WorldWideScience

Sample records for q-switched pulse energy

  1. Conductive graphene as passive saturable absorber with high instantaneous peak power and pulse energy in Q-switched regime

    Science.gov (United States)

    Zuikafly, Siti Nur Fatin; Khalifa, Ali; Ahmad, Fauzan; Shafie, Suhaidi; Harun, SulaimanWadi

    2018-06-01

    The Q-switched pulse regime is demonstrated by integrating conductive graphene as passive saturable absorber producing relatively high instantaneous peak power and pulse energy. The fabricated conductive graphene is investigated using Raman spectroscopy. The single wavelength Q-switching operates at 1558.28 nm at maximum input pump power of 151.47 mW. As the pump power is increased from threshold power of 51.6 mW to 151.47 mW, the pulse train repetition rate increases proportionally from 47.94 kHz to 67.8 kHz while the pulse width is reduced from 9.58 μs to 6.02 μs. The generated stable pulse produced maximum peak power and pulse energy of 32 mW and 206 nJ, respectively. The first beat node of the measured signal-to-noise ratio is about 62 dB indicating high pulse stability.

  2. Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy

    Science.gov (United States)

    Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang

    2018-05-01

    An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.

  3. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    Science.gov (United States)

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  4. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    Science.gov (United States)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  5. Tattoo removal in micropigs with low-energy pulses from a Q-switched Nd:YAG laser at 1064 nm

    Science.gov (United States)

    Hu, Xin-Hua; Wooden, W. A.; Cariveau, Mickael J.; Fang, Qiyin; Bradfield, J. F.; Kalmus, Gerhard W.; Vore, S. J.; Sun, Y.

    2001-05-01

    Treatment of pigmented lesions in skin with visible or near- infrared nanosecond (ns) laser pulses often causes significant collateral tissue damage because the current approach uses pulses with energy of 300 mJ or larger. Additionally, this requires large Q-switched laser systems. To overcome these disadvantages, we have investigated a different approach in delivering ns laser pulses for cutaneous lesion treatment. Tattoo removal in an animal model with a focused laser beam from a Q-switched Nd:YAG laser has been investigated in two Yucatan micropigs tattooed with blue, black, green and red pigments. The tattoos were treated with a focused beam of 12-ns pulses at 1064 nm, with different depth under the skin surface, while the micropig was translated to achieve an effect of single pulse per ablation site in the skin. With the pulse energy reduced to a range from 38 to 63 mJ, we found that nearly complete clearance was achieved for blue and black tattoos while clearance of red and green tattoos was incomplete. Analysis of the skin appearance suggested that the pulse energy can be decreased to below 20 mJ which may lead to further reduction of the collateral tissue damage and improve the clearance of red and green tattoos.

  6. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  7. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  8. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    Science.gov (United States)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  9. Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, R. T.; Hemmati, H.

    1991-01-01

    The operation of a diode-laser pumped thulium, holmium yttrium-lithium-fluoride laser (Tm,Ho:YLF) in Q-switched mode is reported. Output energies of 200 microjoules in pulses of 22 ns duration are recorded at Q-switch frequencies commensurate with an effective upper laser level lifetime of 6 ms. This lifetime is appreciably longer than that observed in other hosts permitting stored energy extraction of 64 percent, close to the projected maximum performance from these materials.

  10. Pulsed Q-switched ruby laser annealing of Bi implanted Si crystals investigated by channeling

    International Nuclear Information System (INIS)

    Deutch, B.I.; Shih-Chang, T.; Shang-Hwai, L.; Zu-Yao, Z.; Jia-Zeng, H.; Ren-Zhi, D.; Te-Chang, C.; De-Xin, C.

    1979-01-01

    Channeling was used to investigate pulsed, Q switched ruby-laser annealed and thermally annealed Si single crystals implanted with 40-keV Bi ions to a dose of 10 15 atoms/cm 2 . After thermal annealing, residual damage decreased with increasing annealing temperature to a minimum value of 30% at 900 0 C. The Bi atoms in substitutional sites reached a maximum value (50%) after annealing at 750 0 C but decreased with increasing annealing temperature. Out diffusion of Bi atoms occurred at temperatures higher than 625 0 C. For comparison, the residual damage disappeared almost completely after pulsed-laser annealing (30 ns pulse width, Energy, E = 3J/cm 2 ). The concentration of Bi in Si exceeded its solid solubility by an order of magnitude; 95% of Bi atoms were annealed to substitutional sites. Laser pulses of different energies were used to investigate the efficiency of annealing. (author)

  11. SBS pulse compression applied to a commercial Q-switch Nd-YAG laser

    International Nuclear Information System (INIS)

    Aliaga-Rossel, R.; Bayley, J.; Mamin, A.; Nizienko, Y.

    1997-01-01

    In optical diagnosis of dense Z-pinches, sub-nanosecond laser pulses are required in order to freeze the movement of the plasma during the probing. Commercial lasers can provide such type of pulses but they are either very expensive, or they have a very low energy per pulse. A technique that uses Stimulated Brillouin Scattering (SBS) to compress a 8 ns pulse of a commercial Q-switched Nd-YAG laser is reported here. To carry out this passive compression technique, a frequency doubled laser pulse of 10 ns was focused into a single SBS gas cell, 2 m long, filled with a mixture of argon and sulphurhexafluoride (SF 6 ) at a total pressure of 40 bar. A shorter and high intensity pulse was reflected from the cell (created by SBS) and it travelled back along its original path until it was separated from its original direction by using a dichroic polariser. The pumping volume of the SBS cell, the convergence of the incident beam and the pressure of the gas cell, were optimised to maximise both temporal compression and the output energy. Pulses of 10 ns were compressed to less than 400 ps with a conversion efficiency of 80%. This SBS pulse compression system has been used to make most of the optical measurements of a dense fibre pinch plasma produced in the MAGPIE generator

  12. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched

  13. Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2015-06-01

    Full Text Available Q-switched and mode-locked erbium-doped fibre lasers (EDFLs are demonstrated by using non-conductive graphene oxide (GO paper as a saturable absorber (SA. A stable and self-starting Q-switched operation was achieved at 1534.4 nm by using a 0.8 m long erbium-doped fibre (EDF as a gain medium. The pulse repetition rate changed from 14.3 to 31.5 kHz, whereas the corresponding pulse width decreased from 32.8 to 13.8 µs as the pump power increased from 22 to 50.5 mW. A narrow spacing dual-wavelength Q-switched EDFL could also be realised by including a photonics crystal fibre and a tunable Bragg filter in the setup. It can operate at a maximum repetition rate of 31 kHz, with a pulse duration of 7.04 µs and pulse energy of 2.8 nJ. Another GOSA was used to realise mode-locked EDFL in a different cavity consisting of a 1.6 m long EDF in conjunction with 1480 nm pumping. The laser generated a soliton pulse train with a repetition rate of 15.62 MHz and pulse width of 870 fs. It is observed that the proposed fibre lasers have a low pulsing threshold pump power as well as a low damage threshold.

  14. Microstructure and mechanical changes induced by Q-Switched pulse laser on human enamel with aim of caries prevention

    Science.gov (United States)

    Apsari, R.; Pratomo, D. A.; Hikmawati, D.; Bidin, N.

    2016-03-01

    This study was conducted to determine the effect of Q-Switched Nd: YAG laser energy dose to human enamel caries. The specifications of Q-Switched Nd: YAG laser as followed: wavelength of 1064 nm and 6 ns pulse width. Caries enamel samples taken from human teeth molars of 17-35 ages and the type of media caries. Energy doses used in this study were 723.65 mJ/cm2, 767.72 mJ/cm2, and 1065.515 mJ/cm2; 5 Hz repetition rate, and 20 second exposure time. Samples characterized the surface morphology and the percentage of constituent elements, especially calcium/phosphorus (Ca/P) with FESEM-EDAX. The fraction volume and crystallinity percentage of hydroxyapatite (HA) with XRD and hardness value using Vickers Microhardness Test. The results indicated that exposure of Q-Switched Nd:YAG laser on enamel caries resulting cracks, holes, and melt due to plasma production effects in the surface. Plasma production effect also resulted in micro properties such as percentage of Ca/P was close to normal, the fraction volume and crystallinity percentage of HA went up but did not change the crystal structure (in terms of the lattice structure). The hardness value also rose as linear as exposure energy dose caused by phototermal effect. Based on the results, Q-Switched Nd:YAG laser can be used as contactless drill dental caries replacement candidate with the additional therapy effect such as localized caries in order to avoid the spread, the ratio of Ca/P approaching healthy teeth, the fraction volume and crystallinity percentage of HA rose and established stronger teeth with peak energy dose 1065.515 mJ/cm2.

  15. 2 and 3 µm passively Q-switched bulk pulse laser based on a MoS2/graphene heterojunction

    Science.gov (United States)

    Wang, Xihu; Xu, Jinlong; Sun, Yijian; Feng, Wendou; You, Zhenyu; Sun, Dunlu; Tu, Chaoyang

    2018-01-01

    We report for the first time that a MoS2/graphene heterojunction can behave as a saturable absorber to realize 2 and 3 µm passively Q-switched bulk lasers. This heterojunction is prepared through a facile hydrothermal method. For the 2 µm laser, a stable pulse is obtained with a pulse duration of 473 ns, output power of 553 mW, pulse energy of 5.267 µJ and repetition rate of 105 kHz. For the 3 µm laser, a pulse duration of 355 ns is observed with an average output power of 112 mW and pulse energy of 0.889 µJ. These results indicate the great potential of MoS2/graphene heterojunctions for realizing mid-infrared pulse lasers.

  16. Pigmented guinea pig skin irradiated with Q-switched ruby laser pulses. Morphologic and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Dover, J.S.; Margolis, R.J.; Polla, L.L.; Watanabe, S.; Hruza, G.J.; Parrish, J.A.; Anderson, R.R.

    1989-01-01

    Q-switched ruby laser pulses cause selective damage to cutaneous pigmented cells. Repair of this selective damage has not been well described. Therefore, using epilated pigmented and albino guinea pig skin, we studied the acute injury and tissue repair caused by 40-ns, Q-switched ruby laser pulses. Gross observation and light and electron microscopy were performed. No specific changes were evident in the albino guinea pigs. In pigmented animals, with radiant exposures of 0.4 J/cm2 or greater, white spots confined to the 2.5-mm exposure sites developed immediately and faded over 20 minutes. Delayed depigmentation occurred at seven to ten days, followed by full repigmentation by four to eight weeks. Regrowing hairs in sites irradiated at and above 0.4 J/cm2 remained white for at least four months. Histologically, vacuolation of pigment-laden cells was seen immediately in the epidermis and the follicular epithelium at exposures of 0.3 J/cm2 and greater. Melanosomal disruption was seen immediately by electron microscopy at and above 0.3 J/cm2. Over the next seven days, epidermal necrosis was followed by regeneration of a depigmented epidermis. By four months, melanosomes and melanin pigmentation had returned; however, hair follicles remained depigmented and devoid of melanocytes. This study demonstrates that selective melanosomal disruption caused by Q-switched ruby laser pulses leads to transient cutaneous depigmentation and persistent follicular depigmentation. Potential exists for selective treatment of pigmented epidermal and dermal lesions with this modality.

  17. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    Science.gov (United States)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  18. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  19. Nanosecond-pulsed Q-switched Nd:YAG laser at 1064 nm with a gold nanotriangle saturable absorber

    Science.gov (United States)

    Chen, Xiaohan; Li, Ping; Dun, Yangyang; Song, Teng; Ma, Baomin

    2018-06-01

    Gold nanotriangles (GNTs) were successfully employed as a saturable absorber (SA) to achieve passively Q-switched lasers for the first time. The performance of the Q-switched Nd:YAG laser at 1064 nm has been systematically investigated. The corresponding shortest pulsewidth, the threshold pump power and the maximum Q-switched average output power were 275.5 ns, 1.37 W, and 171 mW, respectively. To our knowledge, this is the shortest pulsewidth and the lowest threshold in a passively Q-switched laser at approximately 1.1 µm based on a gold nanoparticle SA (GNPs-SA). Our experimental results proved that the GNTs-SA can be used as a promising saturable absorber for nanosecond-pulsed lasers.

  20. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Science.gov (United States)

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  1. Narrow Q-switching pulse width and low mode-locking repetition rate Q-switched mode locking with a new coupled laser cavity

    International Nuclear Information System (INIS)

    Peng, J Y; Zheng, Y; Shen, J P; Shi, Y X

    2013-01-01

    An original diode-pumped Q-switched and mode-locked solid state Nd:GdVO 4 laser is demonstrated. The laser operates with double saturable absorbers and a new coupled laser cavity. The Q-switching envelope width is compressed to be about 15 ns and the mode-locking repetition rate is as low as 90 MHz. (paper)

  2. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser

    Science.gov (United States)

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo0.5W0.5S2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo0.5W0.5S2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm‑2. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo0.5W0.5S2 SAs.

  3. High-energy azimuthally polarized laser beam generation from an actively Q-switched Nd:YAG laser with c-cut YVO4 crystal

    Science.gov (United States)

    Guo, Jing; Zhang, Baofu; Jiao, Zhongxing; He, Guangyuan; Wang, Biao

    2018-05-01

    A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.

  4. Effects of Q-switched and long-pulsed 1064 nm Nd:YAG laser on enlarged facial pores.

    Science.gov (United States)

    Lee, Chang Nam; Kim, You Jeong; Lee, Hyun Seung; Kim, Hei Sung

    2009-12-01

    'Enlarged facial pore' is a subjective term, which is not clearly defined but often complained by many. A diverse range of treatments are used though evidence of efficacy remains largely anecdotal. We report a series of nine patients who underwent a split face trial with Q-switched 1064 nm Nd:YAG and long-pulsed 1064 nm Nd:YAG laser to treat enlarged facial pores.

  5. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    Science.gov (United States)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  6. Characterisation of the light pulses of a cavity dumped dye laser pumped by a cw mode-locked and q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Geist, P.; Heisel, F.; Martz, A.; Miehe, J.A.; Miller, R.J.D.

    1984-01-01

    The frequency doubled pulses (of 532 nm) obtained, with the help of a KTP crystal, from those delivered by either a continuous wave mode-locked (100 MHz) or mode-locked Q-switched (0-1 KHz) Nd: YAG laser, are analyzed by means of a streak camera, operating in synchroscan or triggered mode. In the step-by-step measurements the pulse stability, concerning form and amplitude, is shown. In addition, measurements effectuated with synchronously pumped and cavity dumped dye laser (Rhodamine 6G), controlled by a Pockels cell, allows the obtention of stable and reproducible single pulses of 30 ps duration, 10 μJ energy and 500Hz frequency [fr

  7. On the densification and hydration of CaCO3 particles by Q-switched laser pulses in water

    Science.gov (United States)

    Lin, Peng-Wen; Wu, Chao-Hsien; Zheng, Yuyuan; Chen, Shuei-Yuan; Shen, Pouyan

    2013-09-01

    Calcite powders subjected to Q-switched laser pulses in water were characterized by X-ray/electron diffraction and optical spectroscopy to have a significant internal compressive stress (up to ca. 1.5 GPa) with accompanied transformation into defective calcite II and hydrates. The defective calcite II particles were (0 1 0), (0 0 1), (0 1¯ 1), (0 1 3) and (0 1¯ 3) faceted with 2×(0 2 0)II commensurate superstructure and tended to hydrate epitaxially as monohydrocalcite co-existing with ikaite (CaCO3·6H2O) with extensive cleavages and amorphous calcium carbonate with porous structure. The colloidal suspension containing the densified calcite polymorphs and hydrates showed two UV-visible absorptions corresponding to a minimum band gap of ca. 5 and 3 eV, respectively.

  8. Split-face comparison of intense pulsed light and nonablative 1,064-nm Q-switched laser in skin rejuvenation.

    Science.gov (United States)

    Huo, Meng-Hua; Wang, Yong-Qian; Yang, Xin

    2011-01-01

    Multiple nonablative skin rejuvenation techniques have been used to improve facial aging. To compare rejuvenation efficiency of intense pulsed light (IPL) with nonablative 1,064-nm Q-switched laser in Asian patients. Twelve female subjects were enrolled and received five sessions of treatments at 2-week intervals. A split-face study was performed, with IPL applied to the left side of the face and nonablative 1,064-nm Q-switched laser to the right side. All assessments showed significant skin rejuvenation. For the improvement of skin texture, pore size, and sebum secretion, similar efficiency from laser and IPL was observed. For lightening of skin tone and macula, the IPL was more efficient than the laser after the first treatment, although no further clinical improvement resulted after three treatments. The laser gradually lightened the skin tone and macula and was ultimately more efficient than the IPL after five treatments. A series of IPL and nonablative 1,064-nm Q-switched laser treatments were performed with similar efficiency and safety for the improvement in skin texture, pore size, and sebum secretion. IPL was faster, but nonablative 1,064-nm Q-switched laser was more effective in improving skin tone and macula. © 2010 by the American Society for Dermatologic Surgery, Inc.

  9. Short-Pulse-Width Repetitively Q-Switched ~2.7-μm Er:Y2O3 Ceramic Laser

    Directory of Open Access Journals (Sweden)

    Xiaojing Ren

    2017-11-01

    Full Text Available A short-pulse-width repetitively Q-switched 2.7-μm Er:Y2O3 ceramic laser is demonstrated using a specially designed mechanical switch, a metal plate carved with slits of both slit-width and duty-cycle optimized. With a 20% transmission output coupler, stable pulse trains with durations (full-width at half-maximum, FWHM of 27–38 ns were generated with a repetition rate within the range of 0.26–4 kHz. The peak power at a 0.26 kHz repetition rate was ~3 kW.

  10. A rapid tattoo removal technique using a combination of pulsed Er:YAG and Q-Switched Nd:YAG in a split lesion protocol.

    Science.gov (United States)

    Sardana, Kabir; Ranjan, Rashmi; Kochhar, Atul M; Mahajan, Khushbu Goel; Garg, Vijay K

    2015-01-01

    Tattoo removal has evolved over the years and though Q-switched laser is the 'workhorse' laser, it invariably requires multiple sittings, which are dependent on numerous factors, including the skin colour, location of the tattoo, age of the tattoo, colour of pigment used, associated fibrosis and the kind of tattoo treated. Though ablative lasers, both pulsed CO2 and Er:YAG, have been used for recalcitrant tattoos, very few studies have been done comparing them with pigment-specific lasers. Our study was based on the premise that ablating the epidermis overlying the tattoo pigment with Er:YAG could help in gaining better access to the pigment which would enable the Q-switched laser to work effectively with less beam scattering. A study of rapid tattoo removal (RTR) technique using a combination of pulsed Er:YAG and Q-Switched Nd:YAG in a split lesion protocol. This prospective study was undertaken during 2010-13 at a laser Clinic in the Maulana Azad Medical College, New Delhi. A total of 10 patients were recruited, 5 of amateur tattoo and 5 of professional tattoo. After informed consent each tattoo was arbitrarily 'split' into two parts. One part was treated with QS Nd:YAG laser(1064 nm) and the other part with Er:YAG laser immediately followed by the QS Nd:YAG. The laser treatments were repeated at 6-week intervals until the tattoo pigment had cleared. On the combination side in subsequent sittings only the QS Nd:YAG was used, to minimize repetitive ablation. To ensure consistency in the intervention methods a trained dermatologist who was independent of the treatment delivery randomly rated 10% of the procedures. The mean improvement achieved by the Q-switched laser (2.93) was less than the combination laser (3.85) side (p = 0.001) and needed more sessions (3.8 vs. 1.6; p = 0.001). There was a statistically significant difference in the improvement on the combination side till the second session. On the combination side patients required a maximum of 2 sessions

  11. Computational model of dual q-switching and lasing processes of the pulsed Cr4+:YAG laser pumped by Nd-glass laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2007-01-01

    A mathematical model describing the absorption and oscillation processes of intracavity Cr 4+ : YAG crystal pumped by Nd-glass laser has been developed, in order to describe the temporal behavior of laser-absorber system. The model has been assumed that the Cr 4+ ions excited to a higher level by excited state absorption, followed by relaxation directly to the upper laser level through fast channel, and indirectly through slow proposed intermediate channel at different lifetimes. The model offers simple kinetic mechanisms for pulsed solid state lasers and also the influence of the variations of the laser input parameters (pumping rate, maximum amplification coefficient and loss coefficient) on the output pulse characteristics of the passive Q-switched Nd-glass and pulsed Cr 4+ : YAG lasers. The model estimates the temporal behavior of the population densities of different levels and laser beam densities as well as predicts the nanosecond output laser pulses of passive Q-switched Nd-glass laser and pulsed Cr 4+ : YAG laser. The calculated results are in good agreement with the available experimental and theoretical data in the literature. (author)

  12. Solitary pulse-on-demand production by optical injection locking of passively Q-switched InGaN diode laser near lasing threshold

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch; Stadelmann, T.; Grossmann, S.; Hoogerwerf, A. C.; Boïko, D. L., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch [Centre Suisse d' Electronique et de Microtechnique SA (CSEM), CH-2002 Neuchâtel (Switzerland); Sulmoni, L.; Lamy, J.-M.; Grandjean, N. [Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-02-16

    In this letter, we investigate the behavior of a Q-switched InGaN multi-section laser diode (MSLD) under optical injection from a continuous wave external cavity diode laser. We obtain solitary optical pulse generation when the slave MSLD is driven near free running threshold, and the peak output power is significantly enhanced with respect to free running configuration. When the slave laser is driven well above threshold, optical injection reduces the peak power. Using standard semiconductor laser rate equation model, we find that both power enhancement and suppression effects are the result of partial bleaching of the saturable absorber by externally injected photons.

  13. Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model.

    Science.gov (United States)

    Wang, Chia-Chen; Huang, Chuen-Lin; Yang, An-Hang; Chen, Chih-Kang; Lee, Shao-Chen; Leu, Fur-Jiang

    2010-11-01

    Cosmetic tattoos contain titanium and ferric oxide and darken through reduction after Q-switched laser irradiation. The optimal treatment for removing these pigments remains unknown. To compare the effects of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet (SP Er:YAG) laser to remove cosmetic tattoos in an animal model. Rats were tattooed using white, flesh-colored, and brown inks (4 bands of each color) on their backs. For each color, one band was left untreated, and one each was treated with a Q-switched neodymium-doped YAG laser, a Q-switched alexandrite laser, and a SP Er:YAG laser every 3 weeks until the pigments were clear. The two Q-switched lasers were equally effective; all three pigments darkened initially and then resolved gradually. Up to 20, 18, and 10 sessions were required to remove white, flesh-colored, and brown tattoos, respectively. Only six sessions were required with the SP Er:YAG laser. Minimal scarring was observed with all lasers. Skin biopsies confirmed pigment granule fragmentation after Q-switched laser treatment and a decrease in the amount of pigment after SP Er:YAG laser treatment. The SP Er:YAG laser was superior to the Q-switched lasers for removing cosmetic tattoos. © 2010 by the American Society for Dermatologic Surgery, Inc.

  14. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser

    Science.gov (United States)

    He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun

    2018-05-01

    A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.

  15. Efficient in-band diode-pumped Q-switched solid state laser for methane detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an efficient, tunable Q-switched SSL operating at a wavelength of 1651 nm with pulse energy >1 mJ at 2000 Hz repetition rate with in-band...

  16. Generation of nanosecond laser pulses at a 2.2-MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser

    International Nuclear Information System (INIS)

    Nghia, Nguyen T; Hao, Nguyen V; Orlovich, Valentin A; Hung, Nguyen D

    2011-01-01

    We report a new configuration of a high-repetition rate nanosecond laser based on a semiconductor saturable absorber mirror (SESAM). The SESAM is conventional technical solution for passive mode-locking at 1064 nm and simultaneously used as a highly reflecting mirror and a saturable absorber in a high-Q and short cavity of a cw diode-end-pumped a-cut Nd 3+ :YVO 4 laser. Two laser beams are coupled out from the cavity using an intracavity low-reflection thin splitter. The laser characteristics are investigated as functions of pump and resonator parameters. Using a 1.8-W cw pump laser diode at 808 nm, the passively Q-switched SESAMbased laser generates 22-ns pulses with an average power of 275 mW at a pulse repetition rate of 2250 kHz.

  17. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    Science.gov (United States)

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Nanosecond Q-switched operation of coupled Yb and Tm fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Yuen H [Laser Photonics Research Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Qamar, Fadi [Laser Photonics Research Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); King, Terence A [Laser Photonics Research Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Ko, Do-Kyeong [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-Gu, Gwangju 500-712 (Korea, Republic of); Lee, Jongmin [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-Gu, Gwangju 500-712 (Korea, Republic of)

    2005-05-07

    A small scale coupled Yb-silica and Tm-silica fibre laser system is described with output at 1.9 {mu}m and with Q-switching using an acousto-optic modulator and also by mechanical optical modulation. The Yb-fibre laser pump source exhibited strong self-pulsation with high-intensity pulses due to stimulated Brillouin scattering. But regular Q-switched pulses were generated from the Tm-fibre laser with an energy of {approx}2.4 {mu}J and duration (FWHM) of {approx}280 ns for modulation frequencies of 1-20 kHz when using acousto-optic modulation. The main effects that limit the Q-switched pulse peak power are the onset of gain-switched pulsing during the low-Q state and strong pump excited state absorption.

  19. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG.......We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  20. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG

    International Nuclear Information System (INIS)

    Wang, Y; Gong, M; Yan, P; Huang, L; Li, D

    2009-01-01

    A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power

  1. A Q-Switched Erbium-Doped Fiber Laser with a Carbon Nanotube Based Saturable Absorber

    International Nuclear Information System (INIS)

    Harun, S. W.; Ismail, M. A.; Ahmad, F.; Ismail, M. F.; Nor, R. M.; Zulkepely, N. R.; Ahmad, H.

    2012-01-01

    We demonstrate a simple, compact and low cost Q-switched erbium-doped fiber laser (EDFL) using single-wall carbon nanotubes (CNTs) as a saturable absorber for possible applications in metrology, sensing, and medical diagnostics. The EDFL operates at around 1560 nm with repetition rates of 16.1 kHz and 6.4 kHz with saturable absorbers SA1 and SA2 at a pump power of 120 mW. The absorbers are constructed by optically driven deposition and normal deposition techniques. It is observed that the optical deposition method produces a Q-switched EDFL with a lower threshold of 70 mW and better Q-switching performance compared to that of the normal deposition method. The EDFL also has pulse energy of 90.3 nJ and pulse width of 11.6 μs at 120 mW pump power

  2. Optimization of an intracavity Q-switched solid-state second order Raman laser

    Science.gov (United States)

    Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang

    2017-01-01

    In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.

  3. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal around 1.55 μm.

    Science.gov (United States)

    Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-01-08

    A composite crystal consisting of a 1.5-mm-thick Er:Yb:YAl 3 (BO 3 ) 4 crystal between two 1.2-mm-thick sapphire crystals was fabricated by the thermal diffusion bonding technique. Compared with a lone Er:Yb:YAl 3 (BO 3 ) 4 crystal measured under the identical experimental conditions, higher laser performances were demonstrated in the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal due to the reduction of the thermal effects. End-pumped by a 976 nm laser diode in a hemispherical cavity, a 1.55 μm continuous-wave laser with a maximum output power of 1.75 W and a slope efficiency of 36% was obtained in the composite crystal when the incident pump power was 6.54 W. Passively Q-switched by a Co 2+ :MgAl 2 O 4 crystal, a 1.52 μm pulse laser with energy of 10 μJ and repetition frequency of 105 kHz was also realized in the composite crystal. Pulse width was 315 ns. The results show that the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal is an excellent active element for 1.55 μm laser.

  4. Compact self-Q-switched Tm:YLF laser at 1.91 μm

    Science.gov (United States)

    Zhang, B.; Li, L.; He, C. J.; Tian, F. J.; Yang, X. T.; Cui, J. H.; Zhang, J. Z.; Sun, W. M.

    2018-03-01

    We report self-Q-switching operation in a diode-pumped Tm:YLF bulk laser by exploiting saturable re-absorption under the quasi-three-level regime. Robust self-Q-switched pulse output at 1.91 μm in fundamental mode is demonstrated experimentally with 1.5 at.% doped Tm:YLF crystal. At maximum absorbed pump power of 4.5 W, the average output power and pulse energy are obtained as high as 610 mW and 29 μJ, respectively, with the corresponding slope efficiency of 22%. Pulse repetition rate is tunable in the range of 3-21 kHz with changing the pump power. The dynamics of self-Q-switching of Tm:YLF laser are discussed with the help of a rate equation model showing good agreement with the experiment. The compact self-Q-switched laser near 2 μm has potential application in laser radar systems for accurate wind velocity measurements.

  5. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    Science.gov (United States)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  6. High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal

    International Nuclear Information System (INIS)

    Qin, L J; Tang, D Y; Xie, G Q; Dong, C M; Jia, Z T; Tao, X T

    2008-01-01

    We report on the continuous wave (CW) and passive Q-switching performance of a high-power diode-pumped Nd:GGG laser. A CW output power of 7.20 W was obtained under an absorbed pump power of 14.97 W, which gives a slop efficiency of 52.7%. With a Cr 4+ doped yttrium aluminum garnet crystal as the saturable absorber, the shortest passively Q-switched pulse width, largest pulse energy, and highest peak power achieved were 7.7 ns, 126.25 μJ, and 15.5 kW, respectively

  7. Combination of Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, non-ablative 1450-nm diode laser, and ablative 10 600-nm carbon dioxide fractional laser for enlarged pores.

    Science.gov (United States)

    Cho, Sung Bin; Noh, Seongmin; Lee, Sang Ju; Kang, Jin Moon; Kim, Young Koo; Lee, Ju Hee

    2010-07-01

    Currently, there is no gold standard for the treatment of enlarged facial pores. In this report, we describe a patient with enlarged nasal pores which were treated with a combination of a non-ablative 1450-nm diode laser, a Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, and an ablative 10 600-nm carbon dioxide fractional laser system. Four months after the final treatment, the condition of the patient's pores had markedly improved, and the patient was satisfied with the results.

  8. Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser

    International Nuclear Information System (INIS)

    Yap, Y. K.; Harun, S. W.; Ahmad, H.; Huang, N. M.

    2013-01-01

    We demonstrate a pulsed ring erbium-doped fiber laser based on graphene oxide (GO), employing a simplified Hummer's method to synthesize the GO via chemical oxidation of graphite flakes at room temperature. By dipping a fiber ferrule end face onto the GO suspension, GO is successfully coated onto the end face, making it a simple saturable absorption device. A stable Q-switched pulsed fiber laser is achieved with a low pump threshold of 9.5 mW at 980 nm. The pulse repetition rate ranges from 16.0 to 57.0 kHz. The pulse width and the pulse energy are studied and discussed

  9. Passive Q switching of a solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Lando, M; Shimony, Y; Noter, Y; Benmair, R M; Yogev, A

    2000-04-20

    Passive Q switching is a preferable choice for switching the Q factor of a solar-pumped laser because it requires neither a driver nor an electrical power supply. The superior thermal characteristics and durability of Cr(4+):YAG single crystals as passive Q switches for lamp and diode-pumped high-power lasers has been demonstrated. Here we report on an average power of 37 W and a switching efficiency of 80% obtained by use of a solar-pumped Nd:YAG laser Q switched by a Cr(4+):YAG saturable absorber. Concentration of the pumping solar energy on the laser crystal was obtained with a three-stage concentrator, composed of 12 heliostats, a three-dimensional compound parabolic concentrator (CPC) and a two-dimensional CPC. The water-cooled passive Q switch also served as the laser rear mirror. Repetition rates of as much as 50 kHz, at pulse durations between 190 and 310 ns (FWHM) were achieved. From the experimental results, the saturated single-pass power absorption of the Cr(4+):YAG device was estimated as 3 ? 1%.

  10. Passive Q-switching in CW-CO2 laser with SF6 as an intracavity saturable absorber

    International Nuclear Information System (INIS)

    Al-Hawat, Sh.

    2007-10-01

    A passive Q-switching was applied to a tunable CW CO 2 laser with output power about 3.5 W using SF 6 as a saturable absorber inside the cavity. The Q-Switching phenomenon was studied ( pulse shape, pulse duration, repetition rate and conditions of its generation ) at the spectral lines of 10P(10), 10P(26), 10P(28) and 10P(30) from the branch of 10P of CO 2 laser. These lines had a weak absorption in relation to other lines of this branch, under SF 6 pressure till 0.5 mbar. To control the behaviour of such phenomenon, the gases He and Xe were added separately to SF 6 . It was observed that the Q-switching phenomenon was depended on the added gas pressure of Xe and He, through the repetitive rate of pulses , duration and energy of generated laser pulse. A computational program was written to calculate the Q-switching pulses parameters under similar conditions as those applied in the case of SF 6 +He mixture. A comparison was made with the experimental data , not so big discrepancies were observed between them. In addition to that, absorption coefficients of SF 6 were determined in two cases: the first one when the absorption cell was located outside the laser cavity, and the second one when the cell was located inside the cavity. On the basis of obtained coefficients the absorption cross sections of SF 6 were found and compared with NIST database.(author)

  11. Passively Q-switched mode-locked Nd3+:LuVO4 laser by LT-GaAs saturable absorber

    International Nuclear Information System (INIS)

    Li, M; Zhao, S; Li, Y; Yang, K; Li, G; Li, D; An, J; Li, T; Yu, Z

    2009-01-01

    By using LT-GaAs as saturable absorber, we have demonstrated the stable Q-switched and mode-locked (QML) Nd:LuVO 4 laser run in a Z-type folded cavity. Nearly 100% modulation depth of mode locking can be obtained as long as the pump power reaches the oscillation threshold. The repetition rate of the passively Q-switched pulse envelops ranges from 37.5 to 139 kHz as the pump power increased from 1.7 to 8.2 W. The mode-locked pulse inside the Q-switched envelop has an estimated pulse width of about 220 ps and a repetition rate of 111 MHz. Under an incident pump power of 8.2 W, the highest pulse energy of 6 μJ of each Q-switched envelope, and the highest peak power about 2.73 kW of Q-switched mode-locked pulses can be obtained

  12. Passive Fe2+ : ZnSe single-crystal Q switch for 3-mu m lasers

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Polushkin, VG; Frolov, MP

    Passive Q-switching of 3-mu m lasers with the help of a Fe2+ : ZnSe single crystal is demonstrated. The 6-mJ, 50-ns giant pulses are obtained from a 2.9364-mu m Er : YAG laser by using this passive Q switch.

  13. Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm

    Science.gov (United States)

    Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang

    2017-12-01

    We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.

  14. Split-face comparison of long-pulse-duration neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser alone and combination long-pulse and Q-switched Nd:YAG 1,064-nm laser with carbon photoenhancer lotion for the treatment of enlarged pores in Asian women.

    Science.gov (United States)

    Wattanakrai, Penpun; Rojhirunsakool, Salinee; Pootongkam, Suwimon

    2010-11-01

    Long-pulse and Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser used for facial rejuvenation can improve pore size. Topical carbon has been used to enhance efficacy. To compare the efficacy and safety of a 1,064-nm long-pulse Nd:YAG laser alone with that of a combination Q-switched Nd:YAG laser with topical carbon lotion followed by long-pulse Nd:YAG to improve enlarged pores. Twenty Thai women randomly received five treatments with a long-pulse Nd:YAG laser on one facial half (LP side) and long-pulse Nd:YAG after carbon-assisted Q-switched Nd:YAG laser on the contralateral side (carbon QS+LP side) at 2-week intervals. Participants were evaluated using digital photography, complexion analysis, and a chromometer. There was significant decrease in pore counts of 35.5% and 33% from baseline on the carbon QS+LP and LP sides, respectively. Physician-evaluated pore size improvement was 67% on the carbon QS+LP sides and 60% on the LP sides. Chromometer measurement showed an increase in skin lightness index. There was no significant difference between the two treatments, although there were more adverse effects on the carbon QS+LP side. Long-pulse Nd:YAG 1,064-nm laser improves the appearance of facial pores and skin color. Adding carbon-assisted Q-switched Nd:YAG did not enhance the results but produced more side effects. © 2010 by the American Society for Dermatologic Surgery, Inc.

  15. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    Science.gov (United States)

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  16. High-power repetitively pulsed CO{sub 2} laser with mechanical Q-switching and its application to studies in aerodynamic installations

    Energy Technology Data Exchange (ETDEWEB)

    Malov, Aleksei N; Orishich, Anatolii M; Shulyat' ev, Viktor B [S.A. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2011-11-30

    A new method for organising the repetitively pulsed regime of CO{sub 2} laser oscillation at the expense of a self-filtering resonator and two concave cylindrical mirrors with equal curvature in the intracavity modulator is considered. The studies of the energy and temporal characteristics of the laser radiation show that the constructed laser has high efficiency close to that of a cw laser. The mean and pulse power of 4.5 and 200 kW, respectively, are obtained. For a wide range of gas-dynamic characteristics the possibility of the optical breakdown in the supersonic wide-aperture air flow is demonstrated. The coefficient of absorption of laser radiation in optical breakdown plasma in a supersonic air flow is investigated and its value amounting to 60% is obtained. For the first time it is found that the threshold density of air, corresponding to the efficiency jump, is equal to 1.8 - 2 kg m{sup -3} and independent of the Mach number M = 1.7 - 3.7. (lasers)

  17. Experimental study of a Q-switched ytterbium-doped double-clad fiber laser

    International Nuclear Information System (INIS)

    Anzueto S, G.; Estudillo A, M.; Martinez R, A.; Torres G, I.; Selvas A, R.

