Bits and q-bits as versatility measures
Directory of Open Access Journals (Sweden)
José R.C. Piqueira
2004-06-01
Full Text Available Using Shannon information theory is a common strategy to measure any kind of variability in a signal or phenomenon. Some methods were developed to adapt information entropy measures to bird song data trying to emphasize its versatility aspect. This classical approach, using the concept of bit, produces interesting results. Now, the original idea developed in this paper is to use the quantum information theory and the quantum bit (q-bit concept in order to provide a more complete vision of the experimental results.Usar a teoria da informação de Shannon é uma estratégia comum para medir todo tipo de variabilidade em um sinal ou fenômeno. Alguns métodos foram desenvolvidos para adaptar a medida de entropia informacional a dados de cantos de pássaro, tentando enfatizar seus aspectos de versatilidade. Essa abordagem clássica, usando o conceito de bit, produz resultados interessantes. Agora, a idéia original desenvolvida neste artigo é usar a teoria quântica da informação e o conceito de q-bit, com a finalidade de proporcionar uma visão mais completa dos resultados experimentais.
The energy level splitting for Unharmonic dc SQUID to be used as phase Q-bit
DEFF Research Database (Denmark)
Klenov, Nicolai V.; Kornev, Victor K.; Pedersen, Niels Falsig
2006-01-01
splitting. Threshold condition for the double-well form origin has been determined taking into account the impact of both harmonics. The splitting gap of the ground energy level has been calculated as a function of the harmonic amplitudes for different ratio s of characteristic Josephson energy E......-C to the Coulomb energy E-Q0. It has been shown that the gap value comes to about 7E(Q0) with increase of the ratio s. No external field needed, no bias current required and no circular currents are major advantages of such a qubit. (c) 2006 Elsevier B.V. All rights reserved....
Mermin, N. David
2007-08-01
Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.
Consciousness: The flipside of anaesthesia
African Journals Online (AJOL)
Adele
This option includes “perfect” simulation of conscious- ness, without it actually ... in particular, the search for molecular mechanisms has been greatly hindered by our .... q-bits in a distributed array of cytoskeletal proteins through- out the cell.
Nuclear spin states and quantum logical operations
International Nuclear Information System (INIS)
Orlova, T.A.; Rasulov, E.N.
2006-01-01
Full text: To build a really functional quantum computer, researchers need to develop logical controllers known as 'gates' to control the state of q-bits. In this work , equal quantum logical operations are examined with the emphasis on 1-, 2-, and 3-q-bit gates.1-q-bit quantum logical operations result in Boolean 'NOT'; the 'NOT' and '√NOT' operations are described from the classical and quantum perspective. For the 'NOT' operation to be performed, there must be a means to switch the state of q-bits from to and vice versa. For this purpose either a light or radio pulse of a certain frequency can be used. If the nucleus has the spin-down state, the spin will absorb a portion of energy from electromagnetic current and switch into the spin-up state, and the radio pulse will force it to switch into state. An operation thus described from purely classical perspective is clearly understood. However, operations not analogous to the classical type may also be performed. If the above mentioned radio pulses are only half the frequency required to cause a state switch in the nuclear spin, the nuclear spin will enter the quantum superposition state of the ground state (↓) and excited states (↑). A recurring radio pulse will then result in an operation equivalent to 'NOT', for which reason the described operation is called '√NOT'. Such an operation allows for the state of quantum superposition in quantum computing, which enables parallel processing of several numbers. The work also treats the principles of 2-q-bit logical operations of the controlled 'NOT' type (CNOT), 2-q-bit (SWAP), and the 3-q-bit 'TAFFOLI' gate. (author)
International Nuclear Information System (INIS)
Mermin, D.N.
2005-01-01
Full text: A quantum computer provides a toy universe in which to reexamine many aspects of quantum mechanics and quantum metaphysics. In particular measurement, against which John Bell unleashed one of his most elegant polemics, plays a transparent role. Since all measurements can be constructed out of identical 1-Qbit measurement gates, such obscurity as there is in the notion of measurement reduces to the obscurity, if any, of the elementary 1-Qbit gate. The 1-Qbit measurement gate is insufficiently celebrated. Without it the quantum computer has, in Abner Shimony's admirable words, 'no foreign policy'. Without it no computation has been done. without it no computation can begin. Without it there can be no error correction. Measurement takes coherence away but measurement also gives coherence. Praised be measurement. (author)
Quantum logic gates based on coherent electron transport in quantum wires.
Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S
2000-06-19
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.
A leap in scale for computers; Un saut d`echelle pour les calculateurs
Energy Technology Data Exchange (ETDEWEB)
Barenco, A; Ekert, A; Macchiavello, Ch; Sanpera, A [Oxford Univ. (United Kingdom)
1996-11-01
The peculiar laws of quantum physics may lead to an upheaval in computing and information processing. Digital computers deal with bits 0 or 1. Quantum mechanics may provide in theory q-bits, a coherent superposition of both states 0 and 1. A set of N q-bits can represent concomitantly up to 2{sup N} states. This superposition allows massively parallel computing. The ``universal quantum computer`` from Deutsch was the first report mentioning this possibility. The first quantum algorithm shows how to factorize big numbers with quantum computer. This is a big theoretical issue for cryptography unachievable with digital computers. The technical difficulty is to implement a quantum computer. The main barriers are interference, decoherence and information retrieval. But recent experimental studies gives new hints to build quantum logic circuits. (O.M.). 4 refs.
Manipulating cold atoms for quantum information processing
International Nuclear Information System (INIS)
Knight, P.
2005-01-01
Full text: I will describe how cold atoms can be manipulated to realize arrays of addressable qbits as prototype quantum registers, focussing on how atom chips can be used in combination with cavity qed techniques to form such an array. I will discuss how the array can be generated and steered using optical lattices and the Mott transition, and describe the sources of noise and how these place limits on the use of such chips in quantum information processing. (author)
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.
Quantum Phases of Matter in Optical Lattices
2015-06-30
3.00 5.00 6.00 7.00 8.00 Tin-Lun Ho, Biao Huang. Local spin structure of large spin fermions, Physical Review A, (4 2015): 0. doi: 10.1103/PhysRevA...APS March Meeting, 2013 Eliot Kapit , Erich Mueller, A Vector Potential for Flux Qbits, APS March Meeting, 2013 Yariv Yanay, Erich Mueller...34Bogoliubov- de Gennes Study of Trapped Superfluid Fermi Gas", Workshop on Mathematical and Numerical Methods for Quantum, Kinetic and Nonlocal
Lossless quantum data compression and variable-length coding
International Nuclear Information System (INIS)
Bostroem, Kim; Felbinger, Timo
2002-01-01
In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von Neumann entropy by adding a classical side channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data
Using the J1–J2 quantum spin chain as an adiabatic quantum data bus
International Nuclear Information System (INIS)
Chancellor, Nicholas; Haas, Stephan
2012-01-01
This paper investigates numerically a phenomenon which can be used to transport a single q-bit down a J 1 –J 2 Heisenberg spin chain using a quantum adiabatic process. The motivation for investigating such processes comes from the idea that this method of transport could potentially be used as a means of sending data to various parts of a quantum computer made of artificial spins, and that this method could take advantage of the easily prepared ground state at the so-called Majumdar–Ghosh point. We examine several annealing protocols for this process and find similar results for all of them. The annealing process works well up to a critical frustration threshold. There is also a brief section examining what other models this protocol could be used for, examining its use in the XXZ and XYZ models. (paper)
Directory of Open Access Journals (Sweden)
Jinwei Gu
2015-01-01
Full Text Available A mutualism quantum genetic algorithm (MQGA is proposed for an integrated supply chain scheduling with the materials pickup, flow shop scheduling, and the finished products delivery. The objective is to minimize the makespan, that is, the arrival time of the last finished product to the customer. In MQGA, a new symbiosis strategy named mutualism is proposed to adjust the size of each population dynamically by regarding the mutual influence relation of the two subpopulations. A hybrid Q-bit coding method and a local speeding-up method are designed to increase the diversity of genes, and a checking routine is carried out to ensure the feasibility of each solution; that is, the total physical space of each delivery batch could not exceed the capacity of the vehicle. Compared with the modified genetic algorithm (MGA and the quantum-inspired genetic algorithm (QGA, the effectiveness and efficiency of the MQGA are validated by numerical experiments.
