vertical rates, the results are improved. Leveling data about 48 years in this region are also used to estimate the rates of vertical movements. Our study suggests that the boundary of south Nepal is still sinking due to the fact that the India plate is crashing into the Eurasian plate. The uplift rates from south to north of TP reduce gradually. Himalayas region and north Nepal uplift around 6 mm/yr in average. The uplift rate along East TP in Qinhai is around 2.7 mm/yr in average. In contrast, the southeast of Tibetan Plateau, south Yunnan and Tarim in Xinjiang sink with different magnitudes. Our observation results suggest complicated mechanism of the mass migration in TP. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  6. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pan, Xicai; Yu, Qihao; You, Yanhui; Chun, Kwok Pan; Shi, Xiaogang; Li, Yanping

    2017-12-01

    The seasonal hydrological mechanisms of two thermokarst lakes on the northeastern Qinghai-Tibet Plateau (QTP) were characterized by three-year intensive field observations and a water balance model. In three ice-free seasons, the supra-permafrost discharge contributed a mean ratio of over 170% of the precipitation. In the ice-cover seasons, the supra-permafrost discharge contribution varied between -20% and 22% of the water storage change. Results show that a large portion of the lake water storage change is because of the supra-permafrost discharge resulting from precipitation. Furthermore, a precipitation-subsurface runoff function is preliminarily identified in which the supra-permafrost discharge nonlinearly increased with more precipitation. Our results show that the recent lake expansion is linked with increasing supra-permafrost discharge dominated by precipitation. This study also suggests that we need to pay attention to the nonlinear increase of precipitation-controlled supra-permafrost discharge on the large lake expansion at the catchment scale in the QTP region, instead of only looking at the inputs (e.g., precipitation and river discharge) as shown in the previous studies.

  7. [Correlation between HLA-DB1 genes and susceptibility to echinococcosis in Tibetan population in Tibetan Plateau].

    Science.gov (United States)

    Shu-Feng, Gao; Xiu-Min, Han; Xue-Fei, Zhang; Yong-Shun, Wang; Wei, Wang; Ya-Min, Guo; Yong-Shou, Li

    2017-10-23

    To determine the susceptibility genes and resistance genes in HLA-DRB1 alleles in Tibetan patients with cystic and alveolar hydatid diseases, so as to provide the references for the research of the genetic characteristics and infection mechanism of Tibetan hydatid diseases. The case control method was applied. The Tibetan patients with cystic and alveolar hydatid diseases (63 and 73 cases respectively) in Yushu and Guoluo Tibetan Autonomous Prefecture, and unrelated healthy people (60 cases) in this area were selected as the study subjects. The polymerase chain reaction-sequence based typing (PCR-SBT) technique was applied for genotyping of HLA-DRB1, and the comparison of the gene frequency. The frequency of HLA-DRB1*04 in the alveolar/cystic echinococcosis group was lower than that in the control group ( χ 2 = 4.71, 4.31, both P < 0.05). HLA-DRB1*04 genotypes may be associated with the resistance of cystic and alveolar echinococcosis and its resistance genes.

  8. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-01-01

    Full Text Available The Qinghai-Tibet (QT Plateau Engineering Corridor is located in the hinterland of the QT Plateau, which is highly sensitive to global climate change. Climate change causes permafrost degradation, which subsequently affects vegetation growth. This study focused on the vegetation dynamics and their relationships with climate change and human activities in the region surrounding the QT Plateau Engineering Corridor. The vegetation changes were inferred by applying trend analysis, the Mann-Kendall trend test and abrupt change analysis. Six key regions, each containing 40 nested quadrats that ranged in size from 500 × 500 m to 20 × 20 km, were selected to determine the spatial scales of the impacts from different factors. Cumulative growing season integrated enhanced vegetation index (CGSIEVI values were calculated for each of the nested quadrats of different sizes to indicate the overall vegetation state over the entire year at different spatial scales. The impacts from human activities, a sudden increase in precipitation and permafrost degradation were quantified at different spatial scales using the CGSIEVI values and meteorological data based on the double mass curve method. Three conclusions were derived. First, the vegetation displayed a significant increasing trend over 23.6% of the study area. The areas displaying increases were mainly distributed in the Hoh Xil. Of the area where the vegetation displayed a significant decreasing trend, 72.4% was made up of alpine meadows. Second, more vegetation, especially the alpine meadows, has begun to degenerate or experience more rapid degradation since 2007 due to permafrost degradation and overgrazing. Finally, an active layer depth of 3 m to 3.2 m represents a limiting depth for alpine meadows.

  9. Universal growth modes of high-elevation conifers

    Czech Academy of Sciences Publication Activity Database

    Datsenko, N. M.; Sonechkin, D. M.; Büntgen, Ulf; Yang, B.

    2016-01-01

    Roč. 38, JUN (2016), s. 38-50 ISSN 1125-7865 Institutional support: RVO:67179843 Keywords : tree-ring chronologies * summer temperature-variations * northeastern tibetan plateau * climate signal * fennoscandian summers * annual precipitation * density * variability * qinghai * Growth modes * Ring width and maximum latewood density * Eigenvector analysis Subject RIV: EF - Botanics Impact factor: 2.259, year: 2016

  10. The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    S. Yi

    2016-11-01

    Full Text Available There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika on alpine grassland on the Qinghai-Tibet Plateau (QTP. On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ∼  m2, our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ∼  1000 m2 by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1 the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2 pika consumed 8–21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.

  11. A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau.

    Science.gov (United States)

    Wang, Xiaoping; Gong, Ping; Wang, Chuanfei; Ren, Jiao; Yao, Tandong

    2016-12-15

    Since the turn of the century, our understanding of the quantities, transport pathways, and fate of persistent organic pollutants (POPs) over the Tibetan Plateau (TP), the largest and highest plateau on Earth, has greatly enhanced. We begin in this article by reviewing the available literature on the levels of POPs over the TP. In general, the levels of most POPs are similar or lower than values reported for other background regions. However, dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) levels in air and soil far exceed those measured in other mountainous areas. The East Asian monsoon, Indian Monsoon and westerly winds are responsible for the long-range atmospheric transport (LRAT) and arrival of POPs over the TP. Surface soil and vegetation act as "final sinks" for DDTs and other high molecular weight POPs. Linked to the continuous use of POPs in surrounding counties, LRAT and "cold trapping" by the TP can happen following emission-transport-deposition events, leading to the enrichment of POPs in the TP environment. Bioaccumulation of DDTs and high chlorinated PCBs have been found in Tibetan terrestrial and aquatic food chains, and newly emerging compounds such as polyfluoroalkyl substances and hexabromocyclododecanes have been widely detected in wild fish species. The corresponding ecological risks should be of great concern. Climate change, such as increased temperatures and changing coverage of snow and glaciers, has the potential to affect the behavior and distribution of POPs. Therefore, long-term monitoring data are required. Ineffective regulation regarding POPs has been reported for countries in South Asia, emissions patterns, the outflow of POPs, and their seasonal and inter-annual variability should therefore be clarified. Estimating the loading of POPs, as well as how they move, within the TP, especially under the impact of glacial melt and global warming, should be a priority. Copyright © 2016. Published by Elsevier B.V.

  12. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Science.gov (United States)

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  13. Characteristic of intraocular pressure distribution in population of 1115 Tibetan aged 40 years old or more

    Directory of Open Access Journals (Sweden)

    Gui-Qin Wang

    2014-07-01

    Full Text Available AIM: To analyze of characteristic of intraocular pressure(IOPdistribution in population of 1115 Tibetan aged 40 years old or more and its correlative factors such as ages, gender and anterior chamber depth in Tibetan plateau area. METHODS: A total of 1115 Tibetan permanent residents aged 40 years or older from the towns and villages of Qushui County were divided into four age groups: ≥40~RESULTS: The mean IOP of 1115(2145 eyesTibetan permanent residents aged 40 years or older was 12.9±2.7mmHg, 13.2±2.8mmHg in men and 12.7±2.5mmHg in women. The results showed that the participants with anterior chamber depth of 1/2 corneal thickness had 68.8% in 1115(2128 eyesTibetan permanent residents and anterior chamber depth decreases significantly with age(PPCONCLUSION: The mean IOP of plateau subjects was significantly lower from that of plain subjects by approximately 3 mmHg. There are lower pressure, deeper anterior chamber depth in this population of 1115 Tibetan permanent residents. The more attention should be paid to screening for glaucoma in high plateau.

  14. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.

    Science.gov (United States)

    Guo, Guangxia; Kong, Weidong; Liu, Jinbo; Zhao, Jingxue; Du, Haodong; Zhang, Xianzhou; Xia, Pinhua

    2015-10-01

    Soil microbial autotrophs play a significant role in CO2 fixation in terrestrial ecosystem, particularly in vegetation-constrained ecosystems with environmental stresses, such as the Tibetan Plateau characterized by low temperature and high UV. However, soil microbial autotrophic communities and their driving factors remain less appreciated. We investigated the structure and shift of microbial autotrophic communities and their driving factors along an elevation gradient (4400-5100 m above sea level) in alpine grassland soils on the Tibetan Plateau. The autotrophic microbial communities were characterized by quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning/sequencing of cbbL genes, encoding the large subunit for the CO2 fixation protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). High cbbL gene abundance and high RubisCO enzyme activity were observed and both significantly increased with increasing elevations. Path analysis identified that soil RubisCO enzyme causally originated from microbial autotrophs, and its activity was indirectly driven by soil water content, temperature, and NH4 (+) content. Soil autotrophic microbial community structure dramatically shifted along the elevation and was jointly driven by soil temperature, water content, nutrients, and plant types. The autotrophic microbial communities were dominated by bacterial autotrophs, which were affiliated with Rhizobiales, Burkholderiales, and Actinomycetales. These autotrophs have been well documented to degrade organic matters; thus, metabolic versatility could be a key strategy for microbial autotrophs to survive in the harsh environments. Our results demonstrated high abundance of microbial autotrophs and high CO2 fixation potential in alpine grassland soils and provided a novel model to identify dominant drivers of soil microbial communities and their ecological functions.

  15. The Microphysical Properties of Convective Precipitation Over the Tibetan Plateau by a Subkilometer Resolution Cloud-Resolving Simulation

    Science.gov (United States)

    Gao, Wenhua; Liu, Liping; Li, Jian; Lu, Chunsong

    2018-03-01

    The microphysical properties of convective precipitation over the Tibetan Plateau are unique because of the extremely high topography and special atmospheric conditions. In this study, the ground-based cloud radar and disdrometer observations as well as high-resolution Weather Research and Forecasting simulations with the Chinese Academy of Meteorological Sciences microphysics and four other microphysical schemes are used to investigate the microphysics and precipitation mechanisms of a convection event on 24 July 2014. The Weather Research and Forecasting-Chinese Academy of Meteorological Sciences simulation reasonably reproduces the spatial distribution of 24-hr accumulated rainfall, yet the temporal evolution of rain rate has a delay of 1-3 hr. The model reflectivity shares the common features with the cloud radar observations. The simulated raindrop size distributions demonstrate more of small- and large-size raindrops produced with the increase of rain rate, suggesting that changeable shape parameter should be used in size distribution. Results show that abundant supercooled water exists through condensation of water vapor above the freezing layer. The prevailing ice crystal microphysical processes are depositional growth and autoconversion of ice crystal to snow. The dominant source term of snow/graupel is riming of supercooled water. Sedimentation of graupel can play a vital role in the formation of precipitation, but melting of snow is rather small and quite different from that in other regions. Furthermore, water vapor budgets suggest that surface moisture flux be the principal source of water vapor and self-circulation of moisture happen at the beginning of convection, while total moisture flux convergence determine condensation and precipitation during the convective process over the Tibetan Plateau.

