Dual Shapiro-Virasoro amplitudes in the dipole picture of QCD at small x
Peschanski, R.
1997-02-01
Using the dipole picture describing the 1/(NC) limit of QCD at small x and the conformal invariance properties of the BFKL kernel in transverse coordinate space, we show that the 1 ==> p dipole densities can be expressed in terms of dual Shapiro-Virasoro amplitudes B2p+2 and their generalization including non-zero conformal spins. We discuss the possibility of an effective closed string theory of interacting QCD dipoles.
Proton structure functions in the dipole picture of BFKL dynamics
International Nuclear Information System (INIS)
Navelet, H.; Peschanski, R.; Wallon, S.; Royon, Ch.
1996-06-01
The proton structure functions are derived in the QCD dipole picture. Assuming k T and renormalization-group factorization, deep-inelastic proton scattering is related to deep-inelastic onium scattering. A three parameter fit of the 1994 H1 data in the low-x, moderate Q 2 range has been obtained. The dipole picture of BFKL dynamics is shown to provide a relevant model for quantitatively describing the proton structure functions at HERA. (author)
QCD dipole prediction for dis and diffractive structure functions
International Nuclear Information System (INIS)
Royon, CH.
1996-01-01
The F 2 , F G , R = F L /F T proton structure functions are derived in the QCD dipole picture of BFKL dynamics. We get a three parameter fit describing the 1994 H1 proton structure function F 2 data in the low x, moderate Q 2 range. Without any additional parameter, the gluon density and the longitudinal structure functions are predicted. The diffractive dissociation processes are also discussed, and a new prediction for the proton diffractive structure function is obtained. (author)
QCD dipole predictions for DIS and diffractive structure functions
International Nuclear Information System (INIS)
Royon, C.
1997-01-01
The proton structure function F 2 , the gluon density F G , and the longitudinal structure function F L are derived in the QCD dipole picture of BFKL dynamics. We use a three parameter fit to describe the 1994 H1 proton structure function F 2 data in the low x, moderate Q 2 range. Without any additional parameter, the gluon density and the longitudinal structure functions are predicted. The diffractive dissociation processes are also discussed within the same framework, and a new prediction for the proton diffractive structure function is obtained
Electric Dipole Moment Results from lattice QCD
Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy
2018-03-01
We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.
Electric Dipole Moment Results from lattice QCD
Directory of Open Access Journals (Sweden)
Dragos Jack
2018-01-01
Full Text Available We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.
Proton structure functions in the dipole picture of BFKL dynamics
International Nuclear Information System (INIS)
Navelet, H.; Wallon, S.
1996-06-01
The F 2 , F G , R=F L /F T proton structure functions are derived in the QCD dipole picture. Assuming k T and renormalization-group factorization, we relate deep-inelastic proton scattering to deep-inelastic onium scattering. We get a three-parameter fit of the 1994 H1 data in the low-x, moderate Q 2 range. The ratios F G /F 2 and R are predicted without further adjustment. The dipole picture of BFKL dynamics is shown to provide a relevant model for quantitatively describing the proton structure functions at HERA. The predictions for F 2 and F G are compatible with next-to-leading DGLAP analysis, while R is expected to be significantly lower at very small x. (orig.)
The AGL equation from the dipole picture
International Nuclear Information System (INIS)
Gay Ducati, M.B.; Goncalves, V.P.
1999-01-01
The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit
ARIADNE 3. A Monte Carlo for QCD cascades in the colour dipole formulation
International Nuclear Information System (INIS)
Loennblad, Leif.
1989-06-01
A Monte Carlo program for generating QCD cascades, based on the colour dipole approximation is presented. The program is an extension of the program ARIADNE 2, including gluon splitting in the colour dipole formulation of QCD. (author)
Fourier-positivity constraints on QCD dipole models
Directory of Open Access Journals (Sweden)
Bertrand G. Giraud
2016-09-01
Full Text Available Fourier-positivity (F-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position space r. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical F-positivity constraints on the limit r→0 behavior of the dipole amplitudes, we identify the common origin of the violation of F-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r2+ϵ, ϵ>0 softer, even slightly, than color transparency. F-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant α(r.
Magnetic dipole moments of the heavy tensor mesons in QCD
Energy Technology Data Exchange (ETDEWEB)
Aliev, T. M., E-mail: taliev@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T., E-mail: tbarakat@KSU.EDU.SA [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Physics and Astronomy Department, King Saud University, Riyadh (Saudi Arabia); Savcı, M., E-mail: savci@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey)
2015-11-03
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors.
Magnetic dipole moments of the heavy tensor mesons in QCD
Energy Technology Data Exchange (ETDEWEB)
Aliev, T.M. [Middle East Technical University, Physics Department, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T. [Middle East Technical University, Physics Department, Ankara (Turkey); King Saud University, Physics and Astronomy Department, Riyadh (Saudi Arabia); Savci, M. [Middle East Technical University, Physics Department, Ankara (Turkey)
2015-11-15
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)
On the nonperturbative foundations of the dipole picture
Energy Technology Data Exchange (ETDEWEB)
Ewerz, C. [Milano Univ., INFN, Dipt. di Fisica (Italy); ECT, Villazzano (Trento) (Italy); Nachtmannc, B.O. [Heidelberg Univ., Institut fur Theoretische Physik (Germany)
2005-07-01
Starting from a completely non-perturbative formulation of photon-proton scattering we have identified the assumptions and approximations that are needed in order to obtain the dipole picture at high energies. At the same time we have found corrections to the dipole picture which can become large at small photon virtualities. We consider it as an important task for the future to investigate in detail the validity of the assumptions, the accuracy of the approximations, and the size of the corrections. In our opinion these issues should be addressed in order to put the results obtained in the framework of the dipole picture on solid ground. The framework developed here should be suitable for studying the effects caused by the non-existence of a mass-shell for quarks, and for using non-perturbative quark propagators, obtained for example from Dyson-Schwinger equations or from lattice simulations.
On the range of validity of the dipole picture
International Nuclear Information System (INIS)
Ewerz, Carlo; Manteuffel, Andreas von; Nachtmann, Otto
2008-01-01
We derive correlated bounds on ratios of deep inelastic structure functions from the dipole picture of photon-hadron scattering at high energies. In particular we consider ratios of the longitudinal structure function, the total structure function, and the charm part of the latter. We also consider ratios of total structure functions taken at the same energy but at three different photon virtualities. It is shown that by confronting these bounds with experimental data we can significantly constrain the range of validity of the dipole picture.
γ*γ* total cross-section in the dipole picture of BFKL dynamics
International Nuclear Information System (INIS)
Boonekamp, M.; Royon, C.; Wallon, S.; Universite Pierre et Marie Curie, 75 - Paris
1999-01-01
The total γ * γ * cross-section is derived in the Leading Order QCD dipole picture of BFKL dynamics, and compared with the one from 2-gluon exchange. The Double Leading Logarithm approximation of the DGLAP cross-section is found to be small in the phase space studied. Cross sections are calculated for realistic data samples at the e + e - collider LEP and a future high energy linear collider. Next to Leading order corrections to the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to the BFKL cross-section, leading to a reduced sensitivity for observing BFKL. (author)
$\\gamma^{*}\\gamma^{*}$ total cross-section in the dipole picture of BFKL dynamics
Boonekamp, M; Royon, C; Wallon, S
1999-01-01
The total $\\gamma^*\\gamma^*$ cross-section is derived in the Leading Order QCD dipole picture of BFKL dynamics, and compared with the one from 2-gluon exchange. The Double Leading Logarithm approximation of the DGLAP cross-section is found to be small in the phase space studied. Cross sections are calculated for realistic data samples at the $e^+e^-$ collider LEP and a future high energy linear collider. Next to Leading order corrections to the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to the BFKL cross-section, leading to a reduced sensitivity for observing BFKL.
γ*γ* total cross section in the dipole picture of BFKL dynamics
International Nuclear Information System (INIS)
Boonekamp, Maarten; De Roeck, Albert; Royon, Christophe; Wallon, Samuel
1999-01-01
The total γ * γ * cross section is derived in the leading order QCD dipole picture of BFKL dynamics, and compared with the one from two-gluon exchange. The double leading logarithm approximation of the DGLAP cross section is found to be small in the phase space studied. Cross sections are calculated for realistic data samples at the e + e - collider LEP and a future high energy linear collider. Next to leading order corrections to the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to the BFKL cross section, leading to a reduced sensitivity for observing BFKL effects
ARIADNE - A Monte Carlo for QCD cascades in the colour dipole formulation
International Nuclear Information System (INIS)
Pettersson, U.
1988-04-01
We present a Monte Carlo program for generating QCD cascades, based on the colour dipole approximation. In this formulation the gluons are radiated from dipoles that are stretched from one colour charge to the corresponding anti-charge. The subsequent emission of gluons thus corresponds to the dipoles being split into smaller and smaller dipoles. This formulation automatically takes into account the angular ordering and the ordering in transverse momenta, and it also gives some nontrivial azimuthal effects. (author)
Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD.
Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram
2015-11-20
We present lattice QCD results on the neutron tensor charges including, for the first time, a simultaneous extrapolation in the lattice spacing, volume, and light quark masses to the physical point in the continuum limit. We find that the "disconnected" contribution is smaller than the statistical error in the "connected" contribution. Our estimates in the modified minimal subtraction scheme at 2 GeV, including all systematics, are g_{T}^{d-u}=1.020(76), g_{T}^{d}=0.774(66), g_{T}^{u}=-0.233(28), and g_{T}^{s}=0.008(9). The flavor diagonal charges determine the size of the neutron electric dipole moment (EDM) induced by quark EDMs that are generated in many new scenarios of CP violation beyond the standard model. We use our results to derive model-independent bounds on the EDMs of light quarks and update the EDM phenomenology in split supersymmetry with gaugino mass unification, finding a stringent upper bound of d_{n}<4×10^{-28} e cm for the neutron EDM in this scenario.
Directory of Open Access Journals (Sweden)
Alexandrou Constantia
2017-01-01
Full Text Available We briefly discuss the current status of lattice QCD simulations and review selective results on nucleon observables focusing on recent developments in the lattice QCD evaluation of the nucleon form factors and radii, parton distribution functions and their moments, and the neutron electric dipole moment. Nucleon charges and moments of parton distribution functions are presented using simulations generated at physical values of the quark masses, while exploratory studies are performed for the parton distribution functions and the neutron electric dipole moment at heavier than physical value of the pion mass.
Ariadne version 4 - a program for simulation of QCD cascades implementing the colour dipole model
International Nuclear Information System (INIS)
Loennblad, L.
1992-01-01
The fourth version of the Ariadne program for generating QCD cascades in the colour dipole approximation is presented. The underlying physics issues are discussed and a manual for using the program is given together with a few sample programs. The major changes from previous versions are the introduction of photon radiation from quarks and inclusion of interfaces to the LEPTO and PYTHIA programs. (orig.)
The electric dipole moment of the deuteron from the QCD {theta}-term
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, J.; Liebig, S. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Hanhart, C.; Nogga, A.; Wirzba, A. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Meissner, U.G. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Universitaet Bonn, Bethe Center for Theoretical Physics, Bonn (Germany)
2013-03-15
The two-nucleon contributions to the electric dipole moment (EDM) of the deuteron, induced by the QCD {theta}-term, are calculated in the framework of effective field theory up-to-and-including next-to-next-to-leading order. In particular we find for the difference of the deuteron EDM and the sum of proton and neutron EDM induced by the QCD {theta}-term a value of (- 5.4 {+-}3.9) anti {theta} x 10{sup -} {sup 4} e fm. The by far dominant uncertainty comes from the CP- and isospin-violating {pi}NN coupling constant. (orig.)
The role of electroweak penguin and magnetic dipole QCD penguin on hadronic b Quark Decays
Directory of Open Access Journals (Sweden)
H Mehrban
2010-03-01
Full Text Available This research, works with the effective Hamiltonian and the quark model. Using, the decay rates of matter-antimatter of b quark was investigated. We described the effective Hamiltonian theory which was applied to the calculation of current-current (Q1,2, QCD penguin (Q3,…,6, magnetic dipole (Q8 and electroweak penguin (Q7,…,10 decay rates. The gluonic penguin structure of hadronic decays b→qkg→qkqiqj was studied through the Wilson coefficients of the effective Hamiltonian. The branching ratios of the Tree-Level, effective Hamiltonian, effective Hamiltonian including electroweak penguin, effective Hamiltonian including magnetic dipole and the effective Hamiltonian including electroweak penguin and magnetic dipole b quark decays b→qiqkqj, qi{u,c}, qk{d,s}, qj{u,c} have been calculated. It was shown that, the electroweak penguin and magnetic dipole contributions in b quark decays are small and current-current operators are dominated.
Gluon structure function of a color dipole in the light-cone limit of lattice QCD
International Nuclear Information System (INIS)
Gruenewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.
2009-01-01
We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of x B . The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the 'experimental value' in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q 2 =1.5 GeV 2 . Within the systematic uncertainty we find rather good agreement. We also discuss the low x B behavior of the gluon structure function in our model calculation.
Exclusive diffractive processes at HERA within the dipole picture
International Nuclear Information System (INIS)
Kowalski, H.; Motkyka, L.; Uniwersytet Jagiellonski, Krakow; Watt, G.; Univ. College London
2006-08-01
We present a simultaneous analysis, within an impact parameter dependent saturated dipole model, of exclusive diffractive vector meson (J/ψ, φ and ρ) production, deeply virtual Compton scattering and the total γ * p cross section data measured at HERA. Various cross sections measured as a function of the kinematic variables Q 2 , W and t are well described, with little sensitivity to the details of the vector meson wave functions. We determine the properties of the gluon density in the proton in both longitudinal and transverse dimensions, including the impact parameter dependent saturation scale. The overall success of the description indicates universality of the emerging gluon distribution and proton shape. (orig.)
On AdS/QCD correspondence and the partonic picture of deep inelastic scattering
International Nuclear Information System (INIS)
Pire, B.; Roiesnel, C.; Szymanowski, L.; Wallon, S.
2008-01-01
We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'
On AdS/QCD correspondence and the partonic picture of deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Pire, B. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)], E-mail: pire@cpht.polytechnique.fr; Roiesnel, C. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Wallon, S. [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France)
2008-12-04
We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'.
Determination of electric dipole transitions in heavy quarkonia using potential non-relativistic QCD
Segovia, Jorge; Steinbeißer, Sebastian
2018-05-01
The electric dipole transitions {χ }bJ(1P)\\to γ \\Upsilon (1S) with J = 0, 1, 2 and {h}b(1P)\\to γ {η }b(1S) are computed using the weak-coupling version of a low-energy effective field theory named potential non-relativistic QCD (pNRQCD). In order to improve convergence and thus give firm predictions for the studied reactions, the full static potential is incorporated into the leading order Hamiltonian; moreover, we must handle properly renormalon effects and re-summation of large logarithms. The precision we reach is {k}γ 3/{(mv)}2× O({v}2), where kγ is the photon energy, m is the mass of the heavy quark and v its velocity. Our analysis separates those relativistic contributions that account for the electromagnetic interaction terms in the pNRQCD Lagrangian which are v 2 suppressed and those that account for wave function corrections of relative order v 2. Among the last ones, corrections from 1/m and 1/m2 potentials are computed, but not those coming from higher Fock states since they demand non-perturbative input and are {{{Λ }}}{{QCD}}2/{(mv)}2 or {{{Λ }}}{{QCD}}3/({m}3{v}4) suppressed, at least, in the strict weak coupling regime. These proceedings are based on the forthcoming publication [1].
EMC-effect and QCD evolution of the threequark nucleon picture
International Nuclear Information System (INIS)
Grigoryan, L.A.; Shakhbazyan, V.A.
1985-01-01
It is shown that the EMC-effect can be explained in the framework of the QCD evolution of the threequark nucleon picture. In comparing with the experimental data it is found that the effective radius of nucleon, which is in the iron nucleus, increases by 10% as compared with the free nucleon case. A comparison with experimental data in the region of 0.25 ≤ x ≤ 0.65 is made
The electric dipole moment of the neutron from 2+1 flavor lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Guo, F.K. [Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Meissner, U.G. [Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Forschungszentrum Juelich GmbH (Germany). Inst. for Advanced Simulation; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Forschungszentrum Juelich (Germany). Center for Hadron Physics; Juelich Aachen Research Alliance (Germany). JARA-FAME and JARA-HPC; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, Dept. of Physics
2015-02-15
We compute the electric dipole moment d{sub n} of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing theta term. The latter is rotated into the pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle θ is taken to be purely imaginary. The physical value of d{sub n} is obtained by analytic continuation. We find d{sub n}=-3.8(2)(9) x 10{sup -16} θ e cm, which, when combined with the experimental limit on d{sub n}, leads to the upper bound vertical stroke θ vertical stroke
Electric Dipole Moment of the Neutron from 2+1 Flavor Lattice QCD.
Guo, F-K; Horsley, R; Meissner, U-G; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M
2015-08-07
We compute the electric dipole moment d(n) of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing θ term. The latter is rotated into a pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle θ is taken to be purely imaginary. The physical value of dd(n) is obtained by analytic continuation. We find d(n)=-3.9(2)(9)×10(-16) θ e cm, which, when combined with the experimental limit on d(n), leads to the upper bound |θ|≲7.4×10(-11).
Parton saturation effects to the Drell-Yan process in the color dipole picture
International Nuclear Information System (INIS)
Betemps, M.A.; Gay Ducati, M.B.; Machado, M.V.T.
2003-01-01
We report on the results obtained in the study of the parton saturation effects, taken into account through the multi-scattering Glauber-Mueller approach applied to the Drell-Yan (DY) process described in the color dipole picture. As a main result, one shows that those effects play an important role on the estimates of the DY differential cross section at RHIC energies. (author)
Is QCD at Small X a String Theory?
Peschanski, R.
Using the dipole picture describing the 1/NC limit of QCD at small x and the conformal invariance properties of the BFKL kernel in transverse coordinate space, we show that the 1→p dipole densities can be expressed in terms of dual Shapiro-Virasoro amplitudes B2p+2 and their generalization including non-zero conformal spins. We discuss the possibility of an effective closed string theory of interacting QCD dipoles.
Energy Technology Data Exchange (ETDEWEB)
Manteuffel, Andreas von
2008-07-17
Theories with extended Higgs sectors such as Two-Higgs-Doublet Models (THDMs) or the Next-to-Minimal Supersymmetric Standard Model (NMSSM) allow for rich CP phenomena and involved Higgs-potential structures. Employing a gauge invariant formulation for the tree-level Higgs potential of the general THDM, we derive compact criteria for its stability, electroweak symmetry breaking, and generalised CP properties in a clear geometrical language. A new type of CP symmetry is shown to impose strong restrictions on the Lagrangian and to require at least two fermion generations for non-trivial Yukawa terms. Large regions of the NMSSM parameter space are excluded due to an instable vacuum. We present a rigorous determination of the global minimum of the tree-level potential via Groebner bases. In a second part, we investigate the colour dipole picture. This model of high energy photonproton scattering permits a very successful description of available HERA data. Nevertheless, its range of applicability is limited. We derive general bounds on ratios of deep-inelastic proton structure functions within the colour dipole picture, following exclusively from its framework and photon wave function properties. Confronting these bounds with HERA data we can further restrict the range of applicability of the colour dipole picture. Finally, we calculate Ioffe times for a specific model and find them to be too small to justify the dipole picture at large photon virtualities. (orig.)
Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.
2000-01-01
We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.
1999-01-01
Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions
QCD corrections to neutron electric dipole moment from dimension-six four-quark operators
Energy Technology Data Exchange (ETDEWEB)
Hisano, Junji, E-mail: hisano@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); IPMU, TODIAS, University of Tokyo, Kashiwa 277-8568 (Japan); Tsumura, Koji, E-mail: ko2@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Yang, Masaki J.S., E-mail: yang@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)
2012-07-18
In this Letter, the renormalization-group equations for the (flavor-conserving) CP-violating interaction are derived up to the dimension six, including all the four-quark operators, at one-loop level. We apply them to the models with the neutral scalar boson or the color-octet scalar boson which have CP-violating Yukawa interactions with quarks, and discuss the neutron electric dipole moment in these models.
Rencontres de Moriond QCD 2012: Direct and indirect searches make the whole picture
CERN Bulletin
2012-01-01
Tuesday saw presentations on heavy flavour physics and heavy-ion physics. Among the highlights were an updated scenario for supersymmetry and the latest results on the properties of the quark-gluon plasma. The green area shows the mass region where supersymmetry (in these graphs, only one specific model is shown) is still allowed. The graph on top is based on results preceding Moriond; the one on the bottom includes new results presented at Moriond. The black and red lines represent the exclusion limits coming from direct searches (CMS data used in this graph) before and after Moriond. The yellow exclusion regions refer to Bs -> μ+μ− LHCb results. The morning’s presentations stressed that, although current theories can naturally explain recent results in heavy flavour physics in a plausible and consistent picture that remains within the Standard Model, new physics contributions have not been excluded. Indeed, if new physics is above LHC reach, fla...
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1990-01-01
This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
AutoDipole - Automated generation of dipole subtraction terms
International Nuclear Information System (INIS)
Hasegawa, K.; Uwer, P.
2009-11-01
We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)
AutoDipole - Automated generation of dipole subtraction terms
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, K.; Uwer, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2009-11-15
We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)
Light-cone quantization and QCD phenomenology
International Nuclear Information System (INIS)
Brodsky, S.J.; Robertson, D.G.
