Sample records for pyrrolase tryptophan

  1. Adrenal hormones and increase of liver tyrosine aminotransferase and tryptophan pyrrolase activity after immobilization in rats. (United States)

    Németh, S; Vigas, M


    In adrenomedullectomized rats the postimmobilization increase of liver tyrosine aminotransferase and tryptophan pyrrolase activity was similar as in intact animals, wherease in adrenalectomized rats this response was completely absent. In intact animals a positive correlation between the magnitude of the response of both enzymes and the duration of immobilization and/or the extent of plasma corticosterone increase was observedmit is concluded that the postimmobilization hyperactivity of both enzymes arises exclusively as a consequence of hypercorticosteronaemia, catecholamines and other hormones being without any influence on this response.

  2. Rapid reversal by naloxone of the chronic effects of morphine on rat liver and brain tryptophan metabolism.


    Badawy, A. A.; Evans, M.


    The chronic morphine-induced inhibition of rat liver tryptophan pyrrolase activity and the resultant increases in tryptophan availability to the brain and brain 5-hydroxytryptamine (5-HT) synthesis are reversed within 10 min after naloxone administration. The possible involvement of hepatic tryptophan metabolism in morphine dependence is briefly discussed.

  3. Liver and brain tryptophan metabolism following hydrocortisone administration to rats and gerbils. (United States)

    Green, A R; Sourkes, T L; Young, S N


    1 Liver tryptophan pyrrolase activity is low in the mongolian gerbil (Meriones unguiculatus) and is not induced by hydrocortisone (5 mg/kg). In contrast, there is measurable activity in the rat liver and this is induced by hydrocortisone. In vivo measurements confirmed the absence of induction in gerbils but suggested that they were able to metabolize tryptophan. However no detectable pyrrolase activity was found in any other tissues either before or after hydrocortisone. 2 In agreement with previous observations hydrocortisone decreased rat brain 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) 6 h after administration. Brain tryptophan concentrations were also decreased at this time. In contrast, hydrocortisone did not alter gerbil brain 5-HT, 5-HIAA or trytophan. alpha-Methyltryptophan activated hepatic tryptophan pyrrolase and decreased brain 5-HT and 5-HIAA in both animals. 3 Results suggest that the decrease in rat brain 5-HT and 5-HIAA following hydrocortisone may be associated with the rise in liver tryptophan pyrrolase and that the brain amine changes are mediated through the decrease in brain tryptophan concentration.

  4. L-tryptophan (United States)

    ... has been linked to over 1500 reports of eosinophilia-myalgia syndrome (EMS) and 37 deaths. EMS is ... breast-feeding. A white blood cell disorder called eosinophilia: L-tryptophan might make this condition worse. L- ...

  5. Tryptophan oxygenation: mechanistic considerations. (United States)

    Naismith, James H


    From a protein structural viewpoint, tryptophan is often considered an inert structural amino acid, playing a role as a hydrophobic anchor in membrane proteins or as part of the hydrophobic core of soluble proteins. However, tryptophan is the only polyaromatic amino acid and, from a chemical viewpoint, possesses unique reactivity owing to the electron-richness of the indole system. This reactivity is seen in the area of natural products and metabolites which have exquisite modifications of the indole ring system. Enzymes have evolved multiple strategies to break or modify the indole ring; one particular class is the IDO/TDO (indoleamine/tryptophan dioxygenase) superfamily. A new member of this family, PrnB, on the surface catalyses a very different reaction, but actually shares much of the early chemistry with the tryptophan dioxygenases. Studies on PrnB have contributed to our understanding of the wider superfamily. In the present mini-review, recent developments in our understanding of how the TDO class of enzymes use activated molecular oxygen to break the indole ring are discussed.

  6. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail:; Cabezas, Carlos, E-mail:; Mata, Santiago, E-mail:; Alonso, Josè L., E-mail: [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)


    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  7. Rotational Spectrum of Tryptophan (United States)

    Sanz, M. Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, José L.


    The rotational spectrum of the natural amino acid tryptophan has been observed using a recently constructed LA-MB-FTMW spectrometer, specifically designed to optimize the detection of heavier molecules at a lower frequency range. Independent analyses of the rotational spectra of individual conformers have conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The experimental values of the 14N nuclear quadrupole coupling constants have been found capital in the discrimination of the conformers. Both observed conformers are stabilized by a O-H\\cdotsN hydrogen bond in the side chain and a N-H\\cdotsπ interaction forming a chain that reinforces the strength of hydrogen bonds through cooperative effects.


    Directory of Open Access Journals (Sweden)

    Laura eSteenbergen


    Full Text Available The link between serotonin (5-HT and one of the most important elements of prosocial behavior, charity, has remained largely uninvestigated. In the present study, we tested whether charitable donating can be promoted by administering the food supplement L-Tryptophan (TRP, the biochemical precursor of 5-HT. Participants were compared with respect to the amount of money they donated when given the opportunity to make a charitable donation. As expected, compared to a neutral placebo, TRP appears to increase the participants’ willingness to donate money to a charity. This result supports the idea that the food we eat may act as a cognitive enhancer modulating the way we think and perceive the world and others.

  9. Tryptophan-free diet: a new means for rapidly decreasing brain tryptophan content and serotonin synthesis. (United States)

    Gessa, G L; Biggio, G; Fadda, F; Corsini, G U; Tagliamonte, A


    Changes in the synthesis rate of brain serotonin are positively correlated with changes in the concentration of brain tryptophan, indicating that the concentration of tryptophan in the whole brain reflects that at sites of serotonin synthesis. In turn, the concentration of brain tryptophan is positively correlated with that of free serum tryptophan (tryptophan is the only amino acid bound to serum proteins) and negatively to that of other amino acids competing with tryptophan for the same transport from blood to brain. Consistently, experiments in rats have shown that treatments which increase free tryptophan in serum (in respect to competing amino acids) also increase brain tryptophan and serotonin turnover. Conversely, the ingestion of diets containing all amino acids except tryptophan cause a dramatic fall in free serum tryptophan and a parallel decline in brain tryptophan and serotonin synthesis. In man the administration of an amino acid mixture lacking trytophan produces a marked depletion in serum tryptophan concentration.

  10. L-tryptophan in depression. (United States)

    Farkas, T; Dunner, D L; Fieve, R R


    L-tryptophan, the amino acid precursor of serotonin, was administered to 16 depressive patients in a double-blind study of its potential antidepressant efficacy. Antidepressant responses were observed in one of ten unipolar patients and in three of six bipolar patients. These results are discussed in the context of possible interactions of amines with electrolyte systems in the etiology of affective illness.

  11. Parallel variation of ventricular CSF tryptophan and free serum tryptophan in man. (United States)

    Young, S N; Lal, S; Feldmuller, F; Sourkes, T L; Ford, R M; Kiely, M; Martin, J B


    Tryptophan was measured in the ventricular CSE and serum and the neutral amino acids leucine, isoleucine, valine, phenylalanine, and tyrosine were measured in the serum of two cases with ventricular drains. Samples were taken every two hours for 24 hours in one case and for 16 hours in the other. The CSF tryptophan was correlated significantly with the free--that is, non-albumin-bound--serum tryptophan but not with the total serum tryptophan. CSF tryptophan was not correlated significantly with the ratio of free serum tryptophan to the sum of the neutral amino acids. These data suggest that, in man, brain tryptophan concentrations are influenced by the free and not the total serum tryptophan and that physiological variations of the neutral amino acids do not appreciably influence the concentration of brain trytophan.

  12. l-Tryptophan Production by Achromobacter liquidum (United States)

    Ujimaru, Toshihiko; Kakimoto, Toshio; Chibata, Ichiro


    Conditions for the production of tryptophanase from Achromobacter liquidum and for the conversion of l-serine and indole to l-tryptophan were studied. The enzyme could be produced in amounts as great as 0.750 U/ml (degradation) and 0.294 U/ml (synthesis) by shaking cultures at 30°C in a medium containing dextrin, yeast extract, l-tryptophan, and l-glutamic acid. l-Tryptophan was produced most efficiently by shaking the cells at 37°C in a reaction mixture containing 60 mg of l-serine per ml, 60 mg of indole per ml, and 0.5 mM pyridoxal phosphate. After 3 days, 96 mg of l-tryptophan per ml was formed, and l-tryptophan was easily isolated to 85.4% yield by concentration of the reaction mixture. PMID:16346331

  13. Posttranslational isoprenylation of tryptophan in bacteria (United States)

    Sugita, Tomotoshi; Abe, Ikuro


    Posttranslational isoprenylation is generally recognized as a universal modification of the cysteine residues in peptides and the thiol groups of proteins in eukaryotes. In contrast, the Bacillus quorum sensing peptide pheromone, the ComX pheromone, possesses a posttranslationally modified tryptophan residue, and the tryptophan residue is isoprenylated with either a geranyl or farnesyl group at the gamma position to form a tricyclic skeleton that bears a newly formed pyrrolidine, similar to proline. The post-translational dimethylallylation of two tryptophan residues of a cyclic peptide, kawaguchipeptin A, from cyanobacteria has also been reported. Interestingly, the modified tryptophan residues of kawaguchipeptin A have the same scaffold as that of the ComX pheromones, but with the opposite stereochemistry. This review highlights the biosynthetic pathways and posttranslational isoprenylation of tryptophan. In particular, recent studies on peptide modifying enzymes are discussed.

  14. Structural Characterization of New Microcystins Containing Tryptophan and Oxidized Tryptophan Residues

    Directory of Open Access Journals (Sweden)

    David P. Hamilton


    Full Text Available Microcystins are cyclic peptides produced by cyanobacteria, which can be harmful to humans and animals when ingested. Eight of the (more than 90 microcystin variants presently characterized, contain the amino acid tryptophan. The well-researched oxidation products of tryptophan; kynurenine, oxindolylalanine, and N-formylkynurenine, have been previously identified in intact polypeptides but microcystin congeners containing oxidized tryptophan moieties have not been reported. Liquid chromatography-tandem mass spectrometric analysis of an extract of Microcystis CAWBG11 led to the tentative identification of two new tryptophan-containing microcystins (MC‑WAba and MC-WL, as well as eight other microcystin analogs containing kynurenine, oxindolylalanine and N‑formylkynurenine (Nfk. Investigation of one of these congeners (MC‑NfkA by nuclear magnetic resonance spectroscopy was used to verify the presence of Nfk in the microcystin. Liquid chromatography-mass spectrometry analysis of a tryptophan oxidation experiment demonstrated that tryptophan-containing microcystins could be converted into oxidized tryptophan analogs and that low levels of oxidized tryptophan congeners were present intracellularly in CAWBG11. MC-NfkR and MC-LNfk were detected in standards of MC-WR and MC-LW, indicating that care during storage of tryptophan-containing microcystins is required.

  15. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball


    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  16. Rotational Spectra of Phenylalanine, Tirosine and Tryptophan (United States)

    Mata, S.; Perez, C.; Sanz, M. E.; Blanco, S.; López, J. C.; Alonso, J. L.


    The rotational spectra of the aromatic natural amino acids phenylalanine, tyrosine and tryptophan have been investigated by Laser Ablation Molecular Beam Fourier transform Microwave Spectroscopy LA-MB-FTMW. The spectra of two rotamers of phenylalanine have been detected in the supersonic expansion. Both forms are stabilized by a chain of intramolecular hydrogen bonds O-H\\cdotsN-H\\cdots{π}, being the carboxylic group incis configuration. One conformer of tyrosine, which only differs from phenylalanine in a -OH group inpara position, has been also characterized. Preliminary results on the rotational spectrum of tryptophan are presented.

  17. Tryptophan distribution in yeast hexokinase isoenzyme B

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, D.C.; Feldman, I.


    Titrations of the quenching of the tryptophan fluorescence of yeast hexokinase isoenzyme B by Cs/sup +/, I/sup -/ and glucose as quenchers, singly and in various combinations, have been performed at pH 5.5, 8.3, and 10.1 at 20/sup 0/C. The iodide and glucose titrations at pH 8.3 indicated that the four tryptophan residues of the monomer subunit can be classified as: (1) a highly accessible surface tryptophan (Trp-S/sub 1/); (2) a surface tryptophan (Trp-S/sub 2/) with restricted accessibility (possibly in a crevice); (3) a glucose-quenchable cleft tryptophan (Trp-G); and (4) a buried tryptophan (Trp-B) in the hydrophobic interior. The Stern-Volmer constants, k/sub I/, calculated for iodide quenching of the two surface residues at pH 8.3 are 22 and 3.3 M/sup -1/. The k/sub I/ value of Trp-G at this pH is iodide dependent, increasing from 1.2 to 1.4 M/sup -1/ as the iodide concentration increases from 0.1 to 0.65 M, probably because of iodide-induced alteration of the cleft structure. An iodide concentration above 0.65 M quenches Trp-B detectably, demonstrating that a high iodide concentration produces a large structural change in the isoenzyme. The percentages of the total 350 nm emission attributable to the individual tryptophan residues at pH 8.3 are 9, 22, 28, and 41%, for Trp-S/sub 1/, Trp-S/sub 2/, Trp-G, and Trp-B, respectively. At pH 5.5 even a low iodide concentration causes some quenching of Trp-B, especially in presence of saturating glucose. Glucose increases the iodide quenchability at this pH. At pH 10.1 glucose does not quench the tryptophan emission, and it does not influence the iodide-quenching action. However, at this high pH the k/sub 1/ of Trp-S/sub 1/ is reduced to the point where it is not resolvable from the k/sub I/ values of Trp-S/sub 2/ and Trp-G, even though the sum of the fractional fluorescence contributions of these three residues is the same as at pH 8.3.

  18. Improving therapeutics in anorexia nervosa with tryptophan. (United States)

    Haleem, Darakhshan Jabeen


    A growing body of evidence suggests that our diet is an important contributing factor in the development, management and prevention of a number of psychiatric illnesses. Tryptophan, an essential amino acid, is the sole precursor of neurotransmitter 5-hydroxytryptamine (5-HT; serotonin). Administration of tryptophan can boost serotonin neurotransmission to produce therapeutically important effects in serotonin deficiency disorders. Anorexia nervosa (AN) an eating disorder associated with high levels of psychiatric comorbidity including psychosis, hyperactivity, depression and anxiety has highest lethality of all psychiatric illnesses. Evidence suggests that excessive dieting and food restriction can decrease brain tryptophan and serotonin in AN patients to precipitate depression, psychosis and hyperactivity. There are currently no FDA approved pharmacological treatments available for AN patients; antidepressants and antipsychotics, largely used to treat associated psychiatric comorbidities are also not very effective. The aim of this non-systematic review article is to evaluate and document a potential importance of tryptophan supplementation in improving therapeutics in AN patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Tryptophan-induced eosinophilia-myalgia syndrome.


    Criswell, L A; Sack, K. E.


    Eight patients who became ill while taking tryptophan had myalgia, fatigue, rash, fever, edema, alopecia, arthralgias, diminished joint motion, skin tightening, muscle cramping, and distal paresthesias. Three had shortness of breath, and one had pulmonary hypertension. Laboratory abnormalities included peripheral eosinophilia, leukocytosis, thrombocytosis, raised erythrocyte sedimentation rate, and elevated serum levels of aldolase, lactate dehydrogenase, and liver enzymes. Of 4 chest radiogr...

  20. Origin of tryptophan fluorescence lifetimes. Part 2: fluorescence lifetimes origin of tryptophan in proteins. (United States)

    Albani, J R


    Fluorescence intensity decays of L-tryptophan in proteins dissolved in pH 7 buffer, in ethanol and in 6 M guanidine pH 7.8 and in lyophilized proteins were measured. In all protein conditions, three lifetimes were obtained along the emission spectrum (310-410 nm). The two shortest lifetimes are in the same range of those obtained for L-Trp in water or in ethanol. Thus, these two lifetimes originate from specific two sub-structures existing in the excited state and are inherent to the tryptophan structure independently of the surrounding environment (amino acids residues, solvent, etc.) In proteins, the third lifetime originates from the interactions that are occurring between tryptophan residues and neighboring amino acids. Populations of these lifetimes are independent of the excitation wavelength and thus originate from pre-defined sub structures existing in the excited state and put into evidence after tryptophan excitation. Fluorescence decay studies of different tripeptides having a tryptophan residue in second position show that the best analysis is obtained with two fluorescence lifetimes. Consequently, this result seems to exclude the possibility that peptide bond induces the third fluorescence lifetimes. Indole dissolved in water and/or in ethanol emits with two fluorescence lifetimes that are completely different from those observed for L-Trp. Absence of the third lifetime in ethanol demonstrates that indole behaves differently when compared to tryptophan. Thus, it seems not adequate to attribute fluorescence lifetime or fluorescence properties of tryptophan to indole ring and to compare tryptophan fluorescence properties in proteins to molecules having close structures such as NATA which fluoresces with one lifetime.

  1. Origin of tryptophan fluorescence lifetimes part 1. Fluorescence lifetimes origin of tryptophan free in solution. (United States)

    Albani, J R


    Fluorescence intensity decays of L-tryptophan free in polar, hydrophobic and mixture of polar-hydrophobic solvents were recorded along the emission spectrum (310-410 nm). Analysis of the data show that emission of tryptophan occurs with two lifetimes in 100% polar and hydrophobic environments. The values of the two lifetimes are not the same in both environments while their populations (pre-exponentials values) are identical. Fluorescence lifetimes and pre-exponentials values do not change with the excitation wavelength and thus are independent of excitation energy. Our results indicate that tryptophan emission occurs from two specific sub-structures existing in the excited state. These sub-structures differ from those present in the ground states and characterize an internal property and/or organization of the tryptophan structure in the excited state. By sub-substructure, we mean here tryptophan backbone and its electronic cloud. In ethanol, three fluorescence lifetimes were measured; two lifetimes are very close to those observed in water (0.4-0.5 ns and 2-4 ns). Presence of a third lifetime for tryptophan in ethanol results from the interaction of both hydrophobic and hydrophilic dipoles or chemical functions of ethanol with the fluorophore.

  2. Purification and Characterization of Tryptophan Hydroxylase

    DEFF Research Database (Denmark)

    Haahr, Lærke Tvedebrink

    This thesis deals with the purification and characterization of the iron-containing enzyme tryptophan hydroxylase (TPH). TPH exists in two isoforms, called TPH1 and TPH2. Each isoform consists of threestructural distinct domains: the regulatory, the catalytic and the tetramerization domain. TPH...... of this project was to developpurification methods for full-length TPH1 and TPH2 as well as to characterize purified TPH variants. A successful purification method for full-length human TPH1 (hTPH1) was developed, which resulted in pure, active and stable protein. The method includes affinity-purification using....... The crystallization procedure for the catalytic domain of gallus gallus TPH1 (cgTPH1) was optimized to faster crystal growth by addition of tryptophan and incubation at room temperature. Crystals without imidazole in the crystallization conditions could be obtained. The solved structures were however of poor quality...

  3. Synthesis of constrained analogues of tryptophan

    Directory of Open Access Journals (Sweden)

    Elisabetta Rossi


    Full Text Available A Lewis acid-catalysed diastereoselective [4 + 2] cycloaddition of vinylindoles and methyl 2-acetamidoacrylate, leading to methyl 3-acetamido-1,2,3,4-tetrahydrocarbazole-3-carboxylate derivatives, is described. Treatment of the obtained cycloadducts under hydrolytic conditions results in the preparation of a small library of compounds bearing the free amino acid function at C-3 and pertaining to the class of constrained tryptophan analogues.

  4. Dietary tryptophan intake and suicide rate in industrialized nations. (United States)

    Voracek, Martin; Tran, Ulrich S


    The objective of this study was to assess the ecological association of dietary tryptophan intake and suicide rates across industrialized nations. Tryptophan, an essential amino acid, is the rate-limiting precursor of serotonin biosynthesis. The serotonergic system has been strongly implicated in the neurobiology of suicide. Contemporary male and female suicide rates for the general population (42 countries) and the elderly (38 countries) were correlated with national estimates of dietary tryptophan intake. Measures of tryptophan intake were significantly negatively associated to national suicide rates. Controlling for national affluence, total alcohol consumption and happiness levels slightly attenuated these associations, but left all of them negative. The effect is an ecological (group-level) finding. Estimated per capita tryptophan supply is only a proxy for actual consumption. Developed nations ranking high in dietary tryptophan intake rank low in suicide rates, independent of national wealth, alcohol intake and happiness.

  5. Tryptophan and kynurenine determination in human hair by liquid chromatography. (United States)

    Dario, Michelli F; Freire, Thamires Batello; Pinto, Claudinéia Aparecida Sales de Oliveira; Prado, María Segunda Aurora; Baby, André R; Velasco, Maria Valéria R


    Tryptophan, an amino acid found in hair proteinaceous structure is used as a marker of hair photodegradation. Also, protein loss caused by several chemical/physical treatments can be inferred by tryptophan quantification. Kynurenine is a photo-oxidation product of tryptophan, expected to be detected when hair is exposed mainly to UVB (290-320nm) radiation range. Tryptophan from hair is usually quantified directly as a solid or after alkaline hydrolysis, spectrofluorimetrically. However, these types of measure are not sufficiently specific and present several interfering substances. Thus, this work aimed to propose a quantification method for both tryptophan and kynurenine in hair samples, after alkali hydrolysis process, by using high-performance liquid chromatography (HPLC) with fluorimetric and UV detection. The tryptophan and kynurenine quantification method was developed and validated. Black, white, bleached and dyed (blond and auburn) hair tresses were used in this study. Tryptophan and kynurenine were separated within ∼9min by HPLC. Both black and white virgin hair samples presented similar concentrations of tryptophan, while bleaching caused a reduction in the tryptophan content as well as dyeing process. Unexpectedly, UV/vis radiation did not promote significantly the conversion of tryptophan into its photo-oxidation product and consequently, kynurenine was not detected. Thus, this works presented an acceptable method for quantification of tryptophan and its photooxidation metabolite kynurenine in hair samples. Also, the results indicated that bleaching and dyeing processes promoted protein/amino acids loss but tryptophan is not extensively degraded in human hair by solar radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Plasma L-Tryptophan Levels, Subjective Sleepiness and Daytime Sleep. (United States)


    hydroxylase enzyme at the first step in the serotonin synthetic pathway is not saturated (Friedman et al, 1972). The availability of the amino acid...changes in rats after parachloro- phenylalanine (PCPA). Wyatt’s work (Wyatt et al, 1970) showing 1-tryptophan effects on sleep in subjects pretreated with...tryptophan hydroxylase in midbrain of the rat. Science 166: 1274-76. Brezinova, V., Loudon, J., and Oswald, I. 1972. Tryptophan and sleep. Lancet 2: 1086-87

  7. Development of Bacillus subtilis mutants to produce tryptophan in pigs

    DEFF Research Database (Denmark)

    Bjerre, Karin; Cantor, Mette D.; Nørgaard, Jan Værum


    Objectives To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. Results A novel concept has been investigated—to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis...

  8. Tryptophan analogues. 1. Synthesis and antihypertensive activity of positional isomers. (United States)

    Safdy, M E; Kurchacova, E; Schut, R N; Vidrio, H; Hong, E


    A series of tryptophan analogues having the carboxyl function at the beta-position was synthesized and tested for antihypertensive activity. The 5-methoxy analogue 46 exhibited antihypertensive activity in the rat via the oral route and was much more potent than the normal tryptophan analogue. The methyl ester was found to be a critical structural feature for activity.

  9. 2-Methyl-L-tryptophan is a substrate of tryptophanase. (United States)

    Faleev, N G; Gogoleva, O I; Dementieva, I S; Zakomirdina, L N; Belikov, V M


    Tryptophanase was generally considered to be inactive towards tryptophan derivatives substituted at 2-position of the indole ring. We have shown that cells containing tryptophanase catalyze the formation of 2-methyl-L-tryptophan from 2-methylindole and L-serine, and from 2-methylindole, pyruvate and ammonium ion. The kinetics of pyruvate formation from 2-methyl-L-tryptophan and its alpha-deuterated analogue catalyzed by homogeneous tryptophanase were examined. The primary deuterium isotope effect (kH/kD = 4.0) as well as the absorption spectrum of tryptophanase complex with 2-methyl-L-tryptophan indicate that the rate of enzymatic reaction of 2-methyl-L-tryptophan is in a considerable degree determined by the stage of removal of alpha-proton.

  10. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons


    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  11. Destabilization of artificial biomembrane induced by the penetration of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liuhua [Department of Chemistry, Tongji University, Shanghai 200092 (China); Gan Lihua, E-mail: [Department of Chemistry, Tongji University, Shanghai 200092 (China); Liu Mingxian; Fan Rong; Xu Zijie; Hao Zhixian; Chen Longwu [Department of Chemistry, Tongji University, Shanghai 200092 (China)


    The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. {pi}-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}, the limiting molecular area of lecithin increased from 110.5 to 138.5 A{sup 2}, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m{sup -1}, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 x 10{sup 6} {Omega} and 3.573 x 10{sup -8} F to 1.391 x 10{sup 6} {Omega} and 3.340 x 10{sup -8} F when the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.

  12. L-Tryptophan depletion bioreactor, a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Rolf Bambauer


    Full Text Available The cancer therapeutic strategies knownto date are not adequate for all cancer patients. Most of them are followed by a high rate of side effects and complications. The L-tryptophan depletion bioreactor is described as a possible new method of cancer therapy. L-tryptophan is an essential amino acid which has been recognized as an important cancer nutrient and its removal can lead to destruction of the tumour. Normal human cells or tumor cells cannot synthesize L-tryptophan and therefore tumor resistance is unlikely to develop. L-tryptophan is also a constituent for different bio-molecules such as Serotonin, Melatonin, and is needed for other synthesis processes in the cell growth. L-tryptophan degrading enzymes with 3 iso-enzymes called tryptophan side chain oxydase (TSO I, II, III were isolated. The 3 iso-enzymes can be differentiated by tryptic digestion. They have different molecular weights with different effectivenesses. All the TSO enzymes have heme that can catalyze essentially similar reactions involving L-tryptophan as a substrate. The most effective TSO is the type TSO III. A column which contained TSO as a bioreactor was integrated in a plasmapheresis unit and tested it in different animals. In sheep and rabbits L-tryptophan depletion in plasma was shown at 95% and 100% rates respectively by a single pass through the bioreactor. The results in immune supprimized rats with tumors were impressive, too. In 20 different tumor cell lines there were different efficacies. Brest cancer and medulloblastoma showed the greatest efficacy of L-tryptophan degrading. The gene technology of TSO production from Pseudomonas is associated with formation of endotoxins. This disadvantage can be prevented by different washing procedures or by using fungal sources for the TSO production. TSO III is developed to treat cancer diseases successfully, and has low side effects. A combination of L-tryptophan depletion with all available cancer therapies is

  13. Tryptophan and tryptophan-like substances in cloud water: Occurrence and photochemical fate (United States)

    Bianco, Angelica; Passananti, Monica; Deguillaume, Laurent; Mailhot, Gilles; Brigante, Marcello


    This work investigates the occurrence and photochemical behaviour of tryptophan (TRP) in the cloud aqueous phase. The concentrations of tryptophan, TRYptophan LIke Substances (TRYLIS) and HUmic LIke Substances (HULIS) in real cloud water, collected between October 2013 and November 2014 at the top of the puy de Dôme station, were determined using the Excitation-Emission-Matrix (EEM) technique. The amount of free and complexed tryptophan (TRP) up to 10-7 M in cloud aqueous phase was quantified by HPLC-UV-fluorescence analysis, and its photoreactivity under sun-simulated conditions was investigated in synthetic water samples mimicking cloud aqueous phase compositions (oceanic and continental origins). TRP undergoes direct photolysis, and its degradation is enhanced in the presence of naturally occurring species able to photo-generate hydroxyl radicals (HOrad). The polychromatic quantum yield of TRP (ϕ290-340 nm TRP) is estimated to be 8.37 × 10-4 between 290 and 340 nm, corresponding to the degradation rate (RTRPd) of 1.29 × 10-11 M s-1 under our irradiation conditions. The degradation is accelerated up to 3.65 × 10-10 and 8.26 × 10-10 M s-1 in synthetic oceanic and continental cloud water samples doped with 100 μM hydrogen peroxide, respectively. Hydroxyl radical-mediated transformation leads to the generation of different functionalized and oxidized products, as well as small carboxylic acids, such as formate and acetate. Moreover, fluorescent signals of irradiated solutions indicate the formation of HULIS.

  14. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites. (United States)

    Rios-Avila, Luisa; Nijhout, H Frederik; Reed, Michael C; Sitren, Harry S; Gregory, Jesse F


    Vitamin B-6 deficiency is associated with impaired tryptophan metabolism because of the coenzyme role of pyridoxal 5'-phosphate (PLP) for kynureninase and kynurenine aminotransferase. To investigate the underlying mechanism, we developed a mathematical model of tryptophan metabolism via the kynurenine pathway. The model includes mammalian data on enzyme kinetics and tryptophan transport from the intestinal lumen to liver, muscle, and brain. Regulatory mechanisms and inhibition of relevant enzymes were included. We simulated the effects of graded reduction in cellular PLP concentration, tryptophan loads and induction of tryptophan 2,3-dioxygenase (TDO) on metabolite profiles and urinary excretion. The model predictions matched experimental data and provided clarification of the response of metabolites in various extents of vitamin B-6 deficiency. We found that moderate deficiency yielded increased 3-hydroxykynurenine and a decrease in kynurenic acid and anthranilic acid. More severe deficiency also yielded an increase in kynurenine and xanthurenic acid and more pronounced effects on the other metabolites. Tryptophan load simulations with and without vitamin B-6 deficiency showed altered metabolite concentrations consistent with published data. Induction of TDO caused an increase in all metabolites, and TDO induction together with a simulated vitamin B-6 deficiency, as has been reported in oral contraceptive users, yielded increases in kynurenine, 3-hydroxykynurenine, and xanthurenic acid and decreases in kynurenic acid and anthranilic acid. These results show that the model successfully simulated tryptophan metabolism via the kynurenine pathway and can be used to complement experimental investigations.

  15. Tryptophan degradation and neopterin levels in treated rheumatoid arthritis patients. (United States)

    Ozkan, Yesim; Mete, Guray; Sepici-Dincel, Aylin; Sepici, Vesile; Simsek, Bolkan


    Increased kynurenine/tryptophan-reflects trytophan degradation-and neopterin levels have been regarded as a biochemical marker of cell-mediated immune response and inflammation. This study was designed to evaluate the usefulness of tryptophan degradation and neopterin levels in active rheumatoid arthritis patients under therapy. In this case-control study, kynurenine and tryptophan levels were determined by HPLC; neopterin and tumor necrosis factor-α levels were measured with ELISA in 32 active rheumatoid arthritis patients and 20 healthy controls. Although mean values of tryptophan, kynurenine, ratio of kynurenine to tryptophan, neopterin, and tumor necrosis factor-α levels did not show statistically significant differences between patient and control groups, neopterin levels correlated positively with kynurenine (r = 0.582, p < 0.02), kynurenine/tryptophan (r = 0.486, p < 0.05), erythrocyte sedimentation rate (r = 0.472, p < 0.05) and RF (r = 0.478, p < 0.05) in the rheumatoid arthritis group. CRP levels of the patient group correlated with kynurenine levels (r = 0.524, p < 0.03). Determination of tryptophan degradation and neopterin levels in chronic inflammatory disease may provide a better understanding of progression of the disease.

  16. Exploring the mechanism of tryptophan 2,3-dioxygenase (United States)

    Thackray, Sarah J.; Mowat, Christopher G.; Chapman, Stephen K.


    The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes. PMID:19021508

  17. Metabolism and serum levels of tryptophan in senile cataract patients. (United States)

    Costa, C; Angi, M R; De Carli, M; Vanzan, S; Allegri, G


    In order to clarify the role of tryptophan in the patogenesis of senile cataract, we have studied the serum total and free levels of tryptophan in cataract patients as compared with age and sex-matched controls, and the urinary excretion of 10 metabolites after oral load of the amino acid. This excretion increases in the cataract group both as total per cent and as kynurenine. No difference has been found in the free and total serum tryptophan between normal subjects and cataract patients. A possible role of the kynurenines in the pathogenesis of senile cataract is suggested.

  18. protein, tryptophan and lysine contents in quality protien maize ...

    African Journals Online (AJOL)


    for human nutrition recommended by Food and Agriculture Organization in ... METHODS: The protein, tryptophan and lysine contents of improved ... This study revealed the fact that genetic factor influences the protein, ... Ethiop J Health Sci.

  19. Micro-environmental influences on the fluorescence of tryptophan (United States)

    Sun, Feng; Zong, Wansong; Liu, Rutao; Chai, Jun; Liu, Ying


    The fluorescence characteristics of protein molecules are mainly due to their tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe) residues, among which tryptophan is the most important. Studying the influence of the micro-environment on tryptophan fluorescence can give us direct and convincing evidence for changes of protein structure and function. In this paper, fluorescence spectroscopy was used to evaluate the changes of tryptophan fluorescence under a variety of micro-environmental conditions (temperature, pH, polarity, presence of surfactants and oxidants) and the mechanisms responsible. This study not only presents more direct evidence to explain how and why the protein fluorescence spectra change, but also provides a new method for analyzing the effect of environmental changes on protein function.

  20. Tryptophan rich diet as a new approach to study the serotoninergic enteropancreatic axis.


    Goke, B.; Richter, G; Keim, V; Arnold, R


    The influence of a tryptophan enriched diet (L-tryptophan added as 1% of total diet), fed over 10 days, on the rat duodenum and pancreas was studied by immunohistology, measurements of serotonin and tryptophan tissue concentrations by HPLC, and incubations of pancreatic lobules. Ingestion of a tryptophan enriched diet resulted in increased contents of tryptophan and serotonin in the duodenum that was not accompanied by a significant change of the serotonin cell density. Neither basal nor CCK-...

  1. Tryptophan degradation in women with breast cancer: a pilot study

    Directory of Open Access Journals (Sweden)

    Schubert Christine M


    Full Text Available Abstract Background Altered tryptophan metabolism and indoleamine 2,3-dioxygenase activity are linked to cancer development and progression. In addition, these biological factors have been associated with the development and severity of neuropsychiatric syndromes, including major depressive disorder. However, this biological mechanism associated with both poor disease outcomes and adverse neuropsychiatric symptoms has received little attention in women with breast cancer. Therefore, a pilot study was undertaken to compare levels of tryptophan and other proteins involved in tryptophan degradation in women with breast cancer to women without cancer, and secondarily, to examine levels in women with breast caner over the course of chemotherapy. Findings Blood samples were collected from women with a recent diagnosis of breast cancer (n = 33 before their first cycle of chemotherapy and after their last cycle of chemotherapy. The comparison group (n = 24 provided a blood sample prior to breast biopsy. Plasma concentrations of tryptophan, kynurenine, and tyrosine were determined. The kynurenine to tryptophan ratio (KYN/TRP was used to estimate indoleamine 2,3-dioxygenase activity. On average, the women with breast cancer had lower levels of tryptophan, elevated levels of kynurenine and tyrosine and an increased KYN/TRP ratio compared to women without breast cancer. There was a statistically significant difference between the two groups in the KYN/TRP ratio (p = 0.036, which remained elevated in women with breast cancer throughout the treatment trajectory. Conclusions The findings of this pilot study suggest that increased tryptophan degradation may occur in women with early-stage breast cancer. Given the multifactorial consequences of increased tryptophan degradation in cancer outcomes and neuropsychiatric symptom manifestation, this biological mechanism deserves broader attention in women with breast cancer.

  2. Plasma tryptophan concentration in depressive illness and mania. (United States)

    Peet, M; Moody, J P; Worrall, E P; Walker, P; Naylor, G J


    Total and free plasma trytophan levels were measured in depressive and manic patients before and after recovery. No change was found in total or free plasma trytophan concentration on recovery from depressive illness. Free plasma tryptophan levels were higher in recovered manics than in active manics, and a group of four manic patients tested before and after recovery showed a significant increase in free plasma tryptophan concentration on recovery.

  3. Efficient Asymmetric Synthesis of Tryptophan Analogues Having Useful Photophysical Properties (United States)

    Talukder, Poulami; Chen, Shengxi; Arce, Pablo M.


    Two new fluorescent probes of protein structure and dynamics have been prepared by concise asymmetric syntheses using the Schöllkopf chiral auxiliary. The site-specific incorporation of one probe into dihydrofolate reductase is reported. The utility of these tryptophan derivatives lies in their absorption and emission maxima which differ from those of tryptophan, as well as in their large Stokes shifts and high molar absorptivities. PMID:24392870

  4. Kernel modifications and tryptophan content in QPM segregating generations

    Directory of Open Access Journals (Sweden)

    -Ignjatović-Micić Dragana


    Full Text Available Maize has poor nutritional value due to deficiency of two essential amino acids - tryptophan and lysine. Although recessive opaque2 (o2 mutation significantly increases their content in the endosperm, incorporation of opaque2 into high yielding cultivars was not commercially successful, because of its numerous agronomic and processing problems due to soft endosperm. Quality protein maize - QPM has lately been introduced as opaque2 maize with improved endosperm hardness and improved agronomic traits, but mostly within tropical and subtropical germplasm. The ongoing breeding project at MRI includes improvement of MRI opaque2 lines and conversion of standard lines to QPM germplasm. The main selection steps in QPM breeding involve assessing kernel modifications and tryptophan level in each generation. Herein, we present the results of the analysis for these traits on F3 and BC1F1 generations of QPM x opaque2, opaque2 x QPM and standard lines x QPM crosses. The results showed that the majority the genotypes had kernel types 2 and 3 (good modifications. The whole grain tryptophan content in F3 and BC1F1 genotypes of crosses between QPM and opaque2 germplasm was at the quality protein level, with a few exceptions. All BC1F1 genotypes of standard lines x QPM had tryptophan content in the range of normal maize, while majority of F3 genotypes had tryptophan content at level of QPM. The progeny (with increased tryptophan levels of QPM and opaque2 crosses had significantly higher tryptophan content compared to the progeny of crosses between standard and QPM lines - 0.098 to 0.114 and 0.080, respectively. All genotypes that had poorly modified kernels and/or low tryptophan content will be discarded from further breeding.

  5. Utilization of DL- and L-tryptophan in young pigs

    NARCIS (Netherlands)

    Schutte, J.B.; Van Weerden, E.J.; Koch, F.


    Two trials involving young pigs (total numbers 288 and 400, respectively) were performed to compare the biological activity of Dl- and L-tryptophan under restricted (trial 1) and ad libitum (trial 2) feeding conditions. In trial 1, three additions of Dl-tryptophan (0·3, 0·6 and 0·9 g/kg) and two

  6. Flavin-dependent Tryptophan Halogenases and Their Use in Formation of Novel Tryptophan Derived Compounds

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-Ping; HUANG Mei-Fa; WANG Bin


    Ravin-dependent halogenases are now known to play a significant role in the introduction of chloride and bro- mide into activated organic molecules. Herein a new strategy was reported to formate monodechloroaminopyrrolni-trin derivative 3-(2-amino-4-chlorophenyl)pyrrole, which is a key intermediate for the analysis and mutagenesis of pyrrolnitrin biosynthesis, by combinatorial biosynthesis using regioselective tryptophan halogenases. The successful production in Pseudomonas, with combinatorial cultivating method, demonstrates the feasibility of the new ap-proach to modify and analyze these important secondary metabolite pathways.

  7. The Role of Placental Tryptophan Catabolism (United States)

    Sedlmayr, Peter; Blaschitz, Astrid; Stocker, Roland


    This review discusses the mechanisms and consequences of degradation of tryptophan (Trp) in the placenta, focusing mainly on the role of indoleamine 2,3-dioxygenase-1 (IDO1), one of three enzymes catalyzing the first step of the kynurenine pathway of Trp degradation. IDO1 has been implicated in regulation of feto-maternal tolerance in the mouse. Local depletion of Trp and/or the presence of metabolites of the kynurenine pathway mediate immunoregulation and exert antimicrobial functions. In addition to the decidual glandular epithelium, IDO1 is localized in the vascular endothelium of the villous chorion and also in the endothelium of spiral arteries of the decidua. Possible consequences of IDO1-mediated catabolism of Trp in the endothelium encompass antimicrobial activity and immunosuppression, as well as relaxation of the placental vasotonus, thereby contributing to placental perfusion and growth of both placenta and fetus. It remains to be evaluated whether other enzymes mediating Trp oxidation, such as indoleamine 2,3-dioxygenase-2, Trp 2,3-dioxygenase, and Trp hydroxylase-1 are of relevance to the biology of the placenta. PMID:24904580

  8. The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. (United States)

    Zuther, Katja; Mayser, Peter; Hettwer, Ursula; Wu, Wenying; Spiteller, Peter; Kindler, Bernhard L J; Karlovsky, Petr; Basse, Christoph W; Schirawski, Jan


    Tryptophan is a precursor for many biologically active secondary metabolites. We have investigated the origin of indole pigments first described in the pityriasis versicolor-associated fungus Malassezia furfur. Some of the identified indole pigments have properties potentially explaining characteristics of the disease. As M. furfur is not amenable to genetic manipulation, we used Ustilago maydis to investigate the pathway leading to pigment production from tryptophan. We show by high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance analysis that the compounds produced by U. maydis include those putatively involved in the etiology of pityriasis versicolor. Using a reverse genetics approach, we demonstrate that the tryptophan aminotransferase Tam1 catalyses pigment biosynthesis by conversion of tryptophan into indolepyruvate. A forward genetics approach led to the identification of mutants incapable of producing the pigments. These mutants were affected in the sir1 gene, presumably encoding a sulphite reductase. In vitro experiments with purified Tam1 showed that 2-oxo 4-methylthio butanoate serves as a substrate linking tryptophan deamination to sulphur metabolism. We provide the first direct evidence that these indole pigments form spontaneously from indolepyruvate and tryptophan without any enzymatic activity. This suggests that compounds with a proposed function in M. furfur-associated disease consist of indolepyruvate-derived spontaneously generated metabolic by-products.

  9. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation.

    LENUS (Irish Health Repository)

    Barry, Sandra


    The kynurenine pathway of tryptophan degradation may serve to integrate disparate abnormalities heretofore identified in research aiming to elucidate the complex aetiopathogenesis of psychotic disorders. Post-mortem brain tissue studies have reported elevated kynurenine and kynurenic acid in the frontal cortex and upregulation of the first step of the pathway in the anterior cingulate cortex of individuals with schizophrenia. In this study, we examined kynurenine pathway activity by measuring tryptophan breakdown, a number of pathway metabolites and interferon gamma (IFN-gamma), which is the preferential activator of the first-step enzyme, indoleamine dioxygenase (IDO), in the plasma of patients with major psychotic disorder. Plasma tryptophan, kynurenine pathway metabolites were measured using high-performance liquid chromatography (HPLC) in 34 patients with a diagnosis on the psychotic spectrum (schizophrenia or schizoaffective disorder) and in 36 healthy control subjects. IFN-gamma was measured using enzyme-linked immunosorbent assay (ELISA). The mean tryptophan breakdown index (kynurenine\\/tryptophan) was significantly higher in the patient group compared with controls (P < 0.05). IFN-gamma measures did not differ between groups (P = 0.23). No relationship was found between measures of psychopathology, symptom severity and activity in the first step in the pathway. A modest correlation was established between the tryptophan breakdown index and illness duration. These results provide evidence for kynurenine pathway upregulation, specifically involving the first enzymatic step, in patients with major psychotic disorder. Increased tryptophan degradation in psychoses may have potential consequences for the treatment of these disorders by informing the development of novel therapeutic compounds.

  10. Decreased tryptophan metabolism in patients with autism spectrum disorders (United States)


    Background Autism spectrum disorders (ASDs) are relatively common neurodevelopmental conditions whose biological basis has been incompletely determined. Several biochemical markers have been associated with ASDs, but there is still no laboratory test for these conditions. Methods We analyzed the metabolic profile of lymphoblastoid cell lines from 137 patients with neurodevelopmental disorders with or without ASDs and 78 normal individuals, using Biolog Phenotype MicroArrays. Results Metabolic profiling of lymphoblastoid cells revealed that the 87 patients with ASD as a clinical feature, as compared to the 78 controls, exhibited on average reduced generation of NADH when tryptophan was the sole energy source. The results correlated with the behavioral traits associated with either syndromal or non-syndromal autism, independent of the genetic background of the individual. The low level of NADH generation in the presence of tryptophan was not observed in cell lines from non-ASD patients with intellectual disability, schizophrenia or conditions exhibiting several similarities with syndromal autism except for the behavioral traits. Analysis of a previous small gene expression study found abnormal levels for some genes involved in tryptophan metabolic pathways in 10 patients. Conclusions Tryptophan is a precursor of important compounds, such as serotonin, quinolinic acid, and kynurenic acid, which are involved in neurodevelopment and synaptogenesis. In addition, quinolinic acid is the structural precursor of NAD+, a critical energy carrier in mitochondria. Also, the serotonin branch of the tryptophan metabolic pathway generates NADH. Lastly, the levels of quinolinic and kynurenic acid are strongly influenced by the activity of the immune system. Therefore, decreased tryptophan metabolism may alter brain development, neuroimmune activity and mitochondrial function. Our finding of decreased tryptophan metabolism appears to provide a unifying biochemical basis for ASDs and

  11. Indole-3-Acetic Acid Biosynthesis in the Mutant Maize orange pericarp, a Tryptophan Auxotroph. (United States)

    Wright, A D; Sampson, M B; Neuffer, M G; Michalczuk, L; Slovin, J P; Cohen, J D


    The maize mutant orange pericarp is a tryptophan auxotroph, which results from mutation of two unlinked loci of tryptophan synthase B. This mutant was used to test the hypothesis that tryptophan is the precursor to the plant hormone indole-3-acetic acid (IAA). Total IAA in aseptically grown mutant seedlings was 50 times greater than in normal seedlings. In mutant seedlings grown on media containing stable isotopelabeled precursors, IAA was more enriched than was tryptophan. No incorporation of label into IAA from tryptophan could be detected. These results establish that IAA can be produced de novo without tryptophan as an intermediate.

  12. Determination of tryptophan and tryptophan metabolites in grape must and wine. (United States)

    Hoenicke, K; Simat, T J; Steinhart, H; Christoph, N; Köhler, H J; Schwab, A


    Tryptophan (Trp) and its metabolites, especially indole-3-acetic acid (IAA), are considered as potential precursors of 2-aminoacetophenone (AAP), an aroma compound which causes the "untypical aging off-flavor" (UTA) in Vitis vinifera white wines. In this study RP-HPLC with fluorescence detection was used for the qualitative and quantitative analysis of Trp and Trp-metabolites in 39 grapes, 22 grape musts and 16 wines, to which different viticultural conditions (ripeness, pruning, strip of leaves, soil condition) have been applied. A sensitive and selective determination was achieved after solid phase extraction using an anion exchange material. Only traces of Trp-metabolites could be determined in the examined grapes and grape musts, but their amounts increased significantly during fermentation, whereas the amount of Trp decreased. Different viticultural measures, besides the time of grape harvest, showed no significant influences on the amount of Trp and Trp-metabolites.

  13. Incorporation of tryptophan analogues into the lantibiotic nisin. (United States)

    Zhou, Liang; Shao, Jinfeng; Li, Qian; van Heel, Auke J; de Vries, Marcel P; Broos, Jaap; Kuipers, Oscar P


    Lantibiotics are posttranslationally modified peptides with efficient inhibitory activity against various Gram-positive bacteria. In addition to the original modifications, incorporation of non-canonical amino acids can render new properties and functions to lantibiotics. Nisin is the most studied lantibiotic and contains no tryptophan residues. In this study, a system was constructed to incorporate tryptophan analogues into nisin, which included the modification machinery (NisBTC) and the overexpression of tryptophanyl-tRNA synthetase (TrpRS). Tryptophan and three different tryptophan analogues (5-fluoroTrp (5FW), 5-hydroxyTrp (5HW) and 5-methylTrp (5MeW)) were successfully incorporated at four different positions of nisin (I1W, I4W, M17W and V32W). The incorporation efficiency of tryptophan analogues into mutants I1W, M17W and V32W was over 97 %, while the mutant I4W showed relatively low incorporation efficiency (69-93 %). The variants with 5FW showed relatively higher production yield, while 5MeW-containing variants showed the lowest yield. The dehydration efficiency of serines or threonines was affected by the tryptophan mutants of I4W and V32W. The affinity of the peptides for the cation-ion exchange and reverse phase chromatography columns was significantly reduced when 5HW was incorporated. The antimicrobial activity of IIW and its 5FW analogue both decreased two times compared to that of nisin, while that of its 5HW analogue decreased four times. The 5FW analogue of I4W also showed two times decreased activity than nisin. However, the mutant M17W and its 5HW analogue both showed 32 times reduced activity relative to that of nisin.

  14. Maintenance valine, isoleucine, and tryptophan requirements for poultry. (United States)

    de Lima, M B; Sakomura, N K; Dorigam, J C P; da Silva, E P; Ferreira, N T; Fernandes, J B K


    Poultry maintenance requirements for valine, isoleucine, and tryptophan were measured by nitrogen balance using different unit systems. The nitrogen balance trial lasted 5 d with 48 h of fasting (with roosters receiving only water+sucrose) and the last 72 h for feeding and excreta collection. Forty grams of each diet first-limiting in valine, isoleucine, or tryptophan was fed by tube each day (3 d) to give a range of intakes from 0 to 101, 0 to 119, and 0 to 34 mg/kg BW d of valine, isoleucine, and tryptophan, respectively. A nitrogen-free diet containing energy, vitamins, and minerals, meeting the rooster requirements, was offered ad libitum during these three d. To confirm that the amino acids studied were limiting, a treatment was added with a control diet formulated by adding 0.24 g/kg of L-valine, 0.21 g/kg of L-isoleucine, and 0.10 g/kg of L-tryptophan to the diets with lower amino acid level. Excreta were collected during the last 3 d of the balance period and the nitrogen content of the excreta was analyzed. For each amino acid, a linear regression between nitrogen retention (NR) and amino acid intake was performed. The equations from linear regression were: NR=-98.6 (±10.1)+2.4 (±0.2)×Val, NR=-46.9 (±7.1)+2.3 (±0.1)×Ile, NR=-39.5 (±7.7)+7.3 (±0.4)×Trp; where Val, Ile, and Trp are the intakes of valine, isoleucine, and tryptophan in mg/kg body weight per d, respectively. The valine, isoleucine, and tryptophan required to maintain the body at zero NR were calculated to be 41, 20, and 5 mg/kg body weight per d, respectively. For the system unit mg per kg of metabolic weight, the intake of valine, isoleucine, and tryptophan was 59, 32, and 9, respectively. Considering the degree of maturity of the animal and body protein content (BPm (0.73)×u), the amounts of valine, isoleucine, and tryptophan required for maintenance were calculated to be 247, 134, and 37 mg per unit of maintenance protein (BPm (0.73)×u) per d. Maintenance requirement is more

  15. Heme-containing dioxygenases involved in tryptophan oxidation. (United States)

    Millett, Elizabeth S; Efimov, Igor; Basran, Jaswir; Handa, Sandeep; Mowat, Christopher G; Raven, Emma Lloyd


    Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.

  16. Dynamic behavior in mathematical models of the tryptophan operon (United States)

    Santillán, Moisés; Mackey, Michael C.


    This paper surveys the general theory of operon regulation as first formulated by Goodwin and Griffith, and then goes on to consider in detail models of regulation of tryptophan production by Bliss, Sinha, and Santillán and Mackey, and the interrelationships between them. We further give a linear stability analysis of the Santillán and Mackey model for wild type E. coli as well as three different mutant strains that have been previously studied in the literature. This stability analysis indicates that the tryptophan production systems should be stable, which is in accord with our numerical results.

  17. Role of brain tryptophan and serotonin in secondary anorexia. (United States)

    Rossi-Fanelli, Filippo; Laviano, Alessandro


    Anorexia and reduced energy intake contribute to worsen the prognosis of patients suffering from a number of chronic diseases, by promoting skeletal muscle wasting, leading to the development of malnutrition and eventually cachexia. The pathogenesis of cancer anorexia is still matter of debate. Many possible mediators, including hormones, peptides, and neurotransmitters, appear to be involved. However, consistent animal and clinical data suggest that brain tryptophan and serotonin may represent a common final pathway shared by many contributing factors. Supporting this hypothesis, recent data showed that the manipulation of brain tryptophan availability ameliorates anorexia and food intake in cancer patients.

  18. Phasor approaches simplify the analysis of tryptophan fluorescence data in protein denaturation studies

    NARCIS (Netherlands)

    Bader, A.N.; Visser, N.V.; Amerongen, van H.; Visser, A.J.W.G.


    The intrinsic fluorescence of tryptophan is frequently used to investigate the structure of proteins. The analysis of tryptophan fluorescence data is challenging: fluorescence (anisotropy) decays typically have multiple lifetime (correlation time) components and fluorescence spectra are broad and ex

  19. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. (United States)

    Yanofsky, C; Horn, V; Gollnick, P


    Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to

  20. The tryptophan requirements of pullets in the early production stage

    African Journals Online (AJOL)

    cost of 1 kg tryptophan is 20 times the marginal value of 1 kg egg. Under the same ... centration of the diet influence food consumption, the daily amount of amino ..... time spent on correspondence, consultation and analysing the data is highly ...

  1. An immunosuppressive tryptophan-derived alkaloid from Lepidagathis cristata. (United States)

    Ravikanth, V; Niranjan Reddy, V L; Ramesh, P; Prabhakar Rao, T; Diwan, P V; Khar, A; Venkateswarlu, Y


    An immunosuppressive, tryptophan-derived alkaloid cristatin A (1), and two known compounds, cycloartenol and stigmasta-5,11(12)-diene-3 beta-ol, were isolated from the whole plant Lepidagathis cristata Willd. The structures of the isolates were established by interpretation of their spectral data.

  2. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.


    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and tra

  3. Preliminary study: voluntary food intake in dogs during tryptophan supplementation. (United States)

    Fragua, Víctor; González-Ortiz, Gemma; Villaverde, Cecilia; Hervera, Marta; Mariotti, Valentina Maria; Manteca, Xavier; Baucells, María Dolores


    Tryptophan, a precursor of important molecules such as serotonin, melatonin and niacin, is an essential amino acid for dogs. In pigs, tryptophan supplementation has been shown to induce a significant increase in food intake. The aim of the present study was to assess whether long-term tryptophan supplementation increases voluntary food intake in dogs and to observe whether this was accompanied by a change in serum ghrelin. In the present study, sixteen adult Beagle dogs were used, with four male and four female dogs fed diets supplemented with tryptophan (1 g/dog per d) during 81 d (Trp) and four male and four female dogs that were not supplemented (control). A voluntary food intake test was performed during 5 d following the supplementation period. The Trp group tended to show a higher food intake during the voluntary food intake test (58.0 (SE 5.37) v. 77.5 (SE 3.65) g/kg metabolic weight per d; P = 0.074). No significant differences were found for serum ghrelin concentrations.

  4. Association between Tryptophan Hydroxylase 2 Gene Polymorphism and Completed Suicide (United States)

    Fudalej, Sylwia; Ilgen, Mark; Fudalej, Marcin; Kostrzewa, Grazyna; Barry, Kristen; Wojnar, Marcin; Krajewski, Pawel; Blow, Frederic; Ploski, Rafal


    The association between suicide and a single nucleotide polymorphism (rs1386483) was examined in the recently identified tryptophan hydroxylase 2 (TPH2) gene. Blood samples of 143 suicide victims and 162 age- and sex-matched controls were examined. The frequency of the TT genotype in the TPH2 polymorphism was higher in suicide victims than in…

  5. Redox Properties of Tryptophan Metabolism and the Concept of Tryptophan Use in Pregnancy (United States)

    Xu, Kang; Liu, Hongnan; Bai, Miaomiao; Gao, Jing; Wu, Xin; Yin, Yulong


    During pregnancy, tryptophan (Trp) is required for several purposes, and Trp metabolism varies over time in the mother and fetus. Increased oxidative stress (OS) with high metabolic, energy and oxygen demands during normal pregnancy or in pregnancy-associated disorders has been reported. Taking the antioxidant properties of Trp and its metabolites into consideration, we made four hypotheses. First, the use of Trp and its metabolites is optional based on their antioxidant properties during pregnancy. Second, dynamic Trp metabolism is an accommodation mechanism in response to OS. Third, regulation of Trp metabolism could be used to control/attenuate OS according to variations in Trp metabolism during pregnancy. Fourth, OS-mediated injury could be alleviated by regulation of Trp metabolism in pregnancy-associated disorders. Future studies in normal/abnormal pregnancies and in associated disorders should include measurements of free Trp, total Trp, Trp metabolites, and activities of Trp-degrading enzymes in plasma. Abnormal pregnancies and some associated disorders may be associated with disordered Trp metabolism related to OS. Mounting evidence suggests that the investigation of the use of Trp and its metabolites in pregnancy will be meanful. PMID:28737706

  6. Inhibition of Escherichia coli tryptophan indole-lyase by tryptophan homologues. (United States)

    Do, Quang T; Nguyen, Giang T; Celis, Victor; Phillips, Robert S


    We have designed, synthesized and evaluated homotryptophan analogues as possible mechanism-based inhibitors for Escherichia coli tryptophan indole-lyase (tryptophanase, TIL, E.C. As a quinonoid structure is an intermediate in the reaction mechanism of TIL, we anticipated that homologation of the physiological substrate, L-Trp would provide analogues resembling the transition state for β-elimination, and potentially inhibit TIL. Our results demonstrate that L-homotryptophan (1a) is a moderate competitive inhibitor of TIL, with Ki=67 μM, whereas L-bishomotryptophan (1b) displays more potent inhibition, with Ki=4.7 μM. Pre-steady-state kinetics indicated the formation of an external aldimine and quinonoid with 1a, but only the formation of an external aldimine for 1b, suggesting differences in the inhibition mechanism. These results demonstrate that formation of a quinonoid complex is not required for strong inhibition. In addition, the Trp analogues were evaluated as inhibitors of Salmonella typhimurium Trp synthase. Our results indicate that compound 1b is at least 25-fold more selective toward TIL than Trp synthase. We report that compound 1b is comparable to the most potent inhibitor previously reported, while displaying high selectivity for TIL. Thus, 1b is a potential lead for the development of novel antibacterials.

  7. Consumption of peptide-included and free tryptophan induced by peroxyl radicals: A kinetic study. (United States)

    Fuentes, E; López-Alarcón, C


    It is well-known that tryptophan residues are efficiently oxidized by peroxyl radicals, generating kynurenine, and N-formyl kynurenine as well as hydroperoxide derivatives as products. In the present work we studied the kinetic of such reaction employing free and peptide-included tryptophan. Two azocompounds were used to produce peroxyl radicals: AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride) and ABCVA (4,4'-Azobis(4-cyanovaleric acid)), which generate cationic and anionic peroxyl radicals, respectively. Tryptophan consumption was assessed by fluorescence spectroscopy and the reactions were carried out in phosphate buffer (75mM, pH 7.4) at 45°C. Only a slight effect of the peroxyl radical charge was evidenced on the consumption of free tryptophan and the dipeptide Gly-Trp. Employing AAPH as peroxyl radical source, at low free tryptophan concentrations (1-10µM) near 0.3 mol of tryptophan were consumed per each mol of peroxyl radicals introduced into the system. However, at high free tryptophan concentrations (100µM-1mM) such stoichiometry increased in a tryptophan concentration-way. At 1mM three moles of tryptophan were consumed per mol of AAPH-derived peroxyl radicals, evidencing the presence of chain reactions. A similar behavior was observed when di and tri-peptides (Gly-Trp, Trp-Gly, Gly-Trp-Gly, Trp-Ala, Ala-Trp-Ala) were studied. Nonetheless, at low initial concentration (5µM), the initial consumption rate of tryptophan included in the peptides was two times higher than free tryptophan. In contrast, at high concentration (1mM) free and peptide-included tryptophan showed similar initial consumption rates. These results could be explained considering a disproportionation process of tryptophanyl radicals at low free tryptophan concentrations, a process that would be inhibited when tryptophan is included in peptides.

  8. Opposing Biological Functions of Tryptophan Catabolizing Enzymes During Intracellular Infection (United States)

    Divanovic, Senad; Sawtell, Nancy M.; Trompette, Aurelien; Warning, Jamie I.; Dias, Alexandra; Cooper, Andrea M.; Yap, George S.; Arditi, Moshe; Shimada, Kenichi; DuHadaway, James B.; Prendergast, George C.; Basaraba, Randall J.; Mellor, Andrew L.; Munn, David H.; Aliberti, Julio


    Recent studies have underscored physiological and pathophysiological roles for the tryptophan-degrading enzyme indolamine 2,3-dioxygenase (IDO) in immune counterregulation. However, IDO was first recognized as an antimicrobial effector, restricting tryptophan availability to Toxoplasma gondii and other pathogens in vitro. The biological relevance of these findings came under question when infectious phenotypes were not forthcoming in IDO-deficient mice. The recent discovery of an IDO homolog, IDO-2, suggested that the issue deserved reexamination. IDO inhibition during murine toxoplasmosis led to 100% mortality, with increased parasite burdens and no evident effects on the immune response. Similar studies revealed a counterregulatory role for IDO during leishmaniasis (restraining effector immune responses and parasite clearance), and no evident role for IDO in herpes simplex virus type 1 (HSV-1) infection. Thus, IDO plays biologically important roles in the host response to diverse intracellular infections, but the dominant nature of this role—antimicrobial or immunoregulatory—is pathogen-specific. PMID:21990421

  9. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. (United States)

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal


    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  10. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.