  16. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau

    Science.gov (United States)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing

    2018-02-01

    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  17. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Liu, B; Wang, Y; Zhu, H; Liang, E; Camarero, J J

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  18. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    Science.gov (United States)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  19. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Li, Mingqi; Huang, Lei; Yin, Zhi-Yong; Shao, Xuemei

    2017-11-01

    This study presents a 304-year mean July-October maximum temperature reconstruction for the southeastern Tibetan Plateau based on both tree-ring width and maximum latewood density data. The reconstruction explained 58% of the variance in July-October maximum temperature during the calibration period (1958-2005). On the decadal scale, we identified two prominent cold periods during AD 1801-1833 and 1961-2003 and two prominent warm periods during AD 1730-1800 and 1928-1960, which are consistent with other reconstructions from the nearby region. Based on the reconstructed temperature series and volcanic eruption chronology, we found that most extreme cold years were in good agreement with major volcanic eruptions, such as 1816 after the Tambora eruption in 1815. Also, clusters of volcanic eruptions probably made the 1810s the coldest decade in the past 300 years. Our results indicated that fingerprints of major volcanic eruptions can be found in the reconstructed temperature records, while the responses of regional climate to these eruption events varied in space and time in the southeastern Tibetan Plateau.

  20. Differential growth of the northern Tibetan margin: evidence for oblique stepwise rise of the Tibetan Plateau

    Science.gov (United States)

    Wang, Fei; Shi, Wenbei; Zhang, Weibin; Wu, Lin; Yang, Liekun; Wang, Yinzhi; Zhu, Rixiang

    2017-01-01

    Models of how high elevations formed across Tibet predict: (a) the continuous thickening of a “viscous sheet”; (b) time-dependent, oblique stepwise growth; and (c) synchronous deformation across Tibet that accompanied collision. Our new observations may shed light on this issue. Here, we use 40Ar/39Ar and (U-Th)/He thermochronology from massifs in the hanging walls of thrust structures along the Kunlun Belt, the first-order orogenic range at the northern Tibetan margin, to elucidate the exhumation history. The results show that these massifs, and hence the plateau margin, were subject to slow, steady exhumation during the Early Cenozoic, followed by a pulse of accelerated exhumation during 40–35 Ma. The exhumation rate increases westward (from ~0.22 to 0.34 and 0.5 mm/yr). The two-fold increase in exhumation in the western part (0.5 mm/yr) compared to the eastern part suggests westward increases in exhumation and compressional stress along the Kunlun Belt. We relate these observations to the mechanisms responsible for the oblique stepwise rise of Tibet. After collision, oblique subduction beneath Kunlun caused stronger compressional deformation in the western part than in the eastern part, resulting in differential growth and lateral extrusion. PMID:28117351

  1. AHP 17: A Zorgay Tibetan Childhood/ Min Tibetanska barndom i Zorgay

    Directory of Open Access Journals (Sweden)

    Kondro Tsering མཁའ་འགྲོ་ཚེ་རིང་། (Mkha' 'gro tshe ring

    2012-10-01

    Full Text Available This autobiographical work describes the author's life growing up on the northeast Tibetan Plateau, in a farming community in Zorgay (Mdzod dge County, Rnga ba Tibetan and QIang Autonomous Prefecture, Sichuan Province. The original English text and a Swedish translation are provided.

  2. Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong

    2016-11-01

    Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.

  3. AHP 21: Tibetans and Muslims in Northwest China: Economic and Political Aspects of a Complex Relationship

    Directory of Open Access Journals (Sweden)

    Bianca Horlemann

    2012-12-01

    Full Text Available In the past and today, Tibetan-Muslim relations in Qinghai and Gansu are often associated with violent conflicts sparked by religious differences or 'interethnic hatred'. A more nuanced study of the history of Tibetan-Muslim relations, however, reveals complexity as well as considerable local difference with regard to how and when contacts were established, maintained, and broken off. Tibetan Muslim encounters were manifold and varied, including interethnic marriages, close business relations, political alliances, and armed conflicts. To illustrate this wide range of encounters, examples chosen for this paper, i.e., the relations between Amdo Tibetans and the Muslim Baoan nationality, the Muslim Ma warlords, and the Chinese xiejia institution, span different eras and localities. This study suggests that Tibetan-Muslim relations were predominantly shaped by socio-economic and political factors rather than by religious differences or 'interethnic hatred' as is often assumed.

  4. Testing the effect of the Himalayan mountains as a physical barrier to gene flow in Hippophae tibetana Schlect. (Elaeagnaceae.

    Directory of Open Access Journals (Sweden)

    La Qiong

    Full Text Available Hippophae tibetana is a small, dioecious wind-pollinated shrub endemic to the Tibetan-Qinghai Plateau. It is one of the shrubs that occur at very high elevations (5250 m a.s.l.. The Himalayan mountains provides a significant geographical barrier to the Qinghai-Tibetan Plateau, dividing the Himalayan area into two regions with Nepal to the south and Tibet to the north. There is no information on how the Himalayan mountains influence gene flow and population differentiation of alpine plants. In this study, we analyzed eight nuclear microsatellite markers and cpDNA trnT-trnF regions to test the role of the Himalayan mountains as a barrier to gene flow between populations of H. tibetana. We also examined the fine-scale genetic structure within a population of H. tibetana on the north slope of Mount (Mt. Everest. For microsatellite analyses, a total of 241 individuals were sampled from seven populations in our study area (4 from Nepal, 3 from Tibet, including 121 individuals that were spatially mapped within a 100 m × 100 m plot. To test for seed flow, the cpDNA trnT-trnF regions of 100 individuals from 6 populations (4 from Nepal, 2 from Tibet were also sequenced. Significant genetic differentiation was detected between the two regions by both microsatellite and cpDNA data analyses. These two datasets agree about southern and northern population differentiation, indicating that the Himalayan mountains represent a barrier to H. tibetana limiting gene flow between these two areas. At a fine scale, spatial autocorrelation analysis suggests significant genetic structure within a distance of less than 45 m, which may be attributed mainly to vegetative reproduction and habitat fragmentation, as well as limited gene flow.

  5. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau.

    Science.gov (United States)

    Zhu, Dan; Wu, Yan; Chen, Huai; He, Yixin; Wu, Ning

    2016-01-15

    Methane fluxes from a shallow peatland lake (3450 m a.s.l., 1.6 km(2) in area, maximum depth peatlands to the lake. The shallowness of the water column could be another important favorable factor for methane-containing bubble formation in the sediment and their transportation to the atmosphere. The methane ebullition must have been enhanced by the low atmospheric pressure (ca. 672 hPa) in the high-altitude environment. For a better understanding on the mechanism of methane emission from alpine lakes, more lakes on the Tibetan Plateau should be studied in the future for their methane ebullition. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau

    Science.gov (United States)

    Dong, Junfu; Cui, Xiaoyong; Wang, Shuping; Wang, Fang; Pang, Zhe; Xu, Ning; Zhao, Guoqiang; Wang, Shiping

    2016-01-01

    In the alpine steppe zone on the Central Tibetan Plateau, a large amount of area has been degraded due to natural and artificial factors. N & P fertilization is widely accepted to recover degraded pastures in other regions all over the world. However, it is not clear how alpine steppe communities respond to N & P fertilization, and what is the optimal application rate, in the perspective of forage production. To attempt to explore these questions, in July 2013, two fencing sites were designed in Baingoin County with 12 treatments of different levels of nitrogen (N0: 0; N1: 7.5 g m-2 yr-1; N2: 15 g m-2 yr-1) & phosphate (P0: 0; P1: 7.5 gP2O5 m-2 yr-1; P2: 15 gP2O5 m-2 yr-1; P3: 30 gP2O5 m-2 yr-1). The results indicated N&P addition was capable to ameliorate the quality of the two sites in the Tibetan Plateau steppe. Increasing N application level resulted in significant increment in Gramineae and total biomass in the two sites. P addition significantly improved the quantity of Compositae, total biomass and the biomasss of other species in site II, while it only significantly improved the total biomass in site I. Gramineae was much more sensitive to N-induced changes than P-induced changes, and this indicated N addition was better to ameliorate the quality of plateau steppe than P-induced changes. No strong evidence was found for critical threshold within 15 g N m-2 yr-1, and there was decreasing tendency when P addition rate was above 15 g m-2 yr-1. N&P has the potential to accelerate soil acidification, which improved the content of available K, likely as a result of nonsignificant correlation between biomass and soil moisture. This work highlights the the tradeoffs that exist in N and P addition in recovering degraded steppe. PMID:27223104

  7. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.

    Science.gov (United States)

    Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng

    2018-01-18

    Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).

  8. A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau.

    Science.gov (United States)

    Xiaodan, Wang; Xianghao, Zhong; Pan, Gao

    2010-10-01

    Regional eco-security assessment is an intricate, challenging task. In previous studies, the integration of eco-environmental models and geographical information systems (GIS) usually takes two approaches: loose coupling and tight coupling. However, the present study used a full coupling approach to develop a GIS-based regional eco-security assessment decision support system (ESDSS). This was achieved by merging the pressure-state-response (PSR) model and the analytic hierarchy process (AHP) into ArcGIS 9 as a dynamic link library (DLL) using ArcObjects in ArcGIS and Visual Basic for Applications. Such an approach makes it easy to capitalize on the GIS visualization and spatial analysis functions, thereby significantly supporting the dynamic estimation of regional eco-security. A case study is presented for the Tibetan Plateau, known as the world's "third pole" after the Arctic and Antarctic. Results verified the usefulness and feasibility of the developed method. As a useful tool, the ESDSS can also help local managers to make scientifically-based and effective decisions about Tibetan eco-environmental protection and land use. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. The complete mitochondrial genome of the Tibetan fox (Vulpes ferrilata) and implications for the phylogeny of Canidae.

    Science.gov (United States)

    Zhao, Chao; Zhang, Honghai; Liu, Guangshuai; Yang, Xiufeng; Zhang, Jin

    2016-02-01

    Canidae is a family of carnivores comprises about 36 extant species that have been defined as three distinct monophyletic groups based on multi-gene data sets. The Tibetan fox (Vulpes ferrilata) is a member of the family Canidae that is endemic to the Tibetan Plateau and has seldom been in the focus of phylogenetic analyses. To clarify the phylogenic relationship of V. ferrilata between other canids, we sequenced the mitochondrial genome and firstly attempted to clarify the relative phylogenetic position of V. ferrilata in canids using the complete mitochondrial genome data. The mitochondrial genome of the Tibetan fox was 16,667 bp, including 37 genes (13 protein-coding genes, 2 rRNA, and 22 tRNA) and a control region. A comparison analysis among the sequenced data of canids indicated that they shared a similar arrangement, codon usage, and other aspects. A phylogenetic analysis on the basis of the nearly complete mtDNA genomes of canids agreed with three monophyletic clades, and the Tibetan fox was highly supported as a sister group of the corsac fox within Vulpes. The estimation of the divergence time suggested a recent split between the Tibetan fox and the corsac fox and rapid evolution in canids. There was no genetic evidence for positive selection related to high-altitude adaption for the Tibetan fox in mtDNA and following studies should pay more attention to the detection of positive signals in nuclear genes involved in energy and oxygen metabolisms. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  11. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.

    Science.gov (United States)

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.

  12. AHP 10: "I, Ya ri a bsod, Am a Dog": The Life and Music of a Tibetan Mendicant Singer

    Directory of Open Access Journals (Sweden)

    Skal dbang skyid སྐལ་དབང་སྐྱིད།

    2011-06-01

    Full Text Available The life and music of Ya ri A bsod, a Tibetan composer and singer who lived in the early twentieth century, is described. Ya ri A bsod wandered through Tibetan nomad areas where contemporary Qinghai, Gansu, and Sichuan provinces meet in China. Texts and transcribed melodies of Ya ri A bsod songs are presented. These songs are contextualized in terms of their contemporary transmission, and the historical and autobiographical circumstances of their composition.