Dual field theories of quantum computation
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N
On the ergodic secret message capacity of the wiretap channel with finite-rate feedback
Rezki, Zouheir
2012-07-01
We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers. We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free feedback channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q = 1. We also show that the lower and the upper bounds coincide asymptotically as q → ∞. Finally, asymptotic analysis at high Signal-to-Noise Ratio (SNR) are presented where it is found that the capacity is bounded at high-SNR and present a simple suboptimal scalar quantizer that is capacity achieving, without the need of any numerical optimization, as q → ∞. When applied to Rayleigh fading channels, we show that, at high-SNR, a 4-bit feedback achieves 90% of the secrecy capacity when perfect main CSI is available at the transmitter. © 2012 IEEE.
Abdallah, Mohamed M.
2013-11-01
In this work, we develop joint interference-aware random beam and spectrum selection scheme that provide enhanced performance for the secondary network under the condition that the interference observed at the primary receiver is below a predetermined acceptable value. We consider a secondary link composed of a transmitter equipped with multiple antennas and a single-antenna receiver sharing the same spectrum with a set of primary links composed of a single-antenna transmitter and a single-antenna receiver. The proposed schemes jointly select a beam, among a set of power-optimized random beams, as well as the primary spectrum that maximizes the signal-to-interference-plus-noise ratio (SINR) of the secondary link while satisfying the primary interference constraint. In particular, we consider the case where the interference level is described by a q-bit description of its magnitude, whereby we propose a technique to find the optimal quantizer thresholds in a mean square error (MSE) sense. © 2013 IEEE.
On effect of stability of magnetic resonance position by harmonized field
International Nuclear Information System (INIS)
Ivanchenko, E.A.; Tolstoluzhsky, A.P.
2006-01-01
The formalism of density matrix in a two level system is used to study the time-periodic modulation of the magnetic field stabilizating the magnetic resonance position. An exact solution for density matrix at resonance is found. It is shown that the fundamental resonance is stable with respect to consistent variations of longitudinal and transversal magnetic fields. A differential equation for the transition probability is obtained. The dependence of time-averaged spin flip probability on the normalized Larmor frequency was numerically researched in different parameter regimes with account of dissipation and decoherence. It is shown that the position of the main resonance is independent of field deformation and dissipation; only the width of resonance line changes upon field deformation and dissipation. The odd parametric (multi-photon) resonance transitions is studied. Static magnetization induced by time-periodic modulated magnetic field is considered. The results of the investigation may be useful for analysis of interference experiments, improvement of magnetic spectrometers and in the field of quantum computing manipulation of q-bits
Abdallah, Mohamed M.; Sayed, Mostafa M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.
2013-01-01
In this work, we develop joint interference-aware random beam and spectrum selection scheme that provide enhanced performance for the secondary network under the condition that the interference observed at the primary receiver is below a predetermined acceptable value. We consider a secondary link composed of a transmitter equipped with multiple antennas and a single-antenna receiver sharing the same spectrum with a set of primary links composed of a single-antenna transmitter and a single-antenna receiver. The proposed schemes jointly select a beam, among a set of power-optimized random beams, as well as the primary spectrum that maximizes the signal-to-interference-plus-noise ratio (SINR) of the secondary link while satisfying the primary interference constraint. In particular, we consider the case where the interference level is described by a q-bit description of its magnitude, whereby we propose a technique to find the optimal quantizer thresholds in a mean square error (MSE) sense. © 2013 IEEE.
Directory of Open Access Journals (Sweden)
Weidong Lei
2017-01-01
Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.
Isotope-based quantum information
International Nuclear Information System (INIS)
Plekhanov, Vladimir G.
2012-01-01
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.
Directory of Open Access Journals (Sweden)
M Soltani
2015-12-01
Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.