1995-01-01
In principle, quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of their elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. A crucial tool in analyzing such phenomena is the use of relativistic light-cone quantum mechanics and Fock state methods to provide tractable and consistent treatments of relativistic many-body systems. In this article we present an overview of this formalism applied to QCD, focusing in particular on applications to the final states in deep inelastic lepton scattering that will be relevant for the proposed European Laboratory for Electrons (ELFE), HERMES, HERA, SLAC, and CEBAF. We begin with a brief introduction to light-cone field theory, stressing how it many allow the derivation of a constituent picture, analogous to the constituent quark model, from QCD. We then discuss several applications of the light-cone Fock state formalism to QCD phenomenology. The Fock state representation includes all quantum fluctuations of the hadron wavefunction, including far off-shell configurations such as intrinsic charm and, in the case of nuclei, hidden color. In some applications, such as exclusive processes at large momentum transfer, one can make first-principle predictions using factorization theorems which separate the hard perturbative dynamics from the nonpertubative physics associated with hadron binding. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer
Cabouat, Baptiste; Sjöstrand, Torbjörn
2018-03-01
Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.
International Nuclear Information System (INIS)
Hasegawa, K.; Moch, S.; Uwer, P.
2008-07-01
We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg→t anti tggg. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, K.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik
2008-07-15
We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg{yields}t anti tggg. (orig.)
International Nuclear Information System (INIS)
Hasegawa, K.
2008-01-01
The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)
Renormalization of Extended QCD2
International Nuclear Information System (INIS)
Fukaya, Hidenori; Yamamura, Ryo
2015-01-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
International Nuclear Information System (INIS)
Konishi, K.
1980-01-01
The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)
DEFF Research Database (Denmark)
Sannino, Francesco
2009-01-01
We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...
Multiplicity distributions in QCD cascades
International Nuclear Information System (INIS)
Gustafson, G.
1992-03-01
Multiplicity distributions for hadrons and for jets are studied in QCD parton cascades. The colour dipole formalism is used and earlier results in the double log approximation are generalized to include terms which are suppressed by colour factors or factors of ln s. The result is a set of coupled differential equations, together with appropriate boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others
2016-04-15
We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
International Nuclear Information System (INIS)
Kogan, I.I.; Wyler, D.
1992-01-01
The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)
International Nuclear Information System (INIS)
Vlogaert, J.
1987-01-01
This paper describes the general design of ACOL dipoles, including the special injection area dipole. A list of mechanical, electrical and magnetic parameters and results of magnetic measurements are presented. Particular attention is paid to the proximity effects between quadrupoles and dipoles
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
International Nuclear Information System (INIS)
Kwiecinski, J.
1989-01-01
Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-01-01
Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)
Neutron Electric Dipole Moment on the Lattice
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan
2018-03-01
For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Neutron Electric Dipole Moment on the Lattice
Directory of Open Access Journals (Sweden)
Yoon Boram
2018-01-01
Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Virtual photon interactions in high energy QCD
International Nuclear Information System (INIS)
Gieseke, S.
2001-07-01
We study the interactions of virtual photons in the high energy limit of quantum chromodynamics (QCD). The subject is discussed in terms of two closely linked applications: the calculation of the total cross section for γ * γ * -scattering and the description of DIS in the colour dipole model. We calculate virtual corrections in α s to the process γ * q → (qq)q and the tree level process γ * q → (qqg)q in the high energy limit. From this calculation we obtain one-loop corrections to the effective γ * -reggeon-qq-vertex in the helicity basis of the virtual photon and the qq-pair. The loop integrals for the virtual corrections have been performed and expressed in dimensional regularization in terms of logarithms and dilogarithms. We have convoluted the virtual one-loop matrix elements with tree level matrix elements and expressed the integrals over the phase space of the qq-pair explicitly in terms of a set of standard integrals. The real corrections have been calculated and, in case of the longitudinal polarization, expressed in factorized form. From these calculations, the impact factor of virtual photons will be determined, allowing for a first prediction of the total cross section for γ * γ * -scattering in the next-to-leading-log s approximation. The calculations in this thesis extend the photon wave function picture in the colour dipole model to next-to-leading order. For this purpose, the real corrections with a qqg final state are analyzed in transverse configuration space and interpreted as a first higher Fock component of the photon wave function. In addition, the matrix elements that have been calculated in this thesis are needed for the calculation of jet cross sections. (orig.)
A QCD motivated model for soft processes
International Nuclear Information System (INIS)
Kormilitzin, A.; Levin, E.
2009-01-01
In this talk we give a brief description of a QCD motivated model for both hard and soft interactions at high energies. In this model the long distance behaviour of the scattering amplitude is determined by the dipole scattering amplitude in the saturation domain.
Strong CP violation and the neutron electric dipole form factor
International Nuclear Information System (INIS)
Kuckei, J.; Dib, C.; Faessler, A.; Gutsche, T.; Kovalenko, S. G.; Lyubovitskij, V. E.; Pumsa-ard, K.
2007-01-01
We calculate the neutron electric dipole form factor induced by the CP-violating θ term of QCD within a perturbative chiral quark model which includes pion and kaon clouds. On this basis, we derive the neutron electric dipole moment and the electron-neutron Schiff moment. From the existing experimental upper limits on the neutron electric dipole moment, we extract constraints on the θ parameter and compare our results with other approaches
Plasmonic functionalities based on detuned electrical dipoles
DEFF Research Database (Denmark)
Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.
2013-01-01
We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...
International Nuclear Information System (INIS)
Gross, D.
1979-01-01
An overview of QCD is given, and some of the dynamical issues that arise in attempts to solve this theory are discussed. In particular, attention is focused on the problems that appear in attempts to discuss the structure of low-lying hadrons, e.g. nucleons, on the basis of a color gauge theory of quarks. The picture of hadronic structure developed by Callan, Dashen, and Gross is reviewed; this picture maintains that it presents the qualitative features of hadronic structure emerging in a direct way from first principles. Finally, the relevance of the emerging understanding of the structure of hadrons to the question of what hadronic matter (nuclear or quark matter) might look like at high densities is discussed
International Nuclear Information System (INIS)
Cornwall, J.M.
1986-01-01
The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)
13. international QCD conference (QCD 06)
International Nuclear Information System (INIS)
2006-01-01
This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations
13. international QCD conference (QCD 06)
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.
Modeling the thermodynamics of QCD
Energy Technology Data Exchange (ETDEWEB)
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
International Nuclear Information System (INIS)
Radyushkin, A.V.; Slepchenko, L.A.
1983-01-01
Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed
$\\gamma N \\to \\Delta$ transition form factors in Quenched and $N_F=2$ QCD
Alexandrou, C; Lippert, T; Neff, H; Negele, J W; Schilling, K; Schroers, W; Tsapalis, A; Forcrand, Ph. de; Lippert, Th.
2003-01-01
Calculations of the magnetic dipole, electric quadrupole and Coulomb quadrupole amplitudes for the transition $\\gamma N\\to \\Delta$ are presented both in quenched QCD and with two flavours of degenerate dynamical quarks.
γN → Δ transition form factors in quenched and NF = 2 QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Forcrand, Ph. de; Lippert, Th.; Neff, H.; Negele, J.W.; Schilling, K.; Schroers, W.; Tsapalis, A.
2004-01-01
Calculations of the magnetic dipole, electric quadrupole and Coulomb quadrupole amplitudes for the transition γN → Δ are presented both in quenched QCD and with two flavours of degenerate dynamical quarks
Theta dependence in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Bartolini, Lorenzo [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Bigazzi, Francesco [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bolognesi, Stefano [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Cotrone, Aldo L. [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Manenti, Andrea [Institute of Physics, EPFL,Rte de la Sorge, BSP 728, CH-1015 Lausanne (Switzerland)
2017-02-07
We study the effects of the CP-breaking topological θ-term in the large N{sub c} QCD model by Witten, Sakai and Sugimoto with N{sub f} degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the N{sub f}=2 case, we consider the baryonic sector and determine, to leading order in the small θ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive O(θ) corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant ḡ{sub πNN}, finding that it is zero to leading order in the large N{sub c} limit.
Electric dipole transitions of heavy quarkonium
Energy Technology Data Exchange (ETDEWEB)
Pietrulewicz, Piotr [Universitaet Wien (Austria)
2012-07-01
In this talk we present the theoretical treatment of electric dipole transitions of heavy quarkonia within an effective field theory formalism. Inside the effective field theory called potential nonrelativistic QCD (pNRQCD) we account for the relativistic corrections to the decay rate in a systematic and model-independent way. Former results from potential model calculations are scrutinized, and a phenomenological analysis in relation to the experimental data is presented.
Neutron Electric Dipole Moment from Gauge-String Duality.
Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea
2017-03-03
We compute the electric dipole moment of nucleons in the large N_{c} QCD model by Witten, Sakai, and Sugimoto with N_{f}=2 degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result-a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be d_{n}=1.8×10^{-16}θ e cm. The electric dipole moment of the proton is exactly the opposite.
Ultrahigh energy neutrinos and nonlinear QCD dynamics
International Nuclear Information System (INIS)
Machado, Magno V.T.
2004-01-01
The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms
New insights into the neutron electric dipole moment
Energy Technology Data Exchange (ETDEWEB)
Ottnad, K.; Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Meissner, U.-G., E-mail: meissner@hiskp.uni-bonn.d [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institut fuer Kernphysik, Juelich Center for Hadron Physics and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Guo, F.-K. [Institut fuer Kernphysik, Juelich Center for Hadron Physics and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)
2010-04-05
We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |theta{sub 0}|<=2.5x10{sup -10}. The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.
New insights into the neutron electric dipole moment
International Nuclear Information System (INIS)
Ottnad, K.; Kubis, B.; Meissner, U.-G.; Guo, F.-K.
2010-01-01
We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |θ 0 |≤2.5x10 -10 . The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....
Perturbative odderon in the dipole model
International Nuclear Information System (INIS)
Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel
2004-01-01
We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a C-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions E n,ν and χ(n,ν) correspondingly, where the C-odd initial condition allows only for odd values of n. The leading high-energy odderon intercept is given by α odd -1=((2α s N c )/(π))χ(n=1,ν=0)=0 in agreement with the solution found by Bartels, Lipatov and Vacca. We proceed by writing down an evolution equation for the odderon including the effects of parton saturation. We argue that saturation makes the odderon solution a decreasing function of energy
Perturbative odderon in the dipole model
Energy Technology Data Exchange (ETDEWEB)
Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel
2004-04-29
We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a C-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions E{sup n,{nu}} and {chi}(n,{nu}) correspondingly, where the C-odd initial condition allows only for odd values of n. The leading high-energy odderon intercept is given by {alpha}{sub odd}-1=((2{alpha}{sub s}N{sub c})/({pi})){chi}(n=1,{nu}=0)=0 in agreement with the solution found by Bartels, Lipatov and Vacca. We proceed by writing down an evolution equation for the odderon including the effects of parton saturation. We argue that saturation makes the odderon solution a decreasing function of energy.
Hadron production at LHC in dipole momentum space
International Nuclear Information System (INIS)
Basso, E. A.; Gay Ducati, M. B.; De Oliveira, E. G.
2013-01-01
The dipole color approach is the framework that considers the quark-antiquark pair scattering off the target. The rapidity evolution of color dipoles is given by the nonlinear Balitsky-Kovchegov (BK) equation, for which analytical solutions are not yet known. A good way to explore the asymptotic BK solutions is through the traveling wave method of QCD, that uses a correspondence between the BK evolution equation in momentum space and reaction-diffusion physics. Using the traveling wave based AGBS model for the dipole amplitude in momentum space, and within the k t -factorization formalism, we describe the LHC data on single inclusive hadron yield for p–p collisions.
Explaining jet quenching with perturbative QCD alone
Zapp, Korinna C; Wiedemann, Urs A
2011-01-01
We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.
Colour singlets in perturbative QCD
International Nuclear Information System (INIS)
Bassetto, A.
1979-01-01
In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)
Baryon structure from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.
2009-01-01
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)
Deeply virtual compton scattering in color dipole formalism
International Nuclear Information System (INIS)
Machado, Magno V.T.
2007-01-01
In this contribution we summarize recent investigations on the Deeply Virtual Compton Scattering (DVCS) within the color dipole approach. The color dipole cross section is implemented through the phenomenological saturation model. The role played by its QCD evolution and skewedness effects in the DVCS cross section are discussed. The results are compared with the recent H1 and ZEUS Collaborations data. The skewing factor, defined as the ratio of the imaginary parts of the amplitudes Im A(γ* p → γ* p)/ Im A(γ* p → γ p) can be extracted from the data using recent DVCS and the inclusive inelastic cross section measurements at DESY-HERA. We report on this experimental extraction and compare the results to the theoretical predictions for NLO QCD and the color dipole approach. (author)
Meson Correlators in Finite Temperature Lattice QCD
De Forcrand, Philippe; Hashimoto, T; Hioki, S; Matsufuru, H; Miyamura, O; Nakamura, A; Takaishi, T; Umeda, T; Stamatescu, I O; CERN. Geneva; Forcrand, Ph. de
2001-01-01
We analyze temporal and spatial meson correlators in quenched lattice QCD at T>0. Below T_c we observe little change in the meson properties as compared with T=0. Above T_c we observe new features: chiral symmetry restoration and signals of plasma formation, but also indication of persisting mesonic (metastable) states and different temporal and spatial masses in the mesonic channels. This suggests a complex picture of QGP in the region 1 - 1.5 T_c.
International Nuclear Information System (INIS)
Avishai, Y.; Fabre de la Ripelle, M.
1986-01-01
The contribution of a CP-nonconserving nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated in view of a recent proposal for its experimental detection. We use two models of CP-nonconserving interactions in combination with a Reid soft-core strong nucleon-nucleon interaction. In the Kobayashi-Maskawa model of CP nonconservation the order of magnitude is 10 -30 eX while the presence of the theta term in the QCD Langrangian contributes an order of magnitude 10 -16 theta-bar e cm
The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order
Mereghetti, E.; de Vries, J.; Hockings, W. H.; Maekawa, C. M.; van Kolck, U.
2011-01-01
The electric dipole form factor (EDFF) of the nucleon stemming from the QCD (theta) over bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable,
Energy Technology Data Exchange (ETDEWEB)
Anon.
1979-10-15
Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics.
International Nuclear Information System (INIS)
Simonov, Yu.A.
1989-01-01
To apply QCD to nuclear physics one needs methods of long-distance QCD. A new method, method of Confining Background Fields, CBF, which incorporates confinement, is presented with applications to heavy and light quarks, both in mesons and baryons. Spin-dependent forces are calculated for light and heavy quarks. The quark potential model in some limiting case is derived. 25 refs
International Nuclear Information System (INIS)
Anon.
1979-01-01
Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics
DEFF Research Database (Denmark)
Pless, Mette; Sørensen, Niels Ulrik
’Picture perfect’ – when perfection becomes the new normal This paper draws on perspectives from three different studies. One study, which focuses on youth life and lack of well-being (Sørensen et al 2011), one study on youth life on the margins of society (Katznelson et al 2015) and one study...
Osterer, Irv
2009-01-01
With the popularity of e-mail cutting into revenues, Canada Post is always searching for a marketing strategy that would encourage people to use the mail. "Picture Postage" is such an initiative. This popular program allows individuals to create their own stamps for family and friends. This opportunity also provides a vehicle for…
International Nuclear Information System (INIS)
Avishai, Y.; Fabre de la Ripelle, M.
1987-01-01
The contribution of CP violating nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated following a recent proposal for its experimental detection. Two models of CP violating interactions are used, namely, the Kobayashi-Maskawa mechanism and the occurrence of the Θ term in the QCD lagrangian. These CP violating interactions are combined with realistic strong nucleon-nucleon interactions to induce a CP forbidden component of the 3 He wave function. The matrix element of the electric dipole operator is then evaluated between CP allowed and CP forbidden components yielding the observable electric dipole moment. Using the parameters emerging from the penguin terms in the Kobaysashi-Maskawa model we obtain a result much larger than the electric dipole moment of the neutron in the same model. On the other hand, no enhancement is found for the Θ-term mechanism. A possible explanation for this difference is discussed. Numerical estimates can be given only in the Kobayashi-Maskawa model, giving d( 3 He) ≅ 10 30 e . cm. In the second mechanism, the estimate give d ( 3 He) ≅ 10 16 anti Θ. (orig.)
The BFKL pomeron calculus in the dipole approach
International Nuclear Information System (INIS)
Kozlov, M.; Levin, E.; Prygarin, A.
2007-01-01
In this paper we continue to pursue a goal of finding an effective theory for high energy interaction in QCD based on the colour dipole approach, for which the BFKL pomeron calculus gives a low energy limit. The key problem, that we try to solve in this paper is the probabilistic interpretation of the BFKL pomeron calculus in terms of the colourless dipoles and their interactions. We demonstrate that the BFKL pomeron calculus has two equivalent descriptions: (i) one is the generating functional which gives a clear probabilistic interpretation of the processes of high energy scattering and also provides a Hamiltonian-like description of the system of interacting dipoles; (ii) the second is the Langevin equation with a specific noise term which is rather complicated. We found that at high energies this Langevin equation can be reduced to the Langevin equation for directed percolation in the momentum space if the impact parameter is large, namely, b1/k, where k is the transverse momentum of a dipole. Unfortunately, this simplified form of Langevin equation is not applicable for summation of pomeron loops, where one integrates over all possible values of impact parameter. We show that the BFKL pomeron calculus with two vertices (splitting P->P+P and merging P+P->P of pomerons) can be interpreted as a system of colourless dipoles with two processes: the decay of one dipole into two and the merging of two dipoles into one dipole. However, a number of assumptions we have to make on the way to simplify the noise term in the Langevin equation and/or to apply the probabilistic interpretation, therefore, we can consider both of these approaches in the present form only as the QCD motivated models
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefediev, A.V.
1997-01-01
The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective swelling of baryon in comparison with standard potential picture. The effects of finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the swelling considerably is discussed
The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta
Energy Technology Data Exchange (ETDEWEB)
Aoki, S. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Tsukuba Univ. (Japan). Graduate School of Pure and Applied Sciences; Horsley, R.; Zanotti, J. [Edinburgh Univ. (United Kingdom). School of Physics; Izubuchi, T. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Kanazawa Univ. (Japan). Inst. for Theoretical Physics; Nakamura, Y.; Pleiter, D.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division. Dept. of Mathematical Sciences
2008-07-15
We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N{sub f}=2 flavors of dynamical quarks at imaginary vacuum angle {theta}. The calculation proceeds via the CP odd form factor F{sub 3}. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F{sub 3} at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing {theta}. (orig.)
International Nuclear Information System (INIS)
Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen
2008-01-01
We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD
Nonperturbative QCD and elastic processes at CEBAF energies
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, A.V. [Old Dominion Univ., Norfolk, VA (United States)]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)
1994-04-01
The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.
Nonperturbative QCD and elastic processes at CEBAF energies
International Nuclear Information System (INIS)
Radyushkin, A.V.
1994-01-01
The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author's point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood (open-quotes knownclose quotes) short-distance effects and nonperturbative (open-quotes unknownclose quotes) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q 2 closer to 10 GeV 2 and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes
2017-01-01
This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.
International Nuclear Information System (INIS)
Kronfeld, Andreas
2005-01-01
Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.
International Nuclear Information System (INIS)
Ingelman, Gunnar
1994-01-01
The traditional annual DESY Theory Workshop highlights a topical theory sector. The most recent was under the motto 'Quantum Chromo-Dynamics' - QCD, the field theory of quarks and gluons. The organizers had arranged a programme covering most aspects of current QCD research. This time the workshop was followed by a topical meeting on 'QCD at HERA' to look at the electron-proton scattering experiments now in operation at DESY's new HERA collider
Aurenche , P; Guillet , J.-Ph; Pilon , E
2016-01-01
3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...
International Nuclear Information System (INIS)
Kaplan, D.B.
1995-01-01
I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it
Sykora, Tomas; The ATLAS collaboration
2018-01-01
Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.
International Nuclear Information System (INIS)
Dominguez, C.A.
1987-02-01
The scalar (0 ++ ) and the tensor (2 ++ ) gluonium spectrum is analyzed in the framework of QCD sum rules. Stable eigenvalue solutions, consistent with duality and low energy theorems, are obtained for the mass and width of these glueballs. (orig.)
International Nuclear Information System (INIS)
Mueller, A.H.
1986-03-01
A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)
International Nuclear Information System (INIS)
Christ, Norman H
2000-01-01
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
International Nuclear Information System (INIS)
Kikkawa, Keiji
1983-01-01
The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)
International Nuclear Information System (INIS)
Neubert, Matthias
2001-01-01
The QCD factorization approach provides the theoretical basis for a systematic analysis of nonleptonic decay amplitudes of B mesons in the heavy-quark limit. After recalling the basic ideas underlying this formalism, several tests of QCD factorization in the decays B→D (*) L, B→K * γ, and B→πK, ππ are discussed. It is then illustrated how factorization can be used to obtain new constraints on the parameters of the unitarity triangle
Schuster, Theodor
2013-01-01
We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\\mathcal{N}=4$ super Yang-Mills theory.
International Nuclear Information System (INIS)
Sivers, D.
1979-10-01
Some aspects of a simple strategy for testing the validity of QCD perturbation theory are examined. The importance of explicit evaluation of higher-order contributions is illustrated by considering Z 0 decays. The recent progress toward understanding exclusive processes in QCD is discussed and some simple examples are given of how to isolate and test the separate components of the perturbation expansion in a hypothetical series of jet experiments
Skands, Peter
2011-01-01
These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...
