WorldWideScience

Sample records for pyrotechnics

  1. Ultimately Reliable Pyrotechnic Systems

    Science.gov (United States)

    Scott, John H.; Hinkel, Todd

    2015-01-01

    This paper presents the methods by which NASA has designed, built, tested, and certified pyrotechnic devices for high reliability operation in extreme environments and illustrates the potential applications in the oil and gas industry. NASA's extremely successful application of pyrotechnics is built upon documented procedures and test methods that have been maintained and developed since the Apollo Program. Standards are managed and rigorously enforced for performance margins, redundancy, lot sampling, and personnel safety. The pyrotechnics utilized in spacecraft include such devices as small initiators and detonators with the power of a shotgun shell, detonating cord systems for explosive energy transfer across many feet, precision linear shaped charges for breaking structural membranes, and booster charges to actuate valves and pistons. NASA's pyrotechnics program is one of the more successful in the history of Human Spaceflight. No pyrotechnic device developed in accordance with NASA's Human Spaceflight standards has ever failed in flight use. NASA's pyrotechnic initiators work reliably in temperatures as low as -420 F. Each of the 135 Space Shuttle flights fired 102 of these initiators, some setting off multiple pyrotechnic devices, with never a failure. The recent landing on Mars of the Opportunity rover fired 174 of NASA's pyrotechnic initiators to complete the famous '7 minutes of terror.' Even after traveling through extreme radiation and thermal environments on the way to Mars, every one of them worked. These initiators have fired on the surface of Titan. NASA's design controls, procedures, and processes produce the most reliable pyrotechnics in the world. Application of pyrotechnics designed and procured in this manner could enable the energy industry's emergency equipment, such as shutoff valves and deep-sea blowout preventers, to be left in place for years in extreme environments and still be relied upon to function when needed, thus greatly enhancing

  2. Do pyrotechnics contain radium?

    Science.gov (United States)

    Steinhauser, Georg; Musilek, Andreas

    2009-07-01

    Many pyrotechnic devices contain barium nitrate which is used as an oxidizer and colouring agent primarily for green-coloured fireworks. Similarly, strontium nitrate is used for red-coloured pyrotechnic effects. Due to their chemical similarities to radium, barium and strontium ores can accumulate radium, causing a remarkable activity in these minerals. Radium in such contaminated raw materials can be processed together with the barium or strontium, unless extensive purification of the ores was undertaken. For example, the utilization of 'radiobarite' for the production of pyrotechnic ingredients can therefore cause atmospheric pollution with radium aerosols when the firework is displayed, resulting in negative health effects upon inhalation of these aerosols. In this study, we investigated the occurrence of gamma-photon-emitting radionuclides in several pyrotechnic devices. The highest specific activities were due to K-40 (up to 20 Bq g-1, average value 14 Bq g-1). Radium-226 activities were in the range of 16-260 mBq g-1 (average value 81 mBq g-1). Since no uranium was found in any of the samples, indeed, a slight enrichment of Ra-226 in coloured pyrotechnics can be observed. Radioactive impurities stemming from the Th-232 decay chain were found in many samples as well. In the course of novel developments aiming at the 'greening' of pyrotechnics, the potential radioactive hazard should be considered as well.

  3. Nanomaterials in Pyrotechnics

    Directory of Open Access Journals (Sweden)

    R.G. Sarawadekar

    2008-07-01

    Full Text Available Pyrotechnics consist of metallic powders as fuels and different oxidisers which generally have particle size of  > 5 m. The use of  nano materials is expected to increase  intimate contact between fuel oxidiser, and therefore, development of nano pyrotechnics based on nano fuels oxidizers along with their synthetic routes is considered of great interest.  In this review,  methodsfor  the preparation of powders of nanometals: aluminium (Al, nickel (Ni, copper (Cu, titanium(Ti, iron (Fe, silver (Ag, and cobalt (Co and; metallic oxides: molybdenum trioxide (MoO3,tungsten trioxide (WO3,  iron (III oxide (Fe2O3, copper (I oxide (Cu2O, antimony trioxide (Sb2O3,nickel oxide (NiO, manganese dioxide (MnO2, and zirconium dioxide (ZrO2 along with theircharacterisation are discussed.  Some nano oxidisers such as  PbCO3, Mg(OH2 , NH4ClO4, NH4NO3have also been reported. Further, some nano pyrotechnic formulations Al-MO3, Al-WO3, Al-Fe2O3, Al-AP, Al-Bi2O3, Al-CaO based on nanofuels oxidisers have also been formulated.Defence Science Journal, 2008, 58(4, pp.486-495, DOI:http://dx.doi.org/10.14429/dsj.58.1669

  4. Developments in Pyrotechnics (Review Paper

    Directory of Open Access Journals (Sweden)

    S.M. Danali

    2010-03-01

    Full Text Available The application of smoke and various types of smoke bombs/ devices developed are narrated. The light output of 51 mm, 81 mm, 120 mm and 120 mm LRM illuminating bombs developed is 2.6, 9.0, 10.8 and 15 lakhs candela, respectively. The IR flares developed for first and second generation anti-tank missile are in regular production. An IR decoy flare is developed for CMDS. Feasibility study on multi-spectral smoke and IR flare compositions is completed. 1W-1A No fire capability EED is developed. Gas generators 1200 cc, 2400 cc, 6000 cc are developed. Accuracy of pyro delay is improved. Laser initiated pyrocartridge is developed. Nanoscale Fe2O3 is synthesised and studied. A few toxic ingredients are replaced to march towards green pyrotechnics. Objectives for improved pyrotechnics are included.Defence Science Journal, 2010, 60(2, pp.152-158, DOI:http://dx.doi.org/10.14429/dsj.60.333

  5. Pyrotechnic robot - constructive design and command

    Directory of Open Access Journals (Sweden)

    Ionel A. Staretu

    2013-10-01

    Full Text Available Pyrotechnic robots are service robots used to reduce the time for intervention of pyrotechnic troops and to diminish the danger for the operators. Pyrotechnic robots are used to inspect dangerous areas or/and to remove and to distroy explosive or suspicious devices/objects. These robots can be used to make corridors through mined battle fields, for manipulation and neutralization of unexploded ammunition, for inspection of vehicles, trains, airplanes and buildings. For these robots, a good functional activity is determined with regard to work space dimensions,, robotic arm kinematics and gripper characteristics. The paper shows the structural, kinematic, static synthesis and analysis as well as the design and functional simulation of the robotic arm and the grippers attached on the pyrotechnic robot designed by the authors.

  6. Alternatives to Pyrotechnic Distress Signals; Supplemental Report

    Science.gov (United States)

    2015-08-01

    34 background lighting condition, because of vehicular traffic in the vicinity of the signal generator, including cars that parked with their headlights on, we...Alternatives to Pyrotechnic Distress Signals ; Supplemental Report Distribution Statement A: Approved for public release; distribution is...unlimited. August 2015 Report No. CG-D-17-15 Alternatives to Pyrotechnic Distress Signals ; Supplemental Report ii UNCLAS//Public | CG-926 RDC

  7. Explosive and pyrotechnic aging demonstration

    Science.gov (United States)

    Rouch, L. L., Jr.; Maycock, J. N.

    1976-01-01

    The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.

  8. 46 CFR 169.553 - Pyrotechnic distress signals.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pyrotechnic distress signals. 169.553 Section 169.553... Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.553 Pyrotechnic distress signals. (a) All pyrotechnic distress signals must be of an approved type. (b) Replacement must be made no...

  9. Pyrotechnic hazards classification and evaluation program test report. Heat flux study of deflagrating pyrotechnic munitions

    Science.gov (United States)

    Fassnacht, P. O.

    1971-01-01

    A heat flux study of deflagrating pyrotechnic munitions is presented. Three tests were authorized to investigate whether heat flux measurements may be used as effective hazards evaluation criteria to determine safe quantity distances for pyrotechnics. A passive sensor study was conducted simultaneously to investigate their usefulness in recording events and conditions. It was concluded that heat flux measurements can effectively be used to evaluate hazards criteria and that passive sensors are an inexpensive tool to record certain events in the vicinity of deflagrating pyrotechnic stacks.

  10. 372-mJ long pulse pyrotechnically pumped laser

    Institute of Scientific and Technical Information of China (English)

    Nan Xiao; Zongfu Jiang; Weihong Hua; Shengfu Yuan

    2008-01-01

    A pyrotechnically pumped Nd glass laser is demonstrated by the use of pyrotechnic flashlamps composed of several chemical materials arranged in a stable plane concave resonator cavity. The flashlamp was made of chemical mixture with oxidant, fuel, and binder. The emission spectrum of pyrotechnic flame covered most of the absorption bands of Nd3+ in phosphate glass. Under 4.56-g chemical mixture pumping, long pulse output power of about 5.5 W was achieved.

  11. Ignition of THKP and TKP pyrotechnic powders :

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Erikson, William W; Highley, Aaron M.; Wiese-Smith, Deneille; Kay, Jeffrey J

    2014-03-01

    We have conducted Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) experiments on igniter/actuator pyrotechnic powders to characterize the reactive processes controlling the ignition and combustion behavior of these materials. The experiments showed a complex, interactive reaction manifold involving over ten reaction pathways. A reduced dimensionality reaction manifold was developed from the detailed 10-step manifold and is being incorporated into existing predictive modeling codes to simulate the performance of pyrotechnic powders for NW component development. The results from development of the detailed reaction manifold and reduced manifold are presented. The reduced reaction manifold has been successfully used by SNL/NM modelers to predict thermal ignition events in small-scale testing, validating our approach and improving the capability of predictive models.

  12. Uniformity and control in the pyrotechnic environment

    Energy Technology Data Exchange (ETDEWEB)

    Strubel, S. J. [Harvard Industries Inc., Arnold, MO (United States)

    2000-04-01

    In the production of pyrotechnic materials control is very stringent as dictated by the intrinsic nature of the material. Uniformity is continuous and maintained at a high level. In contrast, once the pyrotechnic material is produced susceptibility towards loss in control begins, given the multiplicity of destination, environmental changes, storage, terrain shooting devices, ignition methods, non-standard state regulations and variations in safety personnel expertise. This author claims that with the advances made in electronic engineering, adoption of electronic control systems could greatly increase uniformity and control. Some of his recommendations include: electronic consoles designed with computers for firing control, choreography and animated lighting displays; microchips embedded in pyrotechnic materials for ease of identification, storage, transportation and display; microchips encased in flash technology to provide ignition, replacing chemical fuses; audible alarms and light signals to alert the operator when the fireworks device is moved to the arming stage, thus preventing inadvertent firing; and electronic sequencers for firing mortars, in one launcher, milliseconds apart, to lessen the impact on launchers. Benefits claimed for these techniques would be increased safety, reduced insurance premiums and claims, and increase in efficiency and most of all, in control.

  13. Granulation of Pyrotechnic Tracer Composition R284T

    Science.gov (United States)

    1988-03-01

    Properties of Materials used in Pyrotechnic Compositions (1963). Engineering Design Handbook - Military Pyrotechnic Series Part 3. AMPC 706-187. 4...Ml Cartridge AMPC 706-185 APPLICATION: Main Tracer Charge TM9-1910 Ellern STORAGE: NATO DoD McIntyre Hazards Class (Q/D 1.1 7 Cabbaje & Ewing

  14. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  15. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    Science.gov (United States)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  16. Design Support and Analysis Tool for Pyrotechnically Actuated Valves Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pyrotechnically actuated valves are triggered on or off by firing an explosive charge that rapidly releases large amounts of high-pressure, gas. Pyrovalves are...

  17. French approval procedures for pyrotechnical automotive safety equipments

    OpenAIRE

    Aufauvre, Lionel; Branka, Ruddy

    2005-01-01

    International audience; Pyrotechnical articles for civil uses may be subject to national procedures before placing on the market According to the French decree n°90-153, 16 February 1990 as modified; explosives that are dispensed with EC marking and that are not excluded of the decree application have to conform to approved types. Pyrotechnical automotive safety equipments such gas generators for airbag modules or seat-belt pretensioners, pyrotechnie relay compositions and/or igniters inside ...

  18. 78 FR 26690 - Hours of Service (HOS) of Drivers; Application for Renewal and Expansion of American Pyrotechnics...

    Science.gov (United States)

    2013-05-07

    .... 18150 W Fairfield, UT 84013....... 195428 Fireworks and Lasers. 26. Legion Fireworks Co., Inc 10 Legion... Maine Pyrotechnics. 8. Melrose Pyrotechnics, Inc 1 Kingsbury Industrial Kingsbury, IN 46345...

  19. Strobes: Pyrotechnic compositions that show a curious oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2013-01-01

    Strobes are pyrotechnic compositions which show an oscillatory combustion; a dark phase and a flash phase alternate periodically. The strobe effect has applications in various fields, most notably in the fireworks industry and in the military area. All strobe compositions mentioned in the literature

  20. Strobes: Pyrotechnic Compositions That Show a Curious Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2013-01-01

    Strobes are pyrotechnic compositions which show an oscillatory combustion; a dark phase and a flash phase alternate periodically. The strobe effect has applications in various fields, most notably in the fireworks industry and in the military area. All strobe compositions mentioned in the literature

  1. Towards decomposition of live chemical agents by pyrotechnic mixtures

    NARCIS (Netherlands)

    Bouma, R.H.B.; Noort, D.

    2012-01-01

    The aim of this study is to contribute to improved EOD neutralisation techniques against improvised explosive devices (IEDs) containing chemical agents. The decomposition of dimethyl methylphosphonate (DMMP) when exposed to a burning aluminum/potassium nitrate pyrotechnic mixture is studied experime

  2. Preliminary Investigation into Pyrotechnic Chemical Products via Mass Spectrometry Techniques

    Science.gov (United States)

    2015-03-11

    via Mass Spectrometry Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jonathan Dilger, Eric...undesirable side reactions within the combustion. Mass spectrometry (MS) enables the rapid analysis of these products with instrumentation that offers...predicted by theory. 15. SUBJECT TERMS mass spectrometry , gas chromatography, pyrolysis, combustion products, pyrotechnics 16. SECURITY CLASSIFICATION OF

  3. Towards decomposition of live chemical agents by pyrotechnic mixtures

    NARCIS (Netherlands)

    Bouma, R.H.B.; Noort, D.

    2012-01-01

    The aim of this study is to contribute to improved EOD neutralisation techniques against improvised explosive devices (IEDs) containing chemical agents. The decomposition of dimethyl methylphosphonate (DMMP) when exposed to a burning aluminum/potassium nitrate pyrotechnic mixture is studied experime

  4. Metal-Element Compounds of Titanium, Zirconium, and Hafnium as Pyrotechnic Fuels

    Science.gov (United States)

    2015-05-04

    1-11 1 METAL-ELEMENT COMPOUNDS OF TITANIUM, ZIRCONIUM , AND HAFNIUM AS PYROTECHNIC FUELS Anthony P. Shaw,* Rajendra K. Sadangi, Jay C...have started to explore the pyrotechnic properties of other inorganic compounds, particularly those of titanium, zirconium , and hafnium. The...The group 4 metals—titanium, zirconium , and hafnium—are potent pyrotechnic fuels. However, the metals themselves are often pyrophoric as fine

  5. Pyrotechnic hazards classification and evaluation program. Phase 2, segment 3: Test plan for determining hazards associated with pyrotechnic manufacturing processes

    Science.gov (United States)

    1971-01-01

    A comprehensive test plan for determining the hazards associated with pyrotechnic manufacturing processes is presented. The rationale for each test is based on a systematic analysis of historical accounts of accidents and a detailed study of the characteristics of each manufacturing process. The most hazardous manufacturing operations have been determined to be pressing, mixing, reaming, and filling. The hazard potential of a given situation is evaluated in terms of the probabilities of initiation, communication, and transition to detonation (ICT). The characteristics which affect the ICT probabilities include the ignition mechanisms which are present either in normal or abnormal operation, the condition and properties of the pyrotechnic material, and the configuration of the processing equipment. Analytic expressions are derived which describe the physical conditions of the system, thus permitting a variety of processes to be evaluated in terms of a small number of experiments.

  6. Minitature electro-pyrotechnic igniter, and ignition head for the same

    NARCIS (Netherlands)

    Vliet, L.D. van; Schuurbiers, C.A.H.; Tata Nardini, F.

    2014-01-01

    An electric non-pyrotechnic ignition head (100) suitable for use in an electro- pyrotechnic igniter (1), comprising: a housing (102) defining a front opening (106); - an electrically insulative, thermally conductive bridge filament support body (130) that is at least partly disposed in said front

  7. 76 FR 37876 - Hours of Service (HOS) of Drivers; Renewal of American Pyrotechnics Association (APA) Exemption...

    Science.gov (United States)

    2011-06-28

    ... Pyrotechnics Association (APA) Exemption From the 14-Hour Rule During Independence Day Celebrations AGENCY... American Pyrotechnics Association (APA) from FMCSA's prohibition on driving commercial motor vehicles (CMVs... and conditions of this exemption in effect, designated APA-member motor carriers will maintain a level...

  8. 76 FR 37880 - Hours of Service (HOS) of Drivers; Granting of Exemption; American Pyrotechnics Association (APA)

    Science.gov (United States)

    2011-06-28

    ...; American Pyrotechnics Association (APA) AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT... decision to grant the application for exemption from the American Pyrotechnics Association (APA) on behalf...)(1)). The initial APA application for waiver or exemption relief from the 14-hour rule was submitted...

  9. 76 FR 30232 - Hours of Service (HOS) of Drivers; Application of American Pyrotechnics Association (APA) for...

    Science.gov (United States)

    2011-05-24

    ... Pyrotechnics Association (APA) for Exemption From the 14-Hour Rule During Independence Day Celebrations AGENCY...; request for comments. SUMMARY: The American Pyrotechnics Association (APA) has applied for a limited... designated APA-member motor carriers in conjunction with staging fireworks shows celebrating Independence Day...

  10. Europyro 95. 6. International congress of pyrotechnics of the ``pyrotechnics working group``; Europyro 95. 6. congres international de pyrotechnie du ``groupe de travail de pyrotechnie``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The 1995 Europyro seminar brought together the best theoreticians in detonation processes, the specialists of material behaviour under high speed strain, of shock waves, of equations of state, of combustion and of pyrotechnics devices. This book of proceedings contains 75 papers from which 28 were selected for ETDE and deal with energetic processes, combustion kinetics, burning of pyrotechnics mixtures, propellants for rocket engines and modeling of combustion-explosion processes. (J.S.)

  11. Laser Ignition of pyrotechnics - effects of wavelength, composition and confinement

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Sheikh Rafi; Russell, David Anthony [Department of Environmental and Ordnance Systems, Cranfield University, Royal Military College of Science, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom)

    2005-04-01

    Ignition tests were carried out using three different laser systems and three different pyrotechnic compositions. Pyrotechnic materials investigated are: sulfur/charcoal/potassium nitrate based composition (gunpowder, GP), Shellac binder-based boron/potassium nitrate composition (SR 44) and acaroid resin binder based magnesium/potassium nitrate composition (SR 371C). The laser sources were the multimode output from an Ar-ion laser ({lambda}=500 nm average), a high-power commercial diode laser ({lambda}=784 nm) and a small laser diode operating at around the same wavelength but controlled by a customized electronic circuitry. Lasers operating in the visible wavelength range provided more reproducible and quicker ignition than the infrared output from the diode lasers. It was found that unconfined gunpowder exhibits more reproducible ignition for both the visible and the infrared wavelengths compared to the other two compositions. The composition based on magnesium, SR 371C appeared to be very sensitive to laser intensity variations and gave erratic and therefore, irreproducible ignition delay times. The threshold laser energies to initiate reproducible ignition for the different wavelengths were measured and ignition maps were constructed. From these maps, the required laser power density for any value of the ignition delay time, i.e. laser energy density was determined. Tests were also conducted on gunpowder samples, partially confined in a modified pyrogen igniter capsule and a small laser diode. The diode was operated in single pulse mode using a current surge, which was much higher than the recommended value for CW operation. This provided 1 W pulses at the end of a 1 mm diameter fiber optic cable and caused reproducible ignition in the semi-confined pyrotechnic bed within the capsule. The threshold ignition energy under semi-confined conditions was found to be substantially less than that required in the unconfined environment under similar experimental

  12. Study on Magnesium based Pyrotechnic Composition as a Priming Charge

    Directory of Open Access Journals (Sweden)

    A. S. Redkar

    1996-01-01

    Full Text Available A new pyrotechnic composition containing Mg/KNO3/phenolic resin has been formulated and studied in detail for its sensitivity, mechanical and thermal properties, moisture and environmental effects and performance in a closed vessel. The data generated reveal that this composition shows superior performance, better mechanical properties and less susceptibility to moisture as compared to gunpowder. In addition, performance of the composition under extreme hot (45 degree centigrade and cold (-26 degree centigrade environmental conditions is not affected at all. Differential thermal analyser results indicate that phenolic resin plays a vital role in reducing the ignition temperature of Mg/KNO/sub 3/ system.

  13. Non-Pyrotechnic Latch and Release System for Aerospace and Other Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — American Remote Vision Company (ARVC) will research and develop a novel new type of non-pyrotechnic latch and release system for use in servicing umbilical...

  14. Preparation and Characterization of the Zr/CuO Pyrotechnical Battery

    Institute of Scientific and Technical Information of China (English)

    ZHAO Baoguo; ZHAO Linshuang; DU Zhiming; NING Huizhen; YANG Shuai

    2012-01-01

    A pyrotechnical battery is successfully prepared,including an anode and cathode having pyrotechnic charges with Zr,CuO and asbestos.The anode and cathode are separated by a separator formed from LiF,ZrO2,and a fibrous sponge.A digital phosphor oscilloscope (DPO) is used to analyze discharge characterization of the pyrotechnical battery.Then the properties of the electrode materials are characterized by EDS,SEM and a temperature recorder,respectively.The discharge mechanism and safety characteristic are also discussed.The results indicate that the combustion temperature of electrode materials is determined as 1 500.6℃ according to thermometry analysis (the case temperature of the battery is lower).The combustion product is identified as ZrO2,Cu2O and Cu by X-ray diffraction (XRD).When the diaphragm is completely melted,Li+migration and an embedded-based conductive process are formed.Then an electromotive force will immediately reach to the maximum.The discharge performance of the pyrotechnical battery then takes on stability.The electromotive force is up to 2.29 V,and that discharge time continues for more than 18 s.The current density in the small area (less than 2.88 Acm-2) is most effective.The conversion efficiency of electric energy is 96%.The pyrotechnical battery is very safe for the production and use processes.

  15. Metal-organic fireworks: MOFs as integrated structural scaffolds for pyrotechnic materials.

    Science.gov (United States)

    Blair, L H; Colakel, A; Vrcelj, R M; Sinclair, I; Coles, S J

    2015-08-07

    A new approach to formulating pyrotechnic materials is presented whereby constituent ingredients are bound together in a solid-state lattice. This reduces the batch inconsistencies arising from the traditional approach of combining powders by ensuring the key ingredients are 'mixed' in appropriate quantities and are in intimate contact. Further benefits of these types of material are increased safety levels as well as simpler logistics, storage and manufacture. A systematic series of new frameworks comprising fuel and oxidiser agents (group 1 and 2 metal nodes & terephthalic acid derivatives as linkers) has been synthesised and structurally characterised. These new materials have been assessed for pyrotechnic effect by calorimetry and burn tests. Results indicate that these materials exhibit the desired pyrotechnic material properties and the effect can be correlated to the dimensionality of the structure. A new approach to formulating pyrotechnic materials is proposed whereby constituent ingredients are bound together in a solid-state lattice. A series of Metal-organic framework frameworks comprising fuel and oxidiser agents exhibits the desired properties of a pyrotechnic material and this effect is correlated to the dimensionality of the structure.

  16. Qualification of Magnesium/Teflon/Viton Pyrotechnic Composition Used in Rocket Motors Ignition System

    Directory of Open Access Journals (Sweden)

    Luciana de Barros

    2016-04-01

    Full Text Available The application of fluoropolymers in high-energy-release pyrotechnic compositions is common in the space and defense areas. Pyrotechnic compositions of magnesium/Teflon/Viton are widely used in military flares and pyrogen igniters for igniting the solid propellant of a rocket motor. Pyrotechnic components are considered high-risk products as they may cause catastrophic accidents if initiated or ignited inadvertently. To reduce the hazards involved in the handling, storage and transportation of these devices, the magnesium/Teflon/Viton composition was subjected to various sensitivity tests, DSC and had its stability and compatibility tested with other materials. This composition obtained satisfactory results in all the tests, which qualifies it as safe for production, handling, use, storage and transportation.