    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  11. Tryptophan requirements of growing pigs: a dose response study

    NARCIS (Netherlands)

    Vinyeta, E.; Bikker, P.; Corrent, E.; Rovers, M.


    A total of 144 pigs were divided into four dietary treatment groups with increasing tryptophan:lysine ratios (apparent ileal digestible (AID) Trp:Lys 0:14, 0:17, 0:20 and 0:23 and standardized ileal digestible (SID) Trp:Lys 0:15, 0:18, 0:21 and 0:24) for 6 weeks. There were 6 replicates with 6

  12. Kinetics of L-tryptophan in depressive patients: a possible correlation between the plasma concentrations of L-tryptophan and some psychiatric rating scales. (United States)

    Hoes, M J; Loeffen, T; Vree, T B


    The plasma concentration and flux of L-tryptophan are abnormal in primary depressive patients, according to the literature. The plasma concentrations of L-tryptophan over a 6-h period after ingestion of 5 g L-tryptophan were investigated and did not differ significantly between depressive patients and controls during the absorption, distribution, and elimination phases. There was no correlation between the plasma concentrations with anxiety or depression scores, or with the excretion in urine of 17-hydroxycorticosteroids and xanthurenic acid during the 24 h after L-tryptophan. Treatment with either 125 mg pyridoxine (three times daily with meals) and L-tryptophan (3 g at 10 PM) or with maprotiline (100 mg at 10 PM) had no influence on the plasma concentrations of L-tryptophan after 2 or 4 weeks of treatment. This excludes L-tryptophan deficiency as a pathogenic factor of depression in the patients studied. No kinetic differences could be demonstrated in the depressive patients, making differences in body compartments or flux of L-tryptophan unlikely to be of pathogenic importance to depression.

  13. Concurrent quantification of tryptophan and its major metabolites (United States)

    Lesniak, Wojciech G.; Jyoti, Amar; Mishra, Manoj K.; Louissaint, Nicolette; Romero, Roberto; Chugani, Diane C.; Kannan, Sujatha; Kannan, Rangaramanujam M.


    An imbalance in tryptophan (TRP) metabolites is associated with several neurological and inflammatory disorders. Therefore, analytical methods allowing for simultaneous quantification of TRP and its major metabolites would be highly desirable, and may be valuable as potential biomarkers. We have developed a HPLC method for concurrent quantitative determination of tryptophan, serotonin, 5-hydroxyindoleacetic acid, kynurenine, and kynurenic acid in tissue and fluids. The method utilizes the intrinsic spectroscopic properties of TRP and its metabolites that enable UV absorbance and fluorescence detection by HPLC, without additional labeling. The origin of the peaks related to analytes of interest was confirmed by UV–Vis spectral patterns using a PDA detector and mass spectrometry. The developed methods were validated in rabbit fetal brain and amniotic fluid at gestational day 29. Results are in excellent agreement with those reported in the literature for the same regions. This method allows for rapid quantification of tryptophan and four of its major metabolites concurrently. A change in the relative ratios of these metabolites can provide important insights in predicting the presence and progression of neuroinflammation in disorders such as cerebral palsy, autism, multiple sclerosis, Alzheimer disease, and schizophrenia. PMID:24036037

  14. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders. (United States)

    Ravikumar, A; Deepadevi, K V; Arun, P; Manojkumar, V; Kurup, P A


    Catabolism of tryptophan and tyrosine in relation to the isoprenoid pathway was studied in neurological and psychiatric disorders. The concentration of trytophan, quinolinic acid, kynurenic acid, serotonin and 5-hydroxyindoleacetic acid was found to be higher in the plasma of patients with all these disorders; while that of tyrosine, dopamine, epinephrine and norepinephrine was lower. There was increase in free fatty acids and decrease in albumin (factors modulating tryptophan transport) in the plasma of these patients. Concentration of digoxin, a modulator of amino acid transport, and the activity of HMG CoA reductase, which synthesizes digoxin, were higher in these patients; while RBC membrane Na+-K+ ATPase activity showed a decrease. Concentration of plasma ubiquinone (part of which is synthesised from tyrosine) and magnesium was also lower in these patients. No morphine could be detected in the plasma of these patients except in MS. On the other hand, strychnine and nicotine were detectable. These results indicate hypercatabolism of tryptophan and hypocatabolism of tyrosine in these disorders, which could be a consequence of the modulating effect of hypothalamic digoxin on amino acid transport.

  15. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Ravikumar A


    Full Text Available Catabolism of tryptophan and tyrosine in relation to the isoprenoid pathway was studied in neurological and psychiatric disorders. The concentration of trytophan, quinolinic acid, kynurenic acid, serotonin and 5-hydroxyindoleacetic acid was found to be higher in the plasma of patients with all these disorders; while that of tyrosine, dopamine, epinephrine and norepinephrine was lower. There was increase in free fatty acids and decrease in albumin (factors modulating tryptophan transport in the plasma of these patients. Concentration of digoxin, a modulator of amino acid transport, and the activity of HMG CoA reductase, which synthesizes digoxin, were higher in these patients; while RBC membrane Na+-K+ ATPase activity showed a decrease. Concentration of plasma ubiquinone (part of which is synthesised from tyrosine and magnesium was also lower in these patients. No morphine could be detected in the plasma of these patients except in MS. On the other hand, strychnine and nicotine were detectable. These results indicate hypercatabolism of tryptophan and hypocatabolism of tyrosine in these disorders, which could be a consequence of the modulating effect of hypothalamic digoxin on amino acid transport.

  16. Comparison of tryptophan interactions to free and grafted BSA protein. (United States)

    Garnier, F; Randon, J; Rocca, J L


    The binding of d- and l-tryptophan molecules to bovine serum albumin (BSA) protein has been studied using liquid chromatography and ultrafiltration in the pH range from 7 to 11. A hydrophobic interaction between tryptophan and BSA has been observed at pH 7.0 on BSA grafted chromatographic column. However, this interaction is negligible at higher pH for which the interaction to the stereospecific site was predominant. For both grafted and free proteins, the complexation mechanism was a competitive binding of d- and l-enantiomers on a single site. The apparent complexation constants for both d- and l-tryptophan show a maximum in the pH range 9-10. The variations of the apparent complexation constants versus pH were the result of the protonation of both the amino acid and a single site of the protein assuming that the complexation occurs between the zwitter-ionic amino acid form and the unprotonated BSA site. The apparent pK(BSA) is slightly shifted from 8.3 for grafted BSA protein to 9.4 for free BSA protein. This shift is presumably as a result of the different protein conformation.

  17. Tryptophan synthase of Phaeophyceae originated from the secondary host nucleus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yalan; CHI Shan; WU Shuangxiu; LIU Cui; YU Jun; WANG Xumin; CHEN Shengping; LIU Tao


    Tryptophan synthase (TS, EC catalyzes the last two steps of L-tryptophan biosynthesis. In pro-karyotes, tryptophan synthase is a multi-enzyme complex, and it consists ofαandβsubunit which forms anα-ββ-αcomplex. In fungi and diatoms, TS is a bifunctional enzyme. Because of the limited genomic and transcriptomic data of algae, there are few studies on TS evolution of algae. Here we analyzed the data of the 1000 Plants Project (1KP), and focused on red algae and brown algae. We found out that the TS of Phaeophy-ceae were fusion genes, which probably originated from the secondary host nucleus, and that the TS of Rho-dophyta contained two genes, TSA and TSB, which both display a possible cyanobacterial origin at the time of primary endosymbiosis. In addition, there were two types of TSB genes (TSB1 and TSB2). Through the multiple sequence alignment of TSB proteins, we found several residues conserved in TSB1 but variable in TSB2 which connect withαsubunit. The phenomenon may suggest that the TSB2 sequences of Rhodophyta cannot form stable complex with TSA.

  18. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: a systematic review. (United States)

    Wiggins, Tom; Kumar, Sacheen; Markar, Sheraz R; Antonowicz, Stefan; Hanna, George B


    Gastroesophageal cancer has a rapidly increasing incidence worldwide and reliable biomarkers are urgently required to facilitate earlier diagnosis and improve survival. The aromatic amino acids tyrosine, phenylalanine, and tryptophan represent potential biomarkers and their relation to gastroesophageal cancer will be evaluated in this review. An electronic literature search was performed to identify all published research relating to the measurement of tyrosine, phenylalanine, or tryptophan in the biofluids or tissues of patients with gastroesophageal cancer. Sixteen studies were included in this systematic review. Six studies investigated serum concentrations, which all found decreased concentrations of these aromatic amino acids, except one study that found increased phenylalanine. Five studies reported increased concentrations within gastric content of these patients and two reported increased urinary concentrations. Tissue concentrations of these aromatic amino acids were increased in three studies. Tyrosine, phenylalanine, and tryptophan represent potential biomarkers of gastroesophageal cancer, and further research is necessary to definitively establish the mechanism responsible for altered concentrations of these compounds in patients with gastroesophageal cancer.

  19. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. (United States)

    Kaper, Thijs; Looger, Loren L; Takanaga, Hitomi; Platten, Michael; Steinman, Lawrence; Frommer, Wolf B


    Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO), e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines) induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW). The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.

  20. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle.

    Directory of Open Access Journals (Sweden)

    Thijs Kaper


    Full Text Available Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO, e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW. The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.

  1. Crystal Structure and Mechanism of Tryptophan 2,3-Dioxygenase, a Heme Enzyme Involved in Tryptophan Catabolism and in Quinolinate Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,Y.; Kang, S.; Mukherjee, T.; Bale, S.; Crane, B.; Begley, T.; Ealick, S.


    The structure of tryptophan 2,3-dioxygenase (TDO) from Ralstonia metallidurans was determined at 2.4 {angstrom}. TDO catalyzes the irreversible oxidation of L-tryptophan to N-formyl kynurenine, which is the initial step in tryptophan catabolism. TDO is a heme-containing enzyme and is highly specific for its substrate L-tryptophan. The structure is a tetramer with a heme cofactor bound at each active site. The monomeric fold, as well as the heme binding site, is similar to that of the large domain of indoleamine 2,3-dioxygenase, an enzyme that catalyzes the same reaction except with a broader substrate tolerance. Modeling of the putative (S)-tryptophan hydroperoxide intermediate into the active site, as well as substrate analogue and mutagenesis studies, are consistent with a Criegee mechanism for the reaction.

  2. Tryptophan and its metabolite concentrations in human plasma and breast milk during the perinatal period.

    Directory of Open Access Journals (Sweden)



    Full Text Available Concentrations of tryptophan (free and protein bound and its metabolites in plasma of maternal vein at delivery, umbilical vein, umbilical artery, neonatal vein and breast milk were determined by high performance liquid chromatography. The plasma levels of tryptophan and most of its metabolites in umbilical vein and artery were significantly higher than those in maternal vein. The concentration of total tryptophan in plasma of neonatal vein showed marked decrease at 24 h after birth in comparison with that at birth, but the total kynurenine concentration was not decreased in plasma of neonatal vein. The colostrum contained a high level of total tryptophan. There were high ratios of free to total tryptophan in colostrum, transitional and mature milk. In the blood, ratios of free to total of tryptophan and kynurenine were kept at constant level throughout the perinatal period.

  3. Fatigue in patients with lung cancer is related with accelerated tryptophan breakdown.

    Directory of Open Access Journals (Sweden)

    Katharina Kurz

    Full Text Available BACKGROUND: Patients with cancer often suffer from fatigue and decreased quality of life which might be related to the breakdown of essential amino acid tryptophan. METHODS: In 50 patients with lung cancer we examined fatigue and the deterioration of quality of life in patients using the Functional Assessment of Cancer Therapy Anemia (FACT-An and -Fatigue (FACT-F subscales of FACT-General and the Mental adjustment to Cancer (MAC questionnaires. Results were compared with tryptophan breakdown as well as serum concentrations of immune activation markers. RESULTS: Scores of psychological tests correlated significantly with tryptophan breakdown and with circulatory markers of inflammation. However, immune activation and tryptophan breakdown were not related to MAC scores. CONCLUSIONS: Tryptophan breakdown relates with fatigue and impaired quality of life in patients with lung cancer, while declining tryptophan levels are not associated with patients'coping strategies.

  4. Electrochemical properties of tyrosine phenoxy and tryptophan indolyl radicals in peptides and amino acid analogues

    Energy Technology Data Exchange (ETDEWEB)

    DeFelippis, M.R.; Murthy, C.P.; Klapper, M.H. (Ohio State Univ., Columbus (United States)); Broitman, F.; Weinraub, D.; Faraggi, M. (Nuclear Research Centre-Negev, Beer Sheva (Israel))


    Reported here are the redox potentials of the tyrosine phenoxy (tyrO{sup {sm bullet}}) and tryptophan indolyl (trp{sup {sm bullet}}) radicals in peptides containing tyrosine or tryptophan residues. These were determined with pulse radiolysis, and the electrochemical techniques of cyclic voltammetry and differential pulse polarography. The pulse radiolytic and electrochemical methods yield comparable results. There are small differences (relative to the free amino acid) in redox potentials among the different tryptophan and tyrosine containing peptides; in the case of tryptophan these changes may correlate with the position of amino acid in the peptide. The authors also present the redox potentials of some tyrosine and tryptophan derivatives and the acid/base properties of the tryptophan radical cation, when both free and peptide bound.

  5. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States)


    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N–H ⋅ ⋅ ⋅ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  6. Reaction pathway of tryptophanase-catalyzed L-tryptophan synthesis from D-serine


    Shimada, Akihiko; Ozaki, Haruka; Saito, Takeshi; Fujii, Noriko


    Tryptophanase, L-tryptophan indole-lyase with extremely absolute stereospecificity, can change the stereospecificity in concentrated diammonium hydrogenphosphate solution. While tryptophanase is not inert to d-serine in the absence of diammonium hydrogenphosphate, it can undergo L-tryptophan synthesis from d-serine along with indole in the presence of it. It has been well known that tryptophanase synthesizes L-tryptophan from l-serine through a β-substitution mechanism of the ping-pong type. ...

  7. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    CERN Document Server

    Bellina, Bruno; Kresin, Vitaly V


    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H...N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  8. Serotonergic function, substance craving, and psychopathology in detoxified alcohol-addicted males undergoing tryptophan depletion. (United States)

    Wedekind, Dirk; Herchenhein, Thomas; Kirchhainer, Julia; Bandelow, Borwin; Falkai, Peter; Engel, Kirsten; Malchow, Berend; Havemann-Reinecke, Ursula


    Alcohol addiction is associated with alterations of central nervous dopaminergic and serotonergic functions. Acute tryptophan depletion has not yet been applied in detoxified alcohol-addicted patients in order to investigate its impact on psychopathology, psychoneuroendocrinology, and substance craving behaviour. 25 alcohol-addicted males randomly either received a tryptophan-free or tryptophan-containing amino acid drink and 7 days later the respective other drink. Anxiety, depression, and craving were assessed before and 5 h after the drink. Tryptophan, 5-HIAA, dopamine, norepinephrine, epinephrine, and HVA in serum were measured before and after both treatments. Nocturnal urinary cortisol measurements and genotyping for the HTTLPR polymorphism of the SLC6A4 gene were performed. Tryptophan depletion resulted in a significant reduction of total and free serum tryptophan while the tryptophan-rich drink increased serum levels. Both treatments caused a significant increase of serum serotonin levels, however, serum 5-HIAA was decreased after depletion but increased after sham depletion. Dopamine and norepinephrine were elevated after tryptophan depletion and sham. Depletion increased depression scores (MADRS), while the full amino acid drink improved state and trait anxiety ratings (STAI) and substance craving. Urinary cortisol excretion was not affected by both treatments. Patients with the ll genotype of the serotonin transporter gene displayed lower baseline tryptophan levels compared to patients with the heterozygous genotype. Results suggest an impaired serotonergic function in alcohol-addicted males.

  9. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. (United States)

    Jonas, A J; Butler, I J


    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentrations increased only modestly and briefly after an oral challenge with 200 mg/kg of oral L-tryptophan, reflecting the absorptive defect. An oral challenge with 200 mg/kg of tryptophan ethyl ester resulted in a prompt increase in serum tryptophan to a peak of 555 microM. Sustained treatment with 20 mg/kg q6h resulted in normalization of serum (66 +/- 15 microM) and cerebrospinal fluid tryptophan concentrations (mean = 2.3 microM). Cerebrospinal fluid 5-HIAA increased to more normal concentrations (mean = 33 ng/ml). No toxicity was observed over an 8-mo period of treatment, chronic diarrhea resolved, and body weight, which had remained unchanged for 7 mo before ester therapy, increased by approximately 26%. We concluded that tryptophan ethyl ester is effective at circumventing defective gastrointestinal neutral amino acid transport and may be useful in the treatment of Hartnup disease.

  10. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence. (United States)

    Koenig, S; Müller, L; Smith, D K


    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  11. Quantification of tryptophan in plasma by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Renata Romanholi Pinhati


    Full Text Available A simple, rapid and selective method using high-performance liquid chromatography with ultraviolet detection (267 nm was applied for the determination of tryptophan in plasma. Separation was carried out on a C18 column (150 x 4.6 mm internal diameter in 6 min. The mobile phase consisted of 5 mM the sodium acetate and acetonitrile (92:8, v/v. The method was shown to be precise and accurate, and good recovery of analyte was achieved, characterizing the method as efficient and reliable for use in laboratory analysis.

  12. Serotonin synthesis rate and the tryptophan hydroxylase-2

    DEFF Research Database (Denmark)

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas


    emission tomography and 5-hydroxy-L-[β -(11)C]tryptophan, [(11)C]5-HTP, a substrate of the second enzymatic step in serotonin synthesis. Parametric images were generated, using the reference Patlak method, and analysed using Statistical Parametric Mapping (SPM8). Blood samples for genotyping of the TPH2 G......-703T polymorphism were obtained from 16 social anxiety disorder patients (T carriers: n=5, GG carriers: n=11). A significantly elevated [(11)C]5-HTP accumulation rate, indicative of enhanced decarboxylase activity and thereby serotonin synthesis capacity, was detected in social anxiety disorder...

  13. Gallium uptake in tryptophan-related pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Park, C.H.; Intenzo, C.M.; Patel, R. (Thomas Jefferson Univ. Hospital, Philadelphia, PA (USA))


    We describe a patient who developed fever, fatigue, muscle weakness, dyspnea, skin rash, and eosinophilia after taking high doses of tryptophan for insomnia for two years. A gallium-67 scan revealed diffuse increased uptake in the lung and no abnormal uptake in the muscular distribution. Bronchoscopy and biopsy confirmed inflammatory reactions with infiltration by eosinophils, mast cells, and lymphocytes. CT scan showed an interstitial alveolar pattern without fibrosis. EMG demonstrated diffuse myopathy. Muscle biopsy from the right thigh showed an inflammatory myositis with eosinophilic and lymphocytic infiltrations.

  14. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification. (United States)

    Davidson, Victor L; Liu, Aimin


    Protein-derived cofactors are formed by irreversible covalent posttranslational modification of amino acid residues. An example is tryptophan tryptophylquinone (TTQ) found in the enzyme methylamine dehydrogenase (MADH). TTQ biosynthesis requires the cross-linking of the indole rings of two Trp residues and the insertion of two oxygen atoms onto adjacent carbons of one of the indole rings. The diheme enzyme MauG catalyzes the completion of TTQ within a precursor protein of MADH. The preMADH substrate contains a single hydroxyl group on one of the tryptophans and no crosslink. MauG catalyzes a six-electron oxidation that completes TTQ assembly and generates fully active MADH. These oxidation reactions proceed via a high valent bis-Fe(IV) state in which one heme is present as Fe(IV)=O and the other is Fe(IV) with both axial heme ligands provided by amino acid side chains. The crystal structure of MauG in complex with preMADH revealed that catalysis does not involve direct contact between the hemes of MauG and the protein substrate. Rather it is accomplished through long-range electron transfer, which presumably generates radical intermediates. Kinetic, spectrophotometric, and site-directed mutagenesis studies are beginning to elucidate how the MauG protein controls the reactivity of the hemes and mediates the long range electron/radical transfer required for catalysis. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.

  15. Synthesis and Characterization of Gold Nanoparticles by Tryptophane

    Directory of Open Access Journals (Sweden)

    Azim Akbarzadeh


    Full Text Available Problem statement: Preparation and synthesis of gold nanoparticles with small size and suitable stability is very important and applicable particularly in medicine. In this study, we have prepared gold nanoparticles by chemical reduction method employing L-Tryptophane as a reducing agent for ionic gold. Approach: The gold nanoparticles are the most employed amongst the different metallic nanoparticles in the fields of nanomedicine and nanobiotechnology. Therefore, the employed method should provide suitable particle size, shape and particle distribution in order to obtain nanoparticles of high activity and efficiency indicating the importance of the technique. In this study, HAuCl4 .3H2O, L-Tryptophane and polyethyleneglycol (PEG were used to produce AuCl-4 ions. They were acted as pre-material, reducing and stabilizing agents respectively. Results: The size, distribution and formation of gold nanoparticles were confirmed by Transmission Electron Microscopy (TEM indicating the diameter of gold nanoparticles at the range of 10-25 nm and UV spectroscopy. The formed nanoparticles showed the highest absorption at 518 nm. Conclusion: The gold nanoparticles were stable in PEG1000. Since these nanoparticles have suitable size distribution they can be considered as a suitable candidate to be employed in nanomedicine and nanobiotechnology.

  16. The association of sleep quality and insomnia with dietary intake of tryptophan and niacin

    NARCIS (Netherlands)

    Verster, J.; Fernstrand, A.; Bury, D.; Roth, T.; Garssen, J.


    Introduction: Dietary intake of tryptophan and niacin have been related to sleep. However, the sleep-promoting effects of these nutrients are still under investigation. The aim of the current study was to examine the relationship between daily dietary intake of tryptophan and niacin and sleep. Mater

  17. Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation

    NARCIS (Netherlands)

    van der Goot, Annemieke T.; Zhu, Wentao; Vazquez-Manrique, Rafael P.; Seinstra, Renee I.; Dettmer, Katja; Michels, Helen; Farina, Francesca; Krijnen, Jasper; Melki, Ronald; Buijsman, Rogier C.; Silva, Mariana Ruiz; Thijssen, Karen L.; Kema, Ido P.; Neri, Christian; Oefner, Peter J.; Nollen, Ellen A. A.


    Toxicity of aggregation-prone proteins is thought to play an important role in aging and age-related neurological diseases like Parkinson and Alzheimer's diseases. Here, we identify tryptophan 2,3-dioxygenase (tdo-2), the first enzyme in the kynurenine pathway of tryptophan degradation, as a metabol

  18. Expression, purification and enzymatic characterization of the catalytic domains of human tryptophan hydroxylase isoforms

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Boesen, Jane; Karlsen, Pernille Efferbach;


    Tryptophan hydroxylase exists in two isoforms: Isoform 1 catalyses the first and rate-limiting step in the synthesis of serotonin in the peripheral parts of the body while isoform 2 catalyses this step in the brain. The catalytic domains of human tryptophan hydroxylase 1 and 2 have been expressed...

  19. Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy (United States)

    Zhang, Lin; Pu, Yang; Xue, Jianpeng; Pratavieira, Sebastião.; Xu, Baogang; Achilefu, Samuel; Alfano, R. R.


    This study shows tryptophan as the key native marker in cells to determine the level of aggressive cancer in breast cell lines using native fluorescence spectroscopy. An algorithm based on the ratio of tryptophan fluorescence intensity at 340 nm to intensity at 460 nm is associated with aggressiveness of the cancer cells. The higher the ratio is, the more aggressive the tumor towards metastasis.

  20. Self-assembling tryptophan-based designer peptides as intracellular delivery vehicles. (United States)

    Bhardwaj, Ishanki; Jha, Divya; Admane, Prasad; Panda, Amulya K; Haridas, V


    A series of tryptophan-based peptides W1a, b-W4a, b, with diverse architectures were designed and synthesized. These tryptophan containing peptides can self-assemble to spherical particle. This self-assembled system was demonstrated to encapsulate rhodamine B and penetrate the cell membrane.

  1. Chiral Discrimination of Tryptophan Enantiomers via (1R, 2R-2-Amino-1, 2-Diphenyl Ethanol Modified Interface

    Directory of Open Access Journals (Sweden)

    Juan Zhou


    Full Text Available The paper reported that a simple chiral selective interface constructed by (1R, 2R-2-amino-1, 2-diphenyl ethanol had been developed to discriminate tryptophan enantiomers. Cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS were used for the characteristic analysis of the electrode. The results indicated that the interface showed stable and sensitive property to determine the tryptophan enantiomers. Moreover, it exhibited the better stereoselectivity for L-tryptophan than that for D-tryptophan. The discrimination characteristics of the chiral selective interface for discriminating tryptophan enantiomers, including the response time, the effect of tryptophan enantiomers concentration, and the stability, were investigated in detail. In addition, the chiral selective interface was used to determine the enantiomeric composition of L- and D-tryptophan enantiomer mixtures by measuring the relative change of the peak current as well as in pure enantiomeric solutions. These results suggested that the chiral selective interface has the potential for enantiomeric discrimination of tryptophan enantiomers.

  2. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay. (United States)

    Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa


    Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Raman microbeam spectrometer noninvasively measures biomoelcules to monitor the tryptophan metabolic pathway (United States)

    Michel, Gregory; Bigelow, Alan W.; Harden, Jamie; Krueger, James G.; Gareau, Daniel S.


    Toward improving early detection of melanoma by accurate diagnosis and avoidance of unnecessary surgical excisions of common moles, we are developing noninvasive quantitative spectral fingerprinting of protein expression using Raman spectroscopy within confocally gated volumes of tissue. Our first target is the L-tryptophan catabolism pathway, which is unregulated in the tumor micro-environment and inhibits the immune response that usually is tumor suppressive. The tryptophan pathway is therefore worthy of diagnostic measurement and finding the ratio of L-tryptophan to its metabolites may aid a melanoma diagnosis. We report the intensity of the Raman signal from L-tryptophan and quinolinic acid, which are found during different stages of the tryptophan metabolic pathway.

  4. Correlation of tryptophan fluorescence intensity decay parameters with sup 1 H NMR-determined rotamer conformations: (tryptophan sup 2 )oxytocin

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J.B.A.; Schwartz, G.P.; Laws, W.R. (Mount Sinai, New York, NY (United States)); Wyssbrod, H.R.; Porter, R.A. (Univ. of Louisville, KY (United States)); Michaels, C.A. (Swarthmore Coll., PA (United States))


    While the fluorescence decay kinetics of tyrosine model compounds can be explained in terms of heterogeneity derived from the three ground-state {chi}{sup 1} rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from {chi}{sup 2} rotations. In this paper, the time-resolved and steady-state fluorescence properties of (tryptophan{sup 2})oxytocin at pH 3 are presented and compared with {sup 1}H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the {sup 1}H NMR-determined {chi}{sup 1} rotamer populations of the indole side chain. {sup 15}N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the {chi}{sup 1} rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two {chi}{sup 2} populations.

  5. Chemical Modification and Fluorescence Spectrum of Tryptophan Residues in Pullulanase

    Institute of Scientific and Technical Information of China (English)


    Tryptophan(Trp) residues in a pullulanase were modified by N-bromosuccinimide(NBS). The results of the Spande method indicate that there are 18 Trp residues in the pullulanase and nine of them are located on the surface of the enzyme. Three of these Trp residues are nonessential residues which show the fastest reaction rate according to the Zou′s plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are the slowest in the reaction rate or non-reactive residues for the reaction. The fluorescence and circular dichroism(CD) spectra of the pullulanase have been changed after the reaction with NBS. Potassium iodide(KI) and acrylamide also have remarkable influences on the fluorescence spectra of the pullulanase.

  6. Tryptophan, Neurodegeneration and HIV-Associated Neurocognitive Disorder

    Directory of Open Access Journals (Sweden)

    Nicholas W.S. Davies


    Full Text Available This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegenerative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in Alzheimer’s disease, HIV-associated neurocognitive disorder, Huntington’s disease, motor neurone disease, and Parkinson’s disease.

  7. Doxycycline induced photodamage to human neutrophils and tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, S.; Glette, J.; Hopen, G.; Solberg, C.O. (Haukeland Sykehus, Bergen (Norway))


    Neutrophil function were studied following irradiation (340-380 nm) of the cells in the presence of 22 doxycycline. At increasing light fluence the locomotion, chemiluminescence and glucose oxidation (by the hexose monophosphate shunt) of the neutrophils steadily decreased. The photodamage increased with increasing preincubation temperature and time and was enhanced in D/sub 2/O, reduced in azide and abolished in anaerobiosis. Superoxide dismutase, catalase or mannitol did not influence the photodamage. Photooxidation of tryptophan in the presence of doxycycline was increased 9-10-fold in D/sub 2/O and nearly abolished in the presence of 0.25 mM NaN/sub 3/, indicating that singlet oxygen is the most important reactive oxygen species in the doxycycline-induced photodamage. The results may explain some of the features of tetracycline-induced photosensitivity and why other authors have obtained diverging results when studying the influence of tetracyclines on neutrophil functions.

  8. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. (United States)

    Romani, Luigina; Fallarino, Francesca; De Luca, Antonella; Montagnoli, Claudia; D'Angelo, Carmen; Zelante, Teresa; Vacca, Carmine; Bistoni, Francesco; Fioretti, Maria C; Grohmann, Ursula; Segal, Brahm H; Puccetti, Paolo


    Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.

  9. Biochemistry of primary headaches: role of tyrosine and tryptophan metabolism. (United States)

    D'Andrea, G; Cevoli, S; Colavito, D; Leon, A


    The pathogenesis of migraine as well as cluster headache (CH) is yet a debated question. In this review, we discuss the possible role of the of tyrosine and tryptophan metabolism in the pathogenesis of these primary headaches. These include the abnormalities in the synthesis of neurotransmitters: high level of DA, low level of NE and very elevated levels of octopamine and synephrine (neuromodulators) in plasma of episodic migraine without aura and CH patients. We hypothesize that the imbalance between the levels of neurotransmitters and elusive amines synthesis is due to a metabolic shift directing tyrosine toward an increased decarboxylase and reduced hydroxylase enzyme activities. The metabolic shift of the tyrosine is favored by a state of neuronal hyperexcitability and a reduced mitochondrial activity present in migraine. In addition we present biochemical studies performed in chronic migraine and chronic tension-type headache patients to verify if the same anomalies of the tyrosine and tryptophan metabolism are present in these primary headaches and, if so, their possible role in the chronicity process of CM and CTTH. The results show that important abnormalities of tyrosine metabolism are present only in CM patients (very high plasma levels of DA, NE and tryptamine). Tryptamine plasma levels were found significantly lower in both CM and CTTH patients. In view of this, we propose that migraine and, possibly, CH attacks derive from neurotransmitter and neuromodulator metabolic abnormalities in a hyperexcitable and hypoenergetic brain that spread from the frontal lobe, downstream, resulting in abnormally activated nuclei of the pain matrix. The low tryptamine plasma levels found in CM and CTTH patients suggest that these two primary chronic headaches are characterized by a common insufficient serotoninergic control of the pain threshold.

  10. Cane molasses as a source of precursors in the bioproduction of tryptophan by Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Marzieh Dehghan Shasaltaneh


    Full Text Available The essential amino acid L-tryptophan can be produced by a condensation reaction between indole and L-serine, catalyzed by B. subtilis with tryptophan synthase activity. Application of the tryptophan is widespread in the biotechnology domain and is sometimes added to feed products as a food fortifier.The optimum concentration of the Iranian cane molasses was determined by measuring the amount of biomass after growth in 1 to 30 g/mL of molasses. The maximum amount of biomass was obtained in 10 g/mL molasses. Chromatographic methods, TLC and HPLC, were used to assay the amount of tryptophan produced in the presence of precursors of tryptophan production (indole and serine and/or molasses.Our results indicate the importance of the Iranian cane molasses not only as carbon source, but also as a source of precursors for tryptophan production.This report evaluates the potential of cane molasses as an economical source for tryptophan production by B. subtilis, hence eliminating the requirement for additional serine and indole as precursors.

  11. Exogenous Tryptophan Promotes Cutaneous Wound Healing of Chronically Stressed Mice through Inhibition of TNF-α and IDO Activation.

    Directory of Open Access Journals (Sweden)

    Luana Graziella Bandeira

    Full Text Available Stress prolongs the inflammatory response compromising the dermal reconstruction and wound closure. Acute stress-induced inflammation increases indoleamine 2, 3-dioxygenase-stimulated tryptophan catabolism. To investigate the role of indoleamine 2, 3-dioxygenase expression and tryptophan administration in adverse effects of stress on cutaneous wound healing, mice were submitted to chronic restraint stress and treated with tryptophan daily until euthanasia. Excisional lesions were created on each mouse and 5 or 7 days later, the lesions were analyzed. In addition, murine skin fibroblasts were exposed to elevated epinephrine levels plus tryptophan, and fibroblast activity was evaluated. Tryptophan administration reversed the reduction of the plasma tryptophan levels and the increase in the plasma normetanephrine levels induced by stress 5 and 7 days after wounding. Five days after wounding, stress-induced increase in the protein levels of tumor necrosis factor-α and indoleamine 2, 3-dioxygenase, and this was inhibited by tryptophan. Stress-induced increase in the lipid peroxidation and the amount of the neutrophils, macrophages and T cells number was reversed by tryptophan 5 days after wounding. Tryptophan administration inhibited the reduction of myofibroblast density, collagen deposition, re-epithelialization and wound contraction induced by stress 5 days after wounding. In dermal fibroblast culture, the tryptophan administration increased the cell migration and AKT phosphorylation in cells treated with high epinephrine levels. In conclusion, tryptophan-induced reduction of inflammatory response and indoleamine 2, 3-dioxygenase expression may have accelerated cutaneous wound healing of chronically stressed mice.

  12. Clinical evaluation of 5-hydroxy-L-tryptophan as an antidepressant drug. (United States)

    Nakajima, T; Kudo, Y; Kaneko, Z


    Effectiveness of 5-hydroxy-L-trytophan as an antidepressant drug was studied with 59 patients with depressive symptoms using Rating Scale for Depression made by Clinico-Psychopharmacology Research Group in Japan for a preparatory step of a double blind clinical study of 5-hydroxy-L-tryptophan treatment of depression. A daily dose of 150--300 mg of 5-hydroxyl-L-tryptophan was administered for three weeks. Favorable responses were observed in 40 patients (67.8%), of whom 13 patients were markedly improved. These effects were noticed in 32 patients (80% of the improved patients) within a week of the treatment. Analysis of General Improvement Rating in the various subtypes of depressive symptoms indicated that endogenous depression and involutional or senile depression were the preferable indication of 5-hydroxy-L-tryptophan loading. The main side effects of 5-hydroxy-L-tryptophan were gastrointestinal disturbances which were minimized by the simultaneous administration of metoclopromide or trihexyphenidyl.

  13. Picosecond Fluorescence Dynamics of Tryptophan and 5-Fluorotryptophan in Monellin : Slow Water-Protein Relaxation Unmasked

    NARCIS (Netherlands)

    Xu, Jianhua; Chen, Binbin; Callis, Patrik Robert; Muiño, Pedro L; Rozeboom, Henriette J; Broos, Jaap; Toptygin, Dmitri; Brand, Ludwig; Knutson, Jay R


    Time Dependent Fluorescence Stokes (emission wavelength) Shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many fluor

  14. Irritability rather than depression during interferon treatment is linked to increased tryptophan catabolism

    NARCIS (Netherlands)

    Russo, S; Kema, IP; Haagsma, EB; Boon, JC; Willemse, PHB; Den Boer, JA; De Vries, EGE; Korf, J


    Objective: Treatment with recombinant interferon is associated with high rates of psychiatric comorbidity. We investigated the relation between catabolism of the essential amino acid tryptophan, being rate-limiting of peripheral and cerebral serotonin formation, and psychiatric symptoms in patients

  15. Ultraviolet transient absorption, transient grating and photon echo studies of aqueous tryptophan (United States)

    Ajdarzadeh, Ahmad; Consani, Cristina; Bräm, Olivier; Tortschanoff, Andreas; Cannizzo, Andrea; Chergui, Majed


    We compare UV transient grating (TG) experiments of aqueous tryptophan with transient absorption (TA) and fluorescence up-conversion measurements. The TG and TA signals show a bi-exponential rise with sub-ps and ps time constants, which are consistent with the fluorescence studies. Using experimental data, we provide an equation for the homodyne-detected TG signal, taking into account the sub-100 fs internal conversion of tryptophan after excitation. In addition, we measure a sub-100 fs homogeneous electronic dephasing time for tryptophan in water by the photon echo (PE) technique. These measurements provide a consistent picture of excited state dynamics of aqueous tryptophan that may serve as a basis for coherent 2D-UV spectroscopy of biosystems.

  16. Picosecond Fluorescence Dynamics of Tryptophan and 5-Fluorotryptophan in Monellin : Slow Water-Protein Relaxation Unmasked

    NARCIS (Netherlands)

    Xu, Jianhua; Chen, Binbin; Callis, Patrik Robert; Muiño, Pedro L; Rozeboom, Henriette J; Broos, Jaap; Toptygin, Dmitri; Brand, Ludwig; Knutson, Jay R


    Time Dependent Fluorescence Stokes (emission wavelength) Shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many

  17. Detection of water proximity to tryptophan residues in proteins by single photon radioluminescence. (United States)

    Bicknese, S; Zimet, D; Park, J; van Hoek, A N; Shohet, S B; Verkman, A S


    We recently developed a single photon radioluminescence (SPR) technique to measure submicroscopic distances in biological samples [Bicknese et al., and Shahrokh et al., Biophys. J., 63 (1992) 1256-1279]. SPR arises from the excitation of a fluorophore by the energy deposited from a slowing beta decay electron. The purpose of this study was to detect 3H2O molecules near tryptophan residues in proteins by tryptophan SPR. To detect small SPR signals, a sample compartment with reflective ellipsoidal optics was constructed, and amplified signals from a cooled photomultiplier were resolved by pulse-height analysis. A Monte Carlo calculation was carried out to quantify the relationship between SPR signal and 3H2O-tryptophan proximity. Measurements of tryptophan SPR were made on aqueous tryptophan; dissolved melittin (containing a single tryptophan); native and denatured aldolase; dissolved aldolase, monellin, and human serum albumin; and the integral membrane proteins CHIP28 (containing a putative aqueous pore) and MIP26 using 3H2O or the aqueous-phase probe 3H-3-O-methylglucose (OMG). After subtraction of a Bremsstrahlung background signal, the SPR signal from aqueous tryptophan (cps.microCi-1 mumol-1 +/- SE) was 8.6 +/- 0.2 with 3H2O and 7.8 +/- 0.3 with 3HOMG (n = 8). With 3H2O as donor, the SPR signal (cps.microCi-1 mumol-1) was 9.0 +/- 0.3 for monomeric melittin in low salt (trytophan exposed) and 4.6 +/- 0.8 (n = 9) for tetrameric melittin in high salt (tryptophans buried away from aqueous solution). The ratio of SPR signal obtained for aldolase under denaturing conditions of 8 M urea (fluorophores exposed) versus non-denaturing buffer (fluorophores buried) was 1.53 +/- 0.07 (n = 6). Ratios of SPR signals normalized to fluorescence intensities for monellin, aldolase, and human serum albumin, relative to that for d-tryptophan, were 1.42, 1.09, and 1.04, indicating that the cross-section for excitation of fluorophores in proteins is greater than that for tryptophan in

  18. Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis (United States)


    on the beginnings of this work in php What do you plan to do during the next reporting...14). The essential amino acid tryptophan is required for protein synthesis and is a precursor for the formation of multiple signaling molecules...including serotonin (15). The majority of tryptophan catabolism occurs via the kynurenine pathway, leading to synthesis of NADþ along with intermediate

  19. Effects of Acute Tryptophan Depletion on Three Different Types of Behavioral Impulsivity



    Introduction: While central nervous system serotonin has been implicated in a variety of problematic impulsive behaviors, biological manipulation of brain serotonin using acute tryptophan depletion for studying changes in impulsive behavior has received little attention. Methods: Using identical treatment conditions, we examined the effects of reduced serotonin synthesis for each of three matched groups using acute tryptophan depletion. Thirty healthy men and women (ages 18–45) were assigned ...

  20. Effects of dietary L-tryptophan supplementation on intestinal response to chronic unpredictable stress in broilers. (United States)

    Yue, Yunshuang; Guo, Yuming; Yang, Ying


    Stress has been recognized as a critical risk factor for gastrointestinal diseases in both humans and animals. However, nutritional strategies to attenuate stress-induced intestinal barrier function and underlying mechanisms remain largely unknown. This study tested the hypothesis that L-tryptophan enhanced intestinal barrier function by regulating mucosal serotonin metabolism in chronic unpredictable stress-exposed broilers. One-day-old male broilers (Arbor Acres) were fed a basal diet supplemented with or without L-tryptophan in the absence or presence of chronic unpredictable stress. Feed intake, body weight gain, plasma corticosterone and 5-hydroxytryptamine (5-HT), intestinal permeability, mucosal secretory IgA (sIgA), and mRNA levels for tryptophan hydroxylase 1 (TPH1), IL-1β, IL-6, TNF-α, IL-10, protein abundance for claudin-1, occludin, and ZO-1 were determined. Stress exposure led to elevated plasma corticosterone (P L-tryptophan supplementation. Western blot analysis showed that stress exposure resulted in decreased protein abundance for occludin, claudin-1, and ZO-1, which was attenuated by L-tryptophan. mRNA levels for IL-1β, IL-6, and TNF-α were increased, but those for IL-10 were decreased, in the jejunal tissue of broilers subjected to stress. This effect of stress on cytokine expression was abolished by L-tryptophan treatment. The effects of stress were associated with decreased plasma concentration of 5-HT (P L-Tryptophan supplementation markedly attenuated stress-induced alterations in 5-HT and TPH1 mRNA level in jejunal tissues of broilers. Collectively, these results indicate that L-tryptophan supplementation alleviates chronic unpredictable stress-induced intestinal barrier dysfunction by regulating 5-HT metabolism in broilers.

  1. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan


    Akihiko Shimada; Haruka Ozaki


    The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or functio...

  2. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site.


    Gitlin, G; Bayer, E A; Wilchek, M


    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is beli...

  3. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.


    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  4. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes.

    Directory of Open Access Journals (Sweden)

    Barbara Strasser

    Full Text Available Exhaustive exercise can cause a transient depression of immune function. Data indicate significant effects of immune activation cascades on the biochemistry of monoamines and amino acids such as tryptophan. Tryptophan can be metabolized through different pathways, a major route being the kynurenine pathway, which is often systemically up-regulated when the immune response is activated. The present study was undertaken to examine the effect of exhaustive aerobic exercise on biomarkers of immune activation and tryptophan metabolism in trained athletes. After a standardized breakfast 2 h prior to exercise, 33 trained athletes (17 women, 16 men performed an incremental cycle ergometer exercise test at 60 rpm until exhaustion. After a 20 min rest phase, the participants performed a 20 min maximal time-trial on a cycle ergometer (RBM Cyclus 2, Germany. During the test, cyclists were strongly encouraged to choose a maximal pedalling rate that could be maintained for the respective test duration. Serum concentrations of amino acids tryptophan, kynurenine, phenylalanine, and tyrosine were determined by HPLC and immune system biomarker neopterin by ELISA at rest and immediately post exercise. Intense exercise was associated with a strong increase in neopterin concentrations (p<0.001, indicating increased immune activation following intense exercise. Exhaustive exercise significantly reduced tryptophan concentrations by 12% (p<0.001 and increased kynurenine levels by 6% (p = 0.022. Also phenylalanine to tyrosine ratios were lower after exercise as compared with baseline (p<0.001. The kynurenine to tryptophan ratio correlated with neopterin (r = 0.560, p<0.01. Thus, increased tryptophan catabolism by indoleamine 2,3-dioxygenase appears likely. Peak oxygen uptake correlated with baseline tryptophan and kynurenine concentrations (r = 0.562 and r = 0.511, respectively, both p<0.01. Findings demonstrate that exhaustive aerobic exercise is associated with

  5. Syntheses and Self-assembling Behaviors of Pentagonal Conjugates of Tryptophane Zipper-Forming Peptide

    Directory of Open Access Journals (Sweden)

    Nobuo Kimizuka


    Full Text Available Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7 via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water.

  6. The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta. (United States)

    Wright, A D; Moehlenkamp, C A; Perrot, G H; Neuffer, M G; Cone, K C


    orange pericarp (orp) is a seedling lethal mutant of maize caused by mutations in the duplicate unlinked recessive loci orp1 and orp2. Mutant seedlings accumulate two tryptophan precursors, anthranilate and indole, suggesting a block in tryptophan biosynthesis. Results from feeding studies and enzyme assays indicate that the orp mutant is defective in tryptophan synthase beta activity. Thus, orp is one of only a few amino acid auxotrophic mutants to be characterized in plants. Two genes encoding tryptophan synthase beta were isolated from maize and sequenced. Both genes encode polypeptides with high homology to tryptophan synthase beta enzymes from other organisms. The cloned genes were mapped by restriction fragment length polymorphism analysis to approximately the same chromosomal locations as the genetically mapped factors orp1 and orp2. RNA analysis indicates that both genes are expressed in all tissues examined from normal plants. Together, the biochemical, genetic, and molecular data verify the identity of orp1 and orp2 as duplicate structural genes for the beta subunit of tryptophan synthase.

  7. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan

    Directory of Open Access Journals (Sweden)

    Akihiko Shimada


    Full Text Available The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.

  8. L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway. (United States)

    Liu, Lina; Duan, Xuguo; Wu, Jing


    Acetate accumulation during the fermentation process of Escherichia coli FB-04, an L-tryptophan production strain, is detrimental to L-tryptophan production. In an initial attempt to reduce acetate formation, the phosphate acetyltransferase gene (pta) from E. coli FB-04 was deleted, forming strain FB-04(Δpta). Unfortunately, FB-04(Δpta) exhibited a growth defect. Therefore, pta was replaced with a pta variant (pta1) from E. coli CCTCC M 2016009, forming strain FB-04(pta1). Pta1 exhibits lower catalytic capacity and substrate affinity than Pta because of a single amino acid substitution (Pro69Leu). FB-04(pta1) lacked the growth defect of FB-04(Δpta) and showed improved fermentation performance. Strain FB-04(pta1) showed a 91% increase in L-tryptophan yield in flask fermentation experiments, while acetate production decreased by 35%, compared with its parent FB-04. Throughout the fed-batch fermentation process, acetate accumulation by FB-04(pta1) was slower than that by FB-04. The final L-tryptophan titer of FB-04(pta1) reached 44.0 g/L, representing a 15% increase over that of FB-04. Metabolomics analysis showed that the pta1 genomic substitution slightly decreased carbon flux through glycolysis and significantly increased carbon fluxes through the pentose phosphate and common aromatic pathways. These results indicate that this strategy enhances L-tryptophan production and decreases acetate accumulation during the L-tryptophan fermentation process.

  9. Flexible enantioselectivity of tryptophanase attributable to benzene ring in heterocyclic moiety of d-tryptophan. (United States)

    Shimada, Akihiko; Ozaki, Haruka


    The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.

  10. Efficient isotopic tryptophan labeling of membrane proteins by an indole controlled process conduct. (United States)

    Berger, Christian; Berndt, Sandra; Pichert, Annelie; Theisgen, Stephan; Huster, Daniel


    A protocol for the efficient isotopic labeling of large G protein-coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L-tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell-cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell-cell communication by the addition of indole during expression. Discrete concentrations of indole and (15) N2 -L-tryptophan at dedicated time points in the fermentation drastically increased the isotopic labeling efficiency. Isotope scrambling was only observed in glutamine, asparagine, and arginine side chains but not in the backbone. This strategy allows producing specifically tryptophan labeled membrane proteins at high concentrations avoiding the disadvantages of the often low yields of auxotrophic E. coli strains. In the fermentation process carried out according to this protocol, we produced ∼15 mg of tryptophan labeled neuropeptide Y receptor type 2 per liter medium.

  11. L-Tryptophan's effects on brain chemistry and sleep in cats and rats: a review. (United States)

    Radulovacki, M


    In this review I shall discuss published and unpublished work from my laboratory dealing with L-tryptophan's effects on brain monoamines and sleep in cats and rats. From our work it appears that normal animals may not be suitable subjects for testing sleep-inducing effect of tryptophan since their slow-wave sleep (SWS) latency is relatively short. In polyphasic sleepers like cats, we did not observe tryptophan's hypnotic effect with any dosage used (10, 30 or 135 mg/kg). However, we found small, but statistically significant, sleep-inducing effect of tryptophan (30 mg/kg, IP) in normal rats. We have tried, therefore, to create insomniac cats with long sleep latencies by using methysergide, a serotonin receptor blocker. The results show that in insomniac cats hypnotic effect of tryptophan, a precursor to brain serotonin, was observed. It involved not only reduction of sleep latencies but also an increase in SWS. It seems likely that tryptophan's partial reversal of methysergide's effect in cats occurred via a dual mechanism of serotonergic activation and catecholaminergic deactivation, while its sleep-inducing effect in normal rats may have been due to the attenuation of the activity of brain catecholamines.

  12. Tryptophan metabolism and immunogenetics in major depression: a role for interferon-γ gene. (United States)

    Myint, Aye Mu; Bondy, Brigitta; Baghai, Thomas C; Eser, Daniela; Nothdurfter, Caroline; Schüle, Cornelius; Zill, Peter; Müller, Norbert; Rupprecht, Rainer; Schwarz, Markus J


    The tryptophan metabolism and immune activation play a role in pathophysiology of major depressive disorders. The pro-inflammatory cytokine interferon-γ transcriptionally induces the indoleamine 2,3-dioxygenase enzyme that degrades the tryptophan and thus induces serotonin depletion. The polymorphism of certain cytokine genes was reported to be associated with major depression. We investigated the association between interferon-γ (IFNγ) gene CA repeat polymorphism, the profile of serotonin and tryptophan pathway metabolites and clinical parameters in 125 depressed patients and 93 healthy controls. Compared to controls, serum tryptophan and 5-hydroxyindoleacetic acid (5HIAA) concentrations in the patients were significantly lower and serum kynurenine concentrations were significantly higher at baseline (p<0.0001). The presence of IFNγ CA repeat allele 2 homozygous has significant association with higher kynurenine concentrations in controls (F=4.47, p=0.038) as well as in patients (F=3.79, p=0.045). The existence of interferon-γ CA repeat allele 2 (homo- or heterozygous) showed significant association with increase of tryptophan breakdown over time during the study period (F=6.0, p=0.019). The results indicated the association between IFNγ CA repeat allele 2, tryptophan metabolism and the effect of medication.

  13. Tryptophan probes at the α-synuclein and membrane interface (United States)

    Pfefferkorn, Candace M.; Lee, Jennifer C.


    Understanding how environmental factors affect the conformational dynamics of α-synuclein (α-syn) is of great importance because the accumulation and deposit of aggregated α-syn in the brain are intimately connected to Parkinson’s disease etiology. Measurements of steady-state and time-resolved fluorescence of single tryptophan-containing α-syn variants have revealed distinct phospholipid vesicle and micelle interactions at residues 4, 39, 94, and 125. Our circular dichroism (CD) data confirm that Trp mutations do not affect α-syn membrane binding properties (apparent association constant Kaapp∼1×107M−1 for all synucleins) saturating at an estimated lipid-to-protein molar ratio of 380 or approximately 120 proteins covering ~7% of the surface area of an 80 nm diameter vesicle. Fluorophores at positions 4 and 94 are the most sensitive to the lipid bilayer with pronounced spectral blue-shifts (W4: Δλmax ~23 nm; W94: Δλmax ~10 nm) and quantum yield increases (W4, W94: ~3 fold) while W39 and W125 remain primarily water-exposed. Time-resolved fluorescence data show that all sites (except W125) have subpopulations that interact with the membrane. PMID:20229987

  14. Cloning, expression, purification and characterization of tryptophan hydroxylase variants

    DEFF Research Database (Denmark)

    Boesen, Jane

    ). The main goal was to purify full-length hTPH1. Based on earlier results, hTPH1 was purified using detergent in the purification methods. After incubation of the hTPH1 sample with 0.1 % of n-dodecyl-β-D-maltopyranoside (DDM) the protein binds to the anion exchange column and elutes over a large area...... in the anion exchange, indicating that the protein still exists in different oligomer forms. This was also observed in the gel filtration. Variants of both hTPH1 and hTPH2 containing the regulatory domain or parts of it were constructed and tested for expression in Escherichia coli as well as solubility...... was determined and compared with parameters of chTPH2. Large differences were observed between the two isoforms and tryptophan inhibition was observed for chTPH1 but not for chTPH2. Mass spectrometric analysis of chTPH1 shows that the sample contains two species: chTPH1 and another species, which could...

  15. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. (United States)

    Yokoyama, Chiaki; Takei, Mami; Kouzuma, Yoshiaki; Nagata, Shinji; Suzuki, Yoshihito


    In the course of our study of the biosynthetic pathway of auxin, a class of phytohormones, in insects, we proposed the biosynthetic pathway tryptophan (Trp)→indole-3-acetaldoxime (IAOx)→indole-3-acetadehyde (IAAld)→indole-3-acetic acid (IAA). In this study, we identified two branches in the metabolic pathways in the silkworm, possibly affecting the efficiency of IAA production: Trp→indole-3-pyruvic acid→indole-3-lactic acid and IAAld→indole-3-ethanol. We also determined the apparent conversion activities (2.05×10(-7)UmL(-1) for Trp→IAA, 1.30×10(-5)UmL(-1) for IAOx→IAA, and 3.91×10(-1)UmL(-1) for IAAld→IAA), which explain why IAOx and IAAld are barely detectable as either endogenous compounds or metabolites of their precursors. The failure to detect IAAld, even in the presence of an inhibitor of the conversion IAAld→IAA, is explained by a switch in the conversion from IAAld→IAA to IAAld→IEtOH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydration of protonated aromatic amino acids: phenylalanine, tryptophan, and tyrosine. (United States)

    Gao, Bing; Wyttenbach, Thomas; Bowers, Michael T


    The first steps of hydration of the protonated aromatic amino acids phenylalanine, tryptophan, and tyrosine were studied experimentally employing a mass spectrometer equipped with a drift cell to examine the sequential addition of individual water molecules in equilibrium experiments and theoretically by a combination of molecular mechanics and electronic structure calculations (B3LYP/6-311++G**) on the three amino acid systems including up to five water molecules. It is found that both the ammonium and carboxyl groups offer good water binding sites with binding energies of the order of 13 kcal/mol for the first water molecule. Subsequent water molecules bind less strongly, in the range of 7-11 kcal/mol for the second through fifth water molecules. The ammonium group is able to host up to three water molecules and the carboxyl group one water molecule before additional water molecules bind either to the amino acid side chain as in tyrosine or to already-bound water in a second solvation shell around the ammonium group. Reasons for the surprisingly high water affinity of the neutral carboxyl group, comparable to that of the charge-carrying ammonium group, are found to be high intrinsic hydrophilicity, favorable charge-dipole alignment, and--for the case of multiply hydrated species--favorable dipole-dipole interaction among water molecules and the lack of alternative fully exposed hydration sites.

  17. Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression. (United States)

    Badawy, A A; Morgan, C J; Lovett, J W; Bradley, D M; Thomas, R


    Acute ethanol consumption by fasting male volunteers decreases circulating trytophan (Trp) concentration and availability to the brain as determined by the ratio of (Trp) to the sum of its five competitors ([Trp]/[CAA]ratio). These effects of alcohol are specific to Trp, because levels of the 5 competitors are not increased. The decrease in circulating (Trp) is not associated with altered binding to albumin and may therefore be due to enhancement of hepatic Trp pyrrolase activity. It is suggested that, under these conditions brain serotonin synthesis is likely to be impaired and that, as a consequence, a possible strong depletion of brain serotonin in susceptible individuals may induce aggressive behaviour after alcohol consumption. The possible implications of these findings in the relationship between alcohol and depression are also briefly discussed.

  18. Tryptophanase-catalyzed L-tryptophan synthesis from D-serine in the presence of diammonium hydrogen phosphate. (United States)

    Shimada, Akihiko; Ozaki, Haruka; Saito, Takeshi; Noriko, Fujii


    Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of l-tryptophan from l-serine and indole through a beta-substitution mechanism of the ping-pong type, and has no activity on d-serine. We previously reported that tryptophanase changed its stereospecificity to degrade d-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH(4))(2)HPO(4) solution. The present study provided the same stereospecific change seen in the d-tryptophan degradation reaction also occurs in tryptophan synthesis from d-serine. Tryptophanase became active to d-serine to synthesize l-tryptophan in the presence of diammonium hydrogen phosphate. This reaction has never been reported before. d-serine seems to undergo beta-replacement via an enzyme-bonded alpha-aminoacylate intermediate to yield l-tryptophan.

  19. From tryptophan to hydroxytryptophan: reflections on a busy life. (United States)

    Fisher, Hans


    Given the very difficult odyssey of my early years, who could have imagined the incredible and successful journey that constituted my life path after age 13? I was born into a Jewish family in Breslau, Germany, right before the rise of Nazism and Hitler's election. After Kristallnacht, when my father was taken to Buchenwald Concentration Camp, we had to leave Germany as soon as possible. The first opportunity came in May of 1939, when we boarded the SS St. Louis bound for Havana, Cuba. Almost all passengers were denied entrance into Cuba, and the ship had to go back to Europe, where I ended up in France. In December of 1939, during World War II, I was fortunate to be able to leave France. This time I made it to Cuba, where my father was already in residence. A year later, my entire family was allowed into the United States. I took advantage of all the educational resources in this land of opportunity. I graduated valedictorian of my high school class and earned a four-year scholarship to Rutgers University, where I obtained a Bachelor of Science degree. I went on to earn a Master's degree from the University of Connecticut and finally a PhD from the University of Illinois. Within two months after graduating from Illinois, I was hired as an assistant professor of nutritional biochemistry at Rutgers, where I enjoyed a most productive research and teaching career. My PhD research involved tryptophan and niacin metabolism in the chick, and upon arrival at Rutgers I continued amino acid studies with the goal of assessing the essential amino acid requirements for egg production. This research was crowned with success and was followed with amino acid requirement studies for maintenance and for growth in rabbits, and ultimately with a reevaluation of requirements in adult humans. An outgrowth of the maintenance requirements led to a series of investigations into the metabolism of histidine, histamine, and carnosine (a histidine-containing dipeptide). Histamine, we found

  20. Plasma Tryptophan and the Kynurenine–Tryptophan Ratio Are Associated with the Acquisition of Statural Growth Deficits and Oral Vaccine Underperformance in Populations with Environmental Enteropathy (United States)

    Kosek, Margaret N.; Mduma, Estomih; Kosek, Peter S.; Lee, Gwenyth O.; Svensen, Erling; Pan, William K. Y.; Olortegui, Maribel Paredes; Bream, Jay H.; Patil, Crystal; Asayag, Cesar Ramal; Sanchez, Graciela Meza; Caulfield, Laura E.; Gratz, Jean; Yori, Pablo Peñataro


    Early childhood enteric infections have adverse impacts on child growth and can inhibit normal mucosal responses to oral vaccines, two critical components of environmental enteropathy. To evaluate the role of indoleamine 2,3-dioxygenase 1 (IDO1) activity and its relationship with these outcomes, we measured tryptophan and the kynurenine–tryptophan ratio (KTR) in two longitudinal birth cohorts with a high prevalence of stunting. Children in rural Peru and Tanzania (N = 494) contributed 1,251 plasma samples at 3, 7, 15, and 24 months of age and monthly anthropometrics from 0 to 36 months of age. Tryptophan concentrations were directly associated with linear growth from 1 to 8 months after biomarker assessment. A 1-SD increase in tryptophan concentration was associated with a gain in length-for-age Z-score (LAZ) of 0.17 over the next 6 months in Peru (95% confidence interval [CI] = 0.11–0.23, P < 0.001) and a gain in LAZ of 0.13 Z-scores in Tanzania (95% CI = 0.03–0.22, P = 0.009). Vaccine responsiveness data were available for Peru only. An increase in kynurenine by 1 μM was associated with a 1.63 (95% CI = 1.13–2.34) increase in the odds of failure to poliovirus type 1, but there was no association with tetanus vaccine response. A KTR of 52 was 76% sensitive and 50% specific in predicting failure of response to serotype 1 of the oral polio vaccine. KTR was associated with systemic markers of inflammation, but also interleukin-10, supporting the association between IDO1 activity and immunotolerance. These results strongly suggest that the activity of IDO1 is implicated in the pathophysiology of environmental enteropathy, and demonstrates the utility of tryptophan and kynurenine as biomarkers for this syndrome, particularly in identifying those at risk for hyporesponsivity to oral vaccines. PMID:27503512

  1. Microenvironment of tryptophan residues in beta-lactoglobulin derivative polypeptide-sodium dodecyl sulfate complexes. (United States)

    Imamura, T; Konishi, K


    The changes of microenvironment of tryptophan residues in beta-lactoglobulin A and its cyanogen bromide (CNBr) fragments with the binding of sodium dodecyl sulfate (SDS) were studied with measurements of the rates of N-bromosuccinimide (NBS) modification reactions by stopped-flow photometry. Two tryptophan residues of carboxyamidomethylated (RCM) beta-lactoglobulin A in the states of their complexes with SDS were clearly distinguishable by their differences in NBS modification rates. We confirmed by experiments with CNBr fragments containing trytophan residue. The modification rates of Trp 19 in RCM beta-lactoglobulin A-SDS complexes were about 10-fold smaller than those expected for tryptophan residues exposed entirely to the aqueous solvent. The Trp 61 was hardly changed. The change of rate constants for Trp 19 was virtually consistent with those observed when N-acetyl-L-trytophan ethylester was dissolved in SDS micelles. For various species of polypeptide-SDS complexes, all tryptophan residues were reactive to NBS and also, for some of them, the differences in NBS modification rates were observed between tryptophan residues on a common polypeptide chain. These results suggest micellar and heterogeneous bindings of SDS to polypeptides.