    2008-01-01

    We report an experimental characterization of a Q-switched operation of an all-fiber laser using , 30 m of a double-clad ytterbium-doped fiber spliced to a piece of single-mode un-doped holey fiber. Loss modulation in the splicing point between the active and un-doped fiber due to a substantial coupling of light into lossy cladding modes stimulates pulsed operation of the fiber laser. Pulse energy of ∼2.5 μJ was estimated and the repetition rate was measured in the range of 4-16 KHz. (Author)

  18. A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers

    International Nuclear Information System (INIS)

    Wang Yonggang; Wen Xiaoming; Tang Jau; Chen, Hou Ren; Hsieh, Wen Feng

    2011-01-01

    We demonstrated that graphene oxide material could be used as a highly efficient saturable absorber for the Q-switched Nd:GdVO 4 laser. A novel and low-cost graphene oxide (GO) absorber was fabricated by a vertical evaporation technique and high viscosity of polyvinyl alcohol (PVA) aqueous solution. A piece of GO/PVA absorber, a piece of round quartz, and an output coupler mirror were combined to be a sandwich structure passive component. Using such a structure, 104 ns pulses and 1.22 W average output power were obtained with the maximum pulse energy at 2 µJ and a slope efficiency of 17%.

  19. Passively Q-switched self-frequency-doubled Nd3+:GdCa4O(BO3)3 laser

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Zhao, Shengzhi; Wang, Qingpu; Zhang, Shujun; Sun, Lianke; Liu, Xunmin; Zhang, Shaojun; Chen, Huanchu

    2001-01-01

    The performance of a flash-lamp-pumped self-frequency-doubled Nd 3+ :GdCa 4 O(BO 3 ) 3 (Nd:GdCOB) laser that is passively Q switched with Cr 4+ :YAG saturable absorbers is demonstrated. The maximum 0.53-μm pulse energy obtained is 2.6 mJ, and the maximum peak intensity is 15 MW/cm2. The dependence of the pulse characteristics on the orientation of the saturable absorber and on the cavity length is measured. Meanwhile, the transversal distribution of the intracavity photon density is taken into account in the rate equations for an intracavity frequency-doubled passively Q-switched laser, and the solutions are used to account for the behavior of the passively Q-switched Nd:GdCOB laser. [copyright] 2001 Optical Society of America

  20. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    Science.gov (United States)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  1. Q-switched oscillation in thulium-doped fiber lasers using preloaded dynamic microbending technique

    Science.gov (United States)

    Sakata, H.; Takahashi, N.; Ushiro, Y.

    2018-01-01

    We demonstrate Q-switched pulse generation in thulium-doped fiber lasers by introducing piezoelectric-driven microbend with preloaded stress. We employed a pair of corrugated chips each attached on piezoelectric actuators (PAs) to clamp the fiber in a ring laser resonator. The thulium-doped fiber is pumped by a laser diode emitting at 1.63 μm and generates the Q-switched laser pulses at around 1.9 μm by switching off the PAs. The laser pulse performance is improved by optimizing the preload and switch-off period for the PAs. The Q-switched pulses with a peak power of 2.8 W and a pulsewidth of 900 ns are observed for a launched pump power of 161 mW. We expect that the in-fiber Q-switching technique will provide efficient laser systems for environmental sensing and medical applications.

  2. Comprehensive study of electro-optic and passive Q-switching in solid state lasers for altimeter applications

    Science.gov (United States)

    Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil

    2006-12-01

    Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \

  3. Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser.

    Science.gov (United States)

    Kisel, V E; Gorbachenya, K N; Yasukevich, A S; Ivashko, A M; Kuleshov, N V; Maltsev, V V; Leonyuk, N I

    2012-07-01

    We report, for the first time to our knowledge, a diode-pumped cw and passively Q-switched microchip Er, Yb:YAl(3)(BO(3))(4) laser. A maximal output power of 800 mW at 1602 nm in the cw regime was obtained at an absorbed pump power of 7.7 W. By using Co(2+):MgAl(2)O(4) as a saturable absorber, a TEM(00)-mode Q-switched average output power of 315 mW was demonstrated at 1522 nm, with pulse duration of 5 ns and pulse energy of 5.25 μJ at a repetition rate of 60 kHz.

  4. Q-Switched Operation with Carbon-Based Saturable Absorbers in a Nd:YLF Laser

    Directory of Open Access Journals (Sweden)

    Rosa Weigand

    2015-09-01

    Full Text Available We have numerically studied the influence of the absorption modulation depth of carbon-based saturable absorbers (graphene and carbon nanotubes (CNTs on the Q-switched regime of a diode-pumped Nd:YLF laser. A short-length cavity was used with an end mirror on which CNTs or mono- or bi-layer graphene were deposited, forming a saturable absorber mirror (SAM. Using a standard model, the generated energy per pulse was calculated, as well as the pulse duration and repetition rate. The results show that absorbers with higher modulation depths, i.e., graphene, deliver higher energy pulses at lower repetition rates. However, the pulse duration did not have a monotonic behavior and reaches a minimum for a given low value of the modulation depth typical of CNTs.

  5. Experimental and Numerical Comparison Q-Switched Fiber Laser Generation using Graphene as Saturable Absorber

    Directory of Open Access Journals (Sweden)

    Awang Noor Azura

    2018-01-01

    Full Text Available We demonstrated the comparison experimentally and numerically a compact Q-switched erbium-doped fiber (EDF laser based on graphene as a saturable absorber (SA. By optically driven deposition of graphene on a fiber core, the SA is constructed and inserted into a diode-pumped EDF laser cavity. Lasing in CW region starts at 10 mW, whereas stable self-starting Q-switching with a central wavelength of 1530 nm begins at 18 mW. In this paper, at 35 mW, the maximum pulse energy reaches at 2 μJ with pulse repetition rate of 1 MHz and the narrowest pulse width is around 10 μs is obtained. The stability of the pulse is verified from the radio-frequency (RF spectrum with a measured signal-to-noise ratio (SNR of 48 dB. In this study, the design is compared with the simulation using the Optisystem software. The output power of the experimental study is also compared with the simulation to examine the performance.

  6. Spectral and power characteristics of a 5% Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe crystal

    Science.gov (United States)

    Vatnik, S. M.; Vedin, I. A.; Kurbatov, P. F.; Smolina, E. A.; Pavlyuk, A. A.; Korostelin, Yu. V.; Skasyrsky, Ya. K.

    2017-12-01

    Laser characteristics of a 5%Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe saturable absorber are presented. At a pump power of 21 W, the average laser power at a wavelength of 1.91 μm was 3.2 W (pulse duration 35 ns, pulse energy 0.3 mJ). The maximum slope efficiency of the laser in the Q-switched regime was 31%; the loss in power with respect to the cw regime did not exceed 17%. At pump powers above 15 W, the dependence of the output power in the Q-switched regime on the pump power considerably differed from linear, which was explained by the formation of a thermal lens in the saturable absorber volume. The experimental energies and durations of laser pulses well agree with the values calculated from rate equations.

  7. Numerical modelling of passively Q-switched intracavity Raman lasers

    International Nuclear Information System (INIS)

    Ding Shuanghong; Zhang Xingyu; Wang Qingpu; Zhang Jun; Wang Shumei; Liu Yuru; Zhang Xuehui

    2007-01-01

    Assuming intracavity photon densities to be of Gaussian spatial distributions, the space-dependent rate equations of passively Q-switched intracavity Raman lasers are deduced for the first time for the pumping beams of Gaussian and top-head spatial distributions, respectively. The new rate equations are normalized and solved numerically to investigate the influences of the normalized initial population inversion density, normalized Raman gain coefficient, saturable absorber parameter, beam size ratio of pump to fundamental laser and loss ratio of the first Stokes to fundamental laser on the pulse parameters of the first Stokes. The results of the Gaussian and top-head pumpings show similar trends despite some discrepancies. The new theories and numerical results will help design passively Q-switched intracavity Raman lasers of high performance

  8. Diode pumped actively Q-switched Nd:YVO4 self-Raman laser

    International Nuclear Information System (INIS)

    Su Fufang; Zhang Xingyu; Wang Qingpu; Ding Shuanghong; Jia Peng; Li Shutao; Fan Shuzhen; Zhang Chen; Liu Bo

    2006-01-01

    By using Nd:YVO 4 as the gain medium and the Raman medium simultaneously, the actively Q-switched operation of the self-Raman Nd:YVO 4 laser at 1176 nm was realized. The output characteristics including the average power, pulse energy and pulse width versus the incident pump power and pulse repetition rate were investigated. At a pulse repetition rate of 20 kHz an average power up to 0.57 W was obtained with the incident pump power of 10.2 W, corresponding to a conversion efficiency of 5.6% with respect to the diode laser input power. Meanwhile, an analysis of the self-Raman Nd:YVO 4 laser was carried out by using the rate equations. The obtained theoretical results were in agreement with the experimental results on the whole

  9. Double-Arched LD Array Stagger Pumped Electro-Optic Q-Switched Nd:YAG Laser without Water Cooling

    International Nuclear Information System (INIS)

    Xin-Yu, Chen; Guang-Yong, Jin; Yong-Ji, Yu; Chao, Wang; Da-Wei, Hao; Yi-Bo, Wang

    2010-01-01

    We report an experimental study on a double-arched LD array stagger pumped electro-optic Q-switched Nd:YAG laser without water cooling by using a convex-concave compensate resonator. Perfect matching of the gain field inside the rod and the fundamental mode of the cavity is made by this structure. When the repetition rate is 20 Hz, A maximum output energy at 1064 nm wavelength of 176 mJ (M 2 = 1.55) and 9.6 ns FWHM pulse width in fundamental mode Q-switch operation is obtained with LD injection current 120 A. The optical-optical conversion efficiency is 14.7%, the divergence angle of the output beam is about 1.8 mrad. (fundamental areas of phenomenology(including applications))

  10. Combination of CO2 and Q-switched Nd:YAG lasers is more effective than Q-switched Nd:YAG laser alone for eyebrow tattoo removal.

    Science.gov (United States)

    Radmanesh, Mohammad; Rafiei, Zohreh

    2015-04-01

    The eyebrow tattoo removal using Q-switched lasers is usually prolonged. Other modalities may be required to enhance the efficacy and shorten the treatment course. To compare the efficacy of Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser alone versus combination of Q-switched Nd:YAG and Ultrapulse CO2 lasers for eyebrow tattoo removal after a single session. After local anesthesia, the right eyebrow of 20 patients was treated with Ultrapulse CO2 laser with the parameters of 4 J/cm(2) and 3.2 J/cm(2) for the first and the second passes. Both eyebrows were then treated with 1064-nm and 532-nm Q-switched Nd:YAG laser. The spot size and pulse duration were 3 mm and 5 nanoseconds for both wavelengths, and the fluence was 7 J/cm(2) for 1064 nm and 3 J/cm (2) for 532 nm. The side treated with combination of Q-switched Nd:YAG and CO2 lasers improved 75-100% in 6 of 20 patients versus only 1 of 20 in the side treated with Q-switched Nd:YAG alone. Similarly, the right side in 13 of 20 patients showed more than 50% improvement with combination therapy versus the left side (the monotherapy side), where only 6 of 20 cases showed more than 50% improvement. The Mann-Whitney test was 2.85 for the right side and 1.95 for the left side (P value = 0.007). Using Ultra pulse CO2 laser enhances the efficacy of Q-switched Nd:YAG laser in eyebrow tattoo removal.

  11. Synchronisation of a femtosecond laser and a Q-switched laser to within 50 ps

    International Nuclear Information System (INIS)

    Katin, E V; Lozhkarev, V V; Palashov, O V; Khazanov, E A

    2003-01-01

    A Nd:YLF laser emitting 2-ns pulses synchronised with a femtosecond Cr:forsterite laser is built. The pulse duration and synchronisation are ensured by two Pockels cells, in which voltage pulses are synchronised with the femtosecond laser by fast emitter-coupled logic elements. One of the Pockels cells ensures Q-switching, while the other cuts a short pulse from a 15-ns Q-switched pulse. The experimental results show that the two-step scheme proposed for synchronisation of a Q-switched laser and a passively mode-locked laser provides quite simple and reliable synchronisation of these lasers with a jitter of a few tens of picoseconds. (control of laser radiation parameters)

  12. The regeneration of thermal wound on mice skin (Mus Musculus) after Q-Switch Nd: YAG laser irradiation for cancer therapy candidate

    Science.gov (United States)

    Apsari, R.; Nahdliyatun, E.; Winarni, D.

    2017-09-01

    The aims of this study are to investigate the regeneration of mice skin tissue (Mus Musculus) irradiated by Q-Switch Nd: YAG laser and morphological change due to Q-Switch Nd: YAG laser irradiation compared to conventional heating (hairdryer). The 2-3 month of twenty-seven mice were used for experimental animals. Mice were incised in the dorsum by the damage effect of laser energy dose (therapeutic dose) of 29.5 J/cm2 with 10 seconds of exposure time, 10 Hz of repetition rate, and 100 pulses of the given single pulse energy. The mice skin tissue was injuried by hairdryer to get burned effect. Mice were divided into three groups, Group I (control) were not treated by anything, Group II were treated by Q-Switch Nd: YAG laser irradiation and sacrificed on (0, 1, 3, 5) days, and Group III were treated by hairdryer then sacrificed on (0, 1, 3, 5) days. Pathology examination showed that the energy of 29,5 J/cm2 dose produced the hole effect (ablation) through the hypodermic layer caused by optical breakdown and collagen coagulation. Thus, the 60 °C temperature of burn showed coagulation necrosis because piknosis discovered in the injured area. The regeneration process showed that the mice skin tissue's ability to regenerate was irradiated by fast laser because of the focus of Q-Switch Nd: YAG laser. It was showed by the scab releases on third day and completely reepithelialization formation on the fifth day. The collagen fibers distribution was same as normal skin tissue on day 5 and so did angiogenesis. Therefore, Q-Switch Nd: YAG laser can be applied for problems of dermatology medical therapies, especially melasma, nevus of ota and tatto therapy. For skin cancer therapy application, energy dose of unregenerated skin tissue is chosen because the death expected effect is permanent.

  13. Q-Switching in a Neodymium Laser

    Science.gov (United States)

    Holgado, Warein; Sola, Inigo J.; Jarque, Enrique Conejero; Jarabo, Sebastian; Roso, Luis

    2012-01-01

    We present a laboratory experiment for advanced undergraduate or graduate laser-related classes to study the performance of a neodymium laser. In the experiment, the student has to build the neodymium laser using an open cavity. After that, the cavity losses are modulated with an optical chopper located inside, so the Q-switching regime is…

  14. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  15. High Power Q-Switched Dual-End-Pumped Ho:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ming, Duan; Ying-Jie, Shen; Tong-Yu, Dai; Bao-Quan, Yao; Wang Yue-Zhu, E-mail: xmduan@hit.edu.cn [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    We report the high power acousto-optically Q-switched operation of a dual-end-pumped Ho:YAG laser at room temperature. For the Q-swithched mode, a maximum pulse energy of 2.4 mJ and a minimum pulse width of 23 ns at the repetition rate of 10 kHz are achieved, resulting in a peak power of 104.3 kW. The beam quality factor of M{sup 2} {approx} 1.5, which is demonstrated by a knife-edge method. In addition, the Ho:YAG laser is employed as a pumping source of ZGP optical parametric oscillator, and its total average output power is 13.2 W at 3.9 {mu}m and 4.4 {mu}m with a slope efficiency of 68.4%.

  16. Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber

    Science.gov (United States)

    Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.

    2018-02-01

    In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.

  17. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    Science.gov (United States)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  18. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Zhonglie [Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612 (United States); Zeng, Lvming; Chen, Zhongping, E-mail: z2chen@uci.edu, E-mail: ckim@pusan.ac.kr [Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612 (United States); Kim, Chang-Seok, E-mail: z2chen@uci.edu, E-mail: ckim@pusan.ac.kr [Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2016-04-04

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.

  19. Precise alignment of a longitudinal Pockels Cell for Q-switch operation Nd:YAG laser

    International Nuclear Information System (INIS)

    Nisperuza, D.; Botero, G.; Bastidas, A.

    2009-01-01

    The failure to accurately center optical components may, especially in the case of high gain of the Nd:YAG lasers, produce strong parasitic off-axis laser action capable of causing severe component damage typically to the Pockels cell. We report a precise longitudinal alignment of the Pockels cell by modulating the laser polarization using an experimental setup of circular dichroism. This procedure is based on the use of an analyzer at 0 o or 45 o of the Pockels cell axes, and it allows us to adjust the Q-switching delay for best pulse shape, maximum output energy and to reduce the lack of symmetry of the spot laser considerably. (Author)

  20. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    International Nuclear Information System (INIS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-01-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb 3+ -doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained. (paper)

  1. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser

    Directory of Open Access Journals (Sweden)

    Shougui Ning

    2018-02-01

    Full Text Available A mid-infrared (mid-IR semiconductor saturable absorber mirror (SESAM based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.

  2. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.; Yan, K.; Zhou, Y. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Xu, L. X., E-mail: xulixin@ustc.edu.cn; Gu, C. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China); Zhan, Q. W. [Electro-Optics Program, University of Dayton, Dayton, Ohio 45469 (United States)

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  3. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser

    International Nuclear Information System (INIS)

    Chen Xiao-Dong; Mao Qing-He; Sun Qing; Zhao Jia-Sheng; Li Pan; Feng Su-Juan

    2011-01-01

    A gas Raman light source based on a H 2 -filled hollow-core photonic-crystal-fiber cell with a Q-switched fiber laser followed by a fiber amplifier as the Raman pump source is demonstrated. The Stokes frequency-shift lasing line is observed at 1135.7 nm with the Q-switched pump pulses at 1064.7 nm. Our experimental results show that the generated Stokes pulse is much narrower than the pump pulse, and the generated Stokes pulse duration is increased with the single pulse energy for the same duration pump pulses. For the 125 ns pump pulses with a repetition rate of 5 kHz, the Raman threshold pump energy and the conversion efficiency at the Raman threshold are 2.13 μJ and 9.82%. Moreover, by choosing narrower pump pulses, the Raman threshold pump energy may be reduced and the conversion efficiency may be improved. (fundamental areas of phenomenology(including applications))

  4. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    Science.gov (United States)

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  5. In vitro effect of Q-switched Nd:YAG laser exposure on morphology, hydroxyapatite composition and microhardness properties of human dentin

    Directory of Open Access Journals (Sweden)

    Retna Apsari

    2011-12-01

    Full Text Available Background: A Q-switched Nd:YAG laser was employed as a source of ablation. The fundamental wavelength of the laser is 1064 nm, with pulse duration of 8 nanosecond operates with uniphase mode of TEM00. In the following experiments, dentin samples (without caries and plaque are exposed to pulse laser with Q-switching effect at various energy dose. Purpose: The aim of this study was to investigate the effect of laser ablation on dentin samples using Q-switched Nd:YAG laser exposure. Methods: The laser was operated in repetitive mode with frequency of 10 Hz. The energy dose of the laser was ranging from 13.9 J/cm2, 21.2 J/cm2 and 41.7 J/cm2. The target material comprised of human dentin. The laser was exposed in one mode with Q-switched Nd:YAG laser. Energy delivered to the target through free beam technique. The exposed human dentin was examined by using x-ray diffraction (XRD and fluoresence scanning electron microscopy for energy dispersive (FESEM-EDAX. Microhardness of human dentin were examined by using microhardness vickers test (MVT. Results: The result obtained showed that the composition of hydroxyapatite of the dentin after exposed by Q-switched Nd:YAG laser are 75.02% to 78.21%, with microhardness of 38.7 kgf/mm2 to 86.6 kgf/mm2. This indicated that exposed pulsed Nd:YAG laser on the human dentin attributed to the phototermal effect. The power density created by the Q-switched Nd:YAG laser enables the heat to produce optical breakdown (melting and hole associated with plasma formation and shock wave propagation, from energy dose of 21.2 J/cm2. From XRD analysis showed that the exposure of Nd:YAG laser did not involve in changing the crystal structure of the dentin, but due to photoablation effect. Conclusion: In conclusion, the application of Q-switched Nd:YAG laser as contactless drills in dentistry should be regarded as an alternative to the classical mechanical technique to improve the quality of the dentin treatment.Latar belakang

  6. Self-Q-switched ytterbium-doped cladding-pumped fibre laser

    International Nuclear Information System (INIS)

    Grukh, Dmitrii A; Kurkov, Andrei S; Razdobreev, I M; Fotiadi, A A

    2002-01-01

    A self-Q-switched ytterbium-doped double-clad fibre laser is described. A samarium-doped fibre is used as a filter for protecting a pump source. A fibre coupler is employed to obtain a nonlinear feedback. The mechanism of pulse formation in the laser is considered, and the dependence of its output pulse on the coupler parameters is studied. (solitons and optical fibers)

  7. Graphene Q-switched Yb:KYW planar waveguide laser

    NARCIS (Netherlands)

    Kim, Jun Wan; Choi, Sun Young; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Ahn, Kwang Jun; Yeom, Dong-Il; Rotermund, Fabian

    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in

  8. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode...... with a Mode-Field-Diameter (MFD) of 59 mu m. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm. (C) 2011 Optical...

  9. High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser.

    Science.gov (United States)

    Chen, Hao; Chen, YuShan; Yin, Jinde; Zhang, Xuejun; Guo, Tuan; Yan, Peiguang

    2016-07-25

    In this paper, we demonstrate a high-damage-resistant tungsten disulfide saturable absorber mirror (WS2-SAM) fabricated by magnetron sputtering technique. The WS2-SAM has an all-fiber-integrated configuration and high-damage-resistant merit because the WS2 layer is protected by gold film so as to avoid being oxidized and destroyed at high pump power. Employing the WS2-SAM in an Erbium-doped fiber laser (EDFL) with linear cavity, the stable Q-switching operation is achieved at central wavelength of 1560 nm, with the repetition rates ranging from 29.5 kHz to 367.8 kHz and the pulse duration ranging from 1.269 μs to 154.9 ns. For the condition of the maximum pump power of 600 mW, the WS2-SAM still works stably with an output power of 25.2 mW, pulse energy of 68.5 nJ, and signal-noise-ratio of 42 dB. The proposed WS2-SAM configuration provides a promising solution for advanced pulsed fiber lasers with the characteristics of high damage resistance, high output energy, and wide tunable frequency.

  10. A promising split-lesion technique for rapid tattoo removal using a novel sequential approach of a single sitting of pulsed CO(2) followed by Q-switched Nd: YAG laser (1064 nm).

    Science.gov (United States)

    Sardana, Kabir; Garg, Vijay K; Bansal, Shivani; Goel, Khushbu

    2013-12-01

    Laser tattoo removal conventionally uses Q-switched (QS) lasers, but they require multiple sittings, and the end results depend largely on the type of tattoo treated. In pigmented skin, due to the competing epidermal pigment results, laser results in tattoo are slow and inadequate. To evaluate the efficacy of a combined use of ultrapulse CO2 and QS Nd:YAG (1064 nm) laser in the treatment of tattoos in Indian skin. A split-lesion trial was carried out in five patients, with the left side of tattoos receiving the QS Nd:YAG (1064 nm) and the right side, a sequential combination of Up CO2 and QS Nd: YAG at 6 weeks interval with a maximum of six sittings. Outcome assessment was carried out by a blinded assessor using standardized photography. An assessment of physician improvement score, side-effects score, and patient satisfaction score was taken during and at the end of the study. There was a statistically significant improvement on the combination side(physician improvement score -3.7 vs. 1.87: P = 0.0019) which occurred earlier with fewer sittings (1.7 vs. 6). There was no statistically significant difference in the side effects. A combination of an Up CO2 laser with QS Nd: YAG laser is a promising tool for rapid and effective removal of blue-black/blue amateur tattoo in pigmented skin. © 2013 Wiley Periodicals, Inc.

  11. Generation of Q-Switched Mode-Locked Erbium-Doped Fiber Laser Operating in Dark Regime

    International Nuclear Information System (INIS)

    Tiu, Zian Cheak; Zarei, Arman; Ahmad, Harith; Harun, Sulaiman Wadi

    2016-01-01

    We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96 kHz to 3.26 kHz, whereas the pulse width reduces from 211 μs to 86 μs. The highest pulse of 479 nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5 μs when the pump power is fixed at 145 mW. The repetition rate of trailing dark pulses can be increased from 27.62 kHz to 50 kHz as the pump power increases from 55 mW to 145 mW. (paper)

  12. High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser

    International Nuclear Information System (INIS)

    Yao, B Q; Li, G; Meng, P B; Zhu, G L; Ju, Y L; Wang, Y Z

    2010-01-01

    High power diode-pumped continuous wave (CW) and Q-switch operation of Tm,Ho:YVO 4 laser is reported. Using two Tm,Ho:YVO 4 rods in a single cavity, up to 20.2 W of CW output lasing at 2054.7 nm was obtained under cryogenic temperature of 77 K with an optical to optical conversion efficiency of 32.9%. For Q-switch operation, up to 19.4 W of output was obtained under 15 kHz pulse repetition frequency (PRF) with a minimum pulse width of 24.2 ns. In addition, different pulse repetition frequencies of Q-switch operation with 10.0 kHz, 12.5 kHz and 15.0 kHz were investigated comparatively

  13. Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser

    Science.gov (United States)

    Li, Chun; Liu, Jie; Guo, Zhinan; Zhang, Han; Ma, Weiwei; Wang, Jingya; Xu, Xiaodong; Su, Liangbi

    2018-01-01

    A multilayer black phosphorus, as a novel two dimensional saturable absorber, has superb saturable absorption properties for a Er:CaF2 solid-state pulse laser. The pulse laser is realized at mid-infrared region with the passively Q-switched technology by a diode-pumping. The high-quality black phosphorus saturable absorber is fabricated by liquid phase exfoliation method. The pulse laser generates the pulses operation with the pulse duration of 954.8 ns, the repetition rate of 41.93 kHz, the pulse energy of 4.25 μJ and the peak power of 4.45 W. Our work demonstrates that black phosphorus could be used as a kind of efficient mid-infrared region optical absorber for ultrafast photonics.

  14. Q-switched Ho:YLF laser pumped by a Tm:GdVO4 laser.

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-06-01

    Full Text Available The authors have, through careful analysis of spectroscopic data, designed and demonstrated a diode-end-pumped, quasicontinuous wave Tm:GdVO4 laser operating at 1892 nm in order to pump a Q-switched Ho:YLF laser. The Ho:YLF maximum output energy...

  15. Submicrosecond Q-Switching Er-Doped All-Fiber Ring Laser Based on Black Phosphorus

    Directory of Open Access Journals (Sweden)

    Yao Cai

    2017-01-01

    Full Text Available Black phosphorus (BP, a new two-dimensional (2D material, has been deeply developed for extensive applications in electronics and optoelectronics due to its similar physical structure to graphene and thickness dependent direct band gap. Here, we demonstrated a submicrosecond passive Q-switching Er-doped fiber laser with BP as saturable absorber (SA. The BP saturable absorber was fabricated by mechanical exfoliation method. By taking full advantage of the ultrafast relaxation time of BP-SA and careful design of compact ring cavity, we obtained stable Q-switching pulses output with a shortest duration as narrow as 742 ns. With increasing the pump power, the pulse repetition rate accreted gradually almost linearly from 9.78 to 61.25 kHz, and the pulse duration declined rapidly at lower pump power regime and retained approximate stationary at higher pump power regime from 3.05 to 0.742 μs. The experimental results indicate that BP-SA can be an effective SA for nanosecond Q-switching pulse generation.

  16. Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiantao; Gross, Simon; Withford, Michael J.; Fuerbach, Alexander [Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) and MQ Photonics Research Centre, Dept. of Physics and Astronomy, Macquarie Univ., NSW (Australia); Zhang, Han; Guo, Zhinan [SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen Univ. (China)

    2016-08-15

    Nanosheets of bismuth telluride (Bi{sub 2}Te{sub 3}), a topological insulator material that exhibits broadband saturable absorption due to its non-trivial Dirac-cone like energy structure, are utilized to generate short pulses from Tm:ZBLAN waveguide lasers. By depositing multiple layers of a carefully prepared Bi{sub 2}Te{sub 3} solution onto a glass substrate, the modulation depth and the saturation intensity of the fabricated devices can be controlled and optimized. This approach enables the realization of saturable absorbers that feature a modulation depth of 13% and a saturation intensity of 997 kW/cm{sup 2}. For the first time to our knowledge, Q-switched mode-locked operation of a linearly polarized mid-IR ZBLAN waveguide chip laser was realized in an extended cavity configuration using the topological insulator Bi{sub 2}Te{sub 3}. The maximum average output power of the laser is 16.3 mW and the Q-switched and mode-locked repetition rates are 44 kHz and 436 MHz, respectively. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Q-switched laser tattoo removal

    Directory of Open Access Journals (Sweden)

    Viljem H. topčič

    2013-10-01

    Full Text Available Background: Decorative tattooing gained popularity in many western countries throughout the 1990s. Some estimates show that approximately 10 % of men in the United States already have tattoos. However, tattoos often become a personal regret. As recent surveys suggest, 17 % of people that have obtained a tattoo and more than 50 % of adults over the age of 40 in the United States of America consider having them removed. The same trend can be observed in our country as well. Laser therapy is the gold standard for tattoo removal. In Slovenia, laser tattoo removal therapy is available and widely accessible. There is a wide range of facilities offering laser tattoo removal, ranging from different private clinics to beauty salons. Different facilities use different lasers, but not all lasers, however, are optimal for successful and complete tattoo removal, as inappropriate use can cause many unwanted side effects.Methods: Eleven (11 patients (2 men and 9 women requesting tattoo removal were treated in our department. When treating our patients, we used Fotona’s QX MAX quality-switched Nd:YAG laser which offers four different wavelengths in a single system; 1064 nm Nd:YAG was used to treat and remove dark pigments, 532 nm KTP for red, tan-colored, purple and orange tattoo inks, 650 nm dye for green tattoo inks and 585 nm dye for sky-blue colored inks.Results: Satisfactory tattoo removal was achieved in all patients treated. Patients were very satisfied with the success and the number of treatments needed for tattoo removal. There were mild unwanted side effects and the pain was moderate. The average number of treatments required for complete tattoo removal was less than 7, ranging from 3 to 21 treatments. Patients’ satisfaction with tattoo removal was estimated at 5.2 (on a scale from 1 to 6.Conclusions: Our study showed that Q-switched lasers successfully remove tattoo ink, however several treatments are required for satisfactory tattoo removal

  18. Nanosecond Tm:Y2O3 ceramic laser passively Q-switched by a Ho:LuAG ceramic

    Science.gov (United States)

    Wang, Hui; Huang, Haitao; Wang, Shiqiang; Shen, Deyuan

    2018-02-01

    A passively Q-switched 2.05-μm Tm:Y2O3 ceramic laser, employing Ho:LuAG ceramic as a saturable absorber, was demonstrated for the first time. Under the absorbed pump power of 20.5 W, a maximum output power of 497 mW was obtained. Pulses with a minimum pulse width of 642 ns under the repetition rate of 33 kHz were achieved. Our works validate that Ho-doped materials have good potential for passive Q-switching of Tm-doped lasers at 2-μm wavelength region.

  19. Black phosphorus saturable absorber for Q-switched Er:YAG laser at 1645 nm

    Science.gov (United States)

    Guo, Lei; Li, Tao; Zhang, Shuaiyi; Wang, Mingjian; Yang, Kejian; Fan, Mingqi; Zhao, Shengzhi; Li, Ming

    2018-03-01

    A Q-switched Er:YAG solid-state laser at 1645 nm based on black phosphorus (BP) saturable absorbers (SAs) was demonstrated firstly to our knowledge. The BP-SA was fabricated by drop-casting BP nanoplatelets dispersion on a YAG substrate and corresponding saturable absorption properties were characterized at 1.6 μm. By employing as-prepared BP-SAs, stable Q-switched laser operations were achieved with a pulse width of 2.8 μs and a repetition rate of 34 kHz, corresponding to the average output power of 0.33 W. The results verify that BP-SAs have great potential for pulsed 1.6 μm lasers.

  20. Q-switched operation with Fox-Smith-Michelson laser cavity

    International Nuclear Information System (INIS)

    Huang, X; Huang, L; Gong, M

    2008-01-01

    A new kind of three-mirror composite cavity, Fox-Smith-Michelson cavity has been configured. This laser cavity is capable of high power output, owing to the low threshold of Michelson cavity. Also, thanks to the mode selection function of Fox-Smith cavity, stable pulses at high repetition rate can be generated. In our experiment, 15.54 W CW output at 1064 nm has been achieved, with an optic-to-optic conversion efficiency of 42.2%. At the Q-switching repetition rate of 100 kHz, the average output power is 11.92 W, with an optic-to-optic conversion efficiency of 38.2%. For Q-switching frequency from 30 kHz to 100 kHz, the pulse width variation is below 4.4% and the amplitude variation is below 4.8%

  1. An Nd:YLF laser Q-switched by a monolayer-graphene saturable-absorber mirror

    International Nuclear Information System (INIS)

    Matía-Hernando, Paloma; Guerra, José Manuel; Weigand, Rosa

    2013-01-01

    We demonstrate Q-switched operation of a transversely diode-pumped Nd:YLF (yttrium lithium fluoride) laser using chemical vapour deposition-grown large-area monolayer graphene transferred to a dielectric saturable-absorber mirror (G-SAM). The resulting compact design operates at 1047 nm with 2.5 μs pulses in a 100% modulation Q-switch regime with an average and very stable output power of 0.5 W. Different cavity lengths have been employed and the results are compared against a theoretical model based on rate equations, evidencing the role of transverse pumping in the system. The model also reveals that monolayer graphene effectively leads to shorter and more powerful pulses compared to those with multilayer graphene. These results establish the potential of single-layer graphene for providing a reliable and efficient Q-switch mechanism in solid-state lasers. (paper)

  2. All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber

    Science.gov (United States)

    Muhammad, A. R.; Haris, H.; Arof, H.; Tan, S. J.; Ahmad, M. T.; Harun, S. W.

    2018-05-01

    We demonstrate the generation of a passively Q-switched ytterbium-doped fibre laser (YDFL) using a bismuth-doped fibre (BDF) as a solid-state fibre saturable absorber (FSA) in a ring cavity. The BDF used has a wide and low absorption band of 5 dB/m at the 1.0 μm region due to the ion transition of ? that occurs around the region. When introduced into a YDFL laser cavity, a stable Q-switched pulse operation was observed and the pulse repetition rate was proportional to the input pump power. It was limited to 72.99 kHz by the maximum power that the laser diode could supply. Meanwhile, the pulse width decreased from 12.22 to 4.85 μs as the pump power was increased from 215.6 to 475.6 mW. The finding suggests that BDF could be used as a potential SA for the development of robust, compact, efficient and low cost Q-switched fibre lasers operating at 1 micron region.

  3. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  4. Cw and Q-switched Nd:NaLa(MoO4)2 laser noncritical to the temperature drift of the diode pump laser wavelength

    International Nuclear Information System (INIS)

    Ushakov, S N; Lis, Denis A; Subbotin, Kirill A; Romanyuk, V A; Shestakov, A V; Ryabochkina, P A; Shestakova, I A; Zharikov, Evgeny V

    2010-01-01

    Lasing in Nd:NaLa(MoO 4 ) 2 crystals is obtained without stabilisation of the diode pump wavelength. A dependence of the cw laser power (at a wavelength of 1059 nm) on the pump diode temperature is found within a range of 10-458C. It is shown that the variations in the diode temperature within this region change the lasing efficiency no more than by 30%. In the passive Q-switching regime, the experiments were performed under both pulsed and cw pumping. Upon pulsed pumping, the laser energy was 16 μJ at the output pulse duration of 11 ns. The laser wavelength was 1059 nm, as well as in the case of cw operation. Upon cw pumping with a power of 1.5 W, laser pulses were obtained with an energy of 15 μJ. (lasers)

  5. Passively Q-switched of EDFL employing multi-walled carbon nanotubes with diameter less than 8 nm as saturable absorber

    Directory of Open Access Journals (Sweden)

    Zuikafly Siti Nur Fatin

    2017-01-01

    Full Text Available The paper demonstrates passively Q-switched erbium-doped fiber laser implementing multiwalled carbon nanotubes (MWCNTs based saturable absorber. The paper is the first to report the use of the MWCNTs with diameter less than 8 nm as typically, the diameter used is 10 to 20 nm. The MWCNTs is incorporated with water soluble host polymer, polyvinyl alcohol (PVA to produce a MWCNTs polymer composite thin film which is then sandwiched between two fiber connectors. The fabricated SA is employed in the laser experimental setup in ring cavity. The Q-switching regime started at threshold pump power of 103 mW and increasable to 215 mW. The stable pulse train from 41.6 kHz to 76.92 kHz with maximum average output power and pulse energy of 0.17 mW and 3.39 nJ are produced. The shortest pulse width of 1.9 μs is obtained in the proposed experimental work, making it the lowest pulse width ever reported using MWCNTs-based saturable absorber.