Factorization and pion form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1979-01-01
The behaviour of the pion electromagnetic form factor (EMFF) in the framework of quantum chromodynamics (QCD) is discussed. Pion is considered to be a quark-antiquark bound state. It is proposed to use an OPE description of the bound state structure by matrix elements of certain local gauge-invariant operators. Short-distance quark interactions is proved using a direct analysis of perturbation theory in the α-parametric representation of the Feynman diagrams. It is shown that the short-distance parton picture privides a self-consistent description of the large Q 2 momentum behaviour of the pion EMFF in QCD. Pion EMFF asymptotics is expressed in terms of fu fundamental constants of the theory
Electric dipole moments reconsidered
International Nuclear Information System (INIS)
Rupertsberger, H.
1989-01-01
The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)
UNK superconducting dipole development
International Nuclear Information System (INIS)
Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.
1987-01-01
For choozing the design of superconducting dipoles (SCD) for the IHEP UNK the test results for SCD with warm and cold iron are given. The main parameters of dipoles are presented. The SCD designs are described. At present works on SP magnet simulation for UNK are carried out in two directions. Tests are conducted on a rig with a chain of series dipoles with a warm magnetic screen. The purpose of these tests is to study heat exchange and hydraulics in magnets, energy and helium evacuation in emergency magnet transition into normal conditions, simulation of possible cooling and heating schemes. Another direction involves production of short and full-scale dipole models with cold iron and their testing on rigs. The final choice of the dipole design for commercial production is planned for 1987
Olson, Peter; Amit, Hagay
2006-11-01
The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.
Hadron production at LHC in dipole momentum space
Energy Technology Data Exchange (ETDEWEB)
Basso, E. A.; Gay Ducati, M. B. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 - Porto Alegre, RS (Brazil); De Oliveira, E. G. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)
2013-03-25
The dipole color approach is the framework that considers the quark-antiquark pair scattering off the target. The rapidity evolution of color dipoles is given by the nonlinear Balitsky-Kovchegov (BK) equation, for which analytical solutions are not yet known. A good way to explore the asymptotic BK solutions is through the traveling wave method of QCD, that uses a correspondence between the BK evolution equation in momentum space and reaction-diffusion physics. Using the traveling wave based AGBS model for the dipole amplitude in momentum space, and within the k{sub t}-factorization formalism, we describe the LHC data on single inclusive hadron yield for p-p collisions.
The lowest Landau level in QCD
Directory of Open Access Journals (Sweden)
Bruckmann Falk
2017-01-01
Full Text Available The thermodynamics of Quantum Chromodynamics (QCD in external (electro-magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL. Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Roessner, Simon
2009-04-09
Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)
International Nuclear Information System (INIS)
Roessner, Simon
2009-01-01
Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)
QCD machines - present and future
International Nuclear Information System (INIS)
Christ, N.H.
1991-01-01
The present status of the currently working and nearly working dedicated QCD machines is reviewed and proposals for future machines are discussed with particular emphasis on the QCD Teraflop Project in the US. (orig.)
Marciano, William J
2010-01-01
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o
Non-perturbative Debye mass in finite-T QCD
Kajantie, Keijo; Peisa, J; Rajantie, A; Rummukainen, K; Shaposhnikov, Mikhail E
1997-01-01
Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.
Unraveling models of CP violation through electric dipole moments of light nuclei
Dekens, W.; Vries, J. de; Bsaisou, J.; Bernreuther, W.; Hanhart, C.; Meißner, Ulf-G; Nogga, A.; Wirzba, A.
2014-01-01
We show that the proposed measurements of the electric dipole moments of light nuclei in storage rings would put strong constraints on models of flavor-diagonal CP violation. Our analysis is exemplified by a comparison of the Standard Model including the QCD theta term, the minimal left-right
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
International Nuclear Information System (INIS)
Zou, L.P.; Zhang, P.M.; Pak, D.G.
2013-01-01
We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed
International Nuclear Information System (INIS)
Brodsky, Stanley J.; SLAC
2007-01-01
I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions
Drell-Yan phenomenology in the color dipole picture revisited
Czech Academy of Sciences Publication Activity Database
Basso, E.; Goncalves, V. P.; Nemchik, J.; Pasechnik, R.; Šumbera, Michal
2016-01-01
Roč. 93, č. 3 (2016), č. článku 034023. ISSN 2470-0010 R&D Projects: GA MŠk(CZ) LG13031; GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : LHC * RHIC * heavy ion collisions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.568, year: 2016
Particle electric dipole moments
Pendlebury, J M
2000-01-01
Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.
International Nuclear Information System (INIS)
Anisovich, V.V.
1989-06-01
Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
International Nuclear Information System (INIS)
Hansl-Kozanecka, T.
1992-01-01
The phenomenological aspects of Quantum Chromodynamics (QCD) are examined which are relevant for lepton-hadron, electron-positron and hadron-hadron collisions. In deep inelastic scattering the virtual γ or W/Z is used as a probe of the nucleon structure. The strong coupling constant (α s ) measurements via deep inelastic scattering and e + e - annihilation are discussed. Parton-parton collisions (e.g., hard hadron-hadron collisions) are examined as the third regime for QCD tests. (K.A.) 122 refs., 84 figs., 4 tabs
International Nuclear Information System (INIS)
Lippert, Matthew
2009-01-01
We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Dynamics of nonstationary dipole vortices
DEFF Research Database (Denmark)
Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.
1993-01-01
The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
Stirling, William James
1991-12-01
1. Some basic theory. 2. Two important applications: - e+ e- annihilation (LEPSLS) ; deep inelastic scattering (HERA). 3. Other applications..., large Pt jets, W and Z, heavy quark production..., (pp- colliders). In this lecture: some basic theory. 1. QCD as a non abelian gauge field theory. 2. Asymptotic freedom. 3. Beyond leading order - renormalisation schemes. 4. MS.
Renormalization of Hamiltonian QCD
International Nuclear Information System (INIS)
Andrasi, A.; Taylor, John C.
2009-01-01
We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.
Phenomenology Using Lattice QCD
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
International Nuclear Information System (INIS)
Furmanski, W.
1981-08-01
The effects of scaling violation in QCD are discussed in the perturbative scheme, based on the factorization of mass singularities in the light-like gauge. Some recent applications including the next-to-leading corrections are presented (large psub(T) scattering, numerical analysis of the leptoproduction data). A proposal is made for extending the method on the higher twist sector. (author)
International Nuclear Information System (INIS)
Cahill, R.T.
1992-01-01
A review is given of progress in deriving the effective action for hadronic physics, S[π, ρ, ω, .., anti N, N, ..], from the fundamental defining action of QCD, S[anti q, q, A μ a ]. This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling. (orig.)
Observables of QCD diffraction
Mieskolainen, Mikael; Orava, Risto
2017-03-01
A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.
Metzger, W.J.
2003-01-01
Several preliminary QCD results from e+e- interactions at LEP are reported. These include studies of event shape variables, which are used to determine alpha_s and for studies of the validity of power corrections. Further, a study of color reconnection effects in 3-jet Z decays is reported.
International Nuclear Information System (INIS)
Nathan Isgur
1997-01-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections
HERAFitter, Open Source QCD Fit Project
Alekhin, S.; Belov, P.; Borroni, S.; Botje, M.; Britzger, D.; Camarda, S.; Cooper-Sarkar, A.M.; Daum, K.; Diaconu, C.; Feltesse, J.; Gizhko, A.; Glazov, A.; Guffanti, A.; Guzzi, M.; Hautmann, F.; Jung, A.; Jung, H.; Kolesnikov, V.; Kowalski, H.; Kuprash, O.; Kusina, A.; Levonian, S.; Lipka, K.; Lobodzinski, B.; Lohwasser, K.; Luszczak, A.; Malaescu, B.; McNulty, R.; Myronenko, V.; Naumann-Emme, S.; Nowak, K.; Olness, F.; Perez, E.; Pirumov, H.; Plačakytė, R.; Rabbertz, K.; Radescu, V.; Sadykov, R.; Salam, G.P.; Sapronov, A.; Schöning, A.; Schörner-Sadenius, T.; Shushkevich, S.; Slominski, W.; Spiesberger, H.; Starovoitov, P.; Sutton, M.; Tomaszewska, J.; Turkot, O.; Vargas, A.; Watt, G.; Wichmann, K.
2015-07-02
HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodological options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study t...
QCD Structure of Nuclear Interactions
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos [Florida Intl Univ., Miami, FL (United States)
2011-05-25
This dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. Through these processes, this work explored the constituent structure of baryons and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. First, hard nucleon-nucleon elastic scattering was studied considering the quark exchange (QE) between the nucleons to be the dominant mechanism of interaction in the constituent picture. It was found that an angular asymmetry exhibited by proton-neutron (pn) elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) model. The latter yields an asymmetry around 90 deg center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and pn breakup in ^{3}He, and double Δ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the QE mechanism provides a QCD description of the reaction. Cross sections for both channels in ^{3}He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In double Δ-isobars production in deuteron breakup, HRM angular distributions for the two double Δ channels were compared to the pn channel and to each other. An important prediction from this study is that the Δ^{++} Δ^{-} channel consistently dominates Δ^{+}Δ^{0}, which is in contrast with models that unlike the HRM consider a double Δ system in the initial state of the interaction. For such models both channels should have the same strength.
A general algorithm for calculating jet cross sections in NLO QCD
Catani, S.; Catani, Stefano; Seymour, Michael H
1997-01-01
We present a new general algorithm for calculating arbitrary jet cross sections in arbitrary scattering processes to next-to-leading accuracy in perturbative QCD. The algorithm is based on the subtraction method. The key ingredients are new factorization formulae, called dipole formulae, which implement in a Lorentz covariant way both the usual soft and collinear approximations, smoothly interpolating the two. The corresponding dipole phase space obeys exact factorization, so that the dipole contributions to the cross section can be exactly integrated analytically over the whole of phase space. We obtain explicit analytic results for any jet observable in any scattering or fragmentation process in lepton, lepton-hadron or hadron-hadron collisions. All the analytical formulae necessary to construct a numerical program for next-to-leading order QCD calculations are provided. The algorithm is straightforwardly implementable in general purpose Monte Carlo programs.
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2003-11-19
Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.
Dipole-dipole dispersion interactions between neutrons
Babb, James F.; Higa, Renato; Hussein, Mahir S.
2016-01-01
We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the $\\Delta$-resonance ($J^{\\pi}$ = + 3/2, I = 3/2). We found b...
International Nuclear Information System (INIS)
Griffiths, D.J.
1992-01-01
In a world populated by magnetic monopoles (as well as ordinary electric charges), there are two kinds of electric dipoles: those due to separated electric charges, and those due to current loops of magnetic charge. Similarly, there are two kinds of magnetic dipoles: those due to separated magnetic monopoles, and those due to electric current loops. This paper derives the potentials and fields of each of the four dipole species, and calculates the force, torque, energy, momentum, and angular momentum of each type, when placed (at rest) in a static external field (which may itself be produced by electric charges and currents, magnetic charges and currents, or all of these). Some implications and applications of the various results are discussed
The dipole representation of vector meson electroproduction beyond leading twist
International Nuclear Information System (INIS)
Besse, A.; Szymanowski, L.; Wallon, S.
2013-01-01
We link the recent computation beyond leading twist of the impact factor of the transition γ T ⁎ →ρ T performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura–Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the ρ-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura–Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.
International Nuclear Information System (INIS)
Navelet, H.
1998-01-01
We compute the onium-onium scattering amplitude at fixed impact parameter in the framework of the perturbative QCD dipole model. Relying on the conformal properties of the dipole cascade and of the elementary dipole-dipole scattering amplitude, we obtain an exact result for this onium-onium scattering amplitude, which is proved to be identical to the BFKL result, and which exhibits the frame invariance of the calculation. The asymptotic expression for this amplitude and for the dipole distribution in an onium at fixed impact parameter agree with previous numerical simulations. We show how it is possible to describe onium-e ± deep inelastic scattering in the dipole model, relying on k T -factorization properties. The elementary scattering amplitudes involved in the various processes are computed using eikonal techniques. (orig.)
Dipole-dipole van der Waals interaction in alkali halides
International Nuclear Information System (INIS)
Thakur, B.N.; Thakur, K.P.
1978-01-01
Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de
Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Atri [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Space sciences, Technologies and Astrophysics Research (STAR) Institute,Université de Liège,Bât. B5a, 4000 Liège (Belgium); Enberg, Rikard [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Jeong, Yu Seon [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); National Institute of Supercomputing and Networking, KISTI,245 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, C.S. [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); Reno, Mary Hall [Department of Physics and Astronomy, University of Iowa,Iowa City, Iowa 52242 (United States); Sarcevic, Ina [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Department of Astronomy, University of Arizona,933 N. Cherry Ave., Tucson, AZ 85721 (United States); Stasto, Anna [Department of Physics, 104 Davey Lab, The Pennsylvania State University,University Park, PA 16802 (United States)
2016-11-28
We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k{sub T} factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.
International Nuclear Information System (INIS)
Kovacs, E.
1996-02-01
We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E T >200 GeV, or dijet masses > 400 GeV/c 2 . We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k T smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution
International Nuclear Information System (INIS)
Espriu, D.
2003-01-01
QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)
Electric dipole moments of light nuclei in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)
2014-07-01
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.
International Nuclear Information System (INIS)
Kharzeev, D.
2004-01-01
In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well
International Nuclear Information System (INIS)
Nachtmann, O.
1992-01-01
The modern theory of strong interactions - Quantum Chromodynamics (QCD), where quarks and gluons carrying the 'colour' quantum number play the essential role, is twenty years old. This birthday was duly celebrated at RWTH Aachen from 9-13 June, where recurring themes were - what has been achieved in the past twenty years?, where do we stand?, and what are the perspectives for the future?
International Nuclear Information System (INIS)
Bjorken, J.D.
1996-10-01
New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC
International Nuclear Information System (INIS)
Gervais, J.L.; Neveu, A.
1980-01-01
Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)
Skands, Peter
2012-01-01
These lectures were originally given at TASI and are directed at a level suitable for graduate students in High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD), focusing on collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into five main areas: 1) fundamentals, 2) fixed-order pertu...
International Nuclear Information System (INIS)
Gottlieb, S.
1992-01-01
Increased computer power is essential for future progress in lattice gauge theory and for other Grand challenge applications. We address the physics that can be done with a computer capable of sustaining 1 Teraflops for QCD and the technology that will make it possible to construct such a computer within the next three years. Our collaboration has proposed to build a computer based on the Thinking Machines CM5 communication network, but with nodes 10 times faster
A model of confinement in 2+1 dimensional QCD
International Nuclear Information System (INIS)
Frenkel, J.; Silva Filho, A.C. da.
1985-01-01
A dielectric model of QCD in 2-space dimensions which yields confinement of two opposite color charges via a static linear potential is discussed. The non-leading contributions to the asymptotic potential as well as the structure of the confinement domain are studied analytically and numerically. For large separations of the color charges, a behavior which contrasts with the usual string-like picture is found. (Author) [pt
International Nuclear Information System (INIS)
Baker, M.; Ball, J.S.; Zachariasen, F.
1991-01-01
We review the attempts to use dual (electric) vector potentials rather than the standard magnetic vector potentials to describe QCD, particularly in the infrared regime. The use of dual potentials is motivated by the fact that in classical electrodynamics, in a medium with a dielectric constant vanishing at small momenta (as is believed to be the case in QCD), electric potentials provide a far more convenient language than do magnetic potentials. To begin with, we outline attempts to construct the QCD Lagrangian in terms of dual potentials and describe the various possibilities, their shortcomings and advantages, which so far exist. We then proceed to use the most attractive (albeit consistent as a field theory only at the tree level) of these Lagrangians in a number of applications. We show that it describes a non-Abelian dual superconductor (so that it automatically confines color), derive the static quark-antiquark potential, and various temperature dependent effects, such as deconfinement and chiral symmetry breaking. (orig.)
Dipole-dipole dispersion interactions between neutrons
Energy Technology Data Exchange (ETDEWEB)
Babb, James F. [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Higa, Renato [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Hussein, Mahir S. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo (Brazil); Departamento de Fisica, Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil)
2017-06-15
We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J{sup π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ∝ 50 fm up to ∝ 10{sup 3} fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed. (orig.)
QCD: Renormalization for the practitioner
International Nuclear Information System (INIS)
Pascual, P.; Tarrach, R.
1984-01-01
These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)
Experimental application of QCD antennas
International Nuclear Information System (INIS)
Bobrovskyi, Sergei
2010-02-01
A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)
Meyer, C; The ATLAS collaboration
2014-01-01
The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.
Experimental application of QCD antennas
Energy Technology Data Exchange (ETDEWEB)
Bobrovskyi, Sergei
2010-02-15
A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of
Dipole-dipole interaction of dust grains in plasmas
International Nuclear Information System (INIS)
Tskhakaya, D.D.; Shukla, P.K.
2005-01-01
Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated. In the external electric field, the compound dust particle - 'dust grain + ion cloud' acquires a dipole moment due to displacement of the centers of positive and negative charges in the opposite directions. By analogy to the Van der Waals potential, the dipole-dipole interaction of the compound dust particles can have an attractive behavior. It is shown that the dipole-dipole attractive force can exceed the shadowing force that is connected with the reciprocal interception of ions by the neighboring dust grains
Probing CP Violation with the Deuteron Electric Dipole Moment
Lebedev, Oleg; Pospelov, Maxim; Ritz, Adam; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam
2004-01-01
We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.
Configurational entropy and ρ and ϕ mesons production in QCD
Karapetyan, G.
2018-06-01
In the present work the electroproduction for diffractive ρ and ϕ mesons by considering AdS/QCD correspondence and Color Glass Condensate (CGC) approximation are studied with respect to the associated dipole cross section, whose parameters are studied and analysed in the framework of the configurational entropy. Our results suggest different quantum states of the nuclear matter, showing that the extremal points of the nuclear configurational entropy is able to reflect a true description of the ρ and ϕ mesons production, using current data concerning light quark masses. During the computations parameters, obtained in fitting procedure, coincide to the experimental within ∼ 0.1%.
Leading neutron production at HERA in the color dipole approach
Directory of Open Access Journals (Sweden)
Carvalho F.
2016-01-01
Full Text Available In this work we study leading neutron production in e + p → e + n + X collisions at high energies and calculate the Feynman xL distribution of these neutrons. The differential cross section is written in terms of the pion flux and of the photon-pion total cross section. We describe this process using the color dipole formalism and, assuming the validity of the additive quark model, we relate the dipole-pion with the well determined dipoleproton cross section. In this formalism we can estimate the impact of the QCD dynamics at high energies as well as the contribution of gluon saturation effects to leading neutron production. With the parameters constrained by other phenomenological information, we are able to reproduce the basic features of the recently released H1 leading neutron spectra.
A cosmological lower bound on the neutron electric dipole moment
International Nuclear Information System (INIS)
Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.
1980-10-01
We argue that in a wide class of grand unified theories diagrams similar to those generating baryon number in the early universe also contribute to renormalization of the CP-violating theta parameter of QCD and hence to the neutron electric dipole moment dsub(n). We then use the apparent baryon-to-photon ratio (nsub(B)/nsub(γ))>=1.3 x 10 -10 to deduce an order-of-magnitude lower bound on the neutron electric dipole moment: dsub(n) > approximately 3 x 10 -28 e-cm. Conversely the present experimental upper limit on dsub(n) implies (nsub(B)/nsub(γ) -7 . We find as a corollary that there is not much scope for entropy generation after the creation of the baryon-antibaryon asymmetry in the very early universe
Drell-Yan diffraction: breakdown of QCD factorization
International Nuclear Information System (INIS)
Pasechnik, R.S.; Kopeliovich, B.Z.
2011-01-01
We consider the diffractive Drell-Yan process in proton-(anti)proton collisions at high energies in the color dipole approach. The calculations are performed at forward rapidities of the leptonic pair. The effect of eikonalization of the universal ''bare'' dipole-target elastic amplitude in the saturation regime takes into account the principal part of the gap survival probability. We present predictions for the total and differential cross sections of the single-diffractive lepton-pair production at RHIC and LHC energies. We analyze implications of the QCD factorization breakdown in the diffractive Drell-Yan process, which is caused by a specific interplay of the soft and hard interactions, resulting in rather unusual properties of the corresponding observables. (orig.)
QCD Reggeon field theory for every day: Pomeron loops included
International Nuclear Information System (INIS)
Altinoluk, Tolga; Kovner, Alex; Peressutti, Javier; Lublinsky, Michael
2009-01-01
We derive the evolution equation for hadronic scattering amplitude at high energy. Our derivation includes the nonlinear effects of finite partonic density in the hadronic wave function as well as the effect of multiple scatterings for scattering on dense hadronic target. It thus includes Pomeron loops. It is based on the evolution of the hadronic wave function derived in /cite{foam}. The kernel of the evolution equation defines the second quantized Hamiltonian of the QCD Reggeon Field Theory, H RFT beyond the limits considered so far. The two previously known limits of the evolution: dilute target (JIMWLK limit) and dilute projectile (KLWMIJ limit) are recovered directly from our final result. The Hamiltonian H RFT is applicable for the evolution of scattering amplitude for arbitrarily dense hadronic projectiles/targets - from 'dipole-dipole' to 'nucleus-nucleus' scattering processes.