  17. Role of mixing processes in the burning of pyrotechnics mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhman, N.N. [Institute of Chemical Physics, Academy of Sciences, Moscow (Russian Federation)

    1996-12-31

    The burning velocity, u, of pyrotechnics mixtures and the dependence u(d) (where d is particles size of components of mixtures) is affected significantly by the mixing rate of oxidizer and fuel in the combustion wave. The rate of mixing depends strongly on the aggregate state of components in the preheat and reaction zone (P- and R-zone). If the molecular diffusion is the only mechanism of mixing, the mass transfer rate is proportional to {rho}D (where {rho} and D is density and diffusion coefficient). The experiments carried out in this paper show that u(d) dependence is very strong for non-volatile components for which the value {rho}D is small enough. Thus, for KCIO{sub 4}-W mixtures u augments 20-50 times with d{sub w} decreasing from 340 to {approx}3 {mu}m. In contrast, for components which can readily gasify in the P- and R-zone the value {rho}D is high enough and the dependence u(d) is faint. Thus, for AP -PMMA and AP-PS mixtures the burning rate augments not more than twice with d{sub AP} decreasing from 240 to {approx}9 {mu}m (and for stoichiometric Ba(NO{sub 3}){sub 2} AP-AI mixture u increases 3-.5 times with d{sub Bat(NO{sub 3})2} decreasing from 820 to {approx}10 {mu}m). If oxidizer and fuel remain solid in the P- and R-zone the burning rate may be increased with the addition of substances capable to transport one of the components through the gas phase to the surface of particles of the second component. Possible role of turbulent diffusion and convective transfer of a component in the combustion zone are discussed. (author) 11 refs.

  18. Wind Tunnel Study of Base Drag Reduction by Combustion of Pyrotechnics

    Science.gov (United States)

    1974-10-01

    what we must do in the future in a systematic manner to achieve the optimum fumer for a given application. We are not starting from scratch. Caven ...34 BRL Contract Report No. 113, August 1972, 6. J. J. Caven and To Stevenson, "Pyrotechnics for Small Arms Ammunition," Frankford Arsenal Report R

  19. Supplier's Status for Critical Solid Propellants, Explosive, and Pyrotechnic Ingredients

    Science.gov (United States)

    Sims, B. L.; Painter, C. R.; Nauflett, G. W.; Cramer, R. J.; Mulder, E. J.

    2000-01-01

    In the early 1970's a program was initiated at the Naval Surface Warfare Center/Indian Head Division (NSWC/IHDIV) to address the well-known problems associated with availability and suppliers of critical ingredients. These critical ingredients are necessary for preparation of solid propellants and explosives manufactured by the Navy. The objective of the program was to identify primary and secondary (or back-up) vendor information for these critical ingredients, and to develop suitable alternative materials if an ingredient is unavailable. In 1992 NSWC/IHDIV funded Chemical Propulsion Information Agency (CPIA) under a Technical Area Task (TAT) to expedite the task of creating a database listing critical ingredients used to manufacture Navy propellant and explosives based on known formulation quantities. Under this task CPIA provided employees that were 100 percent dedicated to the task of obtaining critical ingredient suppliers information, selecting the software and designing the interface between the computer program and the database users. TAT objectives included creating the Explosive Ingredients Source Database (EISD) for Propellant, Explosive and Pyrotechnic (PEP) critical elements. The goal was to create a readily accessible database, to provide users a quick-view summary of critical ingredient supplier's information and create a centralized archive that CPIA would update and distribute. EISD funding ended in 1996. At that time, the database entries included 53 formulations and 108 critical used to manufacture Navy propellant and explosives. CPIA turned the database tasking back over to NSWC/IHDIV to maintain and distribute at their discretion. Due to significant interest in propellant/explosives critical ingredients suppliers' status, the Propellant Development and Characterization Subcommittee (PDCS) approached the JANNAF Executive committee (EC) for authorization to continue the critical ingredient database work. In 1999, JANNAF EC approved the PDCS panel

  20. Effect of Fuel Content and Particle Size Distribution of Oxidiser on Ignition of Metal-Based Pyrotechnic Compositions

    Directory of Open Access Journals (Sweden)

    A. G. Dugam

    1999-07-01

    Full Text Available Influence of boron content in boron-based pyrotechnic composition and particle size distribution of oxidiser, i.e., KNO3 in boron-based pyrotechnic composition is examined by subjecting these to various tests. Study on boron-based pyrotechnic compositions reveals that compositions with 20, 25 and 30 parts by weight of boron are promising igniter compositions wrt their calorimetric values, pressure maximum, ignition delay, etc. However, from sensitivity point of view, the composition with 30 parts of boron is more safe to handle, manufacture and use. From the study of particle size distribution of KNO3 in Mg- based pyrotechnic compositions, it is observed that the composition with wider particle size distribution of oxidiser gives better packing density for their binary miJQ with metal fuel, which in turn gives lower ignition delay and ignition temperature.

  1. The processing, properties and use of the pyrotechnic mixture titanium subhydride/potassium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Massis, T.M.

    1996-07-01

    Development of this pyrotechnic occurred because of the need for a static insensitive material to meet personnel safety requirements and related system safety issues in nuclear weapon energetic material component designs. Ti subhydride materials are made by the thermal dehydrding of commercial Ti hydride powder to the desired equivalent hydrogen composition in the Ti lattice. These Ti subhydrides, when blended with K perchlorate, meet the static insensitivity requirement of not being initiated from an equivalent human body electrostatic discharge. Individual material and blend qualification requirements provide a reproducible material from lot to lot. These pyrotechnic formulations meet the high reliability requirements (0.9995) for initiation and performance parameters and have the necessary stability and compatibility to meet long lived requirements of more than 25 years. Various experiences and problems are also discussed that have led to a mature technology for Ti subhydride/K perchlorate during its use in energetic material component designs.

  2. Penetration of pyrotechnic effects with SWIR laser gated viewing in comparison to VIS and thermal IR bands

    Science.gov (United States)

    Göhler, Benjamin; Lutzmann, Peter

    2016-10-01

    In this paper, the potential capability of short-wavelength infrared laser gated-viewing for penetrating the pyrotechnic effects smoke and light/heat has been investigated by evaluating data from conducted field trials. The potential of thermal infrared cameras for this purpose has also been considered and the results have been compared to conventional visible cameras as benchmark. The application area is the use in soccer stadiums where pyrotechnics are illegally burned in dense crowds of people obstructing visibility of stadium safety staff and police forces into the involved section of the stadium. Quantitative analyses have been carried out to identify sensor performances. Further, qualitative image comparisons have been presented to give impressions of image quality during the disruptive effects of burning pyrotechnics.

  3. Four-terminal connector for measuring resistance of a pyrotechnic initiator

    Science.gov (United States)

    Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, III, William C. (Inventor)

    1989-01-01

    A four-terminal electrical connector device (40) for testing and measuring unknown resistances of initiators (11) used for starting pyrotechnic events aboard a Space Transportation System. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurement taken with the device. Separate and independent voltage sensing (19) and current supply (20) circuits each includes a pair of socket contacts (13-16) for mating engagement with the pins (17,18) of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire (23) of the initiator which is required to be between 0.95 and 1.15 ohms.

  4. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  5. Ignition and combustion of pyrotechnics at low pressures and at temperature extremes

    Directory of Open Access Journals (Sweden)

    Clive Woodley

    2017-06-01

    Full Text Available Rapid and effective ignition of pyrotechnic countermeasure decoy flares is vitally important to the safety of expensive military platforms such as aircraft. QinetiQ is conducting experimental and theoretical research into pyrotechnic countermeasure decoy flares. A key part of this work is the development and application of improved models to increase the understanding of the ignition processes occurring for these flares. These models have been implemented in a two-dimensional computational model and details are described in this paper. Previous work has conducted experiments and validated the computational model at ambient temperature and pressure. More recently the computational model has been validated at pressures down to that equivalent to 40,000 feet but at ambient temperature (∼290 K. This paper describes further experimental work in which the ignition delays of the priming material in inert countermeasure decoy flares were determined for pressures down to 40,000 feet and at temperature extremes of −40 °C and 100 °C. Also included in this paper is a comparison of the measured and predicted ignition delays at low pressures and temperature extremes. The agreement between the predicted and measured ignition delays is acceptable.

  6. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Pourmortazavi; S.S. Hajimirsadeghi; I. Kohsari; M. Fathollahi; S.G. Hosseini [Malek Ashtar University of Technology, Tehran (Iran). Faculty of Material and Manufacturing Technologies

    2008-02-15

    Thermal behavior of energetic materials is critical to safe production, storage, handling or even demilitarization. In this work, the thermal behavior of Al, Mg, CuO, KMnO{sub 4} and also three mixtures containing Al + CuO, Mg + CuO and Mg + KMnO{sub 4} were studied experimentally using differential scanning calorimetry and thermogravimetry. These mixtures are sometimes used as pyrotechnic mixtures in military industries. Also, the influence of different heating rates (5, 10, 15 and 20{sup o}C/min) on the DSC behavior of the mixtures was verified. The results showed that as the heating rate was increased, melting points and ignition temperatures of the mixtures were increased. On the other hand, TG-DSC analysis for Mg + KMnO{sub 4} mixture indicates that this mixture melts at 283.0{sup o}C and decomposed at 292.1{sup o}C. By replacing KMnO{sub 4} with CuO as the oxidizer of the magnesium, these temperatures enhanced to 368.7{sup o}C and 408.3{sup o}C, respectively. However, replacing Mg with Al in the Mg/CuO mixture decreases the melting and ignition temperatures of the mixture to 231.4 {sup o}C and 271.9{sup o}C, respectively. The activation energy for each pyrotechnic mixture was computed. Also, other thermo-dynamic values were calculated. 28 refs., 5 figs., 3 tabs.

  7. Improved green-light-emitting pyrotechnic formulations based on tris(2,2,2-trinitroethyl)borate and boron carbide.

    Science.gov (United States)

    Klapötke, Thomas M; Krumm, Burkhard; Rusan, Magdalena; Sabatini, Jesse J

    2014-08-28

    Green-light-emitting pyrotechnic compositions based on tris(2,2,2-trinitroethyl)borate (TNEB) and boron carbide have been investigated. The best performing formulations were found to be insensitive to various ignition stimuli, and exhibited very high spectral purities and luminosities compared to previously reported green-light-emitting formulations.

  8. EU directive on the placing on the market of pyrotechnic articles. Elements to deal with the essential safety requirements for fireworks

    OpenAIRE

    Brochier, Michel; Branka, Ruddy

    2007-01-01

    National audience; The Directive 2007/23/EC of the European Parliament and of the Council on the placing on the market of pyrotechnic articles has been adopted by the European Union (EU) on the 23rd of May, 2007. This Directive should help manufacturers and importers that had to comply with a different regulation in each country to get technical approvals of their pyrotechnic articles. Although this directive will reduce the administrative burden for everybody by introducing the CE marking an...

  9. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    Science.gov (United States)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  10. Mathematical Modelling of Nonstationary Physico Chemical Processes in Large Sized SPRM Pyrotechnical Ignition System

    Directory of Open Access Journals (Sweden)

    Alexey M. Lipanov

    1997-10-01

    Full Text Available In this paper, the laws of the unstable wave processes accompanying the combustion abnormal mode in the large-sized solid propellant rocket motor {SPRM pyrotechnical ignition system {IS are investigated by numerical method. The IS contains the main {cylindrical channel (MC having uniform perforation over the lateral surface, The left MC boundary is blocked and the right boundary is uniformly perforated. The whole perforation is hermetically sealed from outside. The additional {cylindrical channel {AC {an initial impulse amplifier with uniform perforation over the lateral surface is installed into the MC cavity, coaxially to MC. The right AC boundary is blocked, and the time-varying high-temperature gas flow, containing incandescent 'particles is supplied from initiator, equipped with a fast burning compound, through AC left perforated boundary. To imitate the exploitation conditions, the IS is placed in cylindrical imitation chamber {imitative SPRM. In a number of cases, before the beginning of the IS operation, a situation can be realised when the pelletised solid propellant {PSP mass is non-uniformly distributed along the IS AC length, and the greater part of the AC lateral perforation is blocked by the PSP inserted in the IS MC. Under these conditions, the effect of abnormal strengthening of the pressure waves at the AC boundaries is possible. For describing the abnormal nonstationary physico-chemical processes, a mathematical model is developed. For the check-up of this complex model, the numerical calculation results have been compared with the results of the fire stand tests for the regular IS and the engine. The numerical analysis of the unstable wave process development in the AC has shown that the rise of the pressure with an ever increasing amplitude is realised at the moment, when a shock wave reflects alternately, on the left and on the right AC boundaries. The effect of the pressure waves' abnormal strengthening can result in the

  11. 碳纳米管对烟火药剂的催化作用%Catalytic Effect of Carbon Nanotubes on Pyrotechnics

    Institute of Scientific and Technical Information of China (English)

    钱新明; 邓楠; 魏思凡; 李增义

    2009-01-01

    应用水混法和丙酮混法将碳纳米管(CNTs)分别添加到含高氯酸钾、硝酸钾的烟火药剂中,利用绝热加速量热仪(ARC)研究其对含高氯酸钾、硝酸钾的烟火药剂的催化作用.结果表明,碳纳米管对含两种烟火药剂均具有催化作用,其中以水混法添加的催化剂催化效果最佳.以水混法添加催化剂的含高氯酸钾的烟火药剂,其最大反应速率8.21 min~(-1),是不含催化剂药剂的4.15倍,到达最大反应速率时间为52.09 min,比不含催化剂的药剂降低了56.4%;以水混法添加催化剂的含硝酸钾的烟火药剂,其最大反应速率8.52 min~(-1),是不含催化剂药剂的1.51倍,到达最大反应速率时间为141.83 min,比不含催化剂的药剂降低了11.0%.%Carbon nanotubes (CNTs) were added into pyrotechnics with potassium perchlorate and potassium nitrate by water-mixing method and acetone-mixing method. And accelerating rate calorimeter( ARC) was used to study catalysis for pyrotechnics with potassium perchlorate and potassium nitrate adding CNTs. Results show that CNTs can catalyze pyrotechnics with potassium perchlorate and potassium nitrate,and the best adding method is water-mixing method. For the pyrotechnics with potassium perchlorate adding CNTs by water-mixing method,the maximal reaction rate is 8.21 min~(-1) .which is 4. 15 times of pyrotechnics adding no catalyst; and time to maximal rate is 52.09 min,which is 56.4% lower than that of pyrotechnics adding no catalyst. For the pyrotechnics with potassium nitrate adding CNTs by water-mixing method, the maximal reaction rate is 8.52 min~(-1) , which is 1.51 times of pyrotechnics adding no catalyst; and time to maximal rate is 141.83 min,which is 11.0% lower than that of pyrotechnics adding no catalyst.

  12. Time evolution of atmospheric particle number concentration during high-intensity pyrotechnic events

    Science.gov (United States)

    Crespo, Javier; Yubero, Eduardo; Nicolás, Jose F.; Caballero, Sandra; Galindo, Nuria

    2014-10-01

    The Mascletàs are high-intensity pyrotechnic events, typical of eastern Spanish festivals, in which thousands of firecrackers are burnt at ground level in an intense, short-time (festival in Alicante (southeastern Spain). Peak concentrations and dilution times observed throughout the Mascletàs have been compared to those measured when conventional aerial fireworks were launched 2 km away from the monitoring site. The impact of the Mascletàs on the total number concentration of particles larger than 0.3 μm was higher (maximum ˜2·104 cm-3) than that of fireworks (maximum ˜2·103 cm-3). The effect of fireworks depended on whether the dominant meteorological conditions favoured the transport of the plume to the measurement location. However, the time required for particle concentrations to return to background levels is longer and more variable for firework displays (minutes to hours) than for the Mascletàs (<25 min).

  13. Mass flow discharge and total temperature characterisation of a pyrotechnic gas generator formulation for airbag systems

    Energy Technology Data Exchange (ETDEWEB)

    Neutz, Jochen; Koenig, Andreas [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany); Knauss, Helmut; Jordan, Sebastian; Roediger, Tim; Smorodsky, Boris [Universitaet Stuttgart (Germany). Institut fuer Aerodynamik und Gasdynamik; Bluemcke, Erich Walter [AUDI AG, Department I/EK-523, Ingolstadt (Germany)

    2009-06-15

    The mass flow characteristics of gas generators for airbag applications have to comply with a number of requirements for an optimal deployment of the airbag itself. Up to now, the mass flow was determined from pressure time histories of so-called can tests. This procedure suffers from the missing knowledge on the temperature of the generated gas entering the can. A new test setup described in this paper could overcome this problem by providing highly time resolved information on the gas's total temperature and the mass flow of the generator. The test setup consisted of a combustion chamber with a specially designed Laval nozzle in combination with a temperature sensor of high time resolution. The results showed a high time resolved temperature signal, which was disturbed by the formation of a slag layer on the sensor. Plausibility considerations with experimentally and thermodynamically determined combustion temperatures led to satisfying results for the overall temperature as characteristic parameter of airbag inflating gases flows from pyrotechnics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Addition of RDX/HMX on the Ignition Behaviour of Boron-Potassium Nitrate Pyrotechnic Charge

    Directory of Open Access Journals (Sweden)

    K.R. Rani Krishnan

    2006-07-01

    Full Text Available Boron-potassium nitrate (B-KNO3 (25/75 is a well-known pyrotechnic composition whichfinds application as energy-release system for small-calibre rockets and pyrogen igniters forlarger motors. The decomposition of the oxidiser in this composition is endothermic which canbe activated by the addition of high explosives, which decompose exothermically. This paperdescribes the influence of two nitramine explosives, RDX and HMX, on the ignition characteristicsof B-KNO3 composition using thermogravimetry, differential scanning calorimetry, heat andpressure output measurements. Different compositions were prepared by varying the amount ofRDX/HMX from 10 per cent to 50 per cent. Thermal studies on the B-KNO3/high explosivemixtures reveal that these undergo two-stage decomposition. The first stage corresponds to thedecomposition of high explosive and the second stage corresponds to that of the reaction betweenB and KNO3. Kinetic parameters were calculated for both the stages of TG curves using Coats-Redfern and Mac Callum-Tanner methods. Ignition temperature of B-KNO3 decreases on theaddition of RDX/HMX while the onset of RDX or HMX decomposition is not significantly affectedby B-KNO3. The pressure output of B-KNO3 increases on adding RDX/HMX. The heat outputof B-KNO3 is not much affected by the addition of RDX or HMX, even though the heat ofexplosion of RDX and HMX are low. This is due to the reaction between the combustion productsof RDX/HMX and reaction products of B-KNO3 to form more exothermic products like B2O3,releasing extra heat. The flame temperature of the charge increases while the average molecularweight of the products of combustion decreases as the RDX/HMX content increases. Thus, thecharge, on addition of RDX or HMX, produces higher pressure output, maintaining the heatoutput at comparable levels.

  15. 空间使用环境对火工装置性能的影响%Influence of the Aerospace Environment on the Performance of Pyrotechnics Devices

    Institute of Scientific and Technical Information of China (English)

    张醒; 张修科; 杨树彬; 鲍国苗

    2013-01-01

    随着航天新型号的发展,空间站、月球探测、探火星金星等领域陆续进入研究和研制阶段,火工装置工作前在轨存放时间越来越长。由于空间环境的复杂性和未知性,其对火工装置性能影响的研究需求日益紧迫。通过部分产品研制过程中发现的问题,介绍了影响火工装置性能的主要空间环境因素,分析了目前我国火工装置空间环境适应性研究的现状,并展望今后火工装置空间环境适应性研究的发展趋势。%As the development of new generation of aerospace products, a series of projects in fields of the TG space station, the lunar exploration and the Mars and Venus exploration have been engaging into forward stages in China, the pyrotechnics devices would be kept longer and longer on the track before working. In space environment, some complex and unknown factors probably influence the operation of the pyrotechnics device, which plays a critical role in products, while the research on these influences is limited in current. Based on some practical problems in the course of product development, the main effect factors existing in the aerospace on the performance of the pyrotechnics device are proposed, and the current situation of the adaptation research for the pyrotechnics devices in aerospace are analyzed. At last, the further adaptation research tendency is put forward.

  16. X-38: Close-up of Pyrotechnic Firing during Test of Flight Termination System Parachute Deployment

    Science.gov (United States)

    1996-01-01

    In these close-ups, the canister containing the seven-foot-diameter X-38 Flight Termination System (FTS) parachute can be seen launching safely away from an aft-end mockup of the X-38 by a pyrotechnic firing system in December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft-end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research

  17. Rapidly Degradable Pyrotechnic System

    Science.gov (United States)

    2009-02-01

    Broth LB-Amp: Ampicillin-Luria Broth NdeI: Restriction Endonuclease OmpA: Outer Membrane Protein Gene PBS: Phosphate Buffered Saline PCR...concentrations of 0.5 g L−1 can be easily achieved by fermentation . In batch fermentation the major part of the enzyme is accumulated in the

  18. Survey of Military Pyrotechnics

    Science.gov (United States)

    1991-05-24

    activities at Group d’Etudes et Reserches de Pyrotechnie (GERPy) has concerned the degradation of munitions due to their ageing. For a number of years...Shells in 4th International Conference of the "Groupe de Travail de Pyrotechnie " supported by Centre National d’Etudes Spatiales at La Grande- 𔄀.otte...France, 5-9 June 1989; Association Francaise de Pyrotechnie : Paris, pp 121-126. 65. Commercial Operators Seek to Counter Growing Heat-Seekina Missile

  19. 钝感火工品中新技术、新含能材料研究进展%Developing Status of New Techniques and New Energetic Materials in Insensitive Pyrotechnics

    Institute of Scientific and Technical Information of China (English)

    王宇; 魏超; 张嵩

    2013-01-01

    火工品的敏感度及抗干扰能力是影响弹药安全性的重要因素.因此,大力发展钝感火工品,对提高弹药安全性有重要意义.本文对钝感火工品领域的激光点火、爆炸逻辑网络和冲击片雷管等前沿技术进行了综述,介绍了其结构原理、发展历程和国内外最新的研究成果,同时通过对国内外技术水平进行比较,总结了中国与国外技术的差距及技术瓶颈,展望了上述技术未来的发展趋势.另外,对国外最新研制成功的LLM-105、DAAzF、FOX-7、TNAZ等新含能材料进行了综述,介绍了这几种含能材料在安全性和能量水平等方面的巨大优势,并对其在钝感火工品中的应用前景进行展望.最后,总结了中国在钝感火工品研究中存在的不足,并对中国应走的研究路线提出了几点建议.%The sensitivity and anti -interference ability of pyrotechnics is important to ammunition safety. Therefore, improving insensitive pyrotechnics is the key point for the insensitive weapon research. Most advanced techniques, such as light, electricity, and magnetism are taking place of fire and heat in pyrotechnics, making pyrotechnics much more safety. The advances in the areas of new techniques and new energetic materials for insensitive pyrotechnics are discussed. New techniques, such as laser ignition, explosive logic circuit, and slapper detonator, are reviewed. The structure, principle, history, and latest achievements are introduced. The research level between China and developed countries is compared with each other; the developing trend of these techniques is talked about. In addition, new energetic materials invented by developed countries, such as LLM-105, DAAzF, FOX-7, TNAZ are summarized, and their developing status is introduced. By comparing the differences between China and developed countries, the shortcoming of China is pointed out, particularly some deficiencies in insensitive pyrotechnics. Some suggestions about

  20. Optimized Analytical Method to Determine Gallic and Picric Acids in Pyrotechnic Samples by Using HPLC/UV (Reverse Phase); Optimizacion del Metodo Analitico mediante HPLC/UV Operando en Fase Inversa para la Determinacion de Acido Galico y Acido Picrico en Muestras de Origen Pirotecnico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Alonso, S.; Perez Pastor, R. M.