  6. Laser-tissue interaction in tattoo removal by q-switched lasers.

    Science.gov (United States)

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  7. Self-Q-switching behavior of erbium-doped tellurite microstructured fiber lasers

    International Nuclear Information System (INIS)

    Jia, Zhi-Xu; Yao, Chuan-Fei; Kang, Zhe; Qin, Guan-Shi; Qin, Wei-Ping; Ohishi, Yasutake

    2014-01-01

    We reported self-Q-switching behavior of erbium-doped tellurite microstructured fiber (EDTMF) lasers and further demonstrated a self-Q-switched EDTMF laser with a high repetition rate of more than 1 MHz. A 14 cm EDTMF was used as the gain medium. Upon a pump power of ∼705 mW at 1480 nm, output pulses with a lasing wavelength of ∼1558 nm, a repetition rate of ∼1.14 MHz, and a pulse width of ∼282 ns were generated from the fiber by employing a linear cavity. The maximum output power was ∼316 mW and the slope efficiency was about 72.6% before the saturation of the laser power. Moreover, the influence of the fiber length on laser performances was investigated. The results showed that self-Q-switching behavior in our experiments was caused by the re-absorption originated from the ineffectively pumped part of the active fiber.

  8. Theoretical and experimental study of a laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser with acoustic-optic modulator

    Science.gov (United States)

    Zhang, Haikun; Xia, Wei; Song, Peng; Wang, Jing; Li, Xin

    2018-03-01

    A laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser operating at around 1040 nm is presented for the first time with acoustic-optic modulator. The dependence of pulse width on incident pump power for different pulse repetition rates is measured. By considering the Guassian spatial distribution of the intracavity photon density and the initial population-inversion density as well as the longitudinal distribution of the photon density along the cavity axis and the turn off time of the acoustic-optic Q-switch, the coupled equations of the actively Q-switched Yb:NaY(WO4)2 laser are given. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.

  9. Comparison of Small-Scale Actively and Passively Q-Switched Eye-Safe Intracavity Optical Parametric Oscillators at 1.57 μm

    International Nuclear Information System (INIS)

    Miao Jie-Guang; Pan Yu-Zhai; Qu Shi-Liang

    2012-01-01

    The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57 μm driven by a small-scale diode-pumped Nd:YVO 4 laser are thoroughly presented. It is found that the performances of the two types of IOPOs are complementary. The actively Q-switched IOPO features a shorter pulse duration, a higher peak power, and a superior power and pulse stability. However, in terms of compactness, operation threshold and conversion efficiency, passively Q-switched IOPOs are more attractive. It is further indicated that the passively Q-switched IOPO at 1.57μm is a promising and cost-effective eye-safe laser source, especially at the low and moderate output levels. In addition, instructional improvement measures for the two types of IOPOs are also summarized. (fundamental areas of phenomenology(including applications))

  10. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    Science.gov (United States)

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  11. Q-switching and mode-locking in a diode-pumped frequency-doubled Nd : YAG laser

    International Nuclear Information System (INIS)

    Donin, Valerii I; Yakovin, Dmitrii V; Gribanov, A V

    2012-01-01

    A new method for obtaining Q-switching simultaneously with mode-locking using one travelling-wave acousto-optic modulator in a frequency-doubled Nd : YAG laser cavity is described. Further shortening of output laser pulses (from 40 to 3.25 ps) is achieved by forming a Kerr lens in the frequency-doubling crystal. At an average power of ∼ 2 W and a Q-switching rate of 2 kHz, the peak power of the stably operating reached ∼ 50 MW.

  12. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin, E-mail: pec9@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Liu, Lei; Huang, Xi; Lu, Yongfeng [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  13. Diode-pumped continuous-wave and passively Q-switched 1066 nm Nd:GYNbO4 laser

    Science.gov (United States)

    Ma, Yufei; Peng, Zhenfang; He, Ying; Li, Xudong; Yan, Renpeng; Yu, Xin; Zhang, Qingli; Ding, Shoujun; Sun, Dunlu

    2017-08-01

    A diode-pumped passively Q-switched 1066 nm laser with a novel Nd:Gd0.69Y0.3NbO4 mixed crystal was demonstrated for the first time to the best of our knowledge. In the continuous-wave (CW) operation, optimization selection of output couplers was carried out, and a maximum output power of 2.13 W was obtained when the plane mirror with transmission of 25% was chosen and the absorbed pump power was 10.5 W. The Cr4+:YAG passively Q-switched Nd:Gd0.69Y0.3NbO4 laser performance was investigated. At an absorbed pump power of 10.5 W, using Cr4+:YAG with initial transmission of 80%, the obtained minimum pulse width was 7.2 ns with the pulse repetition rate of 19 kHz. The single pulse energy and peak power were estimated to be 26.7 µJ and 3.7 kW, respectively.

  14. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  15. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  16. A Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser

    Science.gov (United States)

    Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.

    2018-06-01

    We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.

  17. Simultaneous Q-switching and mode-locking in an intracavity frequency doubled diode-pumped Nd:YVO4 / KTP green laser with Cr4+:YAG

    International Nuclear Information System (INIS)

    Mukhopadhyay, P. K.; Ranganathan, K.; George, J.; Nathan, T. P. S.; Alsous, M. B.

    2007-01-01

    We report intracavity second harmonic (at 532 nm) generation in passively Q-switched mode-locked Nd: YVO4 laser. The width of a typical Q-switched envelope of the mode locked pulses for the green laser was around 65 ± 5 ns and the repetition rate for the mode locked pulses was 400 MHz. The intracavity frequency doubling significantly improves the depth of modulation of the mode locked pulses. The peak power of a single mode locked green pulse near the center of the Q-switched envelope was estimated to be more than 2kw and the average green power was 6 times higher than the CW green power at an incident diode pump power of 6W. (author)

  18. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    Science.gov (United States)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  19. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: evaluation of different Ho3+ doping concentrations

    Science.gov (United States)

    Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.

    2017-01-01

    A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.

  20. MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at ∼3 μm

    Science.gov (United States)

    Yan, Zhengyu; Li, Tao; Zhao, Shengzhi; Yang, Kejian; Li, Dechun; Li, Guiqiu; Zhang, Shuaiyi; Gao, Zijing

    2018-03-01

    Multilayer molybdenum ditelluride (MoTe2) nanosheets were prepared by liquid-phase exfoliation (LPE) method. A YAG-based MoTe2 saturable absorption (SA) was consequently fabricated. The MoTe2-SA was employed in a passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 μm. Under the absorbed pump power of 3.8 W, an average output power of 90 mW was achieved. The shortest pulse duration of 670 ns was generated with an output power of 73 mW and a repetition rate of 76.46 kHz, corresponding to a pulse energy of 0.95 μJ.

  1. Diode-pumped passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide nanosheets saturable absorber at 1066 nm

    Science.gov (United States)

    Li, M. X.; Jin, G. Y.; Li, Y.

    2018-05-01

    In this paper, we investigated the passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide (WS2) saturable absorber (SA). The preparation method of WS2 SA was to attach the WS2-alcohol dispersion onto the quartz substrates. The diode-pumped passively Q-switched Nd:GdTaO4 laser operated at a central wavelength of 1066 nm. The stable pulse output could be obtained at the single pulse width of 560 ns. In a word, WS2 seems to be a suitable saturable absorber for solid state lasers.

  2. Determination of pulse energy dependence for skin denaturation from 585nm fibre laser

    Science.gov (United States)

    Mujica-Ascencio, S.; Velazquez-Gonzalez, J. S.; Mujica-Ascencio, C.; Alvarez-Chavez, J. A.

    2014-05-01

    In this paper, simulation and mathematical analysis for the determination of pulse energy from a Q-switched Yb3+-doped fibre laser is required in Port Wine Stain (PWS) treatment. The pulse energy depends on average power, gain, volume, repetition rate and pulse duration. In some treatments such as Selective Photothermolysis (SP), the peak power at the end of the optical fibre and pulse duration can be obtained and modified via a cavity design. For that purpose, a 585nm optical fibre laser full design which considers all of the above besides the average losses through the optical devices proposed for the design and the Ytterbium optical fibre overall gain will be presented.

  3. Switchable Q-switched and modelocked operation in ytterbium doped fiber laser under all-normal-dispersion configuration

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M. [Solid State Laser Division, Raja Ramanna Center for Advanced Technology, Indore, M.P. 452013 (India)

    2015-03-15

    We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmission characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.

  4. Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror

    Science.gov (United States)

    Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei

    2018-03-01

    In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.

  5. Q-switched ruby laser irradiation of normal human skin. Histologic and ultrastructural findings.

    Science.gov (United States)

    Hruza, G J; Dover, J S; Flotte, T J; Goetschkes, M; Watanabe, S; Anderson, R R

    1991-12-01

    The Q-switched ruby laser is used for treatment of tatoos. The effects of Q-switched ruby laser pulses on sun-exposed and sun-protected human skin, as well as senile lentigines, were investigated with clinical observation, light microscopy, and transmission electron microscopy. A pinpricklike sensation occurred at radiant exposures as low as 0.2 J/cm2. Immediate erythema, delayed edema, and immediate whitening occurred with increasing radiant exposure. The threshold for immediate whitening varied inversely with skin pigmentation, ranging from a mean of 1.4 J/cm2 in lentigines to 3.1 J/cm2 in sun-protected skin. Transmission electron microscopy showed immediate alteration of mature melanosomes and nuclei within keratinocytes and melanocytes, but stage I and II melanosomes were unaffected. Histologically, immediate injury was confined to the epidermis. There was minimal inflammatory response 1 day after exposure. After 1 week, subthreshold exposures induced hyperpigmentation, with epidermal hyperplasia and increased melanin staining noted histologically. At higher radiant exposures, hypopigmentation occurred with desquamation of a pigmented scale/crust. All sites returned to normal skin color and texture without scarring within 3 to 6 months. These observations suggest that the human skin response to selective photothermolysis of pigmented cells is similar to that reported in animal models, including low radiant exposure stimulation of melanogenesis and high radiant exposure lethal injury to pigmented epidermal cells.

  6. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Polla, L.L.; Margolis, R.J.; Dover, J.S.; Whitaker, D.; Murphy, G.F.; Jacques, S.L.; Anderson, R.R.

    1987-09-01

    The specific targeting of melanosomes may allow for laser therapy of pigmented cutaneous lesions. The mechanism of selective destruction of pigmented cells by various lasers, however, has not been fully clarified. Black, brown, and albino guinea pigs were exposed to optical pulses at various radiant exposure doses from a Q-switched, 40 nsec, 694 nm ruby laser. Biopsies were analyzed by light and electron microscopy (EM). Albino animals failed to develop clinical or microscopic evidence of cutaneous injury after irradiation. In both black and brown animals, the clinical threshold for gross change was 0.4 J/cm2, which produced an ash-white spot. By light microscopy, alterations appeared at 0.3 J/cm2 and included separation at the dermoepidermal junction, and the formation of vacuolated epidermal cells with a peripheral cytoplasmic condensation of pigment. By EM, enlarged melanosomes with a central lucent zone were observed within affected epidermal cells at 0.3 J/cm2. At 0.8 and 1.2 J/cm2, individual melanosomes were more intensely damaged and disruption of melanosomes deep in the hair papillae was observed. Dermal-epidermal blisters were formed precisely at the lamina lucida, leaving basal cell membranes and hemidesmosomes intact. Possible mechanisms for melanosomal injury are discussed. These observations show that the effects of the Q-switched ruby laser are melanin-specific and melanin-dependent, and may be useful in the selective destruction of pigmented as well as superficial cutaneous lesions.

  7. A high-peak-power passively Q-switched composite variable-cut vanadate laser

    International Nuclear Information System (INIS)

    Sirotkin, A A

    2014-01-01

    We present laser sources based on a novel method of controlling spectral parameters in diode-pumped vanadate lasers. Angular dependences of the luminescence intensity of Stark transitions at the 4F3/2‒4I11/2 transition in vanadate crystals are investigated. The operation of diode-pumped passively Q-switched composite variable-cut (θ = var, φ = 0) YVO 4 –Nd 3+  : YVO 4 lasers with Cr 4+  : YAG saturable absorber is demonstrated (the narrowest pulse of 2 ns with the highest peak power of 24.3 kW). In the experiment, an efficient self-Raman laser was realized, based on the multifunctional variable-cut (θ = 25°, φ = 0) YVO 4 –Nd 3+  : YVO 4 laser crystal with the passive Q-switched. (letters)

  8. Tattoo removal by Q-switched yttrium aluminium garnet laser

    DEFF Research Database (Denmark)

    Hutton Carlsen, K; Esmann, J; Serup, J

    2017-01-01

    BACKGROUND: Tattoo removal by Q-switched yttrium aluminium garnet (YAG) lasers is golden standard; however, clients' satisfaction with treatment is little known. OBJECTIVE: To determine clients' satisfaction with tattoo removal. METHODS: One hundred and fifty-four tattoo removal clients who had...... relative to colour of tattoo on a scale from 0 (no effect) to 10 (complete removal) scored a mean of blue 9.5, black 9.4, yellow 8.9, red 8.8 and green 6.5. Clients were dissatisfied with green pigment remnants, which could mimic bruising. One hundred and twenty-nine clients (84%) experienced moderate...

  9. Q-switched Yb3+:YAG laser using plasmonic Cu2-xSe quantum dots as saturable absorbers

    Science.gov (United States)

    Wang, Yimeng; Zhan, Yi; Lee, Sooho; Wang, Li; Zhang, Xinping

    2018-04-01

    Cu2-xSe quantum dots (QDs) were synthesized by organometallic synthesis methods. Due to heavy self-doping, the Cu2-xSe QDs exhibit particle plasmon resonance in the near-infrared. Transient absorption spectroscopic investigation revealed strong nonlinear optical absorption and bleaching performance of the QDs under femtosecond pulse excitation, which enabled the Cu2-xSe QDs to be excellent saturable absorbers and applied in Q-switched or mode-locked lasers. A passively Q-switched Yb3+:YAG solid-state laser at 1.03 μm was achieved by coating Cu2-xSe QDs as saturable absorbers onto one of the output coupler of the V-shaped linear cavity.

  10. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection

    Directory of Open Access Journals (Sweden)

    Qinduan Zhang

    2017-12-01

    Full Text Available We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2 to select the laser wavelength. The system achieved a linear response (R2 = 0.9941 in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.

  11. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection.

    Science.gov (United States)

    Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-12-25

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.

  12. Laboratory model for the study and treatment of traumatic tattoos with the Q-switched ruby laser

    Science.gov (United States)

    Silverman, Richard T.; Lach, Elliot

    1994-09-01

    The outcome of laser tattoo removal is dependent on the type of laser and characteristics of the tattoo. A rabbit model was developed to study the Q-switched ruby laser in the treatment of traumatic tattooing. On the backs of white New Zealand rabbits, three 3 cm patches were dermabraded and dressed with carbon black and antibiotic ointment. After a healing period of eight weeks, pre-treatment biopsies were obtained, and the rabbits were treated with the Q- switched ruby laser at various fluence settings with a pulse width of 34 nsec. At set intervals, further biopsies were obtained and studied with light and electron microscopic analysis, and photodocumentation was performed. Grossly, clearance of the tattooed areas was noted in the laser treated specimens. More effective clearance was observed with higher fluence treatment. No infections occurred, and hair regrowth was noted in all cases, though the rate seemed to be altered by laser treatment.

  13. Passive Q-switching of femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers by graphene and MoS2 saturable absorbers

    Science.gov (United States)

    Kifle, Esrom; Mateos, Xavier; Vázquez de Aldana, Javier Rodríguez; Ródenas, Airan; Loiko, Pavel; Zakharov, Viktor; Veniaminov, Andrey; Yu, Haohai; Zhang, Huaijin; Chen, Yanxue; Aguiló, Magdalena; Díaz, Francesc; Griebner, Uwe; Petrov, Valentin

    2018-02-01

    A buried depressed-index channel waveguide with a circular cladding and a core diameter of 40 μm is fabricated in a bulk monoclinic 3 at.% Tm:KLu(WO4)2 crystal by femtosecond direct laser writing. In the continuous-wave regime, the Tm waveguide laser generates 210 mW at 1849.6 nm with a slope efficiency η of 40.8%. Passively Q-switched operation is achieved by inserting transmission-type 2D saturable absorbers (SAs) based on few-layer graphene and MoS2. Using the graphene-SA, a maximum average output power of 25 mW is generated at 1844.8 nm. The pulse characteristics (duration/energy) are 88 ns/18 nJ at a repetition rate of 1.39 MHz.

  14. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine

    International Nuclear Information System (INIS)

    Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    2004-01-01

    Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result

  15. All passive synchronized Q-switching of a quasi-three-level and a four-level Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Tidemand-Lichtenberg, Peter; Jensen, Ole Bjarlin

    2010-01-01

    Using an all passive approach, synchronized Q-switching of two Nd:YAG lasers, at 946 nm and 1064 nm, is reported. Two laser crystals are used to avoid gain competition, and stable operation is reported for the first time. The pulse trains are synchronized over a wide range of pump powers...

  16. NUMERICAL SIMULATION OF Q-SWITCHED Nd: YAG LASER WITH UNSTABLE RESONATOR AND OUTPUT VARIABLE REFLECTIVITY MIRROR

    Directory of Open Access Journals (Sweden)

    I. N. Dubinkin

    2017-05-01

    Full Text Available The article deals with a method of numerical simulation of laser oscillation in the radially symmetric unstable resonator with an output variable reflectivity mirror (VRM. Research results of the VRM parameters influence on the spatial and energy properties of the laser radiation are obtained. Numerical simulation of laser oscillation in active and passive Q-switching and comparative analysis of the spatial and energy radiation characteristics is done for these modes.

  17. Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction-limited beam quality

    International Nuclear Information System (INIS)

    Li, Jing; Yang, SuHui; He, Tao

    2014-01-01

    Fiber-like Er:YLuAG laser rods were tested for continuous-wave (CW) and Q-switched operation. Two narrow-band laser diodes emitting at 1532 nm were used as pump sources. The pump power was confined in the laser rods via total internal reflection. In CW mode, a maximum output power of 7.2 W was measured from a 30 mm long Er:YLuAG laser rod, corresponding to an optical–optical efficiency of 26% and a slope efficiency of 78%. Er:YLuAG and Er:YAG lasers were compared experimentally and exhibited comparable performance, while the measured central wavelength of the Er:YLuAG laser was 1644.75 nm, slightly longer than the central wavelength of the Er:YAG laser in the same experimental circumstances. In Q-switched mode, an output energy of 3.5 mJ was obtained from a 25 mm Er:YLuAG laser rod with a pulse duration of 100 ns and a pulse repetition frequency of 100 Hz. The pulsed output had near-diffraction-limited beam quality with M 2 values of 1.13 and 1.11 in the x and y directions, respectively. (letter)

  18. Multi-operational tuneable Q-switched mode-locking Er fibre laser

    Science.gov (United States)

    Qamar, F. Z.

    2018-01-01

    A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.

  19. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    Science.gov (United States)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  20. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  1. Use of Q-switched alexandrite laser (755 nm, 100 nsec) for removal of traumatic tattoo of different origins.

    Science.gov (United States)

    Moreno-Arias, G A; Casals-Andreu, M; Camps-Fresneda, A

    1999-01-01

    Q-switched laser systems have been used for removal of tattoo-related carbon, graphite, and other particles. We assessed elimination of traumatic tattoos of different origin with Q-switched alexandrite laser in nine patients. Fluence threshold was determined and a spot test was made. Q-switched alexandrite laser, with a fluence range 4.5-8.0 J/cm(2) (mean, 7.16 +/- 1.18), was used at 4-5-week intervals. Total treatment ranged from 3-12 sessions (mean, 6.1 +/- 3.6 sessions). Double-pulse technique was used in black/black-bluish areas, but single-shot was applied to slate-gray pigment. More than 95% lightening was achieved in five patients after 5.2 +/- 2.3 sessions, and >75% lightening in six subjects after 6.1 +/- 3.1 sessions of treatment. Blacktop, surgical pen, and gravel tattoos presented a better response than gunpowder/fireworks tattoos (>95% vs. 68.7 +/- 23.9% clearance), or tattoos of unknown origin (>95% vs. 62.5 +/- 53% clearance). Epidermal splattering and pinpoint bleeding were observed in one case. No pigmentary alteration or scarring was seen. The Q-switched alexandrite laser is a useful system for removal of traumatic tattoos of diverse origin. The best response (>95% clearance) was achieved in blacktop, surgical pen, and gravel tattoos, although an acceptable degree of lightening may be obtained in tattoos due to gunpowder or fireworks. Copyright 1999 Wiley-Liss, Inc.

  2. Laser annealing of ion implanted silicon by the aid of a Q-switched neodymium glass laser

    International Nuclear Information System (INIS)

    Exner, H.; Laemmel, B.; Zscherpe, G.

    1984-01-01

    Experimental results of laser annealing of arsenic implanted silicon are presented. Different depths of melting are obtained by varying the energy flux density of the Q-switched neodymium glass laser. The annealed samples are studied by the aid of optical microscopy, scanning electron microscopy, Rutherford backscattering spectrometry (RBS) combined with ion channeling, and of resistance measurements. Not any defect could be found by RBS and no surface structure could be determined by microscopy

  3. Removal of Tattoos by Q-Switched Nanosecond Lasers.

    Science.gov (United States)

    Karsai, Syrus

    2017-01-01

    Tattoo removal by Q-switched nanosecond laser devices is generally a safe and effective method, albeit a time-consuming one. Despite the newest developments in laser treatment, it is still not possible to remove every tattoo completely and without complications. Incomplete removal remains one of the most common challenges. As a consequence, particular restraint should be exercised when treating multicoloured tattoos, and patients need to be thoroughly informed about remaining pigment. Other frequent adverse effects include hyper- and hypopigmentation as well as ink darkening; the latter is particularly frequent in permanent make-up. Scarring is also possible, although it is rare when treatment is performed correctly. It is becoming more widespread for laser operators to encounter allergic reactions and even malignant tumours in tattoos, and treating these conditions requires a nuanced approach. © 2017 S. Karger AG, Basel.

  4. Graphene Q-Switched Compact Yb:YAG Laser

    Czech Academy of Sciences Publication Activity Database

    Serres, J.M.; Jambunathan, Venkatesan; Mateos, X.; Loiko, P.; Lucianetti, Antonio; Mocek, Tomáš; Yumashev, K.; Petrov, V.; Griebner, U.; Aguilo, M.; Diaz, F.

    2015-01-01

    Roč. 7, č. 5 (2015), s. 1-8, č. článku 1503307. ISSN 1943-0655 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA ČR GA14-01660S Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : graphene * saturable absorber * Q-switched laser Subject RIV: BH - Optics, Masers, Laser s OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.177, year: 2015

  5. Passively Q-switched 1.6 µm Er:YAG laser with a γ-Ga2O3:Co-based glass-ceramics as a saturable absorber

    Science.gov (United States)

    Shi, Yang; Gao, Chunqing; Ye, Qing; Wang, Shuo; Wang, Qing; Gao, Mingwei; Loiko, Pavel; Skoptsov, Nikolai; Dymshits, Olga; Zhilin, Alexander; Zapalova, Svetlana; Tsenter, Marina; Vitkin, Vladimir; Mateos, Xavier; Yumashev, Konstantin

    2018-04-01

    A resonantly pumped passively Q-switched Er:YAG laser operating at 1.617 and 1.645 µm is reported with γ-Ga2O3:Co2+-based glass-ceramics (GCs) as a saturable absorber. The maximum average output power achieved from this laser was 273 mW; the highest pulse energy was 5.9 µJ, corresponding to a pulse duration of 3.0 µs at a repetition frequency of 31 kHz. To the best of our knowledge, this is the first time to use the γ-Ga2O3:Co2+-based GC as a passive Q-switcher for Er:YAG lasers and this is also the first time to obtain 1.617 µm and 1.645 µm pulses with a GC-based saturable absorber.

  6. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  7. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  8. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Science.gov (United States)

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  9. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials.

    Science.gov (United States)

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng

    2017-04-06

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.

  10. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    Science.gov (United States)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  11. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  12. Light and electron microscopic analysis of tattoos treated by Q-switched ruby laser

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.R.; Anderson, R.R.; Gange, R.W.; Michaud, N.A.; Flotte, T.J. (Massachusetts General Hospital, Boston (USA))

    1991-07-01

    Short-pulse laser exposures can be used to alter pigmented structures in tissue by selective photothermolysis. Potential mechanisms of human tattoo pigment lightening with Q-switched ruby laser were explored by light and electron microscopy. Significant variation existed between and within tattoos. Electron microscopy of untreated tattoos revealed membrane-bound pigment granules, predominantly within fibroblasts and macrophages, and occasionally in mast cells. These granules contained pigment particles ranging from 2-in diameter. Immediately after exposure, dose-related injury was observed in cells containing pigment. Some pigment particles were smaller and lamellated. At fluences greater than or equal to 3 J/cm2, dermal vacuoles and homogenization of collagen bundles immediately adjacent to extracellular pigment were occasionally observed. A brisk neutrophilic infiltrate was apparent by 24 h. Eleven days later, the pigment was again intracellular. Half of the biopsies at 150 d revealed a mild persistent lymphocytic infiltrate. There was no fibrosis except for one case of clinical scarring. These findings confirm that short-pulse radiation can be used to selectively disrupt cells containing tattoo pigments. The physial alteration of pigment granules, redistribution, and elimination appear to account for clinical lightening of the tattoos.

  13. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    Science.gov (United States)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  14. Tunable continuous wave and passively Q-switched Nd:LuLiF4 laser with monolayer graphene as saturable absorber

    International Nuclear Information System (INIS)

    Wang, Feng; Luo, Jianjun; Li, Shixia; Li, Tao; Li, Ming

    2015-01-01

    Tunable continuous wave and passively Q-switched Nd:LuLiF 4 laser performances were demonstrated. Employing a 2 mm thick quartz plate as the birefringence filter, three continuous tuning ranges from 1045.2 to 1049.9 nm, 1051 to 1055.1 nm and 1072.1 to 1074.3 nm could be obtained. Q-switched laser operation was realized by using a monolayer graphene as a saturable absorber. At an incident pump power of 5.94 W, the maximum average output power was 669 mW with the pulse duration of 210 ns and the pulse repetition rate of 145 kHz at T = 10%. (paper)

  15. Q-Switched High Power Single Frequency 2 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate measurement of atmospheric parameters with high resolution needs advanced lasers. In this SBIR program we propose to develop innovative Q-switched high...

  16. Continuous wave and AO Q-switch operation Tm,Ho:YAP laser pumped by a laser diode of 798 nm

    International Nuclear Information System (INIS)

    Li, L J; Yao, B Q; Song, C W; Wang, Y Z; Wang, Z G

    2009-01-01

    Continuous wave (CW) and acousto-optical (AO) Q-switch operation of Tm (5 at.%), Ho (0.3 at.%):YAP laser at 2.13 μm wavelength were reported in this paper. The Tm,Ho:YAP crystal was cooled by liquid nitrogen and double-end-pumped by a 14.2 W fiber-coupled laser diode at 798 nm. Different resonator lengths and output couplers for the pump power were tried. A maximum conversion efficiency of 31.3% and a maximum slope efficiency of 35.2% were acquired with CW output power of 4.45 W. Average power of 4.21 W was obtained at pulse repetition frequency (PRF) of 15 kHz, corresponding to an optical-to-optical conversion efficiency of 29.6% and a slope efficiency of 32.4%. The energy per pulse of 2.3 mJ in 64 ns was achieved at 1.5 kHz with the peak power of 35.8 kW

  17. Treatment of Large Bulla Formation after Tattoo Removal with a Q-Switched Laser

    Science.gov (United States)

    Kartono, Francisca; Desai, Alpesh; Kaur, Ravneet R.; Desai, Tejas

    2010-01-01

    Widely considered the gold standard treatment option for tattoo removal, the use of Q-switched lasers may very rarely result in the formation of large bulla. While very disconcerting to patients, these lesions are easily managed and, with proper care, heal quickly with no long-term consequences. The authors present three cases of patients who had bullous reactions shortly after receiving Q-switched laser treatment of tattoo ink. Bullous formation in all three patients was treated successfully. PMID:20725537

  18. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  19. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    Science.gov (United States)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  20. Continuous-wave and passively Q-switched Nd:YVO4 laser at 1085 nm

    Science.gov (United States)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Zhang, Jiyan

    2017-11-01

    An admirable and efficient Nd:YVO4 laser at 1085 nm is demonstrated with a compact 35 mm plano-plano cavity. A chosen narrow bandpass filter with high-transmittance (HT) coating at 1064 nm (T=96%) and optimized part-reflection (PR) coating at 1085 nm (T=15%) is used as the output coupler. In the continuous-wave (CW) regime, the maximum output power reaches 3110 mW at the pump power of 11.41 W. Based on a Cr:YAG crystal with initial-transmittance of 91%, the first passively Q-switched Nd:YVO4 laser at 1085 nm is achieved. When the pump power is changed from the threshold of 4.50 to 6.08 W, the dual-wavelength lines at 1064 and 1085 nm are generated simultaneously. However, at the pump power of above 6.08 W, the single-wavelength line at 1085 nm is achieved. The largest output power, the highest peak power, and the narrowest pulse width are 1615 mW, 878 W and 26.2 ns, respectively.

  1. Biostimulative effects of Nd:YAG Q-switch dye on normal human fibroblast cultures: study of a new chemosensitizing agent for the Nd:YAG laser

    International Nuclear Information System (INIS)

    Castro, D.J.; Saxton, R.E.; Fetterman, H.R.; Castro, D.J.; Ward, P.H.

    1987-01-01

    Kodak Q-switch II is a new chemical with an absorption maxima at 1051 nm, designed to be used as an Nd:YAG dye laser. The potential for this dye as a new chemosensitizing agent in the treatment of connective tissue diseases and wound healing with low energy Nd:YAG laser was examined. Two normal fibroblast cell lines were tested for sensitivity to various levels of this dye in vitro. These cells were exposed to Q-switch II dye at concentrations of 0.01, 0.1, 1, 10, 50, and 100 micrograms/ml for 1 and 24 hours. Cell viability was assessed by the trypan blue exclusion test. Cell duplication and DNA synthesis were measured by the incorporation of [ 3 H]-thymidine at 6 and 24 hours postexposure to Q-switch II dye. At concentrations up to 10 micrograms/ml, both cell lines tested showed no changes in cell viability. However, at concentrations equal or higher than 50 micrograms/ml, more than 40% of the fibroblasts incorporated trypan blue after 24 hours of exposure to this dye, indicating significant cell destruction. The results indicate that Q-switch II dye is nontoxic to normal human fibroblast cultures and showed significant biostimulative effects on cell duplication at concentrations equal to or lower than 10 micrograms/ml. Further studies will be required to determine the usefulness of Q-switch II dye as a new photochemosensitizing agent for potential biostimulation of wound healing and/or treatment of connective tissue diseases with the Nd:YAG laser (near infrared, 1060 nm) at nonthermal levels of energies

  2. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    Science.gov (United States)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  3. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    Science.gov (United States)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  4. Enlarged pores treated with a combination of Q-switched and micropulsed 1064 nm Nd:YAG laser with and without topical carbon suspension: A simultaneous split-face trial

    OpenAIRE

    Chung, HJ; Goo, BC; Lee, HJ; Roh, MR; Chung, KY

    2011-01-01

    Background and aims: Enlarged facial pores remain one of the major cosmetic concerns among Asian females. This study attempted to assess and compare the efficacy of a combination of the Q-switched and quasi long-pulsed (micropulsed) Nd:YAG laser to reduce the size of the enlarged pores with and without an exogenous photoenhancer.

  5. Photo-switch of pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Ketta, W.W.J.

    1989-01-01

    In this work passive Q-switching and its effect on the output laser beam from a pulsed Nd:YAG laser was studied. This was achieved using the photochemically stable (BDNI) dye after dissolving it in dichloroethane. The absorption spectra of the dye solution and how suitable to use with Nd:YAG laser was also dealt with. Cooling unit for the laser system, a detector to detect the output pulse, and an electronic counter to measure the pulse duration were constructed. In the free-running regime, the divergence angle was measured. The form of the output, its energy, and how it is affected by the pumping energy were also studied. In the Q-switching regime, the relation between output and pumping energies was studied and compared to the same relation under the free-running regime. 5 tabs.; 33 figs.; 57 refs

  6. Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser

    Science.gov (United States)

    Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.

    2018-02-01

    Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.

  7. Diode-Pumped Quasi-Three-Level Passively Q-Switched Nd:GGG Laser with a Codoped Nd,Cr:YAG Saturable Absorber

    International Nuclear Information System (INIS)

    Kun-Na, He; Chun-Qing, Gao; Zhi-Yi, Wei; Qi-Nan, Li; Zhi-Guo, Zhang; Hai-He, Jiang; Shao-Tang, Yin; Qing-Li, Zhang

    2009-01-01

    We demonstrate the first quasi-three-level passively Q-switched Nd:GGG laser at 937 nm using a Nd,Cr:YAG crystal as the saturable absorber. The dependences of the average output power, the repetition rate and the pulse width on the incident pump power are obtained. A maximum average output power of 1.18 W with repetition rate of 35 kHz and pulse width of 45 ns is achieved at an incident pump power of 18.3 W. The corresponding optical-to-optical and slope efficiencies are 6% and 10%, respectively

  8. Simulation of medical Q-switch flash-pumped Er:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanlin; Huang Chuyun; Yao Yucheng; Zou Xiaolin, E-mail: Wangyanlin0@126.com, E-mail: chuyunh@163.com, E-mail: yyuch@soho.com, E-mail: zouxiaol@126.com [Physics school, Hubei University of Technology, Wuhan, China 430068 (China)

    2011-01-01

    Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm{sup -1}. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.

  9. Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal

    Science.gov (United States)

    Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan

    2018-02-01

    Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.

  10. Linearly polarized intracavity passive Q-switched Yb-doped ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... ytterbium-doped photonic crystal fibre laser with a Cr4+:YAG crystal ... average output power of 9.4 W with pulse duration of 64 ns and ... applications of nonlinear frequency shifting like frequency doubling and optical paramet-.

  11. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  12. Optimized fiber delivery system for Q-switched, Nd:YAG lasers

    International Nuclear Information System (INIS)

    Setchell, R.E.

    1997-01-01

    Interest in the transmission of high intensities through optical fibers is being motivated by an increasing number of applications. Using different laser types and fiber materials, various studies are encountering transmission limitations due to laser-induced damage processes. For a number of years we have been investigating these limiting processes during the transmission of Q-switched, multimode, Nd:YAG laser pulses through step-index, multimode, fused-silica fiber. We have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. This breakdown can result in subtle surface modifications that leave the entrance face more resistant to further breakdown or damage events. Catastrophic fiber damage can also occur as a result of a variety of mechanisms, with damage appearing at fiber entrance and exit faces, within the initial entry segment of the fiber path, and at other internal sites due to fiber fixturing and routing effects. System attributes that will affect breakdown and damage thresholds include laser characteristics, the design and alignment of laser-to-fiber injection optics, and fiber end-face preparation. In the present work we have combined insights gained in past studies in order to establish what thresholds can be achieved if all system attributes can be optimized to some degree. Our multimode laser utilized past modifications that produced a relatively smooth, quasi-Gaussian profile. The laser-to-fiber injection system achieved a relatively low value for the ratio of peak-to-average fluences at the fiber entrance face, incorporated a mode scrambler to generate a broad mode power distribution within the initial segment of the fiber path, and had improved fixturing to insure that the fiber axis was collinear with the incident laser beam. Test fibers were from a particular production lot for which initial-strength characteristics were established and a high-stress proof test was performed

  13. Metal impurity injection into DIVA plasmas with a Q-switched laser beam

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nagami, Masayuki; Sengoku, Seio; Kumagai, Katsuaki

    1978-08-01

    Metal impurity injection into DIVA plasmas with a Q-switched ruby laser beam is described. Metal materials used are aluminium and gold. The Q-switched laser beam is incident onto a thin metal film thickness about 0.2 μm coated on pyrex glass plate surface. The metal film is vaporized by the laser beam and injected into DIVA plasma. The laser-beam injection method has advantages of sharp profile of vaporized metal, easy control of vaporized metal quantity and injection rate control of metal vapor. (author)

  14. Design of a high-power Nd:YAG Q-switched laser cavity

    Science.gov (United States)

    Singh, Ikbal; Kumar, Avinash; Nijhawan, O. P.