NLO QCD corrections to Higgs boson production plus three jets in gluon fusion
Energy Technology Data Exchange (ETDEWEB)
Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deurzen, H. van; Greiner, N.; Luisoni, G.; Mirabella, E.; Peraro, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Sezione di Padova (Italy); Ossola, G. [New York Univ., NY (United States). New York City College of Technology; New York Univ., NY (United States). The Graduate School and University Center; Tramontano, F. [Napoli Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Napoli (Italy)
2013-07-15
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.
2004-01-01
The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.
QCD: Questions, challenges, and dilemmas
International Nuclear Information System (INIS)
Bjorken, J.
1996-11-01
An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs
CERN. Geneva
2013-01-01
Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.
Experimental Summary Moriond QCD 2007
Rolandi, Gigi
2007-01-01
More than 90 speakers gave a presentation at this years Moriond QCD conference and more than 60 talks reported the experimental status and perspectives on Standard Model, especially QCD, search for new physics, quark spectroscopy and Heavy Ions physics. I summarize what I consider the highlights of these presentations.
Nuclear properties from perturbative QCD
International Nuclear Information System (INIS)
Close, F.E.; Roberts, R.G.; Ross, G.G.
1986-01-01
Two apparently different descriptions of quark distributions in a nucleus may in fact be connected. A ''duality'' between the QCD approach and the conventional model of nucleon binding leads to nuclear properties being simply related to the anomalous dimensions of QCD. (orig.)
Quarklei: nuclear physics from QCD
International Nuclear Information System (INIS)
Goldman, T.
1985-01-01
The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.
2004-11-30
In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.
Giant Primeval Magnetic Dipoles
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Experiments with dipole antennas
International Nuclear Information System (INIS)
Kraftmakher, Yaakov
2009-01-01
Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.
Maximilien Brice
2004-01-01
The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.
Magnetic Measurement of Alignment of Main LHC Dipoles and Associated Correctors
Bottura, L; Deferne, G; Schnizer, P; Sievers, P; Smirnov, N
2002-01-01
We discuss the method developed for the verification of alignment of magnetic elements contained in the LHC cryodipole cold mass during series tests at CERN. First, we outline motivations and requirements and then we focus on test strategy, equipment and procedures. Our goal is to express the magnetic field of the dipole and of its associated correctors w.r.t. the reference beam line, not accessible during cryogenic tests. To do so, we use traveling harmonic coil probes ("moles") that allow simultaneous measurement of the field and of the coil position. A laser tracker is used to relate these measurements to fiducials. In the dipole, the axis of the Quadrupole Configured Dipole (QCD) is used as an intermediate reference for the transfer. We provide details on the devices used for measurements in warm and cold conditions, some results from prototypes and pre-series dipoles and an assessment of the precision expected for the series tests.
International Nuclear Information System (INIS)
Sonoda, Hidenori
1992-01-01
We give a formula for the derivatives of a correlation function of composite operators with respect to the parameters (i.e. the strong fine structure constant and the quark mass) of QCD in four- dimensional euclidean space. The formula is given as spatial integration of the operator conjugate to a parameter. The operator product of a composite operator and a conjugate operator has an unintegrable part, and the formula requires divergent subtractions. By imposing consistency conditions we drive a relation between the anomalous dimensions of the composite operators and the unintegrable part of the operator product coefficients. (orig.)
International Nuclear Information System (INIS)
Reya, E.
1982-01-01
The some of motivations for color and the numerous qualitative successes of QCD are presented. Non-leading higher order contributions to the (x, Q 2 )-dependence of scaling violations of non-singlet and singlet structure functions are discussed, especially non-perturbative correction to deep inelastic processes such as higher twist contributions. Finally the topic of how to account theoretically for the existence of free fractionally charged particles by concentrating mainly on spontaneously breaking SU(3) color is presented. (M.F.W.)
International Nuclear Information System (INIS)
Girwidz, Raimund V
2016-01-01
The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures. (paper)
International Nuclear Information System (INIS)
Holanda, B A; Cordeiro, R C; Blak, A R
2010-01-01
Dipole defects in gamma irradiated and thermally treated beryl (Be 3 Al 2 Si 6 O 18 ) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.
International Nuclear Information System (INIS)
Somogyi, Gabor; Trocsanyi, Zoltan; Del Duca, Vittorio
2007-01-01
We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this first part we deal with the regularization of the doubly-real contribution to the NNLO correction
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Del Duca, Vittorio [Istituto Nazionale di Fisica Nucleare, Sez. di Torino, via P. Giuria, 1 - 10125 Turin (Italy)
2007-01-15
We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this first part we deal with the regularization of the doubly-real contribution to the NNLO correction.
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor; Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary)
2007-01-15
We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this second part we deal with the regularization of the real-virtual contribution to the NNLO correction.
International Nuclear Information System (INIS)
Ali, A.; Kramer, G.
2010-12-01
The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2010-12-15
The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)
International Nuclear Information System (INIS)
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-01-01
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results
Pettersson, Rune
A picture can be interpreted in different ways by various persons. There is often a difference between a picture's denotation (literal meaning), connotation (associative meaning), and private associations. Two studies were conducted in order to observe the private associations that pictures awaken in people. One study deals with associations made…
Reply to Isgur's comments on valence QCD
International Nuclear Information System (INIS)
Liu, K.F.
2000-01-01
With the goal of understanding the complexity of QCD and the role of symmetry in dynamics, the authors studied a field theory called Valence QCD (VQCD) in which the Z graphs are forbidden so that the Fock space is limited to the valence quarks. The authors calculated nucleon form factors, matrix elements, and hadron masses both with this theory and with quenched QCD on a set of lattices with the same gauge background. Comparing the results of the lattice calculations in these two theories, the authors drew conclusions regarding the SU(6) valence quark model and chiral symmetry. While recognizing the goal of VQCD, Nathan Isgur disagrees on some of the conclusions the authors have drawn. The foremost objection raised in section 2 is to their suggestion that the major part of the hyperfine splittings in baryons is due to Goldstone boson exchange and not one-gluon-exchange (OGE) interactions. The logic of Isgur's objection is that VQCD yields a spectroscopy vastly different from quenched QCD and therefore the structure of the hadrons (to which hyperfine splittings in a quark model are intimately tied) is also suspect so no definite conclusions are possible. To put this into perspective it should be emphasized at the outset that spectroscopy is only one aspect of hadron physics examined in section 1. The authors have studied the axial and scalar couplings of nucleon in terms of F A /D A and F S /D S , the neutron to proton magnetic moment ratio μn/μp, and various form factors. None of these results reveal any pathologies of hadron structure and turn out to be close to the SU(6) relations, as expected. In fact this is what motivated the study of valence degrees of freedom via VQCD. In section 2 the authors address specific issues related to spectroscopy in VQCD. Isgur also presented more general arguments against the idea of boson exchange as a contributor to hyperfine effects. A cornerstone of his discussion is the unifying aspect of OGE in a quark model picture. The
Picture languages formal models for picture recognition
Rosenfeld, Azriel
1979-01-01
Computer Science and Applied Mathematics: Picture Languages: Formal Models for Picture Recognition treats pictorial pattern recognition from the formal standpoint of automata theory. This book emphasizes the capabilities and relative efficiencies of two types of automata-array automata and cellular array automata, with respect to various array recognition tasks. The array automata are simple processors that perform sequences of operations on arrays, while the cellular array automata are arrays of processors that operate on pictures in a highly parallel fashion, one processor per picture element. This compilation also reviews a collection of results on two-dimensional sequential and parallel array acceptors. Some of the analogous one-dimensional results and array grammars and their relation to acceptors are likewise covered in this text. This publication is suitable for researchers, professionals, and specialists interested in pattern recognition and automata theory.
Neutron Electric Dipole Moment
International Nuclear Information System (INIS)
Mischke, R.E.
2003-01-01
The status of experiments to measure the electric dipole moment of the neutron is presented and the planned experiment at Los Alamos is described. The goal of this experiment is an improvement in sensitivity of a factor of 50 to 100 over the current limit. It has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The experiment employs several advances in technique to reach its goals and the feasibility of meeting these technical challenges is currently under study
Heavy flavor production in QCD
International Nuclear Information System (INIS)
Hoyer, P.
1989-01-01
In this paper a brief survey is given of the status of heavy quark hadroproduction in QCD. The next-to-leading order calculation allows an estimate of the theoretical uncertainties to be made. They are manageable for top, but considerable for charm. The data on charm continues to show an excess of events at large x F , compared to QCD expectations. This may be linked to the measured anomalous A-dependence of the cross section on nuclear targets, also present at large x F . QCD models for the diffractive production of heavy quarks remain to be tested experimentally
Fog, Erik
2013-01-01
Pictures give other impulses than words and numbers. With images, you can easily spot new opportunities. The Highcrop-tool allows for optimization of the organic arable farm based on picture-cards. The picture-cards are designed to make it easier and more inspiring to go close to the details of production. By using the picture-cards you can spot the areas, where there is a possibility to optimize the production system for better results in the future. Highcrop picture cards can be used to:...
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
One-dimensional model for QCD at high energy
International Nuclear Information System (INIS)
Iancu, E.; Santana Amaral, J.T. de; Soyez, G.; Triantafyllopoulos, D.N.
2007-01-01
We propose a stochastic particle model in (1+1) dimensions, with one dimension corresponding to rapidity and the other one to the transverse size of a dipole in QCD, which mimics high-energy evolution and scattering in QCD in the presence of both saturation and particle-number fluctuations, and hence of pomeron loops. The model evolves via non-linear particle splitting, with a non-local splitting rate which is constrained by boost-invariance and multiple scattering. The splitting rate saturates at high density, so like the gluon emission rate in the JIMWLK evolution. In the mean field approximation obtained by ignoring fluctuations, the model exhibits the hallmarks of the BK equation, namely a BFKL-like evolution at low density, the formation of a traveling wave, and geometric scaling. In the full evolution including fluctuations, the geometric scaling is washed out at high energy and replaced by diffusive scaling. It is likely that the model belongs to the universality class of the reaction-diffusion process. The analysis of the model sheds new light on the pomeron loops equations in QCD and their possible improvements
The Power of Pictures : Vertical Picture Angles in Power Pictures
Giessner, Steffen R.; Ryan, Michelle K.; Schubert, Thomas W.; van Quaquebeke, Niels
2011-01-01
Conventional wisdom suggests that variations in vertical picture angle cause the subject to appear more powerful when depicted from below and less powerful when depicted from above. However, do the media actually use such associations to represent individual differences in power? We argue that the
The power of pictures: Vertical picture angles in power pictures
S.R. Giessner (Steffen); M.K. Ryan (Michelle); T.W. Schubert (Thomas); N. van Quaquebeke (Niels)
2011-01-01
textabstractAbstract: Conventional wisdom suggests that variations in vertical picture angle cause the subject to appear more powerful when depicted from below and less powerful when depicted from above. However, do the media actually use such associations to represent individual differences in
Magnetic dipole moment of a moving electric dipole
Hnizdo, V.
2012-01-01
The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.
Collisional transfer of coherence by electric dipole-dipole interaction
Gough , W.
1983-01-01
An expression is derived for the contribution from dipole-dipole interaction to the intensity of sensitized fluorescence, from the results of a theory by Chiu. Tensor operator methods are used. The degree of polarization is deduced for certain particular cases.
International Meeting: Excited QCD 2014
Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis
2014-01-01
Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...
Magnetic field of a dipole and the dipole-dipole interaction
International Nuclear Information System (INIS)
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R 3 law for the magnetic field and the 1/R 4 law for the interaction force between two dipoles, as well as their angular dependences
Dynamical quark and gluon condensates from a modified perturbative QCD
International Nuclear Information System (INIS)
Cabo Montes de Oca, A.; Martinez Pedrera, D.
2004-12-01
As it was suggested by previous works on a modified perturbation expansion for QCD, the possibility for the generation of large quark condensates in the massless version of the theory is explored. For this purpose, it is firstly presented a way to well define the Feynman diagrams at any number of loops by just employing dimensional regularization. After that, the calculated zero and one loop corrections to the effective potential indicate a strong instability of the system under the generation of quark condensates even in the absence of the gluon one. The quark condensate dependence of particular two loop terms does not modify the instability picture arising at one loop. The results suggest a possible mechanism for a sort of Top Condensate Model to be a dynamically fixed effective action for massless QCD. The inability of lattice calculations in detecting this possibility could be related to the current limitations in treating the fermion determinants. (author)
Hard-Thermal-Loop QCD thermodynamics and quark number susceptibility
Directory of Open Access Journals (Sweden)
Mogliacci Sylvain
2014-04-01
Full Text Available The weak-coupling expansion of the QCD pressure is known up to the order g6 log g. However, at experimentally relevant temperatures, the corresponding series is poorly convergent. In this proceedings, we discuss at which extent the gauge-invariant resummation scheme, Hard-Thermal-Loop perturbation theory (HTLpt, improves the apparent convergence. We first present HTLpt results for QCD thermodynamic functions up to three-loop order at vanishing chemical potential. Then, we report a preliminary HTLpt result of one-loop quark number susceptibility, probing the finite density equation of state. Our results are consistent with lattice data down to 2 − 3Tc, reinforcing the weakly-coupled quasiparticle picture in the intermediate coupling regime.
Backfire antennas with dipole elements
DEFF Research Database (Denmark)
Nielsen, Erik Dragø; Pontoppidan, Knud
1970-01-01
A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...
Dipole plasma in molecular crystals
International Nuclear Information System (INIS)
Kotel'nikov, Yu.E.; Kochelaev, B.I.
1976-01-01
Collective oscillations in a system of electric dipoles of molecular crystals are investigated. It has been proved in the exciton approximation that in an elementary cell of a molecular crystal with one molecule there may exist energy fluctuations of the ''dipole'' plasma, analogous to plasma oscillations in the charged Fermi liquid
Neutron Electric Dipole Moment Experiments
Peng, Jen-Chieh
2008-01-01
The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.
International Nuclear Information System (INIS)
McParland, C.; Bieser, F.
1984-01-01
The principal component of the Bevalac HISS facility is a large super-conducting 3 Tesla dipole. The facility's need for a large magnetic volume spectrometer resulted in a large gap geometry - a 2 meter pole tip diameter and a 1 meter pole gap. Obviously, the field required detailed mapping for effective use as a spectrometer. The mapping device was designed with several major features in mind. The device would measure field values on a grid which described a closed rectangular solid. The grid would be a regular with the exact measurement intervals adjustable by software. The device would function unattended over the long period of time required to complete a field map. During this time, the progress of the map could be monitored by anyone with access to the HISS VAX computer. Details of the mechanical, electrical, and control design follow
The AdS/QCD correspondence: still undelivered
International Nuclear Information System (INIS)
Csaki, Csaba; Reece, Matthew; Terning, John
2009-01-01
We consider the particle spectrum and event shapes in large N gauge theories in different regimes of the short-distance 't Hooft coupling, λ. The mesons in the small λ limit should have a Regge spectrum in order to agree with perturbation theory, while generically the large λ theories with gravity duals produce spectra reminiscent of KK modes. We argue that these KK-like states are qualitatively different from QCD modes: they are deeply bound states which are sensitive to short distance interactions rather than the flux tube-like states expected in asymptotically free, confining gauge theories. In addition, we also find that the characteristic event shapes for the large λ theories with gravity duals are close to spherical, very different from QCD-like (small λ, small N) and Nambu-Goto-like (small λ, large N) theories which have jets. This observation is in agreement with the conjecture of Strassler on event shapes in large 't Hooft coupling theories, which was recently proved by Hofman and Maldacena for the conformal case. This conclusion does not change even when considering soft-wall backgrounds for the gravity dual. The picture that emerges is the following: theories with small and large λ are qualitatively different, while theories with small and large N are qualitatively similar. Thus it seems that it is the relative smallness of the 't Hooft coupling in QCD that prevents a reliable AdS/QCD correspondence from emerging, and that reproducing characteristic QCD-like behavior will require genuine stringy dynamics to be incorporated into any putative dual theory.
HERAFitter. Open source QCD fit project
International Nuclear Information System (INIS)
Alekhin, S.; Behnke, O.; Belov, P.
2014-11-01
HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodological options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study the impact of new precise measurements from hadron colliders. This paper describes the general structure of HERAFitter and its wide choice of options.
Kennedy, J M
1982-01-01
Pictures can be literal or metaphoric. Metaphoric pictures involve intended violations of standard modes of depiction that are universally recognizable. The types of metaphoric pictures correspond to major groups of verbal metaphors, with the addition of a class of pictorial runes. Often the correspondence between verbal and pictorial metaphors depends on individual features of objects and such physical parameters as change of scale. A more sophisticated analysis is required for some pictorial metaphors, involving juxtapositions of well-known objects and indirect reference.
International Nuclear Information System (INIS)
Chikirdin, Eh.G.
1999-01-01
Lecture concerning the picture sharpness in biomedical radiography is presented. Notion of picture sharpness and visual acuity as an analyser of picture sharpness is specified. Attention is paid to the POX-curve as a statistical method for assessment of visual acuity. Conceptions of the sensitivity of using X-ray image visualization system together with specificity and accuracy are considered. Among indices of sharp parameters of visualization system the resolution, resolving power, picture unsharpness are discussed. It is shown that gradation and sharp characteristics of the image closely correlate that need an attention in practice to factors determining them [ru
International Nuclear Information System (INIS)
Negele, J.W.
1993-01-01
Architectural enhancements are described to increase the performance of the arithmetic accelerator and memory of the nodes in the CM-5 for QCD and a broad range of general problems while maintaining compatibility with existing software, compilers, communications network and I/O subsystems. A factor of 10 increase in performance is obtained by increasing the number of floating point processors by a factor of 4, extending the vector instruction set for dual execution of single-precision arithmetic, and increasing the clock rate from 32 to 40 MHz. The required memory bandwidth is obtained by using synchronous DRAMs and 4 floating point processors are packaged into a multichip module which occupies the same area as a present processor package. The proposed 2048 node machine will provide 2.6 Teraflops peak, 0.5 - 1.5 Teraflops sustained on lattices of 32 2 x 64 - 128 3 x 256, will have 256 Gigabytes of memory, 1 Terabyte of disk, an estimated cost of approximately $40 million, and can be built in 2.5 years. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)
2016-11-14
We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
What do QCD sum rules tell us about dense matter?
International Nuclear Information System (INIS)
Cohen, T.D.; Washington Univ., Seattle, WA
1995-01-01
The QCD sum rule approach to the properties of hadrons in both the vacuum and in nuclear matter is discussed. The primary limitation for the nuclear matter case is the absence of reliable phenomenological information about the form of the spectral function and about the value of certain four quark condensates. The approach gives moderate evidence in support of the Dirac phenomenology picture of strong attractive Lorentz scalar and repulsive Lorentz vector optical potentials. The approach gives weak evidence for decreasing vector meson masses in medium. (orig.)
The Brief Life of a Hadron: QCD unquenched
International Nuclear Information System (INIS)
Pennington, Michael R.
2015-03-01
Once upon a time, the picture of hadrons was of mesons made of a quark and an antiquark, and baryons of three quarks. Though hadrons heavier than the ground states inevitably decay by the strong interaction, the successes of the quark model might suggest their decays are a mere perturbation. However, Eef van Beveren, whose career we celebrate here, recognised that decays are an integral part of the life of a hadron. The channels into which they decay are often essential to their very existence. These hold the secrets of strong coupling QCD and teach us the way quarks really build hadrons.
Miller, Elmo E.
1973-01-01
Pictures definitely seem to help training, but a study for the military finds these pictures need not be in moving form, such as films or videotape. Just how the pictorial techniques should be employed and with how much success depends on individual trainee and program differences. (KP)
2001-01-01
Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...
Weak-interacting holographic QCD
International Nuclear Information System (INIS)
Gazit, D.; Yee, H.-U.
2008-06-01
We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)
Analytic continuation in perturbative QCD
International Nuclear Information System (INIS)
Caprini, Irinel
2002-01-01
We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)
Quantum chromodynamics (QCD) and collider physics
International Nuclear Information System (INIS)
Ellis, R.K.; Stirling, W.J.
1990-01-01
This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks
Theoretical summary talk of QCD 2002
International Nuclear Information System (INIS)
Basu, Rahul
2003-01-01
This is a summary of the talks on QCD, not including QCD at finite temperature or density (which are discussed elsewhere) presented at the QCD 2002 meeting held at IIT, Kanpur. I have attempted to give only an overview of the talks since the details may be found in the individual contributions. (author)
Towards thermodynamical consistency of quasiparticle picture
International Nuclear Information System (INIS)
Biro, T.S.; Shanenko, A.A.; Toneev, V.D.; Research Inst. for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest
2003-01-01
The purpose of the present article is to call attention to some realistic quasi-particle-based description of the quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamical consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamical consistency. A particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential, which can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics [ru
Toward thermodynamic consistency of quasiparticle picture
International Nuclear Information System (INIS)
Biro, T.S.; Toneev, V.D.; Shanenko, A.A.
2003-01-01
The purpose of the present article is to call attention to some realistic quasiparticle-based description of quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamic consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamic consistency. Particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential that can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics
International Nuclear Information System (INIS)
Yun, J.C.
1990-01-01
In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb -1 during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs
The supercritical pomeron in QCD
International Nuclear Information System (INIS)
White, A. R.
1998-01-01
Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory
Simulating QCD at finite density
de Forcrand, Philippe
2009-01-01
In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.
International Nuclear Information System (INIS)
Close, F.E.