    2013-10-01

    A study on the optimization and development of a chromatographic method for the determination of gallic and picric acids in pyrotechnic samples is presented. In order to achieve this, both analytical conditions by HPLC with diode detection and extraction step of a selected sample were studied. (Author)

  1. Development of Gasless Pyrotechnic Cap

    Science.gov (United States)

    1980-05-01

    beam cathode ray oscillo- scope. The caps were ignited by removing the safety pin . This also triggered the oscilloscope. The change in pressure inside...sensitivity. STRIKER SAFETY PIN PERCUSSION CAP FIXED VOLUME / ;PRESSURE TRANSDUCER TO C.R.O. FIG. 8 - Device used to determine pressure time

  2. Influence of CNTs on Thermal Behavior and Light Radiation Properties of Zr/KClO 4 Pyrotechnics%碳纳米管对Zr/KClO4烟火剂的热行为和光辐射性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘黎明; 康晓丽; 易勇; 张红芳; 罗江山; 唐永建

    2014-01-01

    To improve the pump efficiency of Zr/KClO4 pyrotechnic reagent used in Solid state laser pump sources,the carbon nanotubes(CNTs)with catalytic property,high specific surface area,strong adsorption capacity and high strength were intro-duced in pyrotechnic reagent Zr/KClO4 . The effect of carbon nanotubes on the thermal decomposition and light radiation perform-ance of Zr/KClO4(60/40)pyrotechnic reagent used in the pump sources was studied by differential thermal analysis technology and photoelectric detection technology. The results show that the addition of CNTs has a significant impact on the thermal decom-position characteristics and light radiation energy of Zr/KClO4 . With increasing of the CNTs,the combustion rate and exothermic quantity of the pyrotechnic reagent gradually increase,and the melting endothermic peak of the pyrotechnic reagent decrease and tend to disappear. However,the light radiation energies reveal the trend of firstly increases and then decreases. When the mass percentage of CNTs in the pyrotechnic reagent is 0.50%,the total radiation energy of the pyrotechnics can reach 1830 J·g-1. The effective radiation energy within the three strong absorption bands of Nd:Yttrium Aluminum Garnet( YAG)laser gain medium, that is(590 ±10)nm,(750±10)nm and(808±10)nm,can be increased by 41%,25% and 31%,respectively.%为了提高烟火固体激光器泵浦源 Zr/KClO4的泵浦效率,在烟火剂 Zr/KClO4中引入具有催化性能、高比表面积、强吸附能力、高强度的碳纳米管(CNTs),借助差热分析技术和光电探测技术研究了碳纳米管对泵浦源用烟火剂 Zr/KClO4(60/40)的热分解和光辐射性能的影响。结果表明:CNTs的加入对 Zr/KClO4的热分解特性和光辐射能均有显著的影响。随着 CNTs 添加量的增加,烟火剂的燃烧速率和放热量均逐渐增加,药剂的融化吸热峰减弱,甚至趋于消失,药剂的光辐射能量却呈现出先

  3. 冲击载荷作用下火工分离保护装置的建模与分析%Modeling and analysis of a pyrotechnic separation protecting device under explosion shock

    Institute of Scientific and Technical Information of China (English)

    曹乃亮; 徐宏; 辛宏伟; 李志来

    2015-01-01

    为了模拟空间火工分离保护装置冲击载荷下的动力学特性,首先,建立了该保护装置的简化模型,计算得到火工分离体的初速度,推导了装置的冲击变形和变形能公式;保护装置分别采用2 A 12、TC4、蜂窝夹层材料,建立三种材料的多线性本构模型,采用显式动力学求解步分析其冲击响应特性,分析可知,蜂窝夹层材料具有最佳的能量吸收特性,2 A 12的能量吸收特性介于蜂窝夹层材料和TC4之间,其塑性变形量适中;应变能释放和冲击碰撞的耦合分析可知,应变能占比小,体现为振荡衰减的过程,结构的冲击响应特性主要由碰撞冲击导致;试验表明,该火工分离保护装置的瞬态动力学过程与分析一致,局部最大应力为302 MPa,冲击响应谱最大值为3242 g,满足有效载荷的可靠解锁分离要求。%In order to simulate the dynamic features of a pyrotechnic separation protecting device under explosion shock,firstly its simplified model was built,the initial velocity of the pyrotechnic separation body was calculated.The plastic deformation and deformation energy of the device under clamped boundary were derived.The protecting device adopted aluminum alloy,titanium alloy and honeycomb core material,the multi-linear constitutive models of the three materials were built.The analysis of impulse response was performed using the dynamic explicit method.The results showed that honeycomb core has the best energy absorption capability,and the energy absorption capability of aluminum alloy is between those of titanium alloy and honeycomb core,its plastic deformation is moderate.The coupling analysis of strain energy release and explosion shock indicated that the small proportion of strain energy reveals the process of oscillation decay;the impulse response characteristics of the structure are caused primarily by explosion shock.Tests showed that the transient dynamic process

  4. 某火工装置窜火原因分析及解决方法研究%Research on the Reason of Flame over of Some Pyrotechnics Device and Improvement Measures

    Institute of Scientific and Technical Information of China (English)

    胡松涛

    2013-01-01

    为解决某火工装置窜火问题,通过对该装置的结构及作用原理进行分析,确定导致该火工装置窜火的主要原因是火药气体产生的压力使盖板发生位移,造成结构板与盖板的结合面出现缝隙,高温高压气体沿缝隙进入抛撒药盒引燃了抛撒药。通过优化设计及合理安排生产工艺等措施对火工装置进行了性能改进,经试验验证,改进措施有效解决了火工装置的窜火问题。%To solve problem of flame over of some pyrotechnics device, through analyzing on structure and action principle of the device, the reason of the problem was found. It showed that the cover plate was moved by pressure generated by the gunpowder gas, then the gap emerged between structure slab and cover plate, the high temperature and pressure gas seeped into the projection powder case through the gap, and ignited the projection powder. Meanwhile, the performance of the device was improved by optimization design and manufacturing technique, and test results show that the problem was solved effectively.

  5. Pyrotechnic Smoke Compositions Containing Boron Carbide

    Science.gov (United States)

    2012-06-10

    tubes were made of kraft fiberboard and had an inner diameter of 3.12 cm. Stainless steel cans, cylindrical and closed on one end, had a 1.75 cm inner...spectrometer was chosen so that the wavelength with the highest signal was just below the saturation level of the system. This spectrum served as the baseline...as the Yershov mixture). 1 Figure 2. Vapor pressure of KCl as a function of temperature. Hand-held signal (HHS) tubes, made of kraft

  6. Infrared Radiation Absorption by Pyrotechnic Smokes

    Directory of Open Access Journals (Sweden)

    Amarjit Singh

    1988-04-01

    Full Text Available The infrared absorbance at wavelength 1.5 - 2.5 pm has been studied for white, orange, green and red coloured smokes. This paper describes an experimental set up, the results obtained and also discusses the potential application of smokes in attenuating infrared light assisting opto-electronic target detecting devices.

  7. Engineering Design Handbook - Military Pyrotechnics Series. Part Four. Design of Ammunition for Pyrotechnic Effects

    Science.gov (United States)

    1974-03-15

    Dimensions 7—13 8— 1 Constants of the Beattie - Bridgeman Equation of State 8-2 8—2 Properties of Plastics 8—11 8—3... BEATTIE - BRIDGEMAN EQUATION OF STATE Mini- Maxi- mum mum vol- pres- ume. Temp. sure, cc/g- Gas A0 a ßo b C X 10𔃾 0.0040 range, 400 to - °C...8-6) where A0, B0,a,b, and c are constants. Table 8-13 lists constants of the Beattie - Bridgeman equation of state for several gases. The

  8. Self-ignition of explosive substance. Comparison between analytical and numerical calculations in order to optimize safety in a pyrotechnic context; Auto-inflammation de substances explosives. Comparaison entre calcul analytique et numerique en vue d`une optimisation dans le domaine de la pyrotechnie

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Ph. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1998-04-01

    Self-ignition of energetic material was investigated in order to optimize safety in the field of pyrotechnic applications. Two approaches were used; the first one is relative to Frank-Kamenetskii stationary thermal explosion theory. The second approach consists of a choice of some numerical solutions of heat conduction equations in a non-stationary state. Comparison between these results was carried out in order to find the numerical scheme which is the most compatible with Frank-Kamenetskii stationary thermal explosion theory. Numerical data were used for three explosive substances. One of them was studied by the author. In all cases, the numerical stationary state is in agreement with the Frank-Kamenetskii stationary thermal explosion theory, more or less accurately. From this comparison, it may be concluded that it is preferable, for this kind of problem, to use an implicit scheme with linearization of the heat source term. Explicit numerical methods, with or without the addition of the heat term with the Zinn and Mader scheme are revealed to be less accurate and to need a greater optimization of spatial and temporal meshing. (author) 7 refs.

  9. Investigation into Blue Light Emission for Copper-containing Pyrotechnics

    Science.gov (United States)

    2015-05-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 03/11/2015 2. REPORT TYPE... control flame temperature • High-resolution spectroscopic measurements 12 http://faculty.sdmiramar.edu/fgarces/labmatters/instruments/aa/aa.htm salts...Crane • Dr. Hank Webster, NSWC Crane • Joshua Geary, NSWC Crane • Funding: NSWC Crane NISE /219 program Acknowledgements 15 DISTRIBUTION STATEMENT A

  10. Elimination of Perchlorate Oxidizers from Yellow Pyrotechnic Flare Compositions

    Science.gov (United States)

    2015-03-11

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 03/11/2015 2. REPORT TYPE...Environmental Research and Development Program 10. SPONSOR/MONITOR’S ACRONYM(S) NISE , SERDP 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12

  11. Alternative for Perchlorates in Incendiary and Pyrotechnic Formulations for Projectiles

    Science.gov (United States)

    2009-08-01

    aluminum alloy, potassium or sodium nitrate and a number of binders (Table 9). The binders examined were calcium resinate, boiled linseed oil ...high light output. The binders examined were calcium resinate, boiled linseed oil , lithographic varnish, PVC and GAP. The duration of the flash...Calcium resinate 21.0 76 Powder 0.61 49% Mg/Al alloy 49% Sodium nitrate 2% Boiled linseed oil 15.0 77 Powder 0.60 48

  12. Pulmonary Effects of Pyrotechnically Disseminated Titanium Dioxide Smoke in Rats

    Science.gov (United States)

    2007-05-01

    A/E Glass Fiber Filter ( GFF ) pads (Gelman Scientific) were used to collect aerosol samples during the 10-min exposures. Vacuum pumps (Sierra...collected for 1 min (t3-t4) at a flow rate of 7 Lpm (as specified by the manufacturer). GFF substrates were used to collect the particles on the stages...chamber. To prevent aerosols from passing into the tubes, GFF pads were attached to the front portion of each tube. Vacuum flows through the tubes were

  13. Alternatives to Pyrotechnic Distress Signals; Laboratory and Field Studies

    Science.gov (United States)

    2015-03-01

    evaluating the relative effectiveness of various colors under low light (about 0.25 foot candle ) conditions. Quoting Smith, “When the colors included in the...evaluating color , flash pattern, and intensity for an LED distress signal, conspicuous against certain lighting conditions, at six nautical miles, in...characteristic, effective intensity, color , flash pattern, response time, conspicuity 18. Distribution Statement Distribution Statement A: Approved

  14. Suitability of Potential Alternatives to Pyrotechnic Distress Signals

    Science.gov (United States)

    2012-02-01

    same device, treating each mode as a separate device. Tests of color signals were interleaved with tests of white signals (i.e., testing was not...2452. Cacha, C.A. (Eds). (1999). Ergonomics and safety in hand tool design. Boca Raton, FL: CRC Press, LLC . Glitz, K. J., Seibel, U., Rohde, U

  15. A Compilation of Hazard and Test Data for Pyrotechnic Compositions

    Science.gov (United States)

    1980-10-01

    heated. These changes may be related to dehydration, decomposition, crystal - line transition, melting, boiling, vaporization, polymerization, oxidation...are powdered magnesium, aluminum (and alloys there- of), boron, charcoal, sulfur, lactose silicon, zirconium, titanium, and metallic hydrides. When...potassium chlorate with either lactose , sugar, or sulfur as the fuel and magnesium car- bonate or sodium bicarbonate as a coolant. Figure 42 shows a

  16. Pyrotechnically Generated and Disseminated Aerosol for Bioagent Defeat

    Science.gov (United States)

    2016-12-01

    cell death. Oligo-dynamic metals (such as copper) cause cell membrane destruction as well as coagulation of cell materials. To date, there exist no...cell death through the dislocation of protein synthesis and the disruption of respiratory chain enzymes , lipid membrane function, and nucleic acid

  17. Alternatives to Pyrotechnic Distress Signals; Additional Signal Evaluation

    Science.gov (United States)

    2017-06-01

    team acknowledges the behind-the- scenes efforts of the Sector Long Island Sound Auxiliary Affairs Officer and the Sector Long Island Sound Auxiliary...4000◦ Kelvin (4000K) White LED, a straightforward, “ neutral ” White. A project team member raised concern that we used the 4000K White without...observer’s answers would cancel out. 3.2 Pilot Test 1 On 30 March 2017, we looked at three different White LEDs: 4000K (W4)-as used in 2014- a “ neutral

  18. Pyrotechnic Actuator for Retracting Tubes Between MSL Subsystems

    Science.gov (United States)

    Gallon, John C.; Webster, Richard G.; Patterson, Keith D.; Orzewalla, Matthew A.; Roberts, Eric T.; Tuszynski, Andrew J.

    2010-01-01

    An apparatus, denoted the "retractuator" (a contraction of "retracting actuator"), was designed to help ensure clean separation between the cruise stage and the entry-vehicle subsystem of the Mars Science Laboratory (MSL) mission. The retractuator or an equivalent mechanism is needed because of tubes that (1) transport a heat-transfer fluid between the stages during flight and (2) are cut immediately prior to separation of the stages retractuator. The role of the retractuator is to retract the tubes, after they are cut and before separation of the subsystem, so that cut ends of the tubes do not damage thermal-protection coats on the entry vehicle and do not contribute to uncertainty of drag and consequent uncertainty in separation velocity.

  19. Safe and Environmentally Acceptable Sol-gel Derived Pyrophoric Pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Simspon, R L; Satcher, J H; Gash, A

    2004-06-10

    It was demonstrated that highly porous sol-gel derived iron (III) oxide materials could be reduced to sub-micron-sized metallic iron by heating the materials to intermediate temperatures in a hydrogen atmosphere. Through a large number of experiments complete reduction of the sol-gel based materials was realized with a variety of hydrogen-based atmospheres (25-100% H{sub 2} in Ar, N{sub 2}, CO{sub 2}, or CO) at intermediate temperatures (350 C to 700 C). All of the resulting sol-gel-derived metallic iron powders were ignitable by thermal methods, however none were pyrophoric. For comparison several types of commercial micron sized iron oxides Fe2O3, and NANOCAT were also reduced under identical conditions. All resulting materials were characterized by thermal gravimetric analysis (TGA), differential thermal analysis (DTA), powder X-ray diffraction (PXRD), as well as scanning and transmission electron microscopies (SEM and TEM). In addition, the reduction of the iron oxide materials was monitored by TGA. In general the sol-gel materials were more rapidly reduced to metallic iron and the resulting iron powders had smaller particle sizes and were more easily oxidized than the metallic powders derived from the micron sized materials. The lack of pyrophoricity of the smaller fine metallic powders was unexpected and may in part be due to impurities in the materials that create a passivation layer on the iron. Several recommendations for future study directions on this project are detailed.

  20. Environmental Health Assessment for Pyrotechnic Perchlorate Elimination/Mitigation Program for M118/M119 Simulators

    Science.gov (United States)

    2009-09-11

    Primary sources are identified and retrieved using PubMed®, the Ovid® Technologies Journals, and the EBSCOhost ® Research Database . (TOXNET...we acknowledge Mr. Mike Packer for assistance in establishing and integrating the EndNote Reference Database system into the CHPPM Environmental...unambiguous way of accessing information for chemical substances. The CAS RN is readily used as a keyword for searching online databases , and is often

  1. Non-Pyrotechnic Latch and Release System for Aerospace and Other Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — American remote Vision Company (ARVC) will continue to research and develop a new non-pryotechnic latch and release sytem for use in servicing and flight release...

  2. 78 FR 39057 - Hours of Service of Drivers; Renewal and Expansion of American Pyrotechnics Association Exemption...

    Science.gov (United States)

    2013-06-28

    .......... Fort Worth, TX 76135......... 0116910 6. Atlas Pyrovision Productions, Inc. 136 Old Sharon Rd Jaffrey... Internationale.... 910 North 3200 West Logan, UT 84321 245423 17. Garden State Fireworks, Inc...... 383...

  3. Chemical Characterization of the Pyrotechnically Disseminated KM03 Red Phosphorus Floating Smoke Pot

    Science.gov (United States)

    2006-05-01

    26 3.5.2 Inorganic Anions - GFF Pads ................................................. 27 3.6 Inorganic Cations...Cations - GFF Pads ................................................. 30 3.7 Aquatic Toxicology...36 4.4 Inorganic A nions - GFF Pads

  4. Compilation of Blast Parameters of Selected High Explosives, Propellants, and Pyrotechnics in Surface Burst Configurations.

    Science.gov (United States)

    1987-01-01

    Distance for Dextrinated Lead Azide ............. 212 90. Peak Pressure and Scaled Positive Impulse Versus Scaled Distance for Lead Styphnate...207 41. Summary of Results for Hemispherical Surface Bursts, Peak Pressure, and Scaled Positive Impulse Values for Dextrinated ...these values with standard hemispher- ical TNT data to determine TNT equivalency. MATERIAL Dextrinated lead azide a sensitive primary explosive, was

  5. BZ Disposal Facility Development and Design. Task 4, Incineration of Pyrotechnic Munitions in a Deactivation Furnace

    Science.gov (United States)

    1982-07-01

    pprsiimttr) Red smoke Dye: l-N-Methylaminoenlhrequinonc 85 percent; dextrin 15 percent............................................... 42 Sodium bicarbonate...0.113 centimoles/g mix 0.343 centimoles/g mix 0.075 centimoles/g mix 4.160 centimoles/g mix For Dextrin ^6H.0O«) x 1^0 assumed the water could be

  6. Proceedings of the International Pyrotechnics Seminar (5th) Held 12-16 July 1976, Vail, Colorado.

    Science.gov (United States)

    1976-01-01

    measuring the maximum pressure (P max) obtained at a given propellant loading density. At low pressures the covolume effect is negligible and impetus...helium, hydrogen, and cartridge generated gas. Function times of less than 10 ms were achieved, depending on the gas source and pressure . The present...reduced as atmospheric pressure decreases and wind shear velocities increase. Flare plume afterburning is a complex process, depending on fundamental

  7. Chemical Characterization of the Pyrotechnically Disseminated 66MM Red Phosphorous Smoke Screening IR, Vehicle Launched Grenade

    Science.gov (United States)

    2008-07-01

    of this study was consistent with the objectives and standards in "Good Laboratory Practices for Non-clinical Laboratory Studies" (21 CFR 58, Food and...with each replicate containing one ceriodaphnia. The test media was renewed, and fresh food was added daily, for 7 days. Mortality and reproduction were...Instruction Manual (0.5- 100 ppm); Kitagawa, Matheson Tri-Gas: Montgomeryville, PA, 2005. 23. POTASSIUM OXIDE; Material Saftey Data Sheet. International

  8. The Application of Solid State Physics Principles to Pyrotechnic Mixture Systems

    Science.gov (United States)

    1987-06-01

    3S + 2KC1 03 - > 3S02 + 2KC1 (Fuel) (Oxidizer) Hr a -304.87 Kcal/mole 8KC10 3 + C12H22011 *H 20 8KCl + 12C02 + 12H20 (Oxidizer) Lactose (Fuel) Hr...particles that make up the crystalline lattice. Table 1. Types of Crystalline Solids 3 Units Type of comprising solid crystal lattice Attractive force... lactose , and 25.2% KC10 3 wis studied with 1% metal powder added. These results show that no burning rate enhancement is obtained; instead, depression of

  9. The use of the enthalpy approach for analysis of pyrotechnics mixtures burning

    Energy Technology Data Exchange (ETDEWEB)

    Kashporov, L.Y.; Sheludyak, Y.E.; Obezyaev, N.V. [Russian Corporation Metalkhim, Moscow (Russian Federation)

    1996-12-31

    The use of the enthalpy approach has been shown in this report on the example of analysis of experimental data on burning rate of magnesium/alkaline and alkaline/earth metal nitrate mixtures. For magnesium/sodium nitrate mixtures the equation has been obtained, which describes dependence of the burning rate on initial temperature T{sub O}, porosity {Pi}, magnesium particle size d{sub M}, nitrate particle size d{sub N} and magnesium content in the mixture X{sub M}. For magnesium/potassium nitrate, magnesium/Strontium nitrate and magnesium/barium nitrate mixtures, the equations have been obtained, which describes the dependence u(T{sub o}, {Pi}). (authors) 5 refs.

  10. HIDEF Igniter Technology Program. Phase I. Final Report. Appendix A. Polyhedral Boranes in Pyrotechnic Applications

    Science.gov (United States)

    1980-06-15

    Fluorine gas, diluted with 5-15% nitrogen, is bubbled into the aqueous solution until it is present in excess. An aqueous solution of Nt^ PFe is then added...stirred and aqueous te’ramethylammonium hydroxide is added until the color changes abruptly to a light hue. At this point an audition :.] 5-10 g. of

  11. Metal Residue Deposition from Military Pyrotechnic Devices and Field Sampling Guidance

    Science.gov (United States)

    2012-05-01

    Fahrenheit (F-32)/1.8 degrees Celsius feet 0.3048 meters hectares 1.0 E+04 square meters inches 0.0254 meters microns 1.0 E-06 meters miles (U.S...0.2 326,000 37 ND 3.3 5,230 10 451 42F 1,460 17.4 583 ND 1,280 0.4 8.4 0.4 35 683 28 43,800 82 ND 4.3 3,030 0.9 1,350 45F 1,090 24.3 345 ND 316 0.3...1.6 2,600 5,230 326,000 37 ND NA 3.3 0.2 NA 10 451 CRREL 29F 10,942 ND 17,077 NA 5,528 ND ND 9 ND 298 9,192 9,776 5.6 NA 24,840 ND ND ND ND 15,321

  12. 77 FR 38378 - Hours of Service (HOS) of Drivers; Revision of Exemption; American Pyrotechnics Association (APA)

    Science.gov (United States)

    2012-06-27

    ... with all other applicable provisions of the Federal Motor Carrier Safety Regulations (49 CFR 390- 399....... 087079 11. Walt Disney Parks & Resorts, USA 5700 Maple Road Lake Buena Vista, FL 32830.. 148477 Inc. 12...

  13. Proceedings of the International Pyrotechnics Seminar (7th) Held at Vail, Colorado, 14-18 July 1980. Volume 1

    Science.gov (United States)

    1980-07-18

    1430, 1040 cm-1 (also 1295 and 1170 cm- 1 but not apparent due to CIO) TLC Rf .75..79 TA ,nm I, (moles/ý)- 1 I2 1 334 60 T’Ig Ag 464 60 326 15 The N... INK e 11443 . (660) 1 54_ Dryng 3.32 x 10-6 6.74 x 0൓ 1.43 X lo" .0 CS -----.- xn-- g 7.0 4 x 10 ś 1. 7 X 10 .8 1.4 " M 10 - s p mrcerhrc 290 M_

  14. High-Nitrogen-Based Pyrotechnics: Development of Perchlorate-Free Green-Light Illuminants for Military and Civilian Applications

    Science.gov (United States)

    2012-01-01

    become a concern of the US Department of Defense is the “perchlorate issue.” Potassium perchlorate and ammonium perchlorate oxidizers, once believed to be...amongst ideal oxi- dizers owing to their inherent reactivity, stability , low cost, low hygroscopicity, and large positive oxygen balances, have now...groundwater, thus posing a po- tential risk to drinking supplies. Perchlorates are believed to be teratogenic and the anion is believed to compete with iodide

  15. Proceedings of the International Pyrotechnics Seminar (6th) Held at Estes Park, Colorado, 17-21 July 1978

    Science.gov (United States)

    1978-06-01

    Soc. Am. 50, 1286 (December 1960). 1 F. D. Findlay and J. C, Polanyi , "The Hydrogen-Chlorine System in the MM N Pressure Range. I. Energy...whole operation of assembly is frequently extremely complicated and highly labour intensive, thus giving rise to high production costs which are r,foected...time and labour content. The firing operation of many of the distress s~gnals currently available in the U.K. leaves much to be desired. Frequently end

  16. Acute and Subacute Inhalation Toxicity Study in Rats Exposed to Pyrotechnically-Disseminated M18 Red Smoke

    Science.gov (United States)

    2017-04-12

    left side of abdomen & left hind limb 14 23 Alopecia - left side of abdomen , urogenital area & left hind limb 25 31 598 Red-stained fur on head 1 10...pits 0/6 0/6 1.000 No Significant Difference Infiltrate, lymphoplasmacytic, fat 0/6 1/6 1.000 No Significant Difference Salivary gland, submand...lymphocytic, epicardial fat 0/6 0/6 1.000 No Significant Difference 31 Adrenal gland Ectopic medullary cells 0/6 0/6 1.000 No Significant

  17. 烟火药燃烧转爆轰研究%Study of the DDT Process of Pyrotechnic Compositions

    Institute of Scientific and Technical Information of China (English)

    郝新红; 汪佩兰

    1999-01-01

    设计了一套简单而有效的烟火药DDT定量实验测试装置,测试了几种常规烟火药配方的DDT过程,结合REAL软件所计算的各配方热力学参数,分析了常规烟火药发生DDT的难易程度及主要影响因素,得出了常规烟火药发生DDT的规律.