    1995-06-01

    An electro-optically Q-switched Nd:YAG laser resonator that uses two end prisms placed orthogonally perpendicular to each other has been designed. This configuration improves the stability of the resonator and does not alter the characteristics of the electro-optical Q switch. The outcoupling ratio of the cavity is optimized by a change in the azimuthal angle of a phase-matched Porro prism placed at one end of the cavity. The prism placed at the other end of the cavity is designed so that it introduces a phase change of Pi , regardless of its orientation and index of refraction, resulting in a more efficient and stable cavity.

  15. Mathematical solutions of rate equations of a laser-diode end-pumped passively Q-switched and mode locked Nd-laser with Cr4+:YAG polarized saturable absorber

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2012-01-01

    The intracavity frequency-doubling (IFD) of a simultaneous passively Q-switched mode-locked diode-pumped Nd 3 + - laser is studied with a polarized isotropic Cr 4 +: YAG saturable absorber. A general recurrence formula for the mode-locked pulses under the Q-switched envelope at fundamental wavelength has been reconstructed in order to analyze the temporal shape behavior of a single Q-switched envelope with mode-locking pulse trains. This formula has been derived taking into account the impact of the IFD and polarized Cr 4 +: YAG saturable absorber.The presented mathematical model describes the self-induced anisotropy appeared in the polarized Cr 4 +: YAG in the nonlinear stage of the giant pulse formation. For the anisotropic Nd 3 +: YVO 4 active medium, the generated polarized waves are assumed to be fixed through the lasing cycle. Besides, the maximum absorber initial transmission and the minimum mirror reflectivity values have been determined from the second threshold criterion. The calculated numerical results demonstrate the impact of the variation of the input laser parameters (rotational angle of the polarized crystal, absorber initial transmission and the output mirror reflectivity) on the characteristics of the output laser pulse (SH peak power, pulse width, pulse duration and shift pulse position of central mode). The calculated numerical results in this work is in good qualitative and quantitative agreement with the available experimental data reported in the references. (author)

  16. Optimization of end-pumped, actively Q-switched quasi-III-level lasers.

    Science.gov (United States)

    Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar

    2011-08-15

    The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America

  17. Diode array pumped, non-linear mirror Q-switched and mode-locked

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  18. Ocular hazards of Q-switched near-infrared lasers

    Science.gov (United States)

    Lund, David J.; Edsall, Peter R.; Stuck, Bruce E.

    2003-06-01

    The threshold for laser-induced retinal damage in the rhesus eye was determined for wavelengths between 900 nm and 1300 nm. The laser source was a tunable Optical Parametric Oscillator (OPO) pumped by the 3rd harmonic of a Nd:YAG laser. The laser pulse duration was 3.5 ns. The wavelength dependence of the injury threshold is consistent with the prediction of a model based on the transmission of the preretinal ocular media, absorption in the retinal pigment epithelium, and variation of irradiance diameter resulting from chromatic aberration of the eye optics for wavelengths shorter than 1150 nm but was less consistent for longer wavelengths. The threshold for 24-hour observation was slightly lower than the threshold for 1-hour observation. These data form a basis for reexamination of the currently defined MPEs for wavelengths longer than 1100 nm.

  19. Passive synchronized Q-switching between a quasi-three-level and a four-level laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Tidemand-Lichtenberg, Peter; Jensen, Ole Bjarlin

    2011-01-01

    Synchronized Q-switching between quasi-three-level and four-level lasers is interesting for sum-frequency generation into the blue and ultraviolet. We report, for the first time, stable synchronized Q-switching between a quasi-three-level laser at 946 nm and a four-level laser at 1064 nm in an all...

  20. High average power 1314 nm Nd:YLF laser, passively Q-switched with V:YAG

    CSIR Research Space (South Africa)

    Botha, RC

    2013-03-01

    Full Text Available A 1314 nm Nd:YLF laser was designed and operated both CW and passively Q-switched. Maximum CW output of 10.4 W resulted from 45.2 Wof incident pump power. Passive Q-switching was obtained by inserting a V:YAG saturable absorber in the cavity...

  1. Compact intra-cavity pumped low-threshold passively Q-switched Ho:Sc2SiO5 laser by a LD-pumped Tm:YAP laser at room temperature

    Science.gov (United States)

    Yang, Xiao-tao; Xie, Wen-qiang; Liu, Long; Li, Lin-jun

    2017-08-01

    A compact intra-cavity pumped low-threshold passively Q-switched (PQS) Ho:Sc2SiO5 (Ho:SSO) laser is reported for the first time. The Tm:YAlO3 (Tm:YAP) crystal and the Ho:SSO crystal are placed in the same laser cavity. A laser diode with a central wavelength of 793 nm is used to realize the output of the Ho:SSO laser. Both the continuous wave (CW) and PQS operation are investigated. A Cr2+:ZnSe is used as the saturable absorber in the PQS Ho:SSO laser. For the CW mode, the laser threshold is only 750 mW, which is 980 mW in the PQS mode. A maximum pulse energy of 699 µJ is primarily obtained, corresponding to the pulse width of 96 ns. The maximum repetition frequency is 1.46 kHz. The maximum pulse peak power can be calculated to be 7.28 kW. The beam quality factor M 2 is calculated to be 1.4 with the maximum output power.

  2. Performance of continuous wave and acousto-optically Q-switched Tm, Ho: YAP laser pumped by diode laser

    Science.gov (United States)

    Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.

  3. Effects of adding metals to MoS2 in a ytterbium doped Q-switched fiber laser

    Science.gov (United States)

    Khaleque, Abdul; Liu, Liming

    2018-03-01

    Molybdenum disulfide (MoS2) is widely used in lubricants, metallic alloys and in electronic and optical components. It is also used as saturable absorbers (SAs) in lasers (e.g. fiber lasers): a simple deposition of MoS2 on the fiber end can create a saturable absorber without the necessity of extensive alignment of the optical beam. In this article, we study the effects of adding different metals (Cr, Au, and Al) to MoS2 in a ytterbium (Yb)-doped Q-switched fiber laser. Experimental results show that the addition of a thin layer of gold and aluminium can reduce pulse durations to about 5.8 μs and 8.5 μs, respectively, compared with pure MoS2 with pulse duration of 12 μs. Experimental analysis of the combined metal and MoS2 based composite SAs can be useful in fiber laser applications where it may also find applications in medical, three dimensional (3D) active imaging and dental applications.

  4. Vibrating mirror system suitable for q-switching large-aperture lasers

    Energy Technology Data Exchange (ETDEWEB)

    Beckwith, P.J.

    1977-11-01

    Resonant vibrating mirrors provide a convenient means of Q-switching a laser, but large-aperture versions require careful design if the drive power is not to become excessive. This report outlines the design principles involved in the optimisation of moving-iron galvanometer drivers, and describes a prototype device with an aperture of 40 mm x 80 mm which is capable of beam deflections of + or - 40 mrad at 800 Hz. Some suggestions are made concerning more refined designs.

  5. Stabilization of the quasi-periodic motion of a Q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Kim, Jeong-Moog; Lee, Kang-Soo

    2004-01-01

    We have developed a stabilization method of quasi-periodicity based on a return map. The method is explained in the forced Van der Pol oscillator, and applied experimentally to a quasi-periodic output of a Q-switched Nd:YAG laser. Even though the attractors have no unstable periodic orbit, we were able to stabilize them to an arbitrarily chosen orbit by targeting the trajectory into it

  6. High average power Q-switched 1314 nm two-crystal Nd:YLF laser

    CSIR Research Space (South Africa)

    Botha, RC

    2015-02-01

    Full Text Available . 40, No. 4 / OPTICS LETTERS High average power Q-switched 1314 nm two-crystal Nd:YLF laser R. C. Botha,1,2,* W. Koen,3 M. J. D. Esser,3,4 C. Bollig,3,5 W. L. Combrinck,1,6 H. M. von Bergmann,2 and H. J. Strauss3 1HartRAO, P.O. Box 443...

  7. Development of the RTP crystal applications for Q-switching operation and second harmonics generation

    International Nuclear Information System (INIS)

    Alnayli, R.Sh.

    2010-01-01

    Complete text of publication follows. A dialed theoretical studies on performances of the ideal RTP crystal for the electro optical applications as Q-switching laser operation and for nonlinear optics application as second harmonics generation are accomplished in this paper. Single or pair RTP crystal of excellent quality with dimensions 5 x 5 x 7.5 mm 3 have proposed as element model to combined Q-switching operation and frequency doublers for 1.06 μm wave length laser. In order to get and interpolate the optimum conditions to combined both of these operations by application this RTP model. The main am of this work was investigated the most influent parameters on the performance of the electro optical Q-switching laser operation such as, the voltage requirement, contrast and extinction ratios, the birefringence effective and withstand threshold on the other hand the influences of the ray walk off, thermal effective on the efficiency of the second harmonics generation as well are investigated. The results were satisfied for the goals of this paper.

  8. Efficient 2-μm Tm:YAP Q-switched and CW lasers

    Science.gov (United States)

    Hays, A. D.; Cole, Brian; King, Vernon; Goldberg, Lew

    2018-02-01

    Highly efficient, diode pumped Tm:YAP lasers generating emission in the 1.85-1.94 μm range are demonstrated and characterized. Laser optical efficiencies of 51% and 45%, and electrical efficiencies of 31% and 25% are achieved under CW and Q-switched operation, respectively. Laser performance was characterized for maximum average powers up to 20W with various cavity configurations, all using an intra-cavity lens to compensate for thermal lensing in the Tm:YAP crystal. Q-switched lasers incorportating a Cr:ZnS saturable absorber (SA), resonant mechanical mirror scanner, or acousto-optic modulator were characterized. To enable higher average output powers, measurements of the thermal lens were conducted for the Tm:YAP crystal as a function of pump power and were compared to values predicted by a finiteelement- analysis (FEA) thermal-optical model of the Tm:YAP crystal. A resonator model is developed to incorporate this calculated thermal lens and its effect on laser performance. This paper will address approaches for improving the performance of Tm:YAP lasers, and means for achieving increased average output powers while maintaining high optical efficiency for both SA and mechanical Q-switching.

  9. Depigmentation therapy with Q-switched Nd: YAG laser in universal vitiligo

    Directory of Open Access Journals (Sweden)

    Imran Majid

    2013-01-01

    Full Text Available Background: Any residual pigment left in patients of universal vitiligo is managed with topical treatments, cryotherapy, and lasers. Aim: The study aims to assess the efficacy and safety of Q-switched Nd: YAG laser in treating the residual pigmentation in patients with universal vitiligo. Materials and Methods: Fifteen patients of universal vitiligo with residual pigmentation on the face, hands, or feet, resistant to topical treatments, were treated with single or multiple sessions of Q-switched Nd: YAG laser treatment. Topical treatments were continued in between the laser sessions and the depigmentation achieved was monitored by clinical examination and repeat digital photographs. Response to the treatment was labelled as excellent if the residual pigment could be reduced by at least 90% while 50-90% resolution of pigmentation was labelled as a partial response. Adverse effects to the treatment offered were also monitored. Results: Thirteen of the 15 patients enrolled for the study showed an excellent response to the treatment offered. Two other patients showed a poor response with less than 50% resolution of pigmentation. The number of laser sessions needed at a particular site ranged from 1 to 3 and no patient was offered more than three sessions of laser treatment at any site. No significant adverse events were reported by any patient. Conclusions: Residual pigmentation in patients with universal vitiligo that does not respond to topical treatment options alone can be managed quite effectively with Q-switched Nd: YAG laser without any significant adverse effects.

  10. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiyev, I. M., E-mail: idris.intop@mail.ru; Buyalo, M. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Gubenko, A. E. [Innolume GmbH (Germany); Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  11. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    International Nuclear Information System (INIS)

    Gadzhiyev, I. M.; Buyalo, M. S.; Gubenko, A. E.; Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L.

    2016-01-01

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  12. CW and AO Q-switched operation of a dual-crystal Tm, Ho:GdVO4 laser pumped by two diodes

    International Nuclear Information System (INIS)

    Li, L J; Bai, Y F; Liu, Y W; He, Z L; Wang, J; Yao, B Q; Zhou, S; Xing, M N

    2013-01-01

    Continuous wave (CW) mode and acousto-optic (AO) Q-switched mode operation of a dual-crystal Tm, Ho:GdVO 4 laser is reported. The dual-crystal Tm, Ho:GdVO 4 laser with output wavelength of 2.05 μm was pumped by two laser diodes (LDs). The Tm, Ho:GdVO 4 crystals were cooled by liquid nitrogen and pumped by two fiber-coupled LDs with a center output wavelength of 801.0 nm. A 20.5 W output power was obtained at a 255 mm physical cavity length in CW mode operation, and a 19.6 W average power was obtained at a pulse repetition frequency (PRF) of 10 kHz with a 19 ns pulse duration. Also, the efficiency loss of the laser is not more than 4.4% from CW mode to Q-switch mode, and the M 2 factor, which is measured by the traveling knife-edge method, does not exceed 1.2. (paper)

  13. Treatment of melasma with low fluence, large spot size, 1064-nm Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for the treatment of melasma in Fitzpatrick skin types II-IV.

    Science.gov (United States)

    Brown, Alia S; Hussain, Mussarat; Goldberg, David J

    2011-12-01

    Melasma is a common condition affecting over six million American women. Treatment of dermal or combined melasma is difficult and does not respond well to conventional topical therapies. Various light sources have been used recently in the treatment of melasma including fractionated ablative and non-ablative lasers as well as intense pulse light. We report the use of low fluence, large spot size Q-switched, Nd:Yag laser for the treatment of melasma in skin types II-IV.

  14. Continuous-wave and acousto-optically Q-switched 1066 nm laser performance of a novel Nd:GdTaO4 crystal

    Science.gov (United States)

    Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun

    2018-05-01

    A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.

  15. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)

    International Nuclear Information System (INIS)

    Lim, Daniel J; Ki, Hyungson; Mazumder, Jyoti

    2006-01-01

    A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 10 8 -10 9 W cm -2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases

  16. Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum.

    Science.gov (United States)

    Heck, Martijn J R; Bente, Erwin A J M; Smalbrugge, Barry; Oei, Yok-Siang; Smit, Meint K; Anantathanasarn, Sanguan; Nötzel, Richard

    2007-12-10

    First observation of passive mode-locking in two-section quantum-dot lasers operating at wavelengths around 1.55 mum is reported. Pulse generation at 4.6 GHz from a 9 mm long device is verified by background-free autocorrelation, RF-spectra and real-time oscilloscope traces. The output pulses are stretched in time and heavily up-chirped with a value of 20 ps/nm, contrary to what is normally observed in passively mode-locked semiconductor lasers. The complete output spectrum is shown to be coherent over 10 nm. From a 7 mm long device Q-switching is observed over a large operating regime. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes the laser a promising candidate for e.g. a mode-comb generator in a complex photonic chip.

  17. Development of laser marking system with electro-optic Q-switch

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon.

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs

  18. Development of laser marking system with electro-optic Q-switch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs.

  19. Enlarged pores treated with a combination of Q-switched and micropulsed 1064 nm Nd:YAG laser with and without topical carbon suspension: A simultaneous split-face trial.

    Science.gov (United States)

    Chung, Hj; Goo, Bc; Lee, Hj; Roh, Mr; Chung, Ky

    2011-01-01

    Enlarged facial pores remain one of the major cosmetic concerns among Asian females. This study attempted to assess and compare the efficacy of a combination of the Q-switched and quasi long-pulsed (micropulsed) Nd:YAG laser to reduce the size of the enlarged pores with and without an exogenous photoenhancer. In twenty five female subjects mean age 34.04 yr and skin type II-IV, a carbon lotion as a photoenhancer was applied on one side of the face (Method 1) and the other side was used as the control (Method 2). The entire face was then treated with a single pass of the 1064 nm Nd:YAG laser in the micropulsed mode, pulse fluence and width of 2.3 J/cm(2) and 300 µsec, respectively. Multiple passes were then delivered in the Q-switched mode (2.5 J/cm(2) and 5 nsec). Three weeks after the final treatment, 75% of the subjects showed improvement with method 1 whereas 67% showed improvement with method 2. No adverse side effects were reported with either method. Although histological confirmation was not performed, we were able to prove both subjectively and objectively that the use of the combination of the micropulsed and Q-switched modes of the Nd:YAG laser was useful in reducing pore size, and that the photoenhancer improved the efficacy.

  20. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  1. Electromagnetic or other directed energy pulse launcher

    Science.gov (United States)

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  2. Pulsed power liner for PLT energy systems

    International Nuclear Information System (INIS)

    Armellino, C.A.; Bronner, G.; Murray, J.G.

    1975-01-01

    PLT is Princeton University's latest Tokamak machine in the controlled thermonuclear fusion research effort. The OH (ohmic heating) and SF (shaping field) systems for the machine place a very high energy pulsed current load on the AC line feeding them. This paper describes the two systems and the steps taken to insure minimum effect on line regulation during the pulsed operation

  3. Bio-effects of repetitively pulsed ultra-fast distributed feedback dye lasers

    International Nuclear Information System (INIS)

    Khan, N.; Ahmad, M.I.; Sheikh, A.

    1999-01-01

    Results of experimental study showing an unexpected rise in pulses of distributed feedback dye laser (DFDL) output due to temperature accumulation in dye cell during passively Q-Switched, a Mode-locked operation is reported. This unintended increase in number of pulse duration, per pulse energy may cause side-effects when used for selective photo thermolysis. To probe this phenomenon most commonly dye was excited with 10 to 20 pulses of second harmonic of a passively Q-Switched and Mode-locked Nd-YaG laser. The outputs of DFDL and Nd:YaG laser were recorded by Imacon 675-streak camera. The peak of DFDL output pulses was found delayed proportionally from the peak of the NYAG pulses by more than one inter-pulse period of excitation laser. A computer program was used to simulate the experimentally measured delay to estimate thermal decay constants and energy retained by the medium to determine the amount of incremental fluctuations in output. The delay between peaks of Nd:YAG (input) and DFDL(output) pulses was found to vary from 10 to 14 nanoseconds for various cavity lengths. It was found that for smaller inter-pulse periods the effect of gradual build-up satisfies the threshold conditions for some of the pulses that otherwise can not. This may lead to unintended increase in energy fluence causing overexposure-induced side-effects. (author)

  4. Photobiomodulation therapy on wound treatment subsequent to Q-switched Nd: YAG laser tattoo removal in rat model.

    Science.gov (United States)

    Imrigha, Nada Abusalah Almabrouk; Bidin, Noriah; Lau, Pik Suan; Musa, Nurfatin; Zakaria, Nurlaily; Krishnan, Ganesan

    2017-10-01

    Q-switched Nd: YAG laser is the most effective laser for tattoo removal. Photobiomodulation (PBM) therapy is an alternative method applied to accelerate the wound healing. This paper investigated the effects of PBM therapy using 808 nm diode laser on tattooed skin after laser tattoo removal. Forty-five rats were selected and tattooed with black ink on their dorsal, and then distributed into three groups. G0 was received non-laser irradiation. G1 was treated by laser tattoo removal using 1064 nm with energy density of 3.4 J/cm 2 without PBM therapy, while G2 was treated daily with PBM therapy using 808 nm diode laser of 5 J/cm 2 after a single session of laser tattoo removal. The effects of tattoo removal and healing progress of the wound were analyzed using histological studies. Findings showed 808 nm laser promotes the healing process through enhancing epithelialization and collagen deposition. Moreover, PBM therapy stimulated immune cells to improve phagocytosis process for removing the tattoo ink fragments effectively. The PBM therapy treated group was capable of improving the healing process and increasing the quality of skin following the laser tattoo removal. It was also found that stimulation of cellular function by PBM therapy increased tattoo clearance efficiency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High speed ink aggregates are ejected from tattoos during Q-switched Nd:YAG laser treatments.

    Science.gov (United States)

    Murphy, Michael J

    2018-03-25

    Dark material has been observed embedded within glass slides following Q-switched Nd:YAG laser treatment of tattoos. It appears that these fragments are ejected at high speed from the skin during the treatment. Light microscopic analysis of the slides reveals aggregates of dark fragmented material, presumably tattoo ink, with evidence of fractured/melted glass. Photomicrographs reveal that the sizes of these aggregates are in the range 12 μm to 0.5 mm. Tattoo ink fragments were clearly observed on the surface and embedded within glass slides. Surface aggregates were observed as a fine dust and were easily washed off while deeper fragments remained in situ. The embedded fragments were not visible to the unaided eye. Some fragments appeared to have melted yielding an "insect-like" appearance. These were found to be located between approximately 0.2 and 1 mm deep in the glass. Given the particle masses and kinetic energies attained by some of these aggregates their velocities, when leaving the skin, may be hundreds to thousands of metres per second. However, the masses of the aggregates are minuscule meaning that laser operators may be subjected to these high-speed aggregates without their knowledge. These high-speed fragments of ink may pose a contamination risk to laser operators. Lasers Surg. Med. 9999:1-7, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. Intraoperative localized urticarial reaction during Q-switched Nd:YAG laser tattoo removal.

    Science.gov (United States)

    Wilken, Reason; Ho, Derek; Petukhova, Tatyana; Jagdeo, Jared

    2015-03-01

    Q-switched lasers, such as the neodymium:yttrium-aluminum-garnet (Nd:YAG) laser, are the gold standard for tattoo removal. Allergy to tattoo pigment is well-documented, but adverse allergic reactions during or shortly after laser tattoo removal are rare with few reports in the medical literature. Here we describe an intraoperative, localized urticarial reaction that developed during treatment of a tattoo using a 1064-nm Nd:YAG laser. As laser tattoo removal becomes increasingly popular amongst our patients, it is important for dermatologists to be aware of urticarial allergic reactions as well as their management. We outline our recommendations for medical management of this condition and hope that these guidelines will facilitate patient care by dermatologists who encounter this immune skin reaction to laser tattoo removal

  7. Q-switched laser removal of tattoos: a clinical and spectroscopic investigation of the mechanism

    Science.gov (United States)

    Siomos, Konstadinos; Bailey, Raymond T.; Cruickshank, Frank R.; Murphy, Michael

    1996-01-01

    The liquid phase spectra of tatoo pigments are shown to be unreliable as a basis for mechanistic deductions. The reflectance spectra of the solids from 2000 nm to 500 nm (5000 to 20,000 cm-1) are shown to accurately assess the relative loss of laser light for different pigments and to be useful in examining these to check for similarities in the pigments. The absorbance differences between the pigments are shown to be largely irrelevant in assessing the ease of tatoo removal by laser radiation of a variety of wavelengths. A multiphoton absorption mechanism with its concomitant shock wave is proposed to be responsible for the reduction of pigment particles to small sizes which the lymph system can remove. The different behavior of blue and green tattoos, treated by Q-switched ruby and Nd:YAG lasers, is attributed to the particle aggregation size of the pigments in the tattoo.

  8. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    Science.gov (United States)

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  9. Tattoo removal by Q-switched yttrium aluminium garnet laser: client satisfaction.

    Science.gov (United States)

    Hutton Carlsen, K; Esmann, J; Serup, J

    2017-05-01

    Tattoo removal by Q-switched yttrium aluminium garnet (YAG) lasers is golden standard; however, clients' satisfaction with treatment is little known. To determine clients' satisfaction with tattoo removal. One hundred and fifty-four tattoo removal clients who had attended the private clinic 'Centre for Laser Surgery', Hellerup, Denmark, from 2001 to 2013 completed a questionnaire concerning outcome expectations, level of pain experiences and satisfaction with tattoo removal. The laser surgeon and his team were blinded from data handling. The study design included a minimum 2-year postlaser treatment observation period from 2013 to 2015. Overall, clients were satisfied with their laser treatment; 85% assessed their treatment and results to be acceptable to superb, while 15% assessed their treatment and results to be inferior to unacceptable. Effectiveness relative to colour of tattoo on a scale from 0 (no effect) to 10 (complete removal) scored a mean of blue 9.5, black 9.4, yellow 8.9, red 8.8 and green 6.5. Clients were dissatisfied with green pigment remnants, which could mimic bruising. One hundred and twenty-nine clients (84%) experienced moderate to extreme pain during treatment. Twenty-eight (20%) developed minor scarring. There were many reasons for tattoo removal; e.g. stigmatisation (33%), conspicuousness (29%) and poor artistic quality (22%). One hundred and two clients had expected complete removal of tattoos without a blemish, expectations that were only partly fulfilled. During the treatment period, clients adjusted expectations and adapted more realistic views of outcomes. The majority of clients were satisfied with Q-switched YAG laser removal of tattoos despite high pretreatment expectations which were only partly met. The study supports YAG lasers for tattoo removal as acceptable therapy of today, with room for new approaches. © 2017 European Academy of Dermatology and Venereology.

  10. Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Maria Isabel Mendivil Palma

    2016-01-01

    Full Text Available Platinum (Pt nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL technique in different liquids (acetone, ethanol, and methanol. Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and UV-Visible absorption spectroscopy.

  11. Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm

    Science.gov (United States)

    Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.

    2018-05-01

    Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.

  12. Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror

    Science.gov (United States)

    Fotiadi, Andrei A.; Mégret, Patrice; Blondel, Michel

    2004-05-01

    Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

  13. Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes

    NARCIS (Netherlands)

    Kim, Jun Wan; Choi, Sun Young; Yeom, Dong-Il; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Rotermund, Fabian

    2013-01-01

    We report Q-switched operation of a planar waveguide laser by evanescent-field interaction with single-walled carbon nanotubes deposited on top of the waveguide. The saturable-absorber-integrated gain medium, which operates based on evanescent-field interaction, enables the realization of a

  14. Treatment of pigmented keratosis pilaris in Asian patients with a novel Q-switched Nd:YAG laser.

    Science.gov (United States)

    Kim, Sangeun

    2011-06-01

    Treatment for most cases of keratosis pilaris requires simple reassurance and general skin care recommendations. Many Asian patients find lesions due to pigmented keratosis pilaris to be cosmetically unappealing. Treatment of post-inflammatory hyperpigmentation using a 1064-nm Q-switched Nd:YAG laser with low fluence is reported. To investigate the efficacy of a novel Q-switched Nd:YAG laser for the treatment of pigmented keratosis pilaris in Asian patients. Ten patients with pigmented keratosis pilaris underwent five weekly treatments using a Q-switched Nd:YAG laser (RevLite(®); HOYA ConBio(®), Freemont, CA, USA) at 1064 nm with a 6-mm spot size and a fluence of 5.9 J/cm(2). Photographic documentation was obtained at baseline and 2 months after the final treatment. Clinical improvement was achieved in all 10 patients with minimal adverse effects. For the treatment of keratosis pilaris, the use of a Q-switched Nd:YAG laser can be helpful for improving cosmetic appearance as it can improve pigmentation.

  15. Q-Switched Nd:YAG Laser Removal of Facial Amateur Tattoos in Patients With Fitzpatrick Type VI: Case Series.

    Science.gov (United States)

    Haik, Josef; Kornhaber, Rachel; Harats, Moti; Israeli, Hadar; Orenstein, Arie

    2016-11-01

    Q-switched neodymium:YAG (Nd:YAG) lasers are reported to be gold standard for laser tattoo removal. In particular, the Q-switched Nd:YAG laser at 1064 nm is widely recognized for the removal of blue/black amateur tattoos. However, treatment modalities in Fitzpatrick Type VI skin carry a greater risk of complications including alterations in pigmentation compared to fairer skin (Fitzpatrick Type I-IV skin). Therefore, the aim of this case series was to describe with the use of the Q-Switched Nd:YAG laser, the removal of carbon-based amateur tattoos on patients with Fitzpatrick Type VI skin as an effective and safe method. Twenty- five patients with Fitzpatrick type VI skin, from Ethiopian origins, with facial tribal tattoos, were treated with the Q- Switched Nd:YAG laser at 1064 nm. Digital images were taken upon every treatment and the clearance rates of the tattoo was evalu- ated by imaging software. We observed an average tattoo clearance rate of 95% among the 45 facial tattoos in 25 patients presented in the case series with minimal pigmentary and textual changes evident. These positive aesthetic results have a signi cant psychosocial impact on the lives of those with Fitzpatrick Type VI skin, in particular the Ethiopian Jewish population. J Drugs Dermatol. 2016;15(11):1448-1452..

  16. An in-vitro morphological study of Q-switched neodymium/YAG laser trabeculotomy.

    Science.gov (United States)

    Venkatesh, S; Lee, W R; Guthrie, S; Cruickshank, F R; Foulds, W S; Quigley, R J; Bailey, R T

    1986-02-01

    Laser trabeculotomies produced by directing a pulsed neodymium/YAG laser beam at specimens of human anterior chamber angle obtained post mortem or after enucleation were studied by light microscopy and by scanning and transmission electron microscopy to assess the dimensions of the openings created in the trabecular meshwork, their penetrance to the canal of Schlemm, and the extent or absence of laser induced cellular damage in immediately adjacent tissue. A pulse duration of 40-50 ns at energy levels of around 30 mJ was used and the laser cavity carefully tuned to give a Gaussian spatial mode pattern. Openings in the trabecular meshwork typically of 100 microns in diameter and penetrating through to the canal of Schlemm could be regularly created with only minimal damage to adjacent tissue as judged by transmission electron microscopy. The information so gained may be useful in determining the parameters required for successful laser trabeculotomy as a treatment for primary open-angle glaucoma.

  17. 183-W, M2 = 2.4 Yb:YAG Q -switched laser

    International Nuclear Information System (INIS)

    Honea, E.C.; Beach, R.J.; Mitchell, S.C.; Avizonis, P.V.

    1999-01-01

    We have fabricated a diode-array end-pumped Yb:YAG rod laser with output powers greater than 200thinspthinspW cw and 195thinspthinspW Q -switched at 5thinspthinspkHz. At an output power of 183thinspthinspW and a repetition rate of 5thinspthinspkHz, the beam quality was measured to be M 2 =2.4 . The laser design incorporates a hollow lens duct to concentrate the diode pump light for delivery to the end of the laser rod while maintaining access to the laser beam. This configuration provides increased flexibility for the resonator design and permits the use of birefringence compensation in the cavity to yield polarized output with increased efficiency. Using the recently described birefringence compensation method of Clarkson et al.thinspthinsp[in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1998), paper CTuI3], we obtained 112thinspthinspW of cw power with a polarized beam of M 2 =3.2 . copyright 1999 Optical Society of America

  18. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    Science.gov (United States)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  19. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  20. A study on the clinical characteristics of treating nevus of Ota by Q-switched Nd:YAG laser.

    Science.gov (United States)

    Yan, Liu; Di, Li; Weihua, Wang; Feng, Liu; Ruilian, Li; Jun, Zhou; Hui, Su; Zhaoxia, Ying; Weihui, Zeng

    2018-01-01

    The purpose of this study was to retrospectively analyze the clinical characteristics of treating nevus of Ota by Q-switched Nd:YAG laser in Laser Cosmetology Center of Department of Dermatology, the Second Hospital, Xi'an Jiaotong University. The data of 1168 patients of nevus of Ota were analyzed retrospectively, which included the correlation among lesion color, treatment sessions, sex, age, lesion types, and effect. The Q-switched (QS) Nd:YAG laser system had a higher number of treatment sessions which were positively associated with a better response to treatment. Other variables, including gender, age, the categorization of the lesion according to Tanino's classification, and the color of the lesion, were not associated with the response to treatment. The treatment of nevus of Ota with QS Nd:YAG laser is safe and effective, with rare complications.

  1. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    Science.gov (United States)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  2. Role of Q-switched ND:YAG laser in nevus of Ota: A study of 25 cases

    Directory of Open Access Journals (Sweden)

    Shivangi Sharma

    2011-01-01

    Full Text Available Background: Nevus of Ota is common condition in Indian patients. The condition is more common in females, with a male-female ratio of 1:4.8. Aim : To evaluate long-term efficacy safety and stability of Q-switched ND:YAG laser in treatment of Nevus of Ota. Design: 6 month follow-up of patients of Nevus of Ota, treated with Q-switched ND:YAG laser Materials and Methods : Twenty-five patients of Nevus of Ota were treated with Q-switched ND:YAG laser for a period of 1 year and 9 months; patient had fitzpatricks skin type 4 and 5; detailed history, clinical examination, ophthalmoscopy, and otoscopy was done in all cases; clinical photographs were taken before and after the completion of treatments. Six-month follow-up was done after the last session. Response to treatment was graded based on physician′s global assessment. Result : More than 70% improvement was seen in 15 patients (60%. Eight patients (32% had moderate and two patients (8% showed mild improvement.

  3. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser

    Directory of Open Access Journals (Sweden)

    Tianxian Feng

    2016-11-01

    Full Text Available We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP nanosheets were prepared via a liquid exfoliation approach exploiting N-methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI, a piece of BP–PI film was obtained after evaporating the mixture in a petri dish. The BP–PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP–PI film can act as a promising nonlinear optical device for laser applications.

  4. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  5. Energy Storage System for a Pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Maisonnier, D.; Hayward, J.

    2006-01-01

    Several designs have been proposed for DEMO, some of which will operate in pulsed mode. Since a fusion power plant will be required to deliver continuous output, this challenge must be solved. For the reference DEMO, energy storage is required at a level of 250 MWhe with a capability of delivering a power of 1 GWe. Although DEMO is scheduled to be built in about 30 years, the design of the energy storage system must be based on current technology, focusing on commercially available products and on their expected future trends. From a thorough review of the different technologies available, thermal energy storage, compressed air energy storage, water pumping, fuel cells, batteries, flywheels and ultracapacitors are the most promising solutions to energy storage for a pulsed DEMO. An outline of each of these technologies is described in the paper, showing its basis, features, advantages and disadvantages for this application. Following this review, the most suitable methods capable of storing the required energy are examined. Fuel cells are not suitable due to the power requirement. Compressed air energy storage has a lower efficiency than the required one. Thermal energy storage, based on molten salts, so more energy can be stored with a better efficiency, and water pumping are shown as the main solutions, based on existing technology. However, those are not the only solutions capable of solving our challenge. Hydrogen production, using water electrolysis, hydrogen storage and combustion in a combined cycle can achieve our energy and power requirements with an acceptable efficiency. All these solutions are studied in detail and described, evaluating their current cost and efficiency in order to compare them all. (author)

  6. Damage threshold from large retinal spot size repetitive-pulse laser exposures.

    Science.gov (United States)

    Lund, Brian J; Lund, David J; Edsall, Peter R

    2014-10-01

    The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.

  7. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  8. Minocycline-induced hyperpigmentation: comparison of 3 Q-switched lasers to reverse its effects

    Directory of Open Access Journals (Sweden)

    Nisar MS

    2013-05-01

    Full Text Available Mahrukh S Nisar,1 Karthik Iyer,1 Robert T Brodell,2 Jenifer R Lloyd,3 Thuzar M Shin,3 Asad Ahmad4 1Northeast Ohio Medical University, Rootstown, OH, USA; 2Division of Dermatology, University of Mississippi Medical Center, Jackson, MS, USA; 3Case Western Reserve University School of Medicine, Cleveland, OH, USA; 4Northside Medical Center, Youngstown, OH, USA Abstract: Minocycline is a tetracycline derivative antibiotic commonly prescribed for acne, rosacea, and other inflammatory skin disorders. Minocycline turns black when oxidized, leading to discoloration of the skin, nails, bulbar conjunctiva, oral mucosa, teeth, bones, and thyroid gland. Hyperpigmentation has been reported after long-term minocycline therapy with at least 100 mg/day. Three types of minocycline-induced cutaneous hyperpigmentation can result. Type I is the most common, and is associated with blue-black discoloration in areas of previous inflammation and scarring. Type II most commonly affects the legs and is characterized by blue-gray pigmentation of previously normal skin. Type III is the least common and is characterized by diffuse muddy-brown discoloration predominantly on sun exposed skin. Minocycline-induced hyperpigmentation may be cosmetically disfiguring and prompt identification is essential. Without treatment, symptoms may take several months, to years to resolve, after discontinuation of the drug. However, the pigmentation may never completely disappear. In fact, there have been few reports of complete resolution associated with any therapeutic intervention. We report a case of a patient on long-term minocycline therapy utilized as an anti-inflammatory agent to control symptoms of rheumatoid arthritis, which led to minocycline-induced hyperpigmentation of the face. To remove the blue-gray cutaneous deposits, 3 Q-switched lasers (Neodymium: yttrium aluminum garnet (Nd:YAG 1064 nm, Alexandrite 755 nm, and Ruby 694 nm were used in test areas. The Alexandrite 755 nm

  9. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  10. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.

    Science.gov (United States)

    Smith, G; Damzen, M J

    2007-05-14

    An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.

  11. Energy-dependent losses in pulsed-feedback preamplifiers

    International Nuclear Information System (INIS)

    Landis, D.A.; Madden, N.W.; Goulding, F.S.

    1978-11-01

    Energy dependent counting losses occur in most pulsed-feedback preamplifiers due to the loss of those pulses which activate the recharge system. A pulsed-feedback system that overcomes this inefficiency is described. Pulsed-light feedback as used with germanium gamma-ray spectrometers is discussed as used at high energies and high rates where those losses become significant. Experimental results are presented

  12. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    Science.gov (United States)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  13. Energy storage system for a pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Hayward, J.; Maisonnier, D.