1980-07-01
The idea that quantum chromodynamics is Nature's choice for the theory of quark interactions and that desirable phenomena, such as quark confinement, are consequences of it are considered. The lecture is presented under the headings: (1) Why do we believe that quarks have colour. (2) A rapid summary of the parton model in deep inelastic scattering. (3) Non Abelian theories: the vertices. (4) Hyperfine splitting of hadrons: more evidence for colour. (5) Renormalisation. (6) Alpha(Q 2 ). (7) The renormalisation group equations. (8) QCD, the renormalisation group equation and deep inelastic data. (9) Higher order corrections in QCD. (U.K.)
Neutron star structure from QCD
Fraga, Eduardo S; Vuorinen, Aleksi
2016-01-01
In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.
International Nuclear Information System (INIS)
Shirkov, D.V.
1982-01-01
In this paper recent studies of invariant QCD coupling anti asub(s)(Qsup(2)) in the 2-loop approximation with account of fermionic mass effects are summarized. The main results are: An explicit expression for anti asub(s)(Qsup(2)) in the 2-loop approximation with accurate account of heavy quark masses. A quantitative analysis on the basis of the above-mentioned expression for anti asub(s)(Qsup(2)) of the energy dependence of the scale QCD parameter ν and the conclusion about its inadequacy in the modern energy range
Lattice QCD: Status and Prospect
International Nuclear Information System (INIS)
Ukawa, Akira
2006-01-01
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years
Hadron scattering, resonances, and QCD
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Archeology and evolution of QCD
De Rújula, A.
2017-01-01
These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.
Possible displacement of mercury's dipole
International Nuclear Information System (INIS)
Ng, K.H.; Beard, D.B.
1979-01-01
Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged
International Nuclear Information System (INIS)
Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.
2011-01-01
High spin states in 196 Hg have been populated in the 198 Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.
The dual description of long-distance QCD (Dual QCD)
International Nuclear Information System (INIS)
Baker, M.
1990-01-01
We construct and solve a local field theory which describes in terms of dual variables a system having an A μ propagator behaving like M 2 /q 4 in the infrared and discuss how this theory can be used as a starting point for describing long-distance QCD. 3 refs
Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD
DEFF Research Database (Denmark)
Ryttov, Thomas A.
2016-01-01
order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...
A Note on the Dipole Coordinates
Kageyama, Akira; Sugiyama, Tooru; Watanabe, Kunihiko; Sato, Tetsuya
2004-01-01
A couple of orthogonal coordinates for dipole geometry are proposed for numerical simulations of plasma geophysics in the Earth's dipole magnetic field. These coordinates have proper metric profiles along field lines in contrast to the standard dipole coordinate system that is commonly used in analytical studies for dipole geometry.
Hadronic matrix elements in lattice QCD
International Nuclear Information System (INIS)
Jaeger, Benjamin
2014-01-01
The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is
Valence QCD: Connecting QCD to the quark model
International Nuclear Information System (INIS)
Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.
1999-01-01
A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is
Electric dipole moments as probes of new physics
Pospelov, M; Pospelov, Maxim; Ritz, Adam
2005-01-01
We review several aspects of flavour-diagonal CP violation, focussing on the role played by the electric dipole moments (EDMs) of leptons, nucleons, atoms and molecules, which consitute the source of several stringent constraints on new CP-violating physics. We dwell specifically on the calculational aspects of applying the hadronic EDM constraints, reviewing in detail the application of QCD sum-rules to the calculation of nucleon EDMs and CP-odd pion-nucleon couplings. We also consider the current status of EDMs in the Standard Model, and on the ensuing constraints on the underlying sources of CP-violation in physics beyond the Standard Model, focussing on weak-scale supersymmetry.
The dipole representation of vector meson electroproduction beyond leading twist
Energy Technology Data Exchange (ETDEWEB)
Besse, A. [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); Szymanowski, L. [National Center for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S., E-mail: wallon@th.u-psud.fr [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); UPMC Univ. Paris 06, Faculte de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)
2013-02-01
We link the recent computation beyond leading twist of the impact factor of the transition {gamma}{sub T}{sup Low-Asterisk }{yields}{rho}{sub T} performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura-Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the {rho}-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura-Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.
Radiative ΩQ∗→ΩQγ and ΞQ∗→ΞQ′γ transitions in light cone QCD
International Nuclear Information System (INIS)
Aliev, T. M.; Azizi, K.; Sundu, H.
2015-01-01
We calculate the magnetic dipole and electric quadrupole moments associated with the radiative Ω Q ∗ →Ω Q γ and Ξ Q ∗ →Ξ Q ′ γ transitions with Q=b or c in the framework of light cone QCD sum rules. It is found that the corresponding quadrupole moments are negligibly small, while the magnetic dipole moments are considerably large. A comparison of the results of the considered multipole moments as well as corresponding decay widths with the predictions of the vector dominance model is performed
Basics of QCD perturbation theory
International Nuclear Information System (INIS)
Soper, D.E.
1997-01-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs
Current issues in perturbative QCD
International Nuclear Information System (INIS)
Hinchliffe, I.
1994-12-01
This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets
New results in perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1986-01-01
Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures
Energy Technology Data Exchange (ETDEWEB)
Moch, S
2008-02-15
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)
International Nuclear Information System (INIS)
Moch, S.
2008-02-01
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)
Seven topics in perturbative QCD
International Nuclear Information System (INIS)
Buras, A.J.
1980-09-01
The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics
Reggeon interactions in perturbative QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-08-01
We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)
LHC physics: challenges for QCD
Frixione, S.
2003-01-01
I review the status of the comparisons between a few measurements at hadronic colliders and perturbative QCD predictions, which emphasize the need for improving the current computations. Such improvements will be mandatory for a satisfactory understanding of high-energy collisions at the LHC
International Nuclear Information System (INIS)
Woloshyn, R.M.
1988-03-01
The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)
Basics of QCD perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Two flavor QCD and Confinement
DEFF Research Database (Denmark)
D'Elia, M.; Di Giacomo, A.; Pica, Claudio
2005-01-01
We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is...
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
International Nuclear Information System (INIS)
Preparata, G.
1983-01-01
In this paper the necessity of going beyond Quantum chromodynamics is argued, and a new theory of Isotropic Chromodynamics (ICD) is introduced. The basic theoretical notions behind QCD--quarks, colors, and gauge theory are retained, but the conclusion that QCD must be the theory of hadrions is questioned. Two points of QCD are reviewed, gluons (including glueballs), and asymptotic freedom. It is suggested that much of this theory is wishful thinking. Beyond QCD, aspects which are puzzling in hadrodynamics are well understood in two-dimensional gauge theories (confinement, freedom at short distances etc). Anisotropic chromodynamics is proposed in the attempt to conjugate the basic pillars of hadrodynamics with the peculiar characteristics of two-dimensional gauge dynamics. In order to construct a gauge dynamics for the color field which is isomorphic to a two-dimensional gauge-theory base space must be enlarged to a seven dimension space-time structure, to be called Anisotropic Space-Time (AST). The ideas and present achievements of ICD are then reviewed
International Nuclear Information System (INIS)
Moriyasu, K.
1981-01-01
A basic primer for QCD is presented using a semiclassical approach to the colour Maxwell equations. The non-Abelian nature of colour symmetry and the violation of superposition by colour fields is compared with QED. A simple discussion of asymptotic freedom is also presented. (author)
Final state dipole showers and the DGLAP equation
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2009-01-01
We study a parton shower description, based on a dipole picture, of the final state in electron-positron annihilation. In such a shower, the distribution function describing the inclusive probability to find a quark with a given energy depends on the shower evolution time. Starting from the exclusive evolution equation for the shower, we derive an equation for the evolution of the inclusive quark energy distribution in the limit of strong ordering in shower evolution time of the successive parton splittings. We find that, as expected, this is the DGLAP equation. This paper is a response to a recent paper of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based shower could give the DGLAP equation for the quark energy distribution.
Jet evolution in hot and cold QCD matter
Energy Technology Data Exchange (ETDEWEB)
Domdey, Svend Oliver
2010-07-23
In this thesis, we study the evolution of energetic partons in hot and cold QCD matter. In both cases, interactions with the medium lead to energy loss of the parton and its transverse momentum broadens. The propagation of partons in cold nuclear matter can be investigated experimentally in deep-inelastic scattering (DIS) on nuclei. We use the dipole model to calculate transverse momentum broadening in DIS on nuclei and compare to experimental data from HERMES. In hot matter, the evolution of the parton shower is strongly modified. To calculate this modification, we construct an additional scattering term in the QCD evolution equations which accounts for scattering of partons in the quark-gluon plasma. With this scattering term, we compute the modified gluon distribution in the shower at small momentum fractions. Furthermore, we calculate the modified fragmentation function of gluons into pions. The scattering term causes energy loss of the parton shower which leads to a suppression of hadrons with large transverse momentum. In the third part of this thesis, we study double dijet production in hadron collisions. This process contains information about the transverse parton distribution of hadrons. As main result, we find that double dijet production will allow for a study of the transverse growth of hadronic wave functions at the LHC. (orig.)
International Nuclear Information System (INIS)
Lupia, S.
1999-01-01
The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)
International Nuclear Information System (INIS)
Lupia, S.
1998-01-01
The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)
Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.
2013-10-01
Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.
1974-01-01
Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.
Cryogenics in CEBAF HMS dipole
International Nuclear Information System (INIS)
Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.
1994-01-01
The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported
International Nuclear Information System (INIS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2004-01-01
In our method of maps [Punjabi et al., Phy. Rev. Lett. 69, 3322 (1992), and Punjabi et al., J. Plasma Phys. 52, 91 (1994)], symplectic maps are used to calculate the trajectories of magnetic field lines in divertor tokamaks. Effects of the magnetic perturbations are calculated using the low MN map [Ali et al., Phys. Plasmas 11, 1908 (2004)] and the dipole map [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. The dipole map is used to calculate the effects of externally located current carrying coils on the trajectories of the field lines, the stochastic layer, the magnetic footprint, and the heat load distribution on the collector plates in divertor tokamaks [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. Symplectic maps are general, efficient, and preserve and respect the Hamiltonian nature of the dynamics. In this brief communication, a rigorous mathematical derivation of the dipole map is given
Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction
Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing
2018-06-01
We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.
750 GeV diphoton resonance and electric dipole moments
Directory of Open Access Journals (Sweden)
Kiwoon Choi
2016-09-01
Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.
What happens at the end of the QCD cascades?
International Nuclear Information System (INIS)
Andersson, B.
1999-01-01
This is a progress report on recent work done in Lund to describe the final steps in the QCD coherent bremsstrahlung cascades, with particular emphasis on the occurrence of a size parameter c=11/6 in phase space. Two gluons, being interacting vector particles, remain due to helicity conservation effectively apart a distance c, counted in generalised rapidity (a notion which I define in the text but essentially corresponds to rapidity measured along the color flux lines of the field between the gluons). The same size c also occurs in the β-function as a measure of the region, inside which a virtual gluon splitting via reabsorption in the next step of perturbation theory corresponds to a ''loss-term'' in the Callan-Symanzik equations. Our conclusion is that at the end of the cascades when the dipole masses (M d ) are such that log (M d 2 /Λ 2 )∼nc with n a few units, then an ordered field of a helix character emerges, i.e. a set of final ''screwy gluons'' are emitted in an ordered way in rapidity and azimuthal angle around the dipole axes so that the color lines are turning around. (orig.)
International Nuclear Information System (INIS)
Gupta, R.
1990-01-01
In this talk I give a brief introduction to the standard model of particle interactions and illustrate why analytical methods fail to solve QCD. I then give some details of our implementation of the high performance QCD code on the CM2 and highlight the important lessons learned. The sustained speed of the code at the time of this conference is 5.2 Gigaflops (scaled to a full 64K machine). Since this is a conference dedicated to computing in the 21st century, I will tailor my expectations (somewhat idiosyncratic) of the physics objectives to reflect what we will be able to do in 10 years time, extrapolating from where we stand today. This work is being done under a joint LANL-TMC collaboration consisting of C. Baillie, R. Brickner, D. Daniel, G. Kilcup, L. Johnson, A. Patel. S. Sharpe and myself. 5 refs
International Nuclear Information System (INIS)
Brodsky, S.J.
1992-09-01
The quantization of gauge theory at fixed light-cone time τ = t - z/c provides new perspectives for solving non-perturbative problems in quantum chromodynamics. The light-cone Fock state expansion provides both a precise definition of the relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a general calculus for predicting QCD processes at the amplitude level. Applications to exclusive processes and weak decay amplitudes are discussed. The problem of computing the hadronic spectrum and the corresponding light-cone wavefunctions of QCD in one space and one time dimension has been successfully reduced to the diagonalization of a discrete representation of the light-cone Hamiltonian. The problems confronting the solution of gauge theories in 3 + 1 dimensions in the light-cone quantization formalism,, including zero modes and non-perturbative renormalization, are reviewed
Innovations in lattice QCD algorithms
International Nuclear Information System (INIS)
Orginos, Konstantinos
2006-01-01
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today
Baryon physics in holographic QCD
Directory of Open Access Journals (Sweden)
Alex Pomarol
2009-03-01
Full Text Available In a simple holographic model for QCD in which the Chern–Simons term is incorporated to take into account the QCD chiral anomaly, we show that baryons arise as stable solitons which are the 5D analogs of 4D skyrmions. Contrary to 4D skyrmions and previously considered holographic scenarios, these solitons have sizes larger than the inverse cut-off of the model, and therefore they are predictable within our effective field theory approach. We perform a numerical determination of several static properties of the nucleons and find a satisfactory agreement with data. We also calculate the amplitudes of “anomalous” processes induced by the Chern–Simons term in the meson sector, such as ω→πγ and ω→3π. A combined fit to baryonic and mesonic observables leads to an agreement with experiments within 16%.
Testing QCD with current algebra
International Nuclear Information System (INIS)
Leutwyler, H.
1984-01-01
Spontaneously broken chiral symmetry fixes the low energy structure of QCD to a large extent. I show how to determine the Green's functions to first nonleading order in a simultaneous expansion in powers of the momenta and of the u- and d-quark masses. In particular, I discuss the corrections of order M π 2 to the low energy theorems for ππ scattering. 19 refs., 1 tab. (author)
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
International Nuclear Information System (INIS)
Sommer, Rainer
2014-02-01
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
The status of perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1988-10-01
The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs
International Nuclear Information System (INIS)
Davier, M.
1999-12-01
Hadronic decays of the τ lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
International Nuclear Information System (INIS)
Brodsky, Stanley J.; de Teramond, Guy F.
2007-01-01
The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation
Energy Technology Data Exchange (ETDEWEB)
Davier, M
1999-12-01
Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
QCD contributions to vacuum polarization
International Nuclear Information System (INIS)
Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.
1980-01-01
We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)
Perturbative QCD at finite temperature
International Nuclear Information System (INIS)
Altherr, T.
1989-03-01
We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
Neutron electric dipole moment in the instanton vacuum: Quenched versus unquenched simulations
International Nuclear Information System (INIS)
Faccioli, P.; Guadagnoli, D.; Simula, S.
2004-01-01
We investigate the role played by the fermionic determinant in the evaluation of the CP-violating neutron electric dipole moment (EDM) adopting the Instanton Liquid Model. Significant differences between quenched and unquenched calculations are found. In the case of unquenched simulations the neutron EDM decreases linearly with the quark mass and is expected to vanish in the chiral limit. On the contrary, within the quenched approximation, the neutron EDM increases as the quark mass decreases and is expected to diverge as 1/m N f in the chiral limit. We argue that such a qualitatively different behavior is a parameter-free, semiclassical prediction and occurs because the neutron EDM is sensitive to the topological structure of the vacuum. The present analysis suggests that quenched and unquenched lattice QCD simulations of the neutron EDM as well as of other observables governed by topology might show up important differences in the quark mass dependence for m q QCD
Perturbative QCD and exclusive processes
International Nuclear Information System (INIS)
Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.
1991-01-01
The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable
Caraban Gonzalez, Noemi
2018-01-01
The Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) is an independent laboratory located in Allan in the Balqa governorate of Jordan, created under the auspices of UNESCO on 30 May 2002. December 2017, Jordan Picture: Noemi Caraban
DEFF Research Database (Denmark)
Wamberg, Jacob
from Palaeolithic cave paintings through to 19th-century modernity. A structuralist comparison between this pattern and three additional fields of analysis - self-consciousness, socially-determined perception of nature, and world picture - reveals a fascinating insight into culture's macrohistorical...
Maximilien Brice
2002-01-01
The last of the 3280 dipole magnets from the Large Electron-Positron (LEP) collider is seen on its journey to the surface on 12 February 2002. The LEP era, which began at CERN in 1989 and ended 2000, comes to an end.
Locating a buried magnetic dipole
Energy Technology Data Exchange (ETDEWEB)
Caffey, T.W.H.
1977-01-01
The theoretical basis and required computations for locating a buried magnetic dipole are outlined. The results are compared with measurements made with a tiltable coil lowered to a depth of 20 m in a vertical borehole within a three-layered earth. this work has application to the rescue of trapped miners. 3 figures, 1 table. (RWR)
Particle electric dipole-moments
Energy Technology Data Exchange (ETDEWEB)
Pendlebury, J M [Sussex Univ., Brighton (United Kingdom)
1997-04-01
The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.
International Nuclear Information System (INIS)
McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.
1986-01-01
The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature
The Collider dipole magnet program
International Nuclear Information System (INIS)
Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.
1991-01-01
The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment
DEFF Research Database (Denmark)
Andersen, Jørgen Bach
2006-01-01
A number of antenna topics may be treated by studying just two parallel, closely spaced electrical dipoles. They form an array and they may be coupled to form a single antenna with one port, or coupled through a coupling network to form a multiport antenna. The situations discussed are the creation...
Multiscale dipole relaxation in dielectric materials
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt
2016-01-01
Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...
Dipole rescattering and the nuclear structure function
Energy Technology Data Exchange (ETDEWEB)
Carvalho, F. [Depto de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Navarra, F. S.; Oliveira, E. G. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil)
2013-03-25
In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD
Topology in dynamical lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Gruber, Florian
2012-08-20
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Topology in dynamical lattice QCD simulations
International Nuclear Information System (INIS)
Gruber, Florian
2012-01-01
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Disconnected Diagrams in Lattice QCD
Gambhir, Arjun Singh
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
QCD jet evolution at high and low scales
Energy Technology Data Exchange (ETDEWEB)
Winter, Jan-Christopher
2008-07-01
The formation of jets of hadrons is a basic manifestation of the strong interaction as explored in and measured by high-energy physics collider experiments. Jets appear as narrow cones of particles that yield energy deposits in the calorimeters of the detectors. Invoking Quantum Chromodynamics (QCD) - the underlying theory of the strong interaction and one of the four fundamental forces of nature - leads to predictions and models, which describe the initiation, evolution and hadronization of jets. Good precision and quality of theoretical results and approaches to jet physics are necessary and thus vital for the successful accomplishment of the challenges in elementary particle physics, the current (e.g. proton-antiproton collisions at the Fermilab Tevatron) as well as the upcoming ones (e.g. proton-proton collisions at the CERN Large Hadron Collider). In this thesis various aspects of the eld of QCD jet physics are addressed, all of which under the common denominator of validating and improving the simulations computed by Monte Carlo event generators, in particular that of SHERPA, which has been developed in Dresden. Therefor the following questions were investigated, and, respective results have been achieved: - The method of merging tree-level matrix elements with parton showers has been critically verified against other merging approaches for inclusive gauge boson production at Tevatron and LHC energies. Also, the genesis of dibosons has been studied in comparison to next-to-leading order predictions in the strong coupling and other Monte Carlo generator approaches. These studies triggered improvements of the method of SHERPA, and, finally, important results have been derived, proving its relevance for ongoing and future experimental analyses. In its present form this method hence exhibits a very modern, state-of-the-art, approach to multijet production and evolution in high-energy particle collisions. - A new shower model based on QCD colour dipoles and their
QCD jet evolution at high and low scales
International Nuclear Information System (INIS)
Winter, Jan-Christopher
2008-01-01
The formation of jets of hadrons is a basic manifestation of the strong interaction as explored in and measured by high-energy physics collider experiments. Jets appear as narrow cones of particles that yield energy deposits in the calorimeters of the detectors. Invoking Quantum Chromodynamics (QCD) - the underlying theory of the strong interaction and one of the four fundamental forces of nature - leads to predictions and models, which describe the initiation, evolution and hadronization of jets. Good precision and quality of theoretical results and approaches to jet physics are necessary and thus vital for the successful accomplishment of the challenges in elementary particle physics, the current (e.g. proton-antiproton collisions at the Fermilab Tevatron) as well as the upcoming ones (e.g. proton-proton collisions at the CERN Large Hadron Collider). In this thesis various aspects of the eld of QCD jet physics are addressed, all of which under the common denominator of validating and improving the simulations computed by Monte Carlo event generators, in particular that of SHERPA, which has been developed in Dresden. Therefor the following questions were investigated, and, respective results have been achieved: - The method of merging tree-level matrix elements with parton showers has been critically verified against other merging approaches for inclusive gauge boson production at Tevatron and LHC energies. Also, the genesis of dibosons has been studied in comparison to next-to-leading order predictions in the strong coupling and other Monte Carlo generator approaches. These studies triggered improvements of the method of SHERPA, and, finally, important results have been derived, proving its relevance for ongoing and future experimental analyses. In its present form this method hence exhibits a very modern, state-of-the-art, approach to multijet production and evolution in high-energy particle collisions. - A new shower model based on QCD colour dipoles and their
Dynamics of a nonlinear dipole vortex
DEFF Research Database (Denmark)
Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.
1995-01-01
A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganiz...