  2. Reaction pathway of tryptophanase-catalyzed L-tryptophan synthesis from D-serine. (United States)

    Shimada, Akihiko; Ozaki, Haruka; Saito, Takeshi; Fujii, Noriko


    Tryptophanase, L-tryptophan indole-lyase with extremely absolute stereospecificity, can change the stereospecificity in concentrated diammonium hydrogenphosphate solution. While tryptophanase is not inert to D-serine in the absence of diammonium hydrogenphosphate, it can undergo L-tryptophan synthesis from D-serine along with indole in the presence of it. It has been well known that tryptophanase synthesizes L-tryptophan from L-serine through a β-substitution mechanism of the ping-pong type. However, a metabolic pathway of L-tryptophan synthesis from D-serine has remained unclear. The present study aims to elucidate it. Diammonium hydrogenphosphate plays a role in the emergence of catalytic activity on D-serine. The salt gives tryptophanase a small conformational change, which makes it possible to catalyze D-serine. Tryptophanase-bound D-serine produces L-tryptophan synthesis by β-replacement reaction via the enzyme-bound aminoacrylate intermediate. Our result will be valuable in studying the origin of homochirality.

  3. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase (United States)

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann


    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5 μM) and trachelogenin (IC50 of 57.4 μM) showed higher activity than matairesinol (IC50 >200 μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anti-cancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  4. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tarboush, Nafez Abu; Jensen, Lyndal M.R.; Yukl, Erik T.; Geng, Jiafeng; Liu, Aimin; Wilmot, Carrie M.; Davidson, Victor L. (Central Florida); (GSU); (UMMC); (UMM)


    The diheme enzyme MauG catalyzes the posttranslational modification of the precursor protein of methylamine dehydrogenase (preMADH) to complete biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Catalysis proceeds through a high valent bis-Fe(IV) redox state and requires long-range electron transfer (ET), as the distance between the modified residues of preMADH and the nearest heme iron of MauG is 19.4 {angstrom}. Trp199 of MauG resides at the MauG-preMADH interface, positioned midway between the residues that are modified and the nearest heme. W199F and W199K mutations did not affect the spectroscopic and redox properties of MauG, or its ability to stabilize the bis-Fe(IV) state. Crystal structures of complexes of W199F/K MauG with preMADH showed no significant perturbation of the MauG-preMADH structure or protein interface. However, neither MauG variant was able to synthesize TTQ from preMADH. In contrast, an ET reaction from diferrous MauG to quinone MADH, which does not require the bis-Fe(IV) intermediate, was minimally affected by the W199F/K mutations. W199F/K MauGs were able to oxidize quinol MADH to form TTQ, the putative final two-electron oxidation of the biosynthetic process, but with k{sub cat}/K{sub m} values approximately 10% that of wild-type MauG. The differential effects of the W199F/K mutations on these three different reactions are explained by a critical role for Trp199 in mediating multistep hopping from preMADH to bis-Fe(IV) MauG during the long-range ET that is required for TTQ biosynthesis.

  5. Tryptophan metabolism in tsetse flies and the consequences of its derangement

    Directory of Open Access Journals (Sweden)

    R. H. Gooding


    Full Text Available Literature comparing salmon and wild type Glossina morsitans morsitans and that comparing tan and wild type Glossina palpalis palpalis is reviewed. New information is presented on behaviour and biochemistry of salmon and wild type G. m. morsitans. The eye color mutants result from two lesions in the tryptophan to xanthommatin pathway: lack of tryptophan oxygenase in G. m morsitans and failure to produce or retain xanthommatin in eyes (but not in testes of G. p. palpalis. The salmon allele in G. m. morsitans is pleiotropic and profoundly affects many aspects of fly biology including longevity, reproductive capacity, vision, vectorial capacity and duration of flight, but not circadian rhythms. The tan allele in G. p. palpalis has little effect upon the biology of flies under laboratory conditions, except that tan flies appear less active than normal. Adult tsetse flies metabolize tryptophan to kynurenine which is excreted; fluctuations in activities of the enzymes producing kynurenine suggest this pathway is under metabolic control.

  6. Effect of tryptophan suplementation in quails (Coturnix coturnix japónica

    Directory of Open Access Journals (Sweden)

    Liliana Betancourt López


    Full Text Available The behaviour and productive parameters of 288 quails (Coturnix coturnix japonica were studied in a commercial farm. They were supplemented with tryptophan as a precursor of the neurotransmitter serotonin. Levels of 0 (T1, 1,25 mg/day (T2 and 2,5 mg/day (T3. The control group showed a higher number of birds (P<0,05 with an aggressive position before an external stimulus. This study proves that tryphtophan decreases aggression and stabilizes social behaviour. Similarly, the number of birds with moulted backs was higher in the witness group. During the evaluation period a higher egg weight was observed along with improved food conversion and a higher weight gain in the groups supplemented with tryptophan clearly showing the positive effect of tryptophan.

  7. Determination of epristeride by its quenching effect on the fluorescence of L-tryptophan

    Institute of Scientific and Technical Information of China (English)

    Ai-Qin Gong; Xia-Shi Zhu


    A rapid, novel spectrofluorimetric method to determine epristeride (EP) in biological fluids and a pharmaceutical formulation was developed, based on the fact that fluorescence intensity of L-tryptophan could be quenched by EP in the medium of pH ¼ 9.0. The various factors influencing fluorescence quenching were discussed. The quenching mechanism was investigated with the quenching type, synchronous fluorescence spectra and quantum efficiency. Under the optimized conditions, fluorescence quenching value (ΔF ¼ FL-tryptophan-FEP-L-tryptophan) showed a good linear relationship with the EP concentration ranging from 0.4 to 12.0μg/mL. The linearity, recovery and limit of detection demonstrated that the proposed method was suitable for EP determination in biological fluids and EP tablets. The method was successfully applied to the analysis of EP in real samples and the obtained results were in good agreement with the results of the official method.

  8. Adsorption of the Enantiomers of Tryptophan on Stationary Phase Bonded with Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fengbao; CHENG Ming; LI Shuang; LIU Liang; ZHANG Guoliang


    Frontal analysis is frequently applied to measuring single or multi-component adsorption isotherms. In this work, the competitive adsorption isotherm data of two enantiomers of tryptophan were obtained by competitive frontal analysis. The stationary phase in the column was silica-immobilized bovine serum albumin(BSA)by the derivative method, and the mobile phase was a phosphate buffer. These isotherm data were fitted by the competitive Bilangmuir model. This model can account for the behavior of both tryptophan enantiomers and these profiles were found to fit the experimental band profiles(square error is 0.999 6). The parameters obtained were used in numericai calculations to predict the band profiles of the racemic mixtures of tryptophan. The equilibriumdispersive model provides satisfactory prediction, with minor differences between the calculated and the experimental profiles.

  9. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager


    124−Asp139 and Ile367−Thr369 close around the active site. Similar structural changes are seen in the catalytic domain of phenylalanine hydroxylase (PAH) upon binding of substrate analogues norleucine and thienylalanine to the PAH·BH4 complex. In fact, the chicken TPH1·Trp·imidazole structure......Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O2, and tetrahydrobiopterin (BH4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis...... of the neurotransmitter and hormone serotonin (5-hydroxytryptamine). We have determined the 1.9 Å resolution crystal structure of the catalytic domain (Δ1−100/Δ415−445) of chicken TPH isoform 1 (TPH1) in complex with the tryptophan substrate and an iron-bound imidazole. This is the first structure of any aromatic amino...

  10. Flow-injection chemiluminescence determination of tryptophan using galangin-potassium permanganate-polyphosphoric acid system

    Institute of Scientific and Technical Information of China (English)

    Hui Chen; Li Li; Min Zhou; Yong Jun Ma


    A high sensitive flow-injection chemiluminescence (FI-CL)method for the determination of tryptephan has been developed.The method is based on the chemiluminescence reaction of galangin-potassium perrnanganate-tryptophan in polyphosphoric acid (PPA)media.Under the optimized conditions,tryptophan was determined in the range 0.05-10 μg/mL with the detection limit (30)of 5.0× 10-3 μg/mL.The relative standard deviation (RSD)was 1.0% for 11 replicate determinations of 1.0 μg/mL tryptophan.Three synthetic samples were determined selectively with recoveries in the range from 99.6% to 102.0% in the presence of other amino acids.

  11. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager


    acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between...... of the neurotransmitter and hormone serotonin (5-hydroxytryptamine). We have determined the 1.9 Å resolution crystal structure of the catalytic domain (Δ1−100/Δ415−445) of chicken TPH isoform 1 (TPH1) in complex with the tryptophan substrate and an iron-bound imidazole. This is the first structure of any aromatic amino...

  12. Tryptophan-Ethylester, the False (Unveiled) Melatonin Isomer in Red Wine (United States)

    Iriti, Marcello; Vigentini, Ileana


    Among the food plants, the presence of melatonin in grapes (Vitis vinifera L.) deserves particular attention because of the production of wine, an alcoholic beverage of economic relevance and with putative healthy effects. Furthermore, melatonin isomers have been detected in wine too. Recently, one of these isomers has been identified as tryptophan-ethylester, a compound with the same molecular weight of melatonin. In this Commentary, we briefly comment the source(s) of tryptophan-ethylester in wine and the putative nutritional role(s). PMID:25922582

  13. [Nature of tryptophan photooxidation products in lysozyme in the presence of methylene blue]. (United States)

    Churakova, N I; Kravchenko, N A; Serebriakov, E P; Kaverzneva, E D


    One out of six trytophan residues in two lysozyme modification, obtained under lysozyme photooxidation in the presence of methylene blue, is found to be oxidized to N'-formylkinurenine (in one modification) and to kinurenine (in the other modification). The transition of one modification into another via detaching of N'-formyl group by soft acid hydrolysis has shown that one and the same tryptophan residue is oxidized in both products, Possible mechanism of tryptophan oxidation to the products mentioned is discu-sed on the basis of the hypothesis on signlet mechanism of lysozyme photooxidation in the presence of methylene blue.

  14. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site. (United States)

    Gitlin, G; Bayer, E A; Wilchek, M


    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is believed that these residues are located in the active site of avidin and take part in the binding of biotin. PMID:3355517

  15. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site. (United States)

    Gitlin, G; Bayer, E A; Wilchek, M


    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is believed that these residues are located in the active site of avidin and take part in the binding of biotin.

  16. 6-Nitro-L-tryptophan: a novel spectroscopic probe of trp aporepressor and human serum albumin. (United States)

    Phillips, R S; Marmorstein, R Q


    The binding of 6-nitro-L-tryptophan to trp aporepressor and human serum albumin has been examined by visible difference spectroscopy and circular dichroism. 6-Nitro-L-tryptophan, prepared by nitration of L-tryptophan with nitric acid in glacial acetic acid, exhibits a visible and near-uv absorption spectrum with lambda max at about 330 nm (epsilon = 7 X 10(3) M-1 cm-1) and a shoulder near 380 nm in H2O. In the presence of trp aporepressor, the visible absorption intensity is sharply diminished. Visible difference spectral titration data give KD = 1.27 X 10(-4) M and n = 0.95 per subunit at 25 degrees C. While 6-nitro-L-tryptophan exhibits no significant circular dichroism between 300 and 500 nm, the complex with trp aporepressor exhibits strong circular dichroism signals, with a negative maximum at 386 nm (delta epsilon = -7.5 M-1 cm-1) and a positive maximum at 310 nm (delta epsilon = +6 M-1 cm-1). Circular dichroism titration data give KD = 1.69 X 10(-4) M and n = 0.90 per subunit at 25 degrees C. The KD values determined spectroscopically are in excellent agreement with that determined by equilibrium dialysis, KD = 1.5 X 10(-4) M at 25 degrees C. In the presence of human serum albumin, the spectrum of 6-nitro-L-tryptophan exhibits a blue shift and an increase in absorption intensity; similar changes are observed in solvents of low dielectric contrast such as 80% aqueous dioxane. Visible difference spectral titration data give KD = 8.0 X 10(-5) M and n = 0.95 for human serum albumin. The complex of 6-nitro-L-tryptophan with human serum albumin exhibits a strong positive circular dichroism maximum at 380 nm (delta epsilon = +9.8 M-1 cm-1) with a shoulder at 310-320 nm. Circular dichroism titration data give KD = 6.4 X 10(-5) M and n = 0.83, in good agreement with the visible difference spectral results. Taken together, our results demonstrate the utility of 6-nitro-L-tryptophan as a spectroscopic probe for tryptophan-binding proteins.

  17. Adsorption of the cysteine–tryptophan dipeptide at the Au(110)/liquid interface studied using reflection anisotropy spectroscopy

    DEFF Research Database (Denmark)

    Morozzo della Rocca, Blasco; Smith, C I; Tesauro, Cinzia


    failed to re-establish the initial population of Au–S bonds and the changes induced in the region of the spectrum associated with the tryptophan's by the positive potentials were permanent on the time scale of an hour. Subtle changes associated with the tryptophan moieties indicate that the orientation...

  18. Fluorescent differentiation and quantificational detection of free tryptophan in serum within a confined metal-organic tetrahedron. (United States)

    He, Cheng; Wang, Jian; Wu, Pengyan; Jia, Lingyun; Bai, Ying; Zhang, Zhichao; Duan, Chunying


    A metal-organic cerium tetrahedron having size constraints and cooperated interactions within its cavity was used to selectively recognize tryptophan over other natural amino acids and Trp-containing peptides. It was applied in quantificational detection of free tryptophan in serum.

  19. Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction

    DEFF Research Database (Denmark)

    Breum, Leif; Rasmussen, Michael H; Hilsted, Jannik


    subjects. Blood samples were drawn frequently throughout the 24-h period. An insulin tolerance test was also used to determine whether weight loss altered the ability of insulin to modify plasma concentrations of tryptophan and of the other large neutral amino acids. RESULTS: Plasma tryptophan......BACKGROUND: Plasma tryptophan concentrations and the ratio of tryptophan to other large neutral amino acids (plasma tryptophan ratio) are reportedly low in obese subjects. The plasma tryptophan ratio predicts brain tryptophan uptake and serotonin production. If this ratio is low in obese subjects...... concentrations and ratios in obese subjects were low at all times; these effects persisted after weight reduction. Plasma concentrations of all the large neutral amino acids decreased during insulin infusion in all the groups. CONCLUSIONS: The low 24-h plasma tryptophan ratios in obese and formerly obese...

  20. The tryptophan hydroxylase activation inhibitor, AGN-2979, decreases regional 5-HT synthesis in the rat brain measured with alpha-[14C]methyl-L-tryptophan: an autoradiographic study. (United States)

    Hasegawa, Shu; Kanemaru, Kazuya; Gittos, Maurice; Diksic, Mirko


    Many experimental conditions are stressful for animals. It is well known that stress induces tryptophan hydroxylase (TPH) activation, resulting in increased serotonin (5-HT) synthesis. In our experimental procedure to measure 5-HT synthesis using alpha-[(14)C]methyl-L-tryptophan (alpha-MTrp) autoradiographic method, the hind limbs of animals are restrained using a loose-fitted plaster cast such that the forelimbs of the animal remain free. The objective of the present investigation was to evaluate the changes, if any, in 5-HT synthesis, after injecting these restrained rats with the TPH activation inhibitor AGN-2979. The effect on regional 5-HT synthesis was studied using the alpha-MTrp autoradiographic method. The hypothesis was that the TPH activation inhibitor would reduce 5-HT synthesis, if TPH activation was induced by this restraint. The rats received injection of AGN-2979 (10 mg/kg, i.p.) or distilled water vehicle (1 mL/kg, i.p.) 1 h prior to tracer administration. The free- and total tryptophan concentrations were not significantly different between the treatment and control groups. The results demonstrate that 5-HT synthesis in AGN-2979 treated rats is significantly decreased (-12 to -35%) in both the raphe nuclei and their terminal areas when compared to the control rats. These findings suggest that restrained conditions, such as those used in our experimental protocol, induce TPH activation resulting in an increased 5-HT synthesis throughout the brain. The reduction in 5-HT synthesis in the AGN-2979 group is not related to a change in the plasma tryptophan. Because there was no activation in the pineal body, the structure having a different isoform of TPH, we can propose that it is only the brain TPH that becomes activated with this specific restraint.

  1. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H


    tryptophan ingestion caused a 7- to 20-fold increase. Exercise time to exhaustion was not different between treatments (122 +/- 3 min). 3. The data suggest that manipulation of tryptophan supply to the brain either has no additional effect upon serotoninergic activity during prolonged exhaustive exercise......1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs......) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1...

  2. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H


    1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs...... tryptophan ingestion caused a 7- to 20-fold increase. Exercise time to exhaustion was not different between treatments (122 +/- 3 min). 3. The data suggest that manipulation of tryptophan supply to the brain either has no additional effect upon serotoninergic activity during prolonged exhaustive exercise......) or (3) a high dose of BCAA (18 g l-1). 2. These treatments greatly increased the plasma concentration of the respective amino acids. Using the kinetic parameters of transport of human brain capillaries, BCAA supplements were estimated to reduce brain tryptophan uptake at exhaustion by 8-12%, while...

  3. Digestible tryptophan:digestible lysine ratio in diets for laying hens from 24 to 40 weeks of age

    Directory of Open Access Journals (Sweden)

    Arele Arlindo Calderano


    Full Text Available The objective of this study was to determine the ideal digestible tryptophan:digestible lysine ratio in diets for laying hens from 24 to 40 weeks of age. Two hundred and forty Hy-Line W-36 laying hens at 24 weeks of age were distributed in a completely randomized design, with five treatments, eight replicates and six birds per experimental unit. The digestible tryptophan levels in the experimental diets were 1.57; 1.68; 1.79; 1.90 and 2.01 g/kg, providing ratios of digestible tryptophan:digestible lysine of 0.215; 0.230; 0.245; 0.260 and 0.275. The increase in the levels of digestible tryptophan in the diet linearly improved the feed intake, digestible tryptophan intake, digestible lysine intake, egg production, egg mass, feed conversion per egg mass and utilization efficiency of digestible lysine for eggs mass. There were quadratic effects from the digestible tryptophan levels on egg weight. For the efficiency of utilization of digestible lysine for egg mass, there was better adjustment of the data to the LRP model. The level of digestible tryptophan in the diet from which the plateau occurred was 0.184%. This level corresponded to the intake of 142 mg/bird/day of digestible tryptophan and digestible tryptophan:digestible lysine ratio of 0.252. The ideal digestible tryptophan:digestible lysine ratio recommended in diets for laying hens from 24 to 40 weeks of age is 0.252 (25.2%.

  4. Nutritional Stress Induced by Tryptophan-Degrading Enzymes Results in ATF4-Dependent Reprogramming of the Amino Acid Transporter Profile in Tumor Cells

    DEFF Research Database (Denmark)

    Timosenko, Elina; Ghadbane, Hemza; Silk, Jonathan D


    Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in AT...

  5. Central fatigue and nycthemeral change of serum tryptophan and serotonin in the athletic horse

    Directory of Open Access Journals (Sweden)

    Percipalle Maurizio


    Full Text Available Abstract Background The serotonergic system is associated with numerous brain functions, including the resetting of the mammalian circadian clock. The synthesis and metabolism of 5-HT in the brain increases in response to exercise and is correlated with high levels of blood-borne tryptophan (TRP. The present investigation was aimed at testing the existence of a daily rhythm of TRP and 5-HT in the blood of athletic horses. Methods Blood samples from 5 Thoroughbred mares were collected at 4-hour intervals for 48 hours (starting at 08:00 hours on day 1 and finishing at 4:00 on day 2 via an intravenous cannula inserted into the jugular vein. Tryptophan and serotonin concentrations were assessed by HPLC. Data analysis was conducted by one-way repeated measures analysis of variance (ANOVA and by the single cosinor method. Results ANOVA showed a highly significant influence of time both on tryptophan and on serotonin, in all horses, on either day, with p values Conclusion The results showed that serotonin and tryptophan blood levels undergo nycthemeral variation with typical evening acrophases. These results enhance the understanding of the athlete horse's chronoperformance and facilitate the establishment of training programs that take into account the nycthemeral pattern of aminoacids deeply involved in the onset of central fatigue.

  6. Cross-linking of lens crystallin proteins induced by tryptophan metabolites and metal ions

    DEFF Research Database (Denmark)

    Tweeddale, Helen J; Hawkins, Clare Louise; Janmie, Joane F


    Long-wavelength solar UV radiation is implicated in photodamage to the human eye. The human lens contains multiple tryptophan-derived compounds that have significant absorbance bands in the UVA region (λ 315-400 nm) that act as efficient physical filters for these wavelengths. The concentrations...

  7. Diurnal variation in total plasma tryptophan in controls and in depression. (United States)

    Candito, M; Souêtre, E; Iordache, A; Pringuey, D; Ardisson, J L; Chambon, P; Darcourt, G


    Circadian rhythms of total tryptophan were investigated by assays of hourly blood samples over 25 h. The study population consisted of four endogenously depressed patients investigated in the absence of any treatment and six healthy controls. The abnormalities detected by statistical analyses in untreated depression consisted mainly of amplitude reduction; the phase positions of the depressed patients were similar to those of the controls.


    NARCIS (Netherlands)



    Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues

  9. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells

    NARCIS (Netherlands)

    G. Mondanelli (Giada); R. Bianchi (Roberta); M.T. Pallotta (Maria Teresa); C. Orabona (Ciriana); E. Albini (Elisa); A. Iacono (Alberta); M.L. Belladonna (Maria Laura); C. Vacca (Carmine); F. Fallarino (Francesca); A. Macchiarulo (Antonio); S. Ugel (Stefano); V. Bronte (Vincenzo); F. Gevi (Federica); L. Zolla (Lello); A.P. Verhaar (Auke); M.P. Peppelenbosch (Maikel); E.M.C. Mazza (Emilia Maria Cristina); S. Bicciato (Silvio); Y. Laouar (Yasmina); L. Santambrogio (Laura); P. Puccetti (Paolo); C. Volpi (Claudia); U. Grohmann (Ursula)


    textabstractArginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity

  10. Serum Stabilities of Short Tryptophan-and Arginine-Rich Antimicrobial Peptide Analogs

    NARCIS (Netherlands)

    Nguyen, L.T.; Chau, J.K.; Perry, N.A.; de Boer, L.; Zaat, S.A.J.; Vogel, H.J.


    Background: Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial centre

  11. Molecular docking of bacosides with tryptophan hydroxylase: a model to understand the bacosides mechanism. (United States)

    Rajathei, David Mary; Preethi, Jayakumar; Singh, Hemant K; Rajan, Koilmani Emmanuvel


    Tryptophan hydroxylase (TPH) catalyses l-tryptophan into 5-hydroxy-l-tryptophan, which is the first and rate-limiting step of serotonin (5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides (A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.

  12. Effect of a B-vitamin on tryptophan metabolism in South African Bantu with pellagra

    Energy Technology Data Exchange (ETDEWEB)

    Hankes, L.V.; Jansen, C.R.; DeBruin, E.P.; Schmaeler, M.


    The metabolism of kynurenine, a metabolite in the tryptophan-niacin pathway, before and after vitamin B6 therapy was studied in pellagra patients. The patients given vitamin B6 showed a higher metabolism of L-kynurenine-keto-/sup 14/C than the patients without vitamin B6. (ACR)

  13. Effect of diet on plasma tryptophan and serotonin in trained mares and geldings

    NARCIS (Netherlands)

    Alberghina, D.; Giannetto, C.; Visser, E.K.; Ellis, A.D.


    Concentrations of tryptophan (TRP) and serotonin (5-HT) in plasma were measured in 36 moderately trained Dutch warmblood horses after eight weeks on a high fibre (n=18) or high starch (n=18) diet. Samples were taken three hours after feeding, when the horse was at rest, either at 11.00 or 14.00 hour

  14. Lactococcus lactis as expression host for the biosynthetic incorporation of tryptophan analogues into recombinant proteins

    NARCIS (Netherlands)

    El Khattabi, Mohamed; van Roosmalen, Maarten L.; Jager, Dennis; Metselaar, Heidi; Permentier, Hjalmar; Leenhouts, Kees; Broos, Jaap


    Incorporation of Trp (tryptophan) analogues into a protein may facilitate its structural analysis by spectroscopic techniques. Development of a biological system for the biosynthetic incorporation of such analogues into proteins is of considerable importance. The Gram-negative Escherichia coli is th

  15. Converging evidence for central 5-HT effects in acute tryptophan depletion

    DEFF Research Database (Denmark)

    Crockett, Molly; Clark, Luke; Roiser, Jonathan


    Acute tryptophan depletion (ATD), a dietary technique for manipulating brain serotonin (5-HT) function, has advanced our understanding of 5-HT mechanisms in the etiology and treatment of depression and other affective disorders.1 A recent review article in Molecular Psychiatry questioned the vali...

  16. Synthesis of 2-substituted tryptophans via a C3- to C2-alkyl migration

    Directory of Open Access Journals (Sweden)

    Michele Mari


    Full Text Available The reaction of 3-substituted indoles with dehydroalanine (Dha derivatives under Lewis acid-mediated conditions has been investigated. The formation of 2-substituted tryptophans is proposed to occur through a selective alkylative dearomatization–cyclization followed by C3- to C2-alkyl migration and rearomatization.

  17. Recognizing emotions in faces : effects of acute tryptophan depletion and bright light

    NARCIS (Netherlands)

    aan het Rot, Marije; Coupland, Nicholas; Boivin, Diane B.; Benkelfat, Chawki; Young, Simon N.


    In healthy never-depressed individuals, acute tryptophan depletion (ATD) may selectively decrease the accurate recognition of fearful facial expressions. Here we investigated the perception of facial emotions after ATD in more detail. We also investigated whether bright light, which can reverse ATD'

  18. Dietary tryptophan and threonine supply to 28 days old weaned piglets

    DEFF Research Database (Denmark)

    Fernández, José Adalberto; Strathe, Anders Bjerring


    The effects of dietary levels of tryptophan (TRP) and threonine (THR) on appetite, growth performance and faecal score were assessed in an experiment with 360 weaned piglets. Littermate male castrates and females (1:1), weaned at 28 days of age, were given free access to feed during 28 days. Six...

  19. The tryptophan kynurenine pathway, neopterin and IL-6 during vulvectomy and abdominal hysterectomy. (United States)

    Hol, Jaap Willem; Stolker, Robert J; Klimek, Markus; Stronks, Dirk L; Fekkes, Durk


    Surgery has wide ranging immunomodulatory properties of which the mechanism is poorly understood. In order to investigate how different types of surgery influence inflammation, we designed a longitudinal observational study investigating two inflammatory profiles of two separate patient groups undergoing gynaecological operations of differing severity. In addition to measuring the well known inflammatory markers neopterin and IL-6, we also determined the kynurenine/tryptophan ratio. This study was a prospective, single center, two-armed observational study involving 28 female patients. Plasma levels of tryptophan, kynurenine, neopterin and IL-6 were determined from samples taken at: 24 hrs pre-operative, prior to induction, ten minutes before the operation was expected to end, and at 24 and 96 hours post operative in patients undergoing abdominal hysterectomy and vulvectomy. There were 15 and 13 patients included in the vulvectomy and abdominal hysterectomy groups, respectively. In this study we show that anesthesia and surgery significantly increases the enzyme activity of indoleamine 2, 3 dioxygenase (IDO) as measured by the kynurenine/tryptophan ratio (P=0.003), while maintaining stable neopterin levels. However, abdominal hysterectomy causes a considerable IL-6 increase (P<0.001). Surgery and associated anesthesia cause a significant tryptophan level decrease while significantly increasing IDO activity. Both types of surgery produce nearly identical neopterin time curve relationships, with no significant change occurring in either group. However, even though neopterin is unaffected by the severity of surgery, IL-6 responded to surgical invasiveness by revealing a significant increase during abdominal hysterectomy.

  20. Tryptophan Content of the Serum Albumin of Normal and of Cadmium-Poisoned Monkeys (United States)

    Kench, J. E.; Sutherland, Elizabeth M.


    In order to characterize further the minialbumins (molecular weight 5,000 to 20,000) found in cadmium-poisoned men and animals, the tryptophan content of albumins found in the serum and urine of cadmium-poisoned monkeys was measured by two methods and compared with that of serum albumin (molecular weight 66,000) of normal animals. Normal serum albumin of the monkey was found to contain 2 residues of trytophan per molecule of the protein, whereas all albumins in the poisoned monkeys, whether of normal size or low-molecular weight, contained less tryptophan, this amino acid being absent entirely in the minialbumins of both serum and urine. Serum albumin of the usual molecular weight (66,000) in the cadmium-poisoned monkeys contained approximately 30% less tryptophan than its normal counterpart in untreated animals. Taken in conjunction with previous observations on the behaviour of minialbumins, which aggregate readily in low-salt media including isotonic saline, it is concluded that approximately 30% of the circulating serum albumin in the poisoned monkeys arose by aggregation of minialbumin molecules. On the basis of the close similarity in amino acid composition, in nearly all other respects, between the various albumins, it is suggested that minialbumin comprises a mixture of peptides derived by fission of the normal albumin molecule along its whole chain length, and that subsequently a peptide containing both tryptophan residues is either deleted metabolically or excluded in the preparation procedures. PMID:4965263

  1. Biotransformation of tryptophan by liquid medium culture of Psilocybe coprophila (Basidiomycetes). (United States)

    Alarcón, Julio; Foncea, Leyla; Aguila, Sergio; Alderete, Joel B


    Chemical reactions performed by fungi have been used as a modern tool in chemistry. In this work, we show the tryptophan biotransformation with Psilocybe coprophila on liquid culture medium. The results prove once more the versatility of fungi in performing a wide range of industrially attractive chemical reactions.

  2. Tetrahydro-beta-carboline-3-carboxylic acids and contaminants of L-tryptophan. (United States)

    Adachi, J; Asano, M; Ueno, Y


    Methods for the separation, identification, and quantitative assay of contaminants of L-tryptophan implicated in eosinophilia-myalgia syndrome (EMS) are described. Propylsulfonic acid (PRS), benzenesulfonic acid (SCX), and octyl-derivatized silica (C8) bonded-phase cartridges were used for the separation; LC-MS and GC-MS for identification; and HPLC-UV-fluorescence detection for quantitative analyses of norharman, harman, tetrahydro-beta-carboline-3-carboxylic acid (TCCA), 1-methyltetrahydro-beta-carboline-3-carboxylic acid (MTCA), 1,1'-ethylidenbis(tryptophan) (EBT), and 3-(phenylamino)alanine (PAA). The tissue distribution, excretion, and metabolism of these contaminants of L-tryptophan associated with EMS after acute and chronic dosage regimens are described. Considerable amounts of EBT were observed in the large intestine of rats administered EBT, showing a transfer without decomposition in gastric fluid. In addition, MTCA was detected in the blood and urine as well as the organs of rats treated with EBT, suggesting MTCA as a major metabolite of EBT. PAA accumulated markedly in the brain, among the organs of rats, after both acute and chronic administration of PAA, while MTCA accumulated in the kidneys of rats after chronic dosage of MTCA. Ethanol and/or acetaldehyde-induced formation of MTCA, as well as tryptophan-induced formation of TCCA, occurred endogenously in man and animals.

  3. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus

    Directory of Open Access Journals (Sweden)

    Luigi De Masi


    Full Text Available Plant tryptophan decarboxylase (TDC converts tryptophan into tryptamine, precursor of indolealkylamine alkaloids. The recent finding of tryptamine metabolites in Citrus plants leads to hypothesize the existence of TDC activity in this genus. Here, we report for the first time that, in Citrus x limon seedlings, deuterium labeled tryptophan is decarboxylated into tryptamine, from which successively deuterated N,N,N-trimethyltryptamine is formed. These results give an evidence of the occurrence of the TDC activity and the successive methylation pathway of the tryptamine produced from the tryptophan decarboxylation. In addition, with the aim to identify the genetic basis for the presence of TDC, we carried out a sequence similarity search for TDC in the Citrus genomes using as a probe the TDC sequence reported for the plant Catharanthus roseus. We analyzed the genomes of both Citrus clementina and Citrus sinensis, available in public database, and identified putative protein sequences of aromatic l-amino acid decarboxylase. Similarly, 42 aromatic l-amino acid decarboxylase sequences from 23 plant species were extracted from public databases. Potential sequence signatures for functional TDC were then identified. With this research, we propose for the first time a putative protein sequence for TDC in the genus Citrus.

  4. Distinct Tryptophan Catabolism and Th17/Treg Balance in HIV Progressors and Elite Controllers

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Patel, Mital; Kema, Ido; Kanagaratham, Cynthia; Radzioch, Danuta; Thebault, Pamela; Lapointe, Rejean; Tremblay, Cecile; Gilmore, Norbert; Ancuta, Petronela; Routy, Jean-Pierre


    Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohor

  5. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland. (United States)

    Barbosa, Roseli; Scialfa, Julieta Helena; Terra, Ilza Mingarini; Cipolla-Neto, José; Simonneaux, Valérie; Afeche, Solange Castro


    Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.

  6. Problem-Solving Test: Attenuation--A Mechanism to Regulate Bacterial Tryptophan Biosynthesis (United States)

    Szeberenyi, Jozsef


    Terms to be familiar with before you start to solve the test: tryptophan, transcription unit, operon, "trp" repressor, corepressor, operator, promoter, palindrome, initiation, elongation, and termination of transcription, open reading frame, coupled transcription/translation, chromosome-polysome complex. (Contains 2 figures and 1 footnote.)


    DEFF Research Database (Denmark)

    Jensen, Niels Juul


    Pyrolysates of tryptophan (Trp-P-2) and glutamic acid (Glu-P-1) are known mutagens in in vitro short term mutagenicity tests, and have also shown carcinogenic effects in long term animal studies. The present study demonstrates that they also produce mutations in somatic cells. This result...

  8. A novel photocatalytic conversion of Tryptophan to Kynurenine using black light as a light source

    NARCIS (Netherlands)

    Hamdy Mohamed Saad, M.S.; Scott, E.L.; Carr, R.H.; Sanders, J.P.M.


    The photocatalytic conversion of an aqueous solution of l-tryptophan (Trp) to kynurenine (KN) was investigated under the illumination of different light sources. Results show that Trp converted to KN with a selectivity of 64% under the illumination of a medium pressure (MP) Hg lamp. KN selectivity w

  9. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid


    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  10. Stabilization of Tryptophan Hydroxylase 2 by L-Phenylalanine Induced Dimerization

    DEFF Research Database (Denmark)

    Tidemand, Kasper Damgaard; Christensen, Hans Erik Mølager; Hoeck, Niclas;


    Tryptophan hydroxylase 2 (TPH2) catalyses the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression, obsessive compulsive disorder, and schizophrenia. Full length TPH2 is poorly characterized due to low purification qua...

  11. Quenching of Tryptophan Fluorescence in Unfolded Cytochrome "c": A Biophysics Experiment for Physical Chemistry Students (United States)

    Schlamadinger, Diana E.; Kats, Dina I.; Kim, Judy E.


    Laboratory experiments that focus on protein folding provide excellent opportunities for undergraduate students to learn important topics in the expanding interdisciplinary field of biophysics. Here, we describe the use of Stern-Volmer plots to determine the extent of solvent accessibility of the single tryptophan residue (trp-59) in unfolded and…

  12. Study of Interaction Between Tryptophan, Tyrosine, and Phenylalanine Separately with Silver Nanoparticles by Fluorescence Quenching Method (United States)

    Roy, S.; Das, T. K.


    Using the spectroscopic method, the individual interaction of the three biochemically important amino acids, which are constituents of protein, namely, tryptophan, tyrosine, and phenylalanine with biologically synthesized silver nanoparticles has been investigated. The obtained UV-Vis spectra show the formation of ground-state complexes between tryptophan, tyrosine, and phenylalanine with silver nanoparticles. Silver nanoparticles possess the ability to quench the intrinsic fluorescence of the aforesaid amino acids by a dynamic quenching process. The binding constant, number of binding sites, and corresponding thermodynamic parameters (Δ H, Δ S, and Δ G) based on the interaction system were calculated for 293, 303, and 313 K. In the case of tryptophan and phenylalanine, with increase in temperature, the binding constant K was found to decrease; conversely, it was found to increase with increase in temperature in the case of tyrosine. The thermodynamic results revealed that the binding process was spontaneous; hydrogen bonding and van der Waals interaction were the predominant forces responsible for the complex stabilization in the case of tryptophan and phenylalanine, respectively, whereas in the case of tyrosine, hydrophobic interaction was the sole force conferring stability. Moreover, the Förster non-radiation energy transfer theory has been applied to calculate the average binding distance among the above amino acids and silver nanoparticles. The results show a binding distance of <7 nm, which ensures that energy transfer does occur between the said amino acids and silver nanoparticles.

  13. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. (United States)

    Back, Kyoungwhan; Tan, Dun-Xian; Reiter, Russel J


    Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Reprint of 'pH tuning of Nafion for selective detection of tryptophan'

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L., E-mail: [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)


    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 +- 0.1 nM and 1.6 +- 0.2 nM, respectively.

  15. pH tuning of Nafion for selective detection of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)], E-mail:


    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 {+-} 0.1 nM and 1.6 {+-} 0.2 nM, respectively.

  16. Quantum chemical calculations of tryptophan → heme electron and excitation energy transfer rates in myoglobin. (United States)

    Suess, Christian J; Hirst, Jonathan D; Besley, Nicholas A


    The development of optical multidimensional spectroscopic techniques has opened up new possibilities for the study of biological processes. Recently, ultrafast two-dimensional ultraviolet spectroscopy experiments have determined the rates of tryptophan → heme electron transfer and excitation energy transfer for the two tryptophan residues in myoglobin (Consani et al., Science, 2013, 339, 1586). Here, we show that accurate prediction of these rates can be achieved using Marcus theory in conjunction with time-dependent density functional theory. Key intermediate residues between the donor and acceptor are identified, and in particular the residues Val68 and Ile75 play a critical role in calculations of the electron coupling matrix elements. Our calculations demonstrate how small changes in structure can have a large effect on the rates, and show that the different rates of electron transfer are dictated by the distance between the heme and tryptophan residues, while for excitation energy transfer the orientation of the tryptophan residues relative to the heme is important. © 2017 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  17. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. (United States)

    Li, Yang; Hu, Nan; Yang, Dan; Oxenkrug, Gregory; Yang, Qing


    Tryptophan is metabolized along the kynurenine and serotonin pathways, resulting in formation of kynurenine metabolites, neuroactive serotonin and melatonin. Each pathway is critical for maintaining healthy homeostasis. However, the two pathways are extremely unequal in their ability to degrade tryptophan, and little is known about the mechanisms maintaining the balance between them. Here, we demonstrated that in PC12 cells, a change of expression of key genes of one pathway resulted in a change of expression of key genes of the other. Melatonin, the end product of the serotonin pathway, played an important role in tryptophan metabolism by affecting both key enzymes of the two pathways. Melatonin treatment induced the expression of indole-2,3-dioxygenase 1 (IDO1) and enhanced the activity of the IDO1 promoter while decreasing the expression of arylalkylamine N-acetyl transferase. Melatonin treatment up-regulated the expression of forkhead box protein O1 (FoxO1) and enhanced the binding of FoxO1 to the IDO1 promoter. FoxO1 was shown to be a new regulator for IDO1 expression. Melatonin treatment decreased the phosphorylation of FoxO1 by extracellular signal-regulated kinases 1 and 2 and protein kinase B (Akt) and increased the phosphorylation of binding protein 14-3-3 by c-Jun N-terminal kinase (JNK), and thus the complex of FoxO1-14-3-3 in the cytoplasm was disassembled and FoxO1 was relocated to the nucleus to induce IDO1 expression. The JNK signaling pathway played an important role in melatonin-induced IDO1 up-regulation. In conclusion, this study suggests a link between melatonin, JNK, FoxO1 and IDO1 that acts as a potential balance regulator of tryptophan metabolism, and offers a new approach to treat diseases related to dysregulation of tryptophan metabolism. © 2017 Federation of European Biochemical Societies.

  18. Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo (United States)

    Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre


    Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.

  19. Acute tryptophan depletion attenuates brain-heart coupling following external feedback

    Directory of Open Access Journals (Sweden)

    Erik M Mueller


    Full Text Available External and internal performance feedback triggers neural and visceral modulations such as reactions in the medial prefrontal cortex and insulae or changes of heart period (HP. The functional coupling of neural and cardiac responses following feedback (cortico-cardiac connectivity is not well understood. While linear time-lagged within-subjects correlations of single-trial EEG and HP (cardio-electroencephalographic covariance-tracing, CECT indicate a robust negative coupling of EEG magnitude 300 ms after presentation of an external feedback stimulus with subsequent alterations of heart period (the so-called N300H phenomenon, the neurotransmitter systems underlying feedback-evoked cortico-cardiac connectivity are largely unknown. Because it has been shown that acute tryptophan depletion (ATD, attenuating brain serotonin (5-HT, decreases cardiac but not neural correlates of feedback processing, we hypothesized that 5-HT may be involved in feedback-evoked cortico-cardiac connectivity. In a placebo-controlled double-blind crossover design, twelve healthy participants received a tryptophan-free amino-acid drink at one session and a balanced amino-acid control-drink on another and twice performed a time-estimation task with feedback presented after each trial. N300H magnitude and plasma tryptophan levels were assessed. Results indicated a robust N300H after the control drink, which was significantly attenuated following ATD. Moreover, plasma tryptophan levels during the control session were correlated with N300H amplitude such that individuals with lower tryptophan levels showed reduced N300H. Together, these findings indicate that 5-HT is important for feedback-induced covariation of cortical and cardiac activity. Because individual differences in anxiety have previously been linked to 5-HT, cortico-cardiac coupling and feedback processing, the present findings may be particularly relevant for futures studies linking 5-HT to anxiety.

  20. The tryptophan/kynurenine pathway, systemic inflammation, and long-term outcome after kidney transplantation. (United States)

    de Vries, Laura V; Minović, Isidor; Franssen, Casper F M; van Faassen, Martijn; Sanders, Jan-Stephan F; Berger, Stefan P; Navis, Gerjan; Kema, Ido P; Bakker, Stephan J L


    Tryptophan is metabolized along the kynurenine pathway, initially to kynurenine, and subsequently to cytotoxic 3-hydroxykynurenine. There is increasing interest in this pathway because of its proinflammatory nature, and drugs interfering in it have received increasing attention. We aimed to investigate whether serum and urinary parameters of the tryptophan/kynurenine pathway, and particularly cytotoxic 3-hydroxykynurenine, are associated with systemic inflammation and long-term outcome in renal transplant recipients (RTR). Data were collected in outpatient RTR with a functioning graft for >1 yr. Tryptophan, kynurenine, and 3-hydroxykynurenine in serum and urine were measured using LC-MS/MS. A total of 561 RTR (age: 51 ± 12 yr; 56% male) were included at a median of 6.0 (2.6-11.6) yr posttransplantation. Baseline median serum tryptophan was 40.0 (34.5-46.0) µmol/l, serum kynurenine was 1.8 (1.4-2.2) µmol/l, and serum 3-hydroxykynurenine was 42.2 (31.0-61.7) nmol/l. Serum kynurenine and 3-hydroxykynurenine were strongly associated with parameters of systemic inflammation. During follow-up for 7.0 (6.2-7.5) yr, 51 RTR (9%) developed graft failure and 120 RTR (21%) died. Both serum kynurenine and 3-hydroxykynurenine were independently associated with graft failure [HR 1.72 (1.23-2.41), P = 0.002; and HR 2.03 (1.42-2.90), P inflammation and prospectively with adverse long-term outcome after kidney transplantation. Serum 3-hydroxykynurenine may be an interesting biomarker and target for the evaluation of drugs interfering in the tryptophan/kynurenine pathway. Copyright © 2017 the American Physiological Society.

  1. Sub-structures formed in the excited state are responsible for tryptophan residues fluorescence in β-lactoglobulin. (United States)

    Albani, Jihad-Rene


    Origin of tryptophan residues fluorescence in β-lactoglobulin is analyzed. Fluorescence lifetimes and spectra of β-lactoglobulin solution are measured at pH going from 2 to 12 and in 6 M guanidine. Tryptophan residues emit with three lifetimes at all conditions. Two lifetimes (0.4-0.5 ns and 2-4 ns) are in the same range of those measured for tryptophan free in solution. Lifetimes in the denatured states are lower than those measured in the native state. Pre-exponential values are modified with the protein structure. Data are identical to those already obtained for other proteins. Fluorescence lifetimes characterize internal states of the tryptophan residues (Tryptophan sub-structures) independently of the tryptophan environments, the third lifetime results from the interaction that is occurring between the Trp residues and its environment. Pre-exponential values characterize substructures populations. In conclusion, tryptophan mission occurs from substates generated in the excited state. This is in good agreement with the theory we described in recent works.

  2. Melatonin and its precursor, L-tryptophan: influence on pancreatic amylase secretion in vivo and in vitro. (United States)

    Jaworek, Jolanta; Nawrot, Katarzyna; Konturek, Stanisław J; Leja-Szpak, Anna; Thor, Piotr; Pawlik, Wiesław W


    Melatonin, considered as a main pineal product, may be also synthetized in the gastrointestinal tract from L-tryptophan. Melatonin has been recently shown to affect insulin release and its receptors have been characterized in the pancreas however, the effects of melatonin on the pancreatic enzyme secretion have not been examined. The aim of this study was to investigate the effects of melatonin or L-tryptophan on amylase secretion in vivo in anaesthetized rats with pancreato-biliary fistulas, and in vitro using isolated pancreatic acini. Melatonin (1, 5 or 25 mg/kg) or L-tryptophan (10, 50 or 250 mg/kg) given to the rats as a intraperitoneal (i.p.) bolus injection produced significant and dose-dependent increases in pancreatic amylase secretion under basal conditions or following stimulation of enzyme secretion by diversion of bile-pancreatic juice. This was accompanied by a dose-dependent rise in melatonin plasma level. Stimulation of pancreatic enzyme secretion caused by melatonin or L-tryptophan was completely abolished by vagotomy, deactivation of sensory nerves with capsaicin or pretreatment with CCK1 receptor antagonists (tarazepide or L-364,718). Pretreatment with luzindole, an antagonist of melatonin MT(2) receptor failed to affect melatonin- or L-tryptophan-induced amylase secretion. Administration of melatonin (1, 5 or 25 mg/kg i.p.) or L-tryptophan (10, 50 or 250 mg/kg i.p.) to the rats resulted in the dose-dependent increase of cholecystokinin (CCK) plasma immunoreactivity. Enzyme secretion from isolated pancreatic acini was not significantly affected by melatonin or L-tryptophan used at doses of 10(-8) -10(-5) M. We conclude that exogenous melatonin, as well as that produced endogenously from L-tryptophan, stimulates pancreatic enzyme secretion in vivo while increasing CCK release. Stimulatory effect of melatonin or L-tryptophan on the exocrine pancreas involves vagal sensory nerves and the CCK release by these substances.

  3. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. (United States)

    Pfefferkorn, E R


    Treatment of human fibroblasts with human recombinant gamma interferon blocked the growth of Toxoplasma gondii, an obligate intracellular protozoan parasite. Growth of the parasite was measured by a plaque assay 7 days after infection or by the incorporation of [3H]uracil 1 or 2 days after infection. The antitoxoplasma activity induced in the host cells by gamma interferon was strongly dependent upon the tryptophan concentration of the medium. Progressively higher minimal inhibitory concentrations of gamma interferon were observed as the tryptophan concentration in the culture medium was increased. Treatment with gamma interferon did not make the cells impermeable to tryptophan. The kinetics of [3H]tryptophan uptake into the acid-soluble pools of control and gamma interferon-treated cultures were identical during the first 48 sec. Thereafter uptake of [3H]tryptophan into the acid-soluble pool of control fibroblasts reached the expected plateau after 96 sec. In contrast, uptake of [3H]tryptophan continued for at least 12 min in the gamma interferon-treated cultures. At that time, the acid-soluble pool of the gamma interferon-treated cultures contained 8 times the radioactivity of the control cultures. This continued accumulation was the result of rapid intracellular degradation of [3H]tryptophan into kynurenine and N-formylkynurenine that leaked slowly from the cells. These two metabolites were also recovered from the medium of cultures treated for 1 or 2 days with gamma interferon. Human recombinant alpha and beta interferons, which have no antitoxoplasma activity, did not induce any detectable degradation of tryptophan. Several hypotheses are presented to explain how the intracellular degradation of tryptophan induced by gamma interferon could restrict the growth of an obligate intracellular parasite. Images PMID:6422465

  4. Structure and Activity of an Aminoacyl-tRNA Synthetase that Charges tRNA with Nitro-Tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Buddha,M.; Crane, B.


    The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNATrp with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.

  5. Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. (United States)

    Fuchs, D; Möller, A A; Reibnegger, G; Stöckle, E; Werner, E R; Wachter, H


    We investigated serum neopterin, tryptophan, and kynurenine concentrations in 23 HIV-1 seropositive patients (Walter Reed Stage 4-6). Ten patients presented with polyneuropathy and three with dementia, one of the patients with dementia also had polyneuropathy and dementia. We found significant associations between lower trytophan concentrations and neurologic/psychiatric symptoms. The negative correlation of tryptophan with kynurenine and neopterin concentrations indicates activity of indoleamine 2,3-dioxygenase (IDO) in patients. IDO can be induced by cytokines such as interferon-gamma and therefore low tryptophan levels may result from chronic immune stimulation in HIV-1 seropositives.

  6. A Brief Historic Overview of Clinical Disorders Associated with Tryptophan: The Relevance to Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM). (United States)

    Blankfield, Adele


    Last century there was a short burst of interest in the tryptophan related disorders of pellagra and related abnormalities that are usually presented in infancy.1,2 Nutritional physiologists recognized that a severe human dietary deficiency of either tryptophan or the B group vitamins could result in central nervous system (CNS) sequelae such as ataxia, cognitive dysfunction and dysphoria, accompanied by skin hyperpigmentation.3,4 The current paper will focus on the emerging role of tryptophan in chronic fatigue syndrome (CFS) and fibromyalgia (FM).

  7. Review of the implications of dietary tryptophan intake in patients with irritable bowel syndrome and psychiatric disorders. (United States)

    Agazzi, A; De Ponti, F; De Giorgio, R; Candura, S M; Anselmi, L; Cervio, E; Di Nucci, A; Tonini, M


    In this review, we address the possible role of the essential amino acid L-tryptophan or its metabolic derivative 5-hydroxytryptophan in the modulation of serotonin (5-hydroxytryptamine) synthesis and thereby in affecting the pathophysiology of central and peripheral nervous system disorders, including depression and irritable bowel syndrome. L-Tryptophan may represent a link between apparently disparate functional disorders and is of interest for general gastroenterologists, neurogastroenterologists, and neurologists. On the basis of estimates showing that approximately 20% of patients with functional bowel disorders seeking care in referral centres have psychiatric comorbidity, we attempt to provide a conceptual framework for defining the possible role of L-tryptophan in this population.

  8. Short-chain fluorescent tryptophan tags for on-line detection of functional recombinant proteins

    Directory of Open Access Journals (Sweden)

    Siepert Eva-Maria


    Full Text Available Abstract Background Conventional fluorescent proteins, such as GFP, its derivatives and flavin mononucleotide based fluorescent proteins (FbFPs are often used as fusion tags for detecting recombinant proteins during cultivation. These reporter tags are state-of-the-art; however, they have some drawbacks, which can make on-line monitoring challenging. It is discussed in the literature that the large molecular size of proteins of the GFP family may stress the host cell metabolism during production. In addition, fluorophore formation of GFP derivatives is oxygen-dependent resulting in a lag-time between expression and fluorescence detection and the maturation of the protein is suppressed under oxygen-limited conditions. On the contrary, FbFPs are also applicable in an oxygen-limited or even anaerobic environment but are still quite large (58% of the size of GFP. Results As an alternative to common fluorescent tags we developed five novel tags based on clustered tryptophan residues, called W-tags. They are only 5-11% of the size of GFP. Based on the property of tryptophan to fluoresce in absence of oxygen it is reasonable to assume that the functionality of our W-tags is also given under anaerobic conditions. We fused these W-tags to a recombinant protein model, the anti-CD30 receptor single-chain fragment variable antibody (scFv Ki-4(scFv and the anti-MucI single-chain fragment variable M12(scFv. During cultivation in Microtiter plates, the overall tryptophan fluorescence intensity of all cultures was measured on-line for monitoring product formation via the different W-tags. After correlation of the scattered light signal representing biomass concentration and tryptophan fluorescence for the uninduced cultures, the fluorescence originating from the biomass was subtracted from the overall tryptophan signal. The resulting signal, thus, represents the product fluorescence of the tagged and untagged antibody fragments. The product fluorescence signal

  9. Differences in fluorescence profiles from breast cancer tissues due to changes in relative tryptophan content via energy transfer: tryptophan content correlates with histologic grade and tumor size but not with lymph node metastases (United States)

    Sordillo, Laura A.; Sordillo, Peter P.; Budansky, Yury; Pu, Yang; Alfano, Robert R.


    The correlation between histologic grade, an increasingly important measure of prognosis for patients with breast cancer, and tryptophan levels from tissues of 15 breast carcinoma patients was investigated. Changes in the relative content of key native organic biomolecule tryptophan were seen from the fluorescence spectra of cancerous and paired normal tissues with excitation wavelengths of 280 and 300 nm. Due to a large spectral overlap and matching excitation-emission spectra, fluorescence resonance energy transfer from tryptophan-donor to reduced nicotinamide adenine dinucleotides-acceptor was noted. We used the ratios of fluorescence intensities at their spectral emission peaks, or spectral fingerprint peaks, at 340, 440, and 460 nm. Higher ratios correlated strongly with high histologic grade, while lower-grade tumors had low ratios. Large tumor size also correlated with high ratios, while the number of lymph node metastases, a major factor in staging, was not correlated with tryptophan levels. High histologic grade correlates strongly with increased content of tryptophan in breast cancer tissues and suggests that measurement of tryptophan content may be useful as a part of the evaluation of these patients.

  10. Nutritional Evaluation of Glycated Valine and Tryptophan as a Precursor for Protein Synthesis in Chicken Embryo Myoblasts

    National Research Council Canada - National Science Library

    Makino, Ryosuke; Sugahara, Misaki; Kita, Kazumi


    Valine and Tryptophan plays a role of being a precursor for protein synthesis. Glycation is a non-enzymatic reaction causing dehydrating condensation between the carbonyl group of glucose and the α...

  11. Nutritional Evaluation of Glycated Valine and Tryptophan as a Precursor for Protein Synthesis in Chicken Embryo Myoblasts

    National Research Council Canada - National Science Library

    Makino, Ryosuke; Sugahara, Misaki; Kita, Kazumi


    Valine and Tryptophan play a role of being a precursor for protein synthesis. Glycation is a non-enzymatic reaction causing dehydrating condensation between the carbonyl group of glucose and the α...

  12. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention

    NARCIS (Netherlands)

    Markus, C.R.; Jonkman, L.M.; Lammers, J.H.C.M.; Deutz, N.E.P.; Messer, M.H.; Rigtering, N.


    Background: Brain serotonin function is thought to promote sleep regulation and cognitive processes, whereas sleep abnormalities and subsequent behavioral decline are often attributed to deficient brain serotonin activity. Brain uptake of the serotonin precursor tryptophan is dependent on nutrients

  13. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation. (United States)

    Hayaishi, O


    The following is our current working hypothesis concerning the biological significance of IDO induction. When tissues are invaded by virus, bacteria, or parasites, leukocytes and lymphocytes will accumulate at the site and interferon will be produced by these cells in the inflammatory loci. The interferon thus produced is released and interacts with the cell surface to trigger IDO induction in the same or other types of cells. As a consequence of inflammation, superoxide anion is liberated and serves as a substrate for IDO. Although it is possible that some trytophan metabolites may activate the immune system or act as bacteriostatic agents, available evidence does not support this hypothesis. We therefore tentatively conclude that tryptophan is degraded by IDO and depleted, whereby the growth of viruses, bacteria and certain parasites is inhibited, because tryptophan is the least available and therefore most important essential amino acid for their growth.

  14. Molecular analysis of intragenic recombination at the tryptophan synthetase locus in Neurospora crassa

    Indian Academy of Sciences (India)

    A. Wiest; D. Barchers; M. Eaton; R. Henderson; R. Schnittker; K. Mccluskey


    Fifteen different classically generated and mapped mutations at the tryptophan synthetase locus in Neurospora crassa have been characterized to the level of the primary sequence of the gene. This sequence analysis has demonstrated that intragenic recombination is accurate to order mutations within one open reading frame. While classic genetic analysis correctly ordered the mutations, the position of mutations characterized by gene sequence analysis was more accurate. A leaky mutation was found to have a wild-type primary sequence. The presence of unique polymorphisms in the primary sequence of the trp-3 gene from strain 861 confirms that it has a unique history relative to the other strains studied. Most strains that were previously shown to be immunologically nonreactive with antibody preparations raised against tryptophan synthetase protein were shown to have nonsense mutations. This work defines 14 alleles of the N. crassa trp-3 gene.

  15. Tryptophan-Assisted Synthesis Reduces Bimetallic Gold/Silver Nanoparticle Cytotoxicity and Improves Biological Activity

    Directory of Open Access Journals (Sweden)

    Igor O. Shmarakov


    Full Text Available Aiming to reduce the potential in vivo hepato-and nephrotoxicity of Ag/Au bimetallic nanoparticles (NPs stabilized by sodium dodecyl sulphate (SDS, an approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp as a reducing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5–15 nm sized were able to form stable aggregates with an average size of 370–450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical parameters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model. The data generated from the present study support the fact that the use of tryptophan in NP synthesis is effective in attenuating the potential hepatotoxicity and nephrotoxicity of NPs during their in vivo application.

  16. Inhibiting the photosensitized oxidation of anthracene and tryptophan by means of natural antioxidants (United States)

    Aksenova, N. A.; Vyzhlova, E. N.; Malinovskaya, V. V.; Parfenov, V. V.; Solov'eva, A. B.; Timashev, P. S.