    2007-01-01

    Several designs have been proposed for the DEMO fusion reactor. Some of them are working in a non-steady state mode. Since a power plant should be able to deliver to the grid a constant power, this challenge must be solved. Energy storage is required at a level of 250 MWh e with the capability of delivering a power of 1 GWe. A review of different technologies for energy storage is made. Thermal energy storage (TES), fuel cells and other hydrogen storage, compressed air storage, water pumping, batteries, flywheels and supercapacitors are the most promising solutions to energy storage. Each one is briefly described in the paper, showing its basis, features, advantages and disadvantages for this application. The conclusion of the review is that, based on existing technology, thermal energy storage using molten salts and a system based on hydrogen storage are the most promising candidates to meet the requirements of a pulsed DEMO. These systems are investigated in more detail together with an economic assessment of each

  14. Very high pulse-energy accelerators

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1989-01-01

    The dominant trend in the development of pulsed power accelerator technology over the last decade has been towards higher power and shorter pulse widths. Limitations in high voltage, high current switch performance, and in power flow through vacuum insulator housings led to the development of highly modular designs. This modular approach requires precise synchronization of the various modules and efficient methods of combining the power from these modules to drive a common load. The need to drive very low impedance loads led to effective ways to combine these modules in parallel. The Particle Beam Fusion Accelerator I (PBFA I) and Saturn are representative of these designs. Hermes III represent a new approach towards the efficient generation of higher voltages. It is designed to drive a 22-MV, 730-kA, 40-ns electron beam diode and combines conventional, modular pulsed power technology with linear induction accelerator concepts. High-power induction accelerator cavities are combined with voltage addition along a MITL to generate the desired output. This design differs from a conventional linac in that the voltages are added by the MITL flow rather than by a drifting beam that gains kinetic energy at each stage. This design is a major extrapolation of previous state-of-the-art technology represented by the injector module of the Advanced Test Accelerator and has proven to be efficient and reliable. The design and performance of Hermes III are presented together with a discussion of the application of this technology to the light ion beam inertial confinement fusion program. 18 refs., 9 figs

  15. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  16. In vitro studies with a pulsed neodymium/YAG laser.

    Science.gov (United States)

    Venkatesh, S; Guthrie, S; Foulds, W S; Lee, W R; Cruickshank, F R; Bailey, R T

    1985-02-01

    The relationships between the destructive effects of Q-switched Nd/YAG laser pulses and a number of experimental parameters were studied for various target materials including in particular excised, fixed samples of human trabecular meshwork. The laser parameters altered were the pulse energy, the convergence angle of the focused beam, and the position of the focus of the beam relative to the target's axial position. The main finding was that it was possible to make deep holes, of a diameter less than 100 micron, in virtually transparent samples of trabecular meshwork with a laser delivery system of 6 degrees convergence and pulse energies of 14 mJ or more. The relevance of this and the other experimental results to the development of a reliable system for performing internal trabeculotomies for the treatment of open-angle glaucoma is presented.

  17. Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS

    International Nuclear Information System (INIS)

    Ahmed, Rizwan; Iqbal, Javed; Baig, M Aslam

    2015-01-01

    We present new studies on the effects of laser wavelengths, pulse energy ratio and interpulse delay between two laser pulses in the collinear dual pulse configuration of laser-induced breakdown spectroscopy (LIBS) on an iron sample in air using the fundamental (1064 nm) and the second harmonics (532 nm) of Nd:YAG lasers. In the dual pulse LIBS, an optimum value of interpulse delay with an appropriate combination of laser wavelengths, and laser pulse energy ratio, yields a 30 times signal intensity enhancement in the neutral iron lines as compared with single pulse LIBS. A comparison in the spatial variations of electron temperature along the axis of the plume expansion in single and double pulse LIBS has also been studied. (letter)

  18. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  19. A 9.61-W, b-cut Tm,Ho:YAP laser in Q-switched mode operation

    Science.gov (United States)

    Li, Guoxing; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A high energy of b-cut Tm, Ho:YAlO3 laser is reported in the paper. The laser operated in acousto-optical Qswitched mode at 2.12 μm. The output average power of 9.61 W was achieved at the pulse repetition frequency of 10 kHz ,and the power of 11.6 W was acquired in continuous wave mode. Moreover, the energy per pulse of 0.961 mJ in 64.4 ns was acquired at 10 kHz with a 14.92-kW peak power.

  20. SBS pulse compression for excimer inertial fusion energy drivers

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, {lambda} ca. 250 nm, pulse duration, {tau}{sub p} ca. 6 ns, bandwidth, {Delta}{lambda} ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, {tau}{sub pp}, is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, {tau}{sub pp} which falls in the range, 30 {tau}{sub p}<{tau}{sub pp}<100{tau}{sub p}. As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration {tau}{sub p}. These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ``chirped,`` self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF{sub 6} at a density, {rho} ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at {lambda}=248 nm. In order to avoid the generation of output pulses substantially shorter than {tau}{sub p}, the optical power in the chirped input SBS ``seed`` beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of {tau}{sub p} ca. ns.

  1. SBS pulse compression for excimer inertial fusion energy drivers

    International Nuclear Information System (INIS)

    Linford, G.J.

    1994-01-01

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, λ ca. 250 nm, pulse duration, τ p ca. 6 ns, bandwidth, Δλ ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, τ pp , is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, τ pp which falls in the range, 30 τ p pp p . As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration τ p . These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ''chirped,'' self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF 6 at a density, ρ ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at λ=248 nm. In order to avoid the generation of output pulses substantially shorter than τ p , the optical power in the chirped input SBS ''seed'' beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of τ p ca. ns

  2. Severe unexpected adverse effects after permanent eye makeup and their management by Q-switched Nd:YAG laser.

    Science.gov (United States)

    Goldman, Alberto; Wollina, Uwe

    2014-01-01

    Permanent makeup is a cosmetic tattoo that is used to enhance one's appearance, and which has become more popular among middle-aged and elderly women. A couple of benefits seem to be associated with permanent tattoos in the elderly: saving time (wake up with makeup); poor eyesight (difficult to apply makeup); and saving money. On the other hand, cosmetic tattoos bear the same risks as other tattoo procedures. We report on fading and unintended hyperpigmentation after tattooing on eyebrows and eyelids, and discuss the scientific and anatomical background behind the possible cause. Dermatochalasis may be a possible risk factor for excessive unwanted discolorations. Q-switched neodymium-doped yttrium aluminum garnet laser is an appropriate and safe therapeutic tool that can manage such adverse effects. Consumer protection warrants better information and education of the risks of cosmetic tattoos - in particular, for elderly women.

  3. Treatment of Laugier-Hunziker syndrome with the Q-switched alexandrite laser in 22 Chinese patients.

    Science.gov (United States)

    Zuo, Ya-Gang; Ma, Dong-Lai; Jin, Hong-Zhong; Liu, Yue-Hua; Wang, Hong-Wei; Sun, Qiu-Ning

    2010-03-01

    Laugier-Hunziker syndrome (LHS), a rare, acquired pigmentary disorder of the lips, oral mucosa, and fingers, is known to be an entirely benign disease with no systemic manifestations. In the past, the pigmentation has been treated efficiently in a few patients with the Q-switched neodymium: yttrium-aluminum-garnet (Nd:YAG) laser and the Q-switched alexandrite laser (QSAL). In order to evaluate the efficacy and safety of QSAL on Chinese patients of LHS, we treated 22 patients with QSAL in the past 5 years. Treatments were delivered on a bimonthly or trimonthly basis until the abnormal pigmentation totally disappeared. Patients were evaluated at each visit for evidence of dyspigmentation, scarring, or other untoward effects from the laser treatment. Our 22 subjects consisted of 18 females and 4 males with a mean age of 42.4 years. After only one session of laser treatment, the clearing on the lips was as follow: 18 (81.8%) excellent, 2 (9.1%) good, 1 (4.5%) fair and 1 (4.5%) poor. Eighteen patients (81.8%) with LHS, who had achieved excellent clearing after only one session of laser treatment, did not receive further treatment. Among the left four patients, three patients (13.6%) achieved complete results after three laser treatments. Only one patient required six sessions to achieve complete clearance. No scarring was noted after any of the treatments. The appearance of pigmentation on mucous membranes in a middle-aged patient without a significant family history for skin disorders should prompt consideration for the possible diagnosis of LHS. Our study has also demonstrated QSAL to be highly effective and safe in the treatment of LHS.

  4. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  5. Pulsed energy conversion with a dc superconducting magnet

    International Nuclear Information System (INIS)

    Cowan, M.; Cnare, E.C.; Leisher, W.B.; Tucker, W.K.; Wessenberg, D.L.

    1976-01-01

    A generator system for pulsed power is described which employs a dc superconducting magnet in a magnetic flux compression scheme. Experience with a small-scale generator together with projections of numerical models indicate potential applications to fusion research and commercial power generation. When the system is large enough pulse energy can exceed that stored in the magnet and pulse rise time can range from several microseconds to tens of milliseconds. (author)

  6. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  7. Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing

    International Nuclear Information System (INIS)

    Yan, X P; Liu, Q; Gong, M; Wang, D S; Fu, X

    2009-01-01

    A 8.2 W UV laser was reported with the compact extra-cavity sum-frequency mixing. The IR fundamental frequency source was a high power and high beam quality Q-switched Nd:YVO 4 oscillator. 38 W fundamental frequency laser at 1064 nm was obtained at the pulse repetition rate of 450 kHz with the beam quality factors of M 2 x = 1.27, M 2 y = 1.21. The type I and type II phase-matched LBO crystals were used as the extra-cavity frequency doubling and mixing crystals respectively. At 38 kHz, 8.2 W UV laser at 355 nm was achieved with the pulse duration of 8 ns corresponding to the pulse peak power as high as 27 kW, and the optical-optical conversion efficiency from IR to UV was 25.6%. The output characteristics of the IR and the harmonic generations varying with the pulse repetition rate were also investigated detailedly

  8. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  9. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  10. Resonant photoacoustic detection of NO2 traces with a Q-switched green laser

    Science.gov (United States)

    Slezak, Verónica; Codnia, Jorge; Peuriot, Alejandro L.; Santiago, Guillermo

    2003-01-01

    Resonant photoacoustic detection of NO2 traces by means of a high repetition pulsed green laser is presented. The resonator is a cylindrical Pyrex glass cell with a measured Q factor 380 for the first radial mode in air at atmospheric pressure. The system is calibrated with known mixtures in dry air and a minimum detectable volume concentration of 50 parts in 109 is obtained (S/N=1). Its sensitivity allows one to detect and quantify NO2 traces in the exhaust gases of cars. Previously, the analysis of gas adsorption and desorption on the walls and of changes in the sample composition is carried out in order to minimize errors in the determination of NO2 content upon application of the extractive method. The efficiency of catalytic converters of several models of automobiles is studied and the NO2 concentration in samples from exhausts of different types of engine (gasoline, diesel, and methane gas) at idling operation are measured.

  11. Retinal-hemorrhage thresholds for Q-switched neodymium-YAG laser exposures

    Energy Technology Data Exchange (ETDEWEB)

    Blankenstein, M.F.; Zuclich; Allen, R.G.; Davis; Thomas, S.J.

    1986-07-01

    Thresholds for retinal vitreal and contained hemorrhages were determined for 1064-nm laser light at 30-ns and 4-ns pulsewidths. Rhesus monkeys received graded exposures from a neodymium-YAG laser onto either the macular or extramacular region of the retina. Contained hemorrhages appeared as concentric-ring structures with white punctuate centers. The vitreal hemorrhage was characterized by the presence of choroidal blood in the vitreal chamber at the exposure site. The 30-ns contained-hemorrhage threshold (ED50) was 1.7 mJ on the macula and 2.1 mJ for an extramacular exposure. The 30-ns vitreal-hemorrhage macular threshold was 2.3 mJ, and the extramacular threshold was 6.6 Mj. The threshold for the 4-ns pulse widths to produce a hemorrhage (vitreal or contained) on the retina (macula or extramacular) was 340 uJ.

  12. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils

    Energy Technology Data Exchange (ETDEWEB)

    P' ng, Danny [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States); Molian, Pal [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu

    2008-07-15

    Conventional fusion welding of stainless steel foils (<100 {mu}m thickness) used in computer disk, precision machinery and medical device applications suffer from excessive distortion, formation of discontinuities (pore, void and hot crack), uncontrolled melting (melt-drop through) and poor aesthetics. In this work, a 15 ns pulsed, 400 mJ Nd:YAG laser beam was utilized to overcome these barriers in seam welding of 60 {mu}m thin foil of AISI 304 stainless steel. Transmission electron microscopy was used to characterize the microstructures while hardness and tensile-shear tests were used to evaluate the strengths. Surface roughness was measured using a DekTak profilometer while porosity content was estimated using the light microscope. Results were compared against the data obtained from resistance seam welding. Laser welding, compared to resistance seam welding, required nearly three times less heat input and produced welds having 50% narrower seam, 15% less porosity, 25% stronger and improved surface aesthetics. In addition, there was no evidence of {delta}-ferrite in laser welds, supporting the absence of hot cracking unlike resistance welding.

  13. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  14. Pulse thermal energy transport/storage system

    Science.gov (United States)

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  15. Electro-optic measurement of terahertz pulse energy distribution

    NARCIS (Netherlands)

    Sun, J.H.; Gallacher, J.G.; Brussaard, G.J.H.; Lemos, N.; Issac, R.; Huang, Z.X.; Dias, J.M.; Jaroszynski, D.A.

    2009-01-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz

  16. A retrospective analysis of the influencing factors and complications of Q-switched lasers in tattoo removal in China.

    Science.gov (United States)

    Zhang, Mengli; Gong, Xiangdong; Lin, Tong; Wu, Qiuju; Ge, Yiping; Huang, Yuqing; Ge, LiYu

    2018-04-01

    Q-switched (QS) lasers are the gold standard for tattoo removal. The purpose of the present study was to gain a more comprehensive understanding of the factors that influence the efficacy of QS lasers and their associated complications in the removal of tattoos in China. Clinical data of 266 patients were analyzed retrospectively. The tattoo clearance rate was evaluated using the 4-point scale. The Cox regression model was applied to analyze the factors that affected the efficacy of QS lasers in tattoo removal. In addition, treatment-related adverse reactions were analyzed. The results showed that several variables had a statistically significant effect (p tattoo removal treatment, including the patients' age, the tattoo's age, type, color, or ink density and the number of treatments. A variety of adverse responses occurred during the laser treatment. The overall incidence of adverse responses was approximately 24.06%, including pigmentation, hypopigmentation, bulla formation, allergic reactions, and skin texture changes or hypertrophic scarring. Some factors may influence the efficacy of QS lasers in the treatment of tattoos and certain adverse reactions may occur during this process.

  17. Nerve fiber layer (NFL) degeneration associated with acute q-switched laser exposure in the nonhuman primate

    Science.gov (United States)

    Zwick, Harry; Zuclich, Joseph A.; Stuck, Bruce E.; Gagliano, Donald A.; Lund, David J.; Glickman, Randolph D.

    1995-01-01

    We have evaluated acute laser retinal exposure in non-human primates using a Rodenstock scanning laser ophthalmoscope (SLO) equipped with spectral imaging laser sources at 488, 514, 633, and 780 nm. Confocal spectral imaging at each laser wavelength allowed evaluation of the image plane from deep within the retinal vascular layer to the more superficial nerve fiber layer in the presence and absence of the short wavelength absorption of the macular pigment. SLO angiography included both fluorescein and indocyanine green procedures to assess the extent of damage to the sensory retina, the retinal pigment epithelium (RPE), and the choroidal vasculature. All laser exposures in this experiment were from a Q-switched Neodymium laser source at an exposure level sufficient to produce vitreous hemorrhage. Confocal imaging of the nerve fiber layer revealed discrete optic nerve sector defects between the lesion site and the macula (retrograde degeneration) as well as between the lesion site and the optic disk (Wallerian degeneration). In multiple hemorrhagic exposures, lesions placed progressively distant from the macula or overlapping the macula formed bridging scars visible at deep retinal levels. Angiography revealed blood flow disturbance at the retina as well as at the choroidal vascular level. These data suggest that acute parafoveal laser retinal injury can involve both direct full thickness damage to the sensory and non-sensory retina and remote nerve fiber degeneration. Such injury has serious functional implications for both central and peripheral visual function.

  18. Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore,” Via delle Olimpiadi, 94100 Enna (Italy); Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Tudisco, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Muoio, A. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F. D’Alcontres 31, 98166 Messina (Italy)

    2016-02-15

    In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.

  19. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    International Nuclear Information System (INIS)

    Ahmad, H; Soltanian, M R K; Alimadad, M; Harun, S W

    2014-01-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW. (paper)

  20. Bindi tattoo on forehead: success with modified R-20 technique using low fluence q-switched nd yag laser: a case report.

    Science.gov (United States)

    Zawar, Vijay; Sarda, Aarti; De, Abhishek

    2014-01-01

    Bindi tattoo on the forehead, is one of the cultural practice in Indian women from rural areas. Many patients are not pleased with the appearance of their tattoo and thus seek removal. The development of quality-switched lasers has revolutionized the removal of unwanted tattoos. However, despite multiple treatment sessions, the efficacy is often found to be limited. We herein report a case of green-blue bindi tattoo which failed to clear after 8 sessions of Q-switched Nd YAG laser. The tattoo significantly cleared with R-20 method using low fluence Q-switched Nd YAG Laser. R-20 technique seems to be an effective method of tattoo removal and might be a boon for patients who are reluctant to pursue laser treatment because of fear of expenditure, side effects and uncertainty of result. We report efficacy of R-20 technique for a bindi tattoo on forehead.

  1. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  2. Efficient, space-based, PM 100W thulium fiber laser for pumping Q-switched 2μm Ho:YLF for global winds and carbon dioxide lidar

    Science.gov (United States)

    Engin, Doruk; Mathason, Brian; Storm, Mark

    2017-08-01

    Global wind measurements are critically needed to improve and extend NOAA weather forecasting that impacts U.S. economic activity such as agriculture crop production, as well as hurricane forecasting, flooding, and FEMA disaster planning.1 NASA and the 2007 National Research Council (NRC) Earth Science Decadal Study have also identified global wind measurements as critical for global change research. NASA has conducted aircraft-based wind lidar measurements using 2 um Ho:YLF lasers, which has shown that robust wind measurements can be made. Fibertek designed and demonstrated a high-efficiency, 100 W average power continuous wave (CW) 1940 nm thulium (Tm)- doped fiber laser bread-board system meeting all requirements for a NASA Earth Science spaceflight 2 μm Ho:YLF pump laser. Our preliminary design shows that it is possible to package the laser for high-reliability spaceflight operation in an ultra-compact 2″x8″x14″ size and weight <8.5 lbs. A spaceflight 100 W polarization maintaining (PM) Tm laser provides a path to space for a pulsed, Q-switched 2 μm Ho:YLF laser with 30-80 mJ/pulse range at 100-200 Hz repletion rates.

  3. Optical fiber array for the delivery of high peak-power laser pulses for fluid flow measurements

    International Nuclear Information System (INIS)

    Parry, Jonathan P.; Shephard, Jonathan D.; Thomson, Martin J.; Taghizadeh, Mohammad R.; Jones, Julian D. C.; Hand, Duncan P.

    2007-01-01

    Fiber delivery of 64.7 mJ laser pulses (∼6 ns duration) from a Q-switched Nd:YAG laseroperating at532 nm is demonstrated. A custom diffractive optical element was used toshape the laser beam and facilitate coupling into a linear fiber array. This launcharrangement achieves an improvement in launch efficiency compared with a circular fiberbundle evaluated in previous work and the delivery of higher pulse energies isdemonstrated. The bundle is capable of delivering light of sufficient pulse energy and,importantly, with suitable focusability, to generate a thin light sheet for the fluid flowmeasurement technique of particle image velocimetry (PIV). Fiber delivery offers anadvantage, in terms of optical access, for the application of PIV to enclosed measurementvolumes, such as the cylinder of a combustion engine

  4. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  5. Fractional CO2 laser is as effective as Q-switched ruby laser for the initial treatment of a traumatic tattoo.

    Science.gov (United States)

    Seitz, Anna-Theresa; Grunewald, Sonja; Wagner, Justinus A; Simon, Jan C; Paasch, Uwe

    2014-12-01

    Q-switched laser treatments are considered the standard method for removing both regular and traumatic tattoos. Recently, the removal of tattoo ink using ablative fractional lasers has been reported. Ablative fractional CO2 laser and q-switched ruby laser treatments were used in a split-face mode to compare the safety and efficacy of the two types of laser in removing a traumatic tattoo caused by the explosion of a firework. A male patient suffering from a traumatic tattoo due to explosive deposits in his entire face was subjected to therapy. A series of eleven treatments were performed. The right side of the face was always treated using an ablative fractional CO2 laser, whereas the left side was treated only using a q-switched ruby laser. After a series of eleven treatments, the patient demonstrated a significant lightening on both sides of his traumatic tattoo, with no clinical difference. After the first six treatments, the patient displayed greater lightening on the right side of his face, whereas after another five treatments, the left side of the patient's face appeared lighter. No side effects were reported. In the initial stage of removing the traumatic tattoo, the ablative fractional laser treatment appeared to be as effective as the standard ruby laser therapy. However, from the 6th treatment onward, the ruby laser therapy was more effective. Although ablative fractional CO2 lasers have the potential to remove traumatic tattoos, they remain a second-line treatment option.

  6. Sclerosis and the Nd:YAG, Q-switched laser with multiple frequency for treatment of telangiectases, reticular veins, and residual pigmentation.

    Science.gov (United States)

    Cisneros, J L; Del Rio, R; Palou, J

    1998-10-01

    The combination of low concentrations of sclerosing solution and the Nd:YAG, Q-switched laser with multiple (quadruple) frequency provides good results in the treatment of telangiectases and reticular varicose veins of the lower extremities, as well as pigmentation that may appear during sclerotherapy. This paper is based on a series of patients with telangiectases and reticular veins who were treated with sclerotherapy and the Nd:YAG, Q-switched laser with quadruple frequency. Patients with telangiectases and reticular veins received two or three treatment sessions with polydocanol and the Nd:YAG, Q-switched laser with quadruple frequency. Then, they were assessed a clinical score corresponding to the level of improvement achieved. Residual hematic pigmentation lesions were also eliminated with the laser. Excellent improvement was evident in 90% of the patients with minimal residual lesions. The combined technique of sclerosing solution and the Nd:YAG laser with multiple frequency is a valid alternative for the elimination of telangiectases and reticular veins of the lower limbs. This technique has several advantages, such as the use of low concentrations of sclerosing solution, high patient acceptance levels due to minimal disturbances, and the fact that local anesthesia is unnecessary. Good results are obtained without complications and minimal residual pigmentation. These mild pigmentation can be treated with the Nd:YAG laser.

  7. Complete resolution of minocycline pigmentation following a single treatment with non-ablative 1550-nm fractional resurfacing in combination with the 755-nm Q-switched alexandrite laser.

    Science.gov (United States)

    Vangipuram, Ramya K; DeLozier, Whitney L; Geddes, Elizabeth; Friedman, Paul M

    2016-03-01

    Pigmentation secondary to minocycline ingestion is an uncommon adverse event affecting 3.7-14.8% of treated individuals for which few effective therapies are available. Three patterns of minocycline pigmentation have a characteristic clinical and histological appearance. The pigment composition in each variety is different and occurs at varying skin depths. Accordingly, a tailored approach according to the type of minocycline pigmentation is crucial for treatment success. The purpose of this intervention was to evaluate the efficacy of non-ablative fractional photothermolysis in combination with the Q-switched alexandrite laser for the treatment of type I minocycline pigmentation on the face. A patient with type I minocycline pigmentation was treated with non-ablative 1550-nm fractional photothermolysis followed immediately by 755-nm Q-switched alexandrite laser and then observed clinically to determine the outcome of this modality. The patient was seen in clinic 1 month later following her single treatment session and 100% clearance of all blue facial pigment was observed. Non-ablative fractional photothermolysis in combination with the 755-nm Q-switched alexandrite laser should be considered for treatment of type I minocycline pigmentation. © 2015 Wiley Periodicals, Inc.

  8. High-current pulses from inductive energy stores

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1981-01-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ

  9. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  10. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  11. Efficient delivery of 60 J pulse energy of long pulse Nd:YAG laser ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Most of today's industrial Nd:YAG lasers use fibre-optic beam delivery. ... optical fibre and successfully delivered up to 60 J of pulse energy with .... and electrical pump input to laser output conversion efficiency is about 5%. ... [3] W Koechner, Solid state laser engineering, 5th edn (Springer, Berlin, 1999).

  12. Treatment of resistant tattoos using a new generation Q-switched Nd:YAG laser: influence of beam profile and spot size on clearance success.

    Science.gov (United States)

    Karsai, Syrus; Pfirrmann, Gudrun; Hammes, Stefan; Raulin, Christian

    2008-02-01

    Multiple treatments of resistant tattoos often result in fibrosis and visible textural changes that lessen response to subsequent treatments. The aim of this study is to evaluate the influence of beam profile and spot size on clearance rates and side effects in the setting of resistant tattoos. Thirty-six professional, black tattoos (32 patients) were treated unsuccessfully with a Q-switched Nd:YAG laser (MedLite C3, HoyaConBio Inc., Fremont, CA). Because of therapy resistance all tattoos were re-treated using a new generation Nd:YAG laser (MedLite C6, HoyaConBio Inc.). Maximum energy fluence (E (max)), mean energy fluence, mean spot size, level of clearance, side effects and beam profile (irradiance distribution) of both laser systems were assessed and evaluated in a retrospective study. All tattoos were previously treated with the C3 laser at 1,064 nm using a mean E(max) of 5.8+/-0.8 J/cm(2) (range 3.8-7.5 J/cm(2)) as compared with a mean E(max) of 6.4+/-1.6 J/cm(2) (range 3.2-9.0 J/cm(2)) during the C6 treatment course. Corresponding spot sizes were larger during C6 treatments as compared with C3 (5.0+/-0.9 and 3.6+/-0.2 mm, respectively). The C6 laser had a "flat top" and homogenous profile regardless of the spot size. For the C3 laser the beam shape was "Gaussian," and the homogeneity was reduced by numerous micro-spikes and micro-nadirs. After the C6 treatment course 33.3% of the tattoos showed clearance of grade 1 (0-25%), 16.7% of grade 2 (26-50%), 16.7% of grade 3 (51-75%), 30.5% of grade 4 (76-95%), 2.8% of grade 5 (96-100%). The total rate of side effects due to C6 treatment was 8.3% in all tattoos (hyperpigmentation 5.6%, hypopigmentation 2.7%, textural changes/scars 0%). This clinical study documents for the first time the impact of a 1,064-nm Nd:YAG laser with a more homogenous beam profile and a larger spot size on the management of resistant tattoos. Only a few treatment sessions were necessary to achieve an additional clearance with a low rate of

  13. Pulsed power inductive energy storage in the microsecond range

    International Nuclear Information System (INIS)

    Rix, W.; Miller, A.R.; Thompson, J.; Waisman, E.; Wilkinson, M.; Wilson, A.

    1993-01-01

    During the past five years Maxwell has developed a series of inductive energy storage (IES) pulsed power generators; ACE 1, ACE 2, ACE 3, and ACE 4, to drive electron-beam loads. They are all based on a plasma opening switch (POS) contained in a single vacuum envelope operating at conduction times of around one microsecond. They all employ fast capacitor bank technology to match this conduction time without intermediate power conditioning. Oil or air filled transmission lines transfer capacitor bank energy to a vacuum section where the final pulse compression is accomplished. Development of the ACE series is described, emphasizing capacitor bank and the opening switch technology for delivering high voltage, multimegampere pulses to electron beam loads

  14. Interaction of pulse laser radiation of 532 nm with model coloration layers for medieval stone artefacts

    Energy Technology Data Exchange (ETDEWEB)

    Colson, J. [University of Vienna, Department of Physical Chemistry, A-1090 Vienna (Austria); Nimmrichter, J. [Austrian Federal Office for the Care of Monuments, Department for Conservation and Restoration, Arsenal, Objekt 15, Tor 4, A-1030 Vienna (Austria); Kautek, W., E-mail: wolfgang.kautek@univie.ac.at [University of Vienna, Department of Physical Chemistry, A-1090 Vienna (Austria)

    2014-05-01

    Multilayer polychrome coatings on medieval and Renaissance stone artefacts represent substantial challenges in laser cleaning. Therefore, polychromic models with classical pigments, minium (Pb{sub 2}{sup 2+}Pb{sup 4+}O{sub 4}), zinc white (ZnO), and lead white ((PbCO{sub 3}){sub 2}·Pb(OH){sub 2}) in an acrylic binder, were irradiated with a Q-switched Nd:YAG laser emitting at 532 nm. The studied medieval pigments exhibit strongly varying incubation behaviours directly correlated to their band gap energies. Higher band gaps beyond the laser photon energy of 2.3 eV require more incubative generation of defects for resonant transitions. A matching of the modification thresholds after more than four laser pulses was observed. Laser cleaning with multiple pulsing should not exceed ca. 0.05 J/cm{sup 2} when these pigments coexist in close spatial proximity.

  15. Quantum energy duplication using super high output pulse laser

    International Nuclear Information System (INIS)

    Sugisaki, Kiwamu; Koyama, Kazuyoshi; Tanimoto, Mitsumori; Saito, Naoaki

    2000-01-01

    This study aims at elucidation on phenomena induced by strong electric field of super high output ultra short laser pulse to carry out development of basic technology required for promotion of a study on generation of high energy particle and photon using them, in order to contribute to application of super high output ultra short laser pulse and high energy plasma formed by it. In 1998 fiscal year of the last fiscal year in this study, by intending to increase the output by narrowing pulse width of the super high output laser, some basic experiments such as verification due to experiment on relativity theoretical self-convergence, generation of high energy particles, and so forth were carried out to establish a forecasting on future application. And, by conducting plasma generation experiment, self-guide and high energy particle formation experiment in plasma of super high intensity laser pulse important for its applications, and so forth, various technologies constituting foundation of future developments were developed, and more results could be obtained than those at proposal of this study. (G.K.)

  16. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  17. Progress in developing repetitive pulse systems utilizing inductive energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1983-01-01

    High-power, fast-recovery vacuum switches were used in a new repetitive counterpulse and transfer circuit to deliver a 5-kHz pulse train with a peak power of 75 MW (at 8.6 kA) to a 1-..cap omega.. load, resulting in the first demonstration of fully controlled, high-power, high-repetition-rate operation of an inductive energy-storage and transfer system with nondestructive switches. New circuits, analytical and experimental results, and feasibility of 100-kV repetitive pulse generation are discussed. A new switching concept for railgun loads is presented.

  18. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  19. Energy detection UWB system based on pulse width modulation

    Directory of Open Access Journals (Sweden)

    Song Cui

    2014-05-01

    Full Text Available A new energy detection ultra-wideband system based on pulse width modulation is proposed. The bit error rate (BER performance of this new system is slightly worst than that of a pulse position modulation (PPM system in additive white Gaussian noise channels. In multipath channels, this system does not suffer from cross-modulation interference as PPM, so it can achieve better BER performance than PPM when cross-modulation interference occurs. In addition, when synchronisation errors occur, this system is more robust than PPM.

  20. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    International Nuclear Information System (INIS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-01-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2∼1.0μW in the Human heart rate range on the skin contact area of 3.71cm 2 . Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves

  1. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  2. Effects of tattoo ink's absorption spectra and particle size on cosmetic tattoo treatment efficacy using Q-switched Nd:YAG laser.

    Science.gov (United States)

    Leu, Fur-Jiang; Huang, Chuen-Lin; Sue, Yuh-Mou; Lee, Shao-Chen; Wang, Chia-Chen

    2015-01-01

    The mechanisms responsible for variable responses of cosmetic tattoos to Q-switched laser removal treatment remain unclear. We sought to investigate the properties of tattoo inks that may affect the efficacy of laser-assisted tattoo removal. The absorption of white, brown, and black inks before and after Q-switched neodymium-doped yttrium aluminum garnet laser irradiation were analyzed by a reflectance measurement system. Rats were tattooed using the three inks and treated with the same laser for two sessions. Skin biopsies were taken from the treated and untreated sites. Black ink showed strong absorption, reduced after laser irradiation, over the entire spectrum. White ink had low absorption over the visible light spectrum, and brown ink had strong absorption at 400-550 nm wavelengths. White and brown inks turned dark after laser exposure, and the absorption of laser-darkened inks were intermediate between their original color and black ink. White, brown, and black tattoos in rat skin achieved poor, fair to good, and excellent responses to laser treatment, respectively. Transmission electron microscopy showed that white tattoo particles were the largest, brown were intermediate, and black were the smallest before laser. After laser treatment, white and brown tattoo particles were mixtures of large and small particles, while black particles showed overall reduction in number and size. Black tattoo ink's excellent response to Q-switched lasers was associated with its strong absorption and small particle size. White tattoo ink's poor response was associated with its poor absorption, even after laser darkening, and large particle size.

  3. Study of simultaneous q-switching and mode-locking in ND:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2009-01-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber. (author)

  4. Study of simulations q-switching and mode-locking in Nd:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2007-12-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber.(author)

  5. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  6. Energy constraints in pulsed phase control of chaos

    Energy Technology Data Exchange (ETDEWEB)

    Meucci, R., E-mail: riccardo.meucci@ino.it [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Euzzor, S. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Zambrano, S. [Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano (Italy); Pugliese, E. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50100 Firenze (Italy); Francini, F. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Arecchi, F.T. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Università di Firenze, Firenze (Italy)

    2017-01-15

    Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant for real systems. As a fact, it has not been explored whether this technique can also be applied when the controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. Experimental measurements and numerical simulations show that this kind of perturbation is also able to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the importance of energy constraints.

  7. Energy constraints in pulsed phase control of chaos

    International Nuclear Information System (INIS)

    Meucci, R.; Euzzor, S.; Zambrano, S.; Pugliese, E.; Francini, F.; Arecchi, F.T.

    2017-01-01

    Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant for real systems. As a fact, it has not been explored whether this technique can also be applied when the controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. Experimental measurements and numerical simulations show that this kind of perturbation is also able to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the importance of energy constraints.

  8. Shock waves in water at low energy pulsed electric discharges

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  9. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  10. Experimental study of the effect of Nd:YAG laser on dental hard tissues: comparison between multi-pulse and free-generation emission code

    International Nuclear Information System (INIS)

    Carballosa Amor, A.; Tellez Jimenez, H.; Ponce Flores, E.; Flores Reyes, T.

    2016-01-01

    The aim of this study is to compare and contrast the morphological changes on dental hard tissue when irradiated with a Nd: YAG laser both on multi-pulse mode, with a Q: Switch of Cr: YAG passive, and on free generation mode. The experimental sample consisted of 6 healthy third molars which were divided equally and randomly between the two emission methods. The depths of each perforation were measured by optical coherence tomography (OCT). It was noted that, despite being less energy in the multi-pulse mode, the first three shots in this achieved deeper cavities than the ones on the free generation mode. Also, less damage to surrounding tissue were obtained on multi-pulse mode. (Author)

  11. Shock wave generation in laser ablation studied using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Eynas; Gren, Per; Sjoedahl, Mikael [Division of Experimental Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)], E-mail: eynas.amer@ltu.se, E-mail: per.gren@ltu.se, E-mail: mikael.sjodahl@ltu.se

    2008-11-07

    Pulsed digital holographic interferometry has been used to study the shock wave induced by a Q-switched Nd-YAG laser ({lambda} = 1064 nm and pulse duration 12 ns) on a polycrystalline boron nitride (PCBN) ceramic target under atmospheric air pressure. A special setup based on using two synchronized wavelengths from the same laser for processing and measurement simultaneously has been introduced. Collimated laser light ({lambda} = 532 nm) passed through the volume along the target and digital holograms were recorded for different time delays after processing starts. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave generated by the process. The location of the induced shock wave front was observed for different focusing and time delays. The amount of released energy, i.e. the part of the incident energy of the laser pulse that is eventually converted to a shock wave has been estimated using the point explosion model. The released energy is normalized by the incident laser pulse energy and the energy conversion efficiency between the laser pulse and PCBN target has been calculated at different power densities. The results show that the energy conversion efficiency seems to be constant around 80% at high power densities.

  12. Comparison of Q-switched Nd:YAG laser alone versus its combination with ultrapulse CO2 laser for the treatment of black tattoo.

    Science.gov (United States)

    Vanarase, Mithila; Gautam, Ram Krishan; Arora, Pooja; Bajaj, Sonali; Meena, Neha; Khurana, Ananta

    2017-10-01

    Q-switched lasers are conventionally used for the treatment of black tattoo. However, they require multiple sittings, and the response may be slow due to competing epidermal pigment in dark skin. To compare the efficacy of Q-switched Nd:YAG laser alone with its combination with ultrapulse CO 2 for the removal of black tattoo. Sixty patients with black tattoo were randomized into two groups viz., group A and group B. Group A was treated with QS Nd:YAG laser (1064 nm) alone, and group B received combination of ablative ultrapulse CO 2 followed by fixed-dose QS Nd:YAG laser (1064 nm), at 6-week interval for a maximum of 6 sittings. After each sitting, 3 independent physicians noted percentage of improvement that was evaluated using visual analogue scale (VAS) and grading system for tattoo ink lightening (TIL). Combination laser (group B) showed statistically significant improvement in mean VAS score in the last 2 noted visits as compared to 1st session (p tattoos, combination of ultrapulse CO 2 laser and QS Nd:YAG laser is superior to QS Nd:YAG laser alone.