  13. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yimin; Wu, Guoxiong; Duan, Anmin; Bao, Qing [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China); Hong, Jieli; Zhou, Linjiong [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Dong, Buwen [University of Reading, Department of Meteorology, National Centre for Atmospheric Science, Reading (United Kingdom)

    2012-09-15

    Data analysis based on station observations reveals that many meteorological variables averaged over the Tibetan Plateau (TP) are closely correlated, and their trends during the past decades are well correlated with the rainfall trend of the Asian summer monsoon. However, such correlation does not necessarily imply causality. Further diagnosis confirms the existence of a weakening trend in TP thermal forcing, characterized by weakened surface sensible heat flux in spring and summer during the past decades. This weakening trend is associated with decreasing summer precipitation over northern South Asia and North China and increasing precipitation over northwestern China, South China, and Korea. An atmospheric general circulation model, the HadAM3, is employed to elucidate the causality between the weakening TP forcing and the change in the Asian summer monsoon rainfall. Results demonstrate that a weakening in surface sensible heating over the TP results in reduced summer precipitation in the plateau region and a reduction in the associated latent heat release in summer. These changes in turn result in the weakening of the near-surface cyclonic circulation surrounding the plateau and the subtropical anticyclone over the subtropical western North Pacific, similar to the results obtained from the idealized TP experiment in Part I of this study. The southerly that normally dominates East Asia, ranging from the South China Sea to North China, weakens, resulting in a weaker equilibrated Sverdrup balance between positive vorticity generation and latent heat release. Consequently, the convergence of water vapor transport is confined to South China, forming a unique anomaly pattern in monsoon rainfall, the so-called ''south wet and north dry.'' Because the weakening trend in TP thermal forcing is associated with global warming, the present results provide an effective means for assessing projections of regional climate over Asia in the context of global

  14. Holocene monsoon variability inferred from Targo Xian peat bog in the Tangra Yumco basin, central Tibetan Plateau

    Science.gov (United States)

    Henkel, Karoline; Haberzettl, Torsten; Miehe, Sabine; Frenzel, Peter; Daut, Gerhard; Dietze, Elisabeth; Kasper, Thomas; Ahlborn, Marieke; Mäusbacher, Roland

    2013-04-01

    The Tibetan Plateau is the greatest plateau on Earth with an average altitude of 4,500 m asl. Due to its high elevation, large area and significant role in the formation of the Asian Monsoon Systems (e.g., Indian Ocean and East-Asian Summer Monsoon) it is considered to react very sensitive to climate variations. The numerous lake systems on the Tibetan Plateau represent excellent archives reflecting variations in the strength of the monsoon system in terms of hydrological changes expressed in lake level fluctuations. For example, terraces and lacustrine deposits around the saline lake Tangra Yumco indicate lake level highstands up to ~215 m higher than the present lake level. To study Holocene lake level variations we investigated a 3.6 m long sediment core recovered from a peat bog (near the Targo Xian settlement, 30°46'N, 86°40'E) on a recessional lake level terrace ~150 m above the present shoreline of Tangra Yumco. In particular, our analyses of sedimentological (grain size), geochemical (CNS and ICP-OES) and mineralogical (XRD) data allow a detailed and high-resolution interpretation of the hydrological conditions during the Holocene. The existence of two carbonate layers in the Targo Xian record, separated by a sand layer and intercalated in peat sequences at the bottom and top of the core, provide evidence for two stable lake stages at the coring position. Peat at the bottom of the core, which is radiocarbon-dated to 11,130 +130/-345 cal BP, indicates wetland conditions similar to the Recent situation (Miehe et al., submitted). After a transition zone, a layer of pure aragonitic lake marl gives evidence for a lake stage. During this stage, high values of the total inorganic carbon (TIC) and Ca/Ti ratios as well as low C/N ratios point to a stable lake due to wet climatic conditions. This carbonate layer can be correlated with a 2-3 m thick carbonate layer found in outcrops around the present lake Tangra Yumco presenting a high lake level until approx. 2

  15. Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms

    Science.gov (United States)

    Zhu, Lu-Pei; Zeng, Rong-Sheng; Wu, Francis T.; Owens, Thomas J.; Randall, George E.

    1993-05-01

    As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations

  16. High-resolution OSL chronology of a sediment core from Lake Nam Co on the southern Tibetan Plateau: Comparison with radiocarbon dating

    Science.gov (United States)

    Long, Hao; Shen, Ji; Haberzettl, Torsten; Fuchs, Markus; Frechen, Manfred; Wang, Junbo

    2013-04-01

    Numerous studies on lake sediment cores from the Tibetan Plateau aimed to reconstruct spatial and temporal changes of the late Glacial and Holocene monsoon variations, which are characterized by fluctuations in precipitation and expansion of monsoonal air masses across the Plateau. Accurate and reliable dating of lacustrine deposits is of crucial importance in both the reconstruction of palaeolake and palaeoclimate evolution and the understanding of the mechanisms for climate changes, especially abrupt changes of regional-hemispheric hydrological circulation. Radiocarbon dating is the most commonly used method for establishing chronologies of lake sediments. However, 14C dating of such sediments could be problematic due to the lack of organic matter or a reservoir effect, which appears common in radiocarbon dating of lacustrine sediments from the Tibetan Plateau. In this study, ca. 10.5 m long core (NC core) was retrieved from the water depth of 93 m at Nam Co Lake, which is the second largest saline lake in China, located on the southern Tibetan Plateau. For this core, high-resolution samples (23 samples) were obtained for optically stimulated luminescence (OSL) dating. Quartz of fine-grain (4-11 μm) fraction were extracted from this samples for OSL dating, which is compared with the 14C chronology of NC core based on accelerator mass spectrometry (AMS) dating of bulk organic matter of 22 samples. The sample from the top of NC core was dated to approximate zero age, indicating the sediments bleached well before deposition. Luminescence behaviors of the study samples further confirmed the robustness of OSL ages. Comparison between OSL and 14C ages suggested that: (1) two kinds of ages are in agreement within error from top to 1.8 m, (2) from 1.8 m to the base of NC core, the 14C ages show a general trend to ca. 4 ka higher ages than the OSL ages. Although 14C dating overestimate the ages from 1.8 m to base, they still show the general trend in sedimentation rate

  17. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Li, Chaoliu; Yan, Fangping; Chen, Pengfei; Gao, Shaopeng; Wang, Zhiyong; Zhang, Yulan; Sillanpää, Mika

    2017-06-01

    Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM 2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM 2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MAC EC ) at 632 nm for the BB-sourced PM 2.5 (6.10 ± 1.21 m 2 .g -1 ) was lower than that of the VE-sourced PM 2.5 (8.10 ± 0.98 m 2 .g -1 ), indicating that the EC content of the BB-sourced PM 2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM 2.5 were 0.71 ± 0.17 m 2 .g -1 and 0.91 ± 0.18 m 2 .g -1 . The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM 2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.

  18. Responses of Hail and Storm Days to Climate Change in the Tibetan Plateau

    Science.gov (United States)

    Zou, Tian; Zhang, Qinghong; Li, Wenhong; Li, Jihong

    2018-05-01

    There is increasing concern that local severe storm occurrence may be changing as a result of climate change. The Tibetan Plateau (TP), one of the world's most sensitive areas to climate change, became significantly warmer during recent decades. Since 1960 (1980), storm (hail) days have been decreasing by 6.2%/decade (18.3%/decade) in the region. However, what caused the frequency changes of storm and hail in the TP is largely unknown. Based on 53-year continuous weather records at 48 TP stations and reanalysis data, we show here for the first time that the consistent decline of storm days is strongly related to a drier midtroposphere since 1960. Further analysis demonstrated that fewer hail days are driven by an elevation of the melting level (thermodynamically) and a weaker wind shear (dynamically) in a warming climate. These results imply that less storm and hail may occur over TP when climate warms.

  19. Residues, spatial distribution and risk assessment of DDTs and HCHs in agricultural soil and crops from the Tibetan Plateau.

    Science.gov (United States)

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2016-04-01

    Due to its high elevation and cold temperature, the Tibetan Plateau (TP) is regarded as the "Third Pole". Different from other polar regions, which are truly remote, the TP has a small population and a few agricultural activities. In this study, agricultural soil and crop samples (including highland barley and rape) were collected in the main farmland of the TP to obtain the contamination levels of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) in the Tibetan agricultural system as well as the relevant human exposure risks. The average concentrations of DDTs and HCHs in the agricultural soil, highland barley and rape were 1.36, 0.661, 1.03 ng/g dw and 0.349, 0.0364, 0.0225 ng/g dw, respectively. In the agricultural soil, DDTs and HCHs metabolism (DDE, DDD and β-HCH) were abundant, which indicated a "historical" source, whereas crops contained a similar composition ((DDE + DDD)/DDT, α/β-HCH and α/γ-HCH) to that of wild plants, suggesting that the DDTs and HCHs in crops are likely from long range atmospheric transport. The human health risks via non-dietary and dietary to DDTs and HCHs in the farmland were assessed. All of the hazard index (HI) values of DDTs and HCHs for non-carcinogenic risks were Tibetan residents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mealtime at a Tibetan monastery.

    Science.gov (United States)

    Rath, Eric C

    2010-01-01

    With assistance from lay volunteers and using a giant stove, Tibetan monks at Longen monastery in rural Qinghai province China prepare and serve meals for several hundred of their peers during the summer retreat. In the past, rugged geography and the isolation of this monastery above 13,000 feet gave reasons for the monks to eat local meat since other foodstuffs were unavailable in an area unable to support agriculture beyond herding animals, chiefly yaks and cows. However, closer contact with the outside has allowed the monks to adopt a vegetarian diet, but one that still uses local resources such as yoghurt and wild sweet potatoes.

  2. AHP 35: Tibetan Marmot Hunting

    Directory of Open Access Journals (Sweden)

    Sangs rgyas bkra shis སངས་རྒྱས་བཀྲ་ཤིས།

    2015-02-01

    Full Text Available This paper focuses on the hunting, cooking, and eating of marmots among pastoralists in Gcan tsha thang (Jianzhatan Township, Gcan tsha (Jianzha County, Mtsho sngon (Qinghai Province, PR China. Folklore positing a connection between humans and marmots is discussed and Sangs rgyas bkra shis provides a story about local marmot hunters and gives accounts from his paternal grandmother (Pa 10 skyid, b. 1941 about marmot hunting in 1958. A conclusion suggests directions for future research. Accounts of marmot hunting and marmot product use from Yul shul (Yushu and Dkar mdzes (Ganzi Tibetan autonomous prefectures, a map of Mtsho sngon, and six photographs provide further detail.

  3. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2008-08-01

    Full Text Available Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 11–12 km. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in Northwest India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar. Comparisons with the OMI and MODIS measurements show the unique capability of the CALIPSO lidar to provide unambiguous, altitude-resolved dust measurements.

  4. AHP 28: Review: China's 'Tibetan' Frontiers

    Directory of Open Access Journals (Sweden)

    Benno Ryan Weiner

    2013-12-01

    Full Text Available In recent years, the study of China's minorities has become something of an ethnographic subgenre. Given the political sensitivities involved, however, it is unsurprising that relatively little of this fieldwork has been conducted among populations the Chinese state defines as 'Tibetan'. Beth Merriam's important new addition to the literature, China's 'Tibetan' Frontiers, begins to fill this gap. However, as the author is quick to point out, hers is not an ethnography of Tibet or Tibetans, nor the ethno-cultural region of Khams, or even Yushu Prefecture. It is, instead, an intensely local, "school-based study" (10 of Trinde (Khri 'du, Chenduo Township, a remote, eponymously named county seat in the far south of Qinghai Province. Meriam spent fourteen months (2002-2003 as the first foreign teacher at Trinde County Nationalities Middle School. Her inquiry is focused on the region's cultural elite, "a small educated class of the local population" (10 primarily consisting of the school's directors and teachers, but also students, work unit functionaries, cadres, and NGO administrators. "Rather than analysing a specific 'ethnic group,' or political structure," Meriam writes, her study "proceeds from a critical vantage point of practices and concepts associated with a number of broadly-defined political themes and social contexts" (292. The result is a compelling and sophisticated ethnography that not only problematizes the Chinese state's narratives of national(ity unity, but also those disseminated within the exile Tibetan community. Moreover, Meriam explicitly challenges the English-language field of "Tibetan studies," in which "nationality rubrics are also commonly invoked as discrete, homogenous, and unambiguous objects of knowledge" (290. As suggested by the book's title, she summarizes, "A key argument of this ethnography is that context and practice are more appropriate bases for analysis than 'ethnicity,' 'identity' or 'Tibetans'" (147.