    It is shown that model reactions of photosensitized oxidation of anthracene and tryptophan can be used for evaluation and comparison of antioxidant activity of various classes of compounds. Inhibition of the oxidation of substrates in the presence of the familiar antioxidants tocopherol (vitamin E), ascorbic acid (vitamin C), and mixtures of these vitamins with methionine, and in the presence of reputed antioxidants dihydroquercetin and taurine, are considered. It is concluded that all of the above compounds except for taurine have antioxidant properties; i.e., they reduce the rate constants of the photosensitized oxidation of anthracene and tryptophan. It is found that the inhibition of oxidation is associated with the interaction between antioxidants and singlet oxygen. Analysis of the kinetic dependences of the photosensitized oxidation of substrates in the presence of antioxidants reveals that a mixture of vitamins inhibits the process most efficiently, and inhibition occurs at the initial stages due to more active interaction between singlet oxygen and vitamin C

  17. The Effect of Tryptophan on Serotonin-Like Neurons in Duck Cerebellum

    Institute of Scientific and Technical Information of China (English)

    LIU Hua-zhen; TANG Wen-hua; PENG Ke-mei; CHEN Wen-qin; LUO Guan-zhong; WANG Yan; WEI Lan


    Healthy Cherry Valley ducks were used in the present study. Different doses of tryptophan were injected intraperitoneallyto them after being fasted 4 h (8:00 a.m.-12:00 a.m.). One hour later, they were deeply anaesthetized and perfused. The cerebellum was removed to make serial paraffin longitudinal sections. The streptavidin-biotin-peroxidase complex (SABC) method was used to study the distribution of serotonin-like neurons in the cerebellum. All films were analysed by using a computer-assisted image analysis system. Serotonin-like neurons are only localized in cerebellar Purkinje cell layer. The optical density averages of serotonin-like neurons in 200 and 100 mg kg-1 group are significantly higher than that of O mg kg-1 group (P<0.01). These results show that serotonin-like neurons are distributed in Purkinje cell layer and that excessive tryptophan can affect the content of serotonin in cerebellum.

  18. Stochastic thermodynamics of a chemical nanomachine: The channeling enzyme tryptophan synthase. (United States)

    Loutchko, Dimitri; Eisbach, Maximilian; Mikhailov, Alexander S


    The enzyme tryptophan synthase is characterized by a complex pattern of allosteric interactions that regulate the catalytic activity of its two subunits and opening or closing of their ligand gates. As a single macromolecule, it implements 13 different reaction steps, with an intermediate product directly channeled from one subunit to another. Based on experimental data, a stochastic model for the operation of tryptophan synthase has been earlier constructed [D. Loutchko, D. Gonze, and A. S. Mikhailov, J. Phys. Chem. B 120, 2179 (2016)]. Here, this model is used to consider stochastic thermodynamics of such a chemical nanomachine. The Gibbs energy landscape of the internal molecular states is determined, the production of entropy and its flow within the enzyme are analyzed, and the information exchange between the subunits resulting from allosteric cross-regulations and channeling is discussed.

  19. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. (United States)

    Dubey, Kriti; Anand, Bibin G; Badhwar, Rahul; Bagler, Ganesh; Navya, P N; Daima, Hemant Kumar; Kar, Karunakar


    Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.

  20. Identification of a quorum sensing pheromone posttranslationally farnesylated at the internal tryptophan residue from Bacillus subtilis subsp. natto. (United States)

    Hayashi, Shunsuke; Usami, Syohei; Nakamura, Yuta; Ozaki, Koki; Okada, Masahiro


    Bacillus subtilis subsp. natto produces poly-γ-glutamic acid under the control of quorum sensing. We identified ComXnatto pheromone as the quorum-sensing pheromone with an amino acid sequence of Lys-Trp-Pro-Pro-Ile-Glu and the tryptophan residue posttranslationally modified by a farnesyl group. ComXnatto pheromone is unique in the sense that the 5th tryptophan residue from the C-terminal is farnesylated.

  1. Tryptophanase-Catalyzed l-Tryptophan Synthesis from d-Serine in the Presence of Diammonium Hydrogen Phosphate


    Fujii Noriko; Haruka Ozaki; Takeshi Saito; Akihiko Shimada


    Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of L-tryptophan from L-serine and indole through a β-substitution mechanism of the ping-pong type, and has no activity on D-serine. We previously reported that tryptophanase changed its stereospecificity to degrade D-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH4)2HPO4 solution. The present study provided the same stereospecific change seen in the...

  2. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. (United States)

    Li, Gang; Young, Kevin D


    The signalling molecule indole occurs in significant amounts in the mammalian intestinal tract and regulates diverse microbial processes, including bacterial motility, biofilm formation, antibiotic resistance and host cell invasion. In Escherichia coli, the enzyme tryptophanase (TnaA) produces indole from tryptophan, but it is not clear what determines how much indole E. coli can produce and excrete, making it difficult to interpret experiments that investigate the biological effects of indole at high concentrations. Here, we report that the final yield of indole depends directly, and perhaps solely, on the amount of exogenous tryptophan. When supplied with a range of tryptophan concentrations, E. coli converted this amino acid into an equal amount of indole, up to almost 5 mM, an amount well within the range of the highest concentrations so far examined for their physiological effects. Indole production relied heavily on the tryptophan-specific transporter TnaB, even though the alternative transporters AroP and Mtr could import sufficient tryptophan to induce tnaA expression. This TnaB requirement proceeded via tryptophan transport and was not caused by activation of TnaA itself. Bacterial growth was unaffected by the presence of TnaA in the absence of exogenous tryptophan, suggesting that the enzyme does not hydrolyse significant quantities of the internal anabolic amino acid pool. The results imply that E. coli synthesizes TnaA and TnaB mainly, or solely, for the purpose of converting exogenous tryptophan into indole, under conditions and for signalling purposes that remain to be fully elucidated.

  3. Tryptophanase-Catalyzed l-Tryptophan Synthesis from d-Serine in the Presence of Diammonium Hydrogen Phosphate


    Shimada, Akihiko; Ozaki, Haruka; Saito, Takeshi; Fujii, Noriko


    Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of l-tryptophan from l-serine and indole through a β-substitution mechanism of the ping-pong type, and has no activity on d-serine. We previously reported that tryptophanase changed its stereospecificity to degrade d-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH4)2HPO4 solution. The present study provided the same stereospecific change seen in the...

  4. Serum Immune System Biomarkers Neopterin and Interleukin-10 Are Strongly Related to Tryptophan Metabolism in Healthy Young Adults. (United States)

    Deac, Oana M; Mills, James L; Gardiner, Clair M; Shane, Barry; Quinn, Louise; Midttun, Øivind; McCann, Adrian; Meyer, Klaus; Ueland, Per M; Fan, Ruzong; Lu, Zhaohui; Brody, Lawrence C; Molloy, Anne M


    Changes in tryptophan metabolism through the vitamin B-6-dependent kynurenine pathway have been linked to activation of the immune system. We hypothesized that blood concentrations of tryptophan and its catabolites were associated with biomarkers relevant to inflammatory processes in healthy noninflamed subjects. Healthy young adults (n = 737) aged 18-28 y without any known diseases or clinical evidence of inflammation provided blood samples for analysis of serum tryptophan/kynurenine metabolites, neopterin, C-reactive protein (CRP), and plasma pyridoxal 5'-phosphate (PLP) with LC-tandem mass spectrometry methodologies. A panel of cytokines was measured in serum by using high-sensitivity ELISA assays. Anthropometric and lifestyle data were collected by questionnaire. Multiple linear regression analysis to determine the effect of measured serum cytokine concentrations as predictors of tryptophan metabolites was performed on inverse normal-rank transformations of the data, adjusted for sex, body mass index, smoking, alcohol intake, and contraceptive use in women. Median serum CRP and neopterin concentrations were well below established clinical cutoffs for inflammation. We observed significant positive associations between serum interleukin-10 (IL-10) and serum kynurenine (P = 0.0002), the kynurenine-to-tryptophan ratio (KTR) (P = 0.003), 3-hydroxykynurenine (P = 0.01), and 3-hydroxyanthranilic acid (P = 0.04). Serum neopterin was positively associated with kynurenine, the KTR (both P < 0.0001), and anthranilic acid (P = 0.004), and was negatively associated with serum tryptophan (P = 0.01) and PLP (P < 0.0001). Serum tumor necrosis factor α was also negatively associated with tryptophan (P < 0.001). In healthy young adults with no apparent inflammatory conditions, serum tryptophan metabolites are significantly associated with key immune system biomarkers. The observed association between IL-10 and kynurenine is unexpected and suggests that kynurenine

  5. The structure of flavin-dependent tryptophan 7-halogenase RebH

    Energy Technology Data Exchange (ETDEWEB)

    Bitto, Eduard; Huang, Yu; Bingman, Craig A.; Singh, Shanteri; Thorson, Jon S.; Phillips, Jr., George N. (UW)


    Enzyme catalyzed regio- and stereo-specific halogenations influence the biological activity of a diverse array of therapeutically important natural products, including the antibiotics vancomycin and chloramphenicol as well as the anticancer agents calicheamicin and rebeccamycin. The major class of enzymes responsible for this challenging synthetic reaction, the flavin-dependent halogenases, catalyzes the formation of carbon-halogen bonds using flavin, a halide ion (Cl{sup -}, Br{sup -} or I{sup -}), and O{sub 2}. Recent mechanistic and structural advances achieved with the model flavin-dependent tryptophan 7-halogenases PrnA and RebH have greatly enhanced the level of understanding of this unique reaction. According to these studies, the mechanism for tryptophan halogenation proceeds via FAD(C4a)-OOH activation of a chloride ion into the transient chlorinating species HOCl. The key evidence for the requirement of a transient chlorinating species is the discovery that a {approx}10-{angstrom}-long tunnel separates FAD and tryptophan in the ligand-bound form of PrnA. In a recent compelling study to elucidate the strategy by which RebH controls this highly reactive and indiscriminant oxidant, a Lys79-{var_epsilon}NH-Cl chloramine intermediate was implicated as the actual chlorinating species within RebH and a structural investigation of RebH was reported. Here we report our independent structural analysis of Lechevalieria aerocolonigenes RebH (Uni-Prot accession number Q8KHZ8, 530 amino acids) in its apo-form as well as in a complex with both tryptophan and FAD.

  6. Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea

    Directory of Open Access Journals (Sweden)

    S. Comai


    Full Text Available Tryptophan (Trp is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05 lower in the anorexic (11.64 ± 0.53 µg/ml, mean ± S.E. than in the control (12.98 ± 0.37 µg/ml groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed. This study shows that women affected by various forms of amenorrhea present an altered metabolism of tryptophan via serotonin and, in particular, markedly high differences are observed between the two subgroups of anorexic patients.

  7. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid


    Hesham T.M. Abdel-Fatah; Salah A.M. Rashwan; S.M. Abd El Wahaab; Aliaa A.M. Hassan


    Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp) on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM) as well as gravimetric measurements. The inhibition efficiency and the apparent activ...

  8. Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases.

    Directory of Open Access Journals (Sweden)

    Nikita Chopra


    Full Text Available Bruton's tyrosine kinase (Btk is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA. Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site.

  9. The effects of tryptophan depletion on impulsivity and mood in healthy men and women


    Walderhaug, Espen


    Reduced serotonergic neurotransmission contributes to the pathophysiology of mood disorders, and the majority of modern antidepressants block the serotonin reuptake in the brain. It is also known that people with major depressive disorder are frequently found to have impaired impulse control, and that impulsivity is associated with serotonin. In two separate studies with healthy participants using different designs and a technique called acute tryptophan depletion, which decreases seroton...

  10. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis. (United States)

    Aguilera, A; Selgas, R; Codoceo, R; Bajo, A


    Anorexia is a frequent part of uremic syndrome, contributing to malnutrition in dialysis patients. Many factors have been suggested as responsible for uremic anorexia. In this paper we formulate a new hypothesis to explain the appetite disorders in dialysis patients: "the tryptophan/serotonin disorder hypothesis." We review current knowledge of normal hunger-satiety cycle control and the disorders described in uremic patients. There are four phases in food intake regulation: (1) the gastric phase, during which food induces satiety through gastric distention and satiety peptide release; (2) the post absorptive phase, during which circulating compounds, including glucose and amino acids, cause satiety by hepatic receptors via the vagus nerve; (3) the hepatic phase, during which adenosine triphosphate (ATP) concentration is the main stimulus inducing hunger or satiety, with cytokines inhibiting ATP production; and (4) the central phase, during which appetite is regulated through peripheral (circulating plasma substances and neurotransmitters) and brain stimuli. Brain serotonin is the final target for peripheral mechanisms controlling appetite. High brain serotonin levels and a lower serotonin/dopamine ratio cause anorexia. Plasma and brain amino acid concentrations are recognized factors involved in neurotransmitter synthesis and appetite control. Tryptophan is the substrate of serotonin synthesis. High plasma levels of anorectics such as tryptophan (plasma and brain), cholecystokinin, tumor necrosis factor alpha, interleukin-1, and leptin, and deficiencies of nitric oxide and neuropeptide Y have been described in uremia; all increase intracerebral serotonin. We suggest that brain serotonin hyperproduction due to a uremic-dependent excess of tryptophan may be the final common pathway involved in the genesis of uremic anorexia. Various methods of ameliorating anorexia by decreasing the central effects of serotonin are proposed.

  11. Complete phenotypic recovery of an Alzheimer's disease model by a quinone-tryptophan hybrid aggregation inhibitor.

    Directory of Open Access Journals (Sweden)

    Roni Scherzer-Attali

    Full Text Available The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated beta-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp, combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Abeta oligomerization and fibrillization, as well as the cytotoxic effect of Abeta oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Abeta while immuno-staining of the 3(rd instar larval brains showed a significant reduction in Abeta accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Abeta. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease.

  12. Tryptic digestion of the human erythrocyte glucose transporter: effects on ligand binding and tryptophan fluorescence. (United States)

    May, J M; Qu, Z C; Beechem, J M


    The conformation of the human erythrocyte glucose transport protein has been shown to determine its susceptibility to enzymatic cleavage on a large cytoplasmic loop. We took the converse approach and investigated the effects of tryptic digestion on the conformational structure of this protein. Exhaustive tryptic digestion of protein-depleted erythrocyte ghosts decreased the affinity of the residual transporter for cytochalasin B by 3-fold but did not affect the total number of binding sites. Tryptic digestion also increased the affinity of the residual transporter for D-glucose and inward-binding sugar phenyl beta-D-glucopyranoside but decreased that for the outward-binding 4,6-O-ethylidene glucose. These results suggest that tryptic cleavage stabilized the remaining transporter in an inward-facing conformation, but one with decreased affinity for cytochalasin B. The steady-state fluorescence emission scan of the purified reconstituted glucose transport protein was unaffected by tryptic digestion. Addition of increasing concentrations of potassium iodide resulted in linear Stern-Volmer plots, which were also unaffected by prior tryptic digestion. The tryptophan oxidant N-bromosuccinimide was investigated to provide a more sensitive measure of tryptophan environment. This agent irreversibly inhibited 3-O-methylglucose transport in intact erythrocytes and cytochalasin B binding in protein-depleted ghosts, with a half-maximal effect observed for each activity at about 0.3-0.4 nM. Treatment of purified glucose transport protein with N-bromosuccinimide resulted in a time-dependent quench of tryptophan fluorescence, which was resolved into two components by nonlinear regression using global analysis. Tryptic digestion retarded the rate of oxidation of the more slowly reacting class of tryptophans. (ABSTRACT TRUNCATED AT 250 WORDS)

  13. Enhanced synthesis of 5-hydroxy-l-tryptophan through tetrahydropterin regeneration


    Hara, Ryotaro; Kino, Kuniki


    5-Hydroxy-l-tryptophan (5-HTP) is a naturally occurring aromatic amino acid present in the seeds of the African plant Griffonia simplicifolia. Although 5-HTP has therapeutic effects in various symptoms, efficient method of producing 5-HTP has not been established. In this study, we developed a novel cofactor regeneration process to achieve enhanced synthesis of 5-HTP by using modified l-phenylalanine 4-hydroxylase of Chromobacterium violaceum. For the synthesis of 5-HTP using Escherichia coli...

  14. Identification of potential sites for tryptophan oxidation in recombinant antibodies using tert-butylhydroperoxide and quantitative LC-MS.

    Directory of Open Access Journals (Sweden)

    Miriam Hensel

    Full Text Available Amino acid oxidation is known to affect the structure, activity, and rate of degradation of proteins. Methionine oxidation is one of the several chemical degradation pathways for recombinant antibodies. In this study, we have identified for the first time a solvent accessible tryptophan residue (Trp-32 in the complementary-determining region (CDR of a recombinant IgG1 antibody susceptible to oxidation under real-time storage and elevated temperature conditions. The degree of light chain Trp-32 oxidation was found to be higher than the oxidation level of the conserved heavy chain Met-429 and the heavy chain Met-107 of the recombinant IgG1 antibody HER2, which have already been identified as being solvent accessible and sensitive to chemical oxidation. In order to reduce the time for simultaneous identification and functional evaluation of potential methionine and tryptophan oxidation sites, a test system employing tert-butylhydroperoxide (TBHP and quantitative LC-MS was developed. The optimized oxidizing conditions allowed us to specifically oxidize the solvent accessible methionine and tryptophan residues that displayed significant oxidation in the real-time stability and elevated temperature study. The achieved degree of tryptophan oxidation was adequate to identify the functional consequence of the tryptophan oxidation by binding studies. In summary, the here presented approach of employing TBHP as oxidizing reagent combined with quantitative LC-MS and binding studies greatly facilitates the efficient identification and functional evaluation of methionine and tryptophan oxidation sites in the CDR of recombinant antibodies.

  15. Mechanism of Inhibition of Novel Tryptophan Hydroxylase Inhibitors Revealed by Co-crystal Structures and Kinetic Analysis. (United States)

    Cianchetta, Giovanni; Stouch, Terry; Yu, Wangsheng; Shi, Zhi-Cai; Tari, Leslie W; Swanson, Ronald V; Hunter, Michael J; Hoffman, Isaac D; Liu, Qingyun


    Trytophan Hydroxylase Type I (TPH1), most abundantly expressed in the gastrointestinal tract, initiates the synthesis of serotonin by catalyzing hydroxylation of tryptophan in the presence of biopterin and oxygen. We have previously described three series of novel, periphery-specific TPH1 inhibitors that selectively deplete serotonin in the gastrointestinal tract. We have now determined co-crystal structures of TPH1 with three of these inhibitors at high resolution. Analysis of the structural data showed that each of the three inhibitors fills the tryptophan binding pocket of TPH1 without reaching into the binding site of the cofactor pterin, and induces major conformational changes of the enzyme. The enzyme-inhibitor complexes assume a compact conformation that is similar to the one in tryptophan complex. Kinetic analysis showed that all three inhibitors are competitive versus the substrate tryptophan, consistent with the structural data that the compounds occupy the tryptophan binding site. On the other hand, all three inhibitors appear to be uncompetitive versus the cofactor 6-methyltetrahydropterin, which is not only consistent with the structural data but also indicate that the hydroxylation reaction follows an ordered binding mechanism in which a productive complex is formed only if tryptophan binds only after pterin, similar to the kinetic mechanisms of tyrosine and phenylalanine hydroxylase.

  16. Insights into transport mechanism from LeuT engineered to transport tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, Chayne L.; Gouaux, Eric (Oregon HSU)


    LeuT is a bacterial homologue of the neurotransmitter:sodium symporter (NSS) family and, being the only NSS member to have been structurally characterized by X-ray crystallography, is a model protein for studying transporter structure and mechanism. Transport activity in LeuT was hypothesized to require structural transitions between open-to-out and occluded conformations dependent upon protein:ligand binding complementarity. Here, using crystallographic and functional analysis, we show that binding site modification produces changes in both structure and activity that are consistent with complementarity-dependent structural transitions to the occluded state. The mutation I359Q converts the activity of tryptophan from inhibitor to transportable substrate. This mutation changes the local environment of the binding site, inducing the bound tryptophan to adopt a different conformer than in the wild-type complex. Instead of trapping the transporter open, tryptophan binding now allows the formation of an occluded state. Thus, transport activity is correlated to the ability of the ligand to promote the structural transition to the occluded state, a step in the transport cycle that is dependent on protein:ligand complementarity in the central binding site.

  17. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Directory of Open Access Journals (Sweden)

    Dietmar Fuchs


    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  18. Effect of zinc on the biosynthesis of tryptophan, indol auxins and gibberellins in barely

    Energy Technology Data Exchange (ETDEWEB)

    Masev, N.; Kutacek, M.


    The action of zinc on the growth of barley and the biosynthesis of indol compounds and gibberellin-like substances was investigated in a number of concentrations of zinc from doses stimulating growth to toxic doses. The seeds were soaked before sowing in solutions of zinc sulfate (5 x 10/sup -5/ to 5 x 10/sup -1/% Zn), and the plants cultivated for 7 days in water. Lower concentrations of zinc increased both plant growth and the biosynthesis of tryptophan and auxins. At the optimum concentration of 5 x 10/sup -3/% Zn this increase in tryptophan amounted to 241% of the variant without zinc; in substances with an R/sub F/ corresponding to indolyacetic acid, the increase determined by the biological test, was 207% as against the variant without zinc. Higher concentrations of zinc inhibited growth, the tryptophan content was decreased to below that of the control without zinc and the auxin content also fell to below the control values. Zinc also influenced the content of gibberellin-like substances in the plants. At a concentration of 5 x 10/sup -3/% Zn the increase in the growth activity in the gibberellic acid area of the chromatogram was 294% of the variant without zinc. At toxic concentrations of zinc, the content of gibberellin-like substances fell to below that of the controls. The finding that zinc acts simultaneously on the biosynthesis of auxins and gibberellins is also evidence for the common action of growth substances of various chemical types on plant growth.

  19. Negative Impact of Hypoxia on Tryptophan 2,3-Dioxygenase Function

    Directory of Open Access Journals (Sweden)

    Frank Elbers


    Full Text Available Tryptophan is an essential amino acid for hosts and pathogens. The liver enzyme tryptophan 2,3-dioxygenase (TDO provokes, by its ability to degrade tryptophan to N-formylkynurenine, the precursor of the immune-relevant kynurenines, direct and indirect antimicrobial and immunoregulatory states. Up to now these TDO-mediated broad-spectrum effector functions have never been observed under hypoxia in vitro, although physiologic oxygen concentrations in liver tissue are low, especially in case of infection. Here we analysed recombinant expressed human TDO and ex vivo murine TDO functions under different oxygen conditions and show that TDO-induced restrictions of clinically relevant pathogens (bacteria, parasites and of T cell proliferation are abrogated under hypoxic conditions. We pinpointed the loss of TDO efficiency to the reduction of TDO activity, since cell survival and TDO protein levels were unaffected. In conclusion, the potent antimicrobial as well as immunoregulatory effects of TDO were substantially impaired under hypoxic conditions that pathophysiologically occur in vivo. This might be detrimental for the appropriate host immune response towards relevant pathogens.

  20. Perturbations of tyrosine metabolism promote the indolepyruvate pathway via tryptophan in host and microbiome. (United States)

    Gertsman, Ilya; Gangoiti, Jon A; Nyhan, William L; Barshop, Bruce A


    The drug nitisinone (NTBC) is used to treat tyrosinemia type I, and more recently has been also used for the treatment of another disorder of tyrosine metabolism, alkaptonuria. While studying the dose effects of NTBC treatment on alkaptonuria, untargeted metabolomics revealed perturbations in a completely separate pathway, that of tryptophan metabolism. Significant elevations in several indolic compounds associated with the indolepyruvate pathway of tryptophan metabolism were present in NTBC-treated patient sera and correlated with elevations of an intermediate of tyrosine metabolism. Indolic compounds of this pathway have long been associated with commensal bacterial and plant metabolism. These exogenous sources of indoles have been more recently implicated in affecting mammalian cell function and disease. We studied the correlation of these indolic compounds in other disorders of tyrosine metabolism including tyrosinemia types I and II as well as transient tyrosinemia, and demonstrated that 4-hydroxyphenylpyruvate (4-HPP) was directly responsible for the promotion of this pathway. We then investigated the regulation of the indolepyruvate pathway and the role of 4-HPP further in both mammalian cells and intestinal microbial cultures. We demonstrated that several of the indolic products, including indolepyruvate and indolelactate, were in fact generated by human cell metabolism, while the downstream indole metabolite, indolecarboxaldehyde, was produced exclusively by microbial cultures of human gut flora. This study describes a symbiotic perturbation in host and microbiome tryptophan metabolism in response to elevations related to defects of tyrosine metabolism and concomitant drug treatment.

  1. Peroxidase catalyzed nitration of tryptophan derivatives. Mechanism, products and comparison with chemical nitrating agents. (United States)

    Sala, Alberto; Nicolis, Stefania; Roncone, Raffaella; Casella, Luigi; Monzani, Enrico


    The enzymatic nitration of tryptophan derivatives by oxidation of nitrite has been studied using lactoperoxidase and horseradish peroxidase, and compared with the chemical nitration produced by nitrogen dioxide and peroxynitrite. HPLC, mass spectra and NMR analysis of the mixture of products clearly show that nitration occurs at position 4-, 6-, 7-, and N1 of the indole ring, and nitrosation at position N1. Kinetic studies performed on peroxidase/NO2-/H2O2 systems showed substrate saturation behavior with all the tryptophan derivatives employed. The rate dependence on nitrite concentration was found to be linear with horseradish peroxidase while it exhibited saturation behavior with lactoperoxidase. The composition of the product mixture depends on the nitrating agent. While the production of 4-nitro, 6-nitro, 7-nitro and N1-nitro derivatives follows a similar trend, indicating that they are formed according to a similar mechanism, the ratio between the N1-nitroso derivative and other derivatives depends markedly on the nitrite concentration when tryptophan modification is performed by the peroxidase/H2O2/nitrite systems. Analysis of the data indicates that at low nitrite concentration the enzymatic reaction occurs through the classical peroxidase cycle. At high nitrite concentration the reaction proceeds through a different intermediate that we assume to be a protein bound peroxynitrite species.

  2. Insights into transport mechanism from LeuT engineered to transport tryptophan. (United States)

    Piscitelli, Chayne L; Gouaux, Eric


    LeuT is a bacterial homologue of the neurotransmitter:sodium symporter (NSS) family and, being the only NSS member to have been structurally characterized by X-ray crystallography, is a model protein for studying transporter structure and mechanism. Transport activity in LeuT was hypothesized to require structural transitions between open-to-out and occluded conformations dependent upon protein:ligand binding complementarity. Here, using crystallographic and functional analysis, we show that binding site modification produces changes in both structure and activity that are consistent with complementarity-dependent structural transitions to the occluded state. The mutation I359Q converts the activity of tryptophan from inhibitor to transportable substrate. This mutation changes the local environment of the binding site, inducing the bound tryptophan to adopt a different conformer than in the wild-type complex. Instead of trapping the transporter open, tryptophan binding now allows the formation of an occluded state. Thus, transport activity is correlated to the ability of the ligand to promote the structural transition to the occluded state, a step in the transport cycle that is dependent on protein:ligand complementarity in the central binding site.

  3. Separation of tryptophan enantiomers by ligand-exchange chromatography with novel chiral ionic liquids ligand. (United States)

    Qing, Haiqun; Jiang, Xinyu; Yu, Jingang


    Chiral ionic liquids (CILs) with amino acids as cations have been applied as novel chiral ligands coordinated with Cu(2+) to separate tryptophan enantiomers in ligand exchange chromatography. Four kinds of amino acid ionic liquids, including [L-Pro][CF3COO], [L-Pro][NO3], [L-Pro]2[SO4], and [L-Phe][CF3COO] were successfully synthesized and used for separation of tryptophan enantiomers. To optimize the separation conditions, [L-Pro][CF3COO] was selected as the model ligand. Some factors influencing the efficiency of chiral separation, such as copper ion concentration, CILs concentration, methanol ratio (methanol/H2O, v/v), and pH, were investigated. The obtained optimal separation conditions were as follows: 8.0 mmol/L Cu(OAc)2, 4.0 mmol/L [L-Pro][CF3COO], and 20% (v/v) methanol at pH 3.6. Under the optimum conditions, acceptable enantioseparation of tryptophan enantiomers could be observed with a resolution of 1.89. The results demonstrate the good applicability of CILs with amino acids as cations for chiral separation. Furthermore, a comparative study was also conducted for exploring the mechanism of the CILs as new ligands in ligand exchange chromatography. © 2014 Wiley Periodicals, Inc.

  4. Characterization of the putative tryptophan synthase β-subunit from Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    Hongbo Shen; Yanping Yang; Feifei Wang; Ying Zhang; Naihao Ye; Shengfeng Xu; Honghai Wang


    The increasing emergence of drug-resistant tuberculosis (TB)poses a serious threat to the control of this disease.It is in urgent need to develop new TB drugs.Tryptophan biosynthetic pathway plays an important role in the growth and replication of Mycobacterium tuberculosis(Mtb).The β-subunit of tryptophan synthase(TrpB)catalyzes the last step of the tryptophan biosynthetic pathway,and it might be a potential target for TB drug design.In this study,we overexpressed,purified,and characterized the putative TrpB-encoding gene Rv1612 in Mtb H37Rv.Results showed that Mtb His-TrpB optimal enzymatic activity is at pH 7.8 with 0.15 M Na+or 0.18 M Mg2+ at 37℃.Structure analysis indicated that Mtb TrpB exhibited a typical β/α barrel structure.The amino acid residues believed to interact with the enzyme cofactor pyridoxal-5'-phosphate were predicted by homology modeling and structure alignment.The role of these residues in catalytic activity of the Mtb His-TrpB was confirmed by site-directed mutagenesis.These results provided reassuring structural information for drug design based on TrpB.

  5. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, B.G. (Dept. of Agriculture, Beltsville, MD (USA)); Maher, B.R. (Univ. of Maryland, College Park (USA)); Slovin, J.P.; Cohen, J.D. (Dept. of Agriculture, Beltsville, MD (USA) Univ. of Maryland, College Park (USA))


    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of ({sup 15}N-indole)-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-({sup 15}N)tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-({sup 15}N)trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants.

  6. T4 phage lysozyme: a protein designed for understanding tryptophan photophysics (United States)

    Hudson, Bruce S.; Harris, Dan


    Bacteriophage T4 lysozyme in its wild type form contains three tryptophan residues (at sequence postions 126, 138 and 158). These three residues are in rather different environments in the protein: 126 and 158 are near the protein surface while residue 138 is more buried. T4 lysozyme has been genetically engineered to prepare all possible variants in which one or more of the tryptophan residues have been replaced by tyrosine. The available data supports the hypothesis that this substitution has, at most, a very minor effect on the structure of the protein. The three species with single tryptophan residues have been investigated in detail. The surface location of residue 126 compared to the buried location of residue 138 is reflected in the difference in collisional quenching observed with added potassium iodide. It is found that the spectral and radiative properties of the three proteins are very similar but that their radiationless decay properties are quite distinct. This is apparently due to short-range collisional quenching by neighboring side chains. Comparison with solution quenching measurements permits the identification of the specific quenching groups involved for each tryptophan residue and provides a semi-quantitative rationale for the radiationless decay rate. This collisional quenching interpretation is supported by mutational effects on fluorescence quantum yield. This simple picture of the behavior of these single-tryptophan proteins is clearly revealed in this particular case because of the unambiguous choice of collisional quenching groups. The time dependence of the fluorescence decay of each of these single-tryptophan proteins is quite complex. Several methods of analysis are presented and discussed in terms of their underlying physical basis. Internal collisional quenching, as suggested from the comparative studies, is expected to lead to non-exponential behavior. This is consistent with the observed time dependence. Analysis of the temporal

  7. Distinct Patterns of Tryptophan Maintenance in Tissues during Kynurenine Pathway Activation in Simian Immunodeficiency Virus-Infected Macaques

    Directory of Open Access Journals (Sweden)

    Julia L Drewes


    Full Text Available Induction of the kynurenine pathway (KP of tryptophan catabolism has been proposed to contribute to T cell dysfunction during human/simian immunodeficiency virus (HIV/SIV infection via depletion of local tryptophan levels and production of immunomodulatory KP metabolites. However, while changes in tryptophan and KP metabolites have been observed in plasma, their levels in lymphoid tissues and levels of enzymes downstream of indoleamine 2,3-dioxygenase (IDO1 have been relatively unexplored. We used our SIV-infected pigtailed macaque model to analyze longitudinal changes in KP metabolites and enzymes by gas chromatography/mass spectrometry and NanoString nCounter gene expression analysis, respectively, in spleen and blood compared to changes previously established in brain and CSF. We found that tryptophan levels were remarkably stable in tissue sites despite robust depletion in the circulating plasma and CSF. We also demonstrated that intracellular tryptophan reserves were maintained in cultured cells even in the presence of depleted extracellular tryptophan levels. Kynurenine, 3-hydroxykynurenine, quinolinic acid, and the KP enzymes all displayed highly divergent patterns in the sites examined, though IDO1 expression always correlated with local kynurenine/tryptophan ratios. Finally, we demonstrated by FACS that myeloid dendritic cells (mDCs and cells of monocytic lineage were the highest producers of IDO1 in chronically infected spleens. Overall our study reveals insights into the tissue-specific regulation of KP enzymes and metabolites and, in particular, highlights the multiple mechanisms by which cells and tissues seek to prevent TRP starvation during inflammation.

  8. Single turnover kinetics of tryptophan hydroxylase: evidence for a new intermediate in the reaction of the aromatic amino acid hydroxylases. (United States)

    Pavon, Jorge Alex; Eser, Bekir; Huynh, Michaela T; Fitzpatrick, Paul F


    Tryptophan hydroxylase (TrpH) uses a non-heme mononuclear iron center to catalyze the tetrahydropterin-dependent hydroxylation of tryptophan to 5-hydroxytryptophan. The reactions of the TrpH.Fe(II), TrpH.Fe(II).tryptophan, TrpH.Fe(II).6MePH(4).tryptophan, and TrpH.Fe(II).6MePH(4).phenylalanine complexes with O(2) were monitored by stopped-flow absorbance spectroscopy and rapid quench methods. The second-order rate constant for the oxidation of TrpH.Fe(II) has a value of 104 M(-1) s(-1) irrespective of the presence of tryptophan. Stopped-flow absorbance analyses of the reaction of the TrpH.Fe(II).6MePH(4).tryptophan complex with oxygen are consistent with the initial step being reversible binding of oxygen, followed by the formation with a rate constant of 65 s(-1) of an intermediate I that has maximal absorbance at 420 nm. The rate constant for decay of I, 4.4 s(-1), matches that for formation of the 4a-hydroxypterin product monitored at 248 nm. Chemical-quench analyses show that 5-hydroxytryptophan forms with a rate constant of 1.3 s(-1) and that overall turnover is limited by a subsequent slow step, presumably product release, with a rate constant of 0.2 s(-1). All of the data with tryptophan as substrate can be described by a five-step mechanism. In contrast, with phenylalanine as substrate, the reaction can be described by three steps: a second-order reaction with oxygen to form I, decay of I as tyrosine forms, and slow product release.

  9. Regular moderate or intense exercise prevents depression-like behavior without change of hippocampal tryptophan content in chronically tryptophan-deficient and stressed mice.

    Directory of Open Access Journals (Sweden)

    Hosung Lee

    Full Text Available Regular exercise has an antidepressant effect in human subjects. Studies using animals have suggested that the antidepressant effect of exercise is attributable to an increase of brain 5-hydroxytryptamine (5-HT; however, the precise mechanism underlying the antidepressant action via exercise is unclear. In contrast, the effect of 5-HT on antidepressant activity has not been clarified, in part because the therapeutic response to antidepressant drugs has a time lag in spite of the rapid increase of brain 5-HT upon administration of these drugs. This study was designed to investigate the contribution of brain 5-HT to the antidepressant effect of exercise. Mice were fed a tryptophan-deficient diet and stressed using chronic unpredictable stress (CUS for 4 weeks with or without the performance of either moderate or intense exercise on a treadmill 3 days per week. The findings demonstrated that the onset of depression-like behavior is attributable not to chronic reduction of 5-HT but to chronic stress. Regular exercise, whether moderate or intense, prevents depression-like behavior with an improvement of adult hippocampal cell proliferation and survival and without the recovery of 5-HT. Concomitantly, the mice that exercised showed increased hippocampal noradrenaline. Regular exercise prevents the impairment of not long-term memory but short-term memory in a 5-HT-reduced state. Together, these findings suggest that: (1 chronic reduction of brain 5-HT may not contribute to the onset of depression-like behavior; (2 regular exercise, whether moderate or intense, prevents the onset of chronic stress-induced depression-like behavior independent of brain 5-HT and dependent on brain adrenaline; and (3 regular exercise prevents chronic tryptophan reduction-induced impairment of not long-term but short-term memory.

  10. Effects of tryptophan derivatives and β-carboline alkaloids on radiation- and peroxide-induced transformations of ethanol (United States)

    Sverdlov, R. L.; Brinkevich, S. D.; Shadyro, O. I.


    The subject of this study was investigation of interactions of tryptophan and its derivatives, including structurally related β-carboline alkaloids with oxygen- and carbon-centered radicals being formed during radiation- and peroxide-induced transformations of ethanol. It was shown that the above named compounds suppressed recombination and disproportionation reactions of α-hydroxyethyl radicals. The inhibitory effects of tryptophan, 5-hydroxytryptophan and serotonin were mainly realized by means of reduction and addition reactions, while those of β-carboline alkaloids - harmine, harmane and harmaline - were due to oxidation reactions. Melatonin displayed low reactivity towards α-hydroxyethyl radicals. Tryptophan derivatives and β-carboline alkaloids were found to inhibit radiation-induced oxidation of ethanol while being virtually not used up. The low transformation yields of tryptophan, 5-hydroxytryptophan and serotonin, as well as β-carboline alkaloids, indicate their capability of regeneration, which could occur on interaction of tryptophan with О-2 and НО2, or on oxidation of α-hydroxyethyl radicals by β-carboline alkaloids.

  11. Employing the fluorescence anisotropy and quenching kinetics of tryptophan to hunt for residual structures in denatured proteins

    Indian Academy of Sciences (India)

    Satish Kumar; Rajaram Swaminathan


    Residual structures in denatured proteins have acquired importance in recent years owing to their role as protein-folding initiation sites. Locating these structures in proteins has proved quite formidable, requiring techniques like NMR. Here in this report, we take advantage of the ubiquitous presence of tryptophan residues in residual structures to hunt for their presence using steady-state fluorescence spectroscopy. The surface accessibility and rotational dynamics of tryptophan in putative residual structures among ten different proteins, namely glucagon, melittin, subtilisin carlsberg, myelin basic protein, ribonuclease T1, human serum albumin, barstar mutant, bovine serum albumin, lysozyme and Trp-Met-Asp-Phe-NH2 peptide, was studied using steady state fluorescence quenching and anisotropy, respectively. Five proteins, namely ribonuclease T1, bovine serum albumin, melittin, barstar and hen egg white lysozyme appear likely to possess tryptophan(s) in hydrophobic clusters based on their reduced bimolecular quenching rates and higher steady-state anisotropy in proportion to their chain length. We also show that the fluorescence emission maximum of tryptophan is insensitive to the presence of residual structures.

  12. Enhanced synthesis of 5-hydroxy-l-tryptophan through tetrahydropterin regeneration. (United States)

    Hara, Ryotaro; Kino, Kuniki


    5-Hydroxy-l-tryptophan (5-HTP) is a naturally occurring aromatic amino acid present in the seeds of the African plant Griffonia simplicifolia. Although 5-HTP has therapeutic effects in various symptoms, efficient method of producing 5-HTP has not been established. In this study, we developed a novel cofactor regeneration process to achieve enhanced synthesis of 5-HTP by using modified l-phenylalanine 4-hydroxylase of Chromobacterium violaceum. For the synthesis of 5-HTP using Escherichia coli whole cell bioconversion, l-tryptophan and 5-HTP degradation by E. coli endogenous catabolic enzymes should be considered. The tryptophanase gene was disrupted using the λ red recombination system, since tryptophanase is postulated as an initial enzyme for the degradation of l-tryptophan and 5-HTP in E. coli. For regeneration of the cofactor pterin, we screened and investigated several key enzymes, including dihydropteridine reductase from E. coli, glucose dehydrogenase from Bacillus subtilis, and pterin-4α-carbinolamine dehydratase from Pseudomonas syringae. Genes encoding these three enzymes were overexpressed in an E. coli tryptophanase-deficient host, resulting in the synthesis of 0.74 mM 5-HTP in the presence of 0.1 mM pterin and the synthesis of 0.07 mM 5-HTP in the absence of regeneration of pterin. These results clearly indicated the successful regeneration of pterin. Following optimization of the reaction conditions, 2.5 mM 5-HTP was synthesized with cofactor regeneration, while 0.8 mM 5-HTP was recovered without cofactor regeneration under the same reaction conditions, suggesting that the principle described here provides a new method for cofactor regeneration.

  13. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival.

    Directory of Open Access Journals (Sweden)

    João Daniel Santos Fernandes

    Full Text Available Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR. We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8. The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i quality of nitrogen (Nitrogen Catabolism Repression, NCR and carbon sources (Carbon Catabolism Repression, CCR, (ii amino acid availability in the extracellular environment (SPS-sensing and (iii nutritional deprivation (Global Amino Acid Control, GAAC. This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.

  14. 'Melatonin isomer' in wine is not an isomer of the melatonin but tryptophan-ethylester. (United States)

    Gardana, Claudio; Iriti, Marcello; Stuknytė, Milda; De Noni, Ivano; Simonetti, Paolo


    Melatonin is a neurohormone, chronobiotic, and antioxidant compound found in wine and deriving directly from grapes and/or synthesized by yeast during alcoholic fermentation. In addition, a melatonin isomer has been detected in different foods, wine among them. The special interest for melatonin isomer related to the fact that it was found in greater quantities than melatonin and probably shares some of its biological properties. Despite this, its chemical structure has not yet been defined; although some researchers hypothesize, it could be melatonin with the ethylacetamide group shifted into position N1. Thus, the aim of our study was to identify the structures of the melatonin isomer. For this purpose, melatonin and melatonin isomer in Syrah wine were separated chromatographically by a sub-2 μm particle column and detected by tandem mass spectrometry. The sample was then purified and concentrated by solid-phase extraction, hydrolyzed with alkali or esterase, and substrates and products quantified by UPLC-MS/MS. Moreover, melatonin, melatonin isomer, and their product ions were evaluated by high-resolution mass spectrometry. The amount of melatonin isomer and melatonin in the wine was 84 ± 4 and 3 ± 0 ng/mL, respectively. In the solutions, containing diluted alkali or esterase, melatonin isomer was hydrolyzed in about 8 min. Correspondingly, tryptophan was detected, and its amount increased and reached the maximum concentration in about 8 min. Melatonin concentration was not affected by diluted alkali or esterase. The fragmentation pattern of melatonin isomer was different from that of melatonin but comparable to that of tryptophan-ethylester. Finally, the so-called melatonin isomer identity was verified by cochromatography with authentic standard of tryptophan-ethylester. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Structural basis for the binding of tryptophan-based motifs by δ-COP. (United States)

    Suckling, Richard J; Poon, Pak Phi; Travis, Sophie M; Majoul, Irina V; Hughson, Frederick M; Evans, Philip R; Duden, Rainer; Owen, David J


    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.

  16. Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. (United States)

    Aubert, C; Mathis, P; Eker, A P; Brettel, K


    Light-induced electron transfer reactions leading to the fully reduced, catalytically competent state of the flavin adenine dinucleotide (FAD) cofactor have been studied by flash absorption spectroscopy in DNA photolyase from Anacystis nidulans. The protein, overproduced in Escherichia coli, was devoid of the antenna cofactor, and the FAD chromophore was present in the semireduced form, FADH., which is inactive for DNA repair. We show that after selective excitation of FADH. by a 7-ns laser flash, fully reduced FAD (FADH-) is formed in less than 500 ns by electron abstraction from a tryptophan residue. Subsequently, a tyrosine residue is oxidized by the tryptophanyl radical with t(1)/(2) = 50 microseconds. The amino acid radicals were identified by their characteristic absorption spectra, with maxima at 520 nm for Trp. and 410 nm for TyrO. The newly discovered electron transfer between tyrosine and tryptophan occurred for approximately 40% of the tryptophanyl radicals, whereas 60% decayed by charge recombination with FADH- (t(1)/(2) = 1 ms). The tyrosyl radical can also recombine with FADH- but at a much slower rate (t(1)/(2) = 76 ms) than Trp. In the presence of an external electron donor, however, TyrO. is rereduced efficiently in a bimolecular reaction that leaves FAD in the fully reduced state FADH-. These results show that electron transfer from tyrosine to Trp. is an essential step in the process leading to the active form of photolyase. They provide direct evidence that electron transfer between tyrosine and tryptophan occurs in a native biological reaction.

  17. Gold-catalyzed direct alkynylation of tryptophan in peptides using TIPS-EBX (United States)

    Tolnai, Gergely L; Brand, Jonathan P


    Summary The selective functionalization of peptides containing only natural amino acids is important for the modification of biomolecules. In particular, the installation of an alkyne as a useful handle for bioconjugation is highly attractive, but the use of a carbon linker is usually required. Herein, we report the gold-catalyzed direct alkynylation of tryptophan in peptides using the hypervalent iodine reagent TIPS-EBX (1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one). The reaction proceeded in 50–78% yield under mild conditions and could be applied to peptides containing other nucleophilic and aromatic amino acids, such as serine, phenylalanine or tyrosine. PMID:27340466

  18. NO-tryptophan: a new small molecule located in the rat brain

    Directory of Open Access Journals (Sweden)

    A. Mangas


    Full Text Available A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W with good affinity (10-9 M and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms. 

  19. NO-tryptophan: a new small molecule located in the rat brain. (United States)

    Mangas, A; Yajeya, J; González, N; Duleu, S; Geffard, M; Coveñas, R


    A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W) with good affinity (10-9 M) and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms.

  20. Novel Fluorescent Chemosensors Based on Tryptophan Unit for Cu2+ and Fe3+ in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    CHENG Peng-fei; XU Kuo-xi; YAO Wen-yong; KONG Hua-jie; KOU Li; MA Xiao-dan; WANG Chao-jie


    We reported four fluorescent chemosensors containing tryptophan units.The fluorescence spectrum titration experiments suggest that chemosensors 1,2,3 and 4 are highly selective for Cu2+ and Fe3+ over Li+,Na+,K+,Co2+,Zn2+,Ni2+,Hg2+ and Cr3+ via forming complexes with Cu2+ or Fe3+,which is confirmed by dramatical quench of fluoreseence in aqueous solution at pH 7.4,thus making all the chemosensors suitable for Cu2+ and Fe3+ fluorescent sensors.

  1. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence. (United States)

    Albani, Jihad René; Vogelaer, Julie; Bretesche, Loïc; Kmiecik, Daniel


    β-Lactoglobulin consists of a single polypeptide of 162 amino acid residues with 2 Trp residues, Trp 19 present in a hydrophobic pocket and Trp 61 present at the surface of the protein near the pocket. This study aimed to characterize the respective contribution of the two Trp residues to the overall fluorescence of the protein. We added for that calcofluor white, an extrinsic fluorophore, which, at high concentration compared to that of the protein, quenches completely emission of hydrophobic Trp residue(s). The study was performed at different pHs by recording fluorescence steady state spectra and measuring fluorescence lifetimes of the Trp-residues using Single Time Photon Counting method. Our results indicate that addition of calcofluor white does not induce a red shift of the tryptophan(s) emission peak (332nm) but only a decrease in the fluorescence intensity. This means that Trp 61 residue does not contribute to the protein emission, tryptophan emission occurs from Trp 19 residue only. Also, excitation spectrum peak position (283nm) of β-lactoglobulin is not modified upon calcofluor white binding. These results mean that structural rearrangements within β-lactoglobulin are not occurring upon calcofluor white binding. Energy transfer between Trp 19 residue and calcofluor white occurs with 100% efficiency, i.e. the two fluorophores are very close one to each other (<5Å). This energy transfer is not Forster type. Fluorescence intensity decay of Trp 19 residue occurs with three lifetimes, equal to 0.48, 1.49 and 4.29ns at pH 2 (monomeric state). Very close values were obtained at the different studied pHs (2-12) and where β-lactoglobulin is at different quaternary structure or present in solution in a mixture of dimers and monomers. Our data are interpreted as the results of emission occurring from different substructures of the tryptophan, reached at the excited state. The populations of these substructures characterized by the pre-exponential parameters

  2. The Ternary Complex of PrnB (the Second Enzyme in the Pyrrolnitrin Biosynthesis Pathway), Tryptophan, and Cyanide Yields New Mechanistic Insights into the Indolamine Dioxygenase Superfamily* (United States)

    Zhu, Xiaofeng; van Pée, Karl-Heinz; Naismith, James H.


    Pyrrolnitrin (3-chloro-4-(2′-nitro-3′-chlorophenyl)pyrrole) is a broad-spectrum antifungal compound isolated from Pseudomonas pyrrocinia. Four enzymes (PrnA, PrnB, PrnC, and PrnD) are required for pyrrolnitrin biosynthesis from tryptophan. PrnB rearranges the indole ring of 7-Cl-l-tryptophan and eliminates the carboxylate group. PrnB shows robust activity in vivo, but in vitro activity for PrnB under defined conditions remains undetected. The structure of PrnB establishes that the enzyme belongs to the heme b-dependent indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) family. We report the cyanide complex of PrnB and two ternary complexes with both l-tryptophan or 7-Cl-l-tryptophan and cyanide. The latter two complexes are essentially identical and mimic the likely catalytic ternary complex that occurs during turnover. In the cyanide ternary complexes, a loop previously disordered becomes ordered, contributing to the binding of substrates. The conformations of the bound tryptophan substrates are changed from that seen previously in the binary complexes. In l-tryptophan ternary complex, the indole ring now adopts the same orientation as seen in the PrnB binary complexes with other tryptophan substrates. The amide and carboxylate group of the substrate are orientated in a new conformation. Tyr321 and Ser332 play a key role in binding these groups. The structures suggest that catalysis requires an l-configured substrate. Isothermal titration calorimetry data suggest d-tryptophan does not bind after cyanide (or oxygen) coordinates with the distal (or sixth) site of heme. This is the first ternary complex with a tryptophan substrate of a member of the tryptophan dioxygenase superfamily and has mechanistic implications. PMID:20421301

  3. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    Directory of Open Access Journals (Sweden)

    Amar B. T. Ghisaidoobe


    Full Text Available F resonance energy transfer (FRET occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (\\(\\uplambda_{\\textsc{ex}}\\sim\\ nm, \\(\\uplambda_{\\textsc{em}}\\sim\\ 350 nm, in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the proteinlocal environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic F resonance energy transfer (iFRET, a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins.

  4. Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment.

    Directory of Open Access Journals (Sweden)

    Stéphane Pallu

    Full Text Available Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately.

  5. Effects of L-tryptophan, Fructan, and Casein on Reducing Ammonia, Hydrogen Sulfide, and Skatole in Fermented Swine Manure

    Directory of Open Access Journals (Sweden)

    Q. K. Sheng


    Full Text Available The effects of daily dietary Bacillus subtilis (Bs, and adding L-tryptophan, fructan, or casein to fecal fermentation broths were investigated as means to reduce the production of noxious gas during manure fermentation caused by ammonia, hydrogen sulfide (H2S, and 3-methylindole (skatole. Eighty swine (50.0±0.5 kg were equally apportioned to an experimental group given Bs in daily feed, or a control group without Bs. After 6 weeks, fresh manure was collected from both groups for fermentation studies using a 3×3 orthogonal array, in which tryptophan, casein, and fructan were added at various concentrations. After fermentation, the ammonia, H2S, L-tryptophan, skatole, and microflora were measured. In both groups, L-tryptophan was the principle additive increasing skatole production, with significant correlation (r = 0.9992. L-tryptophan had no effect on the production of ammonia, H2S, or skatole in animals fed Bs. In both groups, fructan was the principle additive that reduced H2S production (r = 0.9981. Fructan and Bs significantly interacted in H2S production (p = 0.014. Casein was the principle additive affecting the concentration of ammonia, only in the control group. Casein and Bs significantly interacted in ammonia production (p = 0.039. The predominant bacteria were Bacillus spp. CWBI B1434 (26% in the control group, and Streptococcus alactolyticus AF201899 (36% in the experimental group. In summary, daily dietary Bs reduced ammonia production during fecal fermentation. Lessening L-tryptophan and increasing fructan in the fermentation broth reduced skatole and H2S.

  6. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections

    Directory of Open Access Journals (Sweden)

    Ashok eAiyar


    Full Text Available The natural history of genital Chlamydia trachomatis infections can vary widely; infections can spontaneously resolve but can also last from months to years, potentially progressing to cause significant pathology. The host and bacterial factors underlying this wide variation are not completely understood, but emphasize the bacterium’s capacity to evade/adapt to the genital immune response, and/or exploit local environmental conditions to survive this immune response. IFNγ is considered to be a primary host protective cytokine against endocervical C. trachomatis infections. IFNγ acts by inducing the host enzyme indoleamine 2,3-dioxygenase, which catabolizes tryptophan, thereby depriving the bacterium of this essential amino acid. In vitro studies have revealed that tryptophan deprivation causes Chlamydia to enter a viable but non-infectious growth pattern that is termed a persistent growth form, characterized by a unique morphology and gene expression pattern. Provision of tryptophan can reactivate the bacterium to the normal developmental cycle. There is a significant difference in the capacity of ocular and genital C. trachomatis serovars to counter tryptophan deprivation. The latter uniquely encode a functional tryptophan synthase to synthesize tryptophan via indole salvage, should indole be available in the infection microenvironment. In vitro studies have confirmed the capacity of indole to mitigate the effects of IFNγ; it has been suggested that a perturbed vaginal microbiome may provide a source of indole in vivo. Consistent with this hypothesis, the microbiome associated with bacterial vaginosis includes species that encode a tryptophanase to produce indole. In this review, we discuss the natural history of genital chlamydial infections, morphological and molecular changes imposed by IFNγ on Chlamydia, and finally, the microenvironmental conditions associated with vaginal co-infections that can ameliorate the effects of IFNγ on C

  7. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. (United States)

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E


    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms.

  8. Preliminary Study on Cost-Effective L-Tryptophan Production from Indole and L-Serine by E. coli Cells (United States)

    Sadeghiyan-Rizi, Tahereh; Fooladi, Jamshid; Sadrai, Sima


    Background: L-tryptophan is used widespread in the pharmaceutical industry. The majority of L-Trp production depends on microbial processes that produce L-tryptophan from indole and L-serine. These processes are very costly due to the costs of precursors, especially L-serine. Use of inexpensive substitutions as the L-serine source of L-tryptophan production enables us to reach a cost-effective process. In this paper, effect of Triton X-100 on L-Trp production and the ability to use Iranian cane molasses as inexpensive L-serine source was investigated. Methods: Escherichia coli (E. coli) ATCC 11303 cells were grown in 10-L fermenter containing minimal medium supplemented with beet molasses as an inexpensive carbon source and indole as tryptophan synthase inducer. Whole cells of stationary phase were used as biocatalyst for L-Trp production. Triton X-100 addition to the production medium as indole reservoir was investigated. Then, cane molasses was used as L-Ser source in L-Trp production medium. Amount of L-Tryptophan and theoretical yield of L-Trp production was determined by HPLC and by a colorimetrically method on the basis of remaining indole assay, respectively. Results: As a result, triton X-100 increased L-Trp production three times. Also, the result showed that 0.68 mM L-Tryptophan was produced in the presence of cane molasses at 37°C for 8 hr. Conclusion: This result showed that cane molasses of Qazvin sugar factory includes significant amounts of L-Ser that makes it a suitable substitution for L-Ser in L-Trp production. Therefore, it has the potential to be used for cost-effective L-Trp production in industrial scale. PMID:27920887

  9. Determination of tryptophan and histidine by adsorptive cathodic stripping voltammetry using H-point standard addition method. (United States)

    Ensafi, Ali A; Hajian, R


    A sequential method is proposed for the determination of tryptophane and histidine by adsorptive cathodic stripping voltammetry using standard addition and H-point standard addition method (HPSAM). The complexes of copper(II) with the amino acids were accumulated onto the surface of a hanging mercury drop electrode for 60s. Then the preconcentrated complexes were reduced by square wave voltammetry and the peak currents were measured. The effect of various parameters such as pH, concentration of copper, accumulation potential, accumulation time and scan rate on the sensitivity were studied by one-at-a time and artificial neural network. Under the optimized conditions, the peak currents at about +0.05 to -0.30 V is proportional to the concentration of tryptophan and histidine over the concentration ranges of 5-220 and 100-1200 nM, respectively. Optimization of the parameters by one-at-a time showed that at accumulation potential of 0.10 V (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of tryptophan and histidine does not have any contribution to the current. The optimization results by artificial neural network showed that at accumulation potential of -0.06 V (versus Ag/AgCl) the peak current is proportional to the both concentrations of tryptophan and histidine. Therefore, the method of H-point standard addition has been used for resolving overlap voltamograms for determination of histidine in the present of tryptophane. The method was successfully applied to the determination of tryptophan and histidine in synthetic and real samples.

  10. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V.; Sograte Idrissi, Shama; Notarangelo, Francesca M.; Estranero, Jasper G.; Moore, Gareth G. L.; Green, Edward W.; Kyriacou, Charalambos P.; Schwarcz, Robert; Giorgini, Flaviano


    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  11. Imaging C. elegans with thiolated tryptophan-based NIR fluorescent gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Apurba Kr. [Indian Institute of Technology Kanpur, Department of Chemistry (India); Chaturbedi, Amaresh; Subramaniam, K. [Indian Institute of Technology Kanpur, Department of Biological Sciences and Bioengineering (India); Verma, Sandeep, E-mail: [Indian Institute of Technology Kanpur, Department of Chemistry (India)


    Multidentate, thiolated, tryptophan-containing peptide conjugates were synthesized for the preparation of gold nanoclusters (AuNCs). Precursor Au{sub 11}(PPh{sub 3}){sub 8}Cl{sub 3} was prepared by the reduction of HAuCl{sub 4}, followed by the use of tryptophan-containing peptide conjugates in ligand displacement reactions, to afford near-infrared fluorescent AuNCs. The emission maxima for these newly synthesized AuNCs were ∼715 nm. AuNCs were characterized with the help of UV–Vis, FTIR, fluorescence and MALDI analysis. FTIR spectra showed that the ligands bind to Au atoms through Au–S bonds, while MALDI mass spectra revealed that the clusters consisted of 20–23 Au atoms. Introduction of hydrophilic –COOH groups engendered water solubility to these AuNCs, enabling bioimaging applications. We demonstrate fluorescence imaging of the nematode C. elegans and confirm distribution of these AuNCs in nematode gut with the help of green fluorescent protein co-localization experiments.

  12. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates (United States)

    Caldwell, Harlan D.; Wood, Heidi; Crane, Debbie; Bailey, Robin; Jones, Robert B.; Mabey, David; Maclean, Ian; Mohammed, Zeena; Peeling, Rosanna; Roshick, Christine; Schachter, Julius; Solomon, Anthony W.; Stamm, Walter E.; Suchland, Robert J.; Taylor, Lacey; West, Sheila K.; Quinn, Tom C.; Belland, Robert J.; McClarty, Grant


    We previously reported that laboratory reference strains of Chlamydia trachomatis differing in infection organotropism correlated with inactivating mutations in the pathogen’s tryptophan synthase (trpBA) genes. Here, we have applied functional genomics to extend this work and find that the paradigm established for reference serovars also applies to clinical isolates — specifically, all ocular trachoma isolates tested have inactivating mutations in the synthase, whereas all genital isolates encode a functional enzyme. Moreover, functional enzyme activity was directly correlated to IFN-γ resistance through an indole rescue mechanism. Hence, a strong selective pressure exists for genital strains to maintain a functional synthase capable of using indole for tryptophan biosynthesis. The fact that ocular serovars (serovar B) isolated from the genital tract were found to possess a functional synthase provided further persuasive evidence of this association. These results argue that there is an important host-parasite relationship between chlamydial genital strains and the human host that determines organotropism of infection and the pathophysiology of disease. We speculate that this relationship involves the production of indole by components of the vaginal microbial flora, allowing chlamydiae to escape IFN-γ–mediated eradication and thus establish persistent infection. PMID:12782678

  13. Jasmonoyl-L-Tryptophan Disrupts IAA Activity through the AUX1 Auxin Permease

    Directory of Open Access Journals (Sweden)

    Paul Staswick


    Full Text Available Amide-linked conjugates between tryptophan (Trp and jasmonic (JA or indole-3-acetic (IAA acids interfered with gravitropism and other auxin-dependent activities in Arabidopsis, but the mechanism was unclear. To identify structural features necessary for activity several additional Trp conjugates were synthesized. The phenylacetic acid (PAA conjugate was active, while several others were not. Common features of active conjugates is that they have ring structures that are linked to Trp through an acetic acid side chain, while longer or shorter linkages are inactive or less active. A dominant mutant, called tryptophan conjugate response1-D that is insensitive to JA-Trp, but still sensitive to other active conjugates, was identified and the defect was found to be a substitution of Asn for Asp456 in the C-terminal domain of the IAA cellular permease AUX1. Mutant seedling primary root growth in the absence of added conjugate was 15% less than WT, but otherwise plant phenotype appeared normal. These results suggest that JA-Trp disrupts AUX1 activity, but that endogenous JA-Trp has only a minor role in regulating plant growth. In contrast with IAA- and JA-Trp, which are present at <2 pmole g-1 FW, PAA-Trp was found at about 30 pmole g-1 FW. The latter, or other undiscovered Trp conjugates, may still have important endogenous roles, possibly helping to coordinate other pathways with auxin response.