  13. Effect of spot size and fluence on Q-switched alexandrite laser treatment for pigmentation in Asians: a randomized, double-blinded, split-face comparative trial.

    Science.gov (United States)

    Wang, Chia-Chen; Chen, Chih-Kang

    2012-10-01

    Q-switched laser treatment for pigment disorders commonly leads to postinflammatory hyperpigmentation (PIH) in Asians. To evaluate the effect of spot size and fluence on Q-switched alexandrite laser (QSAL) treatment for pigmentation in Asians. Ten patients with freckles, 18 with lentigines, and 8 with acquired bilateral nevus of Ota-like macules (ABNOM) received 1 session of QSAL treatment for a 3-mm spot on one cheek and a 4-mm spot on the other cheek. The lowest fluences to achieve a visible biologic effect were chosen. The patients with freckles experienced the highest improvement rate (83-84%), followed by those with lentigines (52%) and ABNOM (35%). Similar efficacy was observed for both cheeks (p > 0.05). PIH developed in 10% (1/10), 44% (8/18), and 75% (6/8) of the patients with freckles, lentigines, and ABNOM, respectively. The severity of PIH was lower in the 4-mm spot with a lower fluence than in the 3-mm spot with a higher fluence in patients with lentigines (p = 0.03), but not in those with freckles or ABNOM. Using a larger spot to achieve the same biologic effect at a lower fluence is associated with equal efficacy and less-severe PIH in patients with lentigines.

  14. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  15. Efficient modeling for pulsed activation in inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Sanz, J.; Yuste, P.; Reyes, S.; Latkowski, J.F.

    2000-01-01

    First structural wall material (FSW) materials in inertial fusion energy (IFE) power reactors will be irradiated under typical repetition rates of 1-10 Hz, for an operation time as long as the total reactor lifetime. The main objective of the present work is to determine whether a continuous-pulsed (CP) approach can be an efficient method in modeling the pulsed activation process for operating conditions of FSW materials. The accuracy and practicability of this method was investigated both analytically and (for reaction/decay chains of two and three nuclides) by computational simulation. It was found that CP modeling is an accurate and practical method for calculating the neutron-activation of FSW materials. Its use is recommended instead of the equivalent steady-state method or the exact pulsed modeling. Moreover, the applicability of this method to components of an IFE power plant subject to repetition rates lower than those of the FSW is still being studied. The analytical investigation was performed for 0.05 Hz, which could be typical for the coolant. Conclusions seem to be similar to those obtained for the FSW. However, further future work is needed for a final answer

  16. Energy transfer from an alkene triplet state during pulse radiolysis

    International Nuclear Information System (INIS)

    Barwise, A.J.G.; Gorman, A.A.; Rodgers, M.A.J.

    1976-01-01

    Pulse radiolysis of a benzene solution of norbornene containing low concentrations of anthracene results in delayed formation of anthracene triplet: this is the result of diffusion-controlled energy transfer from the alkene triplet state which has a natural lifetime in benzene of 250 ns. The use of various hydrocarbon acceptors has indicated that Esub(T)=20 000+-500 cm -1 for the relaxed T 1 state of the alkene, at least 5000 cm -1 below that of the spectroscopic state. (Auth.)

  17. Electro-optic control of a PPLN-unpoled LiNbO3 boundary for low-voltage Q switching of an intracavity frequency-doubled Nd3+:YVO4 laser.

    Science.gov (United States)

    Torregrosa, A J; Maestre, H; Fernández-Pousa, C R; Pereda, J A; Capmany, J

    2009-08-01

    We present a simple technique to integrate an electro-optic Q switch in a periodically poled bulk lithium niobate crystal bounded by two unpoled (monodomain) regions. The technique exploits the high sensitivity to low applied electric fields of the total internal reflection condition in the periodic poled-unpoled boundary for the small grazing incidence angles associated with the diffraction of a focused Gaussian beam that propagates in the periodically poled region with its axis parallel to the boundary. When the arrangement is placed intracavity to a 1064 nm diode-pumped Nd(3+):YVO(4) laser, it performs simultaneously as a Q switch and as a second-harmonic generator, with Q switching starting at applied voltages as low as 1 V over a 500 microm thickness and with no additional optical elements.

  18. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    Science.gov (United States)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  19. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  20. Pulse energy evolution for high-resolution Lamb wave inspection

    International Nuclear Information System (INIS)

    Hua, Jiadong; Zeng, Liang; Gao, Fei; Lin, Jing

    2015-01-01

    Generally, tone burst excitation methods are used to reduce the effect of dispersion in Lamb wave inspection. In addition, algorithms for dispersion compensation are required to simplify responses, especially in long-range inspection. However, the resolution is always limited by the time duration of tone burst excitation. A pulse energy evolution method is established to overcome this limitation. In this method, a broadband signal with a long time (e.g. a chirp, white noise signal, or a pseudo-random sequence) is used as excitation to actuate Lamb waves. First of all, pulse compression is employed to estimate system impulse response with a high signal-to-noise ratio. Then, dispersion compensation is applied repeatedly with systemically varied compensation distances, obtaining a series of compensated signals. In these signals, amplitude (or energy) evolution associated with the change of compensation distance is utilized to estimate the actual propagation distance of the interested wave packet. Finally, the defect position is detected by an imaging algorithm. Several experiments are given to validate the proposed method. (paper)

  1. Energy concentration on S-300 pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Bakshaev, Yu Z; Chernenko, A S; Korolev, V D; Mizhiritskij, V I; Zazhivikhin, V V [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Energy concentration in fast Z-pinch investigation experiments on an 8-module 10 TW pulsed power S-300 generator (1.3 MV, 45 ns FWHM, 0.15 Ohm) is realized by a 3-d vacuum energy concentrator. The concentrator was constructed on the basis of triplate MITLs connected in parallel at the central unit where the Z-pinch is formed. At some start-up experiments on the 8-module installation version at 700 kV incident wave amplitude on concentrator for a gas puff load current of 4 MA with rise time of about 60 ns was obtained. The efficiency or current transfer from the concentrator input to the load for both a gas liner and a short-circuited case was practically the same. (author). 4 figs., 4 refs.

  2. Successful treatment of tattoo-induced pseudolymphoma with sequential ablative fractional resurfacing followed by Q-switched Nd: Yag 532 nm laser

    Directory of Open Access Journals (Sweden)

    Tan Siyun Lucinda

    2013-01-01

    Full Text Available Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR followed by Q-Switched (QS Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott′s Methenamine Silver (GMS stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present.

  3. The study of 670.7 nm red light generated by intracavity frequency doubling of a Q-switched Nd : YAlO3 laser

    International Nuclear Information System (INIS)

    Zhu Haiyong; Zhang Ge; Huang Chenghui; Wei Yong; Huang Lingxiong; Huang Yidong

    2009-01-01

    High-power 670.7 nm red light was obtained by intracavity frequency doubling of a Q-switched Nd : YAlO 3 (Nd : YAP) laser with a critical phase matching (θ = 85.9 0 , φ = 0 0 ) cut LBO. Experimental configurations using V-cavity and Z-cavity have been adopted for comparison. The highest output power of 19.7 W was achieved in the Z-cavity with optical-optical efficiency of 4%. Compared with the laser using an Nd : YAG crystal, the adoption of Nd : YAP simplified the laser system in the absence of a solid etalon and the Brewster plate. The output power stability of the red laser was investigated and the fluctuation was lower than 3% at the output power of 18 W an hour.

  4. Successful Treatment of Tattoo-Induced Pseudolymphoma with Sequential Ablative Fractional Resurfacing Followed by Q-Switched Nd: YAG 532 nm Laser

    Science.gov (United States)

    Lucinda, Tan Siyun; Hazel, Oon Hwee Boon; Joyce, Lee Siong Siong; Hon, Chua Sze

    2013-01-01

    Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR) followed by Q-Switched (QS) Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott's Methenamine Silver (GMS) stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present. PMID:24470721

  5. Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser.

    Science.gov (United States)

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Li, Shutao; Chen, Xiaohan; Zhang, Xiaolei; Fan, Shuzhen; Zhang, Huaijin; Tao, Xutang

    2009-09-01

    An efficient intracavity frequency-doubled Raman laser was obtained by using an SrWO(4) Raman medium, an Nd:YAG ceramic gain medium, and a KTP frequency-doubling medium. Three laser cavities, including a two-mirror cavity, a three-mirror coupled cavity, and a folded cavity, were investigated. With the coupled cavity, a 2.93 W, 590 nm laser was obtained at an incident pump power of 16.2 W and a pulse repetition frequency of 20 kHz; the corresponding conversion efficiency was 18.1%. The highest conversion efficiency of 19.2% was obtained at an incident pump power of 14.1 W and a pulse repetition frequency of 15 kHz. The obtained maximum output power and conversion efficiency were much higher than the results previously obtained with intracavity frequency-doubled solid-state Raman lasers.

  6. CW and pulsed operation of a diode-end-pumped Tm:GdVO4 laser at room temperature

    International Nuclear Information System (INIS)

    Wang, Z G; Song, C W; Li, Y F; Ju, Y L; Wang, Y Z

    2009-01-01

    A room-temperature diode-end-pumped acousto-optical (AO) Q-switched Tm:GdVO 4 laser was firstly reported. The minimum AO Q-switch pulse width was measured to be about 48 ns with output power of 2 W and repetition rate of 5 kHz. Continuous-wave output power of 2.8 W at 1912 nm was obtained under the absorbed pump power of 15 W. In addition, laser pulse widths and the ratio of QCW power/CW power at different repetition rates were discussed

  7. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  8. Potential role of S100A8 in skin rejuvenation with the 1064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Qin, Yan; Qin, Xiaofeng; Xu, Peng; Zhi, Yuanting; Xia, Weili; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2018-04-01

    The 1064-nm Q-switched Nd:YAG laser is demonstrated to be effective for non-ablative skin rejuvenation, but the molecular mechanism by which dermis responses to laser-induced damage and initiates skin remodeling is still unclear. HaCaT cells and 3T3 skin fibroblasts were irradiated with the 1064-nm Q-switched Nd:YAG laser at the different doses. Then, cells were collected and lysed for PCR and Western blot analysis. Cell viability was detected by Cell Counting Kit-8 (CCK-8) before and after laser irradiation. The expressions of S100A8, advanced glycosylation end product-specific receptor (RAGE) and inflammatory cytokines in two cell lines were markedly upregulated after laser treatments. The PCR, Western blot, and ELISA analysis showed the significant increase of type I and III procollagen in the 3T3 cells treated with the 1064-nm laser. Interestingly, si S100A8 effectively inhibited the expression of cytokines and collagen, while S100A8 treatments significantly increased them. P-p38 and p-p65 levels were also elevated after the 1064-nm laser irradiation, which is positively related with S100A8. Cell viability and reactive oxygen species (ROS) levels were not changed, while the content of superoxidase dismutase (SOD) in two cells was increased after laser irradiation. Our results demonstrated that the overexpression of S100A8 induced by the 1064-nm laser irradiation triggered inflammatory reactions in skin cells. The inflammatory microenvironment and improvement of skin antioxidant capacity contribute to new collagen synthesis in the skin cells. Thus, S100A8 was required for laser-induced new collagen synthesis in skin cells. p38/MAPK and NF-κB signal pathways were involved in S100A8-mediated inflammatory reactions in response to laser irradiation.

  9. Combined therapy using Q-switched ruby laser and bleaching treatment with tretinoin and hydroquinone for periorbital skin hyperpigmentation in Asians.

    Science.gov (United States)

    Momosawa, Akira; Kurita, Masakazu; Ozaki, Mine; Miyamoto, Shinpei; Kobayashi, Yo; Ban, Izumi; Harii, Kiyonori

    2008-01-01

    Periorbital skin hyperpigmentation, so-called dark circles, is of major concern for many people. However, only a few reports refer to the morbidity and treatment, and as far as the authors know, there are no reports of the condition in Asians. A total of 18 Japanese patients underwent combined therapy using Q-switched ruby laser to eliminate dermal pigmentation following topical bleaching treatment with tretinoin aqueous gel and hydroquinone ointment performed initially (6 weeks) to reduce epidermal melanin. Both steps were repeated two to four times until physical clearance of the pigmentation was confirmed and patient satisfaction was achieved. Skin biopsy was performed at baseline in each patient and at the end of treatment in three patients, all with informed consent. Clinical and histologic appearances of periorbital hyperpigmentation were evaluated and rated as excellent, good, fair, poor, or default. Seven of 18 patients (38.9 percent) showed excellent clearing after treatment and eight (44.4 percent) were rated good. Only one (5.6 percent) was rated fair and none was rated poor. Postinflammatory hyperpigmentation was observed in only two patients (11.1 percent). Histologic examination showed obvious epidermal hyperpigmentation in 10 specimens. Dermal pigmentation was observed in all specimens but was not considered to be melanocytosis. Remarkable reduction of dermal pigmentation was observed in the biopsy specimens of three patients after treatment. The new treatment protocol combining Q-switched ruby laser and topical bleaching treatment using tretinoin and hydroquinone is considered effective for improvement of periorbital skin hyperpigmentation, with a low incidence of postinflammatory hyperpigmentation.

  10. Efficacy of the Q-switched Neodymium: Yttrium Aluminum Garnet Laser in the Treatment of Blue-black Amateur and Professional Tattoos.

    Science.gov (United States)

    Lakshmi, Chembolli; Krishnaswamy, Gayathri

    2015-01-01

    Q-switched neodymium: yttrium aluminum garnet (Nd: YAG) laser at a wavelength of 1064 nm primarily targets dermal melanin and black tattoo ink. Recent studies have shown that this laser is effective in treating black tattoos. There are few studies conducted in India for the same. The aim was to assess the effectiveness of Q-switched Nd: YAG laser (QSNYL) in the treatment of blue-black tattoos following 3 treatment sessions. This study, a prospective interventional study included a total of 12 blue-black tattoos. Following informed consent for the procedure, as well as for photographs, a questionnaire was administered, and improvement perceived by the patient was recorded. In addition, global assessment score (GAS) by a blinded physician was also recorded. Photographs were taken at baseline and at every follow-up. Each patient underwent three treatment sessions with 1064 nm QSNYL at 4-6 weekly intervals. Fluences ranged from 1.8 to 9 J/cm(2). The follow-up was done monthly for 4 months from the first treatment session. The response was assessed by patient assessment (PA) and GAS by comparing photographs. After three treatment sessions, although no patient achieved clearance, most patients showed good response with few adverse effects. An average of 64.1% (GAS) and 54.2% (PA) improvement was observed in 12 tattoos. Tattoos more than 10-year-old showed quicker clearing than those less than 10-year-old. Amateur tattoos also showed a better response in comparison to professional tattoos. Totally, 1064 nm QSNYL is safe and effective for lightening blue-black tattoos in pigmented Indian skin. All patients achieved near complete clearance following the continuation of treatment (an average of six sessions) although this was spaced at longer intervals.

  11. Rapid, high-fluence multi-pass q-switched laser treatment of tattoos with a transparent perfluorodecalin-infused patch: A pilot study.

    Science.gov (United States)

    Biesman, Brian S; O'Neil, Michael P; Costner, Cara

    2015-10-01

    Perfluorodecalin (PFD) has previously been shown to rapidly dissipate the opaque, white micro-bubble layer formed after exposure of tattoos to Q-switched lasers [1]. The current pilot study was conducted to qualitatively determine if the use of a transparent PFD-infused silicone patch would result in more rapid clearance of tattoos than conventional through-air techniques. Black or dark blue tattoos were divided into two halves in a single-site IRB-approved study with 17 subjects with Fitzpatrick skin types I-III. One half of each tattoo served as its own control and was treated with one pass of a standard Q-switched Alexandrite laser (755 nm). The other half of the tattoo was treated directly through a transparent perfluorodecalin (PFD) infused patch (ON Light Sciences, Dublin, CA). The rapid whitening reduction effect of the Patch routinely allowed three to four laser passes in a total of approximately 5 minutes. Both sides were treated at highest tolerated fluence, but the optical clearing, index-matching, and epidermal protection properties of the PFD Patch allowed significantly higher fluence compared to the control side. Standard photographs were taken at baseline, immediately prior to treatment with the PFD Patch in place, and finally before and after each treatment session. Treatments were administered at 4- to 6-week intervals. In a majority of subjects (11 of 17), tattoos treated through a transparent PFD-infused patch showed more rapid tattoo clearance with higher patient and clinician satisfaction than conventional treatment. In no case did the control side fade faster than the PFD Patch side. No unanticipated adverse events were observed. Rapid multi-pass treatment of tattoos with highest tolerated fluence facilitated by a transparent PFD-infused patch clears tattoos more rapidly than conventional methods. © 2015 Wiley Periodicals, Inc.

  12. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  13. Latest version of the Munich pulsed low energy positron system

    International Nuclear Information System (INIS)

    Bauer-Kugelmann, W.; Sperr, P.; Koegel, G.; Triftshaeuser, W.

    2001-01-01

    Further improvements of the Munich pulsed low energy positron system have been performed. A new chopper, configured as a double plate deflection system with an external resonator and a new buncher working like a classical double gap buncher, are implemented. The complete rf-power electronic was redesigned and operates now at an overall master-frequency of 50 MHz for all bunching and chopping components. A new target station with an enlarged Faraday cage is installed. The sample temperature is variable between 30 K and 600 K. Up to ten samples can be stored in a magazine and transferred under vacuum conditions to the measuring position. With a primary source of 30 mCi 22 Na a count rate of up to 4 kHz can be achieved with a peak-to-background ratio of 3000:1. This ratio can be further improved by the use of a Wien filter. A beam diameter of about 2 mm was determined. The total time resolution (pulsing plus detector system) is 250 ps (FWHM). (orig.)

  14. Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire

    International Nuclear Information System (INIS)

    Miller, E.K.; Deadrick, F.J.; Landt, J.A.

    1975-01-01

    Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire is examined. Energy collected by the wire, load energy, peak load currents, and peak load voltages are found for a wide range of parameters, with particular emphasis on nuclear electromagnetic pulse (EMP) phenomena. A series of time-sequenced plots is used to illustrate pulse propagation on wires when loads and wire ends are encountered

  15. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  16. Bifurcation-free design method of pulse energy converter controllers

    International Nuclear Information System (INIS)

    Kolokolov, Yury; Ustinov, Pavel; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2009-01-01

    In this paper, a design method of pulse energy converter (PEC) controllers is proposed. This method develops a classical frequency domain design, based on the small signal modeling, by means of an addition of a nonlinear dynamics analysis stage. The main idea of the proposed method consists in fact that the PEC controller, designed with an application of the small signal modeling, is tuned after with taking into the consideration an essentially nonlinear nature of the PEC that makes it possible to avoid bifurcation phenomena in the PEC dynamics at the design stage (bifurcation-free design). Also application of the proposed method allows an improvement of the designed controller performance. The application of this bifurcation-free design method is demonstrated on an example of the controller design of direct current-direct current (DC-DC) buck converter with an input electromagnetic interference filter.

  17. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  18. A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration

    International Nuclear Information System (INIS)

    Wang, Y Y; Xu, D G; Jiang, H; Zhong, K; Yao, J Q

    2013-01-01

    A high-energy, low-threshold THz-wave output has been experimentally demonstrated with an intracavity terahertz-wave parametric oscillator based on a surface-emitted configuration, which was pumped by a diode-side-pumped Q-switched Nd:YAG laser. Different beam sizes and repetition rates of the pump light have been investigated for high-energy and high-efficiency THz-wave generation. The maximum THz-wave output energy of 283 nJ/pulse was obtained at 1.54 THz under an intracavity 1064 nm pump energy of 59 mJ. The conversion efficiency was 4.8 × 10 −6 , corresponding to a photon conversion efficiency of 0.088%. The pump threshold was 12.9 mJ/pulse. A continuously tunable range from 0.75 to 2.75 THz was realized. (paper)

  19. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    Science.gov (United States)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  20. Effect of Nd 3+ concentration on CW and pulsed performance of ...

    Indian Academy of Sciences (India)

    Q-switching was done with the help of an acousto-optic modulator and we have compared the pulses obtained from Nd : YVO4 laser with different doping concentration. It was found that the 1 at. ... S K Sharma1 T P S Nathan1. Diode Pumped Solid State Laser Group, Center for Advanced Technology, Indore 452 013, India ...

  1. Generation of programmable temporal pulse shape and applications in micromachining

    Science.gov (United States)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  2. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  3. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    International Nuclear Information System (INIS)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001

  4. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang, E-mail: yxweng@iphy.ac.cn [Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Xianyou [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Qingxu [School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023 (China)

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  5. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  6. Application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2003-01-01

    This paper introduces the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 reader and GR-100 M chips on the measurement of hard X-ray pulse energy spectrum. The idea using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV) is discussed in details. Considering all the factors of the measuring surrounding, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device-high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  7. The application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2001-01-01

    This paper introduce the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 Reader and TLD-100M chips on the measurement of hard X-ray pulse energy spectrum. The idea, using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV), is discussed in details. Considering all the factors of the measuring surroundings, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device -high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  8. Pulse distortion, energy extraction, and ASE in an HF amplifier with angular multiplexing

    International Nuclear Information System (INIS)

    McGuire, E.J.

    1976-09-01

    It has been proposed that 1 ns pulses can be efficiently extracted from the e-beam initiated HF laser by angular multiplexing, i.e., filling the amplifier with the 1 ns pulses, 1 ns apart in time, each pulse at a slightly different angle; each pulse has an input intensity of 1 W/cm 2 per line and almost fills the amplifier. We have treated this in a one dimensional model, neglecting transverse amplified spontaneous emission. We conclude that the scheme is efficient, and that most of the pulses are amplified but not distorted. The first few pulses are distorted by transient effects and the last pulse has an enhanced tail. The ratio of peak pulse intensity to forward ASE at the output is 10 4 . We then include transverse ASE and find a drastically different situation. ASE saturates the inversion after a short time depending on pulse intensity (4 ns at I/sub o/ = 1 W/cm 2 , 7 ns at I/sub o/ = 100 W/cm 2 ). The saturation time is only weakly dependent on the transverse reflection coefficient. Calculations were done on an amplifier system designed for 10 KJ output. At an incident peak pulse intensity of 10 4 W/cm 2 -line (.77 MW/cm 2 for 77 lines) 2.5 KJ was obtained in amplified pulse energy, i.e., only 6 pulses of the 24 pulse train were fully amplified. The calculations indicate that double passing the pulse train through the amplifier would enhance the energy extracted

  9. Ultrashort pulse energy distribution for propulsion in space

    Science.gov (United States)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  10. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  11. High-energy few-cycle pulse compression through self-channeling in gases

    International Nuclear Information System (INIS)

    Hauri, C.; Merano, M.; Trisorio, A.; Canova, F.; Canova, L.; Lopez-Martens, R.; Ruchon, T.; Engquist, A.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. Nonlinear spectral broadening of femtosecond optical pulses by intense propagation in a Kerr medium followed by temporal compression constitutes the Holy Grail for ultrafast science since it allows the generation of intense few-cycle optical transients from longer pulses provided by now commercially available femtosecond lasers. Tremendous progress in high-field and attosecond physics achieved in recent years has triggered the need for efficient pulse compression schemes producing few-cycle pulses beyond the mJ level. We studied a novel pulse compression scheme based on self-channeling in gases, which promises to overcome the energy constraints of hollow-core fiber compression techniques. Fundamentally, self-channeling at high laser powers in gases occurs when the self-focusing effect in the gas is balanced through the dispersion induced by the inhomogeneous refractive index resulting from optically-induced ionization. The high nonlinearity of the ionization process poses great technical challenges when trying to scale this pulse compression scheme to higher energies input energies. Light channels are known to be unstable under small fluctuations of the trapped field that can lead to temporal and spatial beam breakup, usually resulting in the generation of spectrally broad but uncompressible pulses. Here we present experimental results on high-energy pulse compression of self-channeled 40-fs pulses in pressure-gas cells. In the first experiment, performed at the Lund Laser Center in Sweden, we identified a particular self-channeling regime at lower pulse energies (0.8 mJ), in which the ultrashort pulses are generated with negative group delay dispersion (GDD) such that they can be readily compressed down to near 10-fs through simple material dispersion. Pulse compression is efficient (70%) and exhibits exceptional spatial and temporal beam stability. In a second experiment, performed at the LOA-Palaiseau in France, we

  12. Pulsed high energy synthesis of fine metal powders

    Science.gov (United States)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  13. Electromagnetic pulse compression and energy localization in quantum plasmas

    International Nuclear Information System (INIS)

    Hefferon, Gareth; Sharma, Ashutosh; Kourakis, Ioannis

    2010-01-01

    The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of ∼1.35 attosecond and a spatial size of ∼1.08.10 -3 cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of ∼0.6 attosecond and a spatial size of ∼2.4.10 -3 cm.

  14. Basic principles of thermo-acoustic energy and temporal profile detection of microwave pulses

    CERN Document Server

    Andreev, V G; Vdovin, V A

    2001-01-01

    Basic principles of a thermo-acoustic method developed for the detection of powerful microwave pulses of nanosecond duration are discussed.A proposed method is based on the registration of acoustic pulse profile originated from the thermal expansion of the volume where microwave energy was absorbed.The amplitude of excited acoustic transient is proportional to absorbed microwave energy and its temporal profile resembles one of a microwave pulse when certain conditions are satisfied.The optimal regimes of microwave pulse energy detection and sensitivity of acoustic transient registration with piezo-transducer are discussed.It was demonstrated that profile of a microwave pulse could be detected with temporal resolution of 1 - 3 nanosecond.

  15. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    Science.gov (United States)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  16. Influence of energy and duration of laser pulses on stability of dielectric nanoparticles in optical trap

    International Nuclear Information System (INIS)

    Ho Quang Quy; Mai Van Luu; Hoang Dinh Hai

    2010-01-01

    In this article the gradient force of optical trap using two counter- propagating pulsed Gaussian beam and the Brownian motion in optical force field are investigated. The influence of the energy and duration time of optical pulsed Gaussian beams on stability of nano-particle in trap is simulated and discussed. (author)

  17. Study on the pathogenesis of transient intraocular pressure after laser iridectomy with Krypton laser combined with Q-switched Nd:YAG laser

    Directory of Open Access Journals (Sweden)

    Zhi-Juan Pei

    2017-12-01

    Full Text Available AIM: To study the pathogenesis of transient intraocular pressure(IOPafter laser iridectomy with Krypton laser combined with Q-switched Nd:YAG laser. METHODS: Totally 42 healthy rabbits(84 eyesprovided by the Animal Experimental Center of our hospital were selected, including 18 female rabbits, 24 male rabbits, average weight 2.24±0.31kg, and they were randomly divided into 6 groups, 7 rats in each group(14 eyes. We observed the change of intraocular pressure after laser iridectomy surgery at 20min, 2, 6, 18, 24h and the nitric oxide(NO, malondialdehyde(MDA, superoxide dismutase(SOD, 6-keto-prostaglandin(6-keto-PGF1αand nitric oxide synthase(NOScontent in aqueous. RESULTS: There was no significant difference in intraocular pressure, NO, NOS, SOD, MAD and 6-keto- PGF1α before operation(P>0.05. The intraocular pressure increased after operation, and the difference was statistically significant(PP>0.05. The levels of NO, NOS and SOD in the aqueous humor of the two groups decreased 20min, 2 and 6h after the operation(PP>0.05. The levels of MDA and 6-keto-prostaglandin in the aqueous humor increased after the operation, and the difference was statistically significant at 20min, 2 and 6h after operation(PP>0.05.CONCLUSION: The increase of transient intraocular pressure after laser iridectomy may relate to the increase of malondialdehyde, 6-keto-prostaglandin content and the decrease of superoxide dismutase and nitric oxide in the aqueous humor after operation.

  18. Long-term evaluation of ink clearance in tattoos with different color intensity using the 1064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Mankowska, Agata; Kasprzak, Wojciech; Adamski, Zygmunt

    2015-12-01

    The aim of the study was to evaluate the efficacy of tattoo removal treatments using the 1064-nm Q-switched (QS) Nd:YAG laser. Today, QS lasers appear to be the most common, effective, and safest methods to treat unwanted markings. A total of 64 patients with 75 unwanted tattoos were enrolled in the study. Tattoo clearance was evaluated according to the color intensity - concentration of pigment: group I (34) - black; group II (41) - gray. Consideration included methods of tattooing and tattoo techniques. In group I, after the first treatment session the median of clearance was 30% (10-50%), while in group II, the median was 50% (40-70%). After the second treatment session, median in group I increased to 40% (30-50%). Median of group II increased to 70% (50-80%). The highest number of treatment in group I was 7. After that, the median grew to 75%, while the highest amount of treatment in group II was 5 and a median of 90% was achieved. Effects were dependent upon the amount of ink deposited in the tissue. Old amateur tattoos and tattoos containing small quantities of ink (technique: shading and lines) demonstrated the quickest and the most efficacious results. Tattoos with large quantities of ink, obtained by filling, required the greatest number of treatment sessions. The final outcome in tattoo clearing can only be assessed following treatment completion, which may in some cases take 2-3 years. Presumably, in some cases, complete clearance is impossible. © 2015 Wiley Periodicals, Inc.

  19. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  20. High-energy-throughput pulse compression by off-axis group-delay compensation in a laser-induced filament

    International Nuclear Information System (INIS)

    Voronin, A. A.; Alisauskas, S.; Muecke, O. D.; Pugzlys, A.; Baltuska, A.; Zheltikov, A. M.

    2011-01-01

    Off-axial beam dynamics of ultrashort laser pulses in a filament enable a radical energy-throughput improvement for filamentation-assisted pulse compression. We identify regimes where a weakly diverging wave, produced on the trailing edge of the pulse, catches up with a strongly diverging component, arising in the central part of the pulse, allowing sub-100-fs millijoule infrared laser pulses to be compressed to 20-25-fs pulse widths with energy throughputs in excess of 70%. Theoretical predictions have been verified by experimental results on filamentation-assisted compression of 70-fs, 1.5-μm laser pulses in high-pressure argon.

  1. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lizarelli, R F Z; Costa, M M; Carvalho-Filho, E; Bagnato, V S; Nunes, F D

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface

  2. The effect of pulse current on energy saving during Electrochemical Chloride Extraction (ECE) in concrete

    DEFF Research Database (Denmark)

    Sun, Tian R.; Geiker, Mette R.; Ottosen, Lisbeth M.

    2012-01-01

    Energy consumption is a factor influencing the cost of Electrochemical Chloride Extraction (ECE) in concrete. The aims of this work were to investigate the possibility for energy saving when using a pulsed electric field during ECE and the effect of the pulsed current on removal of chloride. Four...... experiments with artificially polluted concrete under same charge transfer were conducted. Results showed that the energy consumption was decreased 15% by pulse current in experiments with 0.2 mA/cm2 current density, which was higher than that of 0.1 mA/cm2 experiments with a decrease of 9.6%. When comparing...... the voltage drop at different parts of the experimental cells, it was found that the voltage drop of the area across the concrete was the major contributor to energy consumption, and results indicated that the pulse current could decrease the voltage drop of this part by re-distribution of ions in pore fluid...

  3. Thermal conductivity contrast measurement of Fused Silica exposed to low-energy femtosecond laser pulses

    NARCIS (Netherlands)

    Bellouard, Y.J.; Dugan, M.; Said, A.A.; Bado, P.

    2006-01-01

    Femtosecond laser irradiation has various noticeable effects on fused silica. Of particular interest, pulses with energy levels below the ablation threshold can locally increase the refractive index and the material etching selectivity to hydrofluoric acid. The mechanism responsible for these

  4. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  5. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  6. Remedial pulse programme for the production of monoenergetic ion beams of low energy

    International Nuclear Information System (INIS)

    Olubuyide, O.A.

    1975-01-01

    The technique involves an extension of sequential pulse techniques. An ion swarm is produced in a conventional mass-spectrometer ion source by a short electron beam pulse. Immediately, this swarm is accelerated impulsively by a short high voltage pulse on the repeller. The principal disadvantage of impulsive acceleration is that the final energy distribution of the ion swarm is broad especially at the lowest energies. At some instant during the passage of the ion swarm across the chamber second pulse is applied to the repeller--a ''remedial'' pulse which will accelerate the ions throughout the remainder of their passage and whose amplitude will be time-dependent. Slower ions must travel a greater distance in this ''remedial'' field than faster ions and will experience a proportionately greater increase in velocity from it. In this way, the remedial pulse can cause all the ions to acquire the same velocity at the exit slit. A limited experimental investigation has been made to examine the application of the proposed remedial pulse technique to existing ion sources. Application of the remedial pulse to impulsively-accelerated ion swarms reduced the energy distribution in the manner predicted by the theory but the quantitative reduction measured experimentally--a factor of approximately 2--was substantially less than the theoretical prediction of a factor of approximately 4. The limitations were characterized and a means of overcoming them was suggested in a new ion source of improved design. (Diss. Abstr. Int., B)

  7. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  8. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  9. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  10. Frontiers in pulse-power-based high energy density plasma physics and its applications

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2008-03-01

    The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)

  11. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  12. Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes.

    Science.gov (United States)

    Cain, C P; Polhamus, G D; Roach, W P; Stolarski, D J; Schuster, K J; Stockton, K L; Rockwell, B A; Chen, Bo; Welch, A J

    2006-01-01

    With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 micros) at 24-h postexposure are measured to be 99 and 83 J cm(-2) for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 J cm(-2) for a 5-mm-diam top-hat laser pulse.

  13. Energy losses estimation during pulsed-laser seam welding

    Czech Academy of Sciences Publication Activity Database

    Šebestová, Hana; Havelková, M.; Chmelíčková, H.

    2014-01-01

    Roč. 45, č. 3 (2014), s. 1116-1121 ISSN 1073-5615 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : laser welding * pulsed-laser * Nd:YAG laser Subject RIV: JP - Industrial Processing Impact factor: 1.461, year: 2014

  14. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    Science.gov (United States)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  15. Research on Pulsed Jet Flow Control without External Energy in a Blade Cascade

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-12-01

    Full Text Available To control the flow separation in the compressors, a novel pulsed jet concept without external energy injection is proposed. The new concept designs a slot in the middle of the blade and sets a micro device to switch the slot periodically. Such a structure is expected to generate a pulsed jet by the pressure difference between the pressure side and the suction side of the blade. In order to analyze the interaction between the pulsed jet and unsteady separated flow, our numerical and experimental study is based on a specific cascade (with a flow separation inside and a pulsed jet (one of the unsteady flow control method. The experimental and numerical results both show that when the frequency of pulsed jet is approximate to that of the separation vortex, then the control tends to be more effective. Based on the numerical simulations, the proper orthogonal decomposition (POD is then used to reveal the control mechanism, extracting the different time-space structures from the original field. The results with the aid of POD show that the pulsed jet can redistribute the kinetic energy of each mode, and strengthen or weaken certain modes, particularly, while the steady jet reduces the kinetic energy of high-order modes in whole. Also, pulsed jet with proper parameters can transfer the energy from higher modes to the first flow mode (averaged flow, which is due to the conversion of the spatial vortical structures and the time evolution of the modes.

  16. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    Devanney, J.A.

    1974-01-01

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  17. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  18. Bragg Grating Inscription With Low Pulse Energy in Doped Microstructured Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Min, Rui; Ortega, Beatriz; Nielsen, Kristian

    2018-01-01

    in the POFs without high pulse energy (mJ level) at 248-nm wavelength, which reduces maintenance costs. Furthermore, we can consider it as a solution to increase the lifetime of the laser system without high energy still allowing fast and efficient production of the FBGs for sensing applications.......We demonstrate that fiber Bragg gratings (FBGs) can be written in a doped polymer optical fiber (POF) in a low ultraviolet (UV) pulse energy regime (60Jpulse) using a 248-nm krypton fluoride excimer laser system. The total energy density per inscription necessary to obtain Bragg gratings is between...

  19. Repetitively pulsed, high energy KrF lasers for inertial fusion energy

    International Nuclear Information System (INIS)

    Myers, M.C.; Sethian, J.D.; Giuliani, J.L.; Lehmberg, R.; Kepple, P.; Wolford, M.F.; Hegeler, F.; Friedman, M.; Jones, T.C.; Swanekamp, S.B.; Weidenheimer, D.; Rose, D.