  18. The Shock and Vibration Bulletin. Part 1. Welcome, Keynote Address, Invited Papers, Pyrotechnic Shock, and Shock Testing and Analysis

    Science.gov (United States)

    1983-05-01

    URVIVABILITY;. .. ......... ..... 2 .. ~Henry CI’usey, Rudolph ie Voin and J. Gordan Showalter, Sock Vi b ration Information Center,... 2 Naval Research...Consequently, vibratory loads analyses are forced to rely on 3000 empiricisms and appioximations. As a result, rotor loads predictions have not been very...have not been very effective ELI O1 in the design process. Again, these deficiencies have led to Fig. 13. - Fixed wing vs helicopter actuator failure

  19. Acute and Four-Week Inhalation Toxicity Study in Rats Exposed to Pyrotechnically Disseminated Black Smoke (PVA)

    Science.gov (United States)

    2014-06-01

    slightly more rostral to the level of the incisive papilla. Additional findings, within this study (e.g., metaplasia / dysplasia , hyperplasia of the...6 4 6 Minimal 1 Mild 1 Moderate 1 Severe Note: Greatest severity lesion recorded in table per section. Only hyperplasia, dysplasia /metaplasia or loss...a dose relationship, unrelated to test material exposure. Ultimobranchial cysts are congenital anomalies of the thyroid gland. These cysts are found

  20. Proceedings of International Pyrotechnics Seminar (4th), Held at Steamboat Village, Colorado, 22-26 July 1974

    Science.gov (United States)

    1974-06-17

    producing smoke, scmeti-nes purple- colorad which generally preceded ignition in t-ests where ignition resulced. 17-22 Table X INTERMEDIATE-SCALE (100-GM...would minimize the risk of starting grass or bush fires. Furthermore it was mandatory that the mix remain pour-castable for at least one hour after...for search and rescue markers that will be used over a variety of terrain 4 (i.e. dry bush, prairie grass end tundra). Temperatures as low as 325C (625

  1. A Study of the Radiant Ignition of a Range of Pyrotechnic Materials Using a CO2 Laser

    Science.gov (United States)

    1990-08-01

    tracers. Journal of Ballistics, 3 (4), 627. 10. Gebhard, T. (1988). Naval Ordnance Station, Indian Head, USA, private communicatin . 11. Culling, M.P...a C02 laser AUTHOR(S) CORPORATE AUTHOR DSTO Materials Research Laboratory L de Yong, B. Park and F. Valenta PO Box 50 Ascot Vale Victoria 3032 REPORT

  2. Problem Definition Studies on Potential Environmental Pollutants. V. Physical, Chemical, Toxicological, and Biological Properties of Seven Chemicals used in Pyrotechnic Compositions

    Science.gov (United States)

    1979-10-01

    60. Olsen, O.W., "Hexachlorcethane-Bentonite Suspension for Controlling the Common Liver Fluke, Fasciola hepatica , in Cattle in the Gulf Coast Region...nfested 7 by parasi~tir worms, in particular the Liver fl~, Fasciola hspatca an-d the stomach worm. Ham-onchus :ontnr-11m.6 In .tcstude bY mack;: r a...subcutan.e- ’)IQy imp]lanted adult Fasciola in ia-as. 78Hexachloroethane is ineffective .’gtn1st the smiall tiukeworme, Dicrocoeliose ovinle, and some other

  3. Development and Performance of the W/Sb2O3/KIO4/Lubricant Pyrotechnic Delay in the US Army Hand-Held Signal

    Science.gov (United States)

    2013-01-01

    were obtained from Sigma Aldrich. Stearic acid (19–5010) was obtained from Hummel Croton. A Malvern Morphologi G3S optical micros- copy particle size...35 – 40 Full Paper J. C. Poret, A. P. Shaw, C. M. Csernica, K. D. Oyler, D. P. Estes equipped with a secondary electron imaging ( SEI ) detector. The...an ongoing area of research in our laboratories. Symbols and Abbreviations HHS Hand-held signal SEM Scanning electron microscopy SEI Secondary

  4. Problem Definition Studies on Potential Environmental Pollutants. 6. Preliminary Assessment of Environmental Effects of Seven Substances Used in Pyrotechnic Compositions at Pine Bluff Arsenal

    Science.gov (United States)

    1979-11-01

    Dextrin Red -- 85 ...... 15 Yellowa 65 -- 35 --.... Greena 20 -- 10 70 .... Violet -- 20 -- -- 80 -- a. Mil.Spec. not given. TABLE 4. COMPOSITION OF...Potassium chlorate 2,234,000 22,300 Sulfur 893,000 8,900 Dextrin 151,000 1,500 Oil 18,000 180 Unknown 563,000 5,600 a. Calculations are based on pure...hazard; sulfur, essentially harmless in itself, slowly degrades chemically and biochemically to rontoxic products; dextrin (a starch derivative used in

  5. The Shock Vibration Bulletin. Part 1. Welcome, Keynote Address, Invited Papers, Nondevelopment Items Workshop, and Pyrotechnic Shock Workshop (From 56th Shock and Vibration Symposium)

    Science.gov (United States)

    1987-01-01

    illustrated in figure 1. The details of each step in provided by sales brochures is not what is needed. the flow chart are discussed in the following...34 NMERI WA3-18, May 1986. 3. W.R. Edgel and D.F. Sallee, "Power System Report for MYST-III (Third Multi-Unit Structure Test, Full-Size Cylindrical...Size Rectangular Structure), Events A-F," AFWL-TR, June 1q86. 5. D. Huot and W.R. Edgel , "Generator and Cable Survivability Tests: Conventional High

  6. Applications of High-Nitrogen Energetics in Pyrotechnics: Development of Perchlorate-Free Red Star M126A1 Hand-Held Signal Formulations with Superior Luminous Intensities and Burn Times

    Science.gov (United States)

    2011-03-25

    modeling is not a useful tool in determining the toxic nature of high nitrogen salts such as bis-tetrazolate 1. Therefore, no data on the toxicology of...nitrogen compounds by per- forming Ames mutagenicity tests and in vitro tests to measure acute toxicity. The use of high-nitrogen compounds for energetic... PVC were purchased from Hummel Croton. Laminac 4116 was purchased from Ash- land Chemical, Inc. Lupersol was purchased from Norac. Epon 813 was

  7. 十八胺原位包覆灭火气溶胶固体颗粒研究%Study on the In-situ Coating for the Pyrotechnically Generating Aerosol Fire Extinguishing Agent with Octadecyl Amine

    Institute of Scientific and Technical Information of China (English)

    陈智慧; 杨荣杰

    2005-01-01

    针对固体微粒气溶胶灭火剂对金属材料表面产生腐蚀性的问题,在气溶胶发生装置的释放通路中,通过汽化的十八胺对气溶胶固体颗粒进行原位表面包覆,采用扫描电镜和光电子能谱表征了包覆效果,对包覆前后气溶胶粒子的吸湿性和腐蚀性进行测试,结果表明有机包覆层的存在有效抑制了气溶胶颗粒的吸湿,达到了降低灭火气溶胶对铜片腐蚀性的目的.

  8. Performance and Aging of Mn/MnO2 as an Environmentally Friendly Energetic Time Delay Composition

    Science.gov (United States)

    2014-04-16

    toxic delay composition with good longevity. KEYWORDS: Pyrotechnic, Environmentally benign, Microchannel combustion, Pyrotechnic time delays, Manganese ... Manganese dioxide, Aging ■ INTRODUCTION Combustion of pyrotechnic time delay compositions are engineered to provide a repeatable time increment in...products can contain toxic chemicals such as BaCrO4. 4 X-ray diffraction analysis of the combustion products for the Mn/MnO2 system is shown in Figure 6

  9. Methodological approach for the assessment of acute inhalation toxicity of smoke ammunitions by in silico, in vitro and in vivo modelling

    NARCIS (Netherlands)

    Pradines, E.; Glacial, F.; Medus, D.; Stiee, E.; Fedou, F.; Hulst, M. van; Klerk, W.P.C. de

    2015-01-01

    Assessing the toxicity of military pyrotechnic products is a growing challenge in the current context of Human and Environment protection. The Allied Ordnance Publication (AOP) 45 and the Standard NATO Agreement (STANAG) 4588 “Guidelines for toxicity testing of smokes, obscurants and pyrotechnics

  10. Methodological approach for the assessment of acute inhalation toxicity of smoke ammunitions by in silico, in vitro and in vivo modelling

    NARCIS (Netherlands)

    Pradines, E.; Glacial, F.; Medus, D.; Stiee, E.; Fedou, F.; Hulst, M. van; Klerk, W.P.C. de

    2015-01-01

    Assessing the toxicity of military pyrotechnic products is a growing challenge in the current context of Human and Environment protection. The Allied Ordnance Publication (AOP) 45 and the Standard NATO Agreement (STANAG) 4588 “Guidelines for toxicity testing of smokes, obscurants and pyrotechnics mi

  11. A Bird Strike Handbook for Base-Level Managers

    Science.gov (United States)

    1984-09-01

    Pyrotechnics are some of the most effective bird control devices available. In spite of the diversity of pyrotechnic materials presently on the market (Dofusco...the market , the Air Force authorizes the pyrotechnic devices listed in Table 1. These devices can be procured from the respective Table of Allowances... Birdwatch Condition and replace with "on CCTV". JY. Page R-1, para2b(1). Line 2, change sighting surveys to R-2-2, R-3-2, and R-4-2. Delete R-2-1, R-3-1

  12. Anions in pre- and post-blast consumer fireworks by capillary electrophoresis.

    Science.gov (United States)

    Martín-Alberca, Carlos; de la Ossa, Ma Ángeles Fernández; Sáiz, Jorge; Ferrando, José Luis; García-Ruiz, Carmen

    2014-11-01

    Consumer fireworks are a heterogeneous group of pyrotechnic items widely used by citizens around the world. There are a wide number of forensic cases related to consumer fireworks that require knowing their chemical composition and variety of designs to conduct accurate and comprehensive analyses. In this research paper, a selection of six consumer firework types (firecracker, rocket, pyrotechnic fountain, pyrotechnic battery, sparkler, and smoke bomb) is physically described and their anionic compositions are determined. Preblast (fuses and charges) samples and postblast residues of the different consumer fireworks were analyzed by CE in order to determine their anionic composition. Different types of chemical compositions in fuses and pyrotechnic charges were determined, although they were not related to any type of item. Additionally, several discrepancies were found between the analytical results and the declared item compositions. Regarding postblast residues, a huge variety of anions were identified and attributed to some unconsumed starting materials and different chemical reactions occurring during combustion.

  13. Demonstration of the B4C/NaIO4/PTFE Delay in the U.S. Army Hand-Held Signal

    Science.gov (United States)

    2015-05-20

    KEYWORDS: Pyrotechnic delay, Boron carbide, Periodate, Hand-held signal, Sustainable chemistry ■ INTRODUCTION Pyrotechnic delays provide controlled...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Armament Research, Development and Engineering Center, U.S. Army RDECOM-ARDEC...Picatinny Arsenal, New Jersey 07806, United States 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10

  14. Combustion confinée d'explosif condensé pour l'accélaration de projectile. Application en pyrotechnie spatiale

    OpenAIRE

    Nicoloso, Julien

    2014-01-01

    Opto-pyrotechnics (ignition of detonation by optical systems) is one of the most promising innovations to improve reliability, safety and performances on future space launchers. This thesis aims at studying and modeling the first stage from a two-stage opto-pyrotechnic detonator that consists of a condensed explosive confined in a closed combustion chamber, in which the beginning of a Deflagration-to-Detonation Transition occurs. The laser ignition of the explosive and its isochoric combustio...

  15. Nondestructive evaluation of pyroshock propagation using hydrocodes

    Science.gov (United States)

    Lee, Juho; Hwang, Dae-Hyeon; Jang, Jae-Kyeong; Lee, Jung-Ryul; Han, Jae-Hung

    2016-04-01

    Pyroshock or pyrotechnic shock generated by explosive events of pyrotechnic devices can induce fatal failures in electronic payloads. Therefore, understanding and estimation of pyroshock propagation through complex structures are necessary. However, an experimental approach using real pyrotechnic devices is quite burdensome because pyrotechnic devices can damage test structures and newly manufactured test structures are necessary for each experiment. Besides, pyrotechnic experiments are quite expensive, time-consuming, and dangerous. Consequently, nondestructive evaluation (NDE) of pyroshock propagation without using real pyrotechnic devices is necessary. In this study, nondestructive evaluation technique for pyroshock propagation estimation using hydrocodes is proposed. First, pyroshock propagation is numerically analyzed using AUTODYN, a commercial hydrocodes. Hydrocodes can handle stress wave propagation including elastic, plastic, and shock wave in the time domain. Test structures are modeled and pyroshock time history is applied to where the pyroshock propagation originates. Numerical NDE results of pyroshock propagation on test structures are analyzed in terms of acceleration time histories and acceleration shock response spectra (SRS) results. To verify the proposed numerical methodology, impact tests using airsoft gun are performed. The numerical analysis results for the impact tests are compared with experimental results and they show good agreements. The proposed numerical techniques enable us to nondestructively characterize pyroshock propagation.

  16. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oliver, Michael S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  17. Nanostructured Energetci Matreials with sol-gel Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Satcher, J; Simpson, R; Clapsaddle, B

    2003-11-18

    The utilization of nanomaterials in the synthesis and processing of energetic materials (i.e., pyrotechnics, explosives, and propellants) is a relatively new area of science and technology. Previous energetic nanomaterials have displayed new and potentially beneficial properties, relative to their conventional analogs. Unfortunately some of the energetic nanomaterials are difficult and or expensive to produce. At LLNL we are studying the application of sol-gel chemical methodology to the synthesis of energetic nanomaterials components and their formulation into energetic nanocomposites. Here sol-gel synthesis and formulation techniques are used to prepare Fe{sub 2}O{sub 3}/Al pyrotechnic nanocomposites. The preliminary characterization of their thermal properties and the degree of mixing between fuel and oxidizer phases is contrasted with that of a conventional pyrotechnic mixture.

  18. Analysis on shock attenuation in gap test configuration for characterizing energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohoon; Yoh, Jack J., E-mail: jjyoh@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of); Park, Jungsu [Agency for Defense Development, Daejeon 305-600 (Korea, Republic of)

    2016-04-14

    A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and the acceptor charges. Despite of its common use, a numerical study of such a pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of a high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a hybrid particle level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized cyclotrimethylene-trinitramine as the acceptor charge. The complex shock interaction, a critical gap thickness, an acoustic impedance, and go/no-go characteristics of the pyrotechnic system are quantitatively investigated.

  19. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    Science.gov (United States)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  20. Investigation of obturator and ignitor effects on low velocity starting of the ram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Knowlen, C.; Bundy, C.; Bruckner, A.P. [Washington Univ., Seattle, WA (United States). Aerospace and Energetics Research Program; Kruczynski, D. [Washington Univ., Seattle, WA (United States). Aerospace and Energetics Research Program; Utron Inc., Manassas, VA (United States)

    2000-11-01

    An experimental investigation of the effects of obturator geometry, propellant chemistry, and onboard pyrotechnic ignitor systems on the starting characteristics of the ram accelerator at low launch velocity has been conducted at the University of Washington 38-mm-bore facility. The ram accelerator was successfully started at entrance velocities as low as 760 m/s using stoichiometric methane/oxygen propellants with various levels of carbon dioxide dilution and obturator configurations at a fill pressure of 2.5 MPa. Experiments using an onboard pyrotechnic ignitor demonstrated that ignition of the propellant and starting of the ram accelerator could occur without the presence of the obturator-driven normal shock. (orig.)

  1. Normally-Closed Zero-Leak Valve with Magnetostrictive Actuator

    Science.gov (United States)

    Ramspacher, Daniel J. (Inventor); Richard, James A. (Inventor)

    2017-01-01

    A non-pyrotechnic, normally-closed, zero-leak valve is a replacement for the pyrovalve used for both in-space and launch vehicle applications. The valve utilizes a magnetostrictive alloy for actuation, rather than pyrotechnic charges. The alloy, such as Terfenol-D, experiences magnetostriction, i.e. a gross elongation, when exposed to a magnetic field. This elongation fractures a parent metal seal, allowing fluid flow through the valve. The required magnetic field is generated by redundant coils that are isolated from the working fluid.

  2. 46 CFR 160.066-5 - Design, construction, and manufacturing requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Design, construction, and manufacturing requirements...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Distress Signal for Boats, Red Aerial Pyrotechnic Flare § 160.066-5 Design, construction, and manufacturing requirements....

  3. Wind Tunnel Experiments of the Effect of Near-Wake Combustion on the Base Drag of Supersonic Projectiles

    Science.gov (United States)

    1976-02-01

    Report No. 2456, March 1975. 2^D# B003442L. J. J. Caven and T. Stevenson, "Pyroteohnios for Small Arms Ammu- 12nition, " Frankford Arsenal...March 1975. AD# B003442L. J. J. Caven and T. Stevenson, "Pyrotechnics for Small Arms Ammu- nition," Frankford Arsenal Report R-1968, July 1970. W

  4. Ignition, Combustion and Tuning of Nanocomposite Thermites

    Science.gov (United States)

    2010-01-01

    oxygen and nitrogen, the thermal conductivity as a function of temperature is given in Incropera and DeWitt144 up to 3000 K, and we extrapolate it...Meeting, 1998; 1998. 143. M. L. Hobbs; M. R. Baer; B. C. McGee, Propellants, Explosives, Pyrotechnics 1999, 24, (5), 269-279. 144. F. P. Incropera ; D

  5. Inspire Curiosity, Promote Understanding, Explode Soda

    Science.gov (United States)

    Eix, Sandra

    2012-10-01

    Pyrotechnical demonstration shows, summer camps,and larger-than-life exhibits. Is this a theme park or an educational institution? We'll explore what informal science education has to offer, and ponder why and how a science centre does what it does best. Be forewarned: this presentation may involve audience participation and rubber chickens.

  6. Development and Optimization of Flow-Cast Magnesium Flare Compositions

    Science.gov (United States)

    1972-06-01

    unsaturated olefins. Resins were studied of ethylene glycol (EG) (52 percent oxgyen) and MA (49 percent); hydroxy- ethyl acrylate...CUttification LINK A I Illumination flares Flares Magnesium Sodium Nitrate Binders Epoxy resins Castable pyrotechnics Flow casting Polyester Vinyl ester UNCLASSTFTFn Security Classification ^^^. ...Lane. Major contributions were made by Erwin M. Jankowiak and Keith Roberson. This technical report has been reviewed and is approved.

  7. Environmental biotechnology and microbiology of (per)chlorate reducing bacteria

    NARCIS (Netherlands)

    Mehboob, F.; Schraa, G.; Stams, A.J.M.

    2011-01-01

    Perchlorates are the salts derived from perchloric acid (HClO4). They occur both naturally and through manufacturing. They have been used as a medicine for more than 50 years to treat thyroid gland disorders and are used extensively within the pyrotechnics industry, and ammonium perchlorate is also

  8. 75 FR 79085 - Notice and Request for Comments on the Clarification of the Fireworks Approvals Policy

    Science.gov (United States)

    2010-12-17

    ... logistics supply chain comprised of mostly foreign fireworks manufacturers and domestic importers, retailers... pyrotechnic industry regardless of their actual position in the supply chain. It is unclear as to what was the... change to the Federal Docket Management System (FDMS), including any personal information. Docket:...

  9. 76 FR 38053 - Clarification of the Fireworks Approvals Policy

    Science.gov (United States)

    2011-06-29

    .... Background The pyrotechnic industry is a global logistics supply chain comprised of mostly foreign fireworks.... All participants throughout the supply chain will be held accountable for their regulatory... document. One commenter requests PHMSA consider waste management of used or defective fireworks...

  10. Chemistry of high-energy materials. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Munich Univ. (Germany). Chair of Inorganic Chemistry; Maryland Univ., College Park, MD (United States). Center of Energetic Concepts Development (CECD)

    2012-07-01

    This graduate-level textbook treats the basic chemistry of high energy materials - primary and secondary explosives, propellants, rocket fuel and pyrotechnics - and provides a review of new research developments. Applications in both military and civil fields are discussed. The book also offers new insights into ''green'' chemistry requirements and strategies for military applications.

  11. Environmental biotechnology and microbiology of (per)chlorate reducing bacteria

    NARCIS (Netherlands)

    Mehboob, F.; Schraa, G.; Stams, A.J.M.

    2011-01-01

    Perchlorates are the salts derived from perchloric acid (HClO4). They occur both naturally and through manufacturing. They have been used as a medicine for more than 50 years to treat thyroid gland disorders and are used extensively within the pyrotechnics industry, and ammonium perchlorate is also

  12. 77 FR 429 - Clarification and Further Guidance on the Fireworks Approvals Policy

    Science.gov (United States)

    2012-01-05

    ... specified in 49 CFR 173.56(j) and the American Pyrotechnic Association (APA) Standard 87-1. PHMSA... device for which the approval is requested conforms to the APA Standard 87-1, and the descriptions and... requested conforms to the APA Standard 87-1, and the descriptions and technical information contained in...

  13. 76 FR 16852 - Hours of Service (HOS) of Drivers; Assessing the Safety Impact of the Exemption From the 14-Hour...

    Science.gov (United States)

    2011-03-25

    ... Pyrotechnics Association (APA) an exemption from the current HOS prohibition against driving a commercial motor...: Thomas Yager, FMCSA Driver and Carrier Operations Division; Office of Bus and Truck Standards and... 381.300(b)). APA's Independence Day Operations and the Exemption from 49 CFR 395.3(a)(2) APA is...

  14. Thermal decomposition of phase-stabilised ammonium nitrate (PSAM), HTPB based propellants. The effect of iron(III)oxide burning-rate catalyst

    NARCIS (Netherlands)

    Carvalheira, P.; Gadiot, G.M.H.J.L.; Klerk, W.P.C. de

    1995-01-01

    Phase-stabilised ammonium nitrate (PSAN) and hydroxyl-terminated polybutadiene (HTPB) are the main ingredients of propellants used with success in some pyrotechnic igniter components of the VULCAIN liquid rocket engine for the ARIANE 5. Small amounts of selected additives play an important role in s

  15. EG and G Mound Applied Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sizemore, M.S. [EG and G MAT, Miamisburg, OH (United States)

    1990-11-01

    This paper reports on the robotics applications offered by EG and G Mound Applied Technologies. The robotics/automations applications discussed include explosive remote disassembly workcell, plasma spraying robot workcell, robotic assembly of ceramic headers, pyrotechnic automation workcell, general automation projects and robotic/vision inventory. This report consists of overheads only.

  16. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE BGU-24

    Science.gov (United States)

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyrotechnic (PEP) materials of interest to the U.S. Department of Defense (DoD)...

  17. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE GBU-24

    Science.gov (United States)

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyro-technic (PEP) materials of interest to the U.S. Department of Defense (DoD...

  18. 14 CFR 121.353 - Emergency equipment for operations over uninhabited terrain areas: Flag, supplemental, and...

    Science.gov (United States)

    2010-01-01

    ... and rescue in case of an emergency: (a) Suitable pyrotechnic signaling devices. (b) An approved... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment for operations over... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR...

  19. Treatment of Landfill Leachate at Army Facilities.

    Science.gov (United States)

    1983-08-01

    e.g., training residues; propellant, explosive , or pyrotechnic residues; and abandoned transformers. Such materials may be mixed with the general...Schanche, L. J. Benson, M. J. Staub , and M. A. Kamiya, Charateristics, Control, and Treatment of Leachate at Military Installations, Interim Report N-97

  20. 16 CFR 1507.6 - Burnout and blowout.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burnout and blowout. 1507.6 Section 1507.6... FIREWORKS DEVICES § 1507.6 Burnout and blowout. The pyrotechnic chamber in fireworks devices shall be constructed in a manner to allow functioning in a normal manner without burnout or blowout....

  1. An intriguing oscillating combustion phenomenon

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobes are pyrotechnic compositions that emit bright flashes of white or colored light at regular time intervals. The strobe effect has applications in various fields, most notably in the fireworks industry and in the military area (signaling – missile decoys – crowd control). However, the chemical

  2. Five Recent Books on Super-fine Powders

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Professor Fengsheng Li of the Nanjing University of Science and Technology has been working in the field of superfine powders for many years, and at the turn of the century he started to write a series of monographs, now five, on the technology of superfine powders including their preparation, measurement and application, and ranging from catalysts through medicines and cosmetics to pyrotechnics.

  3. Suitability of Tophet C-Alloy 52/Kovar components to hydrogen environments

    Energy Technology Data Exchange (ETDEWEB)

    Gebhart, J.M.; Kelly, M.D.

    1976-06-22

    The suitability of Tophet C-Alloy 52/Kovar weldments to hydrogen embrittlement were investigated because of their potential as candidate materials in fabrication of minaturized initiators for pyrotechnics. Cathodic charged samples were statically loaded for extended periods of time resulting in no load failures and in ductile fracture surfaces indicating resistance to hydrogen embrittlement. 20 figures.

  4. 33 CFR 100.701 - Special Local Regulations; Marine Events in the Seventh Coast Guard District

    Science.gov (United States)

    2010-07-01

    ... offshore from Virginia Key, South of Seaquarium, Miami, Florida. Holiday Boat Parade of the Palm Beaches... South Pyrotechnics Atlantic Ocean, 1,000 ft offshore from Hollywood, Florida; All waters from the... nautical mile south of Rickenbacker Causeway, Miami, Florida. Deerfield Beach Super Boat...