Formation of dislocation dipoles in irradiated graphite
International Nuclear Information System (INIS)
Niwase, Keisuke
2005-01-01
Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole
Polarization electric dipole moment in nonaxial nuclei
International Nuclear Information System (INIS)
Denisov, V.Yu.; Davidovskaya, O.I.
1996-01-01
An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations
Susy-QCD corrections to neutrlino pair production in association with a jet
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas; Heinrich, Gudrun [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2012-12-15
We present the NLO Susy-QCD corrections to the production of a pair of the lightest neutralinos plus one jet at the LHC, appearing as a monojet signature in combination with missing energy. We fully include all non-resonant diagrams, i.e. we do not assume that production and decay factorise. We derive a parameter point based on the p19MSSM which is compatible with current experimental bounds and show distributions based on missing transverse energy and jet observables. Our results are produced with the program GoSam for automated one-loop calculations in combination with MadDipole/- MadGraph for the real radiation part.
The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order
Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U
2011-01-01
The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.
The conventional quark picture
International Nuclear Information System (INIS)
Dalitz, R.H.
1976-01-01
For baryons, mesons and deep inelastic phenomena the ideas and the problems of the conventional quark picture are pointed out. All observed baryons fit in three SU(3)-multiplets which cluster into larger SU(6)-multiplets. No mesons are known which have quantum numbers inconsistent with belonging to a SU(3) nonet or octet. The deep inelastic phenomena are described in terms of six structure functions of the proton. (BJ) [de
Producing colour pictures from SCAN
International Nuclear Information System (INIS)
Robichaud, K.
1982-01-01
The computer code SCAN.TSK has been written for use on the Interdata 7/32 minicomputer which will convert the pictures produced by the SCAN program into colour pictures on a colour graphics VDU. These colour pictures are a more powerful aid to detecting errors in the MONK input data than the normal lineprinter pictures. This report is intended as a user manual for using the program on the Interdata 7/32, and describes the method used to produce the pictures and gives examples of JCL, input data and of the pictures that can be produced. (U.K.)
Magnetisation of magnetite nanoparticles medium with dipol-dipol interaction
International Nuclear Information System (INIS)
Ali-zade, R. A.
2005-01-01
Full text: Magnetisation expression for magnetite nanoparticles medium with dipo-dipol interaction has been obtained. We suggested, that energy magnetic dipol-dipol interaction of magnetite nanopaticles is determined by: E d-d = - m 2 /4πμ 0 r 3 (cth x -1/x) 2 where x=mH/kT. This expression has been substituted in statistical sum of magnetite nanoparticles medium. Obtained statistical sum consists the production of two statistical sums. The first statistical sum described non-interacting magnetite nanoparticle medium and from this is obtained Langevan equation. Second statistical sum is: Z 2 -∫exp(Σm 2 /4π 0 r 3 (cth x -1/x) 2 ) dΩ 2 . The second statistical sum has been expanded in Taylor's set and taken into consideration first two terms. Integration has been carried out over all volume. In this case take into account that, number twice interactions of magnetite nanoparticles in unit volume is equal to N(N-1)/2 at N>>1 to N 2 /2. We obtain expressions for magnetisation and initial magnetic susceptibility of interacting magnetite nanoparticles medium take into account that Φ=-kT ln Z, M=-dΦ/dH, χ=dM/dH: M=M Sφm (cth x -1/x)+ 1/3 M S 2 φ m 2 (1μ 0 H) ln(VM S /kT).(cth x -1/x)(-xcsch 2 x+1/x) χ 0 =1/3 (m/kT)+ 1/27 M S 2 φ m 2 (1μ 0 )ln(VM S /kT).(m/kT) 2 . Second term in the magnetisation is sufficient at weak and middle magnetic fields. At large magnetic fields, it leads to zero. The second term of magnetisation has maximum at x=1.566. The values of experimental and calculated magnetic field corresponding to magnetisation maximum for magnetite nanoparticles medium (mean diameter of nanoparticle is 9.4 nm) are 1.19 10 4 A/m and 1.25 10 4 A/m respectively. Magnetic dipol-dipol interaction influence to magnetisation of magnetite nanoparticles. Magnetite nanoparticles lined along external magnetic fields line and formatted chains. Magnetisation of medium occurs by the 'parallel' mechanism method magnetisation of chains
Baryon Wilson loop area law in QCD
International Nuclear Information System (INIS)
Cornwall, J.M.
1996-01-01
There is still confusion about the correct form of the area law for the baryonic Wilson loop (BWL) of QCD. Strong-coupling (i.e., finite lattice spacing in lattice gauge theory) approximations suggest the form exp[-KA Y ], where K is the q bar q string tension and A Y is the global minimum area, generically a three-bladed area with the blades joined along a Steiner line (Y configuration). However, the correct answer is exp[-(K/2)(A 12 +A 13 +A 23 )], where, e.g., A 12 is the minimal area between quark lines 1 and 2 (Δ configuration). This second answer was given long ago, based on certain approximations, and is also strongly favored in lattice computations. In the present work, we derive the Δ law from the usual vortex-monopole picture of confinement, and show that, in any case, because of the 1/2 in the Δ law, this law leads to a larger value for the BWL (smaller exponent) than does the Y law. We show that the three-bladed, strong-coupling surfaces, which are infinitesimally thick in the limit of zero lattice spacing, survive as surfaces to be used in the non-Abelian Stokes close-quote theorem for the BWL, which we derive, and lead via this Stokes close-quote theorem to the correct Δ law. Finally, we extend these considerations, including perturbative contributions, to gauge groups SU(N), with N>3. copyright 1996 The American Physical Society
The surface between QCD and Hadron physics
International Nuclear Information System (INIS)
Von Geramb, H.V.; Bayansan, D.
2005-01-01
The relativistic potential concept is fostered for the description of nucleon-nucleon (NN) interaction and scattering for energies 0 < T Lab ≤ 3 GeV. We use a formalism, developed by Crater and Van Alstine, for two coupled spin 1/2 particles in terms of coupled Dirac equations with constraint instant form dynamics. Sets of coupled Dirac equations are used and reduced into partial wave Schr¨odinger type equations. We study np and pp scattering phase shifts for energies 0 to 3 GeV and the deuteron bound state. The interactions are inspired and parameterized in terms of π, η, ρ, ω and σ meson exchanges for which we adjust coupling constants. This yields, in the first instant, high quality fits to the Arndt phase shifts 0 to 300 MeV. Second, the potentials show a universal, independent from angular momentum, core potential which is generated with the relativistic meson exchange dynamics. Extrapolations towards higher energies, up to T Lab equal 3 GeV, allow to separate a QCD dominated short range zone as well as inelastic nucleon excitation mechanism contributing to meson production. A local short range optical model, replacing the short range meson exchange Dirac potential, produces exact agreement between theoretical and phase shifts data. The optical model potentials reflect short lived complex multi hadronic intermediate structure formation of which the optical model parameters give a consistent picture. This phenomenological approach shows the need to describe the short range NN interaction zone r < 0.8 fm with a microscopic model. It implies using the quark content of the nucleons and gluon exchange as well as the need for a microscopic description of intermediate Δ and hadron pair excitations. The conventional soft or hard core NN potentials remain valid for an effective short range low energy description
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Lattice QCD. A critical status report
International Nuclear Information System (INIS)
Jansen, Karl
2008-10-01
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Fractal structures and intermittency in QCD
International Nuclear Information System (INIS)
Gustafson, Goesta.
1990-04-01
New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account
HERA results on QCD and EW physics
International Nuclear Information System (INIS)
Zarnecki, A.F.
1997-01-01
Selected HERA results on QCD and EW interactions are presented. They include the measurement of the proton structure function and its analysis in terms of the QCD evolution, as well as results concerning deep inelastic scattering at very low and very high Q 2 . Selected HERA limits on new physics and parameters which extend the standard model are also presented. (author)
Color-magnetic permeability of QCD vacuum
Energy Technology Data Exchange (ETDEWEB)
Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K
1980-03-01
In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.
Recent developments in QCD for LHC physics
International Nuclear Information System (INIS)
Anastasiou, C.
2006-01-01
We will review recent theoretical developments in QCD, attempting to assess the phenomenological impact of new theoretical results and to identify potentially useful directions for the future. A part of the talk will be devoted to new imaginative ideas which are rapidly changing the traditional approach to QCD computations, and surprising theoretical discoveries from perturbative calculations on the structure of gauge theories. (author)
Understanding of QCD through solvable models
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, G.
1980-07-01
Various aspects of strong interaction physics are discussed. It is shown that several nontrivial features arise from non-perturbative 'solutions' of QCD-like models in (1+1) dimensions. An attempt is made to bring these features in (3+1) dimensional semiclassical treatments of QCD.
Academic Training Lectures - QCD for Postgraduates
Maureen Prola-Tessaur
2010-01-01
by Giulia Zanderighi (University of Oxford) Monday 12 to Friday 16 April 2010 From 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Monday 12 - Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities. Tuesday 13 - Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD ...
Solving QCD via multi-Regge theory
International Nuclear Information System (INIS)
White, A. R.
1998-01-01
A high-energy, transverse momentum cut-off, solution of QCD is outlined. Regge pole and single gluon properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. This solution, which corresponds to a supercritical phase of Reggeon Field Theory, may only be applicable to QCD with a very special quark content
Solvable models and hidden symmetries in QCD
International Nuclear Information System (INIS)
Yepez-Martinez, Tochtli; Hess, P. O.; Szczepaniak, A.; Civitarese, O.; Lerma H., S.
2010-01-01
We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.
How is the charmonium splitting in QCD
International Nuclear Information System (INIS)
Bertlmann, R.A.
1981-06-01
Using the SVZ moment procedure to predict resonance masses within QCD the author has calculated exponential moments as a limit of the QCD formulae given by Reinders, Rubinstein and Yazaki. Applied to charmonium their results (besides 3 P 0 ) are reproduced very well. (Auth.)
Quantum properties of QCD string fragmentation
Directory of Open Access Journals (Sweden)
Todorova-Nová Šárka
2016-01-01
Full Text Available A simple quantization concept for a 3-dim QCD string is used to derive properties of QCD flux tube from the mass spectrum of light mesons and to predict observable quantum effects in correlations between adjacent hadrons. The quantized fragmentation model is presented and compared with experimental observations.
Prototype and proposed ISABELLE dipoles
International Nuclear Information System (INIS)
McInturff, A.D.; Sampson, W.B.; Robins, K.E.; Dahl, P.F.; Damm, R.
1977-01-01
Data are presented on the latest dipole prototypes to update the operational parameters possible for ISABELLE. This data base will constantly expand until the start of construction of the storage rings. The data will include field quality, stray field magnitudes, quench temperature and propagation times, protection capabilities singly and in multiple units, maximum central fields obtained and training behavior. Performance of the dipoles versus temperature and mode of refrigeration will be discussed. The single layer cosine theta turns distribution coils' parameters are better than those required for the operation of the 200 x 200 GeV version of ISABELLE. The double layer prototype has exceeded the magnetic field performance and two dimensional quality of field needed for the 400 x 400 GeV version of ISABELLE
Aperture measurements with AC dipole
Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department
2018-01-01
During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible beneﬁts of the new method are discussed.
Electric Dipole Moments of Hadrons
Wirzba, Andreas
2016-01-01
A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron, helion or any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the rel...
QCD pairing in primordial nuggets
Lugones, G.; Horvath, J. E.
2003-08-01
We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.
Pasztor, Gabriella
2018-01-01
The rich proton-proton collision data of the LHC allow to study QCD processes in a previously unexplored region with ever improving precision. This paper summarises recent results of the ATLAS, CMS and LHCb Collaborations using primarily multi-jet and vector boson plus jet data collected at $\\sqrt s$ = 8 and 13 TeV. Comparisons to higher-order theoretical calculations and sophisticated Monte Carlo predictions are presented, as well as the impact of the data on the determination of the parton distribution functions and the measurement of the strong coupling constant, $\\alpha_s$.
Nucleon deformation from lattice QCD
International Nuclear Information System (INIS)
Tsapalis, A.
2008-01-01
The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)
Alvarez-Gaumé, Luís; Kounnas, Costas; Marino, M; Alvarez-Gaume, Luis; Distler, Jacques; Kounnas, Costas; Marino, Marcos
1996-01-01
We analyze the possible soft breaking of N=2 supersymmetric Yang-Mills theory with and without matter flavour preserving the analyticity properties of the Seiberg-Witten solution. For small supersymmetry breaking parameter with respect to the dynamical scale of the theory we obtain an exact expression for the effective potential. We describe in detail the onset of the confinement transition and some of the patterns of chiral symmetry breaking. If we extrapolate the results to the limit where supersymmetry decouples, we obtain hints indicating that perhaps a description of the QCD vacuum will require the use of Lagrangians containing simultaneously mutually non-local degrees of freedom (monopoles and dyons).
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Torres, Felipe; Morales, Rafael; Schuller, Ivan K; Kiwi, Miguel
2017-11-09
The discovery of dipole-induced exchange bias (EB), switching from negative to positive sign, is reported in systems where the antiferromagnet and the ferromagnet are separated by a paramagnetic spacer (AFM-PM-FM). The magnitude and sign of the EB is determined by the cooling field strength and the PM thickness. The same cooling field yields negative EB for thin spacers, and positive EB for thicker ones. The EB decay profile as a function of the spacer thickness, and the change of sign, are attributed to long-ranged dipole coupling. Our model, which accounts quantitatively for the experimental results, ignores the short range interfacial exchange interactions of the usual EB theories. Instead, it retains solely the long range dipole field that allows for the coupling of the FM and AFM across the PM spacer. The experiments allow for novel switching capabilities of long range EB systems, while the theory allows description of the structures where the FM and AFM are not in atomic contact. The results provide a new approach to design novel interacting heterostructures.
Meson Spectroscopy from QCD - Project Results
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States)
2017-04-17
Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing in πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.
The QCD phase transition. From the microscopic mechanism to signals
International Nuclear Information System (INIS)
Shuryak, E.V.
1997-01-01
This talk consists of two very different parts: the first one deals with non-perturbative QCD and physics of the chiral restoration, the second with rather low-key (and still unfinished) work aiming at obtaining EOS and other properties of hot/dense hadronic matter from data on heavy ion collisions. The microscopic mechanism for chiral restoration phase transition is a transition from randomly placed tunneling events (instantons) at low T to a set of strongly correlated tunneling-anti-tunneling events (known as instanton-anti-instanton molecules) at high T. Many features of the transition can be explained in this simple picture, especially the critical line and its dependence on quark masses. This scenario predicts qualitative change of the basic quark-quark interactions around the phase transition line, with some states (such as pion-sigma ones) probably surviving event at T > T c . In the second half of the talk experimental data on collective flow in heavy ion collision are discussed its hydro-based description and relation to equation of state (EOS). A distinct feature of the QCD phase transition region is high degree of 'softness', (small ratio pressure/energy density). (author)
Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization
Directory of Open Access Journals (Sweden)
Nedelko Sergei N.
2017-01-01
Full Text Available An approach to QCD vacuum as a medium describable in terms of statistical ensemble of almost everywhere homogeneous Abelian (anti-self-dual gluon fields is reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral SUL(Nf × SUR(Nf and UA(1 symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic and weak interactions of mesons are represented in the action in terms of nonlocal n-point interaction vertices given by the quark-gluon loops averaged over the background ensemble. Systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons and heavy quarkonia are presented. Relationship of this approach to the results of functional renormalization group and Dyson-Schwinger equations, and the picture of harmonic confinement is briefly outlined.
Asymptotic perturbative QCD in elastic scattering, color transparency and ANN
International Nuclear Information System (INIS)
Botts, J.
1989-01-01
Sorting out the various perturbative contributions to wide angel elastic hadron-hadron scattering has been the subject of recent enquiry. Distinguishing the various contributions are the transverse size of the external hadrons and the interaction region and restrictions on the internal momenta flows. For wide angle elastic hadron-hadron scattering, the interaction between two types of perturbative processes, multiple and single scattering, can be the source of interference phenomena and interesting physics. In the following, after a brief description of the leading and non-leading processes, we shall give a picture of what perturbative QCD may have to say about elastic scattering, color transparency and the spin asymmetry, A NN . 9 refs., 5 figs
Radiodiagnosis of lung picture changes
International Nuclear Information System (INIS)
Kamenetskij, M.S.; Lezova, T.F.
1988-01-01
The roentgenological picture of changes of the lung picture in the case of different pathological states in the lungs and the heart, is described. A developed diagnostic algorithm for the syndrome of lung picture change and the rules of its application are given. 5 refs.; 9 figs
International Nuclear Information System (INIS)
Smith, W.H.
1997-01-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F 2 , which is used to determine the gluon momentum distribution. Both low and high Q 2 regimes are discussed. The low Q 2 transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure α s , and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Energy Technology Data Exchange (ETDEWEB)
Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.
1997-06-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.
De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe
2006-01-01
We summarize our recent results on the phase diagram of QCD with N_f=2+1 quark flavors, as a function of temperature T and quark chemical potential \\mu. Using staggered fermions, lattices with temporal extent N_t=4, and the exact RHMC algorithm, we first determine the critical line in the quark mass plane (m_{u,d},m_s) where the finite temperature transition at \\mu=0 is second order. We confirm that the physical point lies on the crossover side of this line. Our data are consistent with a tricritical point at (m_{u,d},m_s) = (0,\\sim 500) MeV. Then, using an imaginary chemical potential, we determine in which direction this second-order line moves as the chemical potential is turned on. Contrary to standard expectations, we find that the region of first-order transitions shrinks in the presence of a chemical potential, which is inconsistent with the presence of a QCD critical point at small chemical potential. The emphasis is put on clarifying the translation of our results from lattice to physical units, and ...
DEFF Research Database (Denmark)
Flensborg, Ingelise
2008-01-01
The polycentric picture The presentation introduces a dynamic view on children's drawings inspired by J.J.Gibson's ecological approach to visual perception. Empirical research in children's drawings will be the basis for the documentation of the fact that children's drawings contain several...... viewpoints and can be characterized as polycentric. I will talk about children's perception of environmental space and about the relations and the orientation they are establishing, which are used in the organisation of the pictorial space. The presentation serves the purpose to point out ontological...
RHIC spin flipper AC dipole controller
Energy Technology Data Exchange (ETDEWEB)
Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.
2011-03-28
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.
Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation
International Nuclear Information System (INIS)
Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong
2013-01-01
Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)
Scattering processes and resonances from lattice QCD
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model
Energy Technology Data Exchange (ETDEWEB)
Bhoonah, Amit; Thomas, Evan, E-mail: zucchini@phas.ubc.ca; Zhitnitsky, Ariel R., E-mail: arz@phas.ubc.ca
2015-01-15
We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions.
Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model
International Nuclear Information System (INIS)
Bhoonah, Amit; Thomas, Evan; Zhitnitsky, Ariel R.
2015-01-01
We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions
Electric dipole moments of light nuclei in chiral effective field theory
International Nuclear Information System (INIS)
Bsaisou, Jan
2014-01-01
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ had >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ QCD ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ QCD in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive Dimensional
Electric dipole moments of light nuclei in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, Jan
2014-04-25
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ{sub had} >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ{sub QCD} ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ{sub QCD} in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive
Electric dipole polarizability from first principles calculations
International Nuclear Information System (INIS)
Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.
2016-01-01
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.
CERN LHC dipole prototype success
International Nuclear Information System (INIS)
Anon.
1994-01-01
In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields
Alternative dipole magnets for ISABELLE
Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W. V.; Meuser, R.; Rechen, J.; Warren, R.
1982-05-01
A dipole magnet, intended as a possible alternative for the ISABELLE main ring magnet, was designed. Three layers of FNAL Doubler/Saver conductor were used. Two 1.3-m-long models were built and tested, both with and without an iron core, and in both helium I and helium II. The training behavior, cyclic energy loss, point of quench initiation, and quench velocity were determined. A central field of 6.5 tesla was obtained in He I (4.4 K), and 7.6 tesla in He II (1.8K).
The Muon Electric Dipole Moment
Barger, Vernon; Kao, Chung; Das, Ashok
1997-01-01
The electric dipole moment of the muon ($d_\\mu$) is evaluated in a two Higgs doublet model with a softly broken discrete symmetry. For $\\tan\\beta \\equiv |v_2|/|v_1| \\sim 1$, contributions from two loop diagrams involving the $t$ quark and the $W$ boson dominate; while for $\\tan\\beta \\gsim 10$, contributions from two loop diagrams involving the $b$ quark and the $\\tau$ lepton are dominant. For $8 \\gsim \\tan\\beta \\gsim 4$, significant cancellation occurs among the contributions from two loop di...
The QCD Critical Point and Related Observables
Energy Technology Data Exchange (ETDEWEB)
Nahrgang, Marlene
2016-12-15
The search for the critical point of QCD in heavy-ion collision experiments has sparked enormous interest with the completion of phase I of the RHIC beam energy scan. Here, I review the basics of the thermodynamics of the QCD phase transition and its implications for experimental multiplicity fluctuations in heavy-ion collisions. Several sources of noncritical fluctuations impact the observables and need to be understood in addition to the critical phenomena. Recent progress has been made in dynamical modeling of critical fluctuations, which ultimately is indispensable to understand potential signals of the QCD critical point in heavy-ion collision.
Towards the chiral limit in QCD
International Nuclear Information System (INIS)
Shailesh Chandrasekharan
2006-01-01
Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led
QCD Results from ATLAS and CMS
Leyton, M; The ATLAS collaboration
2014-01-01
The ATLAS and CMS collaborations have performed a wide range of studies of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of the underlying event, double parton interactions and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for the determination of parton density functions. Measurements of isolated, inclusive and di-photon cross sections for high-pT photons test various theoretical predictions and further constrain PDFs. An overview of these results is given.