    2004-01-01

    Krypton fluoride (KrF) lasers produce highly uniform beams at 248 nm, allow the capability of 'zooming' the spot size to follow an imploding pellet, naturally assume a modular architecture and have been developed into a pulsed-power- based industrial technology that readily scales to a fusion power plant sized system. There are two main challenges for the fusion power plant application: to develop a system with an overall efficiency of greater than 6% (based on target gains of 100) and to achieve a durability of greater than 3 x 10 8 shots (two years at 5 Hz). These two issues are being addressed with the Electra (700 J, 5 Hz) and Nike (3000 J, single shot) KrF lasers at the Naval Research Laboratory. Based on recent advances in pulsed power, electron beam generation and transport, hibachi (foil support structure) design and KrF physics, wall plug efficiencies of greater than 7% should be achievable. Moreover, recent experiments show that it may be possible to realize long lived electron beam diodes using ceramic honeycomb cathodes and anode foils that are convectively cooled by periodically deflecting the laser gas. This paper is a summary of the progress in the development of the critical KrF technologies for laser fusion energy. (author)

  20. Proposals of electronic-vibrational energy relaxation studies by using laser pulses synchronized with IR-SR pulses

    International Nuclear Information System (INIS)

    Nakagawa, Hideyuki

    2000-01-01

    Synchrotron radiation is expected to be the sharp infrared light source for the advanced experiments on IR and FIR spectroscopy in wide research fields. Especially, synchronized use of SR with VIS and/or UV laser light is to be a promising technique for the research on the dynamical properties of the photo-excited states in condensed materials. Some proposals are attempted for high resolution IR spectroscopy to elucidate fine interaction of molecular ions in crystalline solids with their environmental field and for time-resolved IR spectroscopic studies on the electronic and vibrational energy relaxation by using laser pulses synchronized with IR-SR pulses. Several experimental results are presented in relevance to the subjects; on high-resolution FTIR spectra of cyanide ions and metal cyanide complexes in cadmium halide crystals, on the energy up-conversion process among the vibrational levels of cyanide ions in alkali halide crystals, and on the electronic-to-vibrational energy conversion process in metal cyanide complexes. (author)

  1. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  2. High-energy-density physics researches based on pulse power technology

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko; Nakajima, Mitsuo; Kawamura, Tohru; Sasaki, Toru; Kondo, Kotaro; Yano, Yuuri

    2006-01-01

    Plasmas driven by pulse power device are of interest, concerning the researches on high-energy-density (HED) physics. Dense plasmas are produced using pulse power driven exploding discharges in water. Experimental results show that the wire plasma is tamped and stabilized by the surrounding water and it evolves through a strongly coupled plasma state. A shock-wave-heated, high temperature plasma is produced in a compact pulse power device. Experimental results show that strong shock waves can be produced in the device. In particular, at low initial pressure condition, the shock Mach number reaches 250 and this indicates that the shock heated region is dominated by radiation processes. (author)

  3. The use of logarithmic pulse height and energy scales in organic scintillator spectroscopy

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    The use of logarithmic pulse height and energy scales is advantageous for organic for organic scintillator neutron spectroscopy, providing an expanded dynamic range and economy of computer usage. An experimental logarithmic pulse height analysis system is shown to be feasible. A pulse height spectrum from a neutron measurement has been analysed using linear and logarithmic scales; the latter reduced the computer storage requirements by a factor of 13 and analysis time by 8.7, and there was no degradation of the analysed spectrum. Most of the arguments favouring use of logarithmic scales apply equally well to other types of scintillation spectroscopy. (orig.)

  4. Pulse-by-pulse energy measurement at the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.

    1992-01-01

    The stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z 0 particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10 4 on every collision (120 Hz). An Energy Spectrometer in each beam line after collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire- Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation

  5. Pulse-by-pulse energy measurement at the Stanford Linear Collider

    Science.gov (United States)

    Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.

    1992-01-01

    The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.

  6. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  7. The Space-, Time-, and Energy-distribution of Neutrons from a Pulsed Plane Source

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Arne

    1962-05-15

    The space-, time- and energy-distribution of neutrons from a pulsed, plane, high energy source in an infinite medium is determined in a diffusion approximation. For simplicity the moderator is first assumed to be hydrogen gas but it is also shown that the method can be used for a moderator of arbitrary mass.

  8. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-07-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time).

  9. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  10. UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.

    Science.gov (United States)

    Amer, Eynas; Gren, Per; Sjödahl, Mikael

    2013-10-21

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.

  11. Q-switched Nd: YAG laser alone or with modified Jessner chemical peeling for treatment of mixed melasma in dark skin types: A comparative clinical, histopathological, and immunohistochemical study.

    Science.gov (United States)

    Saleh, Fatma; Moftah, Noha H; Abdel-Azim, Eman; Gharieb, Marwa G

    2017-10-22

    Treatment of mixed melasma remains challenging. Promising results have been achieved with low-fluence 1064-nm Q-switched Nd-YAG laser; however, multiple sessions are necessary with occurrence of complications especially in dark skin types. So, combination methods may be recommended. To compare efficacy of Q-switched Nd-YAG laser alone or with modified Jessner's peel in mixed melasma in dark skin. Nineteen patients with mixed melasma received 6 sessions of laser on left side of face and alternating laser and modified Jessner on right side. Evaluation was carried out clinically through modified melasma area and severity index at 1 month after last session. Using histopathological, immunohistochemical, and computerized morphometric analysis, objective evaluation of melanin particle surface area and MART-1-positive cells was performed for pre- and post-treated skin biopsies. There was significant clinical improvement on both sides of face (P  .05). At the sixth laser session on left side of face, ill-defined mottled hypopigmentation was observed in 21.05% of patients. Histopathologically, melanin particle surface area and number of MART-1-positive cells (total, epidermal, and dermal) were significantly decreased after two treatment modalities (P  .05). Low-fluence Q-switched Nd-YAG laser alone and with modified Jessner's peel are equally effective regimens for mixed melasma clinically, histopathologically, and immunohistochemically. However, combined method is preferred, especially in dark skin, for obtaining better cosmetic result with fewer side effects of multiple laser sessions and decreasing cost rate of laser. © 2017 Wiley Periodicals, Inc.

  12. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    International Nuclear Information System (INIS)

    Murari, Krishna

    2017-04-01

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  13. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  14. Influence of wavelength and pulse duration on peripheral thermal and mechanical damage to dentin and alveolar bone during IR laser ablation

    Science.gov (United States)

    Lee, C.; Ragadio, Jerome N.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the peripheral thermal damage produced during the laser ablation of alveolar bone and dentin for clinically relevant IR laser systems. Previous studies have demonstrated that a char layer produced around the laser incision site can inhibit the wound healing process. Moreover, in the case of dentin, a char layer is unsightly and is difficult to bond to with restorative materials. Thermal damage was assessed using polarized light microscopy for laser pulse widths from 500 ns to 300 microseconds at 2.94 micrometer and 9.6 micrometer. Water- cooling was not employed to alleviate thermal damage during the laser irradiation. At 9.6 micrometer, minimal thermal damage was observed for pulse widths on the order of the thermal relaxation time of the deposited laser energy in the tissue, 3 - 4 microseconds, and peripheral thermal damage increased with increasing pulse duration. At 2.94 micrometer, thermal damage was minimal for the Q-switched (500 ns) laser system. This study shows that 9.6 micrometer CO2 laser pulses with pulse widths of 5 - 10 microseconds are well suited for the efficient ablation of dentin and bone with minimal peripheral damage. This work was supported by NIH/NIDCR R29DE12091.

  15. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    Science.gov (United States)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many

  16. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    Science.gov (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  17. Low-Cost Real-Time Gas Monitoring Using a Laser Plasma Induced by a Third Harmonic Q-Switched Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Abdulmadjid

    2005-11-01

    Full Text Available A gas plasma induced by a third harmonic Nd-YAG laser with relatively low pulsed energy (about 10 mJ has favorable characteristics for gas analysis due to its low background characteristics, nevertheless a high power fundamental Nd-YAG laser (100-200 mJ is widely used for laser gas breakdown spectroscopy. The air plasma can be used as a low-cost real-time gas monitoring system such that it can be used to detect the local absolute humidity, while a helium plasma can be used for gas analysis with a high level of sensitivity. A new technique using a helium plasma to improve laser ablation emission spectroscopy is proposed. Namely, the third harmonic Nd-YAG laser is focused at a point located some distance from the target in the 1-atm helium surrounding gas. By using this method, the ablated vapor from the target is excited through helium atoms in a metastable state in the helium plasma.

  18. Morphological changes in skeletal muscle after irradiation with nano- and microsecond laser pulses

    International Nuclear Information System (INIS)

    Gratzl, T.

    1995-09-01

    For therapeutic application of laser light it is necessary to minimize defects in the nonirradiated tissue. These defects depend on the primary mechanism of interaction between tissue and laser light. Three experiments were performed to distinguish between mechanical and thermal effects of nano- and microsecond laser pulses in skeletal muscle of the rat. The light, transmission and scanning electron microscopes were used. Laser pulses were applied to unfixed muscle immediately after dissection. A Nd-YAG laser (wavelength 1064 nm; pulse repetition rate 10s -1 ; beam diameter 9 mm; pulse-energy 340 mJ) was used in the flashlamp-pulsed mode (pulse duration 100 μs) and the Q-switched mode (pulse duration 8 ns). When focused 2 mm below the tissue surface in the μs-experiments (100 μs) 200 laser pulses produced a small crater. The defective region after irradiation can be divided under the light microscope into four zones surrounding the crater. The innermost zone I showed vacuoles in the intensively stained muscle cells. In the next zone II the myofibrils were displaced and torn apart. Zone III is a sharply bordered, intensively stained region. The muscle cells in zone IV are contracted. All these tissue effects were thermally induced. When focused 4 mm below the tissue surface, the μs-pulses produced an expansion of the irradiated region, while leaving the surface intact. Here, only the features of zones II to IV were seen. In the spallation experiments muscle samples were placed on metal foil. The foil itself was dipped into water. A single laser pulse (8 ns) was directed at the underside of the foil. Only the pressure wave passed through the sample and was reflected on the muscle surface in a stretch wave. Tissue damage by mechanical action occurs inside the sample. Muscle fibers are torn apart and myofibrils are displaced. In the ns-experiments the mechanical action of a single ns pulse (8 ns) produced a crater. Only zones I and IV developed. With 50 to 100

  19. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  20. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  1. High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode

    Science.gov (United States)

    Ma, Qinglei; Mo, Haiding; Zhao, Jay

    2018-04-01

    A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.

  2. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  3. Simulation of pulsed accidental energy release in a reactor core

    International Nuclear Information System (INIS)

    Ryshanskii, V.A.; Ivanov, A.G.; Uskov, A.A.

    1995-01-01

    At the present time the strength of the load-bearing members of VVER and fast reactors during a hypothetical accident is ordinarily investigated in model experiments [1]. A power burst during an accident is simulated by a nonnuclear exothermal reaction in water, which simulates the coolant and fills the model. The problem is to make the correct choice of the simulator of the accidental energy burst as an effective (i.e., sufficiently high working capacity) source of dangerous loads, corresponding to the conditions of an accident. What factors and parameters determine the energy release? The answers to these questions are contradictory

  4. Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.

    2012-01-01

    industrially polluted soils were performed. At a current density of 0.1mA/cm2 in soil 1 and 0.2mA/cm2 in soil 2, there was no difference on energy consumption and removal of heavy metals between pulse current and constant current experiments, but at higher current experiments (i.e., 0.2mA/cm2 in soil 1 and 0......The aims of this paper were to investigate the possibility for energy saving when using a pulsed electric field during electrodialytic soil remediation (EDR) and the effect of the pulsed current on removal of heavy metals. Eight experiments with constant and pulse current in the different.......8mA/cm2 in soil 2) the energy was saved 67% and 60% and the removal of heavy metals was increased 17–76% and 31–51% by pulse current in soil 1 and soil 2, respectively. When comparing the voltage drop at different parts of EDR cells, it was found that the voltage drop of the area across cation...

  5. Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size.

    Science.gov (United States)

    Roach, William P; Cain, Clarence P; Narayan, Drew G; Noojin, Gary D; Boppart, Stephen A; Birngruber, Reginald; Fujimoto, James G; Toth, Cynthia A

    2004-01-01

    We investigate the relationship between the laser beam at the retina (spot size) and the extent of retinal injury from single ultrashort laser pulses. From previous studies it is believed that the retinal effect of single 3-ps laser pulses should vary in extent and location, depending on the occurrence of laser-induced breakdown (LIB) at the site of laser delivery. Single 3-ps pulses of 580-nm laser energy are delivered over a range of spot sizes to the retina of Macaca mulatta. The retinal response is captured sequentially with optical coherence tomography (OCT). The in vivo OCT images and the extent of pathology on final microscopic sections of the laser site are compared. With delivery of a laser pulse with peak irradiance greater than that required for LIB, OCT and light micrographs demonstrate inner retinal injury with many intraretinal and/or vitreous hemorrhages. In contrast, broad outer retinal injury with minimal to no choriocapillaris effect is seen after delivery of laser pulses to a larger retinal area (60 to 300 microm diam) when peak irradiance is less than that required for LIB. The broader lesions extend into the inner retina when higher energy delivery produces intraretinal injury. Microscopic examination of stained fixed tissues provide better resolution of retinal morphology than OCT. OCT provides less resolution but could be guided over an in vivo, visible retinal lesion for repeated sampling over time during the evolution of the lesion formation. For 3-ps visible wavelength laser pulses, varying the spot size and laser energy directly affects the extent of retinal injury. This again is believed to be partly due to the onset of LIB, as seen in previous studies. Spot-size dependence should be considered when comparing studies of retinal effects or when pursuing a specific retinal effect from ultrashort laser pulses. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.

  6. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    Berenberg, Vladimir A.; Cervantes, Miguel A.; Terpugov, Vladimir S.

    2006-01-01

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  7. Treatment of tattoos with a 755-nm Q-switched alexandrite laser and novel 1064 nm and 532 nm Nd:YAG laser handpieces pumped by the alexandrite treatment beam.

    Science.gov (United States)

    Bernstein, Eric F; Bhawalkar, Jay; Clifford, Joan; Hsia, James

    2010-11-01

    Multi-colored and even black tattoos often require more than one wavelength to remove the target pigment. The authors report here a novel alexandrite laser with two Nd:YAG laser handpieces pumped by the alexandrite treatment beam enabling the delivery of three wavelengths from a single device. To describe and evaluate the effectiveness of a novel Q-switched laser-pumped laser for treating tattoos. Twenty tattoos in 14 subjects were treated at four-week intervals using a combination of available wavelengths (532, 755 and 1064 nm) as determined by the treating physician. Digital cross-polarized photographs were taken before treatment and two months following the fourth and final treatment. Photographs were evaluated by three physician observers blinded as to the treatment condition and rated for clearance by the following scale: 1 = > 95 percent, 2 = 76-95 percent, 3 = 51-75 percent, 4 = 26-50 percent and 5 = 0-25 percent clearance. The average clearance score was 3.1, in the 51-75 percent range, two months following four treatments. No scarring, hyper- or hypopigmentation was noted on post-treatment photographs or by the treating physician. The alexandrite and alexandrite-pumped 532 nm and 1064 nm Q-switched lasers are effective for removing decorative tattoos, and represents the first commercial laser with laser-pumped, laser handpieces.

  8. Self-sustained Oscillation Pulsed Air Blowing System for Energy Saving

    Institute of Scientific and Technical Information of China (English)

    CAI Maolin; XU Weiqing

    2010-01-01

    Currently, many studies have been made for years on dimensions of pneumatic nozzle, which influence the flow characteristic of blowing system. For the purpose of outputting the same blowing force, the supply pressure could be reduced by decreasing the ratio of length to diameter of nozzle. The friction between high speed air and pipe wall would be reduced if the nozzle is designed to be converging shape comparing with straight shape. But the volume flow and pressure, discussed in these studies, do not describe energy loss of the blowing system directly. Pneumatic power is an innovative principle to estimate pneumatic system's energy consumption directly. Based on the above principle, a pulse blowing method is put forward for saving energy. A flow experiment is carried out, in which the high speed air flows from the pulse blowing system and continuous blowing system respectively to a plate with grease on top. Supply pressure and the volume of air used for removing the grease are measured to calculate energy consumption. From the experiment result, the pulse blowing system performs to conserve energy comparing with the continuous blowing system. The frequency and duty ratio of pulse flow influence the blowing characteristic. The pulse blowing system performs to be the most efficient at the specified frequency and duty ratio. Then a pneumatic self-oscillated method based on air operated valve is put forward to generate pulse flow. A simulation is made about dynamic modeling the air operated valve and calculating the motion of the valve core and output pressure. The simulation result verifies the system to be able to generate pulse flow, and predicts the key parameters of the frequency and duty ratio measured by experiment well. Finally, on the basis of simplifying and solution of the pulse blowing system's mathematic model, the relationship between system's frequency duty ratio and the dimensions of components is simply described with four algebraic equations. The

  9. Method and apparatus for obtaining very high energy laser pulses: photon cyclotron

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Goldstein, R.

    1975-01-01

    Apparatus is arranged in selected embodiments of several combinations, each sometimes being referred to as a system, and each embodiment establishing a large enclosable chamber containing a laser energy reacting medium through which a laser beam is created. When laser energy pulses of such a beam are created, they are guided in a continuous path using reflectors in this chamber, and they receive supplemental energy units from multiple spaced laser pumps. Each laser pump is effective in respect to its own inverted population laser energy source, and each laser pump is triggered by an overall excitation control system. The laser beam is thereby supplemented to a higher level at each laser pump. Yet at all times the laser energy reacting medium remains at a level below super radiance. A working unit or working pulse of a laser beam is allowed to escape from each large enclosable chamber through an escape exit only when a preselected very high energy level is reached. The escape exit of this chamber may be designed to be destroyed by the exiting high level pulse energy of the laser beam. Also an escape exit may be opened upon the operation of a piezoelectric decoupler. (U.S.)

  10. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities

    International Nuclear Information System (INIS)

    Gao, Yu-kui

    2013-01-01

    Highlights: •The hardness changes were determined by nanoindention method. •The surface integrity changes were investigated by different techniques. •The mechanism was analyzed based on AFM and TEM investigations. -- Abstract: Surface changes including surface topography and nanohardness distribution along surface layer were investigated for TC4 titanium alloy by different energy densities of high current pulsed electron beam (HCPEB). The surface topography was characterized by SEM and AFM, and cross-sectional TEM observation was performed to reveal the surface modification mechanism of TC4 titanium alloy by HCPEB. The surface roughness was modified by HCPEB and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM. The fine grain structure inherited from the rapid solidification of the melted layer as well as the strain hardening of the sub-surface are two of the factors responsible the increase in nanohardness

  11. High-voltage many-pulses generator with inductive energy store and fuse

    International Nuclear Information System (INIS)

    Kovalev, V.P.; Diyankov, V.S.; Kormilitsin, A.I.; Lavrent'ev, B.N.

    1996-01-01

    The high-voltage generator with inductive energy store and fuses as opening switch that generate series of powerful pulses is considered. This generator differs from the ordinary generator with inductive store by the cross-section of the series copper wires. The parameters of the wires are chosen based on empirical relations. The generation principle was tested on the two high-voltage generators with characteristic impedance 2.2 ohm, 4 ohm and with output voltages of 140 kV and 420 kV, respectively. Copper wires 0.1 to 0.23 mm in diameter were used. Series of 2 to 5 pulses of 100 to 300 ns duration, 400 to 1000 kV amplitude and 1 - 10 GW power were obtained. Pulses can be both the same and different. Two successive bremsstrahlung radiation pulses were obtain on the EMIR-M and IGUR-3 devices. Series power megavolt pulses can be generated with a power exceeding 10 11 W, pulse duration of 10 -3 to 10 -6 s, and time interval between them 10 -7 to 10 -5 s. (author). 4 figs., 2 refs

  12. High-voltage many-pulses generator with inductive energy store and fuse

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, V P; Diyankov, V S; Kormilitsin, A I; Lavrent` ev, B N [All-Russian Research Inst. of Technical Physics, Snezhinsk (Russian Federation)

    1997-12-31

    The high-voltage generator with inductive energy store and fuses as opening switch that generate series of powerful pulses is considered. This generator differs from the ordinary generator with inductive store by the cross-section of the series copper wires. The parameters of the wires are chosen based on empirical relations. The generation principle was tested on the two high-voltage generators with characteristic impedance 2.2 ohm, 4 ohm and with output voltages of 140 kV and 420 kV, respectively. Copper wires 0.1 to 0.23 mm in diameter were used. Series of 2 to 5 pulses of 100 to 300 ns duration, 400 to 1000 kV amplitude and 1 - 10 GW power were obtained. Pulses can be both the same and different. Two successive bremsstrahlung radiation pulses were obtain on the EMIR-M and IGUR-3 devices. Series power megavolt pulses can be generated with a power exceeding 10{sup 11} W, pulse duration of 10{sup -3} to 10{sup -6} s, and time interval between them 10{sup -7} to 10{sup -5} s. (author). 4 figs., 2 refs.

  13. A novel method of calculating the energy deposition curve of nanosecond pulsed surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    He, Kun; Wang, Xinying; Lu, Jiayu; Cui, Quansheng; Pang, Lei; Di, Dongxu; Zhang, Qiaogen

    2015-01-01

    To obtain the energy deposition curve is very important in the fields to which nanosecond pulse dielectric barrier discharges (NPDBDs) are applied. It helps the understanding of the discharge physics and fast gas heating. In this paper, an equivalent circuit model, composed of three capacitances, is introduced and a method of calculating the energy deposition curve is proposed for a nanosecond pulse surface dielectric barrier discharge (NPSDBD) plasma actuator. The capacitance C d and the energy deposition curve E R are determined by mathematically proving that the mapping from C d to E R is bijective and numerically searching one C d that satisfies the requirement for E R to be a monotonically non-decreasing function. It is found that the value of capacitance C d varies with the amplitude of applied pulse voltage due to the change of discharge area and is dependent on the polarity of applied voltage. The bijectiveness of the mapping from C d to E R in nanosecond pulse volumetric dielectric barrier discharge (NPVDBD) is demonstrated and the feasibility of the application of the new method to NPVDBD is validated. This preliminarily shows a high possibility of developing a unified approach to calculate the energy deposition curve in NPDBD. (paper)

  14. Dynamics of bubble generated by low energy pulsed electric discharge in water

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Results of investigations of bubble formation and dynamics for discharge in water are presented. Experiments were carried out in discharge chamber with axisymmetric electrode system “wire to wire”. Interelectrode gap was varied from 1 to 10 mm. Energy in a pulse was <1 J. Velocity of bubble expantion and collapse is about several hundreds meter per second at early stage of discharge. Bubble pulsation period is 0.5 – 1 ms. Increasing of energy released in the discharge gap will increase bubble pulsation period. Little bubble was formed by reducing energy input into discharge. But the main stage of discharge always followed by bubble formation. Specific erosion is measured for different energy in pulse and matched up with bubble collapse.

  15. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    Science.gov (United States)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/Ilaser.

  16. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    Science.gov (United States)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  17. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1982-01-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time). (author)

  18. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  19. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  20. Channels of energy redistribution in short-pulse laser interactions with metal targets

    International Nuclear Information System (INIS)

    Zhigilei, Leonid V.; Ivanov, Dmitriy S.

    2005-01-01

    The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse is investigated in computer simulations performed with a model that combines molecular dynamics (MD) simulations with a continuum description of the laser excitation and relaxation of the conduction band electrons, based on the two-temperature model (TTM). The energy transferred from the excited electrons to the lattice splits into several parts, namely the energy of the thermal motion of the atoms, the energy of collective atomic motions associated with the relaxation of laser-induced stresses, the energy carried away from the surface region of the target by a stress wave, the energy of quasi-static anisotropic stresses, and, at laser fluences above the melting threshold, the energy transferred to the latent heat of melting and then released upon recrystallization. The presence of the non-thermal channels of energy redistribution (stress wave and quasi-static stresses), not accounted for in the conventional TTM model, can have important implications for interpretation of experimental results on the kinetics of thermal and mechanical relaxation of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase transformations. The fraction of the non-thermal energy in the total laser energy partitioning increases with increasing laser fluence

  1. Transformation between divacancy defects induced by an energy pulse in graphene.

    Science.gov (United States)

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-08

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  2. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  3. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  4. Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation

    Science.gov (United States)

    Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.

    2018-06-01

    The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.

  5. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Cavalcanti, Fabio

    2014-01-01

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  6. Experimental determination of the thermal contact conductance between two solid surfaces by the energy pulse technique

    International Nuclear Information System (INIS)

    Rubin, Gerson Antonio

    1979-01-01

    An experimental procedure for the determination of the thermal contact conductance between two solid surfaces as a function of the contact pressure and the energy of the laser radiation has been developed using the laser pulse method. A rubi laser with variable energy levels was employed as a radiating pulse energy source. The laser beam was allowed to impinge perpendicularly on the front face of a electrolytic iron 73 4 . The temperature fluctuations resulting on the back surface of the sample was detected by a thermocouple, which Is coupled to a PDP-11/45 Computer 32 Kbytes of memory, through a Analog-Digital Converter. A theoretical function, derived exclusively for the problem mentioned in this work, was adjusted by a method of least square fitting of experimental results. This adjustment yielded the value of a parameter related to the contact conductance between two surfaces. The experimental error obtained for the thermal contact conductance was +- 4.9%. (author)

  7. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  8. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    International Nuclear Information System (INIS)

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  9. Increase in the energy absorption of pulsed plasma by the formation of tungsten nanostructure

    Science.gov (United States)

    Sato, D.; Ohno, N.; Domon, F.; Kajita, S.; Kikuchi, Y.; Sakuma, I.

    2017-06-01

    The synergistic effects of steady-state and pulsed plasma irradiation to material have been investigated in the device NAGDIS-PG (NAGoya DIvertor Simulator with Plasma Gun). The duration of the pulsed plasma was ~0.25 ms. To investigate the pulsed plasma heat load on the materials, we developed a temperature measurement system using radiation from the sample in a high time resolution. The heat deposited in response to the transient plasma on a tungsten surface was revealed by using this system. When the nanostructures were formed by helium plasma irradiation, the temperature increase on the bulk sample was enhanced. The result suggested that the amount of absorbed energy on the surface was increased by the formation of nanostructures. The possible mechanisms causing the phenomena are discussed with the calculation of a sample temperature in response to the transient heat load.

  10. High pulse energy sub-nanosecond Tm-doped fiber laser

    Science.gov (United States)

    Cserteg, Andras; Guillemet, Sebastien; Hernandez, Yves; Giannone, Domenico

    2012-02-01

    We report a core pumped thulium-doped fiber amplifier that generates 1.4 μJ pulses at 1980 nm with a repetition rate of 3.6 MHz preserving the original spectral bandwidth of the oscillator. The amplifier chain is seeded by a passively modelocked fiber laser with 5 mW output power and the pulses are stretched to 800 picoseconds. The amplifier is core pumped by a single mode erbium fiber laser. The slope efficiency is 35%. To the best of our knowledge, this is the first demonstration of sub nanosecond pulses with energies higher than 1 μJ coming out of a thulium-doped fiber amplifier.

  11. Calculational models for the treatment of pulsed/intermittent activation within fusion energy devices

    International Nuclear Information System (INIS)

    Spangler, S.E.; Sisolak, J.E.; Henderson, D.L.

    1993-01-01

    Two calculationally efficient methods have been developed to compute the induced radioactivity due to pulsed/intermittent irradiation histories as encountered in both magnetic and inertial fusion energy devices. The numerical algorithms are based on the linear chain method (Bateman Equations) and employ series reduction and matrix algebra. The first method models the case in which the irradiated materials are present throughout a series of irradiation pulses. The second method treats the case where a fixed amount of radioactive and transmuted material is created during each pulse. Analytical solutions are given for each method for a three nuclide linear chain. Numerical results and comparisons are presented for a select number of linear chains. (orig.)

  12. Actual laser removal of black soiling crust from siliceous sandstone by high pulse repetition rate equipment: effects on surface morphology

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2016-03-01

    Full Text Available This research project studies the role of pulse repetition rate in laser removal of black soiling crust from siliceous sandstone, and specifically, how laser fluence correlates with high pulse repetition rates in cleaning practice. The aim is to define practical cleaning processes and determine simple techniques for evaluation based on end-users’ perspective (restorers. Spot and surface tests were made using a Q-switched Nd:YAG laser system with a wide range of pulse repetition rates (5–200 Hz, systematically analysed and compared by macrophotography, portable microscope, stereomicroscope with 3D visualizing and area roughness measurements, SEM imaging and spectrophotometry. The results allow the conclusion that for operation under high pulse repetition rates the average of total energy applied per spot on a treated surface should be attendant upon fluence values in order to provide a systematic and accurate description of an actual laser cleaning intervention.En este trabajo se estudia el papel de la frecuencia de repetición en la limpieza láser de costras de contaminación sobre una arenisca silícea, y concretamente, como se relaciona fluencia y frecuencias elevadas en una limpieza real. Se pretende definir un procedimiento práctico de limpieza y determinar técnicas sencillas de evaluación desde el punto de vista de los usuarios finales (restauradores. Para el estudio se realizaron diferentes ensayos en spot y en superficie mediante un equipo Q-switched Nd:YAG con un amplio rango de frecuencias (5–200 Hz, que se analizaron y compararon sistemáticamente mediante macrofotografía, microscopio portátil, estereomicroscopio con visualización 3D y mediciones de rugosidad en área, imágenes SEM y espectrofotometría. Los resultados permiten proponer que, al trabajar con altas frecuencias, la media de la energía total depositada por spot en la superficie debería acompañar los valores de fluencia para describir y comprender mejor una

  13. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  14. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Rubio-Roy, M; Bertran, E; Portal, S; Pascual, E; Polo, M C; Andujar, J L, E-mail: corbella@ub.edu [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ MartI i Franques 1, 08028 Barcelona (Spain)

    2011-02-15

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH{sub 4}) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  15. A Summary of Recent Experimental Research on Ion Energy and Charge States of Pulsed Vacuum Arcs

    International Nuclear Information System (INIS)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2008-01-01

    The paper reviews the results of vacuum arc experimental investigations made collaboratively by research groups from Berkeley and Tomsk over the last two years, i.e. since the last ISDEIV in 2006. Vacuum arc plasma of various metals was produced in pulses of a few hundred microseconds duration, and the research focused on three topics: (i) the energy distribution functions for different ion charge states, (ii) the temporal development of the ion charge state distribution, and (iii) the evolution of the mean directed ion velocities during plasma expansion. A combined quadruple mass-to-charge and energy analyzer (EQP by HIDEN Ltd) and a time-of-flight spectrometer were employed. Cross-checking data by those complimentary techniques helped to avoid possible pitfalls in interpretation. It was found that the ion energy distribution functions in the plasma were independent of the ion charge state, which implies that the energy distribution on a substrate are not equal to due to acceleration in the substrate's sheath. In pulsed arc mode, the individual ion charge states fractions showed changes leading to a decrease of the mean charge state toward a steady-state value. This decrease can be reduced by lower arc current, higher pulse repetition rate and reduced length of the discharge gap. It was also found that the directed ion velocity slightly decreased as the plasma expanded into vacuum

  16. Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Visco, A.M.; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Boody, F.P

    2004-04-15

    Pulsed laser ablation of ultra-high-molecular-weight-polyethylene (UHMWPE) is investigated at Prague Asterix Laser System (PALS) Laboratory. The high ablation yield as a function of laser energy is presented at 438 nm laser wavelength. The mechanisms of the polymer ablation are studied on the base of ''in situ'' analysis, such as mass quadrupole spectrometry and time-of-flight measurements, and ''ex situ'' analysis, such as SEM investigations and Raman spectroscopy. Results show that the laser irradiation induces a strong polymer dehydrogenation and molecular emission due to different C{sub x}H{sub y} groups having high kinetic energy and high charge state. At a laser pulse energy of 150 J the H{sup +}, C{sup n+} ions (n=1 to 6) are emitted from the plasma with velocities of the order of 10{sup 8} cm/s, while the C{sub x}H{sub y} groups and the carbon clusters, detected up to C{sub 16}, have a velocity about one or two order magnitude lower. The laser ablation process produces a deep crater in the polymer, which depth depends on the laser pulse energy and it is of the order of 500 {mu}m. The crater volume increases with the laser pulse energy. Results demonstrated that the laser radiation modifies the polymer chains because dehydrogenated material and carbon-like structures are detected in the crater walls and in the bottom of the crater, respectively. A comparison of the experimental results with the data available in literature is presented and discussed.

  17. Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients

    International Nuclear Information System (INIS)

    Gray, R J; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Quinn, M N; Tresca, O; McKenna, P; Burza, M; Wahlström, C-G; Lancaster, K L; Neely, D; Lin, X X; Li, Y T

    2014-01-01

    Laser energy absorption to fast electrons during the interaction of an ultra-intense (10 20 W cm −2 ), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient. (paper)

  18. 16.7 W 885 nm diode-side-pumped actively Q -switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm

    International Nuclear Information System (INIS)

    Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Sun, Bing; Shi, Rui; Wu, Liang; Yao, Jianquan; Yu, Xuanyi; Wang, Rui

    2017-01-01

    We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO 4 crystal in a Z -shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z -shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ∼190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ∼0.08 nm, respectively. (paper)

  19. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  20. Novel treatment of Hori′s nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser

    Directory of Open Access Journals (Sweden)

    Brian Wei Cheng Anthony Tian

    2015-01-01

    Full Text Available Objective: To demonstrate a combination laser therapy to treat Hori′s nevus. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five female patients, aged 30-46 years, with bilateral malar Hori′s nevus. Measurements: Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. Materials and Methods: The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm 2, spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori′s nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS Nd:YAG at a fluence of 2.0 J/cm 2 , frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori′s nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. Results: All five patients had above 80% improvement in their pigmentation and two (skin type III achieved complete 100% clearance. Based on the patients′ subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. Conclusion: The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori′s nevus.

  1. Novel treatment of Hori's nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Tian, Brian Wei Cheng Anthony

    2015-01-01

    To demonstrate a combination laser therapy to treat Hori's nevus. A prospective study. A Singapore-based clinic. Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm(2), spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm(2), frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients' subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus.

  2. Parametric generation of high-energy 14.5-fs light pulses at 1.5 mum.

    Science.gov (United States)

    Nisoli, M; Stagira, S; De Silvestri, S; Svelto, O; Valiulis, G; Varanavicius, A

    1998-04-15

    High-energy light pulses that are tunable from 1.1 to 2.6 mum, with a duration as short as 14.5 fs were generated in a type II phase-matching beta-BaB(2)O(4) traveling-wave parametric converter pumped by 18-fs pulses obtained from a Ti:sapphire laser with chirped-pulse amplification, followed by a hollow-fiber compressor.

  3. Application of pulse power technology to ultra high energy electron accelerators

    International Nuclear Information System (INIS)

    Nation, J.A.

    1989-01-01

    The author presents in this paper a review of the application of pulse power technology to the development of high gradient electron accelerators. The technology demands are relatively modest compared to the ultra high power technology used for inertial confinement fusion drivers. With the advent of magnetic switching intense electron beams can be generated with a sufficiently high repetition rate to be of interest for high energy electron accelerator driver applications. Most of the techniques considered rely on the excitation of large amplitude waves on the beams. Within this framework there are two broad categories of accelerator, those in which the waves are directly excited in and supported by the medium and, secondly, those where the waves are used to generate radiofrequency signals which are then coupled via structures to the beam being accelerated. In what follows we shall consider both approaches. Present-day pulse power technology limits pulse durations to about 100 nsec. Consequently, if these sources are to be used, we will need to use high group velocity structures to avoid the need for short accelerator module lengths. An advantage of the short pulse duration is that the available acceleration voltage gradient increases compared to that obtained using conventional rf drivers. 19 references, 9 figures, 1 table

  4. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Anqi [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Munidhar [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Matusik, Katarzyna E. [Argonne National Lab. (ANL), Argonne, IL (United States); Duke, Daniel J. [Argonne National Lab. (ANL), Argonne, IL (United States); Powell, Christopher F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kastengren, Alan L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  5. Correlations between muons and low energy pulses at LSD of the Mont Blanc laboratory near the time of SN1987A explosion

    International Nuclear Information System (INIS)

    Dadykin, V.L.; Khalchukov, F.F.; Korchagin, P.V.; Korolkova, E.V.; Kudryavtsev, V.A.; Mal'gin, A.S.; Ryasny, V.G.; Ryazhskaya, O.G.; Yakushev, V.F.; Zatsepin, G.T.; Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Turin Univ.