Cancelable remote quantum fingerprint templates protection scheme
International Nuclear Information System (INIS)
Liao Qin; Guo Ying; Huang Duan
2017-01-01
With the increasing popularity of fingerprint identification technology, its security and privacy have been paid much attention. Only the security and privacy of biological information are insured, the biological technology can be better accepted and used by the public. In this paper, we propose a novel quantum bit (qbit)-based scheme to solve the security and privacy problem existing in the traditional fingerprint identification system. By exploiting the properties of quantm mechanics, our proposed scheme, cancelable remote quantum fingerprint templates protection scheme, can achieve the unconditional security guaranteed in an information-theoretical sense. Moreover, this novel quantum scheme can invalidate most of the attacks aimed at the fingerprint identification system. In addition, the proposed scheme is applicable to the requirement of remote communication with no need to worry about its security and privacy during the transmission. This is an absolute advantage when comparing with other traditional methods. Security analysis shows that the proposed scheme can effectively ensure the communication security and the privacy of users’ information for the fingerprint identification. (paper)
On the ergodic secret message capacity of the wiretap channel with finite-rate feedback
Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim
2012-01-01
We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers. We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free feedback channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q = 1. We also show that the lower and the upper bounds coincide asymptotically as q → ∞. Finally, asymptotic analysis at high Signal-to-Noise Ratio (SNR) are presented where it is found that the capacity is bounded at high-SNR and present a simple suboptimal scalar quantizer that is capacity achieving, without the need of any numerical optimization, as q → ∞. When applied to Rayleigh fading channels, we show that, at high-SNR, a 4-bit feedback achieves 90% of the secrecy capacity when perfect main CSI is available at the transmitter. © 2012 IEEE.
Ergodic secret message capacity of the wiretap channel with finite-rate feedback
Rezki, Zouheir
2014-06-01
We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers, under both a short term power constraint (STPC) and a long term power constraint (LTPC). We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free public channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that the lower and the upper bounds coincide asymptotically as q → ∞. When applied to Rayleigh fading channels, we show that, a 4-bit feedback achieves about 90% of the secrecy capacity when perfect main CSI is available at the transmitter. Finally, asymptotic analysis at high and low Signal-to-Noise Ratio (SNR) is presented. It is found that the capacity is bounded at high-SNR, whereas at asymptotically low-SNR, the lower bounds and the upper bound scale linearly with SNR under STPC. Furthermore, subject to LTPC, the capacity at low-SNR is equal to the capacity of the main channel without secrecy constraint and with perfect CSI at both the transmitter and the receiver, under a mild condition on the fading statistics. We also show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q=1. © 2002-2012 IEEE.
Adaptive and non-adaptive data hiding methods for grayscale images based on modulus function
Directory of Open Access Journals (Sweden)
Najme Maleki
2014-07-01
Full Text Available This paper presents two adaptive and non-adaptive data hiding methods for grayscale images based on modulus function. Our adaptive scheme is based on the concept of human vision sensitivity, so the pixels in edge areas than to smooth areas can tolerate much more changes without making visible distortion for human eyes. In our adaptive scheme, the average differencing value of four neighborhood pixels into a block via a threshold secret key determines whether current block is located in edge or smooth area. Pixels in the edge areas are embedded by Q-bit of secret data with a larger value of Q than that of pixels placed in smooth areas. Also in this scholar, we represent one non-adaptive data hiding algorithm. Our non-adaptive scheme, via an error reduction procedure, produces a high visual quality for stego-image. The proposed schemes present several advantages. 1-of aspects the embedding capacity and visual quality of stego-image are scalable. In other words, the embedding rate as well as the image quality can be scaled for practical applications 2-the high embedding capacity with minimal visual distortion can be achieved, 3-our methods require little memory space for secret data embedding and extracting phases, 4-secret keys have used to protect of the embedded secret data. Thus, level of security is high, 5-the problem of overflow or underflow does not occur. Experimental results indicated that the proposed adaptive scheme significantly is superior to the currently existing scheme, in terms of stego-image visual quality, embedding capacity and level of security and also our non-adaptive method is better than other non-adaptive methods, in view of stego-image quality. Results show which our adaptive algorithm can resist against the RS steganalysis attack.
Sayed, Mostafa M.
2014-11-01
Spectrum sharing systems have been introduced to alleviate the problem of spectrum scarcity by allowing an unlicensed secondary user (SU) to share the spectrum with a licensed primary user (PU) under acceptable interference levels to the primary receiver (PU-Rx). In this paper, we consider a secondary link composed of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx). The secondary link is allowed to share the spectrum with a primary network composed of multiple PUs communicating over distinct frequency spectra with a primary base station. We develop a transmission scheme where the SU-Tx initially broadcasts a set of random beams over all the available primary spectra for which the PU-Rx sends back the index of the spectrum with the minimum interference level, as well as information that describes the interference value, for each beam. Based on the feedback information on the PU-Rx, the SU-Tx adapts the transmitted beams and then resends the new beams over the best primary spectrum for each beam to the SU-Rx. The SU-Rx selects the beam that maximizes the received signal-to-interference-plus-noise ratio (SINR) to be used in transmission over the next frame. We consider three cases for the level of feedback information describing the interference level. In the first case, the interference level is described by both its magnitude and phase; in the second case, only the magnitude is considered; and in the third case, we focus on a q-bit description of its magnitude. In the latter case, we propose a technique to find the optimal quantizer thresholds in a mean-square-error sense. We also develop a statistical analysis for the SINR statistics and the capacity and bit error rate of the secondary link and present numerical results that study the impact of the different system parameters.