Dynamical effects of QCD vacuum structure
International Nuclear Information System (INIS)
Ferreira, Erasmo
1994-01-01
The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig
Quark virtuality and QCD vacuum condensates
International Nuclear Information System (INIS)
Zhou Lijuan; Ma Weixing
2004-01-01
Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions
CERN. Geneva
2006-01-01
The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.
Death to perturbative QCD in exclusive processes?
Energy Technology Data Exchange (ETDEWEB)
Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)
1994-04-01
The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.
Radiation phase of a dipole field
International Nuclear Information System (INIS)
Shunovsky, A.S.
1998-01-01
In the case of a dipole electromagnetic radiation, the operator of the 'radiation phase' is defined. It is shown that this operator has a discrete spectrum with eigenvalues, lying in the segment [0,2π]. Some properties of the radiation phase and polarization are discussed. Seventy years of investigation of the problem of quantum phase led to the conclusion that there is no unique quantum variable, determining universally the measured phase properties of electromagnetic radiation. The operator constructions, describing cosine and sine of the phase, could be different schemes of measurement. This fact has accurately been confirmed by a number of recent experiments. Thus, it seems to be quite plausible that the quantum phase properties of an electromagnetic radiation are determined by interaction photons with a macroscopic detecting device. It is pertinent to ask the following question. Are the quantum phase properties of radiation completely determined by such an interaction or the photons have their own inherent phase properties which might be measured even if they are modified by interaction with a detecting device? The universally recognized fact is that the vacuum state of field is degenerated with respect to phase. If a quantum radiation has its inherent phase properties, it means that the degeneration is taken off in the process of generation which is an interaction of the vacuum field with excited states of atoms or molecules. By virtue of this picture proposed in, what all one can expect is that the inherent quantum phase properties of radiation are completely determined by a source via the conservation laws, describing the generation process. Even in this way, it seems to determine a unique quantum phase of radiation. As a matter of fact, there are two conservation laws, admitting a nontrivial angular dependence
Permanent Magnet Dipole for DIRAC Design Report
Vorozhtsov, Alexey
2012-01-01
Two dipole magnets including one spare unit are needed for the for the DIRAC experiment. The proposed design is a permanent magnet dipole. The design based on Sm2Co17 blocks assembled together with soft ferromagnetic pole tips. The magnet provides integrated field strength of 24.6 10-3 T×m inside the aperture of 60 mm. This Design Report summarizes the main magnetic and mechanic design parameters of the permanent dipole magnets.
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt
SSC collider dipole magnet end mechanical design
International Nuclear Information System (INIS)
Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.
1991-01-01
This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt
W-boson electric dipole moment
International Nuclear Information System (INIS)
He, X.; McKellar, B.H.J.
1990-01-01
The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4
Collages of granulation pictures
International Nuclear Information System (INIS)
Dunn, R.B.; November, L.J.
1985-01-01
This paper describes two small-area selection schemes that the authors have applied to CCD observations of solar granulation. The first scheme, which the authors call the ''mosaic,'' divides the 128 x 128 array into 64 subarrays each containing 16 x 16 pixels. On each picture in the burst the RMS contrast of the fine structure is measured in each subarray and compared to the corresponding value in a table that contains the highest previous RMS values. The second scheme, which the authors call a ''collage,'' is similar except the RMS value is calculated smoothly within a sliding Gaussian window over the entire scene and the value of an individual pixel is gated into the final collage whenever the RMS contrast at that pixel location exceeds that of all previous frames taken during the burst
International Nuclear Information System (INIS)
Huber, J.
1989-01-01
The first part of the book describes the development of a polarised spectrum of attitudes towards science and technology over the last two decades. Positivistic attitudes that emerged from the materialistic branch of the period of Enlightenment are shown in contrast to the attitudes that stem from the philosophical line of Rousseau-romanticism-vitalism. The second part of the book presents the results of an empirical study, providing evidence for the existence of the different attitudes towards technology and the environment. The study is based on a representative opinion poll among civil servants, engineering professions, social workers, and artists. Engineers and social workers are shown to represent the two antipodes in terms of the 'dual-culture' theory. In addition, sex-specific and age-specific differences are explained, and the different pictures of technology drawn by personalities characterised by an attitude of active control in contrast to those characterised by an attitude of intuitive faith. (orig.) [de
Claudia Marcelloni de Oliveira
Starting with this issue, we will publish special pictures illustrating the ongoing construction and commissioning efforts. If you wish to have a professionnal photographer immortalize your detector before it disappears in the heart of ATLAS or for a special event, don't hesitate to contact Claudia Marcelloni de Oliveira (16-3687) from the CERN photo service. Members of the pixel team preparing to insert the outermost layer (the outer of the three barrel pixel layers) into the Global Support Frame for the Pixel Detector in SR1. Ongoing work on the first Big Wheel on the C side. Exploded view of the side-C Big Wheel and the barrel cryostat. The TRT Barrel services (HV, LV, cooling liquid, active gas, flushing gas) are now completely connected and tested. Hats off to Kirill Egorov, Mike Reilly, Ben Legeyt and Godwin Mayers who managed to fit everything within the small clearance margin!
Distributed picture compilation demonstration
Alexander, Richard; Anderson, John; Leal, Jeff; Mullin, David; Nicholson, David; Watson, Graham
2004-08-01
A physical demonstration of distributed surveillance and tracking is described. The demonstration environment is an outdoor car park overlooked by a system of four rooftop cameras. The cameras extract moving objects from the scene, and these objects are tracked in a decentralized way, over a real communication network, using the information form of the standard Kalman filter. Each node therefore has timely access to the complete global picture and because there is no single point of failure in the system, it is robust. The demonstration system and its main components are described here, with an emphasis on some of the lessons we have learned as a result of applying a corpus of distributed data fusion theory and algorithms in practice. Initial results are presented and future plans to scale up the network are also outlined.
Aoki, Sinya
2013-07-01
We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.
The dipole-dipole dispersion forces for small, intermediate and large distances
International Nuclear Information System (INIS)
Antonio, J.C.
1986-10-01
An improved expression is obtained for the dipole-dipole London dispersion force between closed shell atoms for small, intermediate and large distances compared with their linear dimensions. (Author) [pt
Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction
International Nuclear Information System (INIS)
Parker, G.W.
1986-01-01
The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
International Nuclear Information System (INIS)
Lebed, R.F.
1999-01-01
These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c . We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c , while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when 'large' N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions. (author)
International Nuclear Information System (INIS)
Richard Lebed
1998-01-01
These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, they demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c . They then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c , while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when ''large'' N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions
Soft Pomeron in Holographic QCD
Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko
2016-01-01
We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Energy Technology Data Exchange (ETDEWEB)
Iancu, Edmond [IPhT, Saclay (France)
2014-07-01
These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.
International Nuclear Information System (INIS)
Iancu, Edmond
2014-01-01
These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry
Energy Technology Data Exchange (ETDEWEB)
Curci, G [European Organization for Nuclear Research, Geneva (Switzerland); Greco, M; Srivastava, Y [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati
1979-11-19
A recently proposed approach to the problem of infrared and mass singularities in QCD based on the formalism of coherent states, is extended to discuss massless quark and gluon jets. The present results include all leading (ln delta) terms as well as finite terms in the energy loss epsilon, in addition to the usual ln epsilon associated with ln delta. The formulae agree with explicit perturbative calculations, whenever available. Explicit expressions for the total Ksub(T) distributions are given which take into account transverse-momentum conservation. Predictions are also made for the Q/sup 2/ dependence of the mean Ksub(T)/sup 2/ for quark and gluon jets. The jet ksub(T) distributions are extrapolated for low ksub(T) and shown to describe with good accuracy the data for eanti e..-->..qanti q..-->.. hadrons. Numerical predictions are also presented for the forthcoming PETRA, PEP and LEP machines.
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Particle states of lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Kapoyannis, A.S.; Panagiotou, A.D. [University of Athens, Nuclear and Particle Physics Section, Faculty of Physics, Athens (Greece)
2017-11-15
We determine the degeneracy factor and the average particle mass of particles that produce the lattice QCD pressure and specific entropy at zero baryon chemical potential. The number of states of the gluons and the quarks are found to converge above T = 230 MeV to almost constant values, close to the number of states of an ideal quark-gluon phase, while their assigned masses retain high values. The number of states and the average mass of a system containing quarks in interaction with gluons are found to decrease steeply with increase of temperature between T ∝ 150 and 160 MeV, a region contained within the region of the chiral transition. The minimum value of the number of states within this temperature interval indicates that the states are of hadronic nature. (orig.)
How to introduce the magnetic dipole moment
International Nuclear Information System (INIS)
Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)
DEFF Research Database (Denmark)
Gammelmark, Søren; Zinner, Nikolaj Thomas
2013-01-01
We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....
International Nuclear Information System (INIS)
Satz, Helmut
1998-01-01
The aim of high energy nuclear collisions is to study strong interaction thermodynamics in the laboratory; we want to explore colour deconfinement and the resulting new state of matter, the quark-gluon plasma. Phenomenological models have done much to form the concepts of the field, but today QCD provides the theoretical basis for our understanding of hot and dense matter and for the tools to probe it. I will therefore begin by summarizing recent results from finite temperature lattice QCD and then turn to the study of colour deconfinement using hard probes; here the recently reported anomalous J/ψ suppression represents a particularly promising signal. Similarly, the observed low mass dilepton enhancement has focussed our attention on the properties of hadrons near chiral symmetry restoration. The hadrosynthesis at freeze-out is yet another region of much present activity to be addressed in the final part of this summary. All aspects were covered here in a variety of excellent plenary talks and contributions; I hope the speakers will forgive me for concentrating on the progress in physics as I see it, rather than on individual talks. The field of high energy nuclear collisions is very many-faceted, and moreover I had to select what I could coherently summarize in the given time. I therefore also apologize to all those whose contributions to this meeting are covered insufficiently or not at all. In particular, I shall review neither the developments in astrophysics nor the search for disoriented chiral condensates, simply because of my lack of competence in these areas. (author)
International Nuclear Information System (INIS)
Muller, David
1999-01-01
We present selected results on strong interaction physics from the SLD experiment at the SLAC Linear Collider. We report on several new studies of 3- and 4-jet hadronic Z 0 decays, in which jets are identified as quark, antiquark or gluon. The 3-jet Z 0 --> b anti-bg rate is sensitive to the b-quark mass; prospects for measuring m b are discussed. The gluon energy spectrum is measured over the full kinematic range, providing an improved test of QCD and limits on anomalous b anti-bg couplings. The parity violation in Z 0 --> b anti-bg decays is consistent with electroweak theory plus QCD. New tests of T- and CP-conservation at the bbg vertex are performed. A new measurement of the rate of gluon splitting into b anti-b pairs yields g b anti-b = 0.0031 ± 0.0007 (stat.)± 0.0006 (syst.) (Preliminary). We also present a number of new results on jet fragmentation into identified hadrons. The B hadron energy spectrum is measured over the full kinematic range using a new, inclusive technique, allowing stringent tests of predictions for its shape and a precise measurement of (xB) = 0.714 ± 0.005(stat.) ± 0.007(syst.) (Preliminary). A detailed study of correlations in rapidity y between pairs of identified pi ± , K ± and p/anti-p confirms that strangeness and baryon number are conserved locally, and shows local charge conservation between meson-baryon and strange-nonstrange pairs. Flavor-dependent long-range correlations are observed for all combinations of these hadron species, yielding new information on leading particle production. The first study of correlations using rapidities signed such that y > 0 corresponds to the quark direction provides additional new insights into fragmentation, including the first direct observation of baryon number ordering along the q anti-q axis
Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure
Energy Technology Data Exchange (ETDEWEB)
Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN
2014-07-01
FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.
Strange Baryon Physics in Full Lattice QCD
International Nuclear Information System (INIS)
Huey-Wen Lin
2007-01-01
Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles
Chiral perturbation theory for lattice QCD
International Nuclear Information System (INIS)
Baer, Oliver
2010-01-01
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
A Bayesian analysis of QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A new technique has recently been developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. This approach has the virtue of being able to directly generate the spectral function of a given operator, without the need of making an assumption about its specific functional form. To investigate whether useful results can be extracted within this method, we have first studied the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results show a significant peak in the region of the experimentally observed ρ-meson mass, which is in agreement with earlier QCD sum rules studies and suggests that the Maximum Entropy Method is a strong tool for analyzing QCD sum rules.
Two-color QCD via dimensional reduction
Czech Academy of Sciences Publication Activity Database
Zhang, T.; Brauner, Tomáš; Kurkela, A.; Vuorinen, A.
2012-01-01
Roč. 2012, č. 139 (2012), s. 1-16 ISSN 1126-6708 Institutional support: RVO:61389005 Keywords : thermal field theory * QCD * confinement Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012
QCD Effective Field Theories for Heavy Quarkonium
International Nuclear Information System (INIS)
Brambilla, Nora
2006-01-01
QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Wegner, P.; Wettig, T.
2003-09-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC. (orig.)
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Stueben, H.; Wegner, P.; Wettig, T.; Wittig, H.
2004-01-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E; Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC
The time development of QCD jets
International Nuclear Information System (INIS)
Caneschi, L.
1979-01-01
The time development of jets in perturbative QCD is studied. In spite of the fact that the total time for the jet to develop increases indefinitely with increasing energy, quark antiquark pairs remain unscreened only an infinitesimal time. (author)
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Challenges for QCD theory: some personal reflections
International Nuclear Information System (INIS)
Sjöstrand, T
2013-01-01
At the LHC all processes are QCD ones, whether ‘signal’ or ‘background’. In this review the frontiers of current QCD research are addressed, towards increased understanding, improved calculational precision, and role in potential future discoveries. Issues raised include: - the limits of perturbative QCD calculations and parton distribution usage,; - the nature of multiparton interactions,; - the impact of colour reconnection on physical observables,; - the need for progress on hadronization modelling,; - the improvements of parton showers and their combination with the matrix-element description,; - the use of QCD concepts in Beyond-the-Standard-Model scenarios and; - the key position of event generators and other software in the successful exploration of LHC physics. On the way, several questions are posed, where further studies are needed. (paper)
Opportunities, Challenges, and Fantasies in Lattice QCD
Wilczek, Frank
2002-01-01
Some important problems in quantitative QCD will certainly yield to hard work and adequate investment of resources, others appear difficult but may be accessible, and still others will require essentially new ideas. Here I identify several examples in each class.
Automated NLO QCD corrections with WHIZARD
International Nuclear Information System (INIS)
Weiss, Christian; Siegen Univ.; Chokoufe Nejad, Bijan; Reuter, Juergen; Kilian, Wolfgang
2015-10-01
We briefly discuss the current status of NLO QCD automation in the Monte Carlo event generator WHIZARD. The functionality is presented for the explicit study of off-shell top quark production with associated backgrounds at a lepton collider.
Towards understanding Regge trajectories in holographic QCD
International Nuclear Information System (INIS)
Cata, Oscar
2007-01-01
We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal's work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal's approach. In this paper we investigate this issue. We find that Migdal's approach, which is based on a modified Pade approximant, is closely related to the issue of quark-hadron duality breakdown in QCD
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals
MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry
1981-01-01
The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.
Neutral dipole-dipole dimers: A new field in science
Kosower, Edward M.; Borz, Galina
2018-03-01
Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another
Processors and systems (picture processing)
Energy Technology Data Exchange (ETDEWEB)
Gemmar, P
1983-01-01
Automatic picture processing requires high performance computers and high transmission capacities in the processor units. The author examines the possibilities of operating processors in parallel in order to accelerate the processing of pictures. He therefore discusses a number of available processors and systems for picture processing and illustrates their capacities for special types of picture processing. He stresses the fact that the amount of storage required for picture processing is exceptionally high. The author concludes that it is as yet difficult to decide whether very large groups of simple processors or highly complex multiprocessor systems will provide the best solution. Both methods will be aided by the development of VLSI. New solutions have already been offered (systolic arrays and 3-d processing structures) but they also are subject to losses caused by inherently parallel algorithms. Greater efforts must be made to produce suitable software for multiprocessor systems. Some possibilities for future picture processing systems are discussed. 33 references.
The structure of gluon radiation in QCD
International Nuclear Information System (INIS)
Parke, S.; Mangano, M.
1989-08-01
For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processes. Also, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD. 16 refs., 3 figs., 1 tab
Charge correlations as definitive tests of QCD
International Nuclear Information System (INIS)
Maxwell, C.J.
1981-07-01
Certain weighted charge correlations are defined and it is shown how they can be used to measure properties of the gluon jet in the e + e - 3-jet final state. Properties are suggested which are indicative of the form of the QCD matrix element, the running coupling constant and value of Λ, and hence constitute definitive tests of QCD. The recent near tenfold increase in luminosity at PETRA should make such experimental tests possible in the near future. (author)
Deuteron transverse densities in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)
2017-05-15
We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)
Some New/Old Approaches to QCD
Gross, D. J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
Self-consistent areas law in QCD
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Migdal, A.A.
1980-01-01
The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution
Recent QCD Studies at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Group, Robert Craig
2008-04-01
Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.
QCD angular correlations for muon pair production
International Nuclear Information System (INIS)
Kajantie, K.; Raitio, R.; Lindfors, J.
1978-01-01
Angular distributions of muons are discussed in the framework of a QCD treatment of muon pair production in hadron-hadron collisions. The predicted angular effects are independent of the infrared behavior of QCD. Measuring them will permit one to determine whether the origin of the large transverse momentum of the pair is in the quark transverse momenta or in a constituent-constituent subprocess. (author)
Lattice and Phase Diagram in QCD
International Nuclear Information System (INIS)
Lombardo, Maria Paola
2008-01-01
Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.
Understanding Theoretical Uncertainties in Perturbative QCD Computations
DEFF Research Database (Denmark)
Jenniches, Laura Katharina
effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....
The structure of gluon radiation in QCD
International Nuclear Information System (INIS)
Parke, S.; Mangano, M.
1990-01-01
For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. Here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processess. Finally, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD
A new perturbative approach to QCD
International Nuclear Information System (INIS)
Pervushin, V.N.; Kallies, W.; Sarikov, N.A.
1988-01-01
For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model
Some new/old approaches to QCD
Energy Technology Data Exchange (ETDEWEB)
Gross, D.J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
Some new/old approaches to QCD
International Nuclear Information System (INIS)
Gross, D.J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD
QCD and hard diffraction at the LHC
International Nuclear Information System (INIS)
Albrow, Michael G.; Fermilab
2005-01-01
As an introduction to QCD at the LHC I given an overview of QCD at the Tevatron, emphasizing the high Q 2 frontier which will be taken over by the LHC. After describing briefly the LHC detectors I discuss high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. I introduce the FP420 project to measure the scattered protons 420 m downstream of ATLAS and CMS
Search for the QCD ground state
International Nuclear Information System (INIS)
Reuter, M.; Wetterich, C.
1994-05-01
Within the Euclidean effective action approach we propose criteria for the ground state of QCD. Despite a nonvanishing field strength the ground state should be invariant with respect to modified Poincare transformations consisting of a combination of translations and rotations with suitable gauge transformations. We have found candidate states for QCD with four or more colours. The formation of gluon condensates shows similarities with the Higgs phenomenon. (orig.)
Unambiguity of renormalization group calculations in QCD
International Nuclear Information System (INIS)
Vladimirov, A.A.
1979-01-01
A detailed analysis of the reduction of ambiguities determined by an arbitrary renormalization scheme is presented for the renormalization group calculations of physical quantities in quantum chromodynamics (QCD). Some basic formulas concerning the renormalization-scheme dependence of Green's and renormalization group functions are given. A massless asymptotically free theory with one coupling constant g is considered. In conclusion, several rules for renormalization group calculations in QCD are formulated
On microscopic structure of the QCD vacuum
Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.
2018-05-01
We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.
Static spin-dependent forces between heavy quarks in the classical approximation to dual QCD
International Nuclear Information System (INIS)
Baker, M.; Ball, J.S.; Zachariasen, F.
1991-01-01
We compute the static spin-dependent forces V S (R) (proportional to σ 1 ·σ 2 ) and V T (R) (proportional to 3σ 1 ·Rσ 2 ·R-σ 1 ·σ 2 ) between two quarks separated by R. This is done by treating the (weak) spin-dependent effects as a perturbation on the spin-independent potentials and fields computed earlier for dual QCD. What results is a definite prediction for the heavy-quark potentials which are similar to, but different in form from, those used in phenomenological treatments. Calculations of the masses and splittings of heavy-quark states using our potentials will provide a further test of the dual superconductor picture of QCD
Hopkins, Robert
2001-01-01
This paper considers whether pictures ever implicitly represent internal spectators of the scenes they depict, and what theoretical construal to offer of their doing so. Richard Wollheim's discussion (Painting as an Art, ch.3) is taken as the most sophisticated attempt to answer these questions. I argue that Wollheim does not provide convincing argument for his claim that some pictures implicitly represent an internal spectator with whom the viewer of the picture is to imaginatively identify....
Device for transmitting pictures and device for receiving said pictures
1993-01-01
Device for transmitting television pictures in the form of transform coefficients and motion vectors. The motion vectors of a sub-picture are converted (20) into a series of difference vectors and a reference vector. Said series is subsequently applied to a variable-length encoder (22) which encodes
Iron saturation control in RHIC dipole magnets
International Nuclear Information System (INIS)
Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.