  14. Au nanoparticles on tryptophan-functionalized graphene for sensitive detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qianwen; Luo, Ai; An, Zhenzhen; Li, Zhuang; Guo, Yongyang; Zhang, Dongxia [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, 730070, Lanzhou (China); Xue, Zhonghua [College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou (China); Zhou, Xibin, E-mail: [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, 730070, Lanzhou (China); Lu, Xiaoquan, E-mail: [College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou (China)


    Graphical abstract: - Highlights: • A novel AuNPs/Trp-GR composite was fabricated by directly electrochemical deposition. • The composite exhibited excellent electrocatalytic activity towards DA. • The proposed method was applied to real samples. - Abstract: A novel and uniform gold nanoparticles/tryptophan-functionalized graphene nanocomposite (AuNPs/Trp-GR) has been successfully fabricated by directly electrochemical depositing gold onto the surface of tryptophan-functionalized graphene (Trp-GR). The nanostructure of AuNPs/Trp-GR was characterized by using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). It was demonstrated that Au nanoparticles were well dispersed on the surface of Trp-GR which might attribute to the more binding sites provided by Trp-GR for the formation of Au nanoparticles. The electrocatalytic activity of the AuNPs/Trp-GR towards the dopamine (DA) was systematically investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, a wide and valuable linear range (0.5–411 μM), a low detection limit (0.056 μM, S/N = 3), good repeatability and stability were obtained for the determination of DA. Furthermore, the modified electrode was successfully applied to real samples analysis.

  15. Conformational characterization of human eukaryotic initiation factor 2alpha: a single tryptophan protein. (United States)

    Sreejith, R K; Yadav, Viveka Nand; Varshney, Nishant K; Berwal, Sunil K; Suresh, C G; Gaikwad, Sushama M; Pal, Jayanta K


    The alpha-subunit of the human eukaryotic initiation factor 2 (heIF2alpha), a GTP binding protein, plays a major role in the initiation of protein synthesis. During various cytoplasmic stresses, eIF2alpha gets phosphorylated by eIF2alpha-specific kinases resulting in inhibition of protein synthesis. The cloned and over expressed heIF2alpha, a protein with a single tryptophan (trp) residue was examined for its conformational characteristics using steady-state and time-resolved tryptophan fluorescence, circular dichroism (CD) and hydrophobic dye binding. The steady-state fluorescence spectrum, fluorescence lifetimes (tau(1)=1.13ns and tau(2)=4.74ns) and solute quenching studies revealed the presence of trp conformers in hydrophobic and differential polar environment at any given time. Estimation of the alpha-helix and beta-sheet content showed: (i) more compact structure at pH 2.0, (ii) distorted alpha-helix and rearranged beta-sheet in presence of 4M guanidine hydrochloride and (iii) retention of more than 50% ordered structure at 95 degrees C. Hydrophobic dye binding to the protein with loosened tertiary structure was observed at pH 2.0 indicating the existence of a molten globule-like structure. These observations indicate the inherent structural stability of the protein under various denaturing conditions.

  16. Design and synthesis of tryptophan containing dipeptide derivatives as formyl peptide receptor 1 antagonist. (United States)

    Hwang, Tsong-Long; Hung, Chih-Hao; Hsu, Ching-Yun; Huang, Yin-Ting; Tsai, Yu-Chi; Hsieh, Pei-Wen


    Our previous studies identified an Fmoc-(S,R)-tryptophan-containing dipeptide derivative, 1, which selectively inhibited neutrophil elastase release induced by formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) in human neutrophils. In an attempt to improve pharmacological activity, a series of tryptophan-containing dipeptides were synthesized and their pharmacological activities were investigated in human neutrophils. Of these, five compounds 3, 6, 19a, 24a, and 24b exhibited potent and dual inhibitory effects on FMLP-induced superoxide anion (O2˙(-)) generation and neutrophil elastase release in neutrophils with IC50 values of 0.23/0.60, 1.88/2.47, 1.87/3.60, 0.12/0.37, and 1.32/1.03 μM, respectively. Further studies indicated that inhibition of superoxide production in human neutrophils by these dipeptides was associated with the selective inhibition of formyl peptide receptor 1 (FPR1). Furthermore, the results of structure-activity relationship studies concluded that the fragment N-benzoyl-Trp-Phe-OMe (3) was most suitable as a core structure for interaction with FPR1, and may be approved as a lead for the development of new drugs in the treatment of neutrophilic inflammatory diseases. As some of the synthesized compounds exhibited separable conformational isomers, and showed diverse bioactivities, the conformation analysis of these compounds is also discussed herein.

  17. Synthesis of deuterium-labelled halogen derivatives of L-tryptophan catalysed by tryptophanase. (United States)

    Winnicka, Elżbieta; Szymańska, Jolanta; Kańska, Marianna


    The isotopomers of halogen derivatives of l-tryptophan (l-Trp) (4'-F-, 7'-F-, 5'-Cl- and 7'-Br-l-Trp), specifically labelled with deuterium in α-position of the side chain, were obtained by enzymatic coupling of the corresponding halogenated derivatives of indole with S-methyl-l-cysteine in (2)H2O, catalysed by enzyme tryptophanase (EC The positional deuterium enrichment of the resulting tryptophan derivatives was controlled using (1)H NMR. In accordance with the mechanism of the lyase reaction, a 100% deuterium labelling was observed in the α-position; the chemical yields were between 23 and 51%. Furthermore, β-F-l-alanine, synthesized from β-F-pyruvic acid by the l-alanine dehydrogenase reaction, has been tested as a coupling agent to obtain the halogenated deuterium-labelled derivatives of l-Trp. The chemical yield (∼30%) corresponded to that as observed with S-methyl-l-cysteine but the deuterium label was only 63%, probably due to the use of a not completely deuterated incubation medium.

  18. Screening of multicomponent crystals of L-tryptophan with three isomers of pyridinedicarboxylic acids (United States)

    Das, Babulal


    Multicomponent crystallization of L-tryptophan with three different isomers of pyridinedicarboxylic acids, namely, 2,3-pyridinedicarboxylic acid (2,3-PDA), 2,5-pyridinedicarboxylic acid (2,5-PDA) and 2,6-pyridinedicarboxylic acid (2,6-PDA), were screened using conventional solution cocrystallization technique. Whereas the new phases derived from the amino acid with 2,3-PDA or 2,5-PDA were analyzed using powder X-ray diffraction and thermal analysis techniques, the crystalline phase synthesized from 2,6-substituted isomer was further characterized by single crystal X-ray diffraction. Structural analysis revealed that the amino acid exists in the zwitterionic form interacting with the neutral 2,6-PDA by strong intermolecular hydrogen bonding. The components in the co-crystal self-assemble leading to a three dimensional hydrogen bonded closed packed network structure. Isothermal calorimetric titration showed that among the three isomers, 2,6-PDA showed relatively strong binding interaction towards the amino acid in water at 298 K. All the crystals exhibit marginal quenching of fluorescence properties of L-tryptophan in the solid state.

  19. Fluorescent proteins as biosensors by quenching resonance energy transfer from endogenous tryptophan: detection of nitroaromatic explosives. (United States)

    Gingras, Alexa; Sarette, Joseph; Shawler, Evan; Lee, Taeyoung; Freund, Steve; Holwitt, Eric; Hicks, Barry W


    Ensuring domestic safety from terrorist attack is a daunting challenge because of the wide array of chemical agents that must be screened. A panel of purified fluorescent protein isoforms (FPs) was screened for the ability to detect various explosives, explosive simulants, and toxic agents. In addition to their commonly used visible excitation wavelengths, essentially all FPs can be excited by UV light at 280 nm. Ultraviolet illumination excites electrons in endogenous tryptophan (W) residues, which then relax by Förster Resonance Energy Transfer (FRET) to the chromophore of the FP, and thus the FPs emit with their typical visible spectra. Taking advantage of the fact that tryptophan excitation can be quenched by numerous agents, including nitroaromatics like TNT and nitramines like RDX, it is demonstrated that quenching of visible fluorescence from UV illumination of FPs can be used as the basis for detecting these explosives and explosive degradation products. This work provides the foundation for production of an array of genetically-modified FPs for in vitro biosensors capable of rapid, simultaneous, sensitive and selective detection of a wide range of explosive or toxic agents. Published by Elsevier B.V.

  20. Tryptophan-Assisted Synthesis Reduces Bimetallic Gold/Silver Nanoparticle Cytotoxicity and Improves Biological Activity

    Directory of Open Access Journals (Sweden)

    Igor O. Shmarakov


    Full Text Available Aiming to reduce the potential in vivo hepato-and neph‐ rotoxicity of Ag/Au bimetallic nanoparticles (NPs stabi‐ lized by sodium dodecyl sulphate (SDS, an approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp as a reduc‐ ing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5-15 nm sized were able to form stable aggregates with an average size of 370-450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical param‐ eters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model. The data generated from the present study support the fact that the use of tryptophan in NP synthesis is effective in attenuating the potential hepatotoxicity and nephrotoxicity of NPs during their in vivo application.

  1. Quantitative analysis of flavonoids, sugars, phenylalanine and tryptophan in onion scales during storage under ambient conditions. (United States)

    Sharma, Kavita; Assefa, Awraris D; Ko, Eun Young; Lee, Eul Tai; Park, Se Won


    A comprehensive quantitative analysis of flavonoids, sugars, phenylalanine, and tryptophan have been carried out in different onion scales during storage at ambient temperature (20-23 °C) and relative humidity (60-80 %). Depending on the length of storage, dry matter content and composition shows variation inside the onion bulbs. Inner sprouts were observed on longitudinally cut bulbs after 2 months and visible sprouts appeared after 5 months of storage. The bulbs lost 20 to 30 % of their weight at the end of the storage. Higher dry matter content was observed in the inner scales. Significantly high content of quercetin in inner scales and high level of quercetin-3,4'-O-diglucoside and quercetin-4'-O-monoglucoside in outer scales was observed during a 7 months storage. During storage period, high content of fructose and glucose was observed in the middle scales while sucrose was high in the inner scales. There was no particular trend observed within analyzed amino acids. However, the content of phenylalanine was higher than tryptophan.

  2. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers

    Directory of Open Access Journals (Sweden)

    Qi Xiao


    Full Text Available Based on N-doped carbon dots/β-cyclodextrin nanocomposites modified glassy carbon electrodes (N-CDs/β-CD/GCE, an effective electrochemical sensor for enantioselective recognition of tryptophan (Trp enantiomers was developed by differential pulse voltammograms (DPVs. Fluorescent N-CDs were synthesized through a hydrothermal method and characterized by spectroscopic approaches. The N-CDs/β-CD nanocomposites were efficiently electrodeposited on the surface of GCE through C–N bond formation between N-CDs and electrode. The obtained N-CDs/β-CD/GCE was characterized by multispectroscopic and electrochemical methods. Such N-CDs/β-CD/GCE generated a significantly lower Ip and more negative Ep in the presence of l-Trp in DPVs, which was used for the enantioselective recognition of Trp enantiomers. The N-CDs/β-CD nanocomposites showed different binding constants for tryptophan enantiomers, and they further selectively bonded with l-Trp to form inclusion complexes. This N-CDs/β-CD/GCE combined advantages of N-CDs with strong C–N binding ability and β-CD with specific recognition of Trp enantiomers to fabricate a novel sensing platform for enantioselective recognition of Trp enantiomers. This strategy provided the possibility of using a nanostructured sensor to discriminate the chiral molecules in bio-electroanalytical applications.

  3. Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract. (United States)

    Harlow, B E; Goodman, J P; Lynn, B C; Flythe, M D; Ji, H; Aiken, G E


    The objectives of this study were to evaluate degradation of ergovaline in a tall fescue [ (Schreb.) Darbysh.] seed extract by rumen microbiota ex vivo and to identify specific bacteria capable of ergovaline degradation in vitro. Rumen cell suspensions were prepared by harvesting rumen fluid from fistulated wether goats ( = 3), straining, and differential centrifugation. Suspensions were dispensed into anaerobic tubes with added Trypticase with or without extract (∼10 μg kg ergovaline). Suspensions were incubated for 48 h at 39°C. Samples were collected at 0, 24, and 48 h for ergovaline analysis and enumeration of hyper-ammonia producing (HAB) and tryptophan-utilizing bacteria. Ergovaline values were analyzed by repeated measures using the mixed procedure of SAS. Enumeration data were log transformed for statistical analysis. When suspensions were incubated with extract, 11 to 15% of ergovaline disappearance was observed over 48 h ( = 0.02). After 24 h, suspensions with added extract had 10-fold less HAB than controls ( = 0.04), but treatments were similar by 48 h ( = 1.00). However, after 24 h and 48 h, suspensions with extract had 10-fold more tryptophan-utilizing bacteria ( bacteria tested did not degrade ergovaline. The results of this study indicate which rumen bacteria may play an important role in ergovaline degradation and that microbiological strategies for controlling their activity could have ramifications for fescue toxicosis and other forms of ergotism in ruminants.

  4. Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani. (United States)

    Chen, Yen-Wei; Lee, Ching-Hung; Huang, Yun-Tzu; Pan, Yih-Jiuan; Lin, Shih-Ming; Lo, Yueh-Yu; Lee, Chien-Hsien; Huang, Lin-Kun; Huang, Yu-Fen; Hsu, Yu-Di; Pan, Rong-Long


    Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.

  5. Highly specific ''sensing'' of tryptophan by a luminescent europium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Stubenrauch, Jan A.; Mevissen, Christian; Schulte, Marie F.; Bochenek, Steffen; Albrecht, Markus [RWTH Univ. Aachen (Germany). Inst. fuer Organische Chemie; Subramanian, Palani S. [Central Salt and Marine Chemicals, Research Institute (CSRI), Gujarat (India)


    The europium(III) complex 1-Cl{sub 3} (S,S-2,2{sup '}-(((1,10-phenanthroline-2,9-diyl)bis(methanylylidene))bis (azanylyliden e))bis(3-methylbutanamide)europiumtrichloride) undergoes, only in the presence of the amino acid tryptophan, a change of emission at 615 nm. In the presence of few equivalents of tryptophan, emission of the europium complex is enhanced while it disappears upon addition of large amounts. This behavior can be assigned to displacement of the sensitizing phenanthroline ligand of 1-Cl{sub 2} x Trp in the latter case.

  6. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA

    DEFF Research Database (Denmark)

    Steen, H; Petersen, J; Mann, M


    of two different peptide-DNA heteroconjugates was accomplished by matrix-assisted laser desorption/ionization mass spectrometry and allowed assignment of tryptophan-54 and tryptophan-88 as candidate cross-linked residues. Sequencing of those peptide-DNA heteroconjugates by nanoelectrospray quadrupole...

  7. A simple two step procedure for purification of the catalytic domain of chicken tryptophan hydroxylase 1 in a form suitable for crystallization

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte R.; Munch, Astrid;


    Tryptophan hydroxylase (TPH) [EC] catalyzes the conversion of tryptophan to 5-hydroxytryptophan, which is the first and rate-determining step in the biosynthesis of the neurotransmitter serotonin. We have expressed the catalytic domain of chicken (Gallus gallus) TPH isoform 1 in Escheri...

  8. First hyperpolarizability of the natural aromatic amino acids tryptophan, tyrosine, and phenylalanine and the tripeptide lysine-tryptophan-lysine determined by hyper-Rayleigh scattering. (United States)

    Duboisset, J; Matar, G; Russier-Antoine, I; Benichou, E; Bachelier, G; Jonin, Ch; Ficheux, D; Besson, F; Brevet, P F


    We report the first hyperpolarizability of tryptophan (Trp) and tyrosine (Tyr) and an upper limit for that of phenylalanine (Phe), three natural aromatic amino acids. The measurements were performed with hyper-Rayleigh scattering in an aqueous Tris buffer solution at a pH of 8.5 and 150 mM salt concentration with a fundamental wavelength of 780 nm. A value of (4.7 ± 0.7) × 10(-30) esu is found for Trp and (4.1 ± 0.7) × 10(-30) esu for Tyr whereas the upper limit of 1.4 × 10(-30) esu is found for that of Phe due to its limited solubility. The influence of the presence of lysine (Lys) in close vicinity of Trp is investigated with a measurement of the first hyperpolarizabilty of Trp in an excess of Lys and compared to the first hyperpolarizability obtained for the tripeptide Lys-Trp-Lys. The clear decrease of the values measured in these two cases indicates that the first hyperpolarizabilty of Trp is very sensitive to its local environment.

  9. Relation between proteins tertiary structure, tryptophan fluorescence lifetimes and tryptophan S(o)→(1)L(b) and S(o)→(1)L(a) transitions. Studies on α1-acid glycoprotein and β-lactoglobulin. (United States)

    Albani, Jihad René


    We measured fluorescence lifetimes and fluorescence spectra (excitation and emission) of tryptophan residues of α(1)-acid glycoprotein (three Trp residues) and β-lactoglobulin (two Trp residues) in absence and presence of 450 μM progesterone. Progesterone binds only to α(1)-acid glycoprotein. In absence of progesterone, each of the two proteins displays three fluorescence lifetimes. Addition of progesterone induces a partial inhibition of the S(o) → (1)L(a) transition without affecting fluorescence lifetimes. The same experiments performed in presence of denatured proteins in 6 M guanidine show that addition of progesterone inhibits partially the S(o) → (1)L(a) transition and its peak is 15 nm shifted to the red compared to that obtained for native proteins. However, the S(o) → (1)L(b) transition position peak is not affected by protein denaturation. Thus, the tertiary structure of the protein plays an important role by modulating the tryptophan electronic transitions. Fluorescence emission decay recorded in absence and presence of progesterone yields three fluorescence lifetimes whether proteins are denatured or not. Thus, protein tertiary structure is not responsible for the presence of three fluorescence lifetimes. These characterize tryptophan substructures reached at the excited states and which population (pre-exponential values) depend on the tryptophan residues interaction with their microenvironment(s) and thus on the global conformation of the protein.

  10. Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchus labrax) immune status and inflammatory response. (United States)

    Machado, Marina; Azeredo, Rita; Díaz-Rosales, Patricia; Afonso, António; Peres, Helena; Oliva-Teles, Aires; Costas, Benjamín


    Amino acids regulate key metabolic pathways important to immune responses and their nutritional supply may increase synthesis of immune-related proteins. The present study aimed to evaluate the effects of dietary supplementation of tryptophan and methionine on European seabass (Dicentrarchus labrax) cellular and humoral status. The immunomodulatory effects of tryptophan and methionine during an inflammatory insult was also evaluated after intraperitoneal injection with inactivated Photobacterium damselae subsp. piscicida (Phdp). A practical isonitrogenous (45% crude protein) and isolipidic (16% crude fat) diets was formulated to include fish meal and a blend of plant feedstuffs as protein sources and fish oil as the main lipid source (CRL diet). Two other diets were formulated similar to the control but including L-tryptophan or L-methionine at ×2 the requirement level (diets TRP and MET, respectively). European seabass weighing 275 g were fed the experimental diets for a period of 15 days before being sampled (trial 1). Then, fish were subjected to a peritoneal inflammation by intraperitoneally injecting UV killed Phdp (10(6) colony forming units ml(-1)) and sampled following 4 and 24 h post-injection (trial 2). Fish injected with a saline solution served as control. The haematological profile, peripheral cell dynamics and several plasma immune parameters were determined in trials 1 and 2, whereas cell migration to the inflammatory focus was also determined in trial 2. MET positively affected European seabass immune status by improving the peripheral leucocyte response, complement activity and bactericidal capacity, a stronger cellular recruitment to the inflammatory focus, and higher plasma peroxidase and bactericidal activities. TRP also seemed to improve immunostimulation, as there was a trend to augment both cell-mediated immunity and humoral capacity. However, TRP failed to improve an inflammatory response, verified by a decrease in blood phagocyte numbers

  11. Bioavailability of tryptophan from a single oral dose of a trytophan-enriched peptide mixture in healthy men

    NARCIS (Netherlands)

    Brink, E.J.; Boelsma, E.; Steijns, J.; Hendriks, H.F.J.


    The aim of the study was to investigate the bioavailability of tryptophan (Trp) from a Trp-enriched peptide mixture in healthy men. A second objective was to investigate the effect of this Trp-enriched protein hydrolysate on potential parameters of serotonergic activity. serum serotonim melatonin an

  12. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring. (United States)

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgärde, Noomi; Svedhem, Sofia; Nordén, Bengt


    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  13. Tryptophan exposure and accessibility in the chitooligosaccharide-specific phloem exudate lectin from pumpkin (Cucurbita maxima). A fluorescence study. (United States)

    Narahari, Akkaladevi; Swamy, Musti J


    The exposure and accessibility of the tryptophan residues in the chitooligosaccharide-specific pumpkin (Cucurbita maxima) phloem exudate lectin (PPL) have been investigated by fluorescence spectroscopy. The emission lambda(max) of native PPL, seen at 338nm was red-shifted to 348nm upon denaturation by 6M Gdn.HCl in the presence of 10mM beta-mercaptoethanol, indicating near complete exposure of the tryptophan residues to the aqueous medium, whereas a blue-shift to 335nm was observed in the presence of saturating concentrations of chitotriose, suggesting that ligand binding leads to a decrease in the solvent exposure of the tryptophan residues. The extent of quenching was maximum with the neutral molecule, acrylamide whereas the ionic species, iodide and Cs(+) led to significantly lower quenching, which could be attributed to the presence of charged amino acid residues in close proximity to some of the tryptophan residues. The Stern-Volmer plot for acrylamide was linear for native PPL and upon ligand binding, but became upward curving upon denaturation, indicating that the quenching occurs via a combination of static and dynamic mechanisms. In time-resolved fluorescence experiments, the decay curves could be best fit to biexponential patterns, for native protein, in the presence of ligand and upon denaturation. In each case both lifetimes systematically decreased with increasing acrylamide concentrations, indicating that quenching occurs predominantly via a dynamic process.

  14. Bioavailability of tryptophan from a single oral dose of a trytophan-enriched peptide mixture in healthy men

    NARCIS (Netherlands)

    Brink, E.J.; Boelsma, E.; Steijns, J.; Hendriks, H.F.J.


    The aim of the study was to investigate the bioavailability of tryptophan (Trp) from a Trp-enriched peptide mixture in healthy men. A second objective was to investigate the effect of this Trp-enriched protein hydrolysate on potential parameters of serotonergic activity. serum serotonim melatonin

  15. Preparation and characterization of a novel epoxy based nanocomposite using tryptophan as an eco-friendly curing agent

    Energy Technology Data Exchange (ETDEWEB)

    Motahari, Ahmad, E-mail: [Faculty of Chemistry, University of Mazandaran, P.O. Box 453, Babolsar (Iran, Islamic Republic of); Omrani, Abdollah; Rostami, Abbas Ali [Faculty of Chemistry, University of Mazandaran, P.O. Box 453, Babolsar (Iran, Islamic Republic of); Ehsani, Morteza [Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran (Iran, Islamic Republic of)


    Highlights: • Epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole. • Kinetic study on the epoxy nanocomposite using advanced isoconversional method. • Structural study and characterization of nanocomposite using SEM, XRD, AFM and DMTA. - Abstract: In this study, kinetics of the curing reaction between DGEBA epoxy resin and tryptophan as an environmentally friendly curing agent in the presence of 2,4,5-triphenylimidazole was reported. The role of silica nanoparticles (SiNP) in changing the mechanism of the curing reaction was also studied. The optimum molar ratio of DGEBA/tryptophan and the optimum content of SiNP were determined by calorimetry analyses. Kinetic analysis using the advanced isoconversional method revealed that the system undergoes the vitrification. Thermogravimetric analysis demonstrated that addition of SiNP does not improve the thermal stability of the tryptophan based thermosets. Impedance spectroscopy and also the standard four-probe method were performed to investigate the effect of curing agent and SiNP loading level on the electrical properties of the cured epoxy. The structure and morphology of the nanocomposite were studied by X-ray diffraction analysis, atomic force microscopy and scanning electron microscopy imaging. Dynamic mechanical thermal analysis revealed that the crosslinking density cannot be significantly affected with the addition of SiNP.

  16. System-level analysis of tryptophan regulation in Escherichia coli--performance under starved and well-fed conditions. (United States)

    Chaudhary, N; Bhartiya, S; Venkatesh, K V


    Biological systems respond appropriately to a variety of environments thus representing complex systems with rich physiological behaviour. Quantitative models can be used to identify the design components that result in the system complexity. In this work, the tryptophan system of Escherichia coli that synthesises tryptophan internally when faced with starvation in a rapid manner and shuts off the synthesis sluggishly when the cells are exposed to a medium replete with tryptophan has been discussed. The evolved regulatory design is capable of providing such an asymmetric response that represents an appropriate behaviour to ensure survival. The tryptophan system uses three distinct regulatory mechanisms namely genetic regulation, transcriptional attenuation and enzyme inhibition to achieve its goals. It has been shown that genetic repression and attenuation are the only active regulatory mechanisms during moderate and severe starvation. However, as the degree of starvation increases, repression is relieved prior to attenuation. The analysis also shows that enzyme inhibition does not play a role under severe starvation and plays a marginal role in increasing the rate of repression when the cells are exposed to well-fed conditions. Finally, we use tools from linear systems theory to rationalise the above observations based on the poles and zeros of an approximated linear system.

  17. Improved Production of Tryptophan in Genetically Engineered Escherichia coli with TktA and PpsA Overexpression

    Directory of Open Access Journals (Sweden)

    Tong Shen


    Full Text Available Intracellular precursor supply is a critical factor for amino acid productivity. In the present study, ppsA and tktA genes were overexpressed in genetically engineered Escherichia coli to enhance the availability of two precursor substrates, phosphoenolpyruvate and erythrose-4-phosphate. The engineered strain, TRTH0709 carrying pSV709, produced 35.9 g/L tryptophan from glucose after 40 h in fed-batch cultivation. The two genes were inserted, independently or together, into a low-copy-number expression vector (pSTV28 and transferred to TRTH0709. Fed-batch fermentations at high cell densities of the recombination strains revealed that overexpression of the ppsA gene alone does not significantly increase tryptophan yield. On the other hand, overexpression of the tktA gene, alone or with the ppsA gene, could further improve tryptophan yield to a final tryptophan titer of 37.9 and 40.2 g/L, respectively. These results represent a 5.6% and 11.9% enhancement over the titer achieved by TRTH0709. No evident genetic modifications leading to growth impairment were observed.

  18. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs

    NARCIS (Netherlands)

    Koopmans, S.J.; Ruis, M.A.W.; Dekker, R.A.; Diepen, van J.T.M.; Korte, S.M.; Mroz, Z.


    Social stress occurs in intensive pig farming due to aggressive behavior. This stress may be reduced at elevated dietary levels of tryptophan (TRP). In this study, we compared the effects of high (13.2%) vs. normal (3.4%) dietary TRP to large neutral amino acid (LNAA) ratios on behavior and stress h

  19. Intake of tryptophan-enriched whey protein acutely enhances recall of positive loaded words in patients with multiple sclerosis

    NARCIS (Netherlands)

    Lieben, Cindy K; Blokland, Arjan; Deutz, Nicolaas E; Jansen, Willemijn; Han, Gang; Hupperts, Raymond M


    BACKGROUND & AIMS: Multiple sclerosis (MS) has physiological and/or immunological characteristics that diminish serotonin metabolism, a neurotransmitter associated with affective and cognitive functions. The aim was examine the acute and dose-dependent effects of a dietary tryptophan (TRP) enrichmen

  20. Tryptophan as a Probe to Study the Anticancer Mechanism of Action and Specificity of α-Helical Anticancer Peptides

    Directory of Open Access Journals (Sweden)

    Guirong Li


    Full Text Available In the present study, a single tryptophan, as a fluorescence probe, was shifted from the N-terminus to the middle and to the C-terminus of a 26-residue α-helical anticancer peptide sequence to study the mechanism of action and specificity. The hydrophobicity of peptides, as well as peptide helicity and self-associating ability, were slightly influenced by the position change of tryptophan in the peptide sequence, while the hemolytic activity and anticancer activity of the peptide analogs remained the same. The tryptophan fluorescence experiment demonstrated that peptide analogs were more selective against LUVs mimicking cancer cell membranes than LUVs mimicking normal cell membranes. During the interaction with target membranes, the N-terminus of an anticancer peptide may be inserted vertically or tilted into the hydrophobic components of the phospholipid bilayer first. The thermodynamic parameters of the peptides PNW and PCW, when interacting with zwitterionic DMPC or negatively charged DMPS, were determined by ITC. DSC experiments showed that peptide analogs significantly altered the phase transition profiles of DMPC, but did not dramatically modify the phase transition of DMPS. It is demonstrated that hydrophobic interactions are the main driving force for peptides interacting with normal cell membranes, whilst, electrostatic interactions dominate the interactions between peptides and cancer cell membranes. Utilizing tryptophan as a fluorescence probe molecule appears to be a practicable approach to determine the interaction of peptides with phospholipid bilayers.

  1. Fluorescence lifetimes of tryptophan: structural origin and relation with So --> 1Lb and So --> 1La transitions. (United States)

    Albani, Jihad René


    We measured fluorescence lifetimes of L-Tryptophan dissolved in de-ionized water and in ethanol in the absence and the presence of high progesterone concentrations. The hormone absorbs between 220 and 280 with a peak around 250 nm, while its absorption is equal to zero beyond 280 nm. Tryptophan excitation spectrum recorded in presence of progesterone shows that the S(o) --> 1L(a) transition is completely abolished while the S(o) --> 1L(b) transition is not affected. Emission of L-tryptophan in water occurs with two fluorescence lifetimes, 0.40 and 2.8 ns. In ethanol, three fluorescence lifetimes equal to around 0.2, 1.8 and 4.8 ns were observed. Addition of progesterone to the medium does not affect any of the fluorescence lifetimes indicating clearly that both transitions could induce tryptophan excitation and that recorded fluorescence lifetimes could be assigned to sub-structures generated in the excited state.

  2. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. (United States)

    Crockett, Molly J; Clark, Luke; Robbins, Trevor W


    The neuromodulator serotonin has been implicated in a large number of affective and executive functions, but its precise contribution to motivation remains unclear. One influential hypothesis has implicated serotonin in aversive processing; another has proposed a more general role for serotonin in behavioral inhibition. Because behavioral inhibition is a prepotent reaction to aversive outcomes, it has been a challenge to reconcile these two accounts. Here, we show that serotonin is critical for punishment-induced inhibition but not overall motor response inhibition or reporting aversive outcomes. We used acute tryptophan depletion to temporarily lower brain serotonin in healthy human volunteers as they completed a novel task designed to obtain separate measures of motor response inhibition, punishment-induced inhibition, and sensitivity to aversive outcomes. After a placebo treatment, participants were slower to respond under punishment conditions compared with reward conditions. Tryptophan depletion abolished this punishment-induced inhibition without affecting overall motor response inhibition or the ability to adjust response bias in line with punishment contingencies. The magnitude of reduction in punishment-induced inhibition depended on the degree to which tryptophan depletion reduced plasma tryptophan levels. These findings extend and clarify previous research on the role of serotonin in aversive processing and behavioral inhibition and fit with current theorizing on the involvement of serotonin in predicting aversive outcomes.

  3. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A


    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  4. Evaluation of acute tryptophan depletion and sham depletion with a gelatin-based collagen peptide protein mixture

    DEFF Research Database (Denmark)

    Stenbæk, D S; Einarsdottir, H S; Goregliad-Fjaellingsdal, T


    Acute Tryptophan Depletion (ATD) is a dietary method used to modulate central 5-HT to study the effects of temporarily reduced 5-HT synthesis. The aim of this study is to evaluate a novel method of ATD using a gelatin-based collagen peptide (CP) mixture. We administered CP-Trp or CP+Trp mixtures...

  5. Melatonin and derived l-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains. (United States)

    Fernández-Cruz, E; Álvarez-Fernández, M A; Valero, E; Troncoso, A M; García-Parrilla, M C


    Melatonin is a neurohormone involved in the regulation of circadian rhythms in humans. Evidence has recently been found of its occurrence in wines and its role in the winemaking process. The yeast Saccharomyces cerevisiae is consequently thought to be important in Melatonin synthesis, but limited data and reference texts are available on this synthetic pathway. This paper aims to elucidate whether the synthetic pathway of Melatonin in Saccharomyces and non-Saccharomyces strains involves these intermediates. To this end, seven commercial strains comprising Saccharomyces cerevisiae (Red Fruit, ES488, Lalvin QA23, Uvaferm BC, and Lalvin ICV GRE) and non-Saccharomyces (Torulaspora delbrueckii and Metschnikowia pulcherrima) were monitored, under controlled fermentation conditions, in synthetic must, for seven days. Samples were analysed using a UHPLC-HRMS system (Qexactive). Five out of the seven strains formed Melatonin during the fermentation process: three S. cerevisiae strains and the two non-Saccharomyces. Additionally, other compounds derived from l-tryptophan occurred during fermentation.

  6. Chemical Modification of Tryptophan Residues in Superoxide Dismutase from Camellia Pollen and Its Fluorescence Spectrum

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-hong; WU Min; LI Shan-yu; CHU Yu-zhuo; CHEN Jia; LIU Lan-ying


    The amino acid composition of the superoxide dismutase(SOD) from camellia pollen was measured and the tryptophan(Trp) residues were modified by using N-bromosuccinimide(NBS). The results show that there are 21 Trp residues in an SOD molecule and seven of which are located on the surface of the enzyme. By researching the fluorescence spectra of the native SOD and the modified SOD, we have found that the emission wavelength of Trp is at 335 nm and the fluorescence intensity will decrease when the enzyme is modified. The results also show that potassium iodide(KI) can significantly quench the fluorescence of the native SOD, but it has a less pronounced effect on the modified enzyme. Glycerin as a surface activation reagent can stabilize the fluorescence of the modified enzyme.

  7. A Unique TryptophanC-Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway (United States)

    Parajuli, Anirudra; Kwak, Daniel H.; Dalponte, Luca; Leikoski, Niina; Galica, Tomas; Umeobika, Ugochukwu; Trembleau, Laurent; Bent, Andrew; Sivonen, Kaarina; Wahlsten, Matti; Wang, Hao; Rizzi, Ermanno; De Bellis, Gianluca; Naismith, James; Jaspars, Marcel; Liu, Xinyu; Houssen, Wael; Fewer, David Peter


    Cyanobactins are are rapidly growing family of linear and cyclic peptides produced by cyanobacteria. Kawaguchipeptins A and B, two macrocyclic undecapeptides reported earlier from Microcystis aeruginosa NIES-88, are shown to be products of the cyanobactin biosynthetic pathway. The 9 kb kawaguchipeptin (kgp) gene cluster was identified in a 5.26 Mb draft genome of Microcystis aeruginosa NIES-88. We verified that this gene cluster is responsible for the production of the kawaguchipeptins through heterologous expression of the kgp gene cluster in Escherichia coli. The KgpF prenyltransferase was overexpressed and was shown to prenylate C-3 of Trp residues in both linear and cyclic peptides in vitro. Our findings serve to further enhance the structural diversity of cyanobactins to include tryptophan-prenylated cyclic peptides. PMID:26846478

  8. Fluorescence resonance energy transfer from tryptophan in human serum albumin to a bioactive indoloquinolizine system

    Indian Academy of Sciences (India)

    Paramita Das; Arabinda Mallick; Basudeb Haldar; Alok Chakrabarty; Nitin Chattopadhyay


    The interaction between a bioactive molecule, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), with human serum albumin (HSA) has been studied using steady-state absorption and fluorescence techniques. A 1 : 1 complex formation has been established and the binding constant () and free energy change for the process have been reported. The AODIQ-HSA complex results in fluorescence resonance energy transfer (FRET) from the tryptophan moiety of HSA to the probe. The critical energy-transfer distance (0) for FRET and the Stern-Volmer constant (sv) for the fluorescence quenching of the donor in the presence of the acceptor have been determined. Importantly, SV has been shown to be equal to the binding constant itself, implying that the fluorescence quenching arises only from the FRET process. The study suggests that the donor and the acceptor are bound to the same protein at different locations but within the quenching distance.

  9. Melatonin and other tryptophan metabolites produced by yeasts: implications in cardiovascular and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Ruth eHornedo-Ortega


    Full Text Available Yeast metabolism produces compounds derived from tryptophan, which are found in fermented beverages, such as wine and beer. Melatonin and serotonin, in particular, may play a significant role due to their bioactivity in humans. Indeed, the former is a neurohormone related to circadiam rhythms, which also has a putative protective effect against degenerative diseases. Serotonin, on the other hand, is a neurotransmitter itself, in addition to being a precursor of melatonin synthesis. This paper summarizes data reported on fermented beverages, to evaluate dietary intake. Additionally, the article reviews observed effects of yeast amino acid metabolites on the prevention of neurodegenerative diseases (Alzheimer’s and Parkinson’s and angiogenesis, focusing on evidence of the molecular mechanism involved and identification of molecular targets

  10. Uracil Grafted Carbon Electrode: Electrocatalytic Behavior of Tryptophan, Tyrosine, Catecholamine and Related Compounds

    Institute of Scientific and Technical Information of China (English)

    LIN Xiang-Qin; KANG Guang-Feng; ZHU Xiao-Hong


    A uracil grafted glassy carbon electrode (Ura/GCE) was fabricated and characterized by X-ray photoelectron spectroscopy (XPS), cyclic voltammertry (CV) and differential pulse voltammetry (DPV) techniques. The electrochemical behavior of tryptophan (Trp), tyrosine (Tyr), catecholamine such as dopamine (DA), epinephrine (EP) and norepinephrine (NE), and related compounds involving uric acid (UA) and ascorbic acid (AA) at the Ura/GCE was investigated. All these bioactive species could be electrocatalytically oxidized to generate very different current sensitivities. This electrode can be used as a versatile electrochemical sensor for DA, EP, NE, UA, Trp and Tyr determination. The DPV peak potential, current sensitivity, linear range and detection limit of these species were obtained and used for analysis of molecular interactions between uracil and those electroactive species. A mechanism for the surface accumulation was discussed.

  11. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. (United States)

    Guo, Youzhong; Kalathur, Ravi C; Liu, Qun; Kloss, Brian; Bruni, Renato; Ginter, Christopher; Kloppmann, Edda; Rost, Burkhard; Hendrickson, Wayne A


    Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 Å resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.

  12. Distribution of the tryptophan pathway-derived defensive secondary metabolites gramine and benzoxazinones in Poaceae. (United States)

    Kokubo, Yu; Nishizaka, Miho; Ube, Naoki; Yabuta, Yukinori; Tebayashi, Shin-Ichi; Ueno, Kotomi; Taketa, Shin; Ishihara, Atsushi


    The Poaceae is a large taxonomic group consisting of approximately 12,000 species and is classified into 12 subfamilies. Gramine and benzoxazinones (Bxs), which are biosynthesized from the tryptophan pathway, are well-known defensive secondary metabolites in the Poaceae. We analyzed the presence or absence of garamine and Bxs in 64 species in the Poaceae by LC-MS/MS. We found that Hordeum brachyantherum and Hakonechloa macra accumulated gramine, but the presence of gramine was limited to small groups of species. We also detected Bxs in four species in the Pooideae and six species in the Panicoideae. In particular, four species in the Paniceae tribe in Panicoideae accumulaed Bxs, indicating that this tribe is a center of the Bx distribution. Bxs were absent in the subfamilies other than Pooideae and Panicoideae. These findings provide an overview of biased distribution of gramine and Bxs in Poaceae species.

  13. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah


    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  14. Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction. (United States)

    Lima, Sofia A C; Cordeiro-da-Silva, Anabela; de Castro, Baltazar; Gameiro, Paula


    Plasma membrane P-glycoprotein is a member of the ATP-binding cassette family of membrane transporters. In the present study tryptophan intrinsic fluorescence was used to understand the P-glycoprotein response to three benzodiazepines (bromazepam, chlordiazepoxide and flurazepam) in the presence and absence of ATP. Fluorescence emission spectra showed a red shift on the maximal emission wavelength upon interaction of P-glycoprotein with all benzodiazepines. Benzodiazepine association with nucleotide-bound P-glycoprotein also showed this trend and the quenching profile was attributed to a sphere-of-action model, for static fluorescence. Furthermore, quenching data of benzodiazepine-bound P-glycoprotein with ATP were concentration dependent and saturable, indicating that nucleotide binds to P-glycoprotein whether drug is present or not. These results seems in agreement with the proposal of the ATP-switch model by Higgins and Linton, where substrate binding to the transporters initiates the transport cycle by increasing the ATP binding affinity.

  15. Expression and purification of the metal-containing monooxygenases tryptophan hydroxylase and dopamine β-hydroxylase

    DEFF Research Database (Denmark)

    Karlsen, Pernille Efferbach

    to abnormal levels of the neurotransmitters serotonin, dopamine and norepinephrine and the regulation of tryptophan hydroxylase and dopamine β-hydroxylase. These include depression, anxiety disorders, obsessive compulsive disorder (OCD), schizophrenia, Parkinson's disease and attention deficit......-containing enzyme which belongs to the aromatic amino acid hydroxylase (AAAH) family. It exist in two isoforms, TPH1 and TPH2, which are expressed in different tissues and have different properties. TPH is known as a very diffcult protein to work with especially due to instability and only truncated forms of TPH1...... to the family of ascorbate dependent type II Cu monooxygenases. Very little knowledge exist on DβH and most of it comes from investigations of related proteins. Attempts to express human DβH in bacterial systems have been done in the Metalloprotein Chemistry and Engineering Group, but at present no system...

  16. Threshold ionization spectroscopic investigation of supersonic jet-cooled, laser-desorbed Tryptophan (United States)

    Taherkhani, Mehran; Armentano, Antonio; Černý, Jiří; Müller-Dethlefs, Klaus


    Tryptophan (Trp) was studied by two-colour Photoionization Efficiency (PIE) and Mass Analysed Threshold Ionization (MATI) spectroscopy using a laser desorption apparatus. Conformer A of Trp was excited into the S1 state (34,878 cm-1) and the second laser was scanned around the D0 cation ground and the D1 excited state. No ionization signal into the D0 state could be found, but a clear threshold was observed for the D1 state with an ionization energy of 66,704 ± 3 cm-1 (8.27 eV). This observation is explained in terms of the electronic configurations of the S1 and cationic states.

  17. Alteration of mice L-tryptophan metabolism by the organophosphorous acid triester diazinon. (United States)

    Seifert, J; Pewnim, T


    Diazinon [O,O-diethyl O-(2-isopropyl-6-methyl-4- pyrimidinyl)phosphorothioate] altered the formation of several L-tryptophan metabolites associated with the L-kynurenine pathway in mice. Liver kynurenine formamidase was inhibited almost completely by diazinon (10 mg/kg). The enzyme inhibition resulted in reduced L-kynurenine biosynthesis in livers with a concomitant accumulation of N-formyl-L-kynurenine. In contrast to the liver, plasma L-kynurenine increased up to 5-fold in diazinon-treated mice. Consequently, the urinary excretion of xanthurenic acid and kynurenic acid was raised 5- to 15-fold. The revelation of this novel mechanism of diazinon action is an important piece of information needed for a better understanding of the noncholinergic toxicity of organophosphorous acid triesters and methylcarbamates.

  18. [Investigation of fluorescent components of drug "heparin" and its complexing with phenylalanine, tyrosine and tryptophan]. (United States)

    Astakhov, S S; Iunusov, V M; Sultanbaev, M V; Akhmadeeva, G Kh; Iunusov, M S


    Using spectral-luminescent and spectrophotometric methods a composition of aminoacidic (AA) and protein components of commercial drug of heparin (Hep) as well as its interaction with Trp, Tyr and Phe was studied. The impurities of aromatic aminoacids Phe, Tyr and elastin protein was revealed in drug of heparin. The quenching of fluorescence (FL) of Trp, Tyr and Phe with heparin was studied and the Stern-Volmer Constants (K) showing the stability of its complexes with aminoacids were determined. The stability of complexes AA...Hep increases in the series K (Trp...Hep) = 19 +/- 2 M(-1) < K (Tyr...Hep) = 39 +/- 3 M(-1) < K (Phe...Hep) = 710 +/- 70 M(-1), that, probably, determines dominating contribution of Phe impurity in heparin and the absence of that of tryptophan. It was assumed, that animal elastin, which is different from human one can provoke allergic reactions up to anaphylactic shock.

  19. To cheat or not to cheat: Tryptophan hydroxylase 2 SNP variants contribute to dishonest behavior

    Directory of Open Access Journals (Sweden)

    Qiang eShen


    Full Text Available Although lying (bear false witness is explicitly prohibited in the Decalogue and a focus of interest in philosophy and theology, more recently the behavioral and neural mechanisms of deception are gaining increasing attention from diverse fields especially economics, psychology and neuroscience. Despite the considerable role of heredity in explaining individual differences in deceptive behavior, few studies have investigated which specific genes contribute to the heterogeneity of lying behavior across individuals. Also, little is known concerning which specific neurotransmitter pathways underlie deception. Towards addressing these two key questions, we implemented a neurogenetic strategy and modeled deception by an incentivized die-under-cup task in a laboratory setting. The results of this exploratory study provide provisional evidence that SNP variants across the tryptophan hydroxylase 2 (TPH2 gene, that encodes the rate-limiting enzyme in the biosynthesis of brain serotonin, contribute to individual differences in deceptive behavior.

  20. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

    DEFF Research Database (Denmark)

    Höglund, Erik; Øverli, Øyvind; Åberg Andersson, Madelene


    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress...... with 2×Trp-treated fish. These long-term effects on post-stress plasma cortisol levels and concomitant 5-HT turnover in the telencephalon lends further support to the fact that the extrahypothalamic control of the neuroendocrine stress response is conserved within the vertebrate lineage. Moreover...... axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma...

  1. Sensory properties changes of fortified nixtamalized corn flour with lysine and tryptophan during storage. (United States)

    Waliszewski, Krzysztof N; Estrada, Yokiushirdhilgilmara; Pardio, Violeta


    This study was conducted to determine sensory changes of fortified nixtamalized corn flour with lysine and tryptophan up to 83, 100, and 150% of suggested FAO pattern after 2 months storage at room temperature (30 degrees C). Totally, 16 trained panelists participated in sensory study of tortilla made of enriched and normal corn flours where six attributes and a total of 19 descriptors were taken into consideration. A reflectance colorimeter was also used in determination of changes in tortilla color parameters. No significant differences were found in the analysis of 19 descriptors of tortilla made of enriched and normal nixtamalized corn flour after 2 months storage. Also, no color parameter changes were found between normal and enriched tortillas.

  2. Plasmodium vivax tryptophan-rich antigen PvTRAg33.5 contains alpha helical structure and multidomain architecture.

    Directory of Open Access Journals (Sweden)

    Hema Bora

    Full Text Available Tryptophan-rich proteins from several malarial parasites have been identified where they play an important role in host-parasite interaction. Structural characterization of these proteins is needed to develop them as therapeutic targets. Here, we describe a novel Plasmodium vivax tryptophan-rich protein named PvTRAg33.5. It is expressed by blood stage(s of the parasite and its gene contains two exons. The exon 1 encodes for a 23 amino acids long putative signal peptide which is likely to be cleaved off whereas the exon 2 encodes for the mature protein of 252 amino acids. The mature protein contains B-cell epitopes which were recognized by the human immune system during P.vivax infection. The PvTRAg33.5 contains 24 (9.5% tryptophan residues and six motifs whose patterns were similar among tryptophan-rich proteins. The modeled structure of the PvTRAg33.5 consists of a multidomain architecture which is stabilized by the presence of large number of tryptophan residues. The recombinant PvTRAg33.5 showed predominantly α helical structure and alpha helix to beta sheet transition at pH below 4.5. Protein acquires an irreversible non-native state at temperature more than 50°C at neutral pH. Its secondary and tertiary structures remain stable in the presence of 35% alcohol but these structures are destabilized at higher alcohol concentrations due to the disturbance of hydrophobic interactions between tryptophanyl residues. These structural changes in the protein might occur during its translocation to interact with other proteins at its final destination for biological function such as erythrocyte invasion.

  3. Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. (United States)

    Dathe, Margitta; Nikolenko, Heike; Klose, Jana; Bienert, Michael


    Arginine- and tryptophan-rich motifs have been identified in antimicrobial peptides with various secondary structures. We synthesized a set of linear hexapeptides derived from the sequence AcRRWWRF-NH(2) by substitution of tryptophan (W) by tyrosine (Y) or naphthylalanine (Nal) and by replacement of arginine (R) by lysine (K) to investigate the role of cationic charge and aromatic residues in membrane activity and selectivity. A second set of corresponding head-to-tail cyclic analogues was prepared to analyze the role of conformational constraints. The biological activity of the linear peptides followed the order Nal- > W- > Y-containing compounds and slightly decreased upon R-K substitution. A pronounced activity-improving and bacterial selectivity-enhancing effect was found upon cyclization of the R- and W-bearing parent peptide, whereas the activity-modifying effect of cyclization of Y- and Nal-containing peptides was low. The analysis of the driving forces of peptide interaction with model membranes showed that the activities correlated with the partition coefficients and the depths of peptide insertion into neutral and negatively charged lipid bilayers. Spectroscopic studies, RP-HPLC, and titration calorimetry implied that the combination of cationic and aromatic amino acid composition and conformational rigidity afforded a membrane-active, amphipathic structure with a highly charged face opposed by a cluster of aromatic side chains. However, threshold values of low and high hydrophobicity seemed to exist beyond which the activity-enhancing effect of cyclization was negligible. The results suggest that cyclization of small peptides of an appropriate amino acid composition may serve as a promising strategy in the design of antimicrobial peptides.

  4. The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode. (United States)

    Costanzo, Francesca; Sulpizi, Marialore; Della Valle, Raffaele Guido; Sprik, Michiel


    The thermochemical constants for the oxidation of tyrosine and tryptophan through proton coupled electron transfer in aqueous solution have been computed applying a recently developed density functional theory (DFT) based molecular dynamics method for reversible elimination of protons and electrons. This method enables us to estimate the solvation free energy of a proton (H(+)) in a periodic model system from the free energy for the deprotonation of an aqueous hydronium ion (H(3)O(+)). Using the computed solvation free energy of H(+) as reference, the deprotonation and oxidation free energies of an aqueous species can be converted to pK(a) and normal hydrogen electrode (NHE) potentials. This conversion requires certain thermochemical corrections which were first presented in a similar study of the oxidation of hydrobenzoquinone [J. Cheng, M. Sulpizi, and M. Sprik, J. Chem. Phys. 131, 154504 (2009)]. Taking a different view of the thermodynamic status of the hydronium ion, these thermochemical corrections are revised in the present work. The key difference with the previous scheme is that the hydronium is now treated as an intermediate in the transfer of the proton from solution to the gas-phase. The accuracy of the method is assessed by a detailed comparison of the computed pK(a), NHE potentials and dehydrogenation free energies to experiment. As a further application of the technique, we have analyzed the role of the solvent in the oxidation of tyrosine by the tryptophan radical. The free energy change computed for this hydrogen atom transfer reaction is very similar to the gas-phase value, in agreement with experiment. The molecular dynamics results however, show that the minimal solvent effect on the reaction free energy is accompanied by a significant reorganization of the solvent.

  5. Allosteric interactions coordinate catalytic activity between successive metabolic enzymes in the tryptophan synthase bienzyme complex. (United States)

    Brzović, P S; Ngo, K; Dunn, M F


    Tryptophan synthase from enteric bacteria is an alpha 2 beta 2 bienzyme complex that catalyzes the final two reactions in the biosynthesis of L-tryptophan (L-Trp) from 3-indole-D-glycerol 3'-phosphate (IGP) and L-serine (L-Ser). The bienzyme complex exhibits reciprocal ligand-mediated allosteric interactions between the heterologous subunits [Houben, K., & Dunn, M. F. (1990) Biochemistry 29, 2421-2429], but the relationship between allostery and catalysis had not been completely defined. We have utilized rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy to study the relationship between allostery and catalysis in the alpha beta-reaction catalyzed by the bienzyme complex from Salmonella typhimurium. The pre-steady-state spectral changes that occur when L-Ser and IGP are mixed simultaneously with the alpha 2 beta 2 complex show that IGP binding to the alpha-site accelerates the formation of alpha-aminoacrylate [E(A-A)] from L-Ser at the beta-site. Through the use of L-Ser analogues, we show herein that the formation of the E(A-A) intermediate is the chemical signal which triggers the conformational transition that activates the alpha-subunit. beta-subunit ligands, such as L-Trp, that react to form covalent intermediates at the beta-site, but are incapable of E(A-A) formation, do not stimulate the activity of the alpha-subunit. Titration experiments show that the affinity of G3P and GP at the alpha-site is dependent upon the nature of the chemical intermediate present at the beta-active site.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Defining the erythrocyte binding domains of Plasmodium vivax tryptophan rich antigen 33.5.

    Directory of Open Access Journals (Sweden)

    Hema Bora

    Full Text Available Tryptophan-rich antigens play important role in host-parasite interaction. One of the Plasmodium vivax tryptophan-rich antigens called PvTRAg33.5 had earlier been shown to be predominantly of alpha helical in nature with multidomain structure, induced immune responses in humans, binds to host erythrocytes, and its sequence is highly conserved in the parasite population. In the present study, we divided this protein into three different parts i.e. N-terminal (amino acid position 24-106, middle (amino acid position 107-192, and C-terminal region (amino acid position 185-275 and determined the erythrocyte binding activity of these fragments. This binding activity was retained by the middle and C-terminal fragments covering 107 to 275 amino acid region of the PvTRAg33.5 protein. Eight non-overlapping peptides covering this 107 to 275 amino acid region were then synthesized and tested for their erythrocyte binding activity to further define the binding domains. Only two peptides, peptide P4 (at 171-191 amino acid position and peptide P8 (at 255-275 amino acid position, were found to contain the erythrocyte binding activity. Competition assay revealed that each peptide recognizes its own erythrocyte receptor. These two peptides were found to be located on two parallel helices at one end of the protein in the modelled structure and could be exposed on its surface to form a suitable site for protein-protein interaction. Natural antibodies present in the sera of the P. vivax exposed individuals or the polyclonal rabbit antibodies against this protein were able to inhibit the erythrocyte binding activity of PvTRAg33.5, its fragments, and these two synthetic peptides P4 and P8. Further studies on receptor-ligand interaction might lead to the development of the therapeutic reagent.

  7. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. (United States)

    Lovelace, Michael D; Varney, Bianca; Sundaram, Gayathri; Lennon, Matthew J; Lim, Chai K; Jacobs, Kelly; Guillemin, Gilles J; Brew, Bruce J


    The kynurenine pathway (KP) of tryptophan metabolism has emerged in recent years as a key regulator of the production of both neuroprotective (e.g. kynurenic and picolinic acid, and the essential cofactor NAD+) and neurotoxic metabolites (e.g. quinolinic acid, 3-hydroxykynurenine). The balance between the production of the two types of metabolites is controlled by key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO-1), and in turn, molecular signals such as interferon-γ (IFN-γ), which activate the KP metabolism of tryptophan by this enzyme, as opposed to alternative pathways for serotonin and melatonin production. Dysregulated KP metabolism has been strongly associated with neurological diseases in recent years, and is the subject of increasing efforts to understand how the metabolites are causative of disease pathology. Concurrent with these endeavours are drug development initiatives to use inhibitors to block certain enzymes in the pathway, resulting in reduced levels of neurotoxic metabolites (e.g. quinolinic acid, an excitotoxin and N-Methyl-d-Aspartate (NMDA) receptor agonist), while in turn enhancing the bioavailability of the neuroprotective metabolites such as kynurenic acid. Neurodegenerative diseases often have a substantial autoimmune or inflammatory component; hence a greater understanding of how KP metabolites influence the inflammatory cascade is required. Additionally, challenges exist in diseases like multiple sclerosis (MS) and motor neurone disease (MND), which do not have reliable biomarkers. Clinical diagnosis can often be prolonged in order to exclude other diseases, and often diagnosis occurs at an advanced state of disease pathology, which does not allow a lengthy time for patient assessment and intervention therapies. This review considers the current evidence for involvement of the KP in several neurological diseases, in biomarkers of disease and also the parallels that exist in KP metabolism with what is known in other

  8. Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qianwen; He, Zhifang; He, Qian; Luo, Ai; Yan, Kaiwang; Zhang, Dongxia [Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou, 730070 (China); Lu, Xiaoquan, E-mail: [Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China); Zhou, Xibin, E-mail: [Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou, 730070 (China)


    Highlights: • Trp-GR was synthesized by utilizing a facile ultrasonic method. • The material as prepared had well dispersivity in water and better conductivity than pure GR. • Trp-GR/GCE showed excellent potential for the determination of AA, DA and UA. • The proposed method was applied for the analysis of AA, DA and UA in real samples. - Abstract: A new type of tryptophan-functionalized graphene nanocomposite (Trp-GR) was synthesized by utilizing a facile ultrasonic method via π–π conjugate action between graphene (GR) and tryptophan (Trp) molecule. The material as prepared had well dispersivity in water and better conductivity than pure GR. The surface morphology of Trp-GR was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA), and uric acid (UA) were investigated by cyclic voltammetry (CV) on the surface of Trp-GR. The separation of the oxidation peak potentials for AA–DA, DA–UA and UA–AA was about 182 mV, 125 mV and 307 mV, which allowed simultaneously determining AA, DA, and UA. Differential pulse voltammetery (DPV) was used for the determination of AA, DA, and UA in their mixture. Under optimum conditions, the linear response ranges for the determination of AA, DA, and UA were 0.2–12.9 mM, 0.5–110 μM, and 10–1000 μM, with the detection limits (S/N = 3) of 10.09 μM, 0.29 μM and 1.24 μM, respectively. Furthermore, the modified electrode was investigated for real sample analysis.

  9. Hypervalent radical formation probed by electron transfer dissociation of zwitterionic tryptophan and tryptophan-containing dipeptides complexed with Ca2+ and 18-crown-6 in the gas phase. (United States)

    Fujihara, Akimasa; Matsuo, Sou; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo


    The relationship between peptide structure and electron transfer dissociation (ETD) is important for structural analysis by mass spectrometry. In the present study, the formation, structure and reactivity of the reaction intermediate in the ETD process were examined using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. ETD product ions of zwitterionic tryptophan (Trp) and Trp-containing dipeptides (Trp-Gly and Gly-Trp) were detected without reionization using non-covalent analyte complexes with Ca(2+) and 18-crown-6 (18C6). In the collision-induced dissociation, NH3 loss was the main dissociation pathway, and loss related to the dissociation of the carboxyl group was not observed. This indicated that Trp and its dipeptides on Ca(2+) (18C6) adopted a zwitterionic structure with an NH3 (+) group and bonded to Ca(2+) (18C6) through the COO(-) group. Hydrogen atom loss observed in the ETD spectra indicated that intermolecular electron transfer from a molecular anion to the NH3 (+) group formed a hypervalent ammonium radical, R-NH3 , as a reaction intermediate, which was unstable and dissociated rapidly through N-H bond cleavage. In addition, N-Cα bond cleavage forming the z1 ion was observed in the ETD spectra of Trp-GlyCa(2+) (18C6) and Gly-TrpCa(2+) (18C6). This dissociation was induced by transfer of a hydrogen atom in the cluster formed via an N-H bond cleavage of the hypervalent ammonium radical and was in competition with the hydrogen atom loss. The results showed that a hypervalent radical intermediate, forming a delocalized hydrogen atom, contributes to the backbone cleavages of peptides in ETD.

  10. pH-induced structural change of a multi-tryptophan protein MPT63 with immunoglobulin-like fold: identification of perturbed tryptophan residue/residues. (United States)

    Mukherjee, Manini; Ghosh, Ranendu; Chattopadhyay, Krishnananda; Ghosh, Sanjib


    The structural change of M. tuberculosis MPT63, which is predominantly a β-sheet protein having an immunoglobulin like fold, has been investigated in the pH range 7.5-1.5 using various biophysical techniques along with low-temperature phosphorescence (LTP) spectroscopy. MPT63 contains four Tryptophan (Trp) residues at 26, 48, 82, and 129. Although circular dichroism, steady-state and time-resolved fluorescence, time-resolved anisotropy, 1-aniline-8-naphthalene sulfonic (ANS) acid binding, and analytical ultracentrifuge depict more open largely unfolded structure of MPT63 at pH 1.5 and also more accessible nature of Trp residues to neutral quencher at pH 1.5, it is, however, not possible to assign the specific Trp residue/residues being perturbed. This problem has been resolved using LTP of MPT63, which shows optically resolved four distinct (0, 0) bands corresponding to four Trp residues in the pH range 7.5-3.0. LTP at pH 1.5 clearly reveals that the solvent-exposed Trp 82 and the almost buried Trp 129 are specifically affected compared with Trp 48 and Trp 26. Lys 8 and Lys 27 are predicted to affect Trp 129. Tyrosine residues are found to be silent even at pH 1.5. This type of specific perturbation in a multi-Trp protein has not been addressed before. LTP further indicates that partially exposed Trp 48 is preferentially quenched by acrylamide compared with other Trp residues at both pH 7.5 and 1.5. The solvent-exposed Trp 82 is surprisingly found to be not quenched by acrylamide at pH 7.5. All the results are obtained using micromolar concentration of protein and without using any Trp-substituted mutant.