Ergodic secret message capacity of the wiretap channel with finite-rate feedback
Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim
2014-01-01
We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers, under both a short term power constraint (STPC) and a long term power constraint (LTPC). We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free public channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that the lower and the upper bounds coincide asymptotically as q → ∞. When applied to Rayleigh fading channels, we show that, a 4-bit feedback achieves about 90% of the secrecy capacity when perfect main CSI is available at the transmitter. Finally, asymptotic analysis at high and low Signal-to-Noise Ratio (SNR) is presented. It is found that the capacity is bounded at high-SNR, whereas at asymptotically low-SNR, the lower bounds and the upper bound scale linearly with SNR under STPC. Furthermore, subject to LTPC, the capacity at low-SNR is equal to the capacity of the main channel without secrecy constraint and with perfect CSI at both the transmitter and the receiver, under a mild condition on the fading statistics. We also show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q=1. © 2002-2012 IEEE.
Sirtori, Carlo
2017-02-01
Superradiance is one of the many fascinating phenomena predicted by quantum electrodynamics that have first been experimentally demonstrated in atomic systems and more recently in condensed matter systems like quantum dots, superconducting q-bits, cyclotron transitions and plasma oscillations in quantum wells (QWs). It occurs when a dense collection of N identical two-level emitters are phased via the exchange of photons, giving rise to enhanced light-matter interaction, hence to a faster emission rate. Of great interest is the regime where the ensemble interacts with one photon only and therefore all of the atoms, but one, are in the ground state. In this case the quantum superposition of all possible configurations produces a symmetric state that decays radiatively with a rate N times larger than that of the individual oscillators. This phenomenon, called single photon superradiance, results from the exchange of real photons among the N emitters. Yet, to single photon superradiance is also associated another collective effect that renormalizes the emission frequency, known as cooperative Lamb shift. In this work, we show that single photon superradiance and cooperative Lamb shift can be engineered in a semiconductor device by coupling spatially separated plasma resonances arising from the collective motion of confined electrons in QWs. These resonances hold a giant dipole along the growth direction z and have no mutual Coulomb coupling. They thus behave as a collection of macro-atoms on different positions along the z axis. Our device is therefore a test bench to simulate the low excitation regime of quantum electrodynamics.
Bimberg, Dieter
2011-01-01
satellite telephones, in some ways continuing his work for the candidate degree when he had developed power rectifiers based on Ge and Si. Then, in 1970, he presented the first solar cells with efficiency >30% based on heterojunctions. Soon the Soviet Space Administration became aware of these results, and in 1986 the Soviet space station MIR was partially powered by solar cells developed by Alferov and Andre'ev. Finally in 1992, a joint research program between the author of this Editorial and Zhores Alferov, being both guest scientists at the same time at the University of California, on semiconductor quantum dots for the active zone of (nowadays many different) optoelectronic devices was proposed and inaugurated. Quantum dot lasers today have the lowest threshold current density of any semiconductor lasers. They are far superior to quantum wells as amplifiers, and their nonlinear optical applications such as cross-gain modulation in local area networks, present the basis for novel types of solar cells, nanoflash memories, single q-bit emitters for quantum cryptography etc. The story of inventing a concept and inventing applications seems to repeat in some way. This Semiconductor Science and Technology special edition presents contributions from about 100 researchers around the globe, who use in their work concepts invented by Zhores Alferov during his long active scientific life spanning six decades. They would like to pay a tribute to him and honour him on the occasion of his 80th birthday. This very personal way of saying thank you thus adds to the many prizes he has received during the past 40 years, starting with the Ballantine Gold Medal of the Franklin Institute, via the Nobel Prize for Physics 2000 to many honorary doctorates from institutes around the world.