  5. PERSPECTIVE: Fireworks and radioactivity

    Science.gov (United States)

    Breitenecker, Katharina

    2009-09-01

    Katharina Breitenecker Fireworks, the one and only amongst all other pyrotechnic applications, have pleased the hearts and minds of billions of people all over the world for almost 1000 years. Even though pyrotechnics were originally developed in order to fulfil the needs of military purposes, fireworks began to form a unique part of the cultural heritage of many countries, presumably starting in ancient China during the Song Dynasty (960-1280 AD). Festivities like New Year's Eve, national holidays or activities like music festivals and parish fairs are crowned by a firework display. Fireworks have traditionally been associated with Independence Day celebrations, like 4 July in the United States, Guy Fawkes' Night (5 November) in Britain, or Bastille Day (14 July) in France. Much of Chinese culture is associated with the use of firecrackers to celebrate the New Year and other important occasions. The fascination of fireworks and firecrackers is due to the brilliant colours and booming noises, which have a universal appeal to our basic senses [1]. The basic components of any traditional civil firework is black powder, a mixture of about 75% potassium nitrate, 15% charcoal, and about 10% sulfur [2]. Without the addition of a colouring agent, the fuel would provide an almost white light. Therefore, several metal salts can be added to cause colourful luminescence upon combustion. In general barium is used to obtain a green coloured flame, strontium for red, copper for blue and sodium for yellow [2, 3]. The use of pyrotechnics has raised issues pertaining to health concerns. The health aspects are not only restricted to injuries by accidental ignition of certain devices. Moreover, several recent works identified fireworks and pyrotechnics as causing environmental pollution, which might result in a potential hazard concerning health aspects. The fundamental problem in this respect is that all chemicals used are dispersed in the environment by combustion. This includes

  6. Coating of magnesium powder by rapid expansion of supercritical solution method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hai

    2006-01-01

    In order to solve the reserve stability problem of pyrotechnic explosives containing magnesium powder,a coating method named rapid expansion of supercritical fluid is studied. Continuous coating film of paraffin can be formed on the surface of magnesium powder when paraffin content is about 1.5%. Humidity resistance property of the coated magnesium is promoted obviously. The flame sensitivity of the coated magnesium is 4.8% lower than that of the original magnesium powder after mixed with oxidant. The burning velocity of the coated magnesium is 4.7% lower than that of the contrastive sample. This method may be used to enhance the reserve stability problem of pyrotechnic explosives and the safety of magnesium powder modifying process.

  7. Neutron radiography in Indian space programme

    CERN Document Server

    Viswanathan, K

    1999-01-01

    Pyrotechnic devices are indispensable in any space programme to perform such critical operations as ignition, stage separation, solar panel deployment, etc. The nature of design and configuration of different types of pyrotechnic devices, and the type of materials that are put in their construction make the inspection of them with thermal neutrons more favourable than any other non destructive testing methods. Although many types of neutron sources are available for use, generally the radiographic quality/exposure duration and cost of source run in opposite directions even after four decades of research and development. But in the area of space activity, by suitably combining the X-ray and neutron radiographic requirements, the inspection of the components can be made economically viable. This is demonstrated in the Indian space programme by establishing a 15 MeV linear accelerator based neutron generator facility to inspect medium to giant solid propellant boosters by X-ray inspection and all types of critic...

  8. Development of a Numerical Model for an Expanding Tube with Linear Explosive Using AUTODYN

    Directory of Open Access Journals (Sweden)

    Mijin Choi

    2014-01-01

    Full Text Available Pyrotechnic devices have been employed in satellite launch vehicle missions, generally for the separation of structural subsystems such as stage and satellite separation. Expanding tubes are linear explosives enclosed by an oval steel tube and have been widely used for pyrotechnic joint separation systems. A numerical model is proposed for the prediction of the proper load of an expanding tube using a nonlinear dynamic analysis code, AUTODYN 2D and 3D. To compute a proper core load, numerical models of the open-ended steel tube and mild detonating tube encasing a high explosive were developed and compared with experimental results. 2D and 3D computational results showed good correlation with ballistic test results. The model will provide more flexibility in expanding tube design, leading to economic benefits in the overall expanding tube development procedure.

  9. Long-life mission reliability for outer planet atmospheric entry probes

    Science.gov (United States)

    Mccall, M. T.; Rouch, L.; Maycock, J. N.

    1976-01-01

    The results of a literature analysis on the effects of prolonged exposure to deep space environment on the properties of outer planet atmospheric entry probe components are presented. Materials considered included elastomers and plastics, pyrotechnic devices, thermal control components, metal springs and electronic components. The rates of degradation of each component were determined and extrapolation techniques were used to predict the effects of exposure for up to eight years to deep space. Pyrotechnic devices were aged under accelerated conditions to an equivalent of eight years in space and functionally tested. Results of the literature analysis of the selected components and testing of the devices indicated that no severe degradation should be expected during an eight year space mission.

  10. Development of a Machine Vision Fire Detection System

    Science.gov (United States)

    1994-03-01

    Incandescent Lamps 1. Quartz Tungsten Halogen 2. Sealed Beam - Automotive : 3. Headlamp a. Spotlamp b. Signal c. Light Bar d. Rotating Lights 4. Flashlight a...and pyrotechnic materials fires/explosions. B. BACKGROUND A continuing goal of the Air Force is to advance the technology of fire protection by...as shape, spectral reflectance, and material . The use of physically motivated models for algorithm development provide several important advantages

  11. Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions

    Science.gov (United States)

    2015-04-17

    ignition and are safe to handle. KEYWORDS: Smoke, Obscurants, Pyrotechnics, Boron carbide, Sustainable chemistry ■ INTRODUCTION Visible obscuration...laced with soot and chlorinated organic compounds. Smoke grenades containing these “HC” compositions have been responsible for several smoke...Robert A. Gilbert, Jr. 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army

  12. Evaluating Air Force Expeditionary Nursing -- Are We Prepared?

    Science.gov (United States)

    2007-12-07

    hostile conditions, using hands-on, high stress, realistic environments that involve high fidelity mannequins and pyrotechnics. Bukowski also notes...Skills Training.76 For increased effectiveness, Bukowski recommends the integration of medical training with the brigade’s overall training plan prior...Ibid. 40 Ibid. 41 Ibid. 42 Ibid. 43 Col Alvarado interview. 44 Ibid. 45 Charles Thompson, Katherine Repko, and Nancy Staggerer, “A Delphi

  13. Analysis of reflected blast wave pressure profiles in a confined room

    OpenAIRE

    Sochet, Isabelle; Sauvan, Pierre-Emmanuel; Trelat, Sophie

    2012-01-01

    International audience; To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the...

  14. A Parametric Analysis of a Balloon Decoy as a Countermeasure against an Infrared-Guided Anti-Satellite Weapon in Geosynchronous Orbit

    Science.gov (United States)

    1984-12-01

    advisor, Maj. James J. Lange, for his patience, advice and encouragement throughout the period of research. Also, my thanks to Mr. Kit Dustin for his...19. Goede, Philip J. and Robert Naismith . Pyrotechnic Countermeasure Concept Study (U), Final Report, Atlantic Research Corporation, Alexandria, VA...ADC032456 (SECRET). 23. Herrick, Samuel. Astrodynamics, Volume 1. London: Van Nostrand Reinhold Company, 1971. 24. Hoffman, James W. and James R

  15. U. S. Army Land Warfare Laboratory. Volume II Appendix B. Task Sheets

    Science.gov (United States)

    1974-06-01

    69 Personnel Marker Grenade (RC) B-367 12-C-b9 Characterization of Effluvia From Cannabis B-368 01-C-70 Man-Portable Pyrotechnic Searchlight B-369 02...AUTHORIZED FUNDING: $99,656 TASK DURATION: 4 August 1970 to 29 June 1973 CONTRACTOR: Breed Corporation DESCRIPTION AND RESULTS: The Pursuit Deterring...could commence 90 days from award of contract. T B-368 TASK NUMBER: 12-C-69 TITLE: Characterization of Effluvia from Cannabis AUTHORIZED FUNDING

  16. The Shock and Vibration Digest. Volume 14, Number 9

    Science.gov (United States)

    1982-09-01

    Division of General Dynamics, San Diego, CA 3. Pershing li Pyrotechnic Shock Test and Test Simulation - M.E, HUGHES, Martin Marietta Corporation, Or...Degree of Freedom Systems - D.I.G. JONES, Air Force Wright Aeronauti- cal Laboratories, Wright Patterson AFB, OH and A. MUSZYNSKA, Bentiy Nevada ...Response of the Imperial County Services Building during the 1979 Imperial Valley Earthquake J.M. Pauschke Ph.D. Thesis, Stanford Univ., 222 pp (1982

  17. Promising Properties and System Demonstration of an Environmentally Benign Yellow Smoke Formulation for Hand-Held Signals

    Science.gov (United States)

    2014-04-18

    Pyrotechnics, Formulation, System engineering , Solvent Yellow 33, Colored smoke, Product lifecycle management ■ INTRODUCTION In recent years, there...4(OH)2·4H2O, endothermic coolant). It is particularly noteworthy that this formulation does not specify a discrete binder and is composed of all...colored). ACS Sustainable Chemistry & Engineering Research Article dx.doi.org/10.1021/sc500195e | ACS Sustainable Chem. Eng. 2014, 2, 1325−13301326 The

  18. Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades

    Science.gov (United States)

    2014-07-13

    effective but inconvenient titania TiO2 bursting dispersal low efficiency, short duration CA, TA trans-cinnamic acid, terephthalic acid f...burning” configuration which consisted of a solid pyrotechnic pellet that burned from one end to the other, emitting smoke through vent holes on...variability between grenades of the same type was generally low. Average linear burning rates (cm/s) were calculated by dividing the composition pellet

  19. Chemical equilibrium modeling of detonation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Laurence E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bastea, Sorin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-05-19

    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Furthermore the history of HE materials is long, their condensed-phase chemical properties are poorly understood.

  20. Under-Body Blast Mitigation: Stand-Alone Seat Safety Activation System

    Science.gov (United States)

    2014-04-01

    INTRODUCTION The challenge of protecting occupants during an underbody blast is being able to sense and activate systems (such as pyrotechnic...As such Constant-Flux Magnetostrictive Sensors shall be evaluated in a self-contained environment to provide the output during these events. By...Constant-Flux Magnetostrictive Sensors shall be evaluated in a self-contained environment to provide the output during these events. By activating the

  1. Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 6

    Science.gov (United States)

    2006-11-01

    RDX. Compounds in the “other” category include derivatives and/or components of propellants and of waxes used in inert rounds. A significant decrease...hours. All extracts were filtered by passing each through a Millex-FH PTFE 0.45 µm syringe filter (Millipore Corp.). For GC-ECD analysis, this extract...include propellants, pyrotechnics, waxes and binders, smokes and obscur- ants, SVOCs, PAHs, PCNs, and Halowax fillers used to simulate the mass of HE

  2. Final Environmental Assessment for Fireworks Display and Cleanup for the Luke Air Force Base, Arizona, Fourth of July Celebrations

    Science.gov (United States)

    2015-04-21

    fireworks for recreational purposes or pyrotechnics for musical or cinematic/theatrical functions." Other Regulatory Requirements The EA...would be projected from the stage that is erected at Fowler Park as the venue for live music that occurs as part of the Freedom Fest celebration...for irrigation requirements. The greatest declines occurred west, north, and south of Luke AFB. A large area of depression has existed southwest of

  3. Investigation and Site Restoration Following a Major Accident Involving Hazard Classification 1.2 Ammunition

    Science.gov (United States)

    2010-07-01

    Magnesium-Strontium Nitrate Pyrotechnic Composition Using Isothermal Microcalorimetry and Thermal Analysis Techniques, Thermochimica Acta , 417, 233...Analysis Techniques Thermochimica Acta 426, 115-121, February 2005. 10. I M Tuukkanen, E L Charsley, S J Goodall, P G Laye, J J Rooney, T T Griffiths and H...Microcalorimetry and Thermal Analysis Techniques Thermochimica Acta , 443/1 116-121, April 2006. 11. I M Tuukkanen, E L Charsley, P G Laye, J J

  4. Jam-Resistant Cutters For Emergency Separation

    Science.gov (United States)

    Ordonez, Arturo C.; Yee, Ronald N.

    1990-01-01

    Pyrotechnic emergency-separation system includes shaped explosive charges that sever pair of hinges. System ensures reliable opening of escape hatch. Two pairs of cutters provided for each hinge so if one pair of cutters fails, other completes job. Pressure of explosions vented to prevent charge holders from fragmenting and forming sharp edges around open hatch. Exit slide deployed without tearing. Before detonation L-shaped retainers bear on hinge. After denonation, retainers fold outward to facilitate egress of severed hinges.

  5. Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry (Briefing Charts)

    Science.gov (United States)

    2015-06-28

    HMX RDX  Recent Works  See Geith et al...Propellants, Explosives, Pyrotechnics, 29, 3 (2004)  ∆Hcomb(DNB) = (5195 ± 300) kJ kg-1 (bomb calorimetry and MP2/cc-pVTZ ∆Hf) cf HMX 9435 & RDX 9560 kJ...kg-1  Vd = 8660 ms-1, cf HMX 9100 & RDX 8750 ms-1  See Geith et al., Combust and Flame, 139, 358 (2004)  Recent synthesis (known since 1898 by

  6. Nanocarbon materials obtained of coniferous trees in the composition of black powder

    OpenAIRE

    2012-01-01

    Obtained black powders from coniferous wood. The carbon content of up to 90% can be used in warfare, pyrotechnics and industries. In the Republic of Kazakhstan does not produce gunpowder. In the energy-intensive materials laboratory, developed industrial black powders (ordinary), composed of components produced in the republic of Kazakhstan. Sulfur, activated carbon, based on apricot seeds and rice husks, softwood sawdust, which have lower costs than their foreign counterparts.

  7. Neutralising ordnance with non-extending elements

    Directory of Open Access Journals (Sweden)

    Alexander I. Golodyaev

    2014-04-01

    Full Text Available The method of neutralising ordnance by rinsing explosive materials with a solution enables significant cost saving while reducing the risk pyrotechnic personnel is exposed to, especially during ammunition transport to recycling sites.  Costs for necessary special equipment are minimal. The technology is easy to be automated using an electronic and remotely controlled drilling process which reduces the risk of explosion to the minimum. This demining method will prove effective especially for operations against guerrilla mine warfare.

  8. The Legacy of Manfred Held with Critique

    Science.gov (United States)

    2011-08-01

    present over the years. He was also a member of the editorial board of the Propellants , Explosives, Pyrotechnics journal, of the Chinese journal of... propellants . For optimum use, explosives have to possess some specific attributes. They have to be economical to produce, to have a high energy gain, to be...Bonded explosive made of 94% HMX (a nitroamine high explosive), 3% Nitrocellulose and 3% CEF widely used as initiator in nuclear weapons • Cast TNT

  9. Civil Disturbance Countermeasures -- Chemical

    Science.gov (United States)

    1983-06-01

    96.5 0 C. CS has a pungent pepper-like odor that is immediately detectable by the senses. It can be disseminated as a smoke or mist from pyrotechnic...tears; coughing, difficulty in breating, and chest tightness; involuntary closing of the eyes; stinging sensation of L moist skin; runny nose; and... sensation and tearing of the eyes and also irritation of the nose and throat. The respiratory effects disappear within a few minutes after the

  10. Nanocarbon materials obtained of coniferous trees in the composition of black powder

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov

    2012-03-01

    Full Text Available Obtained black powders from coniferous wood. The carbon content of up to 90% can be used in warfare, pyrotechnics and industries. In the Republic of Kazakhstan does not produce gunpowder. In the energy-intensive materials laboratory, developed industrial black powders (ordinary, composed of components produced in the republic of Kazakhstan. Sulfur, activated carbon, based on apricot seeds and rice husks, softwood sawdust, which have lower costs than their foreign counterparts.

  11. Genesis of Infrared Decoy Flares: The Early Years from 1950 into the 1970s. First Edition

    Science.gov (United States)

    2009-01-26

    magnesium, brass, Lucite, Teflon®, and Micarta. Mr. Russell N. Skeeters described ordnance fixes for HERO, just 3-years after the USS Kearsarge CV33...the new Pyrotechnic plant was built at NAD Crane. Mr. William Russell Morecock, aka Russ, Mr. Jim Palladino and a few others came from Baldwin to run...component of the heat paper. It required very low humidity during processing. A Parr Bomb calorimetry room was set up to do the heat paper

  12. Development of a Low Strain-Rate Gun Propellant Bed Compression Test and its Use in Evaluating Mechanical Response

    Science.gov (United States)

    2016-09-01

    density, relative vivacity (following burning of crushed and reference samples) and stress relaxation . Artificial ageing programs were also...of crushed samples fired in a closed vessel; and computation of time-temperature shift factors derived from stress relaxation measurements...Pyrotechnics Group since 2011 and has worked on a breadth of S&T activities in each of the gun, rocket and explosives domains

  13. Environmentally Benign Energetic Time Delay Compositions: Alternatives for the U.S. Army Hand-Held Signal

    Science.gov (United States)

    2014-07-13

    2014, pp 305-314 305 Environmentally Benign Energetic Time Delay Compositions: Alternatives for the U.S. Army Hand- Held Signal Jay C. Poret...munitions such as hand grenades and signaling devices. For example, U.S. Army hand- held signals (HHS) use a pyrotechnic delay element to properly time...compositions for use in the U.S. Army hand- held signal. The large thermal mass of the HHS delay housing, combined with the long burning time requirement

  14. Vibration and acoustic testing of spacecraft

    Science.gov (United States)

    Scharton, T. D.

    2002-01-01

    Spacecraft are subjected to a variety of dynamics environments, which may include: quasi-static, vibration and acoustic loads at launch: pyrotechnic shocks generated by separation mechanisms; on orbit jitter; and sometimes, planetary landing loads. There is a trend in the aerospace industry to rely more on structural analyses and less on testing to simulate these environments, because dynamics testing of spacecraft is time consuming, risky and expensive.

  15. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  16. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts.

    Science.gov (United States)

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  17. Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bolintineanu, Dan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foiles, Stephen M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kay, Jeffrey J [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phinney, Leslie M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Piekos, Edward S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Specht, Paul Elliott [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wixom, Ryan R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Yarrington, Cole [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In

  18. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    Science.gov (United States)

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  19. Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B.; Battaile, Corbett Chandler.; Bolintineanu, Dan; Cooper, Marcia A.; Erikson, William W.; Foiles, Stephen M.; Kay, Jeffrey J [Sandia National Laboratories, Livermore, CA; Phinney, Leslie M.; Piekos, Edward S.; Specht, Paul Elliott; Wixom, Ryan R.; Yarrington, Cole

    2015-01-01

    This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performace variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling infor- mation transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were sucessfully advanced. As discussed in Chapter 2 a flash diffusivity capabil- ity for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes sucess for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in de- veloping and informing the kind of modeling approach oringinally envisioned (see Chapter 6

  20. Review on use of neutron radiography at Saclay Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, G. [Saclay Nuclear Research Centre DRE/SRO, Gif-sur-Yvette (France)

    1996-11-01

    The Commissariat a l`Energie Atomique (CEA) operates three research reactors at Saclay. Each of them is equipped with a Neutron Radiology facility. Osiris is involved in studies of nuclear fuel rod behaviour during accidental events. The underwater NR facility allows to obtain images of the rods before and after power ramp. The Orphee installation is devoted to industrial application of NR including non destructive testing and real time imaging. The main activity concerns the examination of the pyrotechnic devices of the Ariane launcher programmes. Other areas of interest are also described. (author) 2 figs., 1 tab., 5 refs.

  1. Gas Control and Thermal Modeling Methods for Pressed Pellet and Fast Rise Thin-Film Thermal Batteries

    Science.gov (United States)

    2015-09-01

    heat paper.3,4 Similar pyrotechnically heated mixtures of ~22/78 wt % Zr /BaCrO4 heat powder plus additional BaCrO4 powder should be effective in...fractions – Control – Full Run – Showing H2 – No Zr /BaCrO4 ..............................6 Fig. 2 Pressed pellet thermal battery operating gas atmosphere...fractions – Control – Full Run – Not Showing H2 – No Zr /BaCrO4 .......................6 Fig. 3 Pressed pellet thermal battery operating gas

  2. Waste explosives and other hazardous materials--hazard potential and remedial measures: an overview.

    Science.gov (United States)

    Pandey, R K; Asthana, S N; Bhattacharya, B; Tiwari, Ila; Ghole, V S

    2007-07-01

    A large amount of energetic materials including propellants, high explosives, pyrotechnics are subjected to disposal either due to expiry of their useful life or rejection in the manufacturing process. The environmental regulations do not allow the hazardous materials for open burning / detonation in view of the health hazard involved in these operations. The present paper describes the hazard potential of energetic materials and associated hazardous chemicals. It also deals with global technological status for remedial measures of hazardous chemicals along with their merits and demerits.

  3. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  4. Four-terminal electrical testing device. [initiator bridgewire resistance

    Science.gov (United States)

    Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, William C., III (Inventor)

    1987-01-01

    The invention relates to a four-terminal electrical connector device for testing and measuring unknown resistances of initiators used for starting pyrotechnic events aboard the space shuttle. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurements taken with the device. Separate and independent voltage sensing and current supply circuits each include a pair of socket contacts for mating engagement with the pins of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire of the initiator which is required to be between 0.95 and 1.15 ohms.

  5. Four-terminal electrical testing device

    Science.gov (United States)

    Robinson, Robert L.; Graves, Thomas J.; Hoffman, William C., III

    1987-04-01

    The invention relates to a four-terminal electrical connector device for testing and measuring unknown resistances of initiators used for starting pyrotechnic events aboard the space shuttle. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurements taken with the device. Separate and independent voltage sensing and current supply circuits each include a pair of socket contacts for mating engagement with the pins of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire of the initiator which is required to be between 0.95 and 1.15 ohms.

  6. Perchlorates as Powerful Catalysts in Many Important Organic Transformations

    Institute of Scientific and Technical Information of China (English)

    G. Bartoli; L. Sambri; M. Locatelli

    2005-01-01

    @@ 1Introduction For long times, metallic perchlorates have been considered dangerous compounds[1] in that they function as explosives and as incontrollable oxidizers. Therefore, the fear of the great hazard connected with their manufacture and uses had prevented an extensive use both in research laboratories and in industrial processes[2].However, recently it has been cleared that this bad reputation is due to the mistaken association of metallic perchlorates with the oxidizing potential of perchloric acid and the pyrotechnic performances of NH4ClO4.

  7. Munitions Constituents (MC) and the Military Munitions Response Program (MMRP)

    Science.gov (United States)

    2011-03-29

    caps. Lead Styphnate * Priming compositions, ignition of lead azide BUILDING STRONG® Tetracene Priming compositions, boosters Potassium...Cannon Propellants USACE Common Operations Reports, PEP Table 10 M2 M5 M26A1 Nitrocellulose 77.45% 81.95% 68.7% Nitroglycerin 19.50 15.00 25 Barium ...RSLs (residential soil) ► 2.3e+01 24 3/25/2011 9 Barium  Occurrence in munitions ► Present as barium nitrate in some pyrotechnics  Regulatory

  8. A summary of the mechanical design, testing and performance of the IMP-H and J attitude control systems

    Science.gov (United States)

    Metzger, J. R.

    1974-01-01

    The main aspects of the attitude control system used on both the IMP-H and J spacecraft are presented. The mechanical configuration is described. Information on all the specific components comprising the flight system is provided. The acceptance and qualification testing of both individual components and the installed system are summarized. Functional information regarding the operation and performance in relation to the orbiting spacecraft and its mission is included. Related topics which are discussed are: (1) safety requirements, (2) servicing procedures, (3) anomalous behavior, and (4) pyrotechnic devices.

  9. Effects of a Near Field Pyroshock on the Performance of a Nitramine Nitrocellulose Propellant

    Science.gov (United States)

    Baca, Arcenio

    2016-01-01

    The purpose of this study is to investigate the effects of a pyroshock environment on the performance characteristics of a propellant used in pyrotechnic devices such as guillotine cutters. A heritage pressure cartridge assembly which uses a nitramine nitrocellulose propellant with a known performance baseline will be exposed to a near field pyroshock event. The pressure cartridge will then be fired in an ambient closed bomb firing to collect pressure time history. This data will be compared to the baseline data to evaluate the effects of the shock on the performance of the propellant.

  10. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  11. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  12. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  13. Performance Evaluation and Experimental Studies on Metallised Gel Propellants

    Directory of Open Access Journals (Sweden)

    T. L. Varghese

    1999-01-01

    Full Text Available Metallised gel propellants offer higher specific impulse and volumetric loading, reduced vaporisation loss, spillage and slosh problems and easy storage in comparison to the conventional liquid propellants. Theoretical performance analysis of gel propellant containing Al in unsymmetrical dimethyl hydrazine-dinitrogen tetroxide (UDMH-N/sub 2/O/sub 4} system shows peak Isp (vacuum condition of 316.7 s and 318.3 s at oxidiser/fuel (O/f ratios of 1.5 and 1.0, respectively for 30 per cent and 40 per cent UDMH-Al gel propellants, under standard conditions. The effect of other parameters like area ratio and chamber pressure on performance has been brought out in view of mission oriented applications. Aluminium has been found to be a better choice over magnesium in metallised gel propellants. Experimental studies on UDMH gellation using propellant grade (15 micrometerand pyrotechnic grade (1.5 micrometerAl in 500g batch level show that gellant(methyl cellulose concentration could be reduced by 50 percent using pyrotechnic grade Al. The pseudoplastic-thixotropic behaviour, flow rate through die holes, burst pressure tests and bulk density are studied. UDMH -25 to 30 per cent Al gels with both grades of Al are found to be stable, pseudoplastic (shear thinning and thixotropic (time-dependent shear thinning, but their flow pattern through die holes differ in nature.