    1989-01-01

    We have analysed the data of LSD from February 10, 1987, to March 7, 1987, in order to search for autocorrelations between all pulses detected by LSD with energy higher than 5 MeV like those occurred at ∼ 3:00 UT on February 23, 1987, between the pulses detected by 3 neutrino telescopes and 2 gravitational wave antennae. We have found 9 pairs of correlated pulses (muon + low energy pulse) from 5:42 UT to 10:13 UT on February 23, 1987. The time differences of pulses in the pairs are less than 2 s, the first pulse in the pair being either muon or low energy pulse. The frequency of such random poissonian fluctuations is ∼1/(10 years). There are no correlations outside statistics between low energy, low energy pulses and muon, muon pulses detected by LSD during the whole time period

  6. A 16.3 pJ/pulse low-complexity and energy-efficient transmitter with adjustable pulse parameters

    International Nuclear Information System (INIS)

    Jiang Jun; Zhao Yi; Shao Ke; Chen Hu; Xia Lingli; Hong Zhiliang

    2011-01-01

    This paper presents a novel, fully integrated transmitter for 3-5 GHz pulsed UWB. The BPSK modulation transmitter has been implemented in SMIC CMOS 0.13 μm technology with a 1.2-V supply voltage and a die size of 0.8 x 0.95 mm 2 . This transmitter is based on the impulse response filter method, which uses a tunable R paralleled with a LC frequency selection network to realize continuously adjustable pulse parameters, including bandwidth, width and amplitude. Due to the extremely low duty of the pulsed UWB, a proposed output buffer is employed to save power consumption significantly. Finally, measurement results show that the transmitter consumes only 16.3 pJ/pulse to achieve a pulse repetition rate of 100 Mb/s. Generated pulses strictly comply with the FCC spectral mask. The continuously variable pulse width is from 900 to 1.5 ns and the amplitude with the minimum 178 mVpp and the maximum 432 mVpp can be achieved. (semiconductor integrated circuits)

  7. Design, Construction and Testing of a Pulsed High Energy Inductive Superconducting Energy Storage System

    Science.gov (United States)

    1975-09-01

    10,000 tim;es larger tnan the resistive voltaje and can be !-½vce evough to de;tr,)y electronic equip-ient. This task car. be accu)rplmshrd by...2.67 kH. FA 2483 231 E cNu 42 1 o Time 0.2 ms/cm Figure 128 Single pulse of current to 0.2 2 load delivered by helium switch. Firingj voltaj - 2,000 V

  8. Electron energy device for LINAC based Pulse Radiolysis Facility of RPCD

    International Nuclear Information System (INIS)

    Toley, M.A.; Shinde, S.J.; Chaudhari, B.B.; Sarkar, S.K.

    2015-07-01

    The pulse radiolysis facility is the experimental centerpiece of the radiation chemistry activities of the Radiation and Photochemistry Division (RPCD) of Bhabha Atomic Research Centre. This facility was created in 1986 which is based on a 7 MeV Linear Electron Accelerator (LINAC) procured from M/s Radiation Dynamics Ltd., UK. The electron energy is one of the principal parameters that influence the dose distribution within the sample irradiated with a beam of energetic electrons. An easy-to-use and robust device has been developed that can reliably detect day-today small variations in the beam energy. It consists of two identical aluminum plates except for their thickness, which are electrically insulated from each other. The thickness of each plate is carefully selected depending on the electron beam energy. The charge (or current) collected by each plate, under irradiation is measured. The ratio of the charge (or current) signal from the front plate to the sum of the signals from the front and rear plates is very sensitive to the beam energy. The high sensitivity and robustness make this device quite suitable for Electron energy measurement for Pulse radiolysis Facility at RPCD. (author)

  9. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  10. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    Science.gov (United States)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  11. Energy balance and efficiency of power stations with a pulsed Tokamak reactor

    International Nuclear Information System (INIS)

    Davenport, P.A.; Mitchell, J.T.D.; Darvas, J.; Foerster, S.; Sack, B.

    1976-06-01

    The energy balance of a fusion power station based on the TOKAMAK concept is examined with the aid of a model comprising three distinct elements: the reactor, the energy converter and the reactor operation equipment. The efficiency of each element is expressed in terms of the various energy flows and the product of these efficiencies gives the net station efficiency. The analysis takes account of pulsed operation and has general applicability. Numerical values for the net station efficiency are derived from detailed estimates of the energy flows for a TOKAMAK reactor and its auxiliary equipment operating with advanced energy converters. The derivation of these estimates is given in eleven appendices. The calculated station efficiencies span ranges similar to those quoted for the current generation of fission reactors, though lower than those predicted for HTGR and LMFBR stations. Credible parameter domains for pulsed TOKAMAK operation are firmly delineated and factors inimical to improved performance are indicated. It is concluded that the net thermal efficiency of a TOKAMAK reactor power station based on present designs and using advanced thermal converters will be approximately 0.3 and is unlikely to exceed 0.33. (orig.) [de

  12. Schlieren Visualization of the Energy Addition by Multi Laser Pulse in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    The experimental results of the energy addition by multi laser pulse in Mach 7 hypersonic flow are presented. Two high power pulsed CO 2 TEA lasers (TEA1 5.5 J, TEA2 3.9 J) were assembled sharing the same optical cavity to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The lasers can be triggered with a selectable time delay and in the present report the results obtained with delay between 30 μs and 80 μs are shown. The schlieren technique associated with a high speed camera was used to accomplish the influence of the energy addition in the mitigation of the shock wave formed on the model surface by the hypersonic flow. A piezoelectric pressure transducer was used to obtain the time history of the impact pressure at stagnation point of the model and the pressure reduction could be measured. The total recovery of the shock wave between pulses as well as the prolonged effect of the mitigation without recovery was observed by changing the delay

  13. Healing of damaged metal by a pulsed high-energy electromagnetic field

    Science.gov (United States)

    Kukudzhanov, K. V.; Levitin, A. L.

    2018-04-01

    The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.

  14. A Kinematically Beamed, Low Energy Pulsed Neutron Source for Active Interrogation

    International Nuclear Information System (INIS)

    Dietrich, D.; Hagmann, C.; Kerr, P.; Nakae, L.; Rowland, M.; Snyderman, N.; Stoeffl, W.; Hamm, R.

    2004-01-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n,n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM

  15. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies

    International Nuclear Information System (INIS)

    Lu, J.Z.; Qi, H.; Luo, K.Y.; Luo, M.; Cheng, X.N.

    2014-01-01

    Highlights: •Laser shock peening caused an obvious increase of corrosion resistance of 304 steel. •Corrosion resistance of stainless steel increased with increasing pulse energy. •Mechanism of laser shock peening on corrosion behaviour was also entirely determined. -- Abstract: Effects of massive laser shock peening (LSP) impacts with different pulse energies on ultimate tensile strength (UTS), stress corrosion cracking (SCC) susceptibility, fracture appearance and electrochemical corrosion resistance of AISI 304 stainless steel were investigated by slow strain rate test, potentiodynamic polarisation test and scanning electron microscope observation. The influence mechanism of massive LSP impacts with different pulse energies on corrosion behaviour was also determined. Results showed that massive LSP impacts effectively caused a significant improvement on UTS, SCC resistance, and electrochemical corrosion resistance of AISI 304 stainless steel. Increased pulse energy can also gradually improve its corrosion resistance

  16. Degenerative and regenerative phenomena in pigmented rabbit irides following irradiation with the Xenon arc lamp at different pulse energies

    International Nuclear Information System (INIS)

    Wechsler, A.; Portmann, H.; Zypen, E. van der; Fauckhauser, F.

    1980-01-01

    The morphological condition of the pigmented rabbit iris following irradiation with a Xenon arclamp at four different pulse energies was analyzed. It was shown that: 1. There is a direct relationship between the applied pulse energy and the extent, as well as the rate, of secondary-degenerative transformations. 2. Secondary-degenerative and repair processes occur simultaneously. 3. As opposed to the primary damage event, secondary degeneration appears to progress from the back to the front of the iris. 4. As a rule, pulse energies of less than 1 Joule do not lead to secondary perforation of the iris. Fifteen weeks after the damage event, regeneration of connective tissue and the larger blood vessels, as well as of myelinated and unmyelinated nerves may be found. 5. The inducing factors, as well as those sustaining the process of secondary degeneration after irradiation of the rabbit iris with high pulse energies, cannot be explained on the basis of morphological findings alone. (orig.) [de

  17. Heat pulse analysis in JET and relation to local energy transport models

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  18. Monitoring system of energy characteristics of electron beam during shaping process of power bremsstrahlung pulses

    International Nuclear Information System (INIS)

    Mordasov, N.G.; Ulimov, V.N.; Bryksin, V.A.; Shiyan, V.D.

    2005-01-01

    One proposes a procedure and a device to monitor dynamic and integral characteristics of electron power beams of high-current pulsed accelerators (HCPA) operating under Bremsstrahlung radiation mode. One obtained static and dynamic transfer characteristics for various types of heterogenous targets-converters under operation of UIN-10 HCPA with up to 4 MeV energy electrons, up to 60 kA current and 6 x 10 -8 -2 x 10 -6 s pulse efficient duration. One demonstrated the capabilities of the complex diagnostics of acceleration of electron beams by HCPA with simultaneous determination of parameters of the Bremsstrahlung radiation at the local point of the field behind the target-converter [ru

  19. Principles for construction of control and stabilization systems for pulse energy sources on the base of compression generators

    International Nuclear Information System (INIS)

    Abdukaev, I.Kh.; Kuchinskij, V.G.; Titov, V.I.

    1984-01-01

    Principles of construction of control and stabilization systems for a compression-generator (CG)-sources of power energy pulses- are considered. CG is an electromechanical energy converter, the principle of its operation is based on magnetic flux compression with periodic change of mutual inductance of two rotating windings. In each period, with the decrease of intrinsic inductance the generator forms in the load the pulse leading edge, and in the phase rise a pulse decay. To obtain the same pulse in the following period it is neccessary that the magnetic flux initial value should be restored in the generator winding. Problems of attaining pule shaper amplitude stability are considered. The method of pulse amplitude control in the load at the expense of the change in switch moment of capacitive storage to CG windings is suggested. The block-diagram of stabilization system is presented and its operation principle is described. The control system is assembled using K 155 and K 511 microcircuits and it was tested with CG at the pulse energy to 10 kJ. The tests have shown, that already to the third pulse the system provided quite shaped series of pulses

  20. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    International Nuclear Information System (INIS)

    Jung, S.; Christenson, M.; Curreli, D.; Bryniarski, C.; Andruczyk, D.; Ruzic, D.N.

    2014-01-01

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m 2 and 0.43 ± 0.01 GW/m 2 . A few ways to further increase the plasma heat flux for LiMIT experiments are discussed

  1. New circuits high-voltage pulse generators with inductive-capacitive energy storage

    International Nuclear Information System (INIS)

    Gordeev, V.S.; Myskov, G.A.

    2001-01-01

    The paper describes new electric circuits of multi-cascade generators based on stepped lines. The distinction of the presented circuits consists in initial storage of energy in electric and magnetic fields simultaneously. The circuit of each generator,relations of impedances,values of initial current and charge voltages are selected in such a manner that the whole of initially stored energy is concentrated at the generator output as a result of transient wave processes. In ideal case the energy is transferred with 100% efficiency to the resistive load where a rectangular voltage pulse is formed, whose duration is equals to the double electrical length of the individual cascade. At the same time there is realized a several time increase of output voltage as compared to the charge voltage of the generator. The use of the circuits proposed makes it possible to ensure a several time increase (as compared to the selection of the number of cascades) of the generator energy storage, pulse current and output electric power

  2. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    Science.gov (United States)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  3. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  4. Long-Pulse Operation and High-Energy Particle Confinement Study in ICRF Heating of LHD

    International Nuclear Information System (INIS)

    Mutoh, Takashi; Kumazawa, Ryuhei; Seki, Tetsuo

    2004-01-01

    Long-pulse operation and high-energy particle confinement properties were studied using ion cyclotron range of frequency (ICRF) heating for the Large Helical Device. For the minority-ion mode, ions with energies up to 500 keV were observed by concentrating the ICRF heating power near the plasma axis. The confinement of high-energy particles was studied using the power-modulation technique. This confirmed that the confinement of high-energy particles was better with the inward-shifted configuration than with the normal configuration. This behavior was the same for bulk plasma confinement. Long-pulse operation for more than 2 min was achieved during the experimental program in 2002. This was mainly due to better confinement of the helically trapped particles and accumulation of fewer impurities in the region of the plasma core, in conjunction with substantial hardware improvements. Currently, the plasma operation time is limited by an unexpected density rise due to outgassing from the chamber materials. The temperature of the local carbon plates of the divertor exceeded 400 deg, C, and a charge-coupled device camera observed the hot spots. The hot spot pattern was well explained by a calculation of the accelerated-particle orbits, and those accelerated particles came from outside the plasma near the ICRF antenna

  5. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  6. Nanosecond pulsed laser ablation of brass in a dry and liquid-confined environment

    Science.gov (United States)

    Bashir, Shazia; Vaheed, Hamza; Mahmood, Khaliq

    2013-02-01

    The effect of ambient environment (dry or wet) and overlapping laser pulses on the laser ablation performance of brass has been investigated. For this purpose, a Q-switched, frequency doubled Nd:YAG laser with a wavelength of 532 nm, pulse energy of 150 mJ, pulse width of 6 ns and repetition rate of 10 Hz is employed. In order to explore the effect of ambient environments, brass targets have been exposed in deionized water, methanol and air. The targets are exposed for 1000, 2000, 3000 and 4000 succeeding pulses in each atmosphere. The surface morphology and chemical composition of ablated targets have been characterized by using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) and Attenuated Total Reflection (ATR) techniques. In case of liquid environment, various features like nano- and micro-scale laser-induced periodic surface structures with periodicity 500 nm-1 μm, cavities of size few micrometers with multiple ablative layers and phenomenon of thermal stress cracking are observed. These features are originated by various chemical and thermal phenomena induced by laser heating at the liquid-solid interfaces. The convective bubble motion, explosive boiling, pressure gradients, cluster and colloid formation due to confinement effects of liquids are possible cause for such kind of features. The metal oxides and alcohol formed on irradiated surface are also playing the significant role for the formation of these kinds of structure. In case of air one huge crater is formed along with the redeposition of sputtered material and is ascribed to laser-induced evaporation and oxide formation.

  7. Study of phonon-induced energy transfer processes in crystals using heat pulses

    International Nuclear Information System (INIS)

    Burns, A.R.

    1978-03-01

    The artificial generation of acoustic lattice vibrations by a heat pulse technique is developed in order to probe phonon interactions in molecular crystals. Specifically, the phonon-assisted delocalization of ''trapped'' excited triplet state energy in the aromatic crystal 1,2,4,5-tetrachlorobenzene (TCB) is studied in a quantitative manner by monitoring the time-resolved decrease in trap phosphorescence intensity due to the propagation of a well-defined heat pulse. The excitation distribution in a single trap system, such as the X-trap in neat h 2 -TCB, is discussed in terms of the energy partition function relating the temperature dependence of the trap phosphorescence intensity to the trap depth, exciton bandwidth, and the number of exciton band states. In a multiple trap system, such as the hd and h 2 isotopic traps in d 2 -TCB, the excitation distribution is distinctly non-Boltzmann; yet it may be discussed in terms of a preferential energy transfer between the two trap states via the exciton band. For both trap systems, a previously developed kinetic model is presented which relates the efficiency of trap-band energy exchange to the density of band states and the trap-phonon coupling matrix elements. A bolometric technique for determining the thermal response time of the heater/crystal system is presented. The phonon mean free path in the crystal is size-limited, and the heater/crystal boundary conductance is reasonably close to previously reported values. The theory of heat pulse phonon spectroscopy is presented and discussed in terms of black-body phonon radiation

  8. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  9. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    International Nuclear Information System (INIS)

    Kaufmann, P.

    1977-01-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft γ-ray events of cosmic origin. (Auth.)

  10. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1977-06-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft ..gamma..-ray events of cosmic origin.

  11. Control of the Effective Free-Energy Landscape in a Frustrated Magnet by a Field Pulse

    Science.gov (United States)

    Wan, Yuan; Moessner, Roderich

    2017-10-01

    Thermal fluctuations can lift the degeneracy of a ground state manifold, producing a free-energy landscape without accidentally degenerate minima. In a process known as order by disorder, a subset of states incorporating symmetry breaking may be selected. Here, we show that such a free-energy landscape can be controlled in a nonequilibrium setting as the slow motion within the ground state manifold is governed by the fast modes out of it. For the paradigmatic case of the classical pyrochlore X Y antiferromagnet, we show that a uniform magnetic field pulse can excite these fast modes to generate a tunable effective free-energy landscape with minima at thermodynamically unstable portions of the ground state manifold.

  12. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  13. Applications of pulsed energy sources and hydrodynamic response to materials science

    International Nuclear Information System (INIS)

    Perry, F.; Nelson, W.

    1993-01-01

    The dynamic response of materials to pulsed, relativistic electron beams was studied for materials science applications over two decades ago. Presently, intense light ion beams are being explored for materials science applications. These include the Ion Beam Surface Treatment (IBEST) of materials for producing stronger and more corrosion-resistant materials and the evaporative deposition of polycrystalline thin films. Laser sources are also being extensively utilized as pulsed energy sources in medical science and in clinical applications. In particular, laser-tissue interactions are being investigated for laser angioplasty and surgery as well as cancer therapy. The understanding of the energy deposition and hydrodynamic response of a wide range of materials is essential to the success of these applications. In order to address these materials science applications, the authors are utilizing and developing high quality, energy deposition-hydrodynamic code techniques which can aid in the design and interpretation of experiments. Consequently, the authors strongly encourage the development of 3-dimensional, species-selective diagnostic techniques, e.g. Resonant Holographic Interferometry Spectroscopy (RHIS), to be used in analyzing the ablation plume in the thin film deposition experiments. In this presentation they show the results and discuss the limitations of calculations for these materials applications. They also discuss the status of the RHIS diagnostic

  14. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  15. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  16. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  17. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    Science.gov (United States)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  18. Evaluation of frequency-doubled Q-switched Nd: YAG laser in the treatment of freckle%倍频Q开关掺钕钇铝石榴石激光治疗雀斑疗效观察

    Institute of Scientific and Technical Information of China (English)

    罗迪青; 张武军; 刘隽华; 张海燕; 何定阳

    2009-01-01

    目的 评估倍频Q开关掺钕钇铝石榴石激光治疗雀斑的疗效.方法 总结2004年10月至2007年8月间治疗的47例雀斑患者的资料及治疗后外涂丁卡因凝胶的效果.结果 治疗后6个月,47例患者中,治愈38例(80.9%),显效8例(17.0%),有效1例(2.1%),总有效率100%.1年后治愈率为100%.治疗后3个月时有15例(31.9%)出现色素沉着,但于9个月内全部消退.治疗后外涂丁卡因凝胶的起效时间为20~70 8,达到最大镇痛效果的时间为2~5 min,可以减轻疼痛70%~100%.结论 倍频Q开关Nd:YAG激光治疗雀斑有疗效好、不良反应少的优点.但可出现可逆性炎症后色素沉着.治疗后使用丁卡因凝胶,有较好的止痛效果.%Objective To evaluate the effects of Q-switched Nd: YAG laser in the treatment of freckle. Methods Fourty-seven cases treated by Q-switched Nd: YAG laser between October 2004 to August. 2007 were analyzed. The effects of post-laser treatment of tetracaine gel were evaluated. Results Of 47 cases, 38 were cured (80.9%), 8 were notablely improved (17.0%) and 1 was improved 6 months after treatment. The total efficient rate was 100%. All of them were cured 1 year after treatment. 15 cases had a postinflammatory hyperpigmentation 3 months after the laser treatment which disappeared in 9 months. Furthermore, when the tetracaine gel was used after the laser treatment, the onset time was 20 to 70 seconds, the time of the maxial decreased-pain was 2 to 5 minutes and the maximal decreased-pain was 70%~100%. Conclusions Frequency-doubled Q-switched Nd: YAG laser is an effective tool to treat freckles without any adverse effects. But some of the patients will have a reversible postin-flammatory hyperpigmentation. Tetracaine gel has a rapid and good effects on laser-induced pain when used immedi-ately after laser procedure.

  19. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water

    Science.gov (United States)

    Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.

    2018-03-01

    We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.

  20. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  1. Reliability of high-voltage pulse capacitors operating in large energy storages

    International Nuclear Information System (INIS)

    Kuchinskij, G.S.; Fedorova, V.S.; Shilin, O.V.

    1982-01-01

    To improve the reliability of pulse capacitors operating in capacitive energy storages, processes, resulting in break-down of capacitor insulation were investigated. A statistic model of failures was constructed and reliability of real capacitors, functioning at operating electric intensity Usub(oper) equal 70 kV/mm and at elevated intensity 90 kV/mm was calculated. Results of testing the IK50-ZU4 capacitor are given. The form of the capacitor service life distribution function was specified. To provide and confirm the assigned capacitor reliability, it is necessary to speed up tests at a higher voltage (1.3-1.5) Usub(oper). To improve the capacitor reliability, it is advisable to conduct acceptance tests, which include hold at increased constant voltage (1.3-1.5) Usub(oper) during 1-3 min and the effect of pulses of increased voltage (1.2-1.3) Usub(oper) with the pulse shape corresponding to operating conditions

  2. Optical and structure characterization of cinnamon nanoparticles synthesized by pulse laser ablation in liquid (PLAL)

    Science.gov (United States)

    Aqeel Salim, Ali; Bidin, Noriah; Bakhtiar, Hazri; Krishna Ghoshal, Sib; Azawi, Mohammed Al; Krishnan, Ganesan

    2018-05-01

    Organic nanoparticles development is under exploration due to its beneficial applications in nanobiomedical and research interests. PLAL technique of Q-switched 1064-Nd: YAG (10 ns pulse duration, repetition rate 1 Hz and laser energy 20-100 mJ) has inherent advantages and rapid growth of nanoparticles when compared to conventional methods because of the controlled fabricated nanoparticles, stability, and purity. Cinnamon sticks as a target are immersed in 5 ml ethanol medium and irradiated by a laser beam for the growth process. The morphology, optical characteristic, and bonding structure of cinnamon nanoparticles (CNPs) are determined and evaluated by transmission electron microscope (TEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy (FTIR). Spherical, homogenous and high crystallinity CNPs was revealed within the particle size range of 2 - 28 nm. The absorption band was found in the ultraviolent region around 259 nm and 319 nm. The present of FTIR spectra confirmed that the nanoparticles were covered by plant secondary metabolites. The experimental findings revealed that the synthesize CNPs in ethanol has a potential for nanomedicine applications.

  3. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    Science.gov (United States)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  4. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  5. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  6. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  7. Studies on widely tunable ultra-short laser pulses using energy transfer distributed feedback dye laser

    International Nuclear Information System (INIS)

    Ahamed, M.B.; Ramalingam, A.; Palanisamy, P.K.

    2003-01-01

    This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-680 nm

  8. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  9. Efficient energy absorption of intense ps-laser pulse into nanowire target

    Energy Technology Data Exchange (ETDEWEB)

    Habara, H.; Honda, S.; Katayama, M.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1 Suita, Osaka 565-0871 (Japan); Sakagami, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagai, K. [Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuda 4259, Midori-ku, Yokohama 226-8503, Kanagawa (Japan)

    2016-06-15

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  10. A 10 TW pulsed energy complex PIRIT-2000 for investigation of short-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Ryaslov, E A; Kargin, V I; Pikar` , A S; Vorontsov, V I; Kotel` nikov, D V; Melkozerov, A V [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The results of investigation of a pulsed plasma x-ray source at the PIRIT-2000 fast operating capacitor bank are reported. The maximum energy stored in a primary 54-module capacitive storage at the output voltage of 500 kV reaches 2 MJ. The capacitor bank energizes a vacuum inductive storage, which is commutated by a plasma opening switch. The plasma diode consists of a tube cathode of diameter 15 cm and of a larger tube anode with six plasma injecting guns. The current amplitude and the current rise time at the plasma load amounts to 4 MA and 150 ns, respectively. The x-ray doses were measured by means of thermoluminescent dosemeters and the integral radiation output by means of a thermocouple calorimeter. The radiation output as high as 100 kJ was achieved at the stored energy of 1 MJ. (J.U.). 4 figs., 4 refs.

  11. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  12. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  13. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  14. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  15. Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing.

    Science.gov (United States)

    Cao, Jing; Poumellec, Bertrand; Brisset, François; Lancry, Matthieu

    2018-03-19

    Femtosecond laser-induced refractive index changes in lithium niobium silicate glass were explored at high repetition rate (300 fs, 500 kHz) by polarized light microscopy, full-wave retardation plate, quantitative birefringence microscopy, and digital holographic microscopy. We found three regimes on energy increase. The first one corresponds to isotropic negative refractive index change (for pulse energy ranging 0.4-0.8 μJ/pulse, 0.6 NA, 5μm/s, 650μm focusing depth in the glass). The second one (0.8-1.2 μJ/pulse) corresponds to birefringence with well-defined slow axis orientation. The third one (above 1.2 μJ/pulse) is related to birefringence direction fluctuation. Interestingly, these regimes are consistent with crystallization ones. In addition, an asymmetric orientational writing effect has been detected on birefringence. These topics extend the possibility of controlling refractive index change in multi-component glasses.

  16. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  17. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  18. Project of the electron linear accelerator on the biperiodical accelerating structure with deep energy retuning in a pulse mode

    International Nuclear Information System (INIS)

    Bogdanovich, B.Yu.; Zavadtsev, D.A.; Kaminskij, V.I.; Sobenin, N.P.; Fadin, A.I.; Zavadtsev, A.A.

    2001-01-01

    The schemes of the electron linear accelerator (ELA), realized on the basis of a biperiodical accelerating structure and ensuring the possibility of deep retuning of the beam energy in a pulse mode, are considered. Advantages and shortcomings of the proposed methods of pulse regulation of the electron energy are discussed. A project of a two-section ELA with two levels of energy (10 and 4 MeV) is presented as a base version. The beam dynamics is calculated for two versions of the ELA. Their main parameters are given [ru

  19. PULSED VERY HIGH ENERGY γ-RAY EMISSION CONSTRAINTS FOR PSR B1951+32 FROM STACEE OBSERVATIONS

    International Nuclear Information System (INIS)

    Zweerink, J.; Ball, J.; Carson, J. E.; Jarvis, A.; Ong, R. A.; Kildea, J.; Hanna, D. S.; Lindner, T.; Mueller, C.; Ragan, K.; Covault, C. E.; Driscoll, D. D.; Fortin, P.; Mukherjee, R.; Gingrich, D. M.; Williams, D. A.

    2009-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based telescope that uses the wave-front-sampling technique to detect very high energy (VHE) gamma rays. STACEE's sensitivity in the energy range near 100 GeV permits useful observations of pulsars with the potential to discriminate between various proposed mechanisms for pulsed gamma-ray emission. Based on the 11.3 hr of data taken during the 2005 and 2006 observing seasons, we derive an upper limit on the pulsed gamma-ray emission from PSR B1951+32 of -11 photons cm -2 s -1 above an energy threshold of 117 GeV.

  20. Advances towards a portable pulsed source of neutrons and X-ray with energy of work close to 1 Joule

    International Nuclear Information System (INIS)

    Soto, Leopoldo; Pavez, C.; Moreno, Jose; Clausse, Alejandro; Barbaglia, Mario O.

    2005-01-01

    Plasma Focus devices are pulsed sources of X and neutron radiation from intense electrical discharges in deuterium. Classically these devices operate at energies between a few KJ to 1 MJ. In this work we present the design and feasibility studies of a Plasma Focus operating at energies close to 1 Joule. Experimental evidence of focalization is presented, and the optimum parameter relations at such low energies are discussed. The results indicate the device will be able to emit pulses about 1000 neutrons per J. (author) [es

  1. Irradiation of amelanotic melanoma cells with 532 nm high peak power pulsed laser radiation in the presence of the photothermal sensitizer Cu(II)-hematoporphyrin: a new approach to cell photoinactivation.

    Science.gov (United States)

    Soncin, M; Busetti, A; Fusi, F; Jori, G; Rodgers, M A

    1999-06-01

    Cu(II)-hematoporphyrin (CuHp) was efficiently accumulated by B78H1 amelanotic melanoma cells upon incubation with porphyrin concentrations up to 52 microM. When the cells incubated for 18 h with 13 microM CuHp were irradiated with 532 nm light from a Q-switched Nd: YAG laser operated in a pulsed mode (10 ns pulses, 10 Hz) a significant decrease in cell survival was observed. The cell photoinactivation was not the consequence of a photodynamic process, as CuHp gave no detectable triplet signal upon laser flash photolysis excitation and no decrease in cell survival was observed upon continuous wave irradiation. Thus, it is likely that CuHp sensitization takes place by photothermal pathways. The efficiency of the photoprocess was modulated by different parameters; thus, while varying the amount of added CuHp in the 3.25-26 microM range had little effect, pulse energies larger than 50 mJ and irradiation times of at least 120 s were necessary to induce a cell inactivation of about 50%. The porphyrin-cell incubation time prior to irradiation had a major influence on cell survival, suggesting that the nature of the CuHp microenvironment can control the efficiency of photothermal sensitization.

  2. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi

    1981-01-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time). (author)

  3. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Nakamura, Y; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-07-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time).

  4. Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers

    International Nuclear Information System (INIS)

    Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.

    1976-01-01

    The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair

  5. Ion kinetic energy distribution in a pulsed vacuum arc with a straight magnetic filter

    International Nuclear Information System (INIS)

    Giuliani, L; Grondona, D; Kelly, H; Minotti, F

    2008-01-01

    In vacuum arcs of interest for film deposition the ion kinetic energy is of importance because it influences the coating properties. In this kind of discharge, the ions come out from the cathode spots with a high kinetic energy (20-150 eV). In the present work, we present measurements of vacuum arc ion energy distributions in a pulsed vacuum arc with a straight magnetic filter. A retarding field analyser (RFA) was used to perform the measurements that were carried out with a variable magnetic field strength (of the order of 10 mT). Since the interpretation of the results obtained from the RFA lies in the knowledge of the plasma and floating potential values, we have employed also Langmuir probes for determining those quantities. The obtained results for the ion kinetic energy are similar to those reported by other authors, but they were also found to be independent of the magnetic field strength. The electron temperature was also found to be independent of the magnetic field strength and of the axial position along the filter, indicating the absence of collisions.

  6. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Heng-Ye [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  7. Pulsed neutron generators based on plasma focus devices of low energy

    International Nuclear Information System (INIS)

    Silva, Patricio; Moreno, Jose; Soto, Leopoldo

    2003-01-01

    The plasma focus is a pulsed neutron source especially suited for applications because it reduces the danger of contamination of conventional isotopic radioactive sources. As first stage of a program to design a repetitive pulsed neutron generator for industrial applications we constructed two very small plasma focus operating at an energy level of the order of a) tens of joules (PF-50J, 160nF capacitor bank, 20-35 kV, 32-100J, ∼150ns first quarter of period) and b) hundred of joules (PF-400J, 880nF, 20-35kV, 176-539J, ∼300ns first quarter of period). In this article we present results related to design and construction of these small plasma foci (PF-50J and PF-400J). Neutron yield vs. deuterium. pressure has been obtained, a maximum emission of the order of 7x10 4 and 10 6 neutrons per shot has been measured in the PF-50J and PF-400J respectively (author)

  8. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  9. Characteristics of (Ti,Ta)N thin films prepared by using pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Li Li [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Lv Guohua [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang Xianhui [College of Science, Changchun University of Science and Technology, Changchun 130022, Jilin Province (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-07-21

    (Ti,Ta)N films were prepared by pulsed high energy density plasma (PHEDP) from a coaxial gun in N{sub 2} gas. The coaxial gun is composed of a tantalum inner electrode and a titanium outer one. Material characteristics of the (Ti,Ta)N film were investigated by x-ray photoelectron spectroscopy and x-ray diffraction. The microstructure of the film was observed by a scanning electron microscope. The elemental composition and the interface of the film/substrate were analysed using Auger electron spectrometry. Our results suggest that the binary metal nitride film (Ti,Ta)N, can be prepared by PHEDP. It also shows that dense nanocrystalline (Ti,Ta)N film can be achieved.

  10. Real-time spot size camera for pulsed high-energy radiographic machines

    International Nuclear Information System (INIS)

    Watson, S.A.

    1993-01-01

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory's Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison

  11. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  12. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    Directory of Open Access Journals (Sweden)

    Moffett J

    2012-09-01

    Full Text Available John Moffett,1 Linley M Fray,1 Nicole J Kubat21Life Science Department, 2Independent Consultant, Regenesis Biomedical Inc, Scottsdale, AZ, USABackground: Pulsed radiofrequency energy (PRFE fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways.Methods and Results: Using cultured human dermal fibroblasts (HDF and human epidermal keratinocytes (HEK, we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types.Conclusion: These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting.Keywords: peripheral analgesia, endogenous opioids, endothelin-1, endothelin receptor A, endothelin receptor B, pulsed radiofrequency energy field, cyclooxygenase

  13. A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters: A Stability Margin

    Science.gov (United States)

    Kolokolov, Yury; Monovskaya, Anna

    The popularity of systems of pulse energy conversion (PEC-systems) for practical applications is due to the heightened efficiency of energy conversion processes with comparatively simple realizations. Nevertheless, a PEC-system represents a nonlinear object with a variable structure, and the bifurcation analysis remains the basic tool to describe PEC dynamics evolution. The paper is devoted to the discussion on whether the scientific viewpoint on the natural nonlinear dynamics evolution can be involved in practical applications. We focus on the problems connected with stability boundaries of an operating regime. The results of both small-signal analysis and computational bifurcation analysis are considered in the parametrical space in comparison with the results of the experimental identification of the zonal heterogeneity of the operating process. This allows to propose an adapted stability margin as a sufficiently safe distance before the point after which the operating process begins to lose the stability. Such stability margin can extend the permissible operating domain in the parametrical space at the expense of using cause-and-effect relations in the context of natural regularities of nonlinear dynamics. Reasoning and discussion are based on the experimental and computational results for a synchronous buck converter with a pulse-width modulation. The presented results can be useful, first of all, for PEC-systems with significant variation of equivalent inductance and/or capacity. We believe that the discussion supports a viewpoint by which the contemporary methods of the computational and experimental bifurcation analyses possess both analytical abilities and experimental techniques for promising solutions which could be practice-oriented for PEC-systems.

  14. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  15. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  16. Pulsed Power Supply Based on Magnetic Energy Storage for Non-Destructive High Field Magnets

    Science.gov (United States)

    Aubert, G.; Defoug, S.; Joss, W.; Sala, P.; Dubois, M.; Kuchinsk, V.

    2004-11-01

    The first test results of a recently built pulsed power supply based on magnetic energy storage will be described. The system consists of the 16 kV shock alternator with a short-circuit power of 3600 MVA of the VOLTA Testing Center of the Schneider Electric SA company, a step-down transformer with a ratio of 1/24, a three-phase diode bridge designed for a current rising exponentially to 120 kA, and a big, 10 ton, heavy, 10 mH aluminum storage coil. The system is designed to store 72 MJ, normal operation will be at 50 MJ, and will work with voltages up to 20 kV. A transfer of 20% of the stored energy into the high field coil should be possible. Special making switches and interrupters have been developed to switch the high currents in a very short time. For safety and redundancy two independent monitoring systems control the energy transfer. A sequencing control system operates the switches on the ac side and protective switches on the dc side, a specially developed real-time control-monitoring system checks several currents and voltages and commands the dc circuit breakers and making switches.

  17. Generation of intense, high-energy ion pulses by magnetic compression of ion rings

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.

    1981-01-01

    A system based on the magnetic compression of ion rings, for generating intense (High-current), high-energy ion pulses that are guided to a target without a metallic wall or an applied external magnetic field includes a vacuum chamber; an inverse reflex tetrode for producing a hollow ion beam within the chamber; magnetic coils for producing a magnetic field, bo, along the axis of the chamber; a disc that sharpens a magnetic cusp for providing a rotational velocity to the beam and causing the beam to rotate; first and second gate coils for producing fast-rising magnetic field gates, the gates being spaced apart, each gate modifying a corresponding magnetic mirror peak (Near and far peaks) for trapping or extracting the ions from the magnetic mirror, the ions forming a ring or layer having rotational energy; a metal liner for generating by magnetic flux compression a high, time-varying magnetic field, the time-varying magnetic field progressively increasing the kinetic energy of the ions, the magnetic field from the second gate coil decreasing the far mirror peak at the end of the compression for extracting the trapped rotating ions from the confining mirror; and a disc that sharpens a magnetic half-cusp for increasing the translational velocity of the ion beam. The system utilizes the self-magnetic field of the rotating, propagating ion beam to prevent the beam from expanding radially upon extraction

  18. The high-energy pulsed X-ray spectrum of Hercules X-1 as observed with OSO 8

    Science.gov (United States)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Cutler, E. P.

    1979-01-01

    Hercules X-1 was observed from August 30 to September 10, 1977, by using the high-energy X-ray scintillation spectrometer on board the OSO 8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed-flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. Only weak evidence was found for temporal variation in the pulsed flux between 33 and 98 keV. The pulsed spectrum has been fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed Gaussian centered at 55 keV. The latter fit has the smallest value of chi-square per degree of freedom, and the resulting integrated line intensity is approximately 0.0015 photon/sec per sq cm for a width of 3.1 (+9.1, -2.6) keV. This result, while of low statistical significance, agrees with the value observed by Truemper (1978) during the same ON-state.

  19. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.

    2006-01-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-(micro)m-diameter pinholes in a 50-(micro)m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented

  20. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    Science.gov (United States)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.