  11. Enhancement of L-tryptophan 5-hydroxylation activity by structure-based modification of L-phenylalanine 4-hydroxylase from Chromobacterium violaceum. (United States)

    Kino, Kuniki; Hara, Ryotaro; Nozawa, Ai


    The objective of this study was to enhance l-tryptophan hydroxylation activity of l-phenylalanine 4-hydroxylase. It had been known that l-phenylalanine 4-hydroxylase from Chromobacterium violaceum could convert l-tryptophan to 5-hydroxy-l-tryptophan and l-phenylalanine to l-tyrosine; however, the activity for l-tryptophan was extremely low compared to l-phenylalanine activity levels. We used the information on the crystal structures of aromatic amino acid hydroxylases to generate C. violaceuml-phenylalanine 4-hydroxylase with high l-tryptophan hydroxylating activity. In silico structural modeling analysis suggested that hydrophobic and/or stacking interactions with the substrate and cofactor at L101 and W180 in C. violaceuml-phenylalanine 4-hydroxylase would increase hydroxylation activity. Based on this hypothesis, we introduced a saturation mutagenesis towards these sites followed by the evaluation of 5-hydroxy-l-tryptophan productivity using a modified Gibbs assay. Three and nine positive mutants were obtained from the L101 and W180 mutant libraries, respectively. Among the mutants, L101Y and W180F showed the highest l-tryptophan hydroxylation activity at the respective residues. Steady-state kinetic analysis revealed that k(cat) values for l-tryptophan hydroxylation were increased from 0.40 (wild-type) to 1.02 (L101Y) and 0.51 s(-1) (W180F). In addition, the double mutant (L101Y-W180F) displayed higher l-tryptophan hydroxylation activity than the wild-type and the W180F and L101Y mutants. The k(cat) value of L101Y-W180F increased to 2.08 s(-1), showing a 5.2-fold increase compared to wild-type enzyme levels.

  12. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay. (United States)

    Dijkstra, D S; Broos, J; Visser, A J; van Hoek, A; Robillard, G T


    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C domain of the enzyme [Swaving Dijkstra et al. (1996) Biochemistry 35, 6628-6634]. Since no fluorescent impurities are present in these mutants, the changes in fluorescence and anisotropy could be related with changes in the tryptophan microenvironment. Tryptophans at positions 30 and 42 showed changes in fluorescence intensity decay upon binding mannitol, which were reflected in the changes in lifetime distribution patterns. The disappearance of the shortest-lived decay component in these mutants, as well as in the mutant with a single tryptophan at position 109, indicates a change in the local environment such that quenching via neighboring side chains or solvent is reduced. Phosphorylation at histidine 554 and cysteine 384, located in the cytoplasmatic A and B domains of EII(mtl), respectively, induced an increase in the average fluorescence lifetimes of all of the tryptophans. The effect was most pronounced for tryptophans 30 and 109 which show large increases in the average fluorescence lifetime mainly due to loss of short-lived decay components. A correlation time distribution of the individual tryptophans deduced from an analysis of the anisotropy decay showed that they differed in their rotational mobility with tryptophan 30 showing the least local flexibility. Phosphorylation resulted in immobilization of W109 which, together with changes in the average fluorescence lifetime, is evidence for a conformational coupling between the phosphorylated B domain and the C domain. The influence of mannitol binding on the rotational behavior of the tryptophans is limited; it induces more internal flexibility at all tryptophan positions. A rotational correlation time of 30 ns

  13. Ultrafast Hydration Dynamics Probed by Tryptophan at Protein Surface and Protein-DNA Interface (United States)

    Qin, Yangzhong

    As we all live in a special water planet Earth, the significance of water to life has been universally recognized. The reason why water is so important to life has intrigued many researchers. This dissertation will focus on the ultrafast dynamics of protein surface water and protein-DNA interfacial water which have direct importance to the protein structure and function. Using tryptophan as an intrinsic fluorescence probe, combined with site-directed mutagenesis and ultrafast fluorescence up-conversion spectroscopy, we can achieve single residue spatial resolution and femtosecond temporal resolution. We can also precisely determine the local hydration water dynamics by monitoring the Stokes shift of tryptophan one at a time. Previously, the protein surface hydration has been extensively studied by our group. In this thesis, we will provide more details on the methods we are using to extract the hydration dynamics, and also validate our methods from both experimental and theoretical perspectives. To further interrogate the interfacial water hydration dynamics relative to the protein surface hydration, we studied two DNA polymerases: DNA Polymerase IV (Dpo4) and DNA Polymerase Beta (Pol beta). Both proteins show typical surface hydration pattern with three distinct time components including: (i) the ultrafast sub-picosecond component reflects the bulk type water motion; (ii) a few picoseconds component shows the inner water relaxation mainly corresponding to the local libration and reorientation; (iii) the tens to hundred picoseconds component represents the water-protein coupled motion involving the whole water network reorganization. Dpo4, a loosely DNA binding protein, exhibits very flexible interfacial water which resembles its surface water yet with a significantly reduced ultrafast component. Such dynamic interfacial water not only maintains interfacial flexibility, but also contributes to the low fidelity of the protein. In contrast to the Dpo4, pol beta

  14. Downregulation of host tryptophan-aspartate containing coat (TACO) gene restricts the entry and survival of Leishmania donovani in human macrophage model

    National Research Council Canada - National Science Library

    Gogulamudi, Venkateswara Reddy; Dubey, Mohan Lal; Kaul, Deepak; Atluri, Venkata Subba Rao; Sehgal, Rakesh


    .... Recently, tryptophan-aspartate containing coat (TACO) gene has been recognized as playing a central role in the survival of Mycobacterium tuberculosis within human macrophages by arresting the phagosome maturation process...

  15. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. (United States)

    Lovelace, Michael D; Varney, Bianca; Sundaram, Gayathri; Franco, Nunzio F; Ng, Mei Li; Pai, Saparna; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J


    The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson's disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington's disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood-brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP

  16. Current evidence for a role of the Kynurenine pathway of tryptophan metabolism in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael D. Lovelace


    Full Text Available The kynurenine pathway (KP is the major metabolic pathway of the essential amino acid tryptophan (TRP. Stimulation by inflammatory molecules such as interferon-γ (IFN-γ is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease (MND, schizophrenia, Huntington’s disease and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes indoleamine 2,3-dioxygenase (IDO-1 and tryptophan dioxygenase (TDO; highest expression in hepatic cells are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood-brain-barrier (BBB, even if transient, allows the entry of blood monocytes into the brain parenchyma. Like microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid (QUIN. These metabolites circulate systemically or are released locally in the brain, and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at NMDA receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several

  17. Real time monitoring of urban surface water quality using a submersible, tryptophan-like fluorescence sensor (United States)

    Khamis, Kieran; Bradley, Chris; Hannah, David; Stevens, Rob


    Due to the recent development of field-deployable optical sensor technology, continuous quantification and characterization of surface water dissolved organic matter (DOM) is possible now. Tryptophan-like (T1) fluorescence has the potential to be a particularly useful indicator of human influence on water quality as T1 peaks are associated with the input of labial organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time recording of T1 fluorescence could be particular useful for monitoring waste water infrastructure, treatment efficiency and the identification of contamination events at higher temporal resolution than available hitherto. However, an understanding of sensor measurement repeatability/transferability and interaction with environmental parameters (e.g. turbidity) is required. Here, to address this practical knowledge gap, we present results from a rigorous test of a commercially available submersible tryptophan fluorometer (λex 285, λem 350). Sensor performance was first examined in the laboratory by incrementally increasing turbidity under controlled conditions. Further to this the sensor was integrated into a multi-parameter sonde and field tests were undertaken involving: (i) a spatial sampling campaign across a range of surface water sites in the West Midlands, UK; and (ii) collection of high resolution (sub-hourly) samples from an urban stream (Bournbrook, Birmingham, U.K). To determine the ability of the sensor to capture spatiotemporal dynamics of urban waters DOM was characterized for each site or discrete time step using Excitation Emission Matrix spectroscopy and PARAFAC. In both field and laboratory settings fluorescence intensity was attenuated at high turbidity due to suspended particles increasing absorption and light scattering. For the spatial survey, instrument readings were compared to those obtained by a laboratory grade fluorometer (Varian Cary Eclipse) and a strong, linear relationship was apparent

  18. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase. (United States)

    Mueller, Leonard J; Dunn, Michael F


    NMR crystallography applied to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation.

  19. The High-Risk Human Papillomavirus E6 Oncogene Exacerbates the Negative Effect of Tryptophan Starvation on the Development of Chlamydia trachomatis (United States)

    Sherchand, Shardulendra P.; Ibana, Joyce A.; Zea, Arnold H.; Quayle, Alison J.; Aiyar, Ashok


    Chlamydia trachomatis is an obligate intracellular pathogen that requires specific essential nutrients from the host cell, one of which is the amino acid tryptophan. In this context interferon gamma (IFNγ) is the major host protective cytokine against chlamydial infections because it induces the expression of the host enzyme, indoleamine 2,3-dioxygenase 1, that degrades tryptophan, thereby restricting bacterial replication. The mechanism by which IFNγ acts has been dissected in vitro using epithelial cell-lines such as HeLa, HEp-2, or the primary-like endocervical cell-line A2EN. All these cell-lines express the high-risk human papillomavirus oncogenes E6 & E7. While screening cell-lines to identify those suitable for C. trachomatis co-infections with other genital pathogens, we unexpectedly found that tryptophan starvation did not completely block chlamydial development in cell-lines that were HR-HPV negative, such as C33A and 293. Therefore, we tested the hypothesis that HR-HPV oncogenes modulate the effect of tryptophan starvation on chlamydial development by comparing chlamydial development in HeLa and C33A cell-lines that were both derived from cervical carcinomas. Our results indicate that during tryptophan depletion, unlike HeLa, C33A cells generate sufficient intracellular tryptophan via proteasomal activity to permit C. trachomatis replication. By generating stable derivatives of C33A that expressed HPV16 E6, E7 or E6 & E7, we found that E6 expression alone was sufficient to convert C33A cells to behave like HeLa during tryptophan starvation. The reduced tryptophan levels in HeLa cells have a biological consequence; akin to the previously described effect of IFNγ, tryptophan starvation protects C. trachomatis from clearance by doxycycline in HeLa but not C33A cells. Curiously, when compared to the known Homo sapiens proteome, the representation of tryptophan in the HR-HPV E6 & E6AP degradome is substantially lower, possibly providing a mechanism that

  20. Preliminary Crystallography Confirms that the Archaeal DNA-binding and Tryptophan-sensing Regulator TrpY is a Dimer

    Energy Technology Data Exchange (ETDEWEB)

    J Cafasso; B Manjasetty; E Karr; K Sandman; M Chance; J Reeve


    TrpY regulates the transcription of the metabolically expensive tryptophan-biosynthetic operon in the thermophilic archaeon Methanothermobacter thermautotrophicus. TrpY was crystallized using the hanging-drop method with ammonium sulfate as the precipitant. The crystals belonged to the tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 87, c = 147 {angstrom}, and diffracted to 2.9 {angstrom} resolution. The possible packing of molecules within the cell based on the values of the Matthews coefficient (V{sub M}) and analysis of the self-rotation function are consistent with the asymmetric unit being a dimer. Determining the structure of TrpY in detail will provide insight into the mechanisms of DNA binding, tryptophan sensing and transcription regulation at high temperature by this novel archaeal protein.

  1. The geranyl-modified tryptophan residue is crucial for ComXRO-E-2 pheromone biological activity. (United States)

    Tsuji, Fumitada; Kobayashi, Ko; Okada, Masahiro; Yamaguchi, Hisao; Ojika, Makoto; Sakagami, Youji


    The ComX pheromone is an isoprenoidal oligopeptide containing a modified tryptophan residue, which stimulates natural genetic competence in gram-positive bacteria, Bacillus. We have reported the structure of the ComX(RO-E-2) pheromone, which is produced by the RO-E-2 strain of Bacillus subtilis. ComX(RO-E-2) analogs with substituted amino acids and isoprenoid modified tryptophan residues (e.g., prenyl, geranyl, and farnesyl), were synthesized and examined for biological activity. These results indicate that Phe-Trp(∗)(Ger)-NH(2) is the minimum pharmacophore of the ComX(RO-E-2) pheromone. Furthermore, the length of the isoprenoid moiety (i.e., modification style), and the presence of double bonds, are crucial for biological activity. The modification style of the ComX pheromone is more important than the peptide sequence with respect to biological activity.

  2. Enzyme-catalyzed Michael addition for the synthesis of warfarin and its determination via fluorescence quenching of L-tryptophan (United States)

    Yuan, Yusheng; Yang, Liu; Liu, Shaopu; Yang, Jidong; Zhang, Hui; Yan, Jingjing; Hu, Xiaoli


    A sensitive fluorescence sensor for warfarin was proposed via quenching the fluorescence of L-tryptophan due to the interaction between warfarin and L-tryptophan. Warfarin, as one of the most effective anticoagulants, was designed and synthesized via lipase from porcine pancreas (PPL) as a biocatalyst to catalyze the Michael addition of 4-hydroxycoumarin to α, β-unsaturated enones in organic medium in the presence of water. Furthermore, the spectrofluorometry was used to detect the concentration of warfarin with a linear range and detection limit (3σ/k) of 0.04-12.0 μmol L- 1 (R2 = 0.994) and 0.01 μmol L- 1, respectively. Herein, this was the first application of bio-catalytic synthesis and fluorescence for the determination of warfarin. The proposed method was applied to determine warfarin of the drug in tablets with satisfactory results.

  3. Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube (United States)

    Yoosefian, Mehdi; Etminan, Nazanin


    In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.

  4. Comparison of the effects of the M1-receptor antagonist telenzepine and the CCK-receptor antagonist loxiglumide on the pancreatic secretory response to intraduodenal tryptophan in dogs. (United States)

    Teyssen, S; Niebergall-Roth, E; Rausch, A; Beglinger, C; Riepl, R L; Chari, S; Singer, M V


    In six conscious dogs with chronic gastric and pancreatic fistulas we compared the action of different doses (20.25 to 81.0 nmol/kg/h) of the muscarinic M1-receptor antagonist telenzepine, the cholecystokinin (CCK) antagonist loxiglumide (2.5 to 10.0 mg/kg/h) and several combinations of both drugs on the pancreatic secretory response to intraduodenal perfusion of graded loads of tryptophan (0.37-10.0 mmol/h) given against a background of secretin (20.5 pmol/kg/h i.v.). Except for 20.25 nmol/kg/h telenzepine, all tested doses of telenzepine and/or loxiglumide decreased the 180-min integrated bicarbonate response to tryptophan by 55 to 119%. Except of 20.25 nmol/kg/h telenzepine and/or 2.5 mg/kg/h loxiglumide, all tested doses of telezepine and/or loxiglumide inhibited the tryptophan stimulated integrated pancreatic protein responses by 54 to 88%. While telenzepine mainly inhibited the bicarbonate and protein response to the lower loads of tryptophan (0.37-1.1 mmol/h), loxiglumide decreased the response to all loads of tryptophan. The inhibition evoked by the combinations of telenzepine and loxiglumide was not significantly greater than that by single infusion of either drug. The CCK plasma levels basally and in response to tryptophan were not significantly altered by telenzepine and/or loxiglumide. These findings indicate that (1) both enteropancreatic cholinergic reflexes and the hormone CCK are mediators of the protein response to intraduodenal trytophan (2) enteropancreatic cholinergic reflexes are probably the dominant mediators of the response to low amounts of tryptophan, whereas CCK is the major mediator of the response to high loads of tryptophan, (3) the two mediators seem to act independently of each other, and (4) the release of CCK by intestinal trytophan is not influenced by telenzepine or loxiglumide.

  5. Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation



    In Escherichia coli photolyase, excitation of the FAD cofactor in its semireduced radical state (FADH•) induces an electron transfer over ≈15 Å from tryptophan W306 to the flavin. It has been suggested that two additional tryptophans are involved in an electron transfer chain FADH• ← W382 ← W359 ← W306. To test this hypothesis, we have mutated W382 into redox inert phenylalanine. Ultrafast transient absorption studies showed that, in WT photolyase, excited FADH• de...

  6. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis


    Hull, Anna K.; Vij, Rekha; Celenza, John L.


    Plants synthesize numerous secondary metabolites that are used as developmental signals or as defense against pathogens. Tryptophan (Trp)-derived secondary metabolites include camalexin, indole glucosinolates, and indole-3-acetic acid (IAA); however, the steps in their synthesis from Trp or its precursors remain unclear. We have identified two Arabidopsis cytochrome P450s (CYP79B2 and CYP79B3) that can convert Trp to indole-3-acetaldoxime (IAOx), a precursor to IAA and indole glucosinolates.

  7. Simultaneous determination of dopamine, uric acid, and tryptophan using an MWCNT modified carbon paste electrode by square wave voltammetry


    BEITOLLAHI, Hadi; Mohadesi, Alireza; MAHANI, Saeedeh KHALILIZADEH


    A highly sensitive method was investigated for the simultaneous determination of dopamine (DA), uric acid (UA), and tryptophan (TRP) using a multiwall carbon nanotubes/5-amino-3',4'-dimethoxy-biphenyl-2-ol modified carbon paste electrode (5ADMBCNPE). The 5ADMBCNPE displayed excellent electrochemical catalytic activities towards the oxidation of DA, UA, and TRP. The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV), which showe...

  8. The effects of trazodone with L-tryptophan on sleep-disordered breathing in the English bulldog. (United States)

    Veasey, S C; Fenik, P; Panckeri, K; Pack, A I; Hendricks, J C


    Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent disorder, for which there are no universally effective pharmacotherapeutics. We hypothesized that in OSAHS, excitatory serotoninergic influences are important for maintaining patency of the upper airway in waking, and that in sleep, reduced serotoninergic drive plays a significant role in upper airway collapse and OSAHS. The previously reported small responses in humans with OSAHS to serotoninergics may relate, in part, to study design and the drugs/doses selected. We therefore performed multitrials/dose, multidose, randomized sleep studies testing the effectiveness of a combination of serotoninergics, trazodone, and L-tryptophan, in our animal model of OSAHS, the English bulldog. Trazodone/L-tryptophan caused dose-dependent reductions in respiratory events in non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS). During NREMS, the respiratory disturbance index (RDI) +/- standard error was 6.3 +/- 1.4 events/h (placebo) and 0.9 +/- 0.3 (highest dose), p < 0.01. During REMS, the RDI was 31.4 +/- 6.1 events/h (placebo) and 11.5 +/- 4.3 (highest dose), p = 0.002. Trazodone/ L-tryptophan dose-dependently reduced sleep fragmentation, p = 0.03, increased sleep efficiency, p = 0.005, enhanced slow-wave sleep, p = 0.0004, and minimized sleep-related suppression of upper airway dilator activity, p < 0.02. Trazodone with L-tryptophan can treat sleep-disordered breathing (SDB) in an animal model of OSAHS; the effectiveness of this therapy may be related to increased upper airway dilator activity in sleep and/or enhanced slow-wave sleep.

  9. Can breakfast tryptophan and vitamin B6 intake and morning exposure to sunlight promote morning-typology in young children aged 2 to 6 years?

    Directory of Open Access Journals (Sweden)

    Nakade Miyo


    Full Text Available Abstract This study tried to examine, from epidemiological and physiologic anthropological (Japanese culture on breakfast points of view, the integrated effects of the amount of tryptophan and vitamin B6 intake and the following exposure to sunlight on the circadian typology and sleep habits in young Japanese children aged 2 to 6 years, using the newly-evaluated calculating system of tryptophan (Tryptophan Index 2009 and vitamin B6 intake (VitaminB6 Index 2009 at breakfast. The positive and significant correlation was shown between the Morningness-Eveningness (M-E score and the Tryptophan Index and also the Vitamin B6 Index. This positive correlation between M-E score and amount of tryptophan intake was shown only by children who were exposed to sunlight for longer than 10min after breakfast. These results might support the following hypothesis: higher tryptophan and vitamin B6 intake at breakfast could promote the synthesis of serotonin via light stimulation in the morning in children.

  10. Can breakfast tryptophan and vitamin B6 intake and morning exposure to sunlight promote morning-typology in young children aged 2 to 6 years? (United States)


    This study tried to examine, from epidemiological and physiologic anthropological (Japanese culture on breakfast) points of view, the integrated effects of the amount of tryptophan and vitamin B6 intake and the following exposure to sunlight on the circadian typology and sleep habits in young Japanese children aged 2 to 6 years, using the newly-evaluated calculating system of tryptophan (Tryptophan Index 2009) and vitamin B6 intake (VitaminB6 Index 2009) at breakfast. The positive and significant correlation was shown between the Morningness-Eveningness (M-E) score and the Tryptophan Index and also the Vitamin B6 Index. This positive correlation between M-E score and amount of tryptophan intake was shown only by children who were exposed to sunlight for longer than 10min after breakfast. These results might support the following hypothesis: higher tryptophan and vitamin B6 intake at breakfast could promote the synthesis of serotonin via light stimulation in the morning in children. PMID:22738346

  11. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process (United States)

    Tirado-Guizar, Antonio; Paraguay-Delgado, Francisco; Pina-Luis, Georgina E.


    A new ‘turn-on’ Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This ‘turn-on’ response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.

  12. Enantioseparation of (DL)-tryptophan by spiral tube assembly counter-current chromatography and evaluation of mass transfer rate for enantiomers. (United States)

    Tong, Shengqiang; Ito, Yoichiro; Ma, Ying


    Spiral tube assembly counter-current chromatography was successfully applied in enantioseparation of dl-tryptophan using bovine serum albumin as chiral selector. An improved biphasic aqueous-aqueous solvent system 12.0% (w/w) polyethyleneglycol 8000-9.0% (w/w) dibasic potassium phosphate-0.1% ammonia-78.9% water was used as the solvent system for counter-current chromatography, in which bovine serum albumin was predominantly distributed in the lower phase of the two-phase aqueous system. The aqueous-aqueous solvent system gave a very high enantioselectivity for d- and l-tryptophan at α=2.605 along with distribution ratio DD=1.200 and DL=0.461. High peak resolution was obtained for enantioseparation of 2.0mg of dl-tryptophan by spiral tube assembly counter-current chromatography under room temperature. It was found that 0.1% ammonia added in the aqueous-aqueous solvent system greatly improved the enantioseparations. An unusual extremely broad peak for l-tryptophan was observed during enantioseparations. In order to give an explanation, mass transfer rates of d- and l-enantiomers through the interface between the two phases were measured. It was found that l-tryptophan showed lower mass transfer rate than d-tryptophan. Further discussions were proposed for possible reasons for mass transfer rate difference between the enantiomers.

  13. Modulating the direction of carbon flow in Escherichia coli to improve l-tryptophan production by inactivating the global regulator FruR. (United States)

    Liu, Lina; Duan, Xuguo; Wu, Jing


    The fructose repressor (FruR) affects carbon flux through the central metabolic pathways of Escherichia coli. In this study, l-tryptophan production in Escherichia coli FB-04 was improved by knocking out the fruR gene, thereby inactivating FruR. This fruR knockout strain, E. coli FB-04(ΔfruR), not only exhibited higher growth efficiency, it also showed substantially improved l-tryptophan production. l-tryptophan production by E. coli FB-04(ΔfruR) and l-tryptophan yield per glucose were increased by 62.5% and 52.4%, respectively, compared with the parent E. coli FB-04. Metabolomics analysis showed that the fruR knockout significantly enhances metabolic flow through glycolysis, the pentose phosphate pathway and the TCA cycle, increasing levels of critical precursors and substrates for l-tryptophan biosynthesis. These results indicate that fruR deletion should enhance l-tryptophan production and improve the efficiency of carbon source utilization independent of genetic background.

  14. Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival. (United States)

    Brinzer, Robert A; Henderson, Louise; Marchiondo, Alan A; Woods, Debra J; Davies, Shireen A; Dow, Julian A T


    Insecticides and associated synergists are rapidly losing efficacy in target insect pest populations making the discovery of alternatives a priority. To discover novel targets for permethrin synergists, metabolomics was performed on permethrin-treated Drosophila melanogaster. Changes were observed in several metabolic pathways including those for amino acids, glycogen, glycolysis, energy, nitrogen, NAD(+), purine, pyrimidine, lipids and carnitine. Markers for acidosis, ammonia stress, oxidative stress and detoxification responses were also observed. Many of these changes had not been previously characterized after permethrin exposure. From the altered pathways, tryptophan catabolism was selected for further investigation. The knockdown of some tryptophan catabolism genes (vermilion, cinnabar and CG6950) in the whole fly and in specific tissues including fat body, midgut and Malpighian tubules using targeted RNAi resulted in altered survival phenotypes against acute topical permethrin exposure. The knockdown of vermilion, cinnabar and CG6950 in the whole fly also altered survival phenotypes against chronic oral permethrin, fenvalerate, DDT, chlorpyriphos and hydramethylnon exposure. Thus tryptophan catabolism has a previously uncharacterized role in defence against insecticides, and shows that metabolomics is a powerful tool for target identification in pesticide research.

  15. Double plasmonic profile of tryptophan-silver nano-crystals—Temperature sensing and laser induced antimicrobial activity (United States)

    Roy, Sarita; Basak, Soumen; Ray, Pulak; Dasgupta, Anjan Kr.


    Surface plasmon resonance (SPR) for spherical shaped silver nanoparticles showing double maxima at ∼390 nm and ∼520 nm respectively is reported. Self assembly of silver nanoparticles grown on tryptophan template leads to emergence of equal intensity double plasmon resonance (EIDPR). While for rod shaped nano-forms such double plasmon is explainable but for spherical shaped forms, such double plasmon can be explained on the basis of bidirectional formation of silver cluster in which attachment of silver at two nitrogen atom locations of tryptophan molecule seems to be obligatory. The absence of double resonance in case of silver nanoclusters formed with other amino acids or N-acetyl L-tryptophanamide (NATA), where bidirectional sbnd NH2 attachment is not possible, validates the proposed EIDPR mechanism. Electron micrograph of EIDPR particle indicates a bi-periodic fringe pattern indicating unusual crystalline property. Apart from sensing tryptophan, the double plasmon peaks are sensitive to temperature. Furthermore, the particle can be used as a smart killing agent showing bactericidal activity only upon exposure to low power laser.

  16. Metabolism of tryptophan, methionine and arginine in Diplodus sargus larvae fed rotifers: effect of amino acid supplementation. (United States)

    Saavedra, M; Conceição, L E C; Pousão-Ferreira, P; Dinis, M T


    Dietary amino acids imbalances have been described when fish larvae are fed rotifers, what may lead to a reduction in growth rate. The tube-feeding technique can be used to assess the effect of free amino acid short term supplementation. In this study supplementation of tryptophan, methionine and arginine were tested in Diplodus sargus. Single crystalline (14)C amino acids as well as a mix of (14)C amino acids were used as tracers to compare results of individual amino acids metabolism with the average of all amino acids. The results show low absorption efficiencies for tryptophan (70%) and arginine (80%) and similar absorption for methionine (90%) when compared with the average of all amino acids. Supplementation of these amino acids seems to be viable but it did not result in higher retention compared to the amino acid mix. This means that tryptophan, methionine and arginine are probably not the limiting amino acid when Diplodus sargus larvae are fed rotifers. However, supplementation in these IAA may be required for their roles as precursors of important molecules other than proteins, in order to improve larval quality and/or performance.

  17. Syntheses of halogen derivatives of L-tryptophan, L-tyrosine and L-phenylalanine labeled with hydrogen isotopes. (United States)

    Pająk, Małgorzata; Pałka, Katarzyna; Winnicka, Elżbieta; Kańska, Marianna


    Halogenated, labeled with tritium and doubly with deuterium and tritium, derivatives of L-tryptophan, i.e. 5'-bromo-[2-(3)H]-, 5'-bromo-[2-(2)H/(3)H]-, 5'-fluoro-[2-(3)H]-5'-fluoro-[2-(2)H/(3)H]-, 6'-fluoro-[2-(3)H]-, 6'-fluoro-[2-(2)H/(3)H]-L-tryptophan, as well as, L-tyrosine, i.e. 3'-fluoro-[2-(3)H]-, 3'-fluoro-[2-(2)H/(3)H]-, 3'-chloro-[2-(3)H]-, and 3'-chloro-[2-(2)H/(3)H]-L-tyrosine, and also L-phenylalanine, i.e. 2'-fluoro-[(3S)-(3)H]-, 2'-fluoro-[(3S)-(2)H/(3) H]-, 2'-chloro-[(3S)-(3)H]-, 2'-chloro-[(3S)-(2)H/(3)H]-, 4'-chloro-[(3S)-(3)H]-, and 4'-chloro-[(3S)-(2)H/(3)H]-L-phenylalanine were synthesized using enzymatic methods. Isotopomers of L-tryptophan were synthesized by coupling of halogenated indoles with S-methyl-L-cysteine carried out in deuteriated or tritiated incubation media. Labeled halogenated derivatives of L-tyrosine were obtained by the enzymatically supported exchange between halogenated L-tyrosine and isotopic water. Labeled halogenated isotopologues of L-Phe were synthesized by the enzymatic addition of ammonia to halogenated cinnamic acid. As a source of hydrogen tritiated water (HTO) and heavy water (D2O) with addition of HTO were used.

  18. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth. (United States)

    Kanjanaphachoat, Parawee; Wei, Bi-Yin; Lo, Shuen-Fang; Wang, I-Wen; Wang, Chang-Sheng; Yu, Su-May; Yen, Ming-Liang; Chiu, Sheng-Hsien; Lai, Chien-Chen; Chen, Liang-Jwu


    A mutant M47286 with a stunted growth, low fertility and dark-brown phenotype was identified from a T-DNA-tagged rice mutant library. This mutant contained a copy of the T-DNA tag inserted at the location where the expression of two putative tryptophan decarboxylase genes, TDC-1 and TDC-3, were activated. Enzymatic assays of both recombinant proteins showed tryptophan decarboxylase activities that converted tryptophan to tryptamine, which could be converted to serotonin by a constitutively expressed tryptamine 5' hydroxylase (T5H) in rice plants. Over-expression of TDC-1 and TDC-3 in transgenic rice recapitulated the stunted growth, darkbrown phenotype and resulted in a low fertility similar to M47286. The degree of stunted growth and dark-brown color was proportional to the expression levels of TDC-1 and TDC-3. The levels of tryptamine and serotonin accumulation in these transgenic rice lines were also directly correlated with the expression levels of TDC-1 and TDC-3. A mass spectrometry assay demonstrated that the darkbrown leaves and hulls in the TDC-overexpressing transgenic rice were caused by the accumulation of serotonin dimer and that the stunted growth and low fertility were also caused by the accumulation of serotonin and serotonin dimer, but not tryptamine. These results represent the first evidence that over-expression of TDC results in stunted growth, low fertility and the accumulation of serotonin, which when converted to serotonin dimer, leads to a dark brown plant color.

  19. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. (United States)

    Benstein, Ruben Maximilian; Ludewig, Katja; Wulfert, Sabine; Wittek, Sebastian; Gigolashvili, Tamara; Frerigmann, Henning; Gierth, Markus; Flügge, Ulf-Ingo; Krueger, Stephan


    In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and phosphoserine aminotransferase1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.

  20. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.


    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  1. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase (United States)

    Lewis-Ballester, Ariel; Forouhar, Farhad; Kim, Sung-Mi; Lew, Scott; Wang, YongQiang; Karkashon, Shay; Seetharaman, Jayaraman; Batabyal, Dipanwita; Chiang, Bing-Yu; Hussain, Munif; Correia, Maria Almira; Yeh, Syun-Ru; Tong, Liang


    Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases. PMID:27762317

  2. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis

    Directory of Open Access Journals (Sweden)

    Trisha A. Jenkins


    Full Text Available The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis.

  3. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques (United States)

    Ghisaidoobe, Amar B. T.; Chung, Sang J.


    Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (λEX ∼ 280 nm, λEM ∼ 350 nm), in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the protein’s) local environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic Förster resonance energy transfer (iFRET), a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins. PMID:25490136

  4. Yeast contribution to melatonin, melatonin isomers and tryptophan ethyl ester during alcoholic fermentation of grape musts. (United States)

    Vigentini, Ileana; Gardana, Claudio; Fracassetti, Daniela; Gabrielli, Mario; Foschino, Roberto; Simonetti, Paolo; Tirelli, Antonio; Iriti, Marcello


    Melatonin (MEL) has been found in some medicinal and food plants, including grapevine, a commodity of particular interest for the production of wine, a beverage of economic relevance. It has also been suggested that MEL in wine may, at least in part, contribute to the health-promoting properties attributed to this beverage and, possibly, to other traditional Mediterranean foodstuffs. After a preliminary screening of 9 yeast strains in laboratory medium, three selected strains (Saccharomyces cerevisiae EC1118, Torulaspora delbrueckii CBS1146(T) and Zygosaccharomyces bailii ATCC36947(T) ) were inoculated in experimental musts obtained from 2 white (Moscato and Chardonnay) and 2 red (Croatina and Merlot) grape varieties. The production of MEL, melatonin isomers (MIs) and tryptophan ethyl ester (TEE) was monitored during the alcoholic fermentation. The screening showed that the three investigated strains produced the highest concentrations of MEL and two MIs in optimal growth conditions. However, MEL and MIs were not produced in oenological conditions, but the three strains synthesized high concentrations of a new MI and TEE in musts.

  5. Tryptophan-Kynurenine Metabolism and Insulin Resistance in Hepatitis C Patients

    Directory of Open Access Journals (Sweden)

    G. F. Oxenkrug


    Full Text Available Chronic hepatitis C virus (HCV infection is associated with 50% incidence of insulin resistance (IR that is fourfold higher than that in non-HCV population. IR impairs the outcome of antiviral treatment. The molecular mechanisms of IR in HCV are not entirely clear. Experimental and clinical data suggested that hepatitis C virus per se is diabetogenic. However, presence of HCV alone does not affect IR. It was proposed that IR is mediated by proinflammatory cytokines, mainly by TNF-alpha. TNF-alpha potentiates interferon-gamma-induced transcriptional activation of indoleamine 2,3-dioxygenase, the rate-limiting enzyme of tryptophan- (TRP- kynurenine (KYN metabolism. Upregulation of TRP-KYN metabolism was reported in HCV patients. KYN and some of its derivatives affect insulin signaling pathways. We hypothesized that upregulation of TRP-KYN metabolism might contribute to the development of IR in HCV. To check this suggestion, we evaluated serum concentrations of TRP and KYN and HOMA-IR and HOMA-beta in 60 chronic HCV patients considered for the treatment with IFN-alpha. KYN and TRP concentrations correlated with HOMA-IR and HOMA-beta scores. Our data suggest the involvement of KYN and its metabolites in the development of IR in HCV patients. TRP-KYN metabolism might be a new target for prevention and treatment of IR in HCV patients.

  6. Interaction of Small Zinc Complexes with Globular Proteins and Free Tryptophan

    Directory of Open Access Journals (Sweden)

    Joann M. Butkus


    Full Text Available A series of eight water soluble anionic, cationic, and neutral zinc(II complexes were synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA, human serum albumin (HSA, lysozyme, and free tryptophan (Trp was investigated using steady-state fluorescence spectroscopy. Static and dynamic fluorescence quenching analysis based on Stern-Volmer kinetics was conducted, and the decrease in fluorescence intensity of the Trp residue(s can be ascribed predominantly to static quenching that occurs when the Zn complex binds to the protein and forms a nonfluorescent complex. The role played by the nature of the ligand, the metal, and complex charge in quenching Trp fluorescence was investigated. The binding association constants (Ka ranged from 104 to 1010 M−1 and indicate that complexes with planar aromatic features have the strongest affinity for globular proteins and free Trp. Complexes with nonaromatic features failed to interact with these proteins at or in the vicinity of the Trp residues. These interactions were studied over a range of temperatures, and binding was found to weaken with the increase in temperature and was exothermic with a negative change in entropy. The thermodynamic parameters suggest that binding of Zn complexes to the proteins is a highly spontaneous and favorable process.

  7. Neurodegeneration in Parkinson's disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. (United States)

    Anderson, George; Maes, Michael


    The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived 'comorbidities', suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood-brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.

  8. Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy. (United States)

    Petrović, Dejan M; Leenhouts, Kees; van Roosmalen, Maarten L; Kleinjan, Fenneke; Broos, Jaap


    The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a tryptophan analog fluorescence spectroscopy approach is presented to monitor the LysM-ligand interaction using the LysM of the N-acetylglucosaminidase enzyme of Lactococcus lactis. A three-dimensional model of this LysM protein was built based on available structural information of a homolog. This model allowed choosing the amino acid positions to be labeled with a Trp analog. Four functional single-Trp LysM mutants and one double-Trp LysM mutant were constructed and biosynthetically labeled with 7-azatryptophan or 5-hydroxytryptophan. These Trp analogs feature red-shifted absorption spectra, enabling the monitoring of the LysM-ligand interaction in media with a Trp background. The emission intensities of four of the five LysM constructs were found to change markedly on exposure to either L. lactis bacterium-like particles or peptidoglycan as ligands. The method reported here is suitable to monitor LysM-ligand interactions at (sub)micromolar LysM concentrations and can be used for the detection of low levels of peptidoglycan or microbes in solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Central serotonergic hypofunction in autism: results of the 5-hydroxy-tryptophan challenge test. (United States)

    Croonenberghs, Jan; Wauters, Annick; Deboutte, Dirk; Verkerk, Robert; Scharpe, Simon; Maes, Michael


    Some studies have suggested that disorders in the central serotonergic function may play a role in the pathophysiology of autistic disorder. In order to assess the central serotonergic turnover in autism, this study examines the cortisol and prolactin responses to administration of L-5-hydroxy-tryptophan (5-HTP), the direct precursor of 5-HT in 18 male, post-pubertal, Caucasian autistic patients (age 13-19 y.; I.Q.>55) and 22 matched healthy volunteers. Serum cortisol and prolactin were determined 45 and 30 minutes before administration of 5-HTP (4 mg/kg in non enteric-coated tablets) or an identical placebo in a single blind order and, thereafter, every 30 minutes over a 3-hour period. The 5-HTP-induced increases in serum cortisol were significantly lower in autistic patients than in controls, whereas there were no significant differences in 5-HTP-induced prolactin responses between both study groups. In baseline conditions, no significant differences were found in serum cortisol and prolactin between autistic and normal children. The results suggest that autism is accompanied by a central serotonergic hypoactivity and that the latter could play a role in the pathophysiology of autism.

  10. Effect of Tryptophan Hydroxylase-2 rs7305115 SNP on suicide attempts risk in major depression

    Directory of Open Access Journals (Sweden)

    Zhang Yuqi


    Full Text Available Abstract Background Suicide and major depressive disorders (MDD are strongly associated, and genetic factors are responsible for at least part of the variability in suicide risk. We investigated whether variation at the tryptophan hydroxylase-2 (TPH2 gene rs7305115 SNP may predispose to suicide attempts in MDD. Methods We genotyped TPH2 gene rs7305115 SNP in 215 MDD patients with suicide and matched MDD patients without suicide. Differences in behavioral and personality traits according to genotypic variation were investigated by logistic regression analysis. Results There were no significant differences between MDD patients with suicide and controls in genotypic (AG and GG frequencies for rs7305115 SNP, but the distribution of AA genotype differed significantly (14.4% vs. 29.3%, p p p Conclusions The study suggested that hopelessness, negative life events and family history of suicide were risk factors of attempted suicide in MDD while the TPH2 rs7305115A remained a significant protective predictor of suicide attempts.

  11. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. (United States)

    Mondanelli, Giada; Bianchi, Roberta; Pallotta, Maria Teresa; Orabona, Ciriana; Albini, Elisa; Iacono, Alberta; Belladonna, Maria Laura; Vacca, Carmine; Fallarino, Francesca; Macchiarulo, Antonio; Ugel, Stefano; Bronte, Vincenzo; Gevi, Federica; Zolla, Lello; Verhaar, Auke; Peppelenbosch, Maikel; Mazza, Emilia Maria Cristina; Bicciato, Silvio; Laouar, Yasmina; Santambrogio, Laura; Puccetti, Paolo; Volpi, Claudia; Grohmann, Ursula


    Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1(+) myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings.

  12. Tryptophan hydroxylase Is Required for Eye Melanogenesis in the Planarian Schmidtea mediterranea.

    Directory of Open Access Journals (Sweden)

    Bramwell G Lambrus

    Full Text Available Melanins are ubiquitous and biologically important pigments, yet the molecular mechanisms that regulate their synthesis and biochemical composition are not fully understood. Here we present a study that supports a role for serotonin in melanin synthesis in the planarian Schmidtea mediterranea. We characterize the tryptophan hydroxylase (tph gene, which encodes the rate-limiting enzyme in serotonin synthesis, and demonstrate by RNA interference that tph is essential for melanin production in the pigment cups of the planarian photoreceptors. We exploit this phenotype to investigate the biological function of pigment cups using a quantitative light-avoidance behavioral assay. Planarians lacking eye pigment remain phototactic, indicating that eye pigmentation is not essential for light avoidance in S. mediterranea, though it improves the efficiency of the photophobic response. Finally, we show that the eye pigmentation defect observed in tph knockdown animals can be rescued by injection of either the product of TPH, 5-hydroxytryptophan (5-HTP, or serotonin. Together, these results highlight a role for serotonin in melanogenesis, perhaps as a regulatory signal or as a pigment substrate. To our knowledge, this is the first example of this relationship to be reported outside of mammalian systems.

  13. Identifying regulators for EAG1 channels with a novel electrophysiology and tryptophan fluorescence based screen.

    Directory of Open Access Journals (Sweden)

    Tinatin I Brelidze

    Full Text Available BACKGROUND: Ether-à-go-go (EAG channels are expressed throughout the central nervous system and are also crucial regulators of cell cycle and tumor progression. The large intracellular amino- and carboxy- terminal domains of EAG1 each share similarity with known ligand binding motifs in other proteins, yet EAG1 channels have no known regulatory ligands. METHODOLOGY/PRINCIPAL FINDINGS: Here we screened a library of small biologically relevant molecules against EAG1 channels with a novel two-pronged screen to identify channel regulators. In one arm of the screen we used electrophysiology to assess the functional effects of the library compounds on full-length EAG1 channels. In an orthogonal arm, we used tryptophan fluorescence to screen for binding of the library compounds to the isolated C-terminal region. CONCLUSIONS/SIGNIFICANCE: Several compounds from the flavonoid, indole and benzofuran chemical families emerged as binding partners and/or regulators of EAG1 channels. The two-prong screen can aid ligand and drug discovery for ligand-binding domains of other ion channels.

  14. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. (United States)

    Yoshikawa, Takanori; Ito, Momoyo; Sumikura, Tsuyoshi; Nakayama, Akira; Nishimura, Takeshi; Kitano, Hidemi; Yamaguchi, Isomaro; Koshiba, Tomokazu; Hibara, Ken-Ichiro; Nagato, Yasuo; Itoh, Jun-Ichi


    Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.

  15. Lysine, Methionine and Tryptophan Requirements of Beijing Ducklings of O-2 Weeks of Age

    Institute of Scientific and Technical Information of China (English)


    A feed trial was conducted with a total of 1 134 Beijing ducklings to study the optimum level of dietary lysine (Lys) (0.95,1.10, 1.25%), methionine (Met) (0.26, 0.46, 0.66%) and tryptophan (Trp) (0.20, 0.30, 0.40%) for those ducklings during aphase of 0-2 weeks. Ducklings were randomly allotted to 27 groups according to a 3 × 3 × 3 factorial arrangement and fed a basal corn-soybean-peanut meal diet containing 20.26% CP, 12.45 MJ kg-1 ME. The results from this study indicate that Lys affected body weight (P<0.01), feed intake (0-14 d) (P<0.01), but had no effect on feed/gain (0-14 d) (P>0.05), uric acid concentration (P > 0.05). Methionine influenced body weight (P < 0.01), feed/gain (P < 0.05), and feed intake (P < 0.01). Tryphtophan had no effect on indices measured. The requirement of the Lys and Met for Beijing ducklings of 0-2 weeks of age were 1.10 and 0.46%. The requirement of Trp for Beijing ducklings of 0-2 weeks of age was not more than 0.20%.

  16. Activated immune system and inflammation in healthy ageing: relevance for tryptophan and neopterin metabolism. (United States)

    Capuron, Lucile; Geisler, Simon; Kurz, Katharina; Leblhuber, Friedrich; Sperner-Unterweger, Barbara; Fuchs, Dietmar


    Immune activation not only accompanies inflammation in various disorders including infections, autoimmune syndromes and cancer, but it also represents a characteristic feature of ageing. Immune deviations which are most widely expressed in the elderly include increased neopterin production and tryptophan breakdown. These biochemical events result from the activation of the immune system and are preferentially triggered by pro-inflammatory stimuli, such as the Th1-type cytokine interferon-γ. They seem to play a role in the development of several age-related disorders and might be involved in the pathogenesis of common symptoms, including neurobehavioral disorders (e.g., cognitive and mood disturbances), anemia, cachexia, weight-loss but also immunodeficiency. Concentrations of the biomarkers neopterin and Kyn/Trp were found to be predictive of overall disease specific mortality in coronary artery disease, infections and various types of cancer. Immune activation and inflammation are also accompanied by high output of reactive oxygen species and thereby may lead to the development of oxidative stress and contribute to the vitamin deficiency which is often observed in the elderly. Accordingly, increases in neopterin were found to correlate with a substantial decline in key vitamins, including folate and vitamin-B6, - B12, -C, -D and -E.

  17. Interactions between the nuclear matrix and an enhancer of the tryptophan oxygenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Kaneoka, Hidenori [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Miyake, Katsuhide, E-mail: [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Iijima, Shinji [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)


    The gene for tryptophan oxygenase (TO) is expressed in adult hepatocytes in a tissue- and differentiation-specific manner. The TO promoter has two glucocorticoid-responsive elements (GREs), and its expression is regulated by glucocorticoid hormone in the liver. We found a novel GRE in close proximity to a scaffold/matrix attachment region (S/MAR) that was located around -8.5 kb from the transcriptional start site of the TO gene by electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) assays. A combination of nuclear fractionation and quantitative PCR analysis showed that the S/MAR was tethered to the nuclear matrix in both fetal and adult hepatocytes. ChIP assay showed that, in adult hepatocytes, the S/MAR-GRE and the promoter proximal regions interacted with lamin and heterogeneous nuclear ribonucleoprotein U in a dexamethasone dependent manner, but this was not the case in fetal cells, suggesting that developmental stage-specific expression of the TO gene might rely on the binding of the enhancer (the -8.5 kb S/MAR-GRE) and the promoter to the inner nuclear matrix.

  18. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import.

    Directory of Open Access Journals (Sweden)

    Chong He


    Full Text Available The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS, but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.

  19. Enantiomer-Selective Photo-Induced Reaction of Protonated Tryptophan with Disaccharides in the Gas Phase (United States)

    Doan, Thuc N.; Fujihara, Akimasa


    In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two uc(d)-glucose units, such as uc(d)-maltose or uc(d)-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+(uc(l)-Trp)(uc(d)-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+(uc(d)-Trp)(uc(d)-maltose). For uc(d)-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links uc(d)-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.

  20. Intravenous tryptophan administration attenuates cortisol secretion induced by intracerebroventricular injection of noradrenaline. (United States)

    Sutoh, Madoka; Kasuya, Etsuko; Yayou, Ken-ichi; Ohtani, Fumihiro; Kobayashi, Yosuke


    This study was conducted to investigate the possibility of suppression of stress-induced cortisol (CORT) secretion by tryptophan (TRP) administration and to better understand its regulatory mechanisms by using a noradrenaline (NA) injection into the third ventricle (3V) as a stress model in cattle. A total of 25 Holstein steers with a cannula in the 3V were used. First, the increase in CORT secretion was observed following a NA injection into the 3V in a dose-dependent manner, verifying the appropriateness of this treatment as a stress model of CORT secretion (Experiment 1). The effect of prior-administration of TRP into peripheral blood with a dose that has been demonstrated to increase brain 5-hydroxytryptamine levels on the elevation of plasma CORT induced by NA or corticotropin-releasing hormone (CRH) was then examined (Experiment 2). The prior administration of TRP suppressed NA-induced, but not CRH-induced, CORT elevation. These results suggest that an increase in TRP absorption into peripheral blood could suppress the stress-induced CORT secretion in cattle via the attenuation of the stimulatory effect of NA on the hypothalamic CRH release.

  1. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity (United States)


    Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5′-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography—the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry—to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4′ of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites. PMID:27779384

  2. Polymorphism of the tryptophan hydroxylase 2 (TPH2 gene is associated with chimpanzee neuroticism.

    Directory of Open Access Journals (Sweden)

    Kyung-Won Hong

    Full Text Available In the brain, serotonin production is controlled by tryptophan hydroxylase 2 (TPH2, a genotype. Previous studies found that mutations on the TPH2 locus in humans were associated with depression and studies of mice and studies of rhesus macaques have shown that the TPH2 locus was involved with aggressive behavior. We previously reported a functional single nucleotide polymorphism (SNP in the form of an amino acid substitution, Q468R, in the chimpanzee TPH2 gene coding region. In the present study we tested whether this SNP was associated with neuroticism in captive and wild-born chimpanzees living in Japan and Guinea, respectively. Even after correcting for multiple tests (Bonferroni p = 0.05/6 = 0.008, Q468R was significantly related to higher neuroticism (β = 0.372, p = 0.005. This study is the first to identify a genotype linked to a personality trait in chimpanzees. In light of the prior studies on humans, mice, and rhesus macaques, these findings suggest that the relationship between neuroticism and TPH2 has deep phylogenetic roots.

  3. Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. (United States)

    Genestet, Charlotte; Le Gouellec, Audrey; Chaker, Hichem; Polack, Benoit; Guery, Benoit; Toussaint, Bertrand; Stasia, Marie José


    Pseudomonas aeruginosa is responsible for persistent infections in cystic fibrosis patients, suggesting an ability to circumvent innate immune defenses. This bacterium uses the kynurenine pathway to catabolize tryptophan. Interestingly, many host cells also produce kynurenine, which is known to control immune system homeostasis. We showed that most strains of P. aeruginosa isolated from cystic fibrosis patients produce a high level of kynurenine. Moreover, a strong transcriptional activation of kynA (the first gene involved in the kynurenine pathway) was observed upon contact with immune cells and particularly with neutrophils. In addition, using coculture of human neutrophils with various strains of P. aeruginosa producing no (ΔkynA) or a high level of kynurenine (ΔkynU or ΔkynA pkynA), we demonstrated that kynurenine promotes bacterial survival. In addition, increasing the amount kynurenine inhibits reactive oxygen species production by activated neutrophils, as evaluated by chemiluminescence with luminol or isoluminol or SOD-sensitive cytochrome c reduction assay. This inhibition is due neither to a phagocytosis defect nor to direct NADPH oxidase inhibition. Indeed, kynurenine has no effect on oxygen consumption by neutrophils activated by PMA or opsonized zymosan. Using in vitro reactive oxygen species-producing systems, we showed that kynurenine scavenges hydrogen peroxide and, to a lesser extent, superoxide. Kynurenine׳s scavenging effect occurs mainly intracellularly after bacterial stimulation, probably in the phagosome. In conclusion, the kynurenine pathway allows P. aeruginosa to circumvent the innate immune response by scavenging neutrophil reactive oxygen species production.

  4. Lipidomic profiling of tryptophan hydroxylase 2 knockout mice reveals novel lipid biomarkers associated with serotonin deficiency. (United States)

    Weng, Rui; Shen, Sensen; Burton, Casey; Yang, Li; Nie, Honggang; Tian, Yonglu; Bai, Yu; Liu, Huwei


    Serotonin is an important neurotransmitter that regulates a wide range of physiological, neuropsychological, and behavioral processes. Consequently, serotonin deficiency is involved in a wide variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, schizophrenia, and depression. The pathophysiological mechanisms underlying serotonin deficiency, particularly from a lipidomics perspective, remain poorly understood. This study therefore aimed to identify novel lipid biomarkers associated with serotonin deficiency by lipidomic profiling of tryptophan hydroxylase 2 knockout (Tph2-/-) mice. Using a high-throughput normal-/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry (NP/RP 2D LC-QToF-MS) method, 59 lipid biomarkers encompassing glycerophospholipids (glycerophosphocholines, lysoglycerophosphocholines, glycerophosphoethanolamines, lysoglycerophosphoethanolamines glycerophosphoinositols, and lysoglycerophosphoinositols), sphingolipids (sphingomyelins, ceramides, galactosylceramides, glucosylceramides, and lactosylceramides) and free fatty acids were identified. Systemic oxidative stress in the Tph2-/- mice was significantly elevated, and a corresponding mechanism that relates the lipidomic findings has been proposed. In summary, this work provides preliminary findings that lipid metabolism is implicated in serotonin deficiency.

  5. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E; Jedrzejczak, Robert P.; Kaushik, Virendar K; Clatworthy, Anne E; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.


    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB a–b-subunit interface and affects multiple steps in the enzyme’s overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  6. Lysine-Tryptophan-Crosslinked Peptides Produced by Radical SAM Enzymes in Pathogenic Streptococci. (United States)

    Schramma, Kelsey R; Seyedsayamdost, Mohammad R


    Macrocycles represent a common structural framework in many naturally occurring peptides. Several strategies exist for macrocyclization, and the enzymes that incorporate them are of great interest, as they enhance our repertoire for creating complex molecules. We recently discovered a new peptide cyclization reaction involving a crosslink between the side chains of lysine and tryptophan that is installed by a radical SAM enzyme. Herein, we characterize relatives of this metalloenzyme from the pathogens Streptococcus agalactiae and Streptococcus suis. Our results show that the corresponding enzymes, which we call AgaB and SuiB, contain multiple [4Fe-4S] clusters and catalyze Lys-Trp crosslink formation in their respective substrates. Subsequent high-resolution-MS and 2D-NMR analyses located the site of macrocyclization. Moreover, we report that AgaB can accept modified substrates containing natural or unnatural amino acids. Aside from providing insights into the mechanism of this unusual modification, the substrate promiscuity of AgaB may be exploited to create diverse macrocyclic peptides.

  7. Solvent Reorganization Energy of Intramolecular Electron Transfer in Peptides Involving Tryptophan and Tyrosine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ying-Yi; MA Jian-Yi; ZHAO Xiao-Jun; LI Xiang-Yuan


    Intramolecular electron transfer(ET)from tyrosine to tryptophan within peptide Trp-(Pro),-Tyr(n=1,2)has been investigated by ab initio calculation associated with a proper consideration of solvent effect by a continuum model.After geometry optimizations of the charge-localized reactant and product,double-well potentials have been constructed by adopting the linear reaction coordinate.The transition state has been determined by finding the crossing point of the potential energy curves.The realistic ET reaction was found complicated in polar solvent,hence the solvent reorganization energy of the electron transfer has received especial attention in this work.Apply-ing the nonequilibrium solvation procedure implemented based on the polarizable continuum model by the authors,the solvent reorganization energy was estimated to be 87.36 kJ/mol for the ET in Trp-Pro-Tyr system and 105.80 kJ/mol for Trp-(Pro)2-Tyr.

  8. Optimization strategies in the modelling of SG-SMB applied to separation of phenylalanine and tryptophan (United States)

    Diógenes Tavares Câmara, Leôncio


    The solvent-gradient simulated moving bed process (SG-SMB) is the new tendency in the performance improvement if compared to the traditional isocratic solvent conditions. In such SG-SMB process the modulation of the solvent strength leads to significant increase in the purities and productivity followed by reduction in the solvent consumption. A stepwise modelling approach was utilized in the representation of the interconnected chromatographic columns of the system combined with a lumped mass transfer model between the solid and liquid phase. The influence of the solvent modifier was considered applying the Abel model which takes into account the effect of modifier volume fraction over the partition coefficient. Correlation models of the mass transfer parameters were obtained through the retention times of the solutes according to the volume fraction of modifier. The modelling and simulations were carried out and compared to the experimental SG-SMB separation unit of the amino acids Phenylalanine and Tryptophan. The simulation results showed the great potential of the proposed modelling approach in the representation of such complex systems. The simulations showed great agreement fitting the experimental data of the amino acids concentrations both at the extract as well as at the raffinate. A new optimization strategy was proposed in the determination of the best operating conditions which uses the phi-plot concept.

  9. Using Glutamic Acid, Phenylalanine and Tryptophan to Synthesize Capped Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamyar Khoshnevisan


    Full Text Available Introduction: The study and investigation of gold nanoparticles produced by amino acid is one of the interesting and applied issues in nanotechnology. In this study, amino acids were used to reduce gold cations as well as an agent to cap gold nanoparticles. In fact, strong bound of amino groups to amino acid and protein on the gold nanoparticles surface indicate the medical applications of these materials. Methods: In this study, gold nanoparticles were prepared and functionalized by using solution reduction containing gold cations with optimum concentration (0.005 M, and also prepared by using glutamic acid, phenylalanine and tryptophan with optimum concentration (0.025 M. Results: The investigation of optimum condition for gold solution and amino acids and also determination of gold nanoparticles were done by UV-Vis. The nanoparticles size were reported 5-20, 10-20 and 20-30 nm respectively by transmission electron microscopy and dynamic light scattering techniques, which is appropriate for biological activities. Conclusion: The comparison of the data from experimental and quantum calculations demonstrated that amino acids have strong band when they are conjugated by anion state. Free carboxylic groups of capped gold nanoparticles with glutamic acid are one of the suitable and capable beads for binding to biological agents.

  10. Targeted metagenomics: finding rare tryptophan dimer natural products in the environment. (United States)

    Chang, Fang-Yuan; Ternei, Melinda A; Calle, Paula Y; Brady, Sean F


    Natural product discovery from environmental genomes (metagenomics) has largely been limited to the screening of existing environmental DNA (eDNA) libraries. Here, we have coupled a chemical-biogeographic survey of chromopyrrolic acid synthase (CPAS) gene diversity with targeted eDNA library production to more efficiently access rare tryptophan dimer (TD) biosynthetic gene clusters. A combination of traditional and synthetic biology-based heterologous expression efforts using eDNA-derived gene clusters led to the production of hydroxysporine (1) and reductasporine (2), two bioactive TDs. As suggested by our phylogenetic analysis of CPAS genes, identified in our survey of crude eDNA extracts, reductasporine (2) contains an unprecedented TD core structure: a pyrrolinium indolocarbazole core that is likely key to its unusual bioactivity profile. This work demonstrates the potential for the discovery of structurally rare and biologically interesting natural products using targeted metagenomics, where environmental samples are prescreened to identify the most phylogenetically unique gene sequences and molecules associated with these genes are accessed through targeted metagenomic library construction and heterologous expression.

  11. Acute hyponatremia after cardioplegia by histidine-tryptophane-ketoglutarate – a retrospective study

    Directory of Open Access Journals (Sweden)

    Lindner Gregor


    Full Text Available Abstract Background Hyponatremia is the most common electrolyte disorder in hospitalized patients and is known to be associated with increased mortality. The administration of antegrade single-shot, up to two liters, histidine-tryptophane-ketoglutarate (HTK solution for adequate electromechanical cardiac arrest and myocardial preservation during minimally invasive aortic valve replacement (MIAVR is a standard procedure. We aimed to determine the impact of HTK infusion on electrolyte and acid–base balance. Methods In this retrospective analysis we reviewed data on patient characteristics, type of surgery, arterial blood gas analysis during surgery and intra-/postoperative laboratory results of patients receiving surgery for MIAVR at a large tertiary care university hospital. Results A total of 25 patients were included in the study. All patients were normonatremic at start of surgery. All patients developed hyponatremia after administration of HTK solution with a significant drop of serum sodium of 15 mmol/L (p  Conclusions Acute hyponatremia during cardioplegia with HTK solution is isotonic and should probably not be corrected without presence of hypotonicity as confirmed by measurement of serum osmolality.

  12. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.