  14. CERN in the spotlight at the Geneva Festival

    CERN Multimedia

    2004-01-01

    CERN will be the guest of honour at the Geneva Festival, which takes place from 29 July to 8 August. The Organization will be involved in two big events: the curtain-raising firework display and the end-of-festival concert. Come and see the creation of the Universe... acted out by fireworks! CERN, celebrating its 50th anniversary, will raise the curtain on the annual Geneva Festival (Fêtes de Genève) on Friday 30 July at 10.15 p.m. with a pyrotechnical and musical extravaganza. The display will be accompanied by a narration explaining the different stages of creation, written by CERN physicist Rolf Landua. Pyro-musical design is by Catherine Walder, overall firework design by René Gousset and pyrotechnical design by Pierre-Alain Beretta (Pyrostars). For further information see: www.cern.ch/cern50/events/Fireworks/Fireworks-en.html. At the end of the Festival, the CERN choir, itself celebrating its thirtieth year, joins forces with the Annecy choir Pro Musica to give a special performance of Jo...

  15. Self-Rupturing Hermetic Valve

    Science.gov (United States)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  16. Integral window hermetic fiber optic components

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  17. Smoke Technology in Electro-Optical Countermeasure of Altiplano Mountain%高原山地光电对抗中的烟幕技术

    Institute of Scientific and Technical Information of China (English)

    蒋国涛; 邢伯阳; 李黎华; 崔玉玲; 周遵宁; 韩毅; 赵鲁生; 董宁宇; 张同来

    2011-01-01

    针对高原山地特殊的作战环境,分析了高原山地自然环境对常规烟幕性能的影响,探讨了高原山地环境光电对抗烟幕技术的发展对策,认为烟火型多频谱发烟剂是一种比较理想的高原山地型发烟剂.%The effect of routine smoke performance by climates of altiplano mountain was analyzed. The pyrotechnical smoke composition is more ideal altiplano mountain smoke agent through discussing the technology of smokescreen about altiplano mountain.

  18. Suppressing H2 Evolution by Silicon Powder Dispersions

    Science.gov (United States)

    Tichapondwa, S. M.; Focke, W. W.; Del Fabbro, O.; Mkhize, S.; Muller, E.

    2011-10-01

    Silicon dispersions in water are used to produce pyrotechnic time delay compositions. The propensity of the silicon to react with water and to produce hazardous hydrogen gas must be suppressed. To this end, the effect of surface modifications and medium pH on the rate of corrosion of silicon was studied at ambient temperature. It was found that the rate of hydrogen evolution increased with increasing pH. Silanes proved to be more effective silicon corrosion inhibitors than alcohols, with vinyl tris (2-methoxyethoxy) silane producing the best results. Differential thermal analysis (DTA) studies were performed using a near-stoichiometric amount of lead chromate as oxidant. Comparable combustion behavior was observed when both the fuel and the oxidant powders were either uncoated or silane modified. Mixtures of neat oxidant with silane-coated silicon showed poor burn behavior and this was attributed to poor particle-particle mixing due to the mismatch in surface energies.

  19. Development status of the ERS-1 SAR antenna

    Science.gov (United States)

    Wagner, R.; Luhmann, H. J.; Sippel, R.; Westphal, M.

    1986-08-01

    A 10 m x 1 m planar array antenna for the ERS-1 satellite is described. It features metallized CFRP waveguides as radiating elements and feeding network components, CFRP sandwich reinforcements of the mechanical panels, a deployable truss structure, and mechanism for launch fixation, release, and deployment. Mechanical design of the antenna structure towards satisfactory dynamic properties in launch configuration within the narrow constraints of mass, volume, and mechanical loads; structural analysis of the stowed and deployment antenna, to determine dynamic properties, internal loads, and deformations; and design of the hold down and release mechanism arrangement of six hinged clamps for launch fixation, to be released via a system of springs and cables by a pyrotechnic device, are reviewed.

  20. Low Mass Ions in Laser Desorption/Ionization Mass Spectrometry of 1-Methoxy-5-aminotetrazole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Gyeong; Bae, Kwang Tae; Goh, Eun Mee; Bae, Se Won [Agency for Defense Development, Daejeon (Korea, Republic of); Shin, Ik-Soo [Soongsil University, Seoul (Korea, Republic of)

    2016-01-15

    The development of novel energetic molecules (EMs) with high power, good safety features, great chemical stability, and environmentally less harmful nature is of great interest in the satellite launcher, missile warhead, ammunition, and pyrotechnic researches. Recently, many researchers have focused on aromatic nitrogen heterocycles such as pyrazole, imidazole, triazole, tetrazole, and pentazole as promising candidates to replace the current EMs used in civilian and military applications. We performed MALDI and LDI experiments with energetic tetrazole derivatives which were of great interest for the application of high performance explosives and fast burning propellants. Particularly, LDI experiments provided low mass ion peaks from decomposition of MAT, which were useful to analyze decomposition mechanism of tetrazoles at TOF MS in high vacuum. The LDI experiments showed various decomposed ion products, which implied several decomposition mechanisms including the detachment of side function groups and the fragmentation of tetrazole ring. The high-level DFT calculations also supported the peaks obtained from LDI experiments.

  1. Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R; Hsu, P C; Coburn, M D; Schmidt, R D; Pagoria, P F; Lee, G S; Kwak, S S W

    2003-02-28

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship of the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a pilot scale.

  2. Analysis of reflected blast wave pressure profiles in a confined room

    Science.gov (United States)

    Sauvan, P. E.; Sochet, I.; Trélat, S.

    2012-05-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real and small scales. To study the interactions and propagations of the reflected shock waves, the present study was conducted by progressively building a confined volume around the charge. In this way, the influence of each wall and the origins of the reflected shock waves can be determined. The purpose of this paper is to report the blast wave interactions that resulted from the detonation of a stoichiometric propane-oxygen mixture in a confined room.

  3. Energetic nanocomposites for detonation initiation in high explosives without primary explosives

    Science.gov (United States)

    Comet, Marc; Martin, Cédric; Klaumünzer, Martin; Schnell, Fabien; Spitzer, Denis

    2015-12-01

    The mixing of aluminum nanoparticles with a metal containing oxidizer (here, WO3 or Bi2(SO4)3) gives reactive materials called nanothermites. In this research, nanothermites were combined with high explosive nanoparticles (RDX) to prepare energetic nanocomposites. These smart nanomaterials have higher performances and are much less hazardous than primary explosives. Their flame propagation velocity can be tuned from 0.2 to 3.5 km/s, through their explosive content. They were used to initiate the detonation of a high explosive, the pentaerythritol tetranitrate. The pyrotechnic transduction of combustion into detonation was achieved with short length systems (<2 cm) and small amounts of energetic nanocomposites (˜100 mg) in semi-confined systems.

  4. Conference Proceedings. In two volumes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    This fifth International Symposium on Fireworks is the first one held outside of North America. The move to Naples was decided on the basis of the many distinguished artisans of fireworks in the city, but also because it is the home of one of the founders of the Symposium, Giovanni Panzera. His company is also one of the principal sponsors of this year's event. Discussions at the Symposium focused on fireworks testing, the challenges involved in staging fireworks events, fireworks competitions, fireworks in restrictive environments, their impact on the environment, hazards associated with fireworks displays, choreography and fireworks chemistry. A total of 44 papers were presented, attesting to the vitality of the pyrotechnics industry.

  5. Thermal batteries. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The bibliography contains citations concerning a class of reserve-type molten salt electrolyte primary cell systems (thermal batteries) that are inert until brought into use by the ignition of a charge of pyrotechnics or raised to their operating temperature by a conventional heating means. The battery remains active for hours or only a few seconds, depending on size, thermal insulation, electrochemical system, ambient temperature, and rate at which power is withdrawn. Various electrochemical systems are discussed and include, calcium, magnesium, and lithium compounds. Design, development, fabrication, and accelerated age testing of thermal batteries are presented. Applications in weapons systems as the primary power source for navigation and ignitor systems are discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Dynamic performance of the mechanism of an automatically deployable ROPS.

    Science.gov (United States)

    Etherton, J R; Cutlip, R G; Harris, J R; Ronaghi, M; Means, K H; Howard, S

    2002-02-01

    The mechanism for an automatically deployable ROPS (AutoROPS) has been designed and tested. This mechanism is part of an innovative project to provide passive protection against rollover fatality to operators of new tractors used in both low-clearance and unrestricted-clearance tasks. The device is a spring-action, telescoping structure that releases on signal to pyrotechnic squibs that actuate release pins. Upper post motion begins when the release pins clear an internal piston. The structure extends until the piston impacts an elastomeric ring and latches at the top position. In lab tests the two-post structure consistently deployed in less than 0.3 s and latched securely. Static load tests of the telescoping structure and field upset tests of the fully functional AutoROPS have been successfully completed.

  7. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    Science.gov (United States)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  8. Equilibrium calculations of firework mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L. [Sandia National Labs., Albuquerque, NM (United States); Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  9. Verification of the Efficacy of the Special Water Shaped Charge Prototype

    Directory of Open Access Journals (Sweden)

    Stanislav Lichorobiec

    2015-09-01

    Full Text Available On the basis of an analysis of terrorist attacks carried out worldwide, where in recent years a preference for the use of bulk explosives placed in vehicles prevails, effective protection against these malicious explosive-containing systems that have a single goal - to cause death and significant material damage in a large radius is dealt. These improvised explosive devices are, in pyrotechnical terms, ranked as one of the most effective weapons, with a highly destructive character of explosive effect. A special water shaped charge that is able to destructively disassemble a bomb without initiation has been developed as an effective invasive means of eliminating similarly designed terrorist explosives hidden in cars, a condition which allows for considerable variation in location.

  10. Yemen: oil and politics mix explosively

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, T.

    1998-11-01

    Oil is an inflammatory issue in the Yemen - literally as well as figuratively. Saboteurs are repeatedly attacking the oil pipeline to the Red Sea, most recently producing impressive pyrotechnics, and also highlighting their bargaining power vis-a-vis the central government. The political impact is no less impressive - Yemen`s oil income is seen to be upsetting the political balance in the Arabian Peninsula, to the detriment of the Saudis. Each million dollars collected from oil by the central government in Sana`a dilutes the influence of Saudi money amongst the tribes in the provinces, so that ``oil`` in the Yemen is as important to Riyadh as it is to Sana`a, in spite of the relatively small volumes. (author)

  11. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  12. The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX

    Directory of Open Access Journals (Sweden)

    Florent Pessina

    2017-02-01

    Full Text Available Research efforts for realizing safer and higher performance energetic materials are continuing unabated all over the globe. While the thermites – pyrotechnic compositions of an oxide and a metal – have been finely tailored thanks to progress in other sectors, organic high explosives are still stagnating. The most symptomatic example is the longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX. Recent advances in crystallization processes and milling technology mark the beginning of a new area which will hopefully lead the pyroelectric industry to finally embrace nanotechnology. This work reviews the previous and current techniques used to crystallize RDX at a submicrometer scale or smaller. Several key points are highlighted then discussed, such as the smallest particle size and its morphology, and the scale-up capacity and the versatility of the process.

  13. The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)

    Science.gov (United States)

    Spitzer, Denis

    2017-01-01

    Research efforts for realizing safer and higher performance energetic materials are continuing unabated all over the globe. While the thermites – pyrotechnic compositions of an oxide and a metal – have been finely tailored thanks to progress in other sectors, organic high explosives are still stagnating. The most symptomatic example is the longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Recent advances in crystallization processes and milling technology mark the beginning of a new area which will hopefully lead the pyroelectric industry to finally embrace nanotechnology. This work reviews the previous and current techniques used to crystallize RDX at a submicrometer scale or smaller. Several key points are highlighted then discussed, such as the smallest particle size and its morphology, and the scale-up capacity and the versatility of the process. PMID:28326236

  14. Possibility of formation of functional dependences of homogeneous and heterogeneous systems burning rate on different factors on the base of precised theory of Mallard and Le Chatelier

    Energy Technology Data Exchange (ETDEWEB)

    Kashporov, L.Y.; Sheludyak, Y.E.; Obeziaev, N.V.; Raspopin, A.G. [Russian Corporation, Metalkhim, Moscow (Russian Federation)

    1996-12-31

    In this work it is shown that the hypothesis of Mallard and Le Chatelier about the existence of critical temperature T{sub c} in the stationary burning wave, which is analogous to the temperature of ignition, is well-grounded physically. The equation which comes out from this hypothesis allows to calculate the functional dependences of the burning rate on pressure P and initial temperature T{sub o} - for homogeneous systems and on the other factors influencing the burning rate (porosity M, mean particle sizes of oxidant d{sub o} and metal d{sub m} and so on) - for condensed systems. Functional dependences u(P, T{sub o}) for methane/air mixture, hexogen, nitroglycerin powder have been calculated, and for pyrotechnics composition Mg + NaNO{sub 3} the dependence u(T{sub o}, M, d{sub o}, d{sub m}) at the atmospheric pressure has been obtained. (authors) 15 refs.

  15. Characterization of semiconductor bridges (SCB) igniters for use in thermal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W.; Guidotti, R.A. [Sandia National Labs., Albuquerque, NM (United States); McCampbell, C.B. [SCB Technologies, Inc., Albuquerque, NM (United States)

    1996-05-01

    Semiconductor bridges (SCB) igniters were evaluated as possible replacements for conventional hot-wire igniters for use in thermal batteries. The all-fire and no-fire characteristics were determined using an up-down scheme; the Neyer/SENSIT program was used to analyze the data. The SCB igniters functioned with a higher no-fire level, relative to a hot-wire igniter, for a given all-fire level. This makes the SCB igniter safer and more reliable than its hot-wire counterpart. The SCB is very resistant to electrostatic discharge and does not require a sensitization mixture for ignition of the primary pyrotechnic charge. These factors, along with its amenability to large-scale production, make the SCB igniter ideally suited for use in thermal batteries.

  16. Thermal Studies on Boron-Based Initiator Formulation.

    Directory of Open Access Journals (Sweden)

    A. G. Rajendran

    1996-12-01

    Full Text Available Boron-potassium nitrate pyrotechnic composition can be converted into a hot wire-sensitive initiator formulation by the addition of an extra fuel. viz. lead thiocyanate. The ignition temperature of this composition depends on the percentage of thiocyanate in the mix and follows a binomial fit. The kinetic parameters. viz. activation energy E and pre-exponential factor A of the charge have been calculated from TG and DSC curves using different approaches developed by Coats-Redfern and Kissinger. Ignition delays measured from isothermal TG runs were found to yield equally good values of E and A. A comparison of these values for the tricomponent system' with those of the bicomponent systems as well as of the ingredients suggests that the starting reaction in this formulation is the reaction between lead thiocyanate and potassium nitrate which energises the main reaction between boron and potassium nitrate. leading to ignition.

  17. Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air

    Energy Technology Data Exchange (ETDEWEB)

    Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A [Bureau of Mines, Pittsburgh, PA (United States). Pittsburgh Research Center

    1992-06-26

    At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

  18. Femtosecond Laser Interaction with Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  19. Electrical resistivity of TiH/sub x/ and TiH/sub x//KC10/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    White, K.; Reed, J.W.; Love, C.M.; Glaub, J.E.; Holy, J.A.

    1979-03-16

    Various factors affecting the electrical resistivity of the pyrotechnic pressed powder TiH/sub x//KC10/sub 4/, which is sensitive to hot wire ignition yet quite spark insensitive, were evaluated. The electrical resistivity of the TiH/sub x/ and TiH/sub x//KC10/sub 4/ were correlated with their pressing pressure, stoichiometry, powder surface area, and temperature (from below liquid nitrogen temperature to 500 K). Data show resistivity increasing with x and surface area, and decreasing non-linearly with pressing pressure. It was concluded that temperature coefficient of resistivity depends upon powder surface features. In addition, it was found that electrostatic discharge lowers TiH/sub x/ and TiH/sub x//KC10/sub 4/ pellet resistivity and that the effect is larger for pellets with higher initial resistivity.

  20. Measurements of pressure for the TiH/sub x//KClO/sub 4/ system

    Energy Technology Data Exchange (ETDEWEB)

    Chong, C.H.H.; Glaub, J.E.

    1978-04-10

    An investigation was conducted to measure the pressure obtained when the pyrotechnic mixture TiH/sub x//KClO/sub 4/ was ignited in a confined variable-volume system. It was possible to derive an expression of the form PV/sup ..gamma../ = k for the pressure-volume relationship obtained. This expression is a polytropic expansion of the ideal gas equation that best fits the data generated. For this particular work, values of ..gamma.. = 0.53 and k = 69.3 were obtained where P is in megapascals and V is in cubic centimeters. In addition, estimates of the reaction rates were calculated based on the times to achieve maximum pressure for a given volume system. An explicit expression relating rate to pressure was derived by a simplified least-squares fit of the data obtained.

  1. Development of the MC3133 reefing line cutter

    Energy Technology Data Exchange (ETDEWEB)

    Craig, J.R.

    1977-09-01

    A pyrotechnic actuated reefing line cutter has been developed which, in response to an incoming programmable time delayed electrical firing signal, severs a nylon or Kevlar parachute reefing line following parachute deployment. The design objectives and final design concept which evolved are described. First order approximations and parameter studies leading to a preprototype design are presented. Significant evaluation studies that resulted in the selection of boron/calcium chromate for the initiating charge and titanium subhydride/potassium perchlorate for the output charge are discussed in detail. Final design verification testing data show that the reefing line cutter will meet functional requirements after the following sequential environments: thermal shock, --54/sup 0/C to 90/sup 0/C; mechanical shock, 9806 m/s/sup 2/, 2 ms duration; vibration, 98 m/s/sup 2/, 26-2000 Hz; and linear acceleration, 1960 m/s/sup 2/ for two minutes.

  2. DOE explosives safety manual. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  3. Friction, impact, and electrostatic discharge sensitivities of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.S.; Hall, G.F.

    1985-05-31

    Impact, friction, and electrostatic discharge sensitivities of energetic materials (explosives and pyrotechnics) used or manufactured at Mound were tested by the ''one-shot'' method. The Bruceton statistical method was used to derive 50% initiation levels, and the results were compared. The materials tested include: PETN, HMX, Plastic Bonded Explosives (PBX), CP, TATB, RX26BB, RX26BH, barium styphnate, LX-15, LX-16, Ti/KClO/sub 4/, TiH/sub 0.65//KClO/sub 4/, TiH/sub 1.65//KClO/sub 4/, Fe/KClO/sub 4/, TiH/sub 1.75//B/CaCrO/sub 4/, Ti/B/CaCrO/sub 4/, B/CaCrO/sub 4/, TiH/sub 0.65//2B, TiH/sub 0.65//3B, 2Ti/B, TiH/sub 1.67//2B, Ti/2B, TiH/sub 1/67//3B, Ti/B, and Ti/3B. Some samples were investigated for aging effects, physical variables, and the effect of manufacturing paramters on sensitivities. The results show that in both friction and impact tests, CP and barium styphnate are the most sensitive; TiH/sub 1.65/KClO/sub 4/, LX-15, TATB and its related materials are the least sensitive; and other materials such as PETN and HMX are in the mid-range. In the electrostatic tests of Ti-based pyrotechnics, a decrease of sensitivity with increasing hydrogen concentration was observed. 20 refs., 12 figs., 7 tabs.

  4. [Tadeusz Tucholski (1898-1940). A contribution to the scientific biography].

    Science.gov (United States)

    Tucholska-Załuska, Hanna

    2014-01-01

    Assistant professor Tadeusz Tucholski Ph.D., murdered in Katyń, was one of the most outstanding representatives of the younger generation of Polish physical chemist scholars of the interwar period. He published over 30 scientific papers in the field of physical and chemical properties of explosions, kinetics and catalysis and also toxicology and forensics. Thesere searches were partly performed at the University of Poznań, in the period 1926-1939, at the Faculty of Medicine of the Department of Physics where Tucholski was employed as a senior assistant and was the closest associate of professor S. Kalandyk, partly at the Department of Forensic Medicine headed by professor S. Horoszkiewicz in the chemical-toxicological laboratory which Tucholski ranin the years 1931-1939, partly at the Warsaw University of Technology in the Department of Explosives Technology of the Faculty of Chemistry headed by professor T. Urbański, where he had been lecturing "On the latest theories of explosives" since 1937 and in 1934-35 in Cambridge, as a teaching fellow of the National Culture Fund, in Colloid Science Laboratory headed by professor E.K. Rideal. In 1903 Tucholski moved with his parents to Zabaykalye, in 1911--to Brazil. He returned to Poland in 1920, joined the Polish Army and with the 14th Polish Medium Regiment fought on the fronts of the Polish-Bolshevik War. He was drafted to the School of Pyrotechnics Foremen at Corps District Command number VII (Poznań). After graduating, Tucholski remained on active duty as a professional pyrotechnic: from 1921 to 1929 he was appointed the head of the Laboratory of Chemical and Pyrotechnic Ammunition Workshop No. 2 in Poznań and as an inspector of magazines of explosives. In 1927 he was transferred to the reserves, in 1932 after having graduated from the Officer Cadet School in Jarocin, Tucholski was appointed a second lieutenant in the Army Reserve, and later moved from the officers infantry corpsto the army ordnance corps. As

  5. Comparison of Thoracic Injury Risk in Frontal Car Crashes for Occupant Restrained without Belt Load Limiters and Those Restrained with 6 kN and 4 kN Belt Load Limiters.

    Science.gov (United States)

    Foret-Bruno, J Y; Trosseille, X; Page, Y; Huère, J F; Le Coz, J Y; Bendjellal, F; Diboine, A; Phalempin, T; Villeforceix, D; Baudrit, P; Guillemot, H; Coltat, J C

    2001-11-01

    In France, as in other countries, accident research studies show that a large proportion of restrained occupants who sustain severe or fatal injuries are involved in frontal impacts (65% and 50%, respectively). In severe frontal impacts with restrained occupants and where intrusion is not preponderant, the oldest occupants very often sustain severe thoracic injuries due to the conventional seat belt. As we have been observing over the last years, we will expect in the coming years developments which include more solidly-built cars, as offset crash test procedures are widely used to evaluate the passive safety of production vehicles. The reduction of intrusion for the most severe frontal impacts, through optimization of car deformation, usually translates into an increase in restraint forces and hence thoracic injury risk with a conventional retractor seat belt for a given impact severity. It is, therefore essential to limit the restraint forces exerted by the seat belt on the thorax in order to reduce the number of road casualties. In order to address thoracic injury risk in frontal impact, Renault cars have been equipped with the Programmed Restraint System (PRS) since 1995. The PRS is a restraint system that combines belt load limitation and pyrotechnic belt pretension. In an initial design of the Programmed Restraint System (PRS1), the belt load limiter was a steel component designed to shear at a given shoulder force, namely 6 kN. It was mounted between the retractor and the lower anchorage point of the belt. The design of the PRS was modified in 1998 (PRS2), but the principle of load limitation was maintained. The threshold was decreased to 4 kN and this lower belt belt-force limiter has been combined with a specially designed airbag. This paper reports on 347 real-world frontal accidents where the EES (Equivalent Energy Speed) ranged from 35 to 75 km/h. One hundred and ninety-eight (198) of these accidents involved cars equipped with the 6 kN load limiter

  6. 某超声速飞行器保护罩用弹射器的高温防护特性%Thermal Protection Performances of Ejector for a Supersonic Aircraft Retainer

    Institute of Scientific and Technical Information of China (English)

    刘世毅; 韩言勋; 刘媛媛

    2015-01-01

    The ejector is used to hold down and shoot off the retainer of a supersonic aircraft. The retainer is located at the head of the vehicle, therefore the temperature increases quickly with the impact of aerodynamic drag. For the sake of safety and reliability, the ejector needs thermal protection to meet the safety requirement of the powder in the pyrotechnic device. The theoretical analysis, numerical calculations and experiments of high temperature resistant characteristics of the ejector are introduced in this paper. The environment temperature around the device is reduced obviously by means of slowing heat transfer, optimizing structure, and using heat insulation and phase change material. The experiments validate that the ejector could reduce the efficiency of heat exchange effectively, and the temperature of the cartridge could satisfy the safety demand in the extra high thermal conditions. This research could contribute to the design and experiment of high temperature protection of pyrotechnic devices in spacecraft.%某型弹射器应用于超声速飞行器保护罩的连接固定与弹射分离。由于保护罩位于飞行器头部,受到气动阻力的影响,升温迅速。为了保证弹射器能够在飞行过程中正常安全工作,使装药部位的温度满足火药安全使用要求,需要对其采取热防护措施。文章围绕弹射器的耐高温性能设计开展了相关理论分析、数值仿真及试验验证工作。通过减小热传导途径,优化产品结构设计,采取隔热、相变吸热等措施降低弹射器内部的环境温度。经过热传导试验验证,在模拟飞行器极端的高温环境条件下,弹射器结构能够有效降低热传导效率,保证主装药部位的温度满足火药安全使用要求。该方法为航天火工装置的高温防护设计与验证提供了有效的技术途径。

  7. Solid Rocket Booster (SRB) Flight System Integration at Its Best

    Science.gov (United States)

    Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed

  8. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel.