  5. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?

    Science.gov (United States)

    Ren, Ping; Rossi, Sergio; Gricar, Jozica; Liang, Eryuan; Cufar, Katarina

    2015-01-01

    Background and Aims A series of studies have shown that temperature triggers the onset of xylogenesis of trees after winter dormancy. However, little is known about whether and how moisture availability influences xylogenesis in spring in drought-prone areas. Methods Xylogenesis was monitored in five mature Qilian junipers (Juniperus przewalskii) by microcore sampling from 2009 to 2011 in a semi-arid area of the north-eastern Tibetan Plateau. A simple physical model of xylem cell production was developed and its sensitivity was analysed. The relationship between climate and growth was then evaluated, using weekly wood production data and climatic data from the study site. Key Results Delayed onset of xylogenesis in 2010 corresponded to a negative standardized precipitation evapotranspiration index (SPEI) value and a continuous period without rainfall in early May. The main period of wood formation was in June and July, and drier conditions from May to July led to a smaller number of xylem cells. Dry conditions in July could cause early cessation of xylem differentiation. The final number of xylem cells was mainly determined by the average production rate rather than the duration of new cell production. Xylem growth showed a positive and significant response to precipitation, but not to temperature. Conclusions Precipitation in late spring and summer can play a critical role in the onset of xylogenesis and xylem cell production. The delay in the initiation of xylogenesis under extremely dry conditions seems to be a stress-avoidance strategy against hydraulic failure. These findings could thus demonstrate an evolutionary adaptation of Qilian juniper to the extremely dry conditions of the north-eastern Tibetan Plateau. PMID:25725006

  6. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost.

    Science.gov (United States)

    Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan

    2018-07-01

    Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau.

    Science.gov (United States)

    Tao, Juan; He, Dekui; Kennard, Mark J; Ding, Chengzhi; Bunn, Stuart E; Liu, Chunlong; Jia, Yintao; Che, Rongxiao; Chen, Yifeng

    2018-05-01

    Phenological responses to climate change have been widely observed and have profound and lasting effects on ecosystems and biodiversity. However, compared to terrestrial ecosystems, the long-term effects of climate change on species' phenology are poorly understood in aquatic ecosystems. Understanding the long-term changes in fish reproductive phenology is essential for predicting population dynamics and for informing management strategies, but is currently hampered by the requirement for intensive field observations and larval identification. In this study, a very low-frequency sampling of juveniles and adults combined with otolith measurements (long axis length of the first annulus; LAFA) of an endemic Tibetan Plateau fish (Gymnocypris selincuoensis) was used to examine changes in reproductive phenology associated with climate changes from the 1970s to 2000s. Assigning individual fish to their appropriate calendar year class was assisted by dendrochronological methods (crossdating). The results demonstrated that LAFA was significantly and positively associated with temperature and growing season length. To separate the effects of temperature and the growing season length on LAFA growth, measurements of larval otoliths from different sites were conducted and revealed that daily increment additions were the main contributor (46.3%), while temperature contributed less (12.0%). Using constructed water-air temperature relationships and historical air temperature records, we found that the reproductive phenology of G. selincuoensis was strongly advanced in the spring during the 1970s and 1990s, while the increased growing season length in the 2000s was mainly due to a delayed onset of winter. The reproductive phenology of G. selincuoensis advanced 2.9 days per decade on average from the 1970s to 2000s, and may have effects on recruitment success and population dynamics of this species and other biota in the ecosystem via the food web. The methods used in this study

  8. Browse Title Index

    African Journals Online (AJOL)

    Items 4251 - 4300 of 11090 ... Vol 9, No 4 (2010), Effects of mowing utilization on forage yield and quality in five oat varieties in alpine area of the eastern Qinghai-Tibetan Plateau, Abstract PDF. W Gao-Lin, W Mei-Ru, G Ting, H Tian-Ming, G Davidson. Vol 7, No 17 (2008), Effects of municipal sewage sludge doses on the yield, ...

  9. Effects of mowing utilization on forage yield and quality in five oat ...

    African Journals Online (AJOL)

    Oat (Avena sativa) is grown to provide feed in winter for livestock production in the alpine area of Qinghai-Tibetan Plateau. The effect of early cutting (T1), late cutting (T2) as well as once cutting and twice cutting (T3) on forage yields and qualities were investigated for five oat varieties (YTA, CNC, B3, Q473 and Q444).

  10. Whole-Genome Sequence of Chlamydia abortus Strain GN6 Isolated from Aborted Yak Fetus

    OpenAIRE

    Li, Zhaocai; Cai, Jinshan; Cao, Xiaoan; Lou, Zhongzi; Chao, Yilin; Kan, Wei; Zhou, Jizhang

    2017-01-01

    ABSTRACT The obligate intracellular Gram-negative bacterium Chlamydia abortus is one of the causative agents of abortion and fetal loss in sheep, goats, and cattle in many countries. It also affects the reproductivity of yaks (Bos grunniens). This study reports the whole-genome sequence of Chlamydia abortus strain GN6, which was isolated from aborted yak fetus in Qinghai-Tibetan Plateau, China.

  11. Review of climate and cryospheric change in the Tibetan Plateau

    International Nuclear Information System (INIS)

    Kang Shichang; Xu Yanwei; You Qinglong; Yao Tandong; Fluegel, Wolfgang-Albert; Pepin, Nick

    2010-01-01

    The Tibetan Plateau (TP), with an average elevation of over 4000 m asl and an area of approximately 2.5 x 10 6 km 2 , is the highest and most extensive highland in the world and has been called the 'Third Pole'. The TP exerts a huge influence on regional and global climate through thermal and mechanical forcing mechanisms. Because the TP has the largest cryospheric extent outside the polar region and is the source region of all the large rivers in Asia, it is widely recognized to be the driving force for both regional environmental change and amplification of environmental changes on a global scale. Within China it is recognized as the 'Asian water tower'. In this letter, we summarize the recent changes observed in climate elements and cryospheric indicators on the plateau before discussing current unresolved issues concerning climate change in the TP, including the temporal and spatial components of this change, and the consistency of change as represented by different data sources. Based on meteorological station data, reanalyses and remote sensing, the TP has shown significant warming during the last decades and will continue to warm in the future. While the warming is predominantly caused by increased greenhouse gas emissions, changes in cloud amount, snow-albedo feedback, the Asian brown clouds and land use changes also partly contribute. The cryosphere in the TP is undergoing rapid change, including glacier retreat, inconsistent snow cover change, increasing permafrost temperatures and degradation, and thickening of the active layer. Hydrological processes impacted by glacial retreat have received much attention in recent years. Future attention should be paid to additional perspectives on climate change in the TP, such as the variations of climate extremes, the reliability of reanalyses and more detailed comparisons of reanalyses with surface observations. Spatial issues include the identification of whether an elevational dependency and weekend effect exist

  12. Tectonic and sedimentary evolution of the late Miocene-Pleistocene Dali Basin in the southeast margin of the Tibetan Plateau : Evidences from anisotropy of magnetic susceptibility and rock magnetic data

    NARCIS (Netherlands)

    Li, Shihu; Deng, Chenglong; Paterson, Greig A.; Yao, Haitao; Huang, Sheng; Liu, Chengying; He, Huaiyu; Pan, Yongxin; Zhu, Rixiang

    2014-01-01

    The Cenozoic Dali Basin, located at the northeast of Diancang Shan and south of the first bend of Yangtze River, is tectonically controlled by the Dali fault system in the southeast margin of the Tibetan Plateau. The basin is filled with late Miocene to Pleistocene fluviolacustrine sediments, which

  13. Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Alaa Alden Alazzy

    2017-01-01

    Full Text Available In the last few years, satellite-based precipitation datasets are believed to be a potential source for forcing inputs in driving hydrological models, which are important especially in complex terrain areas or ungauged basins where ground gauges are generally sparse or nonexistent. This study aims to comprehensively evaluate the satellite precipitation products, CMORPH-CRT, PERSIANN-CDR, 3B42RT, and 3B42 against gauge-based datasets and to infer their relative potential impacts on hydrological processes simulation using the HEC-HMS model in the Ganzi River Basin (GRB of the Tibetan Plateau. Results from a quantitative statistical comparison reveal that, at annual and seasonal scales, both CMORPH-CRT and 3B42 perform better than PERSIANN-CDR and 3B42RT. The CMORPH-CRT and 3B42 tend to underestimate values at the medium and high precipitation intensities ranges, whereas the opposite tendency is found for PERSIANN-CDR and 3B42RT. Overall, 3B42 exhibits the best performance for streamflow simulations over GRB and even outperforms simulation driven by gauge data during the validation period. PERSIANN-CDR shows the worst overall performance. After recalibrating with input-specific precipitation data, the performance of all satellite precipitation forced simulations is substantially improved, except for PERSIANN-CDR. Furthermore, 3B42 is more suitable to drive hydrological models and can be a potential alternative source of sparse data in Tibetan Plateau basins.

  14. Rapid warming forces contrasting growth trends of subalpine fir ( Abies fabri ) at higher- and lower-elevations in the eastern Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenzhi; Jia, Min; Wang, Genxu; Zhu, Wanze; McDowell, Nate G.

    2017-10-01

    Tree radial growth is expected to increase at higher elevations under climate warming, while lower elevation tree growth is expected to decline. However, numerous studies have found tree radial growth responds consistently to climate along elevational gradients. Here, we sampled five plots across the subalpine Abies fabri forest belt on Gongga Mountain in the eastern Tibetan Plateau to determine tree radial growth trends and responses to climate. Three commonly used detrending methods all consistently showed that tree radial growth at high elevation (> 3100 m) increased, while tree growth declined at the lower elevations (2700 m–2900 m) over the last three decades. Increasing late-growing season temperature positively (p < 0.05) correlated to tree radial growth at higher elevations, but the sign of this relationship reversed to become negative at lower elevations. Moving-window correlation analyses indicated the difference between high and low elevations response to temperature variation increased strongly with warming. Placing our result into the global context, 62% of 39 published studies found that trees along elevation gradients respond divergently to warming, and that these are located in warmer and wetter regions of the Earth. Notably, 28% of studies found non-significant responses to temperature at both high and low elevations. Our findings in the subalpine mountain forest in the eastern Tibetan Plateau were consistent with the majority of published datasets, and imply increasing temperature benefit for tree populations at higher elevation, while warming dampens growth at lower elevations.

  15. Phylogeny and biogeography of Primula sect. Armerina: implications for plant evolution under climate change and the uplift of the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Ren, Guangpeng; Conti, Elena; Salamin, Nicolas

    2015-08-16

    The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic

  16. AHP 5: A Tibetan Girl's Hair Changing Ritual

    Directory of Open Access Journals (Sweden)

    Tshe dpal rdo rje ཚེ་དཔལ་རྡོ་རྗེ།

    2017-06-01

    Full Text Available This is a remarkably careful study of a little known Tibetan coming-of-age ritual as still practiced in rural Amdo, Qinghai Province, China. Structural analysis is complemented by a case study based on observations, interviews, recordings, and authentic folklore material in the original language. Pictures, tables, and a glossary complete the work. This is field anthropology at its best. Juha Janhunen, Professor of East Asian Languages and Cultures, University of Helsinki The achievements of this book are many: it is analytically rigorous, rich in contextualized detail, and fascinating in subject matter. The authors' diverse backgrounds and strengths are manifested throughout this truly collaborative work which follows a major rite of passage in the life of a thirteen year-old Tibetan girl. For all scholars of Tibetan culture and society, and for any student of ethnography interested in learning how to thoroughly document a ritual, this book will be of great interest and lasting use. Mark Turin Director, Digital Himalaya Project & World Oral Literature Project, University of Cambridge This is an important contribution to Tibetan ethnography. The study is based on careful fieldwork, analysis, introduction, and translation of relevant myths and literary compositions, and comprehensive description of core components of Tibetan community life. The value of the work is that the study of a distinctively Tibetan women's ritual is accurately and fully presented in its own context. It is a unique record of an endangered tradition. Paul K Nietupski, John Carroll University This study has great value in examining in detail the coming-of-age ritual of girls in a single Tibetan village, thus providing a window through which to better view and understand community-based life, which is soon to change in the face of China-wide modernization. Huadan Zhaxi, Humbolt University

  17. Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau.