    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α–β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  13. Nocturnal plasma levels of melatonin in quails (Coturnix japonica injected with l-5-hydroxy-tryptophan

    Directory of Open Access Journals (Sweden)

    LC. Reis

    Full Text Available This study aimed to demonstrate the influence of the systemic administration of l-5-hydroxy-tryptophan (L-HTP on the plasma levels of melatonin during the dark period in quails. Throughout daylight, the plasma levels of melatonin did not differ significantly, oscillating between 110.2 ± 15.8 pg.mL-1 and 157.4 ± 34.8 pg.mL-1, from 8 to 16 hours. L-HTP (25, through the intracelomic route administered at 18 hours lessened significantly the nocturnal increase of the plasma levels of melatonin (controls, 327.3 ± 20.1 and 315.8 ± 20.9 pg.mL-1 vs. 242.1 ± 24.8 and 217.5 ± 21 pg.mL-1, respectively, at 20 and 24 hours, P < 0.05. The results obtained showed that the administration of LHTP reduced the nocturnal melatonin release, possibly by bringing about an increase in serotonin synthesis and synaptic release in the pineal. Therefore, the serotoninergic transmission from the raphe towards the pineal would constitute a mechanism of modulation of the synthesis and melatonin release in quails.

  14. In vitro rescue of genital strains of Chlamydia trachomatis from interferon-γ and tryptophan depletion with indole-positive, but not indole-negative Prevotella spp. (United States)

    Ziklo, Noa; Huston, Wilhelmina M; Taing, Kuong; Katouli, Mohammad; Timms, Peter


    The natural course of sexually transmitted infections caused by Chlamydia trachomatis varies between individuals. In addition to parasite and host effects, the vaginal microbiota might play a key role in the outcome of C. trachomatis infections. Interferon-gamma (IFN-γ), known for its anti-chlamydial properties, activates the expression of indoleamine 2,3-dioxygenase (IDO1) in epithelial cells, an enzyme that catabolizes the amino acid L- tryptophan into N-formylkynurenine, depleting the host cell's pool of tryptophan. Although C. trachomatis is a tryptophan auxotroph, urogenital strains (but not ocular strains) have been shown in vitro to have the ability to produce tryptophan from indole using the tryptophan synthase (trpBA) gene. It has been suggested that indole producing bacteria from the vaginal microbiota could influence the outcome of Chlamydia infection. We used two in vitro models (treatment with IFN-γ or direct limitation of tryptophan), to study the effects of direct rescue by the addition of exogenous indole, or by the addition of culture supernatant from indole-positive versus indole-negative Prevotella strains, on the growth and infectivity of C. trachomatis. We found that only supernatants from the indole-positive strains, P. intermedia and P. nigrescens, were able to rescue tryptophan-starved C. trachomatis. In addition, we analyzed vaginal secretion samples to determine physiological indole concentrations. In spite of the complexity of vaginal secretions, we demonstrated that for some vaginal specimens with higher indole levels, there was a link to higher recovery of the Chlamydia under tryptophan-starved conditions, lending preliminary support to the critical role of the IFN-γ-tryptophan-indole axis in vivo. Our data provide evidence for the ability of both exogenous indole as well as supernatant from indole producing bacteria such as Prevotella, to rescue genital C. trachomatis from tryptophan starvation. This adds weight to the hypothesis

  15. TrpM, a Small Protein Modulating Tryptophan Biosynthesis and Morpho-Physiological Differentiation in Streptomyces coelicolor A3(2) (United States)

    Palazzotto, Emilia; Gallo, Giuseppe; Renzone, Giovanni; Giardina, Anna; Sutera, Alberto; Silva, Joohee; Vocat, Celinè; Botta, Luigi; Scaloni, Andrea; Puglia, Anna Maria


    In the model actinomycete Streptomyces coelicolor A3(2), small open reading frames encoding proteins with unknown functions were identified in several amino acid biosynthetic gene operons, such as SCO2038 (trpX) in the tryptophan trpCXBA locus. In this study, the role of the corresponding protein in tryptophan biosynthesis was investigated by combining phenotypic and molecular analyses. The 2038KO mutant strain was characterized by delayed growth, smaller aerial hyphae and reduced production of spores and actinorhodin antibiotic, with respect to the WT strain. The capability of this mutant to grow on minimal medium was rescued by tryptophan and tryptophan precursor (serine and/or indole) supplementation on minimal medium and by gene complementation, revealing the essential role of this protein, here named TrpM, as modulator of tryptophan biosynthesis. His-tag pull-down and bacterial adenylate cyclase-based two hybrid assays revealed TrpM interaction with a putative leucyl-aminopeptidase (PepA), highly conserved component among various Streptomyces spp. In silico analyses showed that PepA is involved in the metabolism of serine, glycine and cysteine through a network including GlyA, CysK and CysM enzymes. Proteomic experiments suggested a TrpM-dependent regulation of metabolic pathways and cellular processes that includes enzymes such as GlyA, which is required for the biosynthesis of tryptophan precursors and key proteins participating in the morpho-physiological differentiation program. Altogether, these findings reveal that TrpM controls tryptophan biosynthesis at the level of direct precursor availability and, therefore, it is able to exert a crucial effect on the morpho-physiological differentiation program in S. coelicolor A3(2). PMID:27669158

  16. A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of Toll-like receptor activation in irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Gerard eClarke


    Full Text Available Irritable bowel syndrome (IBS, a disorder of the brain-gut axis, is characterised by the absence of reliable biological markers. Tryptophan is an essential amino acid that serves as a precursor to serotonin but which can alternatively be metabolised along the kynurenine pathway leading to the production of other neuroactive agents. We previously reported an increased degradation of tryptophan along this immunoresponsive pathway in IBS. Recently, altered cytokine production following activation of specific members of the toll-like receptor (TLR family (TLR1-9 has also been demonstrated in IBS. However, the relationship between TLR activation and kynurenine pathway activity in IBS is unknown. In this study, we investigated whether activation of specific TLRs elicits exaggerated kynurenine production in IBS patients compared to controls. Whole blood from IBS patients and healthy controls was cultured with a panel of nine different TLR agonists for 24 hours. Cell culture supernatants were then analysed for both tryptophan and kynurenine concentrations, as were plasma samples from both cohorts. IBS subjects had an elevated plasma kynurenine:tryptophan ratio compared to healthy controls. Furthermore, we demonstrated a differential downstream profile of kynurenine production subsequent to TLR activation in IBS patients compared to healthy controls. This profile included alterations at TLR1/2, TLR2, TLR3, TLR5, TLR7 and TLR8. Our data expands on our previous understanding of altered tryptophan metabolism in IBS and suggests that measurement of tryptophan metabolites downstream of TLR activation may ultimately find utility as components of a biomarker panel to aid gastroenterologists in the diagnosis of IBS. Furthermore, these studies implicate the modulation of TLRs as means through which aberrant tryptophan metabolism along the kynurenine pathway can be controlled, a novel potential therapeutic strategy in this and other disorders.

  17. Is there a relationship between tryptophan dietary intake and plasma levels of indoxyl sulfate in chronic kidney disease patients on hemodialysis?

    Directory of Open Access Journals (Sweden)

    Jessyca Sousa de Brito

    Full Text Available Abstract Introduction: Gut microbiota is involved in generation of uremic toxins in chronic kidney disease (CKD patients on hemodialysis (HD, like indoxyl sulfate (IS that is originated from tryptophan amino acid fermentation. Objective: To evaluate the tryptophan intake by chronic renal failure patients on HD and its possible relationship with IS plasma levels. Methods: Participated of the study 46 patients with CKD on HD regular program (56.5% men; 52.7 ± 10.3 years; 63 (32.2-118.2 months on HD; BMI 25.6 ± 4.9 kg/m2. The tryptophan intake was evaluated by a 24-hours dietary recall (R-24h performed on 3 different days. Routine biochemical tests and anthropometric measurements were evaluated. IS plasma levels were determined by High Performance Liquid Chromatography (HPLC with fluorescent detection and the interleukin-6 (IL-6 plasma levels by immunoenzymatic method (ELISA, Enzyme Linked Immunosorbent Assay. Results: The average of tryptophan intake was according to recommendation, but IS plasma levels (35.0 ± 11.9 mg/L were elevated, however according to the EUTox values for uremic individuals. There was no correlation between the tryptophan intake and IS plasma levels. However, there was positive correlation between protein intake and tryptophan and variables used to evaluate lean body mass, and moreover, IS levels were positively associated with IL-6 (r = 0.6: p = 0.01. Conclusion: The present study suggests that tryptophan dietary intake may not be a determinant factor to IS levels. However, it suggests that gut microbiota may play an important role in systemic inflammation in patients with CKD.

  18. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. (United States)

    Laurent, Laetitia; Deroy, Kathy; St-Pierre, Joey; Côté, Francine; Sanderson, J Thomas; Vaillancourt, Cathy


    The role of placental serotonin has been an active topic of research notably because of its crucial role in brain development. However, which cell types synthesize serotonin in human placenta remains unknown. Moreover, it is not known if the two tryptophan hydroxylase isoforms (TPH1 and TPH2), the rate-limiting enzymes in serotonin biosynthesis, are expressed in placenta. Human placentas were obtained in first trimester or at term, and trophoblast cells were isolated and purified using a magnetic cell sorter and placed in primary culture. The tissue sublocalization of each TPH was determined by immunohistochemistry. TPH expression in primary villous trophoblasts was determined by PCR and immunoblotting, and serotonin secretion by LC-MS/MS. Villous cytotrophoblasts, syncytiotrophoblast, fetal capillaries, extravillous cytotrophoblasts, and decidual cells co-expressed TPH1 and TPH2. Moreover, mRNA and protein levels of both TPHs were detected in human primary trophoblast as well as in mouse placental tissues. Finally, human trophoblast cells were shown to produce serotonin de novo. This study demonstrates that both TPH1 and TPH2 are expressed in human and mouse placenta throughout pregnancy and helps to better understand the placental serotonin system, which is crucial for healthy pregnancy and fetal development. It is therefore important to further understand regulation of the placental serotonin system and how its disruption during pregnancy may impact the developing fetus and subsequent child programming. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase. (United States)

    Huang, Yu-Ming M; You, Wanli; Caulkins, Bethany G; Dunn, Michael F; Mueller, Leonard J; Chang, Chia-En A


    The importance of protonation states and proton transfer in pyridoxal 5'-phosphate (PLP)-chemistry can hardly be overstated. Although experimental approaches to investigate pKa values can provide general guidance for assigning proton locations, only static pictures of the chemical species are available. To obtain the overall protein dynamics for the interpretation of detailed enzyme catalysis in this study, guided by information from solid-state NMR, we performed molecular dynamics (MD) simulations for the PLP-dependent enzyme tryptophan synthase (TRPS), whose catalytic mechanism features multiple quasi-stable intermediates. The primary objective of this work is to elucidate how the position of a single proton on the reacting substrate affects local and global protein dynamics during the catalytic cycle. In general, proteins create a chemical environment and an ensemble of conformational motions to recognize different substrates with different protonations. The study of these interactions in TRPS shows that functional groups on the reacting substrate, such as the phosphoryl group, pyridine nitrogen, phenolic oxygen and carboxyl group, of each PLP-bound intermediate play a crucial role in constructing an appropriate molecular interface with TRPS. In particular, the protonation states of the ionizable groups on the PLP cofactor may enhance or weaken the attractions between the enzyme and substrate. In addition, remodulation of the charge distribution for the intermediates may help generate a suitable environment for chemical reactions. The results of our study enhance knowledge of protonation states for several PLP intermediates and help to elucidate their effects on protein dynamics in the function of TRPS and other PLP-dependent enzymes.

  20. Plasma leptin, insulin and free tryptophan contribute to cytokine-induced anorexia. (United States)

    Sato, Tomoi; Laviano, Alessandro; Meguid, Michael M; Rossi-Fanelli, Filippo


    Cytokines contribute to anorexia of diseases. Tumor Necrosis Factor (TNF) and/or interleukin-1 (IL-1) stimulate leptin release, but not insulin. Both affect hypothalamus to decrease food intake (FI). Hypothalamic serotonin (5HT) decreases FI. Its synthesis depends on brain availability of precursor, tryptophan (TRP), which depends on plasma free TRP. Purpose is to test involvement of plasma leptin, insulin, TRP, and thus hypothalamic 5HT in cytokine-induced anorexia in rats. In male rats, IL-1alpha (10 mg/kg/d; n=9), TNFalpha (30 mg/kg/d; n=9), Il-1alpha+TNFalpha (10:30 mg/kg/d; n=9), TRP (100 mg/kg/d, n=8) and saline (n=8; Control) were injected sc for 2 days. FI, BW, plasma free and total TRP, leptin and insulin, and body fat were measured. Data analyzed via ANOVA. IL-1alpha and IL-1alpha+TNFalpha vs others decreased FI and BW. TNFalpha and TRP did not change FI and BW. Plasma total TRP was higher in TRP vs IL-1alpha, TNFalpha, and IL-1alpha+TNFalpha. Plasma free TRP was higher in IL-1alpha and IL-1alpha+TNFalpha vs Control. IL-1alpha and IL-1alpha+TNFalpha decreased leptin and body fat. Insulin in Control was lower than others. Data suggest: i) IL-1alpha increases plasma free TRP, but not total TRP, thus increases hypothalamic 5HT synthesis, resulting in anorexia; ii) leptin does not mediate anorexia, but; iii) insulin may contribute to anorexia induced by cytokines.

  1. Optimum ratio to lysine of threonine, tryptophan, and sulfur amino acids for finishing swine. (United States)

    Hahn, J D; Baker, D H


    Forty-eight crossbred (PIC line 26 x Camborough 15) pigs were used in two finishing trials to compare the ideal ratios of threonine (Thr), tryptophan (Trp), and sulfur amino acids (SAA) to lysine (Lys) determined for young pigs to a proposed ratio of these amino acids for finishing pigs. Trial 1 involved 20 barrows and 20 gilts that were self-fed in sex groups of two. Trial 2 was a Latin square design that used four barrows and four gilts that were individually fed in metabolism cages. Separate diets were used for the early (EF = 56 to 90 kg) and late (LF = 90 to 112 kg) finishing periods. Diets were formulated from a corn-soybean meal mixture and contained 11% CP and .55% digestible lysine for EF pigs and 10% CP and .50% digestible lysine for LF pigs. Negative-control diets in both the EF and LF periods were designed to be slightly deficient in lysine and to contain digestible Thr (65%), Trp (18%), and SAA (60%) at the ideal ratio to digestible Lys determined for 10- to 20-kg pigs. The experimental diet in both the EF and LF periods was formulated to contain digestible Thr (70%), Trp (20%), and SAA (65%) at the proposed ideal ratio to digestible Lys for finishing pigs. In Trial 1, increased ratios of Thr, Trp, and SAA improved gain:feed ratio, whole-body and carcass protein concentration, and whole-body and carcass protein accretion. In Trial 2, LF pigs responded to the increased ratios of Thr, Trp, and SAA with decreased urinary nitrogen excretion and increased N retention.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Tryptophan, threonine and isoleucine supplementation in low-protein diets for commercial laying hens

    Directory of Open Access Journals (Sweden)

    Iván Camilo Ospina Rojas


    Full Text Available Isoleucine (Ile, threonine (Thr and tryptophan (Trp are most likely candidates for becoming third limiting amino acids (AA in layer diets. This work studied the effect of supplementing Ile, Thr and Trp in low-protein diets on the productive performance, egg quality and serum parameters of Hy-Line W36 laying hens. A total of 360 30-week-old laying hens were distributed in a completely randomized design into 9 treatments with 5 replications of 8 birds each. Treatments consisted of a control diet that was based on corn and soybean meal formulated with 15.5% CP. A second diet with 13% CP was formulated to meet the requirements for all essential AA of the control diet, except for Ile, Thr and Trp. The other treatments consisted of individual and combined supplementation of the aforementioned AA in the 13% CP diet. The reduction of the dietary protein level negatively influenced (p<0.05 the productivity of the hens, impairing egg production, feed conversion (kg kg-1 and kg dz-1, and egg mass. However, these variables were restored with individual and combined supplementation of the three AA in the 13% CP diet. Individually-supplemented diets with Ile, or combined with Thr and/or Trp, resulted in hens with lower (p<0.05 serum uric acid and ammonia concentrations as compared to birds receiving diets with 15.5% (control and 13% CP. The protein levels can be reduced (13% CP in the diet of commercial laying hens without compromising performance, egg quality or serum parameters with individual Ile, Thr or Trp supplementation.

  3. Importance of tryptophan nitration of carbonic anhydrase III for the morbidity of atopic dermatitis. (United States)

    Kawasaki, Hiroaki; Tominaga, Mitsutoshi; Shigenaga, Ayako; Kamo, Atsuko; Kamata, Yayoi; Iizumi, Kyoichi; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji; Yamakura, Fumiyuki


    The nitration of proteins results from the vigorous production of reactive nitrogen species in inflammatory disease. We previously reported the proteomic analysis of nitrated tryptophan residues in in vitro model cells for inflammatory diseases using a 6-nitrotryptophan-specific antibody. In this paper, we applied this method to the analysis of a disease model animal and identified the 6-nitrotryptophan-containing proteins in the skin of atopic dermatitis model mice (AD-NC/Nga mice). We found three nitrotryptophan-containing proteins, namely, carbonic anhydrase III (CAIII), α-enolase (α-ENO), and cytoskeletal keratin type II (KTII), and identified the positions of the nitrotryptophan residues in their amino acid sequences: Trp47 and Trp123 in CAIII, Trp365 in α-ENO, and Trp221 in KTII. Among these, the nitration of CAIII was increased not only in the lesional skin of AD-NC/Nga mice but also in the mice that did not present any symptoms. The in vitro nitration of purified CAIII by peroxynitrite reduced its CO2 hydratase activity in a dose-dependent manner. In addition, we found that CAIII was induced during the differentiation of normal human epidermal keratinocytes. Furthermore, we found the presence of CAIII and the formation of 6-nitrotryptophan-containing proteins in both the lesional and the nonlesional sections of the skin of patients with atopic dermatitis through immunohistochemical staining. This study provides the first demonstration of the formation of 6-nitrotryptophan in human tissues and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Physical weight loading induces expression of tryptophan hydroxylase 2 in the brain stem.

    Directory of Open Access Journals (Sweden)

    Joon W Shim

    Full Text Available Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2 that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive control, and a 90-min tail suspension was used as a stress (negative control. Expression of tph2 was determined 30 min - 2 h in three brain regions --frontal cortex (FC, ventromedial hypothalamus (VMH, and brain stem (BS. We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain.

  5. Combined Role of Two Tryptophane Residues of α-Factor Pheromone

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Young [Yeungnam Univ., Gyungsan (Korea, Republic of); Hong, Nam Joo [Seoul National Univ., Seoul (Korea, Republic of)


    Amide analogs of tridecapeptide α-factor (WHWLQLKPGQPMYCONH{sub 2}) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide [Ala{sup 3}]α-factor amide (2) and [Aib{sup 3}]α-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one [Ala{sup 1}]α-factor amide (1) and [Aib{sup 1}]α-factor amide (4), reflecting that Trp{sup 3} may plays more important role than Trp{sup 1} for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of α-factor ligand to activation of Ste2p through interaction with residue Tyr{sup 266} and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, [Ala{sup 1,3}]α-factor amide (3), [Aib{sup 1,3}]α-factor amide (6), [D-Trp{sup 3}]α-factor amide (8) and [des-Trp{sup 1},Phe{sup 3}]α-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10.

  6. Protein- and tryptophan-restricted diets induce changes in rat gonadal hormone levels. (United States)

    Del Angel-Meza, A R.; Feria-Velasco, A; Ontiveros-Martínez, L; Gallardo, L; Gonzalez-Burgos, I; Beas-Zárate, C


    The release of gonadotrophic hormones starts at puberty and, along with the subsequent estral cyclicity, is subject to hormonal feedback systems and to the action of diverse neuroactive substances such as gamma amino butyric acid and catecholamines. This study shows the effect of the administration during 40 days of protein-restricted and corn-based (tryptophan- and lysine-deficient) diets on the serotonin concentration in medial hypothalamic fragments as well as in follicle-stimulating luteinizing hormones, 17-beta-estradiol and progesterone serum levels, and estral cyclicity in 60- and 100-day-old rats (young, mature, and in gestation). In young rats, a delay in vaginal aperture development, and a lengthening of the estral cycle to a continuous anestral state was observed, mainly in the group fed corn. This group showed a 25% decrease in the serotonin concentration compared with the protein-restricted group, which exhibited an increase of 9% over the control group. Luteinizing hormone levels decreased in 16% and 13%, whereas follicle-stimulating hormone increased in 13% and 5% in the young animals of restricted groups, respectively, compared with the control group. Serum progesterone levels decreased only in young restricted versus control animals, and no differences were seen among adult and gestational rats. Serum levels of 17-beta-estradiol in restricted animals showed different concentration patterns, mainly in the corn group, which was higher at the 20th gestational day, falling drastically postpartum. The results obtained in this study show serotonin to be a very important factor in the release of gonadotrophic hormones and the start of puberty.

  7. Novel smart chiral magnetic microspheres for enantioselective adsorption of tryptophan enantiomers (United States)

    Guo, Lian-Di; Song, Ya-Ya; Yu, Hai-Rong; Pan, Li-Ting; Cheng, Chang-Jing


    Multifunctional microspheres simultaneously possessing chirality, magnetism and thermosensitivity show great potentials in direct enantiomeric separation. Herein we report a novel type of smart chiral magnetic microspheres with core/shell/shell structures (Fe3O4@SiO2@PNCD) and its application in enantioselective adsorption of tryptophan (Trp) enantiomers. The prepared Fe3O4@SiO2@PNCD are composed of a Fe3O4 nanoparticle core, an acidic-resistant SiO2 middle shell and a thermosensitive microgel functional shell (PNCD). The PNCD plays an important role in the enantioselective adsorption of Trp enantiomers. The β-cyclodextrin (β-CD) molecules on the PNCD act as smart receptors or chiral selectors, and can selectively recognize and bind L-Trp enantiomers into their cavities by forming host-guest inclusion complexes. The poly(N-isopropylacrylamide) (PNIPAM) chains on the PNCD serve as microenvironmental adjustors for the association constants of β-CD/L-Trp complexes. The fabricated Fe3O4@SiO2@PNCD demonstrate fascinating temperature-responsive chiral recognition and adsorption selectivity toward Trp enantiomers. Most importantly, the desorption of Trp enantiomers and the regeneration of the Fe3O4@SiO2@PNCD can be easily achieved via simply changing the operation temperature. Moreover, the regenerated Fe3O4@SiO2@PNCD can be readily recovered from the amino acids enantiomeric solution under an external magnetic field for reuse. The present study provides a novel strategy for the direct enantioselective adsorption and separation of various enantiomeric compounds.

  8. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme. (United States)

    Ogura, Ryutaro; Wakamatsu, Taisuke; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa


    An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Efficient delivery of cell impermeable phosphopeptides by a cyclic peptide amphiphile containing tryptophan and arginine. (United States)

    Nasrolahi Shirazi, Amir; Tiwari, Rakesh Kumar; Oh, Donghoon; Banerjee, Antara; Yadav, Arpita; Parang, Keykavous


    Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the negatively charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F'-GpYLPQTV, F'-NEpYTARQ, F'-AEEEIYGEFEAKKKK, F'-PEpYLGLD, F'-pYVNVQN-NH2, and F'-GpYEEI (F' = fluorescein), was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F'-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F'-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F'-PEpYLGLD alone. Transmission electron microscopy (TEM) and isothermal calorimetry (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, respectively. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable negatively charged phosphopeptides.

  10. FLIM data analysis of NADH and Tryptophan autofluorescence in prostate cancer cells (United States)

    O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Rehman, Shagufta; Periasamy, Ammasi


    Fluorescence lifetime imaging microscopy (FLIM) is one of the most sensitive techniques to measure metabolic activity in living cells, tissues and whole animals. We used two- and three-photon fluorescence excitation together with time-correlated single photon counting (TCSPC) to acquire FLIM signals from normal and prostate cancer cell lines. FLIM requires complex data fitting and analysis; we explored different ways to analyze the data to match diverse cellular morphologies. After non-linear least square fitting of the multi-photon TCSPC images by the SPCImage software (Becker & Hickl), all image data are exported and further processed in ImageJ. Photon images provide morphological, NAD(P)H signal-based autofluorescent features, for which regions of interest (ROIs) are created. Applying these ROIs to all image data parameters with a custom ImageJ macro, generates a discrete, ROI specific database. A custom Excel (Microsoft) macro further analyzes the data with charts and statistics. Applying this highly automated assay we compared normal and cancer prostate cell lines with respect to their glycolytic activity by analyzing the NAD(P)H-bound fraction (a2%), NADPH/NADH ratio and efficiency of energy transfer (E%) for Tryptophan (Trp). Our results show that this assay is able to differentiate the effects of glucose stimulation and Doxorubicin in these prostate cell lines by tracking the changes in a2% of NAD(P)H, NADPH/NADH ratio and the changes in Trp E%. The ability to isolate a large, ROI-based data set, reflecting the heterogeneous cellular environment and highlighting even subtle changes -- rather than whole cell averages - makes this assay particularly valuable.

  11. Accelerated Tryptophan Degradation Predicts Poor Survival in Trauma and Sepsis Patients

    Directory of Open Access Journals (Sweden)

    Martin Ploder


    Full Text Available Immune system activation and inflammation accompanies immune dysfunction in trauma and sepsis patients. Immunodeficiency may develop in such patients as one consequence of an activated chronic pro-inflammatory response. According to recent data, degradation of L-tryptophan (TRP via the kynurenine (KYN pathway by the cytokine-inducible enzyme indoleamine 2,3-dioxygenase (IDO could represent an important contributor to the deficient responsiveness of immunocompetent cells. Compared to healthy controls, patients post trauma or with sepsis had increasing KYN concentrations and KYN to TRP ratios (KYN/TRP whereas TRP concentrations decreased. Likewise, concentrations of cytokines tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 and of immune activation marker neopterin increased in patients (all p < 0.001. Furthermore in patients KYN/TRP, KYN and neopterin concentrations were further increasing (all p < 0.001, whereas the changes of TRP, TNF-α and IL-6 concentrations were not significant. Compared to the survivors, the non-survivors had a higher concentration of KYN, neopterin, TNF-α and IL-6 as well as a higher KYN/TRP ratio. KYN/TRP correlated with neopterin (p < 0.001 and also with TNF-α (p < 0.01 and IL-6 concentrations (p < 0.05 and inversely with the in vitro response of stimulated monocytes. We conclude that increased TRP degradation in patients post trauma is closely associated with immune activation. Cytokines released during the pro-inflammatory response may induce the activity of IDO and thus accelerate TRP degradation. Thus, increased IDO activity most likely represents a result of host response to pro-inflammation in patients. Data support a possible role of inflammation-induced IDO in the diminished immunoresponsiveness in patients.

  12. Femtosecond fluorescence spectra of tryptophan in human gamma-crystallin mutants: site-dependent ultrafast quenching. (United States)

    Xu, Jianhua; Chen, Jiejin; Toptygin, Dmitri; Tcherkasskaya, Olga; Callis, Patrik; King, Jonathan; Brand, Ludwig; Knutson, Jay R


    The eye lens Crystallin proteins are subject to UV irradiation throughout life, and the photochemistry of damage proceeds through the excited state; thus, their tryptophan (Trp) fluorescence lifetimes are physiologically important properties. The time-resolved fluorescence spectra of single Trps in human gammaD- and gammaS-Crystallins have been measured with both an upconversion spectrophotofluorometer on the 300 fs to 100 ps time scale, and a time correlated single photon counting apparatus on the 100 ps to 10 ns time scale, respectively. Three Trps in each wild type protein were replaced by phenylalanine, leading to single-Trp mutants: W68-only and W156-only of HgammaD- and W72-only and W162-only of HgammaS-Crystallin. These proteins exhibit similar ultrafast signatures: positive definite decay associated spectra (DAS) for 50-65 ps decay constants that indicate dominance of fast, heterogeneous quenching. The quenched population (judged by amplitude) of this DAS differs among mutants. Trps 68, 156 in human gammaD- and Trp72 in human gammaS-Crystallin are buried, but water can reach amide oxygen and ring HE1 atoms through narrow channels. QM-MM simulations of quenching by electron transfer predict heterogeneous decay times from 50-500 ps that agree with our experimental results. Further analysis of apparent radiative lifetimes allow us to deduce that substantial subpopulations of Trp are fully quenched in even faster (sub-300 fs) processes for several of the mutants. The quenching of Trp fluorescence of human gammaD- and gammaS-Crystallin may protect them from ambient light induced photo damage.

  13. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme. (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa


    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)(+)-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD(+) Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD(+)/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme.

  14. Tryptophan Metabolism and Its Relationship with Depression and Cognitive Impairment Among HIV-infected Individuals (United States)

    Keegan, Michael R.; Chittiprol, Seetharamaiah; Letendre, Scott L.; Winston, Alan; Fuchs, Dietmar; Boasso, Adriano; Iudicello, Jennifer; Ellis, Ronald J.


    OBJECTIVE Cognitive impairment (CI) and major depressive disorder (MDD) remain prevalent in treated HIV-1 disease; however, the pathogenesis remains elusive. A possible contributing mechanism is immune-mediated degradation of tryptophan (TRP) via the kynurenine (KYN) pathway, resulting in decreased production of serotonin and accumulation of TRP degradation products. We explored the association of these biochemical pathways and their relationship with CI and MDD in HIV-positive (HIV+) individuals. METHODS In a cross-sectional analysis, concentrations of neopterin (NEO), tumor necrosis factor-alpha, TRP, KYN, KYN/TRP ratio, phenylalanine (PHE), tyrosine (TYR), PHE/TYR ratio, and nitrite were assessed in the cerebrospinal fluid (CSF) and plasma of HIV+ (n = 91) and HIV-negative (HIV−) individuals (n = 66). CI and MDD were assessed via a comprehensive neuropsychological test battery. A Global Deficit Score ≥0.5 was defined as CI. Nonparametric statistical analyses included Kruskal–Wallis and Mann–Whitney U tests, and multivariate logistic regression. RESULTS Following Bonferroni correction, NEO concentrations were found to be greater in CSF and TRP concentration was found to be lower in the plasma of HIV+ versus HIV− individuals, including a subgroup of aviremic (defined as HIV-1 RNA <50 cps/mL) HIV+ participants receiving antiretroviral therapy (n = 44). There was a nonsignificant trend toward higher KYN/TRP ratios in plasma in the HIV+ group (P = 0.027; Bonferroni corrected α = 0.0027). In a logistic regression model, lower KYN/TRP ratios in plasma were associated with CI and MDD in the overall HIV+ group (P = 0.038 and P = 0.063, respectively) and the aviremic subgroup (P = 0.066 and P = 0.027, respectively), though this observation was not statistically significant following Bonferroni correction (Bonferroni corrected α = 0.0031). CONCLUSIONS We observed a trend toward lower KYN/TRP ratios in aviremic HIV+ patients with CI and MDD. PMID:27812290

  15. Linkage of subunit interactions, structural changes, and energetics of coenzyme binding in tryptophan synthase. (United States)

    Wiesinger, H; Hinz, H J


    The energetics of binding of the coenzyme pyridoxal 5'-phosphate (PLP) to both the apo beta 2 subunit and the apo alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli has been investigated as a function of pH and temperature by direct microcalorimetric methods. At 25 degrees C, pH 7.5, the binding process proceeds in the time range of minutes and shows a biphasic heat output which permits resolution of the overall reaction into different reaction steps. Binding studies on the coenzyme analogues pyridoxal (PAL), pyridoxine 5'-phosphate (PNP), and pyridoxine (POL) to the protein as well as a comparison of these results with data from studies on PLP binding to epsilon-aminocaproic acid have led to a deconvolution of the complex heat vs. time curves into fast endothermic contributions from electrostatic interaction and Schiff base formation and slow exothermic contributions from the interactions between PLP and the binding domain. The pH-independent, large negative change in heat capacity of about -9.1 kJ/(mol of beta 2 X K) when binding PLP to beta 2 is indicative of major structural changes resulting from complex formation. The much smaller value of delta Cp = -1.7 kJ/(mol of beta 2 X K) for binding of PLP to alpha 2 beta 2 clearly demonstrates the energetic linkage of protein-protein and protein-ligand interactions. Calorimetric titrations of the apo beta 2 subunit with PLP at 35 degrees C have shown that also at this temperature positive cooperativity between the two binding sites occurs. On the basis of these measurements a complete set of site-specific thermodynamic parameters has been established.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  17. Scientific Opinion on the safety and efficacy of L-tryptophan technically pure produced by fermentation with Escherichia coli for all animal species, based on a dossier submitted by HELM AG on behalf of Global Bio-Chem Technology

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP


    Full Text Available The product L-tryptophan is a feed additive produced by fermentation with a genetically modified (GM strain of Escherichia coli. The amino acid L-tryptophan itself is considered safe for the target animals, the consumer and the environment. However, the genetic modification, including the presence/absence of recombinant DNA and of antibiotic resistance genes in the product, is insufficiently characterised. Consequently, the FEEDAP Panel cannot conclude on the safety of the L-tryptophan produced by fermentation with this recombinant strain of E. coli for target animals, consumers, users and the environment. Regardless of the assessment of the genetic modification, the FEEDAP Panel has concerns on the use of unprotected forms of L-tryptophan in ruminants, and on the safety of the amino acid L-tryptophan for target species when administered simultaneously via water for drinking. The product has been shown to be non-irritant to skin and eyes, and non-toxic by inhalation but should be considered as a potential dermal sensitizer. The amino acid L-tryptophan itself does not pose any risk for the environment. The additive L-tryptophan is regarded as an effective source of L-tryptophan for all non-ruminant species. Supplemental L-tryptophan is mainly degraded by ruminal microbiota, if not given in a protected form.

  18. Formation of complexes between PAMAM-NH2 G4 dendrimer and L-α-tryptophan and L-α-tyrosine in water (United States)

    Buczkowski, Adam; Urbaniak, Pawel; Belica, Sylwia; Sekowski, Szymon; Bryszewska, Maria; Palecz, Bartlomiej


    Interactions between electromagnetic radiation and the side substituents of aromatic amino acids are widely used in the biochemical studies on proteins and their interactions with ligand molecules. That is why the aim of our study was to characterize the formation of complexes between PAMAM-NH2 G4 dendrimer and L-α-tryptophan and L-α-tyrosine in water. The number of L-α-tryptophan and L-α-tyrosine molecules attached to the macromolecule of PAMAM-NH2 G4 dendrimer and the formation constants of the supramolecular complexes formed have been determined. The macromolecule of PAMAM-NH2 G4 can reversibly attach about 25 L-α-tryptophan molecules with equilibrium constant K equal to 130 ± 30 and 24 ± 6 L-α-tyrosine molecules. This characterization was deduced on the basis of the solubility measurements of the amino acids in aqueous dendrimer solutions, the 1H NMR and 2D-NOESY measurements of the dendrimer solutions with the amino acids, the equilibrium dialysis and the circular dichroism measurements of the dendrimer aqueous solutions with L-α-tryptophan. Our date confirmed the interactions of L-α-tryptophan and L-α-tyrosine with the dendrimer in aqueous solution and indicated a reversible character of the formed complexes.

  19. Differential effects of L-tryptophan and L-leucine administration on brain resting state functional networks and plasma hormone levels (United States)

    Zanchi, Davide; Meyer-Gerspach, Anne Christin; Suenderhauf, Claudia; Janach, Katharina; le Roux, Carel W.; Haller, Sven; Drewe, Jürgen; Beglinger, Christoph; Wölnerhanssen, Bettina K.; Borgwardt, Stefan


    Depending on their protein content, single meals can rapidly influence the uptake of amino acids into the brain and thereby modify brain functions. The current study investigates the effects of two different amino acids on the human gut-brain system, using a multimodal approach, integrating physiological and neuroimaging data. In a randomized, placebo-controlled trial, L-tryptophan, L-leucine, glucose and water were administered directly into the gut of 20 healthy subjects. Functional MRI (fMRI) in a resting state paradigm (RS), combined with the assessment of insulin and glucose blood concentration, was performed before and after treatment. Independent component analysis with dual regression technique was applied to RS-fMRI data. Results were corrected for multiple comparisons. In comparison to glucose and water, L-tryptophan consistently modifies the connectivity of the cingulate cortex in the default mode network, of the insula in the saliency network and of the sensory cortex in the somatosensory network. L-leucine has lesser effects on these functional networks. L-tryptophan and L-leucine also modified plasma insulin concentration. Finally, significant correlations were found between brain modifications after L-tryptophan administration and insulin plasma levels. This study shows that acute L-tryptophan and L-leucine intake directly influence the brain networks underpinning the food-reward system and appetite regulation. PMID:27760995

  20. 5-HT7 receptors and tryptophan hydroxylase in lymphocytes of rats: mitogen activation, physical restraint or treatment with reserpine. (United States)

    Urbina, Mary; Arroyo, Rubén; Lima, Lucimey


    Serotonin (5-HT)7 receptors in lymphocytes play a relevant role as modulators of T cell functions and might be modified by stress protocols. The aims of this work were to evaluate: (i) the presence of 5-HT7 receptors in specific lymphocyte populations, (ii) the probable modifications of them by inflammatory stress with mitogen and (iii) the effects of physical and pharmacological stress. Blood lymphocytes were isolated by density gradients and differential adhesion to plastic. Concanavalin A (Con A) was systemically administered (500 μg/kg) or added to lymphocyte cultures (2.5 μg/ml, final volume 200 μl). Physical restraint was performed in Plexiglass boxes for 5 h per day for 5 days. Reserpine administration was 2.5 mg/kg for 3 days. Immunocytochemical labeling of CD4+, CD8+ and 5-HT7 receptors, and also tryptophan hydroxylase cells was performed. mRNA of 5-HT7 receptors was evaluated by RT-PCR. Controls were included for each protocol. Con A treatment or culture exposure increased the number of lymphocytes expressing 5-HT7 receptors or tryptophan hydroxylase, as compared to absence of the mitogen. Receptors were present in 12-16% of total rat lymphocytes, in ∼10% of CD4+ and in ∼5% of CD8+ cells from control rats. CD4+ decreased, and CD8+ and 5-HT7 cells increased after physical restraint. Reserpine treatment elevated CD8+ and 5-HT7 cells. Con A and physical restraint, but not reserpine treatment, significantly augmented 5-HT7 receptor mRNA in lymphocytes. Rat lymphocytes, expressing tryptophan hydroxylase, could synthesize 5-HT, functioning as a direct autocrine modulator. The modifications of CD4+, CD8+ and 5-HT7 receptors in lymphocytes by three stress protocols could have an impact on immune responses. In addition, the differential distribution of 5-HT7 receptors indicates potential specific physiopathological roles. © 2014 S. Karger AG, Basel.

  1. Tryptophan and Cysteine Oxidation Products Dominate in α-Lactalbumin-Derived Peptides Analyzed with LC-MS(n). (United States)

    Koivumäki, Tuuli P; Gürbüz, Göker; Heinonen, I Marina


    α-Lactalbumin (α-La), a major milk whey protein, is comprised of several amino acids prone to metal-catalyzed oxidation (MCO) typical in processing and during storage of foods. New tools are needed for the detection of characteristic oxidation products especially from tryptophan and cysteine that often remain unrecognized when using the traditional methods of carbonyl formation monitoring. In this study, the oxidative changes in α-La were investigated through tryptic digestion and collection of 3 descriptive peptides fitted into a metal-catalyzed oxidation (Fenton reaction) model. The peptide samples were oxidized at +37 °C for 14 d and explored with liquid chromatography-quadrupole ion trap-mass spectrometer (LC-MS(n) ). The fractionated α-La peptides were valyl-glycyl-isoleucyl-asparaginyl-tyrosyl-tryptophyl-leucyl-alanyl-histidyl-lysine (VGINYWLAHK), leucyl-aspartyl-glutaminyl-tryptophyl-leucyl-cysteinyl-glutamyl-lysine (LDQWLCEK), and tryptophyl(+16) -leucyl-alanyl-histidyl-lysyl-alanyl-leucyl-cysteine (W(+16) LAHKALC). Oxidation of several amino acids, such as cysteine, histidine, lysine, and tryptophan was observed. In the peptide LDQWLCEK, cysteine was rapidly trioxidized to sulfonic acid, followed by other amino acid side chains as secondary oxidation sites. Tryptophan oxidation was more pronounced in the peptides W(+16) LAHKALC and VGINYWLAHK, and also formation of the harmful N-formylkynurenine was observed. As a conclusion, several stable and promising oxidation markers are proposed for α-La, which could be implemented in the evaluation of quality and safety of dairy protein-containing products. © 2017 Institute of Food Technologists®.

  2. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats (United States)

    Liu, Chunyan; Wang, Yangang


    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive

  3. Conformational study of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) by tryptophan fluorescence and differential scanning calorimetry. (United States)

    Yin, Shou-Wei; Tang, Chuan-He; Yang, Xiao-Quan; Wen, Qi-Biao


    Fluorescence and differential scanning calorimetry (DSC) were used to study changes in the conformation of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) under various environmental conditions. The possible relationship between fluorescence data and DSC characteristics was also discussed. Tryptophan fluorescence and fluorescence quenching analyses indicated that the tryptophan residues in KPI, exhibiting multiple fluorophores with different accessibilities to acrylamide, are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains close to at least some of the tryptophan residues. GdnHCl was more effective than urea and SDS in denaturing KPI. SDS and urea caused variable red shifts, 2-5 nm, in the emission λ(max), suggesting the conformational compactness of KPI. The result was further supported by DSC characteristics that a discernible endothermic peak was still detected up to 8 M urea or 30 mM SDS, also evidenced by the absence of any shift in emission maximum (λ(max)) at different pH conditions. Marked decreases in T(d) and enthalpy (ΔH) were observed at extreme alkaline and/or acidic pH, whereas the presence of NaCl resulted in higher T(d) and ΔH, along with greater cooperativity of the transition. Decreases in T(d) and ΔH were observed in the presence of protein perturbants, for example, SDS and urea, indicating partial denaturation and decrease in thermal stability. Dithiothreitol and N-ethylmaleimide have a slight effect on the thermal properties of KPI. Interestingly, a close linear relationship between the T(d) (or ΔH) and the λ(max) was observed for KPI in the presence of 0-6 M urea.

  4. Changes of collagen, elastin, and tryptophan contents in laser welded porcine aorta tissues studied using fluorescence spectroscopy (United States)

    Liu, C.-H.; Wang, W. B.; Kartazaev, V.; Savage, H.; Alfano, R. R.


    The emission spectra from welded and un-welded (normal) porcine aorta tissues were measured on both sides of intima and adventitia layers. A tunable Forsterite laser and a Cr4+: YAG laser with wavelengths of 1250nm, 1455nm and 1460nm were used to weld porcine aorta tissues. Three emission bands emitted from three key fluorophores were studied under different welding and excitation conditions. With excitation wavelength of 340nm, the 395nm band is associated with the emission from the structural proteins of collagen type III and type I. The 445nm band obtained is associated with the emission of the structural protein of elastin. The 350nm band recorded with excitation wavelength of 300nm is associated with the amino acid of tryptophan. The relative emission intensities of collagen, elastin and tryptophan at their fluorescence peaks changes with laser tissue welding wavelengths indicate the change of contents of those tissue molecules. The ratio of emission peak intensities of collagen to elastin with welding laser wavelength of 1250nm increases by 0.13 as compared to the normal aorta tissue at the intimal side. For the adventitial side of aorta tissue, this ratio decreases by 0.38 in comparison with the normal tissue. These results indicate that content of collagen changes relative to elastin due to laser tissue welding. The peak fluorescence intensity of tryptophan for both sides of welded tunica intima and adventitia increases significantly in comparison with the normal tissue when the optimum laser welding wavelength of 1455 nm was used.

  5. Effect of dietary tryptophan and betaine on tolerance of Caspian roach (Rutilus rutilus caspicus) to copper toxicity


    Sajjad Fatahi; Seyyed Morteza Hoseini


    The present study investigated effects of dietary tryptophan (TRP) and betaine (BET) on copper (Cu) toxicity tolerance in the Caspian roach (Rutilus rutilus caspicus). The Caspian roach fingerlings were fed diets containing 0, 0.25 and 0.5% TRP or 0, 0.5 and 1 % BET and combination of TRP and BET. Specimens were exposed to Cu (0.8 ppm) after either 30 or 60 days feeding. Mortality was recorded in each treatment 48 h after the Cu exposure. TRP decreased significantly fish mortality. However, B...

  6. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants

    Institute of Scientific and Technical Information of China (English)

    Yunde Zhao


    Indole-3-acetic acid (IAA),the main naturally occurring auxin,is essential for almost every aspect of plant growth and development.However,only recently have studies finally established the first complete auxin biosynthesis pathway that converts tryptophan (Trp) to IAA in plants.Trp is first converted to indole-3-pyruvate (IPA) by the TAA family of amino transferases and subsequently IAA is produced from IPA by the YUC family of flavin monooxygenases.The two-step conversion of Trp to IAA is the main auxin biosynthesis pathway that plays an essential role in many developmental processes.

  7. Nature of interactions of tryptophan with zinc oxide nanoparticles and L-aspartic acid: A spectroscopic approach (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan


    The interaction between an essential amino acid L-tryptophan (TRP) with semiconductor zinc oxide (ZnO) nanoparticles and amino acid L-aspartic acid (ASP) is investigated by steady state and time resolved spectroscopic techniques. In both the cases static mode of fluorescence quenching occurs indicating the formation of ground-state complex. Binding constants and the number of binding sites were determined for both the complexes. The observed thermodynamic parameters suggest that the key interacting forces involved are van der Waals interaction and hydrogen bonding in case of TRP and ZnO nanoparticles whereas hydrophobic interaction is responsible in formations of TRP-ASP complex.

  8. 5-hydroxy-L-tryptophan Suppressed Food Intake in Rats Despite an Increase in the Arcuate NPY Expression


    Moon, Young Wha; Choi, Si Ho; Yoo, Sang Bae; Lee, Jong-Ho; Jahng, Jeong Won


    This study was conducted to define the underlying mechanism of hypophagia induced by increased central serotonergic action. Rats received 3 daily injections of 5-hydroxy-L-tryptophan (5-HTP), a serotonin precursor, at a dose of 100 mg/kg/10 ml saline at 1 h before lights off. A significant suppression in food intake was observed shortly after the 5-HTP injection and persisted during 3 daily 5-HTP injections. Neuropeptide Y (NPY) expression in the arcuate nucleus increased after 3 days of 5-HT...

  9. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey. (United States)

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina


    The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript

  10. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population

    Directory of Open Access Journals (Sweden)

    Zheng Ping


    Full Text Available Abstract Background Tryptophan hydroxylase-2 (TPH2 is a potential candidate gene for screening tic disorder (TD. Methods A case–control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs of the TPH2 gene in 149 TD children and in 125 normal controls. Results For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR =3.077, 95% confidence interval (CI: 1.273–7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153–9.040; P = 0.020. The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS than those in controls among the male children (OR = 1.684, 95%: 1.097–2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139–9.513; P = 0.022. We also found that genotype distributions of both SNPs were different between the Asian and European populations. Conclusions Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD,these findings need to be confirmed by studies in much larger samples.

  11. Ancient Origin of the Tryptophan Operon and the Dynamics of Evolutionary Change† (United States)

    Xie, Gary; Keyhani, Nemat O.; Bonner; Jensen, Roy A.


    The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting

  12. Steady-state tryptophan fluorescence spectroscopy study to probe tertiary structure of proteins in solid powders. (United States)

    Sharma, Vikas K; Kalonia, Devendra S


    The purpose of this work was to obtain information about protein tertiary structure in solid state by using steady state tryptophan (Trp) fluorescence emission spectroscopy on protein powders. Beta-lactoglobulin (betaLg) and interferon alpha-2a (IFN) powder samples were studied by fluorescence spectroscopy using a front surface sample holder. Two different sets of dried betaLg samples were prepared by vacuum drying of solutions: one containing betaLg, and the other containing a mixture of betaLg and guanidine hydrochloride. Dried IFN samples were prepared by vacuum drying of IFN solutions and by vacuum drying of polyethylene glycol precipitated IFN. The results obtained from solid samples were compared with the emission scans of these proteins in solutions. The emission scans obtained from protein powders were slightly blue-shifted compared to the solution spectra due to the absence of water. The emission scans were red-shifted for betaLg samples dried from solutions containing GuHCl. The magnitude of the shifts in lambda(max) depended on the extent of drying of the samples, which was attributed to the crystallization of GuHCl during the drying process. The shifts in the lambda(max) of the Trp emission spectrum are associated with the changes in the tertiary structure of betaLg. In the case of IFN, the emission scans obtained from PEG-precipitated and dried sample were different compared to the emission scans obtained from IFN in solution and from vacuum dried IFN. The double peaks observed in this sample were attributed to the unfolding of the protein. In the presence of trehalose, the two peaks converged to form a single peak, which was similar to solution emission spectra, whereas no change was observed in the presence of mannitol. We conclude that Trp fluorescence spectroscopy provides a simple and reliable means to characterize Trp microenvironment in protein powders that is related to the tertiary conformation of proteins in the solid state. This study shows

  13. Nanosecond dynamics of influenza A/M2TM and an amantadine resistant mutant probed by time-dependent red shifts of a native tryptophan (United States)

    Nanda, Vikas; Cristian, Lidia; Toptygin, Dmitri; Brand, Ludwig; DeGrado, William F.


    Proteins involved in functions such as electron transfer or ion transport must be capable of stabilizing transient charged species on time scales ranging from picoseconds to microseconds. We study the influenza A M2 proton channel, containing a tryptophan residue that serves as an essential part of the proton conduction pathway. We induce a transition dipole in tryptophan by photoexcitation, and then probe the dielectric stabilization of its excited state. The magnitude of the stabilization over this time regime was larger than that generally found for tryptophan in membrane or protein environments. M2 achieves a water-like stabilization over a 25 ns time scale, slower than that of bulk water, but sufficiently rapid to contribute to stabilization of charge as protons diffuse through the channel. These measurements should stimulate future MD studies to clarify the role of sidechain versus non-bulk water in defining the process of relaxation.

  14. Tryptophan as key biomarker to detect gastrointestinal tract cancer using non-negative biochemical analysis of native fluorescence and Stokes Shift spectroscopy (United States)

    Wang, Leana; Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; He, Yong; Pu, Yang; Nguyen, Thien An; Alfano, Robert R.


    The objective of this study was to find out the emission spectral fingerprints for discrimination of human colorectal and gastric cancer from normal tissue in vitro by applying native fluorescence. The native fluorescence (NFL) and Stokes shift spectra of seventy-two human cancerous and normal colorectal (colon, rectum) and gastric tissues were analyzed using three selected excitation wavelengths (e.g. 300 nm, 320 nm and 340 nm). Three distinct biomarkers, tryptophan, collagen and reduced nicotinamide adenine dinucleotide hydrate (NADH), were found in the samples of cancerous and normal tissues from eighteen subjects. The spectral profiles of tryptophan exhibited a sharp peak in cancerous colon tissues under a 300 nm excitation when compared with normal tissues. The changes in compositions of tryptophan, collagen, and NADH were found between colon cancer and normal tissues under an excitation of 300 nm by the non-negative basic biochemical component analysis (BBCA) model.

  15. High-performance column liquid chromatographic method for the simultaneous determination of buclizine, tryptophan, pyridoxine, and cyanocobalamin in tablets and oral suspension. (United States)

    Kuminek, Gislaine; Stulzer, Hellen K; Tagliari, Monika P; Oliveira, Paulo R; Bernardi, Larissa S; Rauber, Gabriela S; Cardoso, Simone G


    An HPLC method was developed and validated for the simultaneous determination of buclizine, tryptophan, pyridoxine, and cyanocobalamin in pharmaceutical formulations. The chromatographic separation was carried out on an RP-C18 column using a mobile phase gradient of methanol, 0.015 M phosphate buffer (pH 3.0), and 0.03 M phosphoric acid at a flow rate of 1.0 mL/min and UV detection at 230, 280, and 360 nm, respectively, for buclizine, tryptophan, pyridoxine, and cyanocobalamin. The method validation yielded good results with respect to linearity (r>0.999), specificity, precision, accuracy, and robustness. The RSD values for intraday and interday precision were below 1.82 and 0.63%, respectively, and recoveries ranged from 98.11 to 101.95%. The method was successfully applied for the QC analysis of buclizine, tryptophan, pyridoxine, and cyanocobalamin in tablets and oral suspension.

  16. Hypericum Perforatum Decreased Hippocampus TNF-α and Corticosterone Levels with No Effect on Kynurenine/Tryptophan Ratio in Bilateral Ovariectomized Rats. (United States)

    El-Bakly, Wesam M; Hasanin, Amany H


    The present study was designed to investigate the effect Hypericum Perforatum (HP), on behavioral changes, corticosterone, TNF-α levels and tryptophan metabolism and disposition in bilateral ovariectomized rats compared to 17α -ethinylestradiol. Behavioral analysis by measuring immobility time in forced swimming test and open field test, serum and hippocampal corticosterone and TNF-α along with hippocampal kynurenine/tryptophan ratio were determined in mature ovariectomized rats treated orally either by HP at three different doses 125, 250, and 500 mg/kg/day or by 17α-ethinylestradiol 30 µg/kg/day for 30 days. Ovariectomized rats showed significant increase in immobility time in the forced swimming test. Along with elevation in serum and hippocampal TNF-α and corticosterone levels associated with significant increase in hippocampal kynurenine/tryptophan ratio. Immobility time in the forced swimming test was decreased in rats treated by different doses of HP in a dose dependent manner and 17α-ethinylestradiol with no concomitant changes in the open field test. Only Rats treated with HP exhibited significant decrease in the elevated serum and hippocampal TNF-α and corticosterone, which couldn't explain the associated insignificant effect on hippocampaus kynurenine/tryptophan ratio in comparison to ovariectomized untreated rats. It is concluded that increased tryptophan metabolism toward kynurenine secondary to elevated corticosterone and TNF-α might be one of the pathohphysiological mechanisms that could explain depression like state observed in this rat model. Further, the observed attenuating effect of HP on TNF-α and corticosterone could contribute in its antidepressant effect in this animal model by other ways than their effects on tryptophan-kynurenine metabolism pathway.

  17. Room temperature fluorescence and phosphorescence study on the interactions of iodide ions with single tryptophan containing serum albumins (United States)

    Gałęcki, Krystian; Kowalska-Baron, Agnieszka


    In this study, the influence of heavy-atom perturbation, induced by the addition of iodide ions, on the fluorescence and phosphorescence decay parameters of some single tryptophan containing serum albumins isolated from: human (HSA), equine (ESA) and leporine (LSA) has been studied. The obtained results indicated that, there exist two distinct conformations of the proteins with different exposure to the quencher. In addition, the Stern-Volmer plots indicated saturation of iodide ions in the binding region. Therefore, to determine quenching parameter, we proposed alternative quenching model and we have performed a global analysis of each conformer to define the effect of iodide ions in the cavity by determining the value of the association constant. The possible quenching mechanism may be based on long-range through-space interactions between the buried chromophore and quencher in the aqueous phase. The discrepancies of the decay parameters between the albumins studied may be related with the accumulation of positive charge at the main and the back entrance to the Drug Site 1 where tryptophan residue is located.

  18. Tryptophan and cystein residues of the acetylcholine receptors of Torpedo species. Relationship to binding of cholinergic ligands. (United States)

    Eldefrawi, M E; Eldefrawi, A T; Wilson, D B


    Several methods were used to analyze for tryptophan in the acetylcholine (ACh) receptors purified from the electric organs of the electric rays, Torpedo californica and Torpedo marmorata. The best value of tryptophan was 2.4 mol %. When excited at 290 nm, both receptors fluoresced with a maximum at 336, but there was no change in the fluorescence emission spectra upon binding of carbamylcholine, d-tubocurarine, ACh, or decamethonium. The free SH content of the Torpedo receptors varied in different preparations, and was highest in that purified from fresh T. californica using deaerated solutions and dialysis under nitrogen, and lowest in that prepared from the aged lyophilized membranes of T. marmorata. The maximum free SH content was 20 nmol/mg of protein or 0.22 mol %, equal to at most 18% of the total cysteic acid residues. Reaction of either 33% or of all the SH residues with p-chloromercuribenzoate reduced maximum ACh binding to the pure receptor prepared from fresh T. californica by only 23%.

  19. A Better Understanding of Protein Structure and Function by the Synthesis and Incorporation of Selenium- and Tellurium Containing Tryptophan Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Helmey, Sherif Samir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Rice, Ambrose Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Hatch, Duane Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Silks, Louis A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Marti-Arbona, Ricardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division


    Unnatural heavy metal-containing amino acid analogs have shown to be very important in the analysis of protein structure, using methods such as X-ray crystallography, mass spectroscopy, and NMR spectroscopy. Synthesis and incorporation of selenium-containing methionine analogs has already been shown in the literature however with some drawbacks due to toxicity to host organisms. Thus synthesis of heavy metal tryptophan analogs should prove to be more effective since the amino acid tryptophan is naturally less abundant in many proteins. For example, bioincorporation of β-seleno[3,2-b]pyrrolyl-L-alanine ([4,5]SeTrp) and β-selenolo[2,3-b]pyrrolyl-L-alanine ([6,7]SeTrp) has been shown in the following proteins without structural or catalytic perturbations: human annexin V, barstar, and dihydrofolate reductase. The reported synthesis of these Se-containing analogs is currently not efficient for commercial purposes. Thus a more efficient, concise, high-yield synthesis of selenotryptophan, as well as the corresponding, tellurotryptophan, will be necessary for wide spread use of these unnatural amino acid analogs. This research will highlight our progress towards a synthetic route of both [6,7]SeTrp and [6,7]TeTrp, which ultimately will be used to study the effect on the catalytic activity of Lignin Peroxidase (LiP).

  20. Kinetic network models of tryptophan mutations in β-hairpins reveal the importance of non-native interactions. (United States)

    Razavi, Asghar M; Voelz, Vincent A


    We present an analysis of the most extensive explicit-solvent simulations of β-hairpins to date (9.4 ms in aggregate), with the aim of probing the effects of tryptophan mutations on folding. From molecular simulations of GB1 hairpin, trpzip4, trpzip5, and trpzip6 performed on Folding@home, Markov State Models (MSMs) were constructed using a unified set of metastable states, enabling objective comparison of folding mechanisms. MSM models display quantitative agreement with experimental structural observables and folding kinetics, and predict multimodal kinetics due to specific non-native kinetic traps, which be identified as on- or off-pathway from the network topology. We quantify kinetic frustration by several means, including the s-ensemble method to evaluate glasslike behavior. Free-energy profiles and transition state movement clearly show stabilization of non-native states as Trp mutations are introduced. Remarkably, we find that "β-capped" sequences (trpzip4 and trpzip5) are able to overcome this frustration and remain cooperative two-state folders with a large time-scale gap. These results suggest that, while β-capping motifs are robust, fold stabilization by tryptophan generally may require overcoming significant non-native kinetic traps, perhaps explaining their under-representation in natural proteins.

  1. Synthesis of new Tb-doped Zn-Al LDH/tryptophan hybrids and their fluorescent property

    Institute of Scientific and Technical Information of China (English)

    陈玉凤; 王肖庆; 罗世地; 鲍垚


    A series of hybrids based on Tb-doped Zn-Al layered double hydroxides (Tb-LDHs) combined with tryptophan (hereafter shortened as Try) were synthesized by soft-chemical method. The composition, structure, and fluorescence of the Tb-LDH/Try hy-brids were analyzed by various characterizations. Compositional analysis indicated that the content of tryptophan present in the hybrids gradually increased while the Tb-LDH reacted with 0.05, 0.1, and 0.25 mol/L Try solution, respectively. XRD results revealed that new reflections appeared in the Tb-LDH/Try hybrids. TGA curves of the Tb-LDH/Try hybrids were different from that of Tb-LDH and Try. IR spectra manifested that the IR spectra of the hybrids were characteristic of the Try and Tb-LDH. Fluorescent spectra sug-gested that the green emission due to5D4→7F5 transition of Tb3+ greatly decreased but not quenched, and the emission attributed to Try obviously increased. Meanwhile the fluorescent spectra of Tb-LDH/Try hybrids presented broad continuous bands in visible region.