1991-01-01
The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab
Microscopic evaluation of the nuclear dipole polarizability
Energy Technology Data Exchange (ETDEWEB)
Lipparini, E; Orlandini, G; Stringari, S; Traini, M [Trento Univ. (Italy). Dept. di Matematica e Fisica
1977-12-01
The dipole polarizability sum rule has been evaluated by means of a restricted Hartree-Fock approach. The method leads to a simple and analytical expression for the dipole polarizability. Explicit calculations have been performed in /sup 16/O and /sup 40/Ca with different types of interaction.
Electric dipoles on the Bloch sphere
Vutha, Amar C.
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Giant dipole resonance by many levels theory
International Nuclear Information System (INIS)
Mondaini, R.P.
1977-01-01
The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt
Electric dipoles on the Bloch sphere
International Nuclear Information System (INIS)
Vutha, Amar C
2015-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)
Droplet-model electric dipole moments
International Nuclear Information System (INIS)
Myers, W.D.; Swiatecki, W.J.
1991-01-01
Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)
Electrostatic-Dipole (ED) Fusion Confinement Studies
Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert
2004-11-01
The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH
Marcu, Laura; Boppart, Stephen A.; Hutchinson, Mark R.; Popp, Jürgen; Wilson, Brian C.
2018-02-01
The 5th International Conference on Biophotonics (ICOB) held April 30 to May 1, 2017, in Fremantle, Western Australia, brought together opinion leaders to discuss future directions for the field and opportunities to consider. The first session of the conference, "How to Set a Big Picture Biophotonics Agenda," was focused on setting the stage for developing a vision and strategies for translation and impact on society of biophotonic technologies. The invited speakers, panelists, and attendees engaged in discussions that focused on opportunities and promising applications for biophotonic techniques, challenges when working at the confluence of the physical and biological sciences, driving factors for advances of biophotonic technologies, and educational opportunities. We share a summary of the presentations and discussions. Three main themes from the conference are presented in this position paper that capture the current status, opportunities, challenges, and future directions of biophotonics research and key areas of applications: (1) biophotonics at the nano- to microscale level; (2) biophotonics at meso- to macroscale level; and (3) biophotonics and the clinical translation conundrum.
Nuclear electric dipole moments in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, J.; Vries, J. de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Hanhart, C. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); Liebig, S. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing,Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany); Minossi, D. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Nogga, A.; Wirzba, A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany)
2015-03-19
We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model.
Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!
Top down electroweak dipole operators
Fuyuto, Kaori; Ramsey-Musolf, Michael
2018-06-01
We derive present constraints on, and prospective sensitivity to, the electric dipole moment (EDM) of the top quark (dt) implied by searches for the EDMs of the electron and nucleons. Above the electroweak scale v, the dt arises from two gauge invariant operators generated at a scale Λ ≫ v that also mix with the light fermion EDMs under renormalization group evolution at two-loop order. Bounds on the EDMs of first generation fermion systems thus imply bounds on |dt |. Working in the leading log-squared approximation, we find that the present upper bound on |dt | is 10-19 e cm for Λ = 1 TeV, except in regions of finely tuned cancellations that allow for |dt | to be up to fifty times larger. Future de and dn probes may yield an order of magnitude increase in dt sensitivity, while inclusion of a prospective proton EDM search may lead to an additional increase in reach.
AdS/QCD, Light-Front Holography, and Sublimated Gluons
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.
Brane-induced Skyrmion on S3: Baryonic matter in holographic QCD
International Nuclear Information System (INIS)
Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru
2009-01-01
We study baryonic matter in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory. The baryon is described as the 'brane-induced Skyrmion', which is a topologically nontrivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the ''truncated-resonance model'' approach for the baryon analysis, including pion and ρ meson fields below the ultraviolet cutoff scale M KK ∼1 GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N c as single brane-induced Skyrmion on the three-dimensional closed manifold S 3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S 3 , and the decrease of the size of S 3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S 3 as the function of its radius R. We find a new picture of 'pion dominance' near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion fields survive. We also find the swelling phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in the general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another instanton description of the baryon in holographic QCD, considering the role of cutoff scale M KK .
High-field dipoles for future accelerators
International Nuclear Information System (INIS)
Wipf, S.L.
1984-09-01
This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators
The dipole response of {sup 132}Sn
Energy Technology Data Exchange (ETDEWEB)
Schrock, Philipp; Aumann, Thomas; Johansen, Jacob; Schindler, Fabia [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Rossi, Dominic [Michigan State University (United States); Collaboration: R3B-Collaboration
2015-07-01
The Isovector Giant Dipole Resonance (IVGDR) is a well-known collective excitation in which all protons oscillate against all neutrons of a nucleus. In neutron-rich nuclei an additional low-lying dipole excitation occurs, often denoted as Pygmy Dipole Resonance (PDR). To study the PDR in exotic Sn-isotopes, an experiment has been successfully performed with the upgraded R{sup 3}B-LAND setup at GSI. The complete-kinematics measurement of all reaction participants allows for the reconstuction of the excitation energy and, hence, the extraction of the dipole strength. Presented are the main features of the experiment, the analysis concept and the current status of the analysis of the dipole response of the doubly-magic isotope {sup 132}Sn.
Method of analytic continuation by duality in QCD: Beyond QCD sum rules
International Nuclear Information System (INIS)
Kremer, M.; Nasrallah, N.F.; Papadopoulos, N.A.; Schilcher, K.
1986-01-01
We present the method of analytic continuation by duality which allows the approximate continuation of QCD amplitudes to small values of the momentum variables where direct perturbative calculations are not possible. This allows a substantial extension of the domain of applications of hadronic QCD phenomenology. The method is illustrated by a simple example which shows its essential features
NLO QCD predictions for Z + γ + jets production with Sherpa
Energy Technology Data Exchange (ETDEWEB)
Krause, Johannes; Siegert, Frank [Institut fuer Kern- und Teilchenphysik, Dresden (Germany)
2018-02-15
We present precise predictions for prompt photon production in association with a Z boson and jets. They are obtained within the Sherpa framework as a consistently merged inclusive sample. Leptonic decays of the Z boson are fully included in the calculation with all off-shell effects. Virtual matrix elements are provided by OpenLoops and parton-shower effects are simulated with a dipole parton shower. Thanks to the NLO QCD corrections included not only for inclusive Zγ production but also for the Zγ + 1-jet process we find significantly reduced systematic uncertainties and very good agreement with experimental measurements at √(s) = 8 TeV. Predictions at √(s) = 13 TeV are displayed including a study of theoretical uncertainties. In view of an application of these simulations within LHC experiments, we discuss in detail the necessary combination with a simulation of the Z + jets final state. In addition to a corresponding prescription we introduce recommended cross checks to avoid common pitfalls during the overlap removal between the two samples. (orig.)
Standard model group, QCD subgroup - dynamics isolating and testing the elementary QCD subprocess
International Nuclear Information System (INIS)
Tannenbaum, M.J.
1982-01-01
QCD to an experimentalist is the theory of interactions of quarks and gluons. Experimentalists like QCD because QCD is analogous to QED. Thus, following Drell and others who have for many years studied the validity of QED, one has a ready-made menu for tests of QCD. There are the static and long distance tests. These topics are covered by Peter LePage in the static properties group. In this report, dynamic and short distance tests of QCD will be discussed, primarily via reactions with large transverse momenta. This report is an introduction and overview of the subject, to serve as a framework for other reports from the subgroup. In the last two sections, the author has taken the opportunity to discuss his own ideas and opinions
Hadronic and nuclear interactions in QCD
International Nuclear Information System (INIS)
1982-01-01
Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics
QCD as a topologically ordered system
International Nuclear Information System (INIS)
Zhitnitsky, Ariel R.
2013-01-01
We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1) A problem where the would be η ′ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1) A problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
International Nuclear Information System (INIS)
Olsson, Magnus.
1993-02-01
A model is proposed for the production of transverse jets from diffractively excited protons. We propose that transverse jets can be obtained from gluonic bremsstrahlung in a way similar to the emission in DIS. Qualitative agreement is obtained between the model and the uncorrected data published by the UA8 collaboration. Perturbative QCD in the MLLA approximation is applied to multiple jet production in e + e - -annihilation. We propose modified evolution equations for deriving the jet cross sections, defined in the 'k t ' or 'Durham' algorithm. The mean number of jets as a function of the jet resolution is studied, and analytical predictions are compared to the results of MC simulations. We also study a set of differential-difference equations for multiplicity distributions in e + e - -annihilations, supplemented with appropriate boundary conditions. These equations take into account nonsingular terms in the GLAP splitting functions as well as kinematical constraints related to recoil effects. The presence of retarded terms imply that the cascade develops more slowly and reduces the fluctuations. The solutions agree well with MC simulations and experimental data. (authors)
QCD@LHC International Conference
2016-01-01
The particle physics groups of UZH and ETH will host the QCD@LHC2016 conference (22.8.-26.8., UZH downtown campus), which is part of an annual conference series bringing together theorists and experimentalists working on hard scattering processes at the CERN LHC, ranging from precision studies of Standard Model processes to searches for new particles and phenomena. The format of the conference is a combination of plenary review talks and parallel sessions, with the latter providing a particularly good opportunity for junior researchers to present their results. The conference will take place shortly after the release of the new data taken by the LHC in sping 2016 at a collision energy of 13TeV, expected to more than double the currently available data set. It will be one of the first opportunities to discuss these data in a broader context, and we expect the conference to become a very lively forum at the interface of phenomenology and experiment.
Pictures in Pictures: Art History and Art Museums in Children's Picture Books
Yohlin, Elizabeth
2012-01-01
Children's picture books that recreate, parody, or fictionalize famous artworks and introduce the art museum experience, a genre to which I will refer as "children's art books," have become increasingly popular over the past decade. This essay explores the pedagogical implications of this trend through the family program "Picture Books and Picture…
Hamiltonian approach to QCD in Coulomb gauge at zero and finite temperature
Directory of Open Access Journals (Sweden)
Reinhardt H.
2017-01-01
Full Text Available I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. For the chiral and deconfinement phase transition pseudo-critical temperatures of 170MeV and 198 MeV, respectively, are obtained.
QCD studies and discoveries with e{sup + }e{sup - } colliders and future perspectives
Energy Technology Data Exchange (ETDEWEB)
Lange, Jens Soeren, E-mail: soeren.lange@exp2.physik.uni-giessen.de [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut (Germany); Collaboration: Belle Collaboration
2013-03-15
Observations of new charmonium(-like) and bottomonium(-like) states (sometimes refered to as 'XYZ' states) at e{sup + }e{sup - } colliders have changed our picture of quarkonia systems as QCD bound states. Potential models with a linear confinement ansatz, which were able to predict many conventional states with an accuracy of {approx}1 MeV, absolutely fail in describing many of the new states. Symmetries play an important role e.g. in the determination of the quantum numbers (such as charge conjugation in the radiative decays) or in trying to explain surprising properties such as isospin violation.
Constraints on exotic dipole-dipole couplings between electrons at the micron scale
Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek
2015-05-01
Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.
QCD sum rules in a Bayesian approach
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A novel technique is developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. The main advantage of this approach lies in its ability of directly generating the spectral function of a given operator. This is done without the need of making an assumption about the specific functional form of the spectral function, such as in the 'pole + continuum' ansatz that is frequently used in QCD sum rule studies. Therefore, with this method it should in principle be possible to distinguish narrow pole structures form continuum states. To check whether meaningful results can be extracted within this approach, we have first investigated the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results exhibit a significant peak in the region of the experimentally observed ρ-meson mass, which agrees with earlier QCD sum rules studies and shows that the Maximum Entropy Method is a useful tool for analyzing QCD sum rules.
Nonperturbation aspects of QCD. Monte Carlo and optimization
International Nuclear Information System (INIS)
Brezin, E.; Morel, A.; Marinari, E.; Couchot, F.; Narison, S.; Richard, J.M.; Blaizot, J.P.; Souillard, B.
1986-01-01
Phase transitions; lattice QCD; numerical simulation of lattice gauge theories; experimental research on gluonic mesons; QCD-duality sum rules; the bag model, potentials, and hadron spectra; and efficient Lagrangian functions and the Skyrme model are introduced [fr
η' mass and string breaking signals in full QCD
International Nuclear Information System (INIS)
Struckmann, T.
2000-11-01
One of the main goals of the SESAM/T χ L collaboration is to explore the structure of the full QCD vacuum within the framework of lattice calculations. In this work we concentrate on two aspects of this question: The contribution of disconnected diagrams to the η' mass and the search for signals of string breaking due the effects of virtual quark anti-quark pairs. Our analyses were done on the SESAM/T χ L QCD configurations with dynamical Wilson fermions at β = 5.6 which cover a m π /m ρ range of 0.57 to 0.83 with an extrapolated inverse lattice spacing of 1/a ∼ 2.3 GeV. The flavor singlet meson η' should obtain its relatively large mass by large contributions from disconnected diagrams which vanish for octet mesons. The evaluation of these noisy two loop correlators is a numerically demanding task. We discuss various methods and improvements of quark loop estimation on our configuration sample. We find that the use of O(400) smeared stochastic Z 2 source vectors per configuration makes the η' propagator accessible to standard spectrum methods. We extract η' observables which, after chiral extrapolation, are 15 - 25 per cent below the pseudoexperimental N f = 2 values. This could of course be an O(a) effect or due to a nontrivial extrapolation from the N f = 2 world to reality. A quenched reference analysis leads to similar results. We find large contributions to η' observables from topologically nontrivial configurations. This justifies qualitatively the theoretical picture which relates the η' mass with the U(1) anomaly. These dependencies seem to be absent for light spectrum observables. The observation of string breaking, the energetically favored decay of a static quark anti-quark pair into a static-light meson pair, above a certain separation should be a qualitative feature of full QCD simulations. In the framework of a two channel mixing analysis we estimate and improve noise to signal ratios of the static quark pair and the transition
Holographic picture of heavy vector meson melting
Energy Technology Data Exchange (ETDEWEB)
Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)
2016-11-15
The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)
SSC collider dipole magnet end mechanical design
International Nuclear Information System (INIS)
Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.
1991-05-01
This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs
Plasma confinement in a magnetic dipole
International Nuclear Information System (INIS)
Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.
1999-01-01
A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)
Plasma confinement in a magnetic dipole
International Nuclear Information System (INIS)
Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.
2001-01-01
A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)
Is the 2MASS dipole convergent?
Chodorowski, Michał; Bilicki, Maciej; Mamon, Gary A.; Jarrett, Thomas
2010-01-01
We study the growth of the clustering dipole of galaxies from the Two Micron All Sky Survey (2MASS). We find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e. up to about 300 Mpc/h. We compare the observed growth of the dipole with the theoretically expected, conditional growth for the LambdaCDM power spectrum and cosmological parameters constrained by WMAP. The observed growth turns out to be within 1-sigma confidence level of the theo...
Dipole moments of the rho meson
International Nuclear Information System (INIS)
Hecht, M.B.; McKellar, B.H.P.
1997-04-01
The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison
Cognitive components of picture naming.
Johnson, C J; Paivio, A; Clark, J M
1996-07-01
A substantial research literature documents the effects of diverse item attributes, task conditions, and participant characteristics on the case of picture naming. The authors review what the research has revealed about 3 generally accepted stages of naming a pictured object: object identification, name activation, and response generation. They also show that dual coding theory gives a coherent and plausible account of these findings without positing amodal conceptual representations, and they identify issues and methods that may further advance the understanding of picture naming and related cognitive tasks.
The Picture Exchange Communication System.
Bondy, A; Frost, L
2001-10-01
The Picture Exchange Communication System (PECS) is an alternative/augmentative communication system that was developed to teach functional communication to children with limited speech. The approach is unique in that it teaches children to initiate communicative interactions within a social framework. This article describes the advantages to implementing PECS over traditional approaches. The PECS training protocol is described wherein children are taught to exchange a single picture for a desired item and eventually to construct picture-based sentences and use a variety of attributes in their requests. The relationship of PECS's implementation to the development of speech in previously nonvocal students is reviewed.
The neutron electric dipole moment
International Nuclear Information System (INIS)
He, X.G.; McKellar, B.H.J.; Pakvasa, S.
1989-01-01
A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs
Superconducting Coil of Po Dipole
1983-01-01
The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.
Fermion determinants in lattice QCD
International Nuclear Information System (INIS)
Johnson, Christopher Andrew
2001-01-01
The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniques, reducing the variance by a factor of order 100 with a further, equal amount of work. The variance reduction method is a two-stage process, involving a Chebyshev approximation to the quantity in question and then the subtraction of traceless operators. The method is applied to the fermion determinant for non-perturbatively improved Wilson fermions on a 16 3 x 32 lattice. It is also applicable to a wider class of matrix operators. Finally we discuss how dynamical quark effects may be simulated in a Monte Carlo process with an effective partitioning of low and high eigenmodes. This may be done via selective updating of a trial configuration which highlights the physically relevant effects of light quark modes. (author)
International Nuclear Information System (INIS)
Dzierba, A.R.
1995-01-01
One of the open questions in non-perturbative QCD has to do with the existence of meson states predicted by the theory other than qq states. These include four-quark states (q 2 q 2 or molecules like KK), states of pure glue (glueballs: gg or ggg) and mixed or hybrid states (qqg). The prima facie candidate for a non-qq state would be one possessing exotic quantum numbers, J PC , not consistent with a qq combination. Examples include J PC =0 +- , 0-- , -+ ,hor-ellipsis Remarkably, states with exotic quantum numbers have not been found despite intensive searches. The case for a possible sighting of an exotic J Jc = 1 -+ state decaying into ηπ O , made a few years ago, seems to be dissolving. Yet, the evidence for non-qq states is clearly present. Conventional qq nonets are over-subscribed, states have been found with decay modes or production characteristics peculiar for qq. The experimental lesson we have learned is that information from a number of complementary processes must be brought together in order to understand the meson spectrum. Information has come from e + e - ,γγ, γγ, and pp collisions, from vector meson decays and from peripheral and central hadroproduction. This talk will review the status of the experimental search. I will especially point out how new technology is being brought to bear on the re-visit of the light quark sector. New instrumentation allows for sophisticated and selective triggers. The recent explosion in computing power allows us to analyze data with unprecedented statistics. Preliminary results from a recently completed, ultra-high statistics experiment using the Multiparticle Spectrometer at Brookhaven Lab will be presented. I will also describe the extension of the search to CEBAF, where an approved experiment there will study the sub-structure of scalar mesons via the radiative decays of the ER meson
Perturbative QCD and electromagnetic form factors
International Nuclear Information System (INIS)
Carlson, C.E.; Gross, F.
1987-01-01
We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs
Holographic models and the QCD trace anomaly
International Nuclear Information System (INIS)
Goity, Jose L.; Trinchero, Roberto C.
2012-01-01
Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.
QCD on the Cell Broadband Engine
Energy Technology Data Exchange (ETDEWEB)
Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)
2008-07-01
We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.
QCD on the Cell Broadband Engine
Energy Technology Data Exchange (ETDEWEB)
Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)
2008-07-01
We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.
Testing QCD with Hypothetical Tau Leptons
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.
1998-10-21
We construct new tests of perturbative QCD by considering a hypothetical {tau} lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e{sup +}e{sup -} annihilation cross section ratio, R{sub e{sup +}e{sup -}}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical {tau}. This method allows the wide range of the R{sub e{sup +}e{sup -}} data to be used as a probe of perturbative QCD.
Calculating hadronic properties in strong QCD
International Nuclear Information System (INIS)
Pennington, M.R.
1996-01-01
This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)
Small-x physics in perturbative QCD
International Nuclear Information System (INIS)
Lipatov, L.N.
1996-07-01
We review the parton model and the Regge approach to the QCD description of the deep-inelastic ep scattering at the small Bjorken variable x and demonstrate their relation with the DGLAP and BFKL evolution equations. It is shown, that in the leading logarithmic approximation the gluon is reggeized and the pomeron is a compound state of two reggeized gluons. The conformal invariance of the BFKL pomeron in the impact parameter space is used to investigate the scattering amplitudes at high energies and fixed momentum transfers. The remarkable properties of the Schroedinger equation for compound states of an arbitrary number of reggeized gluons in the multi-colour QCD are reviewed. The gauge-invariant effective action describing the gluon-Reggeon interactions is constructed. The known next-to-leading corrections to the QCD pomeron are discussed. (orig.)
Topics in perturbative QCD beyond the leading order
International Nuclear Information System (INIS)
Buras, A.J.
1979-08-01
The basic structure of QCD formulae for various inclusive and semi-inclusive processes is presented. Next to leading order QCD corrections to inclusive deep-inelastic scattering are discussed in some detail. The methods for calculations of QCD corrections (leading, next to leading) to semi-inclusive processes are outlined. Some results of these calculations are discussed. 58 references
New Methods in Non-Perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)
2017-01-31
In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
International Nuclear Information System (INIS)
Brodsky, Stanley J.; de Teramond, Guy F.
2011-01-01
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its β-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
Observation of dipole bands in 144Sm
International Nuclear Information System (INIS)
Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Sahasarkar, M.; Goswami, A.; Basu, S.K.; Bhattacharjee, T.; Mukherjee, G.; Chakraborty, A.; Ghughre, S.S.; Krishichayan; Mukhopadhyay, S.; Gangopadhyay, G.; Singh, A.K.
2007-01-01
The nucleus 144 Sm (Z=62, N=82), with its proximity to the shell closure and possibilities of particles and holes occupying high j orbitals, following appropriate excitations, is a suitable system for observation of dipole (MR) bands