    Science.gov (United States)

    Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Qin, Xiang; Yan, Fangping; Du, Wentao; Wei, Ting

    2017-03-01

    An evaluation of glacial meltwater chemistry is needed under recent dramatic glacier melting when water resources might be significantly impacted. This study investigated trace elements variation in the meltwater stream, and its related aquatic environmental information, at the Laohugou (LHG) glacier basin (4260 m a.s.l.) at a remote location in northeast Tibetan Plateau. We focused on the spatial, temporal and diurnal change of trace elements during the glacier ablation period. Results showed evident elements spatial difference on the glacier surface meltwater, as most of the elements showed increased concentration at the terminus compared to higher elevations sites. Dominant elements in the meltwater were Ba, Sr and Cr, whereas elements with high enrichment factors (EFs) were Sb, Ni, Mo and Zn. Temporal change of some trace elements concentration (e.g. Sc, Cu, and Rb) indicated increasing trend with accelerated snow-ice melting, whereas others (e.g. Ni, Zn, and Pb) showed decreasing trend. We find that, trace elements showed evident diurnal change and a peak value of concentration was observed each day at about 15:00-17:00, and the diurnal change was influenced by runoff level and pH. Moreover, EFs calculations revealed that heavy metals were partially originated from regional anthropogenic sources. Overall, the accelerated diurnal and temporal snow-ice melting (with high runoff level) were correlated to increased elemental concentration, pH, EC and elemental change mode, and thus this work is of great importance for evaluating the impacts of accelerated glacier melting to meltwater chemistry and downstream ecosystem in the northeast Tibetan Plateau. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    Science.gov (United States)

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    Directory of Open Access Journals (Sweden)

    Mingyong Cai

    Full Text Available Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050 climatic data (precipitation and air temperature from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5 are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP scenarios (RCP2.6, RCP4.5 and RCP8.5 for 2050. Historical station observations (1960-2000 at Nuxia and model simulations for two periods (2006-2009 and 2050 are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000, the present period (2006-2009 has a slightly uneven intra-annual runoff temporal distribution, and becomes more

  20. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    Science.gov (United States)

    Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng

    2017-01-01

    Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960-2000) at Nuxia and model simulations for two periods (2006-2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000), the present period (2006-2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in

  1. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau

    Science.gov (United States)

    Guo, Na; Wang, Aidong; Allan Degen, A.; Deng, Bin; Shang, Zhanhuan; Ding, Luming; Long, Ruijun

    2018-02-01

    Soil CO2 emission is a key part of the terrestrial carbon cycle. Grazing exclusion by fencing is often considered a beneficial grassland management option to restore degraded grassland, but its effect on soil CO2 emission on the northeastern Tibetan Plateau is equivocal and is the subject of this study. Using a closed static chamber, we measured diurnal soil CO2 flux weekly from July, 2008, to April, 2009, in response to grazing and grazing exclusion in the alpine meadow and alpine shrub meadow. Concomitantly, soil temperature was measured at depths of 5 cm, 10 cm, 15 cm and 20 cm with digital temperature sensors. It emerged that: 1) non-grazed grasslands emitted more soil CO2 than grazed grasslands over the growing season; 2) the alpine shrub meadow emitted more soil CO2 than the alpine meadow; the annual cumulative soil CO2 emissions of alpine meadow and alpine shrub meadow were 241.5-326.5 g C/m2 and 429.0-512.5 g C/m2, respectively; 3) seasonal patterns were evident with more soil CO2 flux in the growing than in the non-growing season; and 4) the diurnal soil CO2 flux exhibited a single peak across all sampling sites. In addition, soil CO2 flux was correlated positively with soil temperature at 5 cm, but not at the other depths. We concluded that grazing exclusion enhanced soil CO2 emission over the growing season, and decreased carbon sequestration of alpine meadow and alpine shrub meadow on the northeastern Tibetan Plateau. Since an increase in soil temperature increased soil CO2 flux, global warming could have an effect on soil CO2 emission in the future.

  2. Numerical Simulation of Stress evolution and earthquake sequence of the Tibetan Plateau

    Science.gov (United States)

    Dong, Peiyu; Hu, Caibo; Shi, Yaolin

    2015-04-01

    The India-Eurasia's collision produces N-S compression and results in large thrust fault in the southern edge of the Tibetan Plateau. Differential eastern flow of the lower crust of the plateau leads to large strike-slip faults and normal faults within the plateau. From 1904 to 2014, more than 30 earthquakes of Mw > 6.5 occurred sequentially in this distinctive tectonic environment. How did the stresses evolve during the last 110 years, how did the earthquakes interact with each other? Can this knowledge help us to forecast the future seismic hazards? In this essay, we tried to simulate the evolution of the stress field and the earthquake sequence in the Tibetan plateau within the last 110 years with a 2-D finite element model. Given an initial state of stress, the boundary condition was constrained by the present-day GPS observation, which was assumed as a constant rate during the 110 years. We calculated stress evolution year by year, and earthquake would occur if stress exceed the crustal strength. Stress changes due to each large earthquake in the sequence was calculated and contributed to the stress evolution. A key issue is the choice of initial stress state of the modeling, which is actually unknown. Usually, in the study of earthquake triggering, people assume the initial stress is zero, and only calculate the stress changes by large earthquakes - the Coulomb failure stress changes (Δ CFS). To some extent, this simplified method is a powerful tool because it can reveal which fault or which part of a fault becomes more risky or safer relatively. Nonetheless, it has not utilized all information available to us. The earthquake sequence reveals, though far from complete, some information about the stress state in the region. If the entire region is close to a self-organized critical or subcritical state, earthquake stress drop provides an estimate of lower limit of initial state. For locations no earthquakes occurred during the period, initial stress has to be

  3. AHP 27: A Northeastern Tibetan Childhood

    Directory of Open Access Journals (Sweden)

    Tsering Bum ཚེ་རིང་འབུམ།

    2013-12-01

    Full Text Available Tsering Bum (b. 1985 describes his early life in Amdo in terms of dreams, herding, punishment from a lama, schooling experiences, attending a Kalachakra teaching, a lhatzi gathering, irrigation, his grandfather, archery, and other important moments and influences. Another incredible production from Kevin Stuart's Tibetan English students! Tsering Bum gives us a series of intricately woven vignettes of his childhood and adolescence in a small Tibetan village in Qinghai Province. A Northeastern Tibetan Childhood takes readers into the social and material culture of Tsering's family and fellow villagers. We begin with a home scene on the heated brick hyitsi 'bed', where the family sleeps, meals are taken, and guests are entertained. Through Tsering's writing we taste the noodles his mother makes by hand, know the life of the herders, meet ritualists who communicate with the mountain deity, visit a Kalachakra for blessings, experience an archery contest that ends in singing and drink, swim naked in cold mountain rivers, celebrate Losar, or Tibetan new year festival, visit a nomad festival, enter the transformative world of a county primary school, and hear the accounts of three deaths. The stories take us through a landscape of mountains, rivers, and grasslands to new worlds that for the narrator end with a kindled sense of global vision and self-worth. Mark Bender, Ohio State University I highly recommend this exciting new work. Tsering Bum's account of his life is a quick and pleasant read, full of insights into many aspects of contemporary Tibetan culture. From village rituals associated with death and archery contests to the challenges of modern schooling in rural areas, Tsering Bum leads us quickly through a narrative that links past and present to hopes for the future. Tibetan Buddhism and mountain pilgrimage play a limited but significant role in the story. As a historian, I was most interested in the chapter 'Grandpa' that recounts the

  4. Environmental fate and behavior of persistent organic pollutants in Shergyla Mountain, southeast of the Tibetan Plateau of China

    International Nuclear Information System (INIS)

    Zhu, Nali; Schramm, Karl-Werner; Wang, Thanh; Henkelmann, Bernhard; Zheng, Xiaoyan; Fu, Jianjie; Gao, Yan

    2014-01-01

    Pristine mountains are ideal settings to study transport and behavior of persistent organic pollutants (POPs) along gradients of climate and land cover. The present work investigated the concentrations and patterns of 28 organochlorine pesticides (OCPs), 25 polychlorinated biphenyl (PCBs), 13 polybrominated diphenyl ethers (PBDEs), and 3 hexabromocyclododecane (HBCDs) isomers in the air of the Shergyla Mountain, southeastern Tibetan Plateau. Endosulfan I, hexachlorobenzene, pentachlorobenzene, hexachlorocyclohexanes and dichlorodibenzotrichloroethane and its degradation products (DDTs) were the predominant compounds while PBDEs and HBCDs showed the lowest background concentrations. Most of the target POPs had significantly higher concentrations in summer than those in winter. Increasing trends of the concentrations of DDTs and endosulfan were found with increasing altitude on the western slope in the Shergyla Mountain. Potential forest filter effect was observed based on the lower air concentrations of the target POPs in the forest than the ones out of the forest. - Highlights: • Concentrations of DDT and endosulfan increased with elevation in Shergyla Mountain. • Potential forest filter effect for some POPs was observed in summer in the Plateau. • Seasonal variations of POPs levels existed in atmosphere of the Plateau. • Different behavior of POPs was observed on the two slopes of the Shergyla Mountain. - Different behaviors of POPs were observed on the two slopes of the Shergyla Mountain, and potential forest filter effects for some POPs were observed in the summer

  5. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau

    Science.gov (United States)

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ciais, Philippe; Peñuelas, Josep

    2016-01-01

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming. PMID:27044083

  6. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau.

    Science.gov (United States)

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ellison, Aaron M; Ciais, Philippe; Peñuelas, Josep

    2016-04-19

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming.

  7. Crust azimuthal anisotropy beneath the eastern Tibetan Plateau revealed by ambient noise tomography

    Science.gov (United States)

    Bao, X.; Song, X.

    2017-12-01

    The continental collision between India and Eurasia in the Cenozoic has resulted in the rise and growth of the vast Tibetan Plateau (TP). Various geodynamic models, such as rigid-block extrusion, continuous deformation, and the mid-lower crustal flow, have been proposed to describe the growth and expansion of eastern Tibet. To better understand the deformation mechanism of the eastern TP, we performed ambient noise tomography using data from permanent and temporary stations and constructed Rayleigh wave azimuthally anisotropic phase-velocity maps at periods from 8 to 30 s, which mainly sample the crustal structure. The dominant direction of fast wave propagation is oriented NW-SE in the northeastern and eastern TP and N-S in the southeastern TP, which is consistent with the trends of main strike-slip faults and the fast polarization directions of SKS waves and suggests vertically coherent deformation. Furthermore, the magnitude of crustal anisotropy is continuous across main strike-slip faults, which contracts with the prediction of rigid-block extrusion model. Taken together, our model supports vertically coherent distributed deformation in the eastern TP.

  8. Warming slowdown over the Tibetan plateau in recent decades

    Science.gov (United States)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  9. Whole-Genome Sequence of Chlamydia abortus Strain GN6 Isolated from Aborted Yak Fetus.

    Science.gov (United States)

    Li, Zhaocai; Cai, Jinshan; Cao, Xiaoan; Lou, Zhongzi; Chao, Yilin; Kan, Wei; Zhou, Jizhang

    2017-08-31

    The obligate intracellular Gram-negative bacterium Chlamydia abortus is one of the causative agents of abortion and fetal loss in sheep, goats, and cattle in many countries. It also affects the reproductivity of yaks ( Bos grunniens ). This study reports the whole-genome sequence of Chlamydia abortus strain GN6, which was isolated from aborted yak fetus in Qinghai-Tibetan Plateau, China. Copyright © 2017 Li et al.