  2. Serum tryptophan and its metabolites in female dogs undergoing ovariohysterectomy as treatment of pyometra or as elective spay surgery. (United States)

    Dąbrowski, Roman; Hagman, Ragnvi; Tvarijonaviciute, Asta; Pastor, Josep; Kocki, Tomasz; Turski, Waldemar A


    This study compares serum concentrations of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), and indoleamine 2,3-dioxygenase (IDO) activity in healthy bitches and bitches with bacterial uterine infection (pyometra). The effects of surgery were also assessed by measuring these variables in both groups of dogs before and after ovariohysterectomy. Presurgery, mean (±standard deviation) TRP, KYN, and KYNA concentrations and IDO activity were 68.44 ± 21.77, 2.00 ± 0.33, 112.11 ± 111.91 μmol/L, and 29.22 ± 10.10, respectively, in the healthy dogs; and 40.16 ± 12.11, 8.27 ± 3.94, 411.11 ± 199.60 μmol/L, and 205.92 ± 154.20, respectively, in the dogs with pyometra. Tryptophan and KYN levels had normalized on suture removal (10 days after surgery) though IDO activity and KYNA concentrations remained elevated during the postoperative period compared with presurgery values in both study groups. Our results suggest that KYNA concentrations and IDO activity could be useful indicators of the inflammation induced by pyometra and could be also used to monitor recovery following ovariohysterectomy in both healthy dogs and dogs with pyometra. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Subcellular Raman Microspectroscopy Imaging of Nucleic Acids and Tryptophan for Distinction of Normal Human Skin Cells and Tumorigenic Keratinocytes. (United States)

    Piredda, Paola; Berning, Manuel; Boukamp, Petra; Volkmer, Andreas


    At present, tumor diagnostic imaging is commonly based on hematoxylin and eosin or immunohistochemical staining of biopsies, which requires tissue excision, fixation, and staining with exogenous marker molecules. Here, we report on label-free tumor imaging using confocal spontaneous Raman scattering microspectroscopy, which exploits the intrinsic vibrational contrast of endogenous biomolecular species. We present a chemically specific and quantitative approach to monitoring normal human skin cells (keratinocytes and fibroblasts) as well as the human HaCaT in vitro skin carcinogenesis model and the tumor-derived MET in vivo skin cancer progression model. Mapping the amplitudes of two spectrally well isolated Raman bands at 752 and 785 cm(-1) allowed for direct visualization of the distributions representative of tryptophan-rich proteins and nucleic acids, respectively, with subcellular spatial resolution. Using these Raman markers, it was feasible to discriminate between normal human epidermal keratinocytes (NHEK) and dermal fibroblasts (NHDF) and to confine all tumorigenic cells from both the NHEK and NHDF. First evidence for the successful application of the proposed intracellular nucleic acid and tryptophan Raman signatures for skin cancer diagnosis was further demonstrated in an organotypic cutaneous squamous cell carcinomas model, allowing for the identification of tumor cells and their surrounding stroma in the tissue context.

  4. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces (United States)

    Rutherford, R.; Gallois, P.; Masson, P. H.


    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  5. Interaction of Tryptophane and Phenylalanine with Cadmium and Molybdenum Ferrocyanides and Its Implications in Chemical Evolution and Origins of Life. (United States)

    Tewari, Brij


    Insoluble metal hexacyanoferrate(II) complexes could have concentrated biomonomers from dilute prebiotic soup during course of chemical evolution and origin of life or primitive earth. In the light of above hypothesis, adsorption of tryptophane and phenylalanine was studied on cadmium and molybdenum ferrocyanides at neutral pH (7.0 ± 0.01) and at a temperature of 30 ± 1º C. Interaction of amino acids with metal ferrocyanides are found to be maximum at neutral pH. Neutral pH is chosen for the adsorption studies because most of the reactions in biological systems taken place at neutral pH range. Adsorption trend follow Langmuir isotherm model. The Langmuir constants b and Qo were calculated at neutral pH, tryptophane was found to more adsorbed than phenylalanine on both metal ferrocyanides studied. Molybdenum ferrocyanides studied. Molybdenum ferrocyanides was found to have more uptake capacity for both adsorbates than cadmium ferrocyanides. The present study suggests that metal ferrocyanides might have played a role in the stabilization of biomolecules through their surface activity during course of chemical solution and origins of life on primitive earth.

  6. Neopterin production and tryptophan degradation during 24-months therapy with interferon beta-1a in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Sessa Edoardo


    Full Text Available Background Increased synthesis of neopterin and degradation of tryptophan to kynurenine, measured as kynurenine/tryptophan ratio (kyn/trp ratio, are considered in vitro markers of interferon beta-1a (IFNβ-1a activity. The aim of the study was to investigate the dynamic profile of neopterin and kyn/trp ratio in patients with relapsing remitting multiple sclerosis (RRMS treated with two different doses of IFNβ-1a over a period of 24 months. Methods RRMS patients (n = 101 received open-label IFNβ-1a 22 mcg (low dose, LD or 44 mcg (high dose, HD subcutaneously (sc, three times weekly for 24 months. Serum measurements of neopterin, kyn/trp ratio and neutralizing antibodies (NAbs were obtained before treatment (i.e., at baseline and 48 hours post-injection every 3 months thereafter. Clinical assessments were performed at baseline and every 6 months. Changes in biomarkers over time were compared between LD- and HD-group as well as between patients with/without relapses and with/without NAbs using Analysis of Variance and Mann-Whitney tests. Results Neopterin (p Conclusions Although differences in serum markers concentration were found following IFNβ administration the clinical relevance of these findings needs to be confirmed with more detailed studies.

  7. Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide. (United States)

    Fränzel, Benjamin; Penkova, Maya; Frese, Christian; Metzler-Nolte, Nils; Andreas Wolters, Dirk


    Since multiresistant bacterial strains are more widespread and the victim numbers steadily increase, it is very important to possess a broad bandwidth of antimicrobial substances. Antibiotics often feature membrane-associated effect mechanisms. So, we present a membrane proteomic approach to shed light on the cellular response of Escherichia coli as model organism to the hexapeptide MP196, which is arginine and tryptophan rich. Analyzing integral membrane proteins are still challenging, although various detection strategies have been developed in the past. In particular, membrane proteomics in bacteria have been conducted very little due to the special physical properties of these membrane proteins. To obtain more information on the cellular response of the new compound group of small peptides, the tryptophan- and arginine-rich hexapeptide MP196 was subject to a comprehensive quantitative membrane proteomic study on E. coli by means of metabolic labeling in combination with membrane lipid analyses. This study provides in total 767 protein identifications including 185 integral membrane proteins, from which 624 could be quantified. Among these proteins, 134 were differentially expressed. Thereby, functional groups such as amino acid and membrane biosynthesis were affected, stress response could be observed, and the lipid composition of the membrane was significantly altered. Especially, the strong upregulation of the envelope stress induced protein. Spy indicates membrane damage, as well as the downregulation of the mechano-sensitive channel MscL beside others. Finally, the exceptional downregulation of transport systems strengthens these findings.

  8. Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41. (United States)

    Rivero-Buceta, Eva; Doyagüez, Elisa G; Colomer, Ignacio; Quesada, Ernesto; Mathys, Leen; Noppen, Sam; Liekens, Sandra; Camarasa, María-José; Pérez-Pérez, María-Jesús; Balzarini, Jan; San-Félix, Ana


    Dendrimers containing from 9 to 18 tryptophan residues at the peryphery have been efficiently synthesized and tested against HIV replication. These compounds inhibit an early step of the replicative cycle of HIV, presumably virus entry into its target cell. Our data suggest that HIV inhibition can be achieved by the preferred interaction of the compounds herein described with glycoproteins gp120 and gp41 of the HIV envelope preventing interaction between HIV and the (co)receptors present on the host cells. The results obtained so far indicate that 9 tryptophan residues on the periphery are sufficient for efficient gp120/gp41 binding and anti-HIV activity.

  9. Increases in Plasma Tryptophan Are Inversely Associated with Incident Cardiovascular Disease in the Prevención con Dieta Mediterránea (PREDIMED) Study. (United States)

    Yu, Edward; Ruiz-Canela, Miguel; Guasch-Ferré, Marta; Zheng, Yan; Toledo, Estefania; Clish, Clary B; Salas-Salvadó, Jordi; Liang, Liming; Wang, Dong D; Corella, Dolores; Fitó, Montse; Gómez-Gracia, Enrique; Lapetra, José; Estruch, Ramón; Ros, Emilio; Cofán, Montserrat; Arós, Fernando; Romaguera, Dora; Serra-Majem, Lluis; Sorlí, Jose V; Hu, Frank B; Martinez-Gonzalez, Miguel A


    Background: During development of cardiovascular disease (CVD), interferon-γ-mediated inflammation accelerates degradation of tryptophan into downstream metabolites. A Mediterranean diet (MedDiet) consisting of a high intake of extra-virgin olive oil (EVOO), nuts, fruits, vegetables, and cereals has been demonstrated to lower the risk of CVD. The longitudinal relation between tryptophan and its downstream metabolites and CVD in the context of a MedDiet is unstudied.Objective: We sought to investigate the relation between metabolites in the tryptophan-kynurenine pathway and CVD in the context of a MedDiet pattern.Methods: We used a case-cohort design nested in the Prevención con Dieta Mediterránea randomized controlled trial. There were 231 CVD cases (stroke, myocardial infarction, cardiovascular death) among 985 participants over a median of 4.7 y of follow-up [mean ± SD age: 67.6 ± 6.1 y; 53.7% women; mean ± SD body mass index (in kg/m(2)): 29.7 ± 3.7]. We assessed plasma tryptophan, kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, and quinolinic acid concentrations at baseline and after 1 y of intervention with a MedDiet. We combined these metabolites in a kynurenine risk score (KRS) by weighting each metabolite by the adjusted coefficient of its associations with CVD. Cox models were used in the primary analysis.Results: Increases in tryptophan after 1 y were associated with a lower risk of composite CVD (HR per SD: 0.79; 95% CI: 0.63, 0.98). The baseline kynurenic acid concentration was associated with a higher risk of myocardial infarction and coronary artery disease death but not stroke. A higher KRS was more strongly associated with CVD in the control group than in the 2 intervention groups (P-interaction = 0.003). Adjustment for changes in plasma tryptophan attenuated the inverse association between MedDiet+EVOO and CVD.Conclusions: An increase in the plasma tryptophan concentration was significantly associated with a decreased risk of CVD. A

  10. Two-photon absorption and two-photon circular dichroism of L-tryptophan in the near to far UV region (United States)

    Vesga, Yuly; Hernandez, Florencio E.


    Herein we report on the first measurements of the two-photon absorption (TPA) spectrum of L-tryptophan in DMSO solution in the near to far UV region and the two-photon circular dichroism (TPCD) signal corresponding to a transition at 200 nm. We demonstrate the application of the Double L-scan technique in the near to far UV region to perform polarization dependent TPA measurements of chiral molecules. TPCD measurements below 400 nm reveal that chiral molecules in solution, such as tryptophan/DMSO, can undergo photochemical reactions in front of prolonged exposure to UV radiation.

  11. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer (United States)

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per; Met, Özcan; Frøsig, Thomas Mørch; Andersen, Gitte Holmen; Ahmad, Shamaila Munir; Svane, Inge Marie; Becker, Jürgen C; Straten, Per thor; Andersen, Mads Hald


    Tryptophan-2,3-dioxygenase (TDO) physiologically regulates systemic tryptophan levels in the liver. However, numerous studies have linked cancer with activation of local and systemic tryptophan metabolism. Indeed, similar to other heme dioxygenases TDO is constitutively expressed in many cancers. In the present study, we detected the presence of both CD8+ and CD4+ T-cell reactivity toward TDO in peripheral blood of patients with malignant melanoma (MM) or breast cancer (BC) as well as healthy subjects. However, TDO-reactive CD4+ T cells constituted distinct functional phenotypes in health and disease. In healthy subjects these cells predominately comprised interferon (IFN)γ and tumor necrosis factor (TNF)-α producing Th1 cells, while in cancer patients TDO-reactive CD4+ T-cells were more differentiated with release of not only IFNγ and TNFα, but also interleukin (IL)-17 and IL-10 in response to TDO-derived MHC-class II restricted peptides. Hence, in healthy donors (HD) a Th1 helper response was predominant, whereas in cancer patients CD4+ T-cell responses were skewed toward a regulatory T cell (Treg) response. Furthermore, MM patients hosting a TDO-specific IL-17 response showed a trend toward an improved overall survival (OS) compared to MM patients with IL-10 producing, TDO-reactive CD4+ T cells. For further characterization, we isolated and expanded both CD8+ and CD4+ TDO-reactive T cells in vitro. TDO-reactive CD8+ T cells were able to kill HLA-matched tumor cells of different origin. Interestingly, the processed and presented TDO-derived epitopes varied between different cancer cells. With respect to CD4+ TDO-reactive T cells, in vitro expanded T-cell cultures comprised a Th1 and/or a Treg phenotype. In summary, our data demonstrate that the immune modulating enzyme TDO is a target for CD8+ and CD4+ T cell responses both in healthy subjects as well as patients with cancer; notably, however, the functional phenotype of these T-cell responses differ

  12. Effects of dietary tryptophan and phenylalanine–tyrosine depletion on phasic alertness in healthy adults – A pilot study (United States)

    Hildebrand, Patricia; Königschulte, Werner; Gaber, Tilman Jakob; Bubenzer-Busch, Sarah; Helmbold, Katrin; Biskup, Caroline Sarah; Langen, Karl-Josef; Fink, Gereon Rudolf; Zepf, Florian Daniel


    Background The synthesis of the neurotransmitters serotonin (5-HT) and dopamine (DA) in the brain can be directly altered by dietary manipulation of their relevant precursor amino acids (AA). There is evidence that altered serotonergic and dopaminergic neurotransmission are both associated with impaired attentional control. Specifically, phasic alertness is one specific aspect of attention that has been linked to changes in 5-HT and DA availability in different neurocircuitries related to attentional processes. The present study investigated the impact of short-term reductions in central nervous system 5-HT and DA synthesis, which was achieved by dietary depletion of the relevant precursor AA, on phasic alertness in healthy adult volunteers; body weight–adapted dietary tryptophan and phenylalanine–tyrosine depletion (PTD) techniques were used. Methods The study employed a double-blind between-subject design. Fifty healthy male and female subjects were allocated to three groups in a randomized and counterbalanced manner and received three different dietary challenge conditions: acute tryptophan depletion (ATD, for the depletion of 5-HT; N=16), PTD (for the depletion of DA; N=17), and a balanced AA load (BAL; N=17), which served as a control condition. Three hours after challenge intake (ATD/PTD/BAL), phasic alertness was assessed using a standardized test battery for attentional performance (TAP). Blood samples for AA level analyses were obtained at baseline and 360 min after the challenge intake. Results Overall, there were no significant differences in phasic alertness for the different challenge conditions. Regarding PTD administration, a positive correlation between the reaction times and the DA-related depletion magnitude was detected via the lower plasma tyrosine levels and the slow reaction times of the first run of the task. In contrast, higher tryptophan concentrations were associated with slower reaction times in the fourth run of the task in the same

  13. Effects of dietary tryptophan and phenylalanine–tyrosine depletion on phasic alertness in healthy adults – A pilot study

    Directory of Open Access Journals (Sweden)

    Patricia Hildebrand


    Full Text Available Background: The synthesis of the neurotransmitters serotonin (5-HT and dopamine (DA in the brain can be directly altered by dietary manipulation of their relevant precursor amino acids (AA. There is evidence that altered serotonergic and dopaminergic neurotransmission are both associated with impaired attentional control. Specifically, phasic alertness is one specific aspect of attention that has been linked to changes in 5-HT and DA availability in different neurocircuitries related to attentional processes. The present study investigated the impact of short-term reductions in central nervous system 5-HT and DA synthesis, which was achieved by dietary depletion of the relevant precursor AA, on phasic alertness in healthy adult volunteers; body weight–adapted dietary tryptophan and phenylalanine–tyrosine depletion (PTD techniques were used. Methods: The study employed a double-blind between-subject design. Fifty healthy male and female subjects were allocated to three groups in a randomized and counterbalanced manner and received three different dietary challenge conditions: acute tryptophan depletion (ATD, for the depletion of 5-HT; N=16, PTD (for the depletion of DA; N=17, and a balanced AA load (BAL; N=17, which served as a control condition. Three hours after challenge intake (ATD/PTD/BAL, phasic alertness was assessed using a standardized test battery for attentional performance (TAP. Blood samples for AA level analyses were obtained at baseline and 360 min after the challenge intake. Results: Overall, there were no significant differences in phasic alertness for the different challenge conditions. Regarding PTD administration, a positive correlation between the reaction times and the DA-related depletion magnitude was detected via the lower plasma tyrosine levels and the slow reaction times of the first run of the task. In contrast, higher tryptophan concentrations were associated with slower reaction times in the fourth run of the

  14. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation. (United States)

    Pavon, Jorge Alex; Fitzpatrick, Paul F


    Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-(2)H]-, [3,5-(2)H(2)]-, and (2)H(5)-phenylalanine as substrates. All (D)k(cat) values are normal with Delta117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12-1.41. In contrast, for Delta117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the (D)k(cat) value with [4-(2)H]-phenylalanine is 0.92 but is normal with [3,5-(2)H(2)]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Delta117PheH V379D shows a similar inverse isotope effect with [4-(2)H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-(2)H]-and [3,5(2)H(2)]-phenylalanine, are identical for Delta117PheH and Delta117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the (D)k(cat) value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight ( approximately 34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With (2)H(5)-indole-tryptophan as a substrate for Delta117PheH, the (D)k(cat) value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the (D)k(cat) values are within error of those for Delta117PheH V379D. Overall, these results

  15. Genetic and hormonal regulation of tryptophan kynurenine metabolism: implications for vascular cognitive impairment, major depressive disorder, and aging. (United States)

    Oxenkrug, Gregory F


    Impairment of cognition that is caused by (or associated with) vascular factors has been termed vascular cognitive impairment (VCI). The hallmark of VCI is an impairment of brain executive, or planning, functions caused by inflammatory changes of brain microvessels. VCI is characterized by impairment of the executive function and is distinct from Alzheimer's-type and multi-infarct dementias, although VCI might overlap with Alzheimer's disease. This review focuses on the possible contribution of the kynurenine pathway of tryptophan (Try) catabolism to the inflammatory changes in brain microvessels. One mechanism of brain microvessel inflammation is activation of the inducible nitric oxide synthase (iNOS) by the proinflammatory cytokine interferon gamma (IFN-gamma). The effect of IFN-gamma on iNOS might be mediated by kynurenine derivatives of tryptophan because (1) IFN-gamma stimulates the rate-determining enzyme of the Try-kynurenine pathway, indoleamine-2,3-dioxygenase (IDO) and (2) some kynurenines (e.g., quinolinic and picolinic acids) can stimulate iNOS. IFN-gamma production is controlled by (IFN-gamma) + 874(T/A) genotypes, suggesting the association of a high promoter T allele with the high rate of IFN-gamma production and, consequently, with activated IDO and enhanced production of kynurenines. Although IDO is strictly an IFN-gamma-induced gene product, tumor necrosis factor alpha (TNF-alpha) can synergistically increase the transcriptional activation of the IDO gene in response to IFN-gamma. The combination of high promoter T of (IFN-gamma) + 874(T/A) with high promoter A of (TNF-alpha) -308(G/A) might "superinduce" IDO and cause (or contribute to) inflammation of brain microvessels detected as white matter hyperintensities and leading to VCI development. Hormonal induction of tryptophan dioxygenase and the ability of hormones to potentiate IFN-gamma-induced activation of IDO might contribute to the development of inflammatory changes in major depressive

  16. Brain Regional α-[11C]Methyl-L-Tryptophan Trapping in Medication-Free Patients With Obsessive-Compulsive Disorder (United States)

    Berney, Alexandre; Leyton, Marco; Gravel, Paul; Sibon, Igor; Sookman, Debbie; Neto, Pedro Rosa; Diksic, Mirko; Nakai, Akio; Pinard, Gilbert; Todorov, Christo; Okazawa, Hidehiko; Blier, Pierre; Nordahl, Thomas Edward; Benkelfat, Chawki


    Context The hypothesis of a serotonin (5-hydroxytryptamine [5-HT]) dysfunction in obsessive-compulsive disorder (OCD) stems largely from the clinical efficacy of 5-HT reuptake inhibitors. Serotonergic abnormalities in the unmedicated symptomatic state, however, remain to be fully characterized. Objective To investigate brain regional 5-HT synthesis, as indexed by positron emission tomography and the α-[11C]methyl-L-tryptophan trapping constant (K*), in treatment-free adults meeting criteria for OCD. Design Between-group comparison. Setting Department of Psychiatry and Montreal Neurological Institute, McGill University, and Department of Psychology, McGill University Health Centre, Quebec, Canada. Participants Twenty-one medication-free patients with OCD (15 men with a mean [SD] age of 33.2 [9.3] years and 6 women with a mean [SD] age of 35.8 [7.1] years) and 21 healthy controls matched for age and sex (15 men with a mean [SD] age of 32.9 [10.1] years and 6 women with a mean [SD] age of 36.5.5 [8.6] years). Main Outcome Measure The α-[11C]methyl-L-tryptophan brain trapping constant K*, which was analyzed with Statistical Parametric Mapping (SPM8) and with proportional normalization (extent threshold of 100 voxels with a peak threshold of P≤.005). Results Compared with healthy controls, the patients with OCD exhibited significantly greater α-[11C]methyl-L-tryptophan trapping in the right hippocampus and left temporal gyrus (Brodmann area 20). In the larger sub-sample of all men, these same differences were also evident, as well as higher K* values in the caudate nucleus. Individual differences in symptom severity correlated positively with K* values sampled from the caudate and temporal lobe of the patients with OCD, respectively. There were no regions where the patients exhibited abnormally low K* values. Volumetric analyses found no morphometric alterations that would account for the group differences. Conclusion The results support previous reports of greater

  17. Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers

    NARCIS (Netherlands)

    Markus, C.R.; Sierksma, A.; Verbeek, C.; Rooijen, J.J.M. van; Patel, H.J.; Brand, A.N.; Hendriks, H.F.J.


    Brain serotonin (5-HT) synthesis is controlled by nutrients that influence the availability of plasma tryptophan (Trp) as compared with the sum of the other large neutral amino acids (LNAA; Trp:LNAA). Alcohol consumption is found to change mood and performance and this might well be due to

  18. Structure of the Cytoplasmic Loop between Putative Helices II and III of the Mannitol Permease of Escherichia coli : A Tryptophan and 5-Fluorotryptophan Spectroscopy Study

    NARCIS (Netherlands)

    Vos, Erwin P. P.; Bokhove, Marcel; Hesp, Ben H.; Broos, Jaap


    In this work, four single tryptophan (Trp) mutants of the dimeric mannitol transporter of Escherichia coli, EII(mtl), are characterized using Trp and 5-fluoroTrp (5-FTrp) fluorescence spectroscopy. The four positions, 97, 114, 126, and 133, are located in a region shown by recent studies to be invol

  19. Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne


    , histidine, tryptophan, and nicotinamide mononucleotide were all added to the growth medium. Viability of the strain was dependent upon mutations in genes of the nucleoside salvage pathways that improved the utilization of exogenous nucleosides. The properties of the strain are those expected of a PRPP...

  20. Association between A218C polymorphism of the tryptophan-hydroxylase-1 gene, harm avoidance and binge eating behavior in bulimia nervosa. (United States)

    Monteleone, Palmiero; Tortorella, Alfonso; Martiadis, Vassilis; Serino, Ismene; Di Filippo, Carmela; Maj, Mario


    Genes involved in serotonin transmission are likely involved in the biological predisposition to bulimia nervosa. We investigated whether the A218C polymorphism of the tryptophan-hydroxylase-1 gene was associated to bulimia nervosa and/or to some phenotypic aspects of the disorder. One hundred eighty Caucasian women (91 patients with bulimia nervosa and 89 healthy controls) were enrolled into the study. They underwent a blood sample collection for A218C polymorphism of the tryptophan-hydroxylase-1 genotyping and a clinical evaluation assessing comorbidity for Axis I and II psychiatric disorders, harm avoidance personality dimension and bulimic symptoms. The distribution of both tryptophan-hydroxylase-1 A218C genotypes and alleles did not significantly differ between patients and controls. Bulimic women with the AA genotype exhibited a more severe binge eating behavior and higher harm avoidance scores than those with CC genotype. These findings support the idea that tryptophan-hydroxylase-1 A218C polymorphism does not play a part in the genetic susceptibility to bulimia nervosa, but it seems to be involved in predisposing bulimic patients to a more disturbed eating behavior and higher harm avoidance.

  1. Determination of Enantiomeric Compositions of Tryptophan by Chemometric Analysis of the Fluorescence Spectra of Bovine Serum Albumin Receptor-ligand Mixtures

    Institute of Scientific and Technical Information of China (English)

    Yun Xia WANG; Fang ZHANG; Jing LIANG; Hua LI; Ji Lie KONG


    In this work, a novel method was constructed to determine the enantiomeric composition of tryptophan (Trp) by bovine serum albumin (BSA) based on the fluorescence spectra of the receptor-ligand mixtures coupled with partial least squares (PLS-1) analysis. As a result the enantiomeric composition of Trp was accurately determined.

  2. Tryptophan hydroxylase gene 1 (TPH1) variants associated with cerebrospinal fluid 5-hydroxyindole acetic acid and homovanillic acid concentrations in healthy volunteers

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Werge, Thomas;


    Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin synthesis. We investigated possible relationships between five TPH1 gene polymorphisms and cerebrospinal fluid (CSF) concentrations of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), the major dopamine metab...

  3. Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers

    NARCIS (Netherlands)

    Markus, C.R.; Sierksma, A.; Verbeek, C.; Rooijen, J.J.M. van; Patel, H.J.; Brand, A.N.; Hendriks, H.F.J.


    Brain serotonin (5-HT) synthesis is controlled by nutrients that influence the availability of plasma tryptophan (Trp) as compared with the sum of the other large neutral amino acids (LNAA; Trp:LNAA). Alcohol consumption is found to change mood and performance and this might well be due to alteratio

  4. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George


    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C d

  5. Nanosecond dynamics of influenza A/M2TM and an amantadine resistant mutant probed by time-dependent red shifts of a native tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas [Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School – UMDNJ, Piscataway, NJ 08854 (United States); Department of Biochemistry, Robert Wood Johnson Medical School – UMDNJ, Piscataway, NJ 08854 (United States); Cristian, Lidia [Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059 (United States); Toptygin, Dmitri; Brand, Ludwig [Department of Biology, Johns Hopkins University, Baltimore, MD 21218 (United States); DeGrado, William F., E-mail: [Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 (United States)


    Highlights: ► Examined nanosecond dynamics of essential tryptophan residue of M2 proton channel. ► Channel blocking drugs restrict the ability of M2 to stabilize charge. ► Dielectric relaxation of M2 consistent with molecular dynamics simulation studies. - Abstract: Proteins involved in functions such as electron transfer or ion transport must be capable of stabilizing transient charged species on time scales ranging from picoseconds to microseconds. We study the influenza A M2 proton channel, containing a tryptophan residue that serves as an essential part of the proton conduction pathway. We induce a transition dipole in tryptophan by photoexcitation, and then probe the dielectric stabilization of its excited state. The magnitude of the stabilization over this time regime was larger than that generally found for tryptophan in membrane or protein environments. M2 achieves a water-like stabilization over a 25 ns time scale, slower than that of bulk water, but sufficiently rapid to contribute to stabilization of charge as protons diffuse through the channel. These measurements should stimulate future MD studies to clarify the role of sidechain versus non-bulk water in defining the process of relaxation.

  6. Influence of Hepatitis C Virus Sustained Virological Response on Immunosuppressive Tryptophan Catabolism in ART-Treated HIV/HCV Coinfected Patients

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Mehraj, Vikram; Costiniuk, Cecilia T.; Vyboh, Kishanda; Kema, Ido; Rollet, Kathleen; Ramirez, Robert Paulino; Klein, Marina B.; Routy, Jean-Pierre


    Background: We previously reported an association between tryptophan (Trp) catabolism and immune dysfunction in HIV monoinfection. Coinfection with HIV is associated with more rapid evolution of hepatitis C virus (HCV)-associated liver disease despite antiretroviral therapy (ART), possibly due to im

  7. Immunological markers of frailty predict outcomes beyond current risk scores in aortic stenosis following transcatheter aortic valve replacement: Role of neopterin and tryptophan

    Directory of Open Access Journals (Sweden)

    Adam Csordas


    Conclusions: Increased immune activation and associated tryptophan degradation serve as hallmarks of frailty underscoring the prognostic role of baseline inflammation for outcome in patients with severe aortic stenosis undergoing TAVR, and thus may provide a future therapeuthic target in this elderly patient population.

  8. Serotonin and Early Cognitive Development: Variation in the Tryptophan Hydroxylase 2 Gene Is Associated with Visual Attention in 7-Month-Old Infants (United States)

    Leppanen, Jukka M.; Peltola, Mikko J.; Puura, Kaija; Mantymaa, Mirjami; Mononen, Nina; Lehtimaki, Terho


    Background: Allelic variation in the promoter region of a gene that encodes tryptophan hydroxylase isoform 2 (TPH2), a rate-limiting enzyme of serotonin synthesis in the central nervous system, has been associated with variations in cognitive function and vulnerability to affective spectrum disorders. Little is known about the effects of this gene…

  9. Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation. (United States)

    Byrdin, Martin; Eker, André P M; Vos, Marten H; Brettel, Klaus


    In Escherichia coli photolyase, excitation of the FAD cofactor in its semireduced radical state (FADH*) induces an electron transfer over approximately 15 A from tryptophan W306 to the flavin. It has been suggested that two additional tryptophans are involved in an electron transfer chain FADH* FADH* decayed with a time constant tau approximately 26 ps to fully reduced flavin and a tryptophan cation radical. In W382F mutant photolyase, the excited flavin was much longer lived (tau approximately 80 ps), and no significant amount of product was detected. We conclude that, in WT photolyase, excited FADH* is quenched by electron transfer from W382. On a millisecond scale, a product state with extremely low yield ( approximately 0.5% of WT) was detected in W382F mutant photolyase. Its spectral and kinetic features were similar to the fully reduced flavin/neutral tryptophan radical state in WT photolyase. We suggest that, in W382F mutant photolyase, excited FADH* is reduced by W359 at a rate that competes only poorly with the intrinsic decay of excited FADH* (tau approximately 80 ps), explaining the low product yield. Subsequently, the W359 cation radical is reduced by W306. The rate constants of electron transfer from W382 to excited FADH* in WT and from W359 to excited FADH* in W382F mutant photolyase were estimated and related to the donor-acceptor distances.

  10. Effect of dietary tryptophan and betaine on tolerance of Caspian roach (Rutilus rutilus caspicus to copper toxicity

    Directory of Open Access Journals (Sweden)

    Sajjad Fatahi


    Full Text Available The present study investigated effects of dietary tryptophan (TRP and betaine (BET on copper (Cu toxicity tolerance in the Caspian roach (Rutilus rutilus caspicus. The Caspian roach fingerlings were fed diets containing 0, 0.25 and 0.5% TRP or 0, 0.5 and 1 % BET and combination of TRP and BET. Specimens were exposed to Cu (0.8 ppm after either 30 or 60 days feeding. Mortality was recorded in each treatment 48 h after the Cu exposure. TRP decreased significantly fish mortality. However, BET had no significant effect on fish mortality. Specimens fed on the diet supplemented with 0.25% TRP had the lowest mortality among the treatments. It is concluded that 0.25% TRP reduces mortality of Caspian roach during Cu exposure.

  11. 5-Hydroxytryptophan, a major product of tryptophan degradation, is essential for optimal replication of human parainfluenza virus. (United States)

    Rabbani, M A G; Barik, Sailen


    Interferon (IFN) exerts its antiviral effect by inducing a large family of cellular genes, named interferon (IFN)-stimulated genes (ISGs). An intriguing member of this family is indoleamine 2,3-dioxygenase (IDO), which catalyzes the first and rate-limiting step of the main branch of tryptophan (Trp) degradation, the kynurenine pathway. We recently showed that IDO strongly inhibits human parainfluenza virus type 3 (PIV3), a significant respiratory pathogen. Here, we show that 5-hydoxytryptophan (5-HTP), the first product of an alternative branch of Trp degradation and a serotonin precursor, is essential to protect virus growth against IDO in cell culture. We also show that the apparent antiviral effect of IDO on PIV3 is not due to the generation of the kynurenine pathway metabolites, but rather due to the depletion of intracellular Trp by IDO, as a result of which this rare amino acid becomes unavailable for the alternative, proviral 5-HTP pathway.

  12. Delphinidin immobilized on silver nanoparticles for the simultaneous determination of ascorbic acid, noradrenalin, uric acid, and tryptophan

    Directory of Open Access Journals (Sweden)

    Navid Nasirizadeh


    Full Text Available In the present study, the fabrication of a new modified electrode for electrocatalytic oxidation of noradrenalin, based on the delphinidin immobilized on silver nanoparticles modified glassy carbon electrode. Cyclic voltammetry was used to investigate the redox properties of this modified electrode. The surface charge transfer rate constant (ks and the charge transfer coefficient (α for the electron transfer between the glassy carbon electrode and the immobilized delphinidin were calculated. The differential pulse voltammetry exhibited two linear dynamic ranges and a detection limit of 0.40μM for noradrenalin determination. Moreover, the present electrode could separate the oxidation peak potentials of ascorbic acid, noradrenalin, uric acid, and tryptophan in a mixture. The usefulness of this nanosensor was also investigated for the determination of ascorbic acid, noradrenalin, and uric acid in pharmaceutical and biological fluid samples with satisfactory results.

  13. Experimentally calibrated computational chemistry of tryptophan hydroxylase: Trans influence, hydrogen-bonding, and 18-electron rule govern O-2-activation

    DEFF Research Database (Denmark)

    Haahr, Lærke Tvedebrink; Kepp, Kasper Planeta; Boesen, Jane


    ) and a peroxo intermediate with peroxide trans to glutamate (Pglu) were found to be consistent (0.57–0.59 mm/s) with experimental Mössbauer isomer shifts (0.55 mm/s) and had low computed free energies. The weaker trans influence of histidine is shown to give rise to a bent O2 coordination mode with O2 pointing...... with the experimental value (0.25 mm/s) which we propose as the structure of the hydroxylating intermediate, with the tryptophan substrate well located for further reaction 3.5 Å from the ferryl group. Based on the optimized transition states, the activation barriers for the two paths (glu and his) are similar, so...

  14. 5-fluoro-D,L-tryptophan as a dual NMR and fluorescent probe of α-synuclein. (United States)

    Pfefferkorn, Candace M; Lee, Jennifer C


    Analysis of conventional proton nuclear magnetic resonance (NMR) experiments on intrinsically disordered proteins (IDPs) is challenging because of the highly flexible and multiple rapidly exchanging conformations typifying this class of proteins. One method to circumvent some of these difficulties is to incorporate nonnative fluorine ((19)F) nuclei at specific sites within the polypeptide. (19)F NMR is particularly suitable for characterization of unfolded structures because (19)F chemical shifts are highly sensitive to local environments and conformations. Furthermore, the incorporation of fluorine analogs of fluorescent amino acids such as 5-fluoro-D: ,L: -tryptophan (5FW) allows for complementary studies of protein microenvironment via fluorescence spectroscopy. Herein, we describe methods to produce, purify, characterize, and perform steady-state fluorescence and 1D NMR experiments on 5FW analogs of the IDP α-synuclein.

  15. Fluorescence studies with malate dehydrogenase from rhizobium japonicum 3I1B-143 bacteroids: a two-tryptophan containing protein (United States)

    Ghiron, Camillo A.; Eftink, Maurice R.; Waters, James K.; Emerich, David W.


    A number of fluorescence studies, both of trp residues and bound NADH, have been reported for porcine MDH. The large number of trp residues (6) complicates the interpretation of some studies. To circumvent this we have performed studies with a two tryptophan (per subunit) MDH from Rhizobium japonicum 311B-143 bacteroids. We have performed phase/modulation fluorescence lifetime measurements, as a function of temperature and added quencher KI, in order to resolved the 1.3 ns (blue) and 6.6 ns (red) contributions from the two classes of trp residues. Anisotropy decay studies have also been performed. The binding of NADH dynamically quenches the fluorescence of both tip residues, but, unlike mammalian cytoplasmic and mitochondrial MDH, there is not a large enhancement in fluorescence of bound NADH upon forming a ternary complex with either tartronic acid or D-malonate.

  16. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase☆ (United States)

    Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar


    Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geometry of the compounds. The interaction pattern analysis and force field-based minimization was performed within LigandScout 3.03, the docking simulation with MOE 2011.10 using the X-ray crystal structure of IDO. Results confirm the possibility of an intense interaction of arctigenin and trachelogenin with the binding site of the enzyme, while matairesinol had no such effect. PMID:24251110

  17. Overproduction of L-tryptophan via simultaneous feed of glucose and anthranilic acid from recombinant E.coli W3110: kinetic modelling and process scale-up. (United States)

    Jing, Keju; Tang, Yuanwei; Yao, Chuanyi; Del Rio-Chanona, Ehecatl Antonio; Ling, Xueping; Zhang, Dongda


    L-tryptophan is an essential amino acid widely used in food and pharmaceutical industries. However, its production via Escherichia coli fermentation suffers severely from both low glucose conversion efficiency and acetic acid inhibition, and to date effective process control methods have rarely been explored to facilitate its industrial scale production. To resolve these challenges, in the current research an engineered strain of Escherichia coli was used to overproduce L-tryptophan. To achieve this, a novel dynamic control strategy which incorporates an optimised anthranilic acid feeding into a dissolved oxygen-stat (DO-stat) glucose feeding framework was proposed for the first time. Three original contributions were observed. Firstly, compared to previous DO control methods, the current strategy was able to inhibit completely the production of acetic acid, and its glucose to L-tryptophan yield reached 0.211 g/g, 62.3% higher than any previously reported. Secondly, a rigorous kinetic model was constructed to simulate the underlying biochemical process and identify the effect of anthranilic acid on both glucose conversion and L-tryptophan synthesis. Finally, a thorough investigation was conducted to testify the capability of both the kinetic model and the novel control strategy for process scale-up. It was found that the model possesses great predictive power, and the presented strategy achieved the highest glucose to L-tryptophan yield (0.224 g/g) ever reported in large scale processes, which approaches the theoretical maximum yield of 0.227 g/g. This research, therefore, paves the way to significantly enhance the profitability of the investigated bioprocess. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Dissecting the Catalytic Mechanism of Betaine-Homocysteine S-Methyltransferase Using Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.; Gratson, A.A.; Evans, J.C.; Jiracek, J.; Collinsova, M.; Ludwig, M.L.; Garrow, T.A. (ASCR); (UIUC); (Michigan)


    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.

  19. Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence. (United States)

    Sorensen, J P R; Sadhu, A; Sampath, G; Sugden, S; Dutta Gupta, S; Lapworth, D J; Marchant, B P; Pedley, S


    Open defecation is practised by over 600 million people in India and there is a strong political drive to eliminate this through the provision of on-site sanitation in rural areas. However, there are concerns that the subsequent leaching of excreta from subsurface storage could be adversely impacting underlying groundwater resources upon which rural populations are almost completely dependent for domestic water supply. We investigated this link in four villages undergoing sanitary interventions in Bihar State, India. A total of 150 supplies were sampled for thermotolerant (faecal) coliforms (TTC) and tryptophan-like fluorescence (TLF): an emerging real-time indicator of faecal contamination. Sanitary risk inspections were also performed at all sites, including whether a supply was located within 10 m of a toilet, the recommended minimum separation. Overall, 18% of water supplies contained TTCs, 91% of which were located within 10 m of a toilet, 58% had TLF above detection limit, and sanitary risk scores were high. Statistical analysis demonstrated TLF was an effective indicator of TTC presence-absence, with a possibility of TTCs only where TLF exceeded 0.4 μg/L dissolved tryptophan. Analysis also indicated proximity to a toilet was the only significant sanitary risk factor predicting TTC presence-absence and the most significant predictor of TLF. Faecal contamination was considered a result of individual water supply vulnerability rather than indicative of widespread leaching into the aquifer. Therefore, increasing faecal contamination of groundwater-derived potable supplies is inevitable across the country as uptake of on-site sanitation intensifies. Communities need to be aware of this link and implement suitable decentralised low-cost treatment of water prior to consumption and improve the construction and protection of new supplies.

  20. Exigência de triptofano para frangos de corte de 1 a 21 dias de idade Tryptophan requirement for broilers from 1 to 21 days of age

    Directory of Open Access Journals (Sweden)

    Altivo José de Castro


    Full Text Available Com o objetivo de determinar as exigências nutricionais em triptofano para frangos de corte machos e fêmeas, durante a fase inicial, foram utilizados 800 pintos machos e fêmeas, no período de 1 a 21 dias de idade, com peso médio inicial de 44,7 e 44,6 g, respectivamente. As aves receberam uma dieta basal deficiente em triptofano (0,180%. O delineamento experimental utilizado foi em blocos casualizados em arranjo fatorial 5 x 2 (tratamento x sexo, com quatro repetições por sexo e 20 aves/unidade experimental. Os tratamentos consistiram da suplementação da dieta basal com cinco níveis de triptofano (0; 0,015; 0,030; 0,045; e 0,060%. Foi avaliado o desempenho das aves, sendo os valores de exigências em triptofano estimados por meio dos modelos de regressão polinomial e LRP. Foi considerado o coeficiente de digestibilidade verdadeira do triptofano da dieta basal de 90,33%. As suplementações com L-triptofano influenciaram o ganho de peso dos machos, porém, não houve efeito sobre a conversão alimentar, sugerindo recomendação mínima de 0,212 e 0,195% de triptofano total e digestível, respectivamente. Entretanto, para as fêmeas, as suplementações com L-triptofano influenciaram o ganho de peso e a conversão alimentar, sugerindo recomendação mínima de 0,208 e 0,191% de triptofano total e digestível, respectivamente.With the objective to determine the tryptophan nutritional requirements for male and female broilers, during the initial phase, 800 male and female chicks, from 1 to 21 days of age, with average initial weight of 44.7 and 44.6 g, respectively, were used. The birds received a deficient tryptophan basal diet (.180%. A completely randomized blocks experimental design, in a 5 x 2 factorial arrangement (treatment x sex, with four replicates per sex and 20 chicks per experimental unit, was used. The treatments consisted on a basal diet supplemented with five tryptophan levels (0, .015, .030, .045, and .060%. Chick

  1. Identification of a Residue (Glu60) in TRAP Required for Inducing Efficient Transcription Termination at the trp Attenuator Independent of Binding Tryptophan and RNA. (United States)

    McAdams, Natalie M; Patterson, Andrea; Gollnick, Paul


    Transcription of the tryptophan (trp) operon in Bacillus subtilis is regulated by an attenuation mechanism. Attenuation is controlled by the trpRNA-binding attenuation protein (TRAP). TRAP binds to a site in the 5' leader region of the nascent trp transcript in response to the presence of excess intracellular tryptophan. This binding induces transcription termination upstream of the structural genes of the operon. In prior attenuation models, the role of TRAP was only to alter the secondary structure of the leader region RNA so as to promote formation of the trp attenuator, which was presumed to function as an intrinsic terminator. However, formation of the attenuator alone has been shown to be insufficient to induce efficient termination, indicating that TRAP plays an additional role in this process. To further examine the function of TRAP, we performed a genetic selection for mutant TRAPs that bind tryptophan and RNA but show diminished termination at the trp attenuator. Five such TRAP mutants were obtained. Four of these have substitutions at Glu60, three of which are Lys (E60K) substitutions and the fourth of which is a Val (E60V) substitution. The fifth mutant obtained contains a substitution at Ile63, which is on the same β-strand of TRAP as Glu60. Purified E60K TRAP binds tryptophan and RNA with properties similar to those of the wild type but is defective at inducing termination at the trp attenuator in vitroIMPORTANCE Prior models for attenuation control of the B. subtilis trp operon suggested that the only role for TRAP is to bind to the leader region RNA and alter its folding to induce formation of an intrinsic terminator. However, several recent studies suggested that TRAP plays an additional role in the termination mechanism. We hypothesized that this function could involve residues in TRAP other than those required to bind tryptophan and RNA. Here we obtained TRAP mutants with alterations at Glu60 that are deficient at inducing termination in the

  2. Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids (United States)

    Ivanova, Lyudmila; Buch, Anna; Döhner, Katinka; Pohlmann, Anja; Binz, Anne; Prank, Ute; Sandbaumhüter, Malte


    ABSTRACT Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neurons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs 1766WD1767 and 1862WE1863 are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The infectivity of the mutants HSV-1(17+)Lox-pUL36-WD/AA-WE/AA and HSV-1(17+)Lox-CheVP26-pUL36-WD/AA-WE/AA, in which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron microscopy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective parental strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and, to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the membranes of secondary capsid envelopment and for efficient virion assembly. IMPORTANCE Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins that are essential for several

  3. Guanidinium chloride and urea denaturations of beta-lactoglobulin A at pH 2.0 and 25 degrees C: the equilibrium intermediate contains non-native structures (helix, tryptophan and hydrophobic patches). (United States)

    Dar, Tanveer Ali; Singh, Laishram Rajendrakumar; Islam, Asimul; Anjum, Farah; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan


    We have carried out guanidinium chloride (GdmCl) and urea denaturations of bovine beta-lactoglobulin A (beta-lgA) at pH 2.0 and 25 degrees C, using far-UV and near-UV circular dichroism, near-UV absorption and tryptophan fluorescence spectroscopies. The stable intermediate state that occurs during GdmCl denaturation has been characterized by the far- and near-UV circular dichroism, tryptophan difference absorption, tryptophan fluorescence and 8-anilino-1-naphthalene sulphonic acid binding measurements. Following conclusions have been reached. (a) Urea-induced denaturation is not a two-state process. (b) GdmCl-induced denaturation is composed of two distinct two-state processes. (c) alpha-Helical content, burial of tryptophan residues and burial of hydrophobic surface area are more in the GdmCl-induced stable intermediate than those originally present in the native protein.

  4. Facile synthesis of graphene hybrid tube-like structure for simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wen [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin, E-mail: [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Shihong; Han Jing; Yuan Dehua [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)


    Graphical abstract: A tube-like structure of graphene hybrid (GS-PTCA) was synthesized via {pi}-{pi} stacking interaction, and was used as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). SEM images of GS, PTCA and GS-PTCA were presented. Under the synergistic effects between GS and PTCA, the modified electrode displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Highlights: Black-Right-Pointing-Pointer A simple strategy for simultaneous detection of AA, DA, UA and Trp has been constructed. Black-Right-Pointing-Pointer The tube-like structure of graphene hybrid (GS-PTCA) was synthesized. Black-Right-Pointing-Pointer The GS-PTCA provided a selective interface for discrimination of AA, DA, UA and Trp. - Abstract: In the present work, a tube-like structure of graphene hybrid as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) was reported. The hybrid was synthesized by a simple method based on graphene sheets (GS) and 3,4,9,10-perylenetetracarboxylic acid (PTCA) via {pi}-{pi} stacking interaction under ultrasonic condition. The combination of GS and PTCA could effectively improve the dispersion of GS, owing to PTCA with the carboxylic-functionalized interface. Comparing with pure GS or PTCA modified electrode, GS-PTCA displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Moreover, cyclic voltammetry, different pulse voltammetry and scanning electron microscopy were employed to characterize the sensors. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA, and Trp were 20-420 {mu}M, 0.40-374 {mu}M, 4-544 {mu}M and 0.40-138 {mu}M, respectively, and the detection limits were 5.60 {mu}M, 0.13 {mu}M, 0.92 {mu}M and 0.06 {mu}M (S/N = 3). Importantly, the proposed method offers

  5. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

    Directory of Open Access Journals (Sweden)

    Cochrane Brett


    Full Text Available Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2, and that a functional SPI2 secretion system regulator (ssrA was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect

  6. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms.

    LENUS (Irish Health Repository)

    Hamilton, Shea


    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by

  7. Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yuki Murakami


    Full Text Available Indoleamine 2,3-dioxygenase 1 (IDO1, the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.

  8. Specificity of the Acute Tryptophan and Tyrosine Plus Phenylalanine Depletion and Loading Tests I. Review of Biochemical Aspects and Poor Specificity of Current Amino Acid Formulations

    Directory of Open Access Journals (Sweden)

    Abdulla A.-B. Badawy


    Full Text Available The acute tryptophan or tyrosine plus phenylalanine depletion and loading tests are powerful tools for studying the roles of serotonin, dopamine and noradrenaline in normal subjects and those with behavioural disorders. The current amino acid formulations for these tests, however, are associated with undesirable decreases in ratios of tryptophan or tyrosine plus phenylalanine to competing amino acids resulting in loss of specificity. This could confound biochemical and behavioural findings. Compositions of current formulations are reviewed, the biochemical principles underpinning the tests are revisited and examples of unintended changes in the above ratios and their impact on monoamine function and behaviour will be demonstrated from data in the literature. The presence of excessive amounts of the 3 branched-chain amino acids Leu, Ile and Val is responsible for these unintended decreases and the consequent loss of specificity. Strategies for enhancing the specificity of the different formulations are proposed.

  9. The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products. (United States)

    Zhang, Hao; Andrekopoulos, Christopher; Joseph, Joy; Crow, John; Kalyanaraman, B


    In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.

  10. Palladium(II)-catalyzed oxidation of L-tryptophan by hexacyanoferrate(III) in perchloric acid medium: a kinetic and mechanistic approach

    Indian Academy of Sciences (India)

    Ahmed Fawzy


    The catalytic effect of palladium(II) on the oxidation of L-tryptophan by potassium hexacyanoferrate( III) has been investigated spectrophotometrically in aqueous perchloric acid medium. A first order dependence in [hexacyanoferrate(III)] and fractional-first order dependences in both [L-tryptophan] and [palladium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H+]. Reaction rate increased with increase in ionic strength and dielectric constant of the medium. The effect of temperature on the reaction rate has also been studied and activation parameters have been evaluated and discussed. Initial addition of the reaction product, hexacyanoferrate(II), does not affect the rate significantly. A plausible mechanistic scheme explaining all the observed kinetic results has been proposed. The final oxidation products are identified as indole-3-acetaldehyde, ammonium ion and carbon dioxide. The rate law associated with the reaction mechanism is derived.

  11. Determination of tryptophan and kynurenine in human plasma by liquid chromatography-electrochemical detection with multi-wall carbon nanotube-modified glassy carbon electrode. (United States)

    Liu, Lihong; Chen, Ying; Zhang, Yulin; Wang, Fang; Chen, Zilin


    A novel method was developed for the simultaneous determination of kynurenine and tryptophan by high-performance liquid chromatography with electrochemical detection at multi-wall carbon nanotube (MWCNT)-modified glassy carbon electrode. The separation and detection conditions were optimized. The typical HPLC experiments were conducted by using a reversed-phase ODS column with a mobile phase consisting of stock acetate buffer (pH 5)-methanol (4:1, v/v) using an isocratic elution at the flow rate of 1.0 mL/min. The obtained LODs for kynurenine and tryptophane were 0.5 and 0.4 µmol/L, respectively. The analytical method for human plasma samples was validated and confirmed by LC-UV and LC-MS. The recoveries were in the range of 84.8-110%, and the precision was lower than 5.9%. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Effects of "Bioactive" amino acids leucine, glutamate, arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks

    Directory of Open Access Journals (Sweden)

    Wang Songbo


    Full Text Available Abstract Feed intake control is vital to ensuring optimal nutrition and achieving full potential for growth and development in poultry. The aim of the present study was to investigate the effects of L-leucine, L-glutamate, L-tryptophan and L-arginine on feed intake and the mRNA expression levels of hypothalamic Neuropeptide involved in feed intake regulation in broiler chicks. Leucine, glutamate, tryptophan or arginine was intra-cerebroventricularly (ICV administrated to 4d-old broiler chicks respectively and the feed intake were recorded at various time points. Quantitative PCR was performed to determine the hypothalamic mRNA expression levels of Neuropeptide Y (NPY, agouti related protein (AgRP, pro-opiomelanocortin (POMC, melanocortin receptor 4 (MC4R and corticotrophin releasing factor (CRF. Our results showed that ICV administration of L-leucine (0.15 or 1.5  μmol significantly (P P 

  13. The tryptophan hydroxylase 1 (TPH1) gene, schizophrenia susceptibility, and suicidal behavior: a multi-centre case-control study and meta-analysis

    DEFF Research Database (Denmark)

    Saetre, Peter; Lundmark, Per; Wang, August


    affected individuals having attempted suicide at least once and patients with no history of suicide attempts (P = 0.84). A systematic literature review and meta-analysis support the A218C polymorphism as a susceptibility locus for schizophrenia (odds ratio 1.17, 95% confidence interval 1......Serotonin (5-hydroxytryptamin; 5-HT) alternations has since long been suspected in the pathophysiology of schizophrenia. Tryptophan hydroxylase (tryptophan 5-monooxygenase; TPH) is the rate-limiting enzyme in the biosynthesis of 5-HT, and sequence variation in intron 6 of the TPH1 gene has been...... associated with schizophrenia. The minor allele (A) of this polymorphism (A218C) is also more frequent in patients who have attempted suicide and individuals who died by suicide, than in healthy control individuals. In an attempt to replicate previous findings, five single nucleotide polymorphisms (SNPs...

  14. Specificity of the Acute Tryptophan and Tyrosine Plus Phenylalanine Depletion and Loading Tests Part II: Normalisation of the Tryptophan and the Tyrosine Plus Phenylalanine to Competing Amino Acid Ratios in a New Control Formulation

    Directory of Open Access Journals (Sweden)

    Abdulla A.-B. Badawy


    Full Text Available Current formulations for acute tryptophan (Trp or tyrosine (Tyr plus phenylalanine (Phe depletion and loading cause undesirable decreases in ratios of Trp or Tyr + Phe to competing amino acids (CAA, thus undermining the specificities of these tests. Branched-chain amino acids (BCAA cause these unintended decreases, and lowering their content in a new balanced control formulation in the present study led to normalization of all ratios. Four groups (n = 12 each of adults each received one of four 50 g control formulations, with 0% (traditional, 20%, 30%, or 40% less of the BCAA. The free and total [Trp]/[CAA] and [Phe + Tyr]/[BCAA + Trp] ratios all decreased significantly during the first 5 h following the traditional formulation, but were fully normalized by the formulation containing 40% less of the BCAA. We recommend the latter as a balanced control formulation and propose adjustments in the depletion and loading formulations to enhance their specificities for 5-HT and the catecholamines.

  15. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess. (United States)

    Jiang, Wei-Dan; Wen, Hai-Lang; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin


    Flesh quality, muscle antioxidant status and related signalling molecule expressions were investigated in young grass carp fed six levels of tryptophan (Trp) for 8 weeks. The results indicated that fish fed 0.7 (deficiency) and 6.1g Trp g/kg (excess) diets exhibited lower muscle water-holding capacity, tenderness, cathepsin activity, protein levels, lipids and collagen contents. Optimal Trp reversed these negative effects, which were related to enhanced glutathione (GSH) content and glutathione peroxidase (GPx) activities regulated at gene transcription levels, rather than to superoxide dismutase (SOD) or catalase (CAT). The expression of signalling molecules [Kelch-like ECH-associated protein 1, target of rapamycin (TOR) and ribosomal S6 protein kinase 1] involved in the NF-E2-related factor 2 (Nrf2) pathway revealed a potential method of Trp-enhanced antioxidant defence. Collectively, the present study indicated that appropriate Trp levels improved flesh quality partly related to the enhancement of antioxidant ability through Nrf2 and TOR signalling.

  16. On the role of dissociative {pi}{sigma}* states in the photochemistry of protonated tryptamine and tryptophan: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G. [Laboratoire de Physique des Lasers du CNRS, Institut Galilee, Universite Paris-Nord, 93430 Villetaneuse (France); Jouvet, C. [Laboratoire de Photophysique Moleculaire du CNRS, Bat. 210, Universite Paris-Sud, 91405 Orsay Cedex (France)], E-mail:; Dedonder, C. [Laboratoire de Photophysique Moleculaire du CNRS, Bat. 210, Universite Paris-Sud, 91405 Orsay Cedex (France)], E-mail:; Sobolewski, A.L. [Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw (Poland)


    In very recent experiments, the excited-state lifetimes of protonated aromatic amino acids have been recorded by means of the pump-probe photodissociation technique. The excited-state decays are fast (picosecond time scale), leading to an extensive fragmentation of the protonated species. The calculations presented here for protonated tryptamine and tryptophan using a coupled-cluster method are meant to unravel the complex behavior of these systems.

  17. Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode


    Hayati Filik; Asiye Aslıhan Avan; Sevda Aydar


    In this paper, multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs) were prepared by binding gold nanoparticles to the surfaces of Azure A-coated carbon nanotubes. Nafion/AuNPs/AzA/MWCNTs based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical properties of the modified e...

  18. The tryptophan derivative, tranilast, and conditioned medium with indoleamine 2,3-dioxygenase-expressing cells inhibit the proliferation of lymphoid malignancies. (United States)

    Suwa, Shihoko; Kasubata, Aya; Kato, Miyu; Iida, Megumi; Watanabe, Ken; Miura, Osamu; Fukuda, Tetsuya


    Indoleamine 2,3-dioxygenase (IDO) is an enzyme that catalyzes tryptophan degradation and induces immunosuppression. Although IDO is an important factor that allows tumors to escape from immunological attack, its effect on lymphoid malignancies has not been fully revealed. We evaluated the expression of IDO in samples from patients with B-cell malignancies. The IDO expression in the tumor samples was comparable to those in peripheral blood mononuclear cells from healthy donors and had mainly originated from non-B cell populations. We introduced IDO gene into Chinese hamster ovary (CHO) cells. We then cultured various cell lines using CHO- or CHO-IDO-conditioned medium. Compared with the CHO medium (CHO-CM), the CHO-IDO medium (IDO-CM) decreased the viability of lymphoid cell lines but not those of the non-lymphoid lines. Next, we examined the effects of tryptophan metabolites on lymphoid tumors, and revealed that the drug N-[3',4'-dimethoxycinnamoyl] anthranilic acid (tranilast), a synthetic derivative of the tryptophan metabolite, was able to repress proliferation and dose-dependently induce cell death of lymphoid cell lines. Tranilast induced the activation of the c-Jun N-terminal kinase, which is activated by cellular stress, in lymphoid cells. The effect of tranilast on lymphoid cells was independent of the aryl hydrocarbon receptor (AhR) although tranilast has been reported to be an AhR agonist. Finally, the administration of tranilast decreased murine lymphoid tumor progression in vivo. These results indicated that IDO and tryptophan derivatives, particularly tranilast, can be tools for the therapy for lymphoid malignancies.

  19. Simultaneous alterations of brain and plasma serotonin concentrations and liver cytochrome P450 in rats fed on a tryptophan-free diet. (United States)

    Kot, Marta; Pilc, Andrzej; Daniel, Władysława A


    Our previous study suggested involvement of the brain serotonergic system in the regulation of liver cytochrome P450 (CYP). The aim of the present study was to demonstrate simultaneous responsiveness of liver CYP and the peripheral and brain serotonergic systems to a tryptophan deficient diet during three days and one or three weeks of ingestion. The concentrations of serotonin, noradrenaline, dopamine and their metabolites were measured in blood plasma, the hypothalamus and brain stem of male rats. The enzyme activity and protein levels in the liver were determined for isoforms CYP1A, CYP2A, CYP2B, CYP2C6, CYP2C11, CYP2D and CYP3A. A three-day tryptophan-free diet increased serotonin content in the hypothalamus (but not in the brain stem or plasma). After one week, the level of serotonin was not changed in the brain, but was markedly increased in the plasma. A three week tryptophan restriction significantly reduced the concentration of serotonin in the brain and plasma. Changes in CYP2C6 and CYP2C11 (an increase and a decrease, respectively) were maintained throughout the experiment, while those found in other CYP isoforms varied, which usually resulted in a gradual increase in the enzyme activity within three weeks. The observed alterations in liver CYPs suggest involvement of both central and peripheral serotonin in the regulation of liver CYP expression whose mechanism is discussed. In conclusion, a deficit in tryptophan in the diet may be responsible for very serious food-cytochrome P450 and food-drug metabolism interactions. Interactions of this type may also refer to drugs acting via serotonergic system.

  20. The nature of tryptophan radicals involved in the long-range electron transfer of lignin peroxidase and lignin peroxidase-like systems: Insights from quantum mechanical/molecular mechanics simulations. (United States)

    Bernini, Caterina; Pogni, Rebecca; Basosi, Riccardo; Sinicropi, Adalgisa


    A catalytically active tryptophan radical has been demonstrated to be involved in the long-range electron transfer to the heme cofactor of lignin peroxidase (LiP) from Phanerochaete chrysosporium although no direct detection by EPR spectroscopy of the tryptophan radical intermediate has been reported to date. An engineering-based approach has been used to manipulate the microenvironment of the redox-active tryptophan site in LiP and Coprinus cinereus Peroxidase (CiP), allowing the direct evidence of the tryptophan radical species. In light of the newly available EPR experimental data, we performed a quantum mechanical/molecular mechanics computational study to characterize the tryptophan radicals in the above protein matrices as well as in pristine LiP. The nature of the tryptophan radicals is discussed together with the analysis of their environment with the aim of understanding the different behavior of pristine LiP in comparison with that of LiP and CiP variants.