    Science.gov (United States)

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  9. High-speed seatbelt pretensioner loading of the abdomen.

    Science.gov (United States)

    Foster, Craig D; Hardy, Warren N; Yang, King H; King, Albert I; Hashimoto, Syuzo

    2006-11-01

    This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused. Peak anterior abdominal loads due to the seatbelt ranged from 2.8 kN to 10.1 kN. Peak abdominal penetration ranged from 49 mm to 138 mm. Peak penetration speed ranged from 4.0 m/s to 13.3 m/s. Three cadavers sustained liver injury: one AIS 2, and two AIS 3. Cadaver abdominal response corridors for the A and B system pretensioners are proposed. The results are compared to the data reported by Hardy et al. (2001) and Trosseille et al. (2002).

  10. Recent Progress on the Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    Energy Technology Data Exchange (ETDEWEB)

    R.Mitchell, A; Hsu, P C; Coburn, M D; Schmidt, R D; Pagoria, P F; Lee, G S; Kwak, S W

    2004-07-06

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to1,3,5-triamino-2,4,6- trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship of the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a larger scale. In FY 03, a 10 g per batch process was developed with good results. Development for a one pound per batch system is required as part of overall scale up process for producing TATB from the surplus feedstocks.

  11. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  12. Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants

    Science.gov (United States)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Taylor, Terry L.

    2013-01-01

    "Green" propellants based on Ionic-liquids (ILs) like Ammonium DiNitramide and Hydroxyl Ammonium Nitrate have recently been developed as reduced-hazard replacements for hydrazine. Compared to hydrazine, ILs offer up to a 50% improvement in available density-specific impulse. These materials present minimal vapor hazard at room temperature, and this property makes IL's potentially advantageous for "ride-share" launch opportunities where hazards introduced by hydrazine servicing are cost-prohibitive. Even though ILs present a reduced hazard compared to hydrazine, in crystalline form they are potentially explosive and are mixed in aqueous solutions to buffer against explosion. Unfortunately, the high water content makes IL-propellants difficult to ignite and currently a reliable "coldstart" capability does not exist. For reliable ignition, IL-propellants catalyst beds must be pre-heated to greater than 350 C before firing. The required preheat power source is substantial and presents a significant disadvantage for SmallSats where power budgets are extremely limited. Design and development of a "micro-hybrid" igniter designed to act as a "drop-in" replacement for existing IL catalyst beds is presented. The design requires significantly lower input energy and offers a smaller overall form factor. Unlike single-use "squib" pyrotechnic igniters, the system allows the gas generation cycle to be terminated and reinitiated on demand.

  13. On-the-fly green generation and dispersion of AgI nanoparticles for cloud seeding nuclei

    Science.gov (United States)

    Hu, Xiuli; Zhou, Wenbo; Wang, Xizheng; Wu, Tao; Delisio, Jeffery B.; Zachariah, Michael R.

    2016-07-01

    This study reports on an on-the-fly green synthesis/dispersion of silver iodide (AgI) nanoparticles from the combustion of AgIO3/carbon black (CB)/nitrocellulose (NC) composites, which could be used as a candidate for a cloud-seeding pyrotechnic. Films were formed by direct electrospray deposition of a mixture of synthesized silver iodate with CB and NC. The decomposition pathways of AgIO3/CB and AgIO3/CB/NC were evaluated by temperature jump time of flight mass spectrometry (T-jump TOFMS) and XRD, showing that AgI particles and CO2 are released from the reaction between AgIO3 and CB without other toxic residuals. The flame propagation velocity of AgIO3/CB/NC films increases with the increasing of particle mass loading of AgIO3 and CB and peaks at 40 wt%, which is much higher than that of an AgI/AP/NC film. The mean diameter of the resultant AgI nanoparticles is from 51 to 97 nm. The mass loading of AgIO3 and CB was found to play a major role in size control of the AgI nanoparticles.

  14. Investigation of failure to separate an Inconel 718 frangible nut

    Science.gov (United States)

    Hoffman, William C., III; Hohmann, Carl

    1994-01-01

    The 2.5-inch frangible nut is used in two places to attach the Space Shuttle Orbiter to the External Tank. It must be capable of sustaining structural loads and must also separate into two pieces upon command. Structural load capability is verified by proof loading each flight nut, while ability to separate is verified on a sample of a production lot. Production lots of frangible nuts beginning in 1987 experienced an inability to reliably separate using one of two redundant explosive boosters. The problems were identified in lot acceptance tests, and the cause of failure has been attributed to differences in the response of the Inconel 718. Subsequent tests performed on the frangible nuts resulted in design modifications to the nuts along with redesign of the explosive booster to reliably separate the frangible nut. The problem history along with the design modifications to both the explosive booster and frangible nut are discussed in this paper. Implications of this failure experience impact any pyrotechnic separation system involving fracture of materials with respect to design margin control and lot acceptance testing.

  15. Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry

    Science.gov (United States)

    Faber, Peter; Drewnick, Frank; Veres, Patrick R.; Williams, Jonathan; Borrmann, Stephan

    2013-10-01

    Aerosol particles from several anthropogenic sources associated with football stadia including cooking, cigarette smoking, burning of color smoke bombs and hand flares were analyzed by high-resolution aerosol mass spectrometry. The physical and chemical characteristics of these different aerosols, in particular the organic fraction, were explored in laboratory studies to obtain robust references. These data were compared with field campaign results from a Bundesliga (German football league) match in the Coface Arena (Mainz, Germany) on 20th April 2012. The field measurement revealed a strongly elevated mass concentration of organic aerosols (OA) compared to background levels showing a temporal structure clearly related to the match. PMF analysis established that during the football match event cigarette smoke was the predominant component of submicron organic aerosol (67% of total OA). Cooking emissions from food outlets within the stadium correlated well with the sales figures of the catering stations and were also found to be of relevance (24% of total OA) especially in the period before kickoff. Pyrotechnics were not observed during this football match and no signatures of these sources were found in the mass spectra from the stadium measurements. All species that were elevated during the football match returned to their initial background levels within one hour after the match had finished. This demonstrates a good ventilation capacity of the open-topped Coface Arena.

  16. Computing Q-D Relationships for Storage of Rocket Fuels

    Science.gov (United States)

    Jester, Keith

    2005-01-01

    The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.

  17. Investigating Premature Ignition of Thruster Pressure Cartridges by Mechanical Impact of Internal Components

    Science.gov (United States)

    Woods, Stephen S.; Saulsberry, Regor

    2010-01-01

    Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. The premature ignition concern was hypothesized based on the potential range of motion of the subassemblies, projected worst case accelerations, and the internal geometry that could subject propellant grains to mechanical impact sufficiently high for ignition. This possibility was investigated by fabricating a high-fidelity model of the suspected contact geometry, placing a representative amount of propellant in it, and impacting the propellant with a range of forces equivalent to and greater than the maximum possible during launch. Testing demonstrated that the likelihood of ignition is less than 1 in 1,000,000. The test apparatus, methodology, and results are described in this paper. Nondestructive evaluation ( NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the analysis and impact testing used to address the potential impact issue and a separate paper addresses the ESD issue.

  18. Recent papers from DX-1, detonation science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Over the past year members of DX-1 have participated in several conferences where presentations were made and papers prepared for proceedings. There have also been several papers published in or submitted to refereed journals for publication. Rather that attach all these papers to the DX-1 Quarterly Report, we decided to put them in a Los Alamos report that could be distributed to those who get the quarterly, as well as others that have an interest in the work being done in DX-1 both inside and outside the Laboratory. This compilation does not represent all the work reported during the year because some people have chosen not to include their work here. In particular, there were a number of papers relating to deflagration-to-detonation modeling that were not included. However, this group of papers does present a good picture of much of the unclassified work being done in DX-1. Several of the papers include coauthors from other groups or divisions at the Laboratory, providing an indication of the collaborations in which people in DX-1 are involved. Discussed topics of submitted papers include: shock compression of condensed matter, pyrotechnics, shock waves, molecular spectroscopy, sound speed measurements in PBX-9501, chemical dimerization, and micromechanics of spall and damage in tantalum.

  19. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  20. NASA Tech Briefs, September 2004

    Science.gov (United States)

    2004-01-01

    Topics covered include: Brazing SiC/SiC Composites to Metals; Composite-Material Tanks with Chemically Resistant Liners; Thermally Conductive Metal-Tube/Carbon-Composite Joints; Improved BN Coatings on SiC Fibers in SiC Matrices; Iterative Demodulation and Decoding of Non-Square QAM; Measuring Radiation Patterns of Reconfigurable Patch Antennas on Wafers; Low-Cutoff, High-Pass Digital Filtering of Neural Signals; Further Improvement in 3DGRAPE; Ground Support Software for Spaceborne Instrumentation; MER SPICE Interface; Simulating Operation of a Planetary Rover; Analyzing Contents of a Computer Cache; Discrepancy Reporting Management System; Silicone-Rubber Microvalves Actuated by Paraffin; Hydraulic Apparatus for Mechanical Testing of Nuts; Heat Control via Torque Control in Friction Stir Welding; Manufacturing High-Quality Carbon Nanotubes at Lower Cost; Setup for Visual Observation of Carbon-Nanotube Arc Process; Solution Preserves Nucleic Acids in Body-Fluid Specimens; Oligodeoxynucleotide Probes for Detecting Intact Cells; Microwave-Spectral Signatures Would Reveal Concealed Objects; Digital Averaging Phasemeter for Heterodyne Interferometry; Optoelectronic Instrument Monitors pH in a Culture Medium; Imaging of gamma-Irradiated Regions of a Crystal; Photodiode-Based, Passive Ultraviolet Dosimeters; Discrete Wavelength-Locked External Cavity Laser; Flexible Shields for Protecting Spacecraft Against Debris; Part 2 of a Computational Study of a Drop-Laden Mixing Layer; Controllable Curved Mirrors Made from Single-Layer EAP Films; and Demonstration of a Pyrotechnic Bolt-Retractor System.

  1. Pure Water From a Pure Genius

    Science.gov (United States)

    2002-01-01

    Ammonium perchlorate is widely used throughout the aerospace, munitions, and pyrotechnics industries as a primary ingredient in solid rocket and missile propellants, fireworks, and explosive charges. This highly soluble salt has tainted soils and water sources all over the world, and is believed to be an endocrine disrupter, adversely affecting the growth patterns of a fetus or a young child. UMPQUA Research Company (URC), once a small drinking water testing laboratory and a research and development contractor for NASA's manned spaceflight applications, has evolved to become a leader in water purification and analysis. With a total of 11 patents issued for new technologies created by URC under NASA SBIR contracts and a 25-year commitment to water recycling, the company clearly possessed the qualifications necessary to tackle the presence of perchlorate in water. An SBIR contract with NASA's Marshall Space Flight Center that concentrated on the stringent water quality requirements of long-term, manned spaceflight was the source for URC's process and catalyst to facilitate the destruction of perchlorate and nitrate in water. URC licensed the rights of its unique reduction reaction process to Calgon Carbon Corporation for use with the company's perchlorate/nitrate remediation process, otherwise known as ISEP(R).

  2. Thermal, chemical, and mechanical response of rigid polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.

    1997-12-01

    Rigid polyurethane foams are frequently used as encapsulants to isolate and support thermally sensitive components within weapon systems. When exposed to abnormal thermal environments, such as fire, the polyurethane foam decomposes to form products having a wide distribution of molecular weights and can dominate the overall thermal response of the system. Mechanical response of the decomposing foam, such as thermal expansion under various loading conditions created by gas generation, remains a major unsolved problem. A constitutive model of the reactive foam is needed to describe the coupling between mechanical response and chemical decomposition of foam exposed to environments such as fire. Towards this end, a reactive elastic-plastic constitutive model based on bubble mechanics describing nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of rigid polyurethane foam has been developed. A local force balance, with mass continuity constraints, forms the basis of the constitutive model requiring input of temperature and the fraction of the material converted to gas. This constitutive model provides a stress-strain relationship which is applicable for a broad class of reacting materials such as explosives, propellants, pyrotechnics, and decomposing foams. The model is applied to a block of foam exposed to various thermal fluxes. The model is also applied to a sphere of foam confined in brass. The predicted mechanical deformation of the foam block and sphere are shown to qualitatively agree with experimental observations.

  3. Productions of ultra-fine powders and their use in high energetic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yuri F.; Osmonoliev, Mirswan N.; Sedoi, Valentin S. [Institute of High Current Electronics RAS, 634055 Tomsk (Russian Federation); Arkhipov, Vladimir A.; Bondarchuk, Sergey S.; Vorozhtsov, Alexander B.; Korotkikh, Alexander G.; Kuznetsov, Valery T. [Tomsk State University, Lenin Ave., 36, Tomsk, 634034 (Russian Federation)

    2003-12-01

    Fine and ultra-fine powders are actively studied in pyrotechnics, explosives and propellants. The important questions are how to produce a powder with specified characteristics and how to use the powder produced. This paper presents an approach to the powder production by the exploding wire method. The influence of initial conditions on the properties of powders is discussed. The basic factors are as follows: the level and the uniformity of the energy, dissipated in the exploding wire metal; the density and the chemical activity of the surrounding gas; the initial radius of wire. Electron Microscopes (Transmission and Scanning) and the Surface BET Mehtod have been used for analyses. The production of ultra-fine powders based on such metals as Al, W, Zr, Cu, Fe, Ag, Co, In, Pt has been investigated. Different surrounding passive gases (nitrogen, argon, xenon, and helium) were used for producing powders of pure metals. Samples were studied by chemical methods. X-ray Diffraction and Electron Diffraction methods were used for the determination of the phase compositions. Characterization included also Differential Scanning Calorimetry and Thermogravimetry in air with a heating rate of 100 K/min. In summary, it was shown that the exploding wire method allows to produce ultra-fine powders of various metals. The results obtained can be applied directly to the production of powders with specified characteristics. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. Use of Heritage Hardware on Orion MPCV Exploration Flight Test One

    Science.gov (United States)

    Rains, George Edward; Cross, Cynthia D.

    2012-01-01

    Due to an aggressive schedule for the first space flight of an unmanned Orion capsule, currently known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made within the Orion Program to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi-Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the MPLM cabin Positive Pressure Relief Assembly (PPRA), and the Shuttle Ground Support Equipment Heat Exchanger (GSE HX). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE HX had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the activities required in order to utilize heritage hardware for EFT1.

  5. Use of Heritage Hardware on MPCV Exploration Flight Test One

    Science.gov (United States)

    Rains, George Edward; Cross, Cynthia D.

    2011-01-01

    Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.

  6. Investigation of heat transfer in zirconium potassium perchlorate at low temperature: A study of the failure mechanism of the NASA standard initiator

    Science.gov (United States)

    Varghese, Philip L.

    1989-01-01

    The objective of this work was to study the reasons for the failure of pyrotechnic initiators at very low temperatures (10 to 100 K). A two-dimensional model of the NASA standard initiator was constructed to model heat transfer from the electrically heated stainless steel bridgewire to the zirconium potassium perchlorate explosive charge and the alumina charge cup. Temperature dependent properties were used in the model to simulate initiator performance over a wide range of initial temperatures (10 to 500 K). A search of the thermophysical property data base showed that pure alumina has a very high thermal conductivity at low temperatures. It had been assumed to act as a thermal insulator in all previous analyses. Rapid heat transfer from the bridgewire to the alumina at low initial temperatures was shown to cause failure of the initiators if the wire did not also make good contact with the zirconium potassium perchlorate charge. The mode is able to reproduce the results of the tests that had been conducted to investigate the cause for failure. It also provides an explanation for previously puzzling results and suggests simple design changes that will increase reliability at very low initial temperatures.

  7. Advances in science and technology of modern energetic materials: an overview.

    Science.gov (United States)

    Badgujar, D M; Talawar, M B; Asthana, S N; Mahulikar, P P

    2008-03-01

    Energetic materials such as explosives, propellants and pyrotechnics are widely used for both civilian and military explosives applications. The present review focuses briefly on the synthesis aspects and some of the physico-chemical properties of energetic materials of the class: (a) aminopyridine-N-oxides, (b) energetic azides, (c) high nitrogen content energetic materials, (d) imidazoles, (e) insensitive energetic materials, (f) oxidizers, (g) nitramines, (h) nitrate esters and (i) thermally stable explosives. A brief comment is also made on the emerging nitration concepts. This paper also reviews work done on primary explosives of current and futuristic interest based on energetic co-ordination compounds. Lead-free co-ordination compounds are the candidates of tomorrow's choice in view of their additional advantage of being eco-friendly. Another desirable attribute of lead free class of energetic compounds is the presence of almost equivalent quantity of fuel and oxidizer moieties. These compounds may find wide spectrum of futuristic applications in the area of energetic materials. The over all aim of the high energy materials research community is to develop the more powerful energetic materials/explosive formulations/propellant formulations in comparison to currently known benchmark materials/compositions. Therefore, an attempt is also made to highlight the important contributions made by the various researchers in the frontier areas energetic ballistic modifiers, energetic binders and energetic plasticizers.

  8. Observation of sub-detonative responses in confined high density HMX-based PBXs

    Science.gov (United States)

    Cumming, Andrew; Wood, Andrew; Steward, Paul; Ottley, Philip; Gould, Peter; Lewtas, Ian

    2015-06-01

    This paper describes experiments and modelling aimed at understanding the behaviour of highly loaded (90%-95%) pressed HMX-based PBXs, when subjected to shock compression and ignition by means of distinct mechanical and thermal insults under confinement. In order to separate the role of the stimuli, a test has been designed where a metal impactor is propelled at test samples using a well characterised propellant over a range of velocities to produce various levels of mechanical damage. The impactor is then heated using a characterised pyrotechnic composition which ignites the mechanically damaged explosive. Tubes have been designed to examine the effect of confinement at burst pressures of 218.5MPa and 120MPa. The high confinement tubes employ polycarbonate windows and the low confinement tubes are manufactured from polycarbonate blocks to allow the reaction of the energetic material to be captured using high-speed video. Tests carried out using these tubes have given a good insight into the processes occurring. Modelling runs have predicted an oscillating compressive wave in the explosive and considerable damage at either end of the explosive column. The latter leads to potential deconsolidation once the donor charge has burnt out allowing increased burning and violence.

  9. Synthesis and Performance Characterization of a Nanocomposite Ternary Thermite: Al/Fe2O3/SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, D; Pantoya, M L; Clapsaddle, B J

    2005-02-04

    Making solid energetic materials requires the physical mixing of solid fuels and oxidizers or the incorporation of fuel and oxidizing moieties into a single molecule. The former are referred to as composite energetic materials (i.e., thermites, propellants, pyrotechnics) and the latter are deemed monomolecular energetic materials (i.e., explosives). Mass diffusion between the fuel and oxidizer is the rate controlling step for composite reactions while bond breaking and chemical kinetics control monomolecular reactions. Although composites have higher energy densities than monomolecular species, they release that energy over a longer period of time because diffusion controlled reactions are considerably slower than chemistry controlled reactions. Conversely, monomolecular species exhibit greater power due to more rapid kinetics than physically mixed energetics. Reducing the diffusion distance between fuel and oxidizer species within an energetic composite would enhance the reaction rate. Recent advances in nanotechnology have spurred the development of nano-scale fuel and oxidizer particles that can be combined into a composite and effectively reduce diffusion distances to nano-scale dimensions or less. These nanocomposites have the potential to deliver the best of both worlds: high energy density of the physically mixed composite with the high power of the monomolecular species. Toward this end, researchers at Lawrence Livermore National Laboratory (LLNL) developed nano-particle synthesis techniques, based on sol-gel chemistry, for the production of thermite nanocomposites.

  10. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  11. The use of chemicals for fireworks

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, R. [Kimbolton Fireworks Limited (United Kingdom)

    2000-04-01

    The history of chemicals that over time have become the fundamental building blocks of pyrotechnic compositions, and newer materials that are part of many of today's fireworks formulations, are discussed. The relationship between fireworks and the discovery of gunpowder is revisited as an important event in the origin of fireworks. While charcoal and potassium chlorate are the principal ingredients, salts of antimony, arsenic mercury, mica, borax, some lead compounds and zinc filings, along with powdered glass and porcelain, also have been tried at various times and with varying degrees of success. Nitrates of strontium, barium and sodium have been used since the earliest times in the history of fireworks to produce colors, but potassium chlorate, mixed with sulphur and sugar provided the lifting powder that made possible the production of stars, although it also produced some very bad explosions throughout history. In more recent times, chlorinated compounds, magnesium and especially aluminum, have added considerable brilliance to fireworks. The problem of corrosion, hence limited shelf-life, however, continues to be a challenge. Reference is also made to the increasing volume of regulation in Western Europe that is pushing European fireworks manufacturers to extinction. 5 refs.

  12. Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rezaei, Amir Hossein; Keshavarz, Mohammad Hossein; Tehrani, Masoud Kavosh; Reza Darbani, Seyyed Mohammad; Farhadian, Amir Hossein; Mousavi, Seyyed Jabbar; Mousaviazar, Ali

    2016-04-20

    Energetic materials containing aluminum powder are hazardous compounds, which have wide applications as propellants, explosives, and pyrotechnics. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy technique in air and argon atmospheres to investigate determination of aluminum content and detonation performance of 1,3,5-trinitro-1,3,5-triazine (RDX)-based aluminized explosives. Plasma emission of aluminized RDX explosives are recorded where atomic lines of Al, C, H, N, and O, as well as molecular bands of AlO and CN are identified. The formation mechanism of AlO and CN molecular bands is affected by the aluminum percentage and oxygen content present in the composition and plasma. Relative intensity of the Al/O is used to determine detonation velocity and pressure of the RDX/Al samples. The released energy in the laser-induced plasma of aluminized RDX composition is related to the heat of explosion and percentage of aluminum.

  13. Studies on compatibility of energetic materials by thermal methods

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    2010-04-01

    Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.

  14. Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2016-01-01

    Full Text Available Pyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN. A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs. The numerical analysis results provide accurate prediction in both the time (acceleration and frequency domains (maximax shock response spectra. In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes.

  15. IUPAC-NIST Solubility Data Series. 85. Transition and 12-14 Main Group Metals, Lanthanide, Actinide, and Ammonium Halates

    Science.gov (United States)

    Miyamoto, Hiroshi

    2008-06-01

    This paper is the fourth and final volume in the halate solubility series. The solubility data for halates of transition metals, lanthanides, actinides, ammonium, and metallic elements of the main groups 12-14 are reviewed. Where appropriate, binary, ternary, and multicomponent systems are critically evaluated. Most of the solubility results were obtained in water or aqueous solutions of electrolytes. The solubility in organic solvents and aqueous-organic solvent mixtures is also collected in this volume. All these data were critically examined for their reliability. The best values were selected on the basis of critical evaluations and presented in tabular form. Fitting equations and graphical plots are also provided. When numerical data were not reported in an original publication, they were read out from figures and digitized by the compilers. The quantities, units, and symbols used in this volume are in accord with IUPAC recommendations. We always reported the original data and, if necessary, transferred them into the IUPAC recommended units and symbols. The literature on the solubility data was researched through 2002. The halates of these metals play a role in industrial processes. For example, some halates are essential as catalysts, heat stabilizers, and blanching reagents for manufacturing polymer products such as textiles and resins. Some iodates are used in pyrotechnic compounds for weather modification and colored smoke generation. The nonlinear halate crystals are important in construction of optical devices.

  16. X-38 Landing Gear qualification testing

    Science.gov (United States)

    Urgoiti, Eduardo

    2003-09-01

    The Landing Gear System for the X-38 demonstration vehicle has been developed considering future application to the CRV vehicle. It consists of three legs in a typical aeroplane configuration with two main and one nose legs. They are retracted during ascent, in orbit and re-entry phases and are released near the ground by pyrotechnic-nuts and deployed by preloaded springs and gravity. This gear has been designed to allow landing in unprepared plain fields limiting the accelerations on the spacecraft at touch down, through expendable damping cartridges and skids. During 2002 the test campaign of the X-38 Landing Gear has been completed at Sener. Three different types of tests have been performed: Functional deployment tests, Static load tests and vibration tests. This paper discusses the objectives of the tests and how they are achieved with a description of the mechanisms involved and their predicted performances. The different types of tests and results are described together with the major events and lessons learned during their performance.