  10. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements

    Science.gov (United States)

    Liu, Yunhua; Zhang, Guohong; Zhang, Yingfeng; Shan, Xinjian

    2018-06-01

    On January 21st, 2016, a Ms 6.4 earthquake hit Menyuan County, Qinghai province, China. The nearest known fault is the Leng Long Ling (LLL) fault which is located approximately 7 km north of the epicenter. This fault has mainly shown sinistral strike-slip movement since the late Quaternary Period. However, the focal mechanism indicates that it is a thrust earthquake, which is different from the well-known strike-slip feature of the LLL fault. In this study, we determined the focal mechanism and primary nodal plane through multi-step inversions in the frequency and time domain by using the broadband regional seismic waveforms recorded by the China Digital Seismic Network (CDSN). Our results show that the rupture duration was short, within 0-2 s after the earthquake, and the rupture expanded upwards along the fault plane. Based on these fault parameters, we then solve for variable slip distribution on the fault plane using the InSAR data. We applied a three-segment fault model to simulate the arc-shaped structure of the northern LLL fault, and obtained a detailed slip distribution on the fault plane. The inversion results show that the maximum slip is 0.43 m, and the average slip angle is 78.8°, with a magnitude of Mw 6.0 and a focal depth of 9.38 km. With the geological structure and the inversion results taken into consideration, it can be suggested that this earthquake was caused by the arc-shaped secondary fault located at the north side of the LLL fault. The secondary fault, together with the LLL fault, forms a normal flower structure. The main LLL fault extends almost vertically into the base rock and the rocks between the two faults form a bulging fault block. Therefore, we infer that this earthquake is the manifestation of a neotectonics movement, in which the bulging fault block is lifted further up under the compresso-shear action caused by the Tibetan Plateau pushing towards the northwest direction.

  11. Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau.

    Science.gov (United States)

    Chen, Liang

    2017-06-10

    Bacillus velezensis LM2303 is a biocontrol strain with a broad inhibitory spectrum against plant pathogens, isolated from the dung of wild yak inhabited Qinghai-Tibet plateau, China. Here we present its complete genome sequence, which consists of a single, circular chromosome of 3,989,393bp with a 46.68% G+C content. Genome analysis revealed genes encoding specialized functions for the biosynthesis of antifungal metabolites and antibacterial metabolites, the promotion of plant growth, the alleviation of oxidative stress and nutrient utilization. And the biosynthesis of antimicrobial metabolites in strain LM2303 was confirmed by biochemical analysis, while its plant growth promoting traits were confirmed by inoculation tests. Our results will establish a better foundation for further studies and biocontrol application of B. velezensis LM2303. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 青藏高原多圈层相互作用观测工程及其应用%The observation of water-ice-air-ecosystem interactions and its application over the Tibetan Plateau area

    Institute of Scientific and Technical Information of China (English)

    马耀明

    2012-01-01

    青藏高原作为地球的第三极,是“水—冰—气—生”多圈层体现最全,且相互作用最强烈的地区.高原强大的动力和热力作用显著地影响着东亚气候格局、亚洲季风进程和北半球大气环流.全球气候变化不仅影响到青藏高原本身的水圈与冰冻圈过程,改变青藏高原内部的生态系统与环境,影响该地区社会经济发展与人民生存条件,而且通过大气环流与水循环过程直接影响到东亚及周边国家的用水安全和自然灾害防护.正确认识青藏高原复杂地表多圈层相互作用规律的一条有效途径是在各种不同的下垫面上建立多圈层相互作用综合观测站(点).在中国科学院和国家相关部门的支持下,过去的7年中,中国科学院青藏高原研究所与其他相关单位一道正在整个青藏高原面上逐步建立“青藏高原观测研究平台”以研究该地区复杂地表的多圈层相互作用规律.首先具体介绍中国科学院青藏高原研究所在高原上已经建立的5个综合观测研究站,然后介绍利用各个站点观测资料分析得到的多圈层相互作用(主要是地气相互作用)的研究结果,最后提出了青藏高原多圈层相互作用观测试验研究所面临的难题和可能的解决办法.%The Tibetan Plateau, with the most prominent and complicated terrain on the globe and an elevation of more than 4 000 m on average above sea level, is often called the "Third Pole". Due to its topographic character, the plateau surface absorbs a large amount of solar radiation energy (much of which is redistributed by cryospheric processes) , and undergoes dramatic seasonal changes of surface heat and water fluxes. Like the Arctic and Antarctica, the Tibetan Plateau area is one of the most sensitive areas responding to global climate change due to its high altitude and the presence of permafrost and glaciers, which are most sensitive to global warming. The effective way to

  13. The modulation of Tibetan Plateau heating on the multi-scale northernmost margin activity of East Asia summer monsoon in northern China

    Science.gov (United States)

    Zhang, Jie; Liu, Chen; Chen, Haishan

    2018-02-01

    The northernmost margin of East Asian summer monsoon (EASM) could well reflect wet/dry climate variability in the EASM marginal zone (northern China). The study shows that EASM occurs in northern China from Meiyu period to midsummer, and it is also the advancing period of the northern margin of EASM (NMEASM) before the 43rd pentad. NMEASM activity exhibits multi-scale variability, at cycles of 2-3-yr, 4-6-yr and 9-12-yr, which respond not only to EASM intensity but also to westerly circulation anomaly, exhibiting the mid-latitude Eurasian waves and the high-latitude Eurasian teleconnection (EU) patterns. The positive anomalies of Silk Road pattern and EU pattern in recent two decades contribute to the enhanced west-ridge and east-trough anomaly around 120°E over northern China, leading to divergence of moisture flux and north wind anomaly, which is helpful for southward western pacific subtropical high (WPSH) and southward NMEASM. Negative Eurasian pattern along subtropical Jet leads to anticyclone anomaly over south of the Yangtze River, deep trough and north wind anomaly along the west coast of the subtropical Pacific, contributing to southward WPSH and NMEASM at the cycle of 4-6-yr. Remote forcing sources of these anomalous Eurasian waves include North Europe, north of Caspian Sea, Central Asia, Tibetan Plateau and the west of Lake Baikal; the south of Lake Baikal is a local forcing region. The Tibetan Plateau heating and snow cover could modulate Eurasian wave pattern at multi-scale, which could be used as prediction reference of multi-scale NMEASM.

  14. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    Science.gov (United States)

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future. Copyright © 2016. Published by Elsevier B.V.

  15. Sunshine duration reconstruction in the southeastern Tibetan Plateau based on tree-ring width and its relationship to volcanic eruptions.

    Science.gov (United States)

    Sun, Changfeng; Liu, Yu; Song, Huiming; Cai, Qiufang; Li, Qiang; Wang, Lu; Mei, Ruochen; Fang, Congxi

    2018-07-01

    Sunshine is as essential as temperature and precipitation for tree growth, but sunshine duration reconstructions based on tree rings have not yet been conducted in China. In this study, we presented a 497-year sunshine duration reconstruction for the southeastern Tibetan Plateau using a width chronology of Abies forrestii from the central Hengduan Mountains. The reconstruction accounted for 53.5% of the variance in the observed sunshine during the period of 1961-2013 based on a stable and reliable linear regression. This reconstructed sunshine duration contained six sunny periods (1630-1656, 1665-1697, 1731-1781, 1793-1836, 1862-1895 and 1910-1992) and seven cloudy periods (1522-1629, 1657-1664, 1698-1730, 1782-1792, 1837-1861, 1896-1909 and 1993-2008) at a low-frequency scale. There was an increasing trend from the 16th century to the late 18th and early 19th centuries and a decreasing trend from the mid-19th to the early 21st centuries. Sunshine displayed inverse patterns to the local Palmer drought severity index on a multidecadal scale, indicating that this region likely experienced droughts under more sunshine conditions. The decrease in sunshine particularly in recent decades was mainly due to increasing atmospheric anthropogenic aerosols. In terms of the interannual variations in sunshine, weak sunshine years matched well with years of major volcanic eruptions. The significant cycles of the 2- to 7-year, 20.0-year and 35.2-year durations as well as the 60.2-year and 78.7-year durations related to the El-Niño Southern Oscillation, the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation suggested that the variation in sunshine duration in the southeastern Tibetan Plateau was possibly affected by large-scale ocean-atmosphere circulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Wetting and greening Tibetan Plateau in early summer in recent decades

    Science.gov (United States)

    Zhang, Wenxia; Zhou, Tianjun; Zhang, Lixia

    2017-06-01

    The Tibetan Plateau (TP) plays an essential role in the global hydrological cycle. Unlike the well-recognized surface warming, changes in precipitation over the TP and the underlying mechanisms remain ambiguous. A significant increase in the amount of precipitation over the southeastern TP in May over 1979-2014 (13.46% decade-1 of the climatology) is identified in this study, based on homogenized daily rain gauge data. Both the increased precipitation frequency and intensity have contributions. The coherent increases in soil moisture content and vegetation activities further confirm the precipitation trend, indicating a wetting and greening TP in the early summer in recent decades. The moisture budget analysis shows that this wetting trend in the past four decades is dominated by the increased water vapor convergence due to circulation changes, while increases in specific humidity play a minor role. The wetting trend over the TP in May results directly from the earlier onset of the South Asian summer monsoon (ASM) since the late 1970s associated with the phase transition of Interdecadal Pacific Oscillation around the late 1990s. The earlier onset of the ASM triggers low-level southwesterly anomalies over the northern Indian Ocean, promoting moisture convergence and increased precipitation over the TP in May. Specifically, the increased amount of precipitation after the onset of the ASM explains 95% of the increase in the total amount of precipitation in May.

  17. Preparation and thermal properties of Glauber’s salt-based phase-change materials for Qinghai-Tibet Plateau solar greenhouses

    Science.gov (United States)

    Jiang, Zipeng; Tie, Shengnian

    2017-07-01

    This paper reports the preparation and characterization of eutectic Glauber’s salt-based composite, phase-change materials (G-PCMs). PCMs were prepared using industrial-grade sodium sulfate decahydrate (Na2SO4 ṡ 10H2O) as the basic material. Other salts were added to obtain the eutectic Glauber’s salt-based PCMs with phase-change temperatures of 25∘C, 15∘C and 10∘C. The modification of the G-PCMs was designed using the same experimental method to select the efficient nucleating, thickening and thermal conductive agents. The results show that borax can be an effective nucleating agent, sodium carboxymethyl cellulose is an excellent thickener and carbon powder is a good thermal conductive agent. The phase-change temperature, latent heat and thermal conductivity of the three different PCMs are 23.9∘C, 15.4∘C and 9.5∘C; 179.6, 129 and 116.2 J/g; and 1.02, 1.10 and 1.23 W/(m K), respectively. These PCMs possess suitable phase-change temperature, high latent heat and good thermal conductivity, and can be used in Qinghai-Tibet Plateau agricultural solar greenhouses.

  18. Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau.

    Science.gov (United States)

    Yang, Ruiqiang; Xie, Ting; Li, An; Yang, Handong; Turner, Simon; Wu, Guangjian; Jing, Chuanyong

    2016-07-01

    Sediment cores from five lakes across the Tibetan Plateau were used as natural archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The depositional flux of PAHs generally showed an increasing trend from the deeper layers towards the upper layer sediments. The fluxes of PAHs were low with little variability before the 1950s, and then gradually increased to the late 1980s, with a faster increasing rate after the 1990s. This temporal pattern is clearly different compared with those remote lakes across the European mountains when PAHs started to decrease during the period 1960s-1980s. The difference of the temporal trend was attributed to differences in the economic development stages and energy structure between these regions. PAHs are dominated by the lighter 2&3-ring homologues with the averaged percentage over 87%, while it is notable that the percentage of heavier 4-6 ring PAHs generally increased in recent years, which suggests the contribution of local high-temperature combustion sources becoming more predominant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2016-11-01

    Full Text Available Evaluating the impacts of climatic changes and morphometric features on glacier mass balance is crucial to providing insight into glacier changes and their effects on regional water resources and ecosystems. Here, we presented an evaluation of morphometric effects on the glacier mass balances of the Puruogangri ice field (PIF on the Tibetan Plateau. A clear spatial variability of glacier mass balances, ranging from −0.035 to +0.019 m·w.e.·year−1, was estimated by comparing the TanDEM-X DEM (2012 with the SRTM-X DEM (2000. In general, the observed glacier mass changes were consistent with our fieldwork investigations. Furthermore, by applying the method of linear regression analysis, we found that the mass changes of individual glaciers on the PIF were mainly dominated by the mean altitude (R = 0.84, p < 0.001, however, they were statistically independent of glacier size, aspect, and surface velocity. At a local scale (grid size of 10 × 10 pixels, apart from the factor of altitude, surface velocity was correlated with glacier mass change.

  20. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua

    2017-11-13

    As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.

  1. Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau

    Science.gov (United States)

    Qiao, Qin; Wang, Qia; Han, Xi; Guan, Yanlong; Sun, Hang; Zhong, Yang; Huang, Jinling; Zhang, Ticao

    2016-02-01

    The extreme environment of the Qinghai-Tibet Plateau (QTP) provides an ideal natural laboratory for studies on adaptive evolution. Few genome/transcriptome based studies have been conducted on how plants adapt to the environments of QTP compared to numerous studies on vertebrates. Crucihimalaya himalaica is a close relative of Arabidopsis with typical QTP distribution, and is hoped to be a new model system to study speciation and ecological adaptation in extreme environment. In this study, we de novo generated a transcriptome sequence of C. himalaica, with a total of 49,438 unigenes. Compared to five relatives, 10,487 orthogroups were shared by all six species, and 4,286 orthogroups contain putative single copy gene. Further analysis identified 487 extremely significantly positively selected genes (PSGs) in C. himalaica transcriptome. Theses PSGs were enriched in functions related to specific adaptation traits, such as response to radiation, DNA repair, nitrogen metabolism, and stabilization of membrane. These functions are responsible for the adaptation of C. himalaica to the high radiation, soil depletion and low temperature environments on QTP. Our findings indicate that C. himalaica has evolved complex strategies for adapting to the extreme environments on QTP and provide novel insights into genetic mechanisms of highland adaptation in plants.

  2. Simulated impacts of land cover change on summer climate in the Tibetan Plateau

    International Nuclear Information System (INIS)

    Li Qian; Xue Yongkang

    2010-01-01

    The Tibetan Plateau (TP) is a key region of land-atmosphere interactions with severe eco-environment degradation. This study uses an atmospheric general circulation model, NCEP GCM/SSiB, to present the major TP summer climate features for six selected ENSO years and preliminarily assess the possible impact of land cover change on the summer circulation over the TP. Compared to Reanalysis II data, the GCM using satellite derived vegetation properties generally reproduces the main 6-year-mean TP summer circulation features despite some discrepancies in intensity and geographic locations of some climate features. Two existing vegetation maps with very different land cover conditions over the TP, one with bare ground and one with vegetation cover, derived from satellite derived data, are tested and produce clearer climate signals due to land cover change. It shows that land cover change from vegetated land to bare ground decreases the radiation absorbed by the surface and results in weaker surface thermal effects, which lead to lower atmospheric temperature, as well as weaker vertical ascending motion, low-layer cyclonic, upper level anticyclonic, and summer monsoon circulation. These changes in circulation cause a decrease in the precipitation in the southeastern TP.

  3. Impact of Land Use Change on the Local Climate over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiming Jin

    2010-01-01

    Full Text Available Observational data show that the remotely sensed leaf area index (LAI has a significant downward trend over the east Tibetan Plateau (TP, while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results from the nighttime warming. The Single-Column Atmosphere Model (SCAM version 3.1 developed by the National Center for Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center of the TP Sanjiang (three rivers Nature Reserve where the downward LAI trend is largest. These simulations were forced with the high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase.

  4. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China).

    Science.gov (United States)

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-05-25

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The

  5. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    Science.gov (United States)

    Zhao, Q.

    2017-12-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The

  6. Killer cell immunoglobulin-like receptor gene diversity in the Tibetan ethnic minority group of China.

    Science.gov (United States)

    Zhu, Bo-feng; Wang, Hong-dan; Shen, Chun-mei; Deng, Ya-jun; Yang, Guang; Wu, Qing-ju; Xu, Peng; Qin, Hai-xia; Fan, Shuan-liang; Huang, Ping; Deng, Li-bin; Lucas, Rudolf; Wang, Zhen-Yuan

    2010-11-01

    The aim of this study was to analyze killer immunoglobulin-like receptor (KIR) gene polymorphisms in the Tibetan ethnic minority of China. To that purpose, we have studied KIR gene frequencies and genotype diversities of 16 KIR genes and three pseudogenes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5A, 2DL5B, 2DS1, 2DS2, 2DS3, 2DS4*001/002, 2DS4*003-007, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1, 2DP1, 3DP1*001/002/004, and 3DP1*003) in a population sample of 102 unrelated healthy individuals of the Tibetan population living in Lhasa city, Tibet Autonomous Region of China. Tibetans mainly live in "the roof of the world," the Qinghai-Tibet Plateau of China and surrounding areas stretching from central Asia in the North and West to Myanmar and mainland China in the East, and India, Nepal, and Bhutan to the south. KIR gene frequencies and statistical parameters of Tibetan ethnic minority were calculated. Fifteen KIR genes were observed in the 102 tested Tibetan individuals with different frequencies. The allelic frequencies of the 15 KIR genes ranged from 0.06 to 0.86. In addition, KIR 2DL1, 2DL4, 3DL2, and 3DL3 were found to be present in every individual. Variable gene content, together with allelic polymorphisms, can result in individualized human KIR genotypes and haplotypes, with the A haplotypes being predominantly observed. The results of tested linkage disequilibrium (LD) among KIR genes demonstrated that KIR genes present a wide range of linkage disequilibrium. Moreover, a comparison of the population data of our study with previously published population data of other ethnic groups or areas was performed. The differences of allelic frequency distribution in KIR2DL2, 2DL3, 2DL5, 3DL1, 2DS1, 2DS2, 2DS3, 3DS1, and 2DP1 were statistically significant among different populations using the statistical method of the standard χ(2) test. In conclusion, the results of the present study can be valuable for enriching the Chinese ethnical gene information resources of the KIR gene pool and for

  7. Modulation of the atmospheric quasi-biweekly oscillation on the diurnal variation of the occurrence frequency of the Tibetan Plateau vortices

    Science.gov (United States)

    Li, Lun; Zhang, Renhe; Wen, Min

    2018-06-01

    In this study, modulation of the atmospheric quasi-biweekly oscillation (QBWO) on diurnal variation of the occurrence frequency of Tibetan Plateau vortices (TPVs) during May-August of 2000-2009 was investigated. The diurnal variations of the occurrence frequency of the TPVs (OFTPVs) and the related dynamic and thermodynamic features in the positive and negative phases of QBWO were compared. In both the positive and negative phases, the OFTPVs reaches the maximum from evening to midnight (18-00 LT, LT indicates the local time), and minimum from early morning to noon (06-12 LT). At 18 LT, there is strongest convergence at 500 hPa and ascending motion, as well as the most abundant net water vapor budget over the Tibetan Plateau, which is in favor of the precipitation and the related condensation latent heat release, corresponding to the maximum of OFTPVs in 18-00 LT. On the contrary, in the early morning at 06 LT, the conditions are most unfavorable for genesis of TPVs in 06-12 LT. QBWO leads to stronger convergence at 500 hPa, ascending motion as well as more massive water vapor in the positive phases than those in the negative phases, resulting in larger numbers of TPVs occur in all of the four periods of a day (00-06 LT, 06-12 LT, 12-18 LT, and 18-00 LT) in the former. The TPVs generating from the early morning to noon (06-12 LT) are weaker and more sensitive and fragile to the disadvantageous background, while the TPVs occurring from evening to midnight (18-00 LT) are stronger and seem to be well tolerated, leading to more remarkable contrast between the OFTPVs in the negative and positive phases in 06-12 LT than in 18-00 LT.

  8. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau.

    Science.gov (United States)

    Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin

    2017-09-01

    Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.

  9. Rainfall variations over the Bay of Bengal and southern Tibetan Plateau and their connections with different tropical forcing during the early and middle summer

    Science.gov (United States)

    Wang, Z.; Yang, S.

    2016-12-01

    Strong rainfall always occurs in the South Asia region during the summer monsoon time (May-September), especially over the Bay of Bengal (BOB) and southern Tibetan Plateau (STP). The latent heating associated with such rainfall drives large-scale circulation and further influences weather and climate anomalies over the world. Few studies have focused on the intraseasonal difference of the rainfall interannual variations. Generally, two precipitation centers appear over the BOB and STP respectively, which are corresponding to the southern and northern upward branches of the South Asian summer monsoon. Our results indicate that the interannual variability of precipitation over the BOB is consistent with that over the STP during the early summer (May-June), but it is contrary during the midsummer (July-August). In early summer, precipitation over the BOB and STP is mainly regulated by the sea surface temperature (SST) anomalies in tropical eastern Pacific (corresponding to the ENSO). Warm SST anomalies in the eastern Pacific weaken upward motion and further precipitation over the BOB and STP through the modulation of zonal walker circulation. However, the tropical forcing exists over the western Maritime Continent (WMC) during midsummer, which induces the contrary variations of rainfall over the BOB and STP. Warm WMC SST anomalies lead to an anticyclone over the BOB, which is unfavourable to the BOB rainfall. While the southwesterlies at the northwest of that anticyclone favor moisture transport to the Tibetan Plateau and thus an enhancement in rainfall over the STP.

  10. Precipitation change and its effects on prehistorical human activities in the Gonghe Basin, Northeastern Qinghai-Tibet Plateau during middle and late Holocene

    Science.gov (United States)

    Hou, Xiaoqing; Hou, Guangliang; Wang, Fangfang; Wang, Qingbo

    2018-02-01

    Northeastern Qinghai-tibet Plateau is considered as the ideal region for study of the climate change during the Holocene. Based on the meteorological data, the surface & fossil pollen data, this paper reconstructed the precipitation series of the region since middle Holocene with the GIS and MAT techniques, and discussed its relationship with prehistorical human activities. The results indicate that there are four major climatic phases: (I) Middle Holocene Humid Phase (6300-5000 aBP), with the primitive millet-farming first imported into the region; (II) Late Middle Holocene Sub-humid Phase (5000-3900 aBP), with the millet-farming spread rapidly within the region; (III) Late Holocene Fluctuation Phase (3900-2900 aBP), with the mean annual precipitation dropped down to lower than 240 mm, and a production mode-shift to a combination of cropping and husbandry; (IV) Late Holocene Stationary Phase (2900-0 aBP), with a precipitation alike the modern time, and a steady farming-pastoral economic pattern.

  11. Tracers Show Ecohydrologic Influences on Runoff Generation Components at the Qinghai-Tibet Plateau

    Science.gov (United States)

    Liu, H.; Liu, J.; Peng, A.; Gu, W.; Wang, W.; Gao, F.

    2017-12-01

    In order to learn more about the critical zone ecohydrological dynamics at the Qinghai-Tibet Plateau, a research on the identification of runoff components using tracers was carried out in the Niyang River upstream, a tributary of the Yalung Zangbo River. In this study, four basins with the areas of 182, 216, 243, 213 km2 which are embed in a larger basin were sampled at altitudes between 3667 to 6140 m. The types of land use in the basins mainly include forest land, grassland and glacier. River water and precipitation were sampled monthly, while spring water, glacial ice, soil, and plants were sampled seasonally. Soil and plant samples were taken along the valleys with spatial interval of about 5 km. Soil and plant waters were extracted via cryogenic vacuum distillation method, and then analyzed for isotopes and ions. Preliminary results show that the δD and δ18O of the precipitation water spread approximately along the LMWL of the Namucuo Lake near Lasa city, which varied according to altitude. Stem water δD and δ18O from different elevations and tree species also varied regularly, albeit with no apparent relationship to recent precipitation. It appears that trees utilized fissure water and soil water formed by precipitation. Future efforts will involve (1) an expanded sampling strategy across basins, and (2) a series of experiments on the Hydrohill catchment in the Chuzhou Experimental Facility, whereby an improved understanding of K+, Na+, Ca2+ and Mg2+ export dynamics could aid in much better description and modeling of Niyang River runoff composition and generation. This research is funded by the NSFC project 91647111 and 91647203, which are included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.

  12. Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan plateau

    Science.gov (United States)

    Liang, Hongda; Jin, Sheng; Wei, Wenbo; Gao, Rui; Ye, Gaofeng; Zhang, Letian; Yin, Yaotian; Lu, Zhanwu

    2018-04-01

    The Lhasa terrane in southern Tibetan plateau is a huge tectono-magmatic belt and an important metallogenic belt. Its formation evolution process and mineralization are affected by the subduction of oceanic plate and subsequent continental collision. However, the evolution of Lhasa terrane has been a subject of much debate for a long time. The Lithospheric structure records the deep processes of the subduction of oceanic plate and continental collision. The magnetotelluric (MT) method can probe the sub-surface electrical conductivity, newly dense broadband and long period magnetotelluric data were collected along a south-north trending profile that across the Lhasa terrane at 88°-89°E. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, and the regional strike direction was determined as N110°E.Based on data analysis results, a two-dimensional (2-D) resistivity model of crust and upper mantle was derived from inversion of the transverse electric mode, transverse magnetic mode and vertical magnetic field data. Inversion model shows a large north-dipping resistor that extended from the upper crust to upper mantle beneath the Himalaya and the south of Lhasa Terrane, which may represent the subducting Indian continental lithosphere. The 31°N may be an important boundary in the Lhasa Terrane, the south performs a prominent high-conductivity anomaly from the lower crust to upper mantle which indicates the existence of asthenosphere upwelling, while the north performs a higher resistivity and may have a reworking ancient basement. The formation of the ore deposits in the study area may be related to the upwelling of the mantle material triggered by slab tearing and/or breaking off of the Indian lithosphere, and the mantle material input also contributed the total thickness of the present-day Tibetan crust. The results provide helpful constrains to understand the mechanism of the continent-continent collision and

  13. AHP 42: GUARDIANS OF NATURE: TIBETAN PASTORALISTS AND THE NATURAL WORLD

    Directory of Open Access Journals (Sweden)

    ཀླུ་ཚང་ཚེ་རིང་འབུམ། Tsering Bum (Tshe ring 'bum

    2016-06-01

    Full Text Available Guardians of Nature is a clearly written and very insightful view of the political economic, environmental, and social-cultural transformations reshaping lives and livelihoods on the Tibetan Plateau. Written as a first-hand narrative account of his work over several years with Yulshul villagers, Tsering Bum’s perceptive book discusses key issues of contemporary Tibetan pastoralism: mining, the importance of the caterpillar fungus economy, resettlement, co-ops, education policy, human-wildlife conflict, and sacred mountains. It also explores quite new phenomena, such as Tibetan pastoralists hiring Han Chinese as herding laborers while living off of caterpillar fungus income, and the rise of feral dogs as a result of the sharp drop in Tibetan mastiff prices. Tsering Bum’s analysis is informed by critiques of nature-culture binaries and illustrates the many effects of perverse policy incentives. Strongly recommended for anyone interested in understanding Tibetan pastoral areas today.

  14. Using slope-area and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan Plateau

    Science.gov (United States)

    Wang, Yizhou; Zheng, Dewen; Pang, Jianzhang; Zhang, Huiping; Wang, Weitao; Yu, Jingxing; Zhang, Zhuqi; Zheng, Wenjun; Zhang, Peizhen; Li, Youjuan

    2018-05-01

    Studies have shown that the growth of the Qilian Shan, the northeastern margin of the Tibetan Plateau, started 10 Ma ago. However, when and how it expanded northwards is still under debate. Here we focus on the rock uplift pattern of the Yumu Shan, an active fault-related fold in the Hexi Corridor north to the Qilian Shan. Normalized channel steepness achieved from the analysis of river longitudinal profiles shows a spatially variant rock uplift pattern, with higher rates in the middle part and lower rates towards the west and east tips. The compression of the mountain is typically accommodated by fault-fold related shortening and vertical thickening. Apatite fission track thermochronology reveals that the growth of the Yumu Shan started 4 Ma ago, similar to the work on active tectonics. Combining the onset ages of the growth of the Qilian Shan (10 Ma), Laojunmiao anticline (3-4 Ma), Baiyanghe anticline (3-4 Ma), Wenshu Shan (4.5 Ma) and Heli Shan (2 Ma), we draw an conclusion that the NE margin of the Tibetan Plateau initiated growth in the mid-Miocene and expanded to the Hexi Corridor and to the south of the Alxa block in the early Pleistocene.

  15. Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau

    International Nuclear Information System (INIS)

    Xia Zhonghuan; Xu Baiqing; Wu Guangjian; Zhu Liping; Muegler Ines; Gleixner, Gerd; Sachse, Dirk

    2009-01-01

    The hydrogen isotopic composition (δD) of leaf water used for biosynthesis of n-alkanes can be modified by climate. Therefore, the δD can be considered as potential paleolimatic proxy to explore. We compared measured δD values of alkanes (n-C 25 to n-C 31 ) extracted from a short sediment profile spanning the past 50 years with a 7-year resolution from Lake Yamzho, southern Tibetan Plateau. Climatic control was reconstructed using meteorological records of the nearby Langkazi and Lhasa weather stations. We found that the δD values of the n-alkanes correlated with the mean annular air temperature and significantly correlated with the mean growing season air temperature. On the other hand, the δD values show poor correlations with both rainfall amount and relative humidity. These results indicate that stable isotope composition of n-alkanes could be an excellent proxy for paleotemperature reconstruction. (author)

  16. Raindrop Size Distribution Measurements at 4,500 m on the Tibetan Plateau During TIPEX-III

    Science.gov (United States)

    Chen, Baojun; Hu, Zhiqun; Liu, Liping; Zhang, Guifu

    2017-10-01

    As part of the third Tibetan Plateau Atmospheric Scientific Experiment field campaign, raindrop size distribution (DSD) measurements were taken with a laser optical disdrometer in Naqu, China, at 4,508 m above sea level (asl) during the summer months of 2013, 2014, and 2015. The characteristics of DSDs for five different rain rates, for two rain types (convective and stratiform), and for daytime and nighttime rains were studied. The shapes of the averaged DSDs were similar for different rain rates, and the width increased with rainfall intensity. Little difference was found in stratiform DSDs between day and night, whereas convective DSDs exhibited a significant day-night difference. Daytime convective DSDs had larger mass-weighted mean diameters (Dm) and smaller generalized intercepts (NW) than the nighttime DSDs. The constrained relations between the intercept N0 and shape μ, slope Λ and μ, and NW and Dm of gamma DSDs were derived. We also derived empirical relations between Dm and the radar reflectivity factor in the Ku and Ka bands.

  17. Holocene soil pH changes and East Asian summer monsoon evolution derived from loess brGDGTs in the northeastern Tibetan Plateau

    Science.gov (United States)

    Duan, Y.; Sun, Q.; Zhao, H.

    2017-12-01

    GDGTs-based proxies have been used successfully to reconstruct paleo-temperature from loess-paleosol sequences during the past few years. However, the pH variations of loess sediments derived from GDGTs covering the geological history remain poorly constrained. Here we present two pH records spanning the last 12 ka (1ka=1000years) based on the modified cyclization ratio index (CBT') of the branched GDGTs using regional CBT'-pH empirical relationship from two well-dated loess-paleosol sections (YWY14 and SHD09) in the northeastern Tibetan Plateau. The results indicate that a slightly alkaline condition occurred during 12 8.5 ka with pH values ranging from 6.98 to 7.24, then CBT'-derived pH decreased from 8.5 to 6.5 ka with values from 7.19 to 6.49 and gradually increased thereafter. The reconstructed pH values from topmost samples can be well compared with instrumental pH values of the surrounding surface soil. The lowest intervals of CBT'-derived pH values during the mid-Holocene in our records are consistent with the results of highest tree pollen percentage from the adjacent lake sediments and regional weakest aeolian activities, which reveals that the moisture maximum during that period, but conflicted with previous results of the wettest early-Holocene inferred from speleothem or ostracod shell oxygen isotope (δ18O) values. Taking together, we conclude that Holocene humidity evolution (wettest middle Holocene) in response to the East Asian summer monsoon (EASM) changes exerts important control on pH variations of loess deposits in northeastern Tibetan Plateau. CBT'-derived pH variations can be potentially used as an indicator of EASM evolution reconstructions. In addition, we argue that speleothem or ostracod shell δ18O records are essentially a signal of the isotopic composition of precipitations rather than EASM intensity.

  18. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu Wenjie; Chen Shengyun; Qin Xiang; Zhou Zhaoye; Sun Weijun; Ren Jiawen; Qin Dahe; Baumann, Frank; Scholten, Thomas; Zhang Tongzuo

    2012-01-01

    This study tested the hypothesis that soil organic carbon (SOC) and total nitrogen (TN) spatial distributions show clear relationships with soil properties and vegetation composition as well as climatic conditions. Further, this study aimed to find the corresponding controlling parameters of SOC and TN storage in high-altitude ecosystems. The study was based on soil, vegetation and climate data from 42 soil pits taken from 14 plots. The plots were investigated during the summers of 2009 and 2010 at the northeastern margin of the Qinghai–Tibetan Plateau. Relationships of SOC density with soil moisture, soil texture, biomass and climatic variables were analyzed. Further, storage and vertical patterns of SOC and TN of seven representative vegetation types were estimated. The results show that significant relationships of SOC density with belowground biomass (BGB) and soil moisture (SM) can be observed. BGB and SM may be the dominant factors influencing SOC density in the topsoil of the study area. The average densities of SOC and TN at a depth of 1 m were about 7.72 kg C m −2 and 0.93 kg N m −2 . Both SOC and TN densities were concentrated in the topsoil (0–20 cm) and fell exponentially as soil depth increased. Additionally, the four typical vegetation types located in the northwest of the study area were selected to examine the relationship between SOC and environmental factors (temperature and precipitation). The results indicate that SOC density has a negative relationship with temperature and a positive relationship with precipitation diminishing with soil depth. It was concluded that SOC was concentrated in the topsoil, and that SOC density correlates well with BGB. SOC was predominantly influenced by SM, and to a much lower extent by temperature and precipitation. This study provided a new insight in understanding the control of SOC and TN density in the northeastern margin of the Qinghai–Tibetan Plateau. (letter)

  19. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    Science.gov (United States)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different

  20. The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pu, Yang; Jia, Jihong; Cao, Jicheng

    2017-12-01

    As part of an investigation of the sources of aliphatic hydrocarbons to the sediments of alpine Lake Ximencuo, leaves of the eight dominant vascular plants were collected and their hydrocarbon contents were analyzed. A series of unsaturated aliphatic hydrocarbons were identified in the plant leaves; in particular, Festuca sp. contain a series of n-alkadienes that have rarely been reported in previous studies. The comparison of n-alkane proxies (ACL 27-33, ACL T, P aq, and CPI) and δ13Corg among plant leaves, surface soils, and lake sediments suggests that organic proxies have been altered to varying degrees during the transport and burial process of organic materials. It is believed that microbial reworking and source changes have great impacts on organic proxies in the alpine lake system. In addition, the cluster analysis for plant leaves depending on n-alkane compositions and the ACL T proxy generates similar results. Accordingly, we postulate that the average chain length of plant waxes might be a potential indicator of plant classification in regions such as the Qinghai-Tibet Plateau.