  17. Development and qualification testing of a laser-ignited, all-secondary (DDT) detonator

    Science.gov (United States)

    Blachowski, Thomas J.; Krivitsky, Darrin Z.; Tipton, Stephen

    1994-01-01

    The Indian Head Division, Naval Surface Warfare Center (IHDIV, NSWC) is conducting a qualification program for a laser-ignited, all-secondary (DDT) explosive detonator. This detonator was developed jointly by IHDIV, NSWC and the Department of Energy's EG&G Mound Applied Technologies facility in Miamisburg, Ohio to accept a laser initiation signal and produce a fully developed shock wave output. The detonator performance requirements were established by the on-going IHDIV, NSWC Laser Initiated Transfer Energy Subsystem (LITES) advanced development program. Qualification of the detonator as a component utilizing existing military specifications is the selected approach for this program. The detonator is a deflagration-to-detonator transfer (DDT) device using a secondary explosive, HMX, to generate the required shock wave output. The prototype development and initial system integration tests for the LITES and for the detonator were reported at the 1992 International Pyrotechnics Society Symposium and at the 1992 Survival and Flight Equipment National Symposium. Recent results are presented for the all-fire sensitivity and qualification tests conducted at two different laser initiation pulses.

  18. MANPADS protection for civil aircraft using an expendable decoy

    Science.gov (United States)

    Walmsley, Roy H.; Friede, Johan; Millwood, Nicolas; Butters, Brian

    2009-09-01

    With the ever present threat of MANPADS throughout the world the protection of civil aircraft is a desirable capability that has special requirements in terms of certification, safety, logistics, affordability, environmental impact and exportability. The Civil Aircraft Missile Protection System (CAMPS), which includes the CIV-IR (infrared) leaf-based pyrophoric (not pyrotechnic) expendable countermeasure, is a system designed to meet these requirements. This paper presents the operating aspects of the decoy, including discussion of design features necessary to ensure safety both on the ground and in flight and assure successful deployment. The characteristics of the CIV-IR have been measured, both on static single leaves in the laboratory and on deployed packs in field tests and aircraft trials. These measured properties have been used in engagement modelling and simulation to assess the level of protection that can be afforded to commercial airliners against generation 1 and 2 MANPADS threats. Aircraft flight trials with ground based seekers have also been carried out to validate the modelling work. These combine to define the deployment patterns necessary for a successful seduction of the MANPAD.

  19. Explosive Properties of the Mg-Al/PTFE Composition%Mg-Al/PTEE烟火药爆炸性能的研究

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The object of the research are explosive properties of the pyrotechnic composite consist of fine grade magnesium-aluminium powder (PAM) and highly dispersed polytetrafluorethylene (PTFE). The composite reveals high resistance to all mechanical and thermal impulses and is extremely sensitive to hot sparks and open fire. The burning rate of the composition changes from 1 cm·s-1 to 100 m·s-1 along with decreasing its density. Charges of the composition with density below 1 g·cm-3 burn so violently, that the phenomena is similar to explosion. Charges with density above 1.1 g·cm-3 burn relatively rapidly and stably. The main part of the paper concerns the pressure impulses in the air generated during high-rate burning of the composition of bulk density. The nature of the generated pressure impulse is not that of a typical shock wave. A rise of pressure over the distance from the point of explosion to the maximum value lasts 50-100 milliseconds, while for shock waves this factor is less than a microsecond for equivalent charges. The methods of initiation of the composition influence the shape and parameters of the pressure impulse. The explanation of the nature of great changes of the composition burning rate has been proposed. The effect described in the paper was used for evaluation of explosive pressure resistance of industrial doors and windows.

  20. Heat transfer characteristics of igniter output plumes

    Science.gov (United States)

    Evans, N. A.; Durand, N. A.

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T(sub w), using commercially available, fast response (10 microsec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T(sub w) and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T(sub w) and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature.

  1. The effect of charge mixture ratio and particle size on igniter plume heat transfer characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, N.A.; Brezowski, C.F.

    1990-01-01

    Investigation of the heat transfer characteristics of igniter output plumes, first reported at the Fourteenth International Pyrotechnics Seminar in 1989, has continued, using two types of igniter to determine the effect of charge mixture ratio and fuel particle size on performance. While both of these igniters had the same metallic closure disc (scored Hastelloy with a capture cone), the bridgewire sensitizer (or ignition mixture) was barium styphnate for one type, and a particular blend of fine particle titanium/potassium perchlorate ( PB'') for the other type. The output mixture for both types was titanium/potassium perchlorate; two mixture ratios (33/67 and 41/59), and two titanium particle sizes (2 and 8 {mu}m) were used. The results show that, for both types of igniter, the coarse particle size titanium produced the best performance. The overall best performance was obtained from the igniter using the PB'' ignition mixture and an output charge of 41/59 titanium/potassium perchlorate. 2 refs., 6 figs., 1 tab.

  2. Heat transfer characteristics of igniter output plumes

    Energy Technology Data Exchange (ETDEWEB)

    Evans, N.A.; Durand, N.A.

    1989-01-01

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T/sub w/, using commercially available, fast response (10 /mu/sec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T/sub w/ and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T/sub w/ and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature. 3 refs., 8 figs., 1 tab.

  3. Burn Rate Studies of a Titanium-Based Ptrotechnic Smoke Composition

    Directory of Open Access Journals (Sweden)

    A. G. Rajendran

    2000-04-01

    Full Text Available A pyrotechnic smoke composition producing titanium tetrachloride (TiCl4 as one of the major reaciion products hasj been studied. The composition consists of titanium metal powder, hexachloroethae (C2CI6, potassium perchlorate (KCIO4 and titanium dioxide (TiO2/zinc oxide (ZnO. PyrotFcHnic aluminium was added. in small percentages to tailor the burn rate. The effect of percentage variation of KClO4. TiO21 ZnO. titanium and aluminium on the burn rate has beeninvestigated. While, the burn rate decreases as the percentage of TiO2/ZnO increases, it reaches a maximum as the percentage of KCIO4 is successively increased, but falls off on further increase. Thismaximum has been first fixbd by studying the tricomponent system containing no oxide. It corresponds td 25 per cent KClO4. Successive additions of C2Cl6 and ZnO in 1 :3 mol ratio or C2Cl6and TiO2 in 2:3 mol ratio lead to cooler compositions that burn smoothly without much flame and at lower temperatures. (Compositions containing less than 5 per cent titanium is difficult to ignite. Similarly, addition of excess titanium or small quantities of alljminium to the composition is found to increase the burn rate.

  4. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    Science.gov (United States)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  5. The Alpha-Proton-X-ray Spectrometer deployment mechanism: An anthropomorphic approach to sensor placement on Martian rocks and soil

    Science.gov (United States)

    Blomquist, Richard S.

    1995-01-01

    On July 4,1997, the Mars Pathfinder spacecraft lands on Mars and starts conducting technological and scientific experiments. One experiment, the Alpha-Proton-X-ray Spectrometer, uses a sensor head placed against rocks and soil to determine their composition. To guarantee proper placement, a deployment mechanism mounted on the Mars Rover aligns the sensor head to within 20 deg of the rock and soil surfaces. In carrying out its task, the mechanism mimics the action of a human hand and arm. Consisting of a flexible wrist, a parallel link arm, a brush dc motor actuator, and a revolutionary non-pyrotechnic fail-safe release device, the mechanism correctly positions the sensor head on rocks as high as 0.29 m and on targets whose surfaces are tilted as much as 45 deg from the nominal orientation of the sensor head face. The mechanism weighs less than 0.5 kg, can withstand 100 g's, and requires less than 2.8 N x m of actuation torque. The fail-safe coupler utilizes Cerrobend, a metal alloy that melts at 60 C, to fuse the actuator and the rest of the mechanism together. A film heater wrapped around the coupler melts the metal, and Negator springs drive the mechanism into its stowed position. The fail-safe actuates using 6.75 Watts for 5 minutes in the event of an actuator failure.

  6. Thermomechanical Impact of Polyurethane Potting on Gun Launched Electronics

    Directory of Open Access Journals (Sweden)

    A. S. Haynes

    2013-01-01

    Full Text Available Electronics packages in precision guided munitions are used in guidance and control units, mission computers, and fuze-safe-and-arm devices. They are subjected to high g-loads during gun launch, pyrotechnic shocks during flight, and high g-loads upon impact with hard targets. To enhance survivability, many electronics packages are potted after assembly. The purpose of the potting is to provide additional structural support and shock damping. Researchers at the US Army recently completed a series of dynamic mechanical tests on a urethane-based potting material to assess its behavior in an electronics assembly during gun launch and under varying thermal launch conditions. This paper will discuss the thermomechanical properties of the potting material as well as simulation efforts to determine the suitability of this potting compound for gun launched electronics. Simulation results will compare stresses and displacements for a simplified electronics package with and without full potting. An evaluation of the advantages and consequences of potting electronics in munitions systems will also be discussed.

  7. Self-triggering reaction kinetics between nitrates and aluminium powder

    Energy Technology Data Exchange (ETDEWEB)

    Demichela, Micaela [SAfeR-Centro Studi su Sicurezza Affidabilita e Rischi, Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, I 10129 Torino (Italy)], E-mail: micaela.demichela@polito.it

    2007-09-05

    During the night between the 19 and 20 September 2003, a loud explosion occurred at about 3 km from the town of Carignano that was clearly heard at a distance of some tens of kilometres. The explosion almost completely destroyed most of the laboratories of the Panzera Company that were used for the production of fireworks. The results of the research activities that were carried out using a differential scanning calorimeter (DSC) on the same raw materials that made up the pyrotechnical mixture that exploded are reported in this paper. This activity was carried out to identify the dynamics of the accident. It proved possible to verify how the event was produced because of a slow exothermic reaction which, after about 8 h, caused the self-triggering of 120 kg of finished product. The detonation can therefore be put down to a runaway reaction in the solid phase, whose primogenial causes can be attributed to a still craftsman type production system, not conformed to the rigorous controls and inspections as those required by a safety management system for major risk plants, as the Panzera Company was.

  8. Low-Impact Mating System for Docking Spacecraft

    Science.gov (United States)

    Lewis, James L.; Robertson, Brandan; Carroll, Monty B.; Le, Thang; Morales, Ray

    2008-01-01

    A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft. The operational characteristics of the mating system can be easily configured in software, during operation, to enable mating of spacecraft having various masses, center-of-gravity offsets, and closing velocities. The system design provides multi-fault tolerance for critical operations: for example, to ensure unmating at a critical time, a redundant unlatching mechanism and two independent pyrotechnic release subsystems are included.

  9. Real-time estimation of projectile roll angle using magnetometers: in-lab experimental validation

    Science.gov (United States)

    Changey, S.; Pecheur, E.; Wey, P.; Sommer, E.

    2013-12-01

    The knowledge of the roll angle of a projectile is decisive to apply guidance and control law. For example, the goal of ISL's project GSP (Guided Supersonic Projectile) is to change the flight path of an airdefence projectile in order to correct the aim error due to the target manoeuvres. The originality of the concept is based on pyrotechnical actuators and onboard sensors which control the angular motion of the projectile. First of all, the control of the actuators requires the precise control of the roll angle of the projectile. To estimate the roll angle of the projectile, two magnetometers are embedded in the projectile to measure the projection of the Earth magnetic field along radial axes of the projectiles. Then, an extended Kalman filter (EKF) is used to compute the roll angle estimation. As the rolling frequency of the GSP is about 22 Hz, it was easy to test the navigation algorithm in laboratory. In a previous paper [1], the In-Lab demonstration of this concept showed that the roll angle estimation was possible with an accuracy of about 1◦ . In this paper, the demonstration is extended to high-speed roll rate, up to 1000 Hz. Thus, two magnetometers, a DSP (Digital Signal Processor) and a LED (Light Eminent Diode), are rotated using a pneumatic motor; the DSP runs an EKF and a guidance algorithm to compute the trigger times of the LED. By using a high-speed camera, the accuracy of the method can be observed and improved.

  10. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks

    Energy Technology Data Exchange (ETDEWEB)

    Rességuier, T. de, E-mail: resseguier@ensma.fr [Institut PPRIME, UPR 3346, CNRS, ENSMA, Université de Poitiers, 1 ave. Clément Ader, 86961 Futuroscope Cedex (France); Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-01-28

    When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.

  11. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks

    Science.gov (United States)

    de Rességuier, T.; Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P.

    2014-01-01

    When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.

  12. NASA Tech Briefs, June 2009

    Science.gov (United States)

    2009-01-01

    Topics covered include: Device for Measuring Low Flow Speed in a Duct, Measuring Thermal Conductivity of a Small Insulation Sample, Alignment Jig for the Precise Measurement of THz Radiation, Autoignition Chamber for Remote Testing of Pyrotechnic Devices, Microwave Power Combiners for Signals of Arbitrary Amplitude, Synthetic Foveal Imaging Technology, Airborne Antenna System for Minimum-Cycle-Slip GPS Reception, Improved Starting Materials for Back-Illuminated Imagers, Multi-Modulator for Bandwidth-Efficient Communication, Some Improvements in Utilization of Flash Memory Devices, GPS/MEMS IMU/Microprocessor Board for Navigation, T/R Multi-Chip MMIC Modules for 150 GHz, Pneumatic Haptic Interfaces, Device Acquires and Retains Rock or Ice Samples, Cryogenic Feedthrough Test Rig, Improved Assembly for Gas Shielding During Welding or Brazing, Two-Step Plasma Process for Cleaning Indium Bonding Bumps, Tool for Crimping Flexible Circuit Leads, Yb14MnSb11 as a High-Efficiency Thermoelectric Material, Polyimide-Foam/Aerogel Composites for Thermal Insulation, Converting CSV Files to RKSML Files, Service Management Database for DSN Equipment, Chemochromic Hydrogen Leak Detectors, Compatibility of Segments of Thermoelectric Generators, Complementary Barrier Infrared Detector, JPL Greenland Moulin Exploration Probe, Ultra-Lightweight Self-Deployable Nanocomposite Structure for Habitat Applications, and Room-Temperature Ionic Liquids for Electrochemical Capacitors.

  13. An assessment of post-remediation changes in sediment chemistry partitioning in an S/S treated soil.

    Science.gov (United States)

    Cutter, S.; MacLeod, C. L.; Canning, K.; Carey, P. J.; Hills, C. D.

    2003-04-01

    The Astra Pyrotechnics plant located in the Dartford Marshes, Kent, UK was the site of a field trial utilizing cement stabilization/solidification (S/S) in September 2000. A hotspot containing 35% copper and several thousand part per million lead and zinc was treated in order to trial an new form of cement stabilization (accelerated carbonation technology or ACT) developed by the Centre for Contaminated Land Remediation. A 10 by 20 meter plot was divided into 4 cells into which untreated, OPC (ordinary Portland cement) treated, Envirocem (a Lafarge special cement) treated and ACT treated soil was placed. Each cell has a leachate collection system and the leachate is monitored monthly. In August 2003, 24 cm cores were collected from each cell. These cores were analysed to determine changes in sediment chemistry and metal partitioning characteristics. Sediment chemistry was determined using an aqua regia digestion followed by ICP OES analysis. The CISMED extraction procedure was used to examine partitioning changes. The contaminant concentrations in the leachates remain below UK drinking water standards. However, seasonal cyclicity is observed with an increase of metals in the leachates during winter months. The sediment cores were analysed for Ca, Cr, Cu, Fe, K, Mn, Mg, Na, Ni, Pb and Zn. Only the untreated cell showed any discernable changes in metal concentration with depth. The S/S treated cells show no trends although differences in partitioning between the cells is observed.

  14. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    Science.gov (United States)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2016-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  15. NOAA Satellites Provide a Keen View of the Martin Luther King Solar Storm of January 2005

    Science.gov (United States)

    Wilkinson, D. C.; Allen, J. H.

    2005-05-01

    Solar active region 0720 rotated onto the east limb on January 10th and put on a pyrotechnic display uncharacteristic for this phase of the solar cycle before disappearing beyond the west limb on January 23rd. On January 15th this region released the first of five X-class solar flares. The last of those flares, January 20th, was associated with an extraordinary ion storm whose effect reached Earth's surface. This paper highlights the record of this event made by NOAA's GOES satellites via their Space Environment Monitor (SEM) subsystems that measures X-ray, energetic particles, and the magnetic field vector at the satellite. Displays of those data are supplemented by neutron monitor data to illustrate their relationship to the January 20th Ground Level Event. GOES-12 is also equipped with the Solar X-ray Imager (SXI) that produces an image of the Sun in X-ray wavelengths once per minute. Movies created from those data perfectly illustrate the cause-and-effect relationship between intense solar activity and satellite disruptions. The flares on January 17th and 20th are closely followed by noise in the SXI telescope resulting from energetic ions penetrating SXI. Ions with sufficient velocity and atomic number can penetrate satellite components and deposit charge along their path. Sufficient charge deposition can introduce erroneous information into solid-state devices. A survey of satellites that experienced problems of this type during this event will also be presented.

  16. Effects of Near Field Pyroshock on the Performance of a Nitramine Nitrocellulose Propellant

    Science.gov (United States)

    Baca, Arcenio B.

    2016-01-01

    The overall purpose of this study is to investigate the effects of a pyroshock environment on the performance characteristics of a propellant used in pyrotechnic devices such as guillotine cutters. Near field pyroshock which is defined by acceleration amplitudes in excess of 10,000g at a frequency of greater than 10,000 Hz is a highly transient environment that has a known potential to cause failure in both structural and electronic components. A heritage pressure cartridge assembly which uses a nitramine nitrocellulose propellant with a known performance baseline will be exposed to a near field pyroshock event. The pressure cartridge will then be fired in an ambient closed bomb firing to collect pressure time history. The two performance characteristics that will be evaluated are the pressure amplitude and time to peak pressure. This data will be compared to the base-lined ambient closed bomb data to evaluate the effects of the shock on the performance of the propellant. It is expected that the pyroshock environment will cause brittle failures of the propellant increasing the surface area of said propellant. This increase of surface area should result in increased combustion rate which should show as an increased pressure peak and decreased time to peak pressure in the pressure time data.

  17. Environmental and health effects review for obscurant graphite flakes. Final report, 1991 July--1993 May

    Energy Technology Data Exchange (ETDEWEB)

    Driver, C.J.; Ligotke, M.W.; Landis, W.G.; Downs, J.L.; Tiller, B.L.; Moore, E.B. Jr.; Cataldo, D.A.

    1993-07-01

    The health and environmental effects of obscurant graphite flakes were reviewed and compared to predicted levels of graphite flake material in the field during typical testing and training scenarios. Graphite flake dispersion and deposition for simulated mechanical and pyrotechnic releases were determined using a modified Gaussian atmospheric plume-dispersion model. The potential for wind resuspension of graphite flakes is controlled by weathering processes and incorporation rates in soil. Chemically, graphite flakes pose little risk to aquatic or terrestrial systems. Mechanical damage to plants and invertebrate and vertebrate organisms from the flakes is also minimal. In humans, the pathological and physiological response to inhaled graphite flake is similar to that induced by nuisance dusts and cause only transient pulmonary changes. Repeated exposure to very high concentrations (such as those near the source generator) may overwhelm the clearance mechanisms of the lung and result in pulmonary damage from the retained particles in unprotected individuals. However, these lesions either resolve with time or are of limited severity. Health effects of mixed aerosols of mixed aerosols of graphite and fog oil are similar to those produced by graphite flakes alone. Environmental impacts of fog oil-coated graphite flakes are not well known.

  18. NASA Tech Briefs, December 2010

    Science.gov (United States)

    2010-01-01

    Topics include: Coherent Frequency Reference System for the NASA Deep Space Network; Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers; 180-GHz I-Q Second Harmonic Resistive Mixer MMIC; Ultra-Low-Noise W-Band MMIC Detector Modules; 338-GHz Semiconductor Amplifier Module; Power Amplifier Module with 734-mW Continuous Wave Output Power; Multiple Differential-Amplifier MMICs Embedded in Waveguides; Rapid Corner Detection Using FPGAs; Special Component Designs for Differential-Amplifier MMICs; Multi-Stage System for Automatic Target Recognition; Single-Receiver GPS Phase Bias Resolution; Ultra-Wideband Angle-of-Arrival Tracking Systems; Update on Waveguide-Embedded Differential MMIC Amplifiers; Automation Framework for Flight Dynamics Products Generation; Product Operations Status Summary Metrics; Mars Terrain Generation; Application-Controlled Parallel Asynchronous Input/Output Utility; Planetary Image Geometry Library; Propulsion Design With Freeform Fabrication (PDFF); Economical Fabrication of Thick-Section Ceramic Matrix Composites; Process for Making a Noble Metal on Tin Oxide Catalyst; Stacked Corrugated Horn Rings; Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator; Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator; Strain System for the Motion Base Shuttle Mission Simulator; Ko Displacement Theory for Structural Shape Predictions; Pyrotechnic Actuator for Retracting Tubes Between MSL Subsystems; Surface-Enhanced X-Ray Fluorescence; Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data; and Slopes To Prevent Trapping of Bubbles in Microfluidic Channels.

  19. Selected Lessons Learned in Space Shuttle Orbiter Propulsion and Power Subsystems

    Science.gov (United States)

    Hernandez, Francisco J.; Martinez, Hugo; Ryan, Abigail; Westover, Shayne; Davies, Frank

    2011-01-01

    Over its 30 years of space flight history, plus the nearly 10 years of design, development test and evaluation, the Space Shuttle Orbiter is full of lessons learned in all of its numerous and complex subsystems. In the current paper, only selected lessons learned in the areas of the Orbiter propulsion and power subsystems will be described. The particular Orbiter subsystems include: Auxiliary Power Unit (APU), Hydraulics and Water Spray Boiler (WSB), Mechanical Flight Controls, Main Propulsion System (MPS), Fuel Cells and Power Reactant and Storage Devices (PRSD), Orbital Maneuvering System (OMS), Reaction Control System (RCS), Electrical Power Distribution (EPDC), electrical wiring and pyrotechnics. Given the complexity and extensive history of each of these subsystems, and the limited scope of this paper, it is impossible to include most of the lessons learned; instead the attempt will be to present a selected few or key lessons, in the judgment of the authors. Each subsystem is presented separate, beginning with an overview of the hardware and their function, a short description of a few historical problems and their lessons, followed by a more comprehensive table listing of the major subsystem problems and lessons. These tables serve as a quick reference for lessons learned in each subsystem. In addition, this paper will establish common lessons across subsystems as well as concentrate on those lessons which are deemed to have the highest applicability to future space flight programs.

  20. Flat H Frangible Joint Evolution

    Science.gov (United States)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same

  1. Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems

    Science.gov (United States)

    Strittmatter, Joachim; Gümpel, Paul

    2011-07-01

    In automotive a lot of electromagnetically, pyrotechnically or mechanically driven actuators are integrated to run comfort systems and to control safety systems in modern passenger cars. Using shape memory alloys (SMA) the existing systems could be simplified, performing the same function through new mechanisms with reduced size, weight, and costs. A drawback for the use of SMA in safety systems is the lack of materials knowledge concerning the durability of the switching function (long-time stability of the shape memory effect). Pedestrian safety systems play a significant role to reduce injuries and fatal casualties caused by accidents. One automotive safety system for pedestrian protection is the bonnet lifting system. Based on such an application, this article gives an introduction to existing bonnet lifting systems for pedestrian protection, describes the use of quick changing shape memory actuators and the results of the study concerning the long-time stability of the tested NiTi-wires. These wires were trained, exposed up to 4 years at elevated temperatures (up to 140 °C) and tested regarding their phase change temperatures, times, and strokes. For example, it was found that A P-temperature is shifted toward higher temperatures with longer exposing periods and higher temperatures. However, in the functional testing plant a delay in the switching time could not be detected. This article gives some answers concerning the long-time stability of NiTi-wires that were missing till now. With this knowledge, the number of future automotive applications using SMA can be increased. It can be concluded, that the use of quick changing shape memory actuators in safety systems could simplify the mechanism, reduce maintenance and manufacturing costs and should be insertable also for other automotive applications.

  2. United States Navy - Canadian forces solid state flight data recorder/crash position locator experiment on the B-720 controlled impact demonstration

    Science.gov (United States)

    Watters, D. M.

    1986-01-01

    The operation of a radio beacon position locator during and after the remotely controlled transport aircraft is discussed. The radio beacon transmission was actuated and was picked up by the Navy P-3A chase aircraft for a short time, after which reception was lost. The pilot reported that he received a signal on both 121.5 MHz and 243 MHz for a period of approximately 5 seconds. Five minutes after the crash a portable direction finding unit located on the roof of the NASA Dryden Flight Research Facility, 4 miles distant from the crash, was unable to pick up the beacon transmission. The fire crews started fighting the fires approximately 90 seconds after the time of impact. Navy personnel access to the crash site was allowed on the morning of December 2, 1984. Radio beacon locator was found resting top side up, 15 feet forward and 13 feet perpendicular from the tray location the starboard side of the aircraft. An immediate inspection indicated the airfoil suffered moderate fire damage with paint peeling but not intumescing. The visual marker strobe lamp housings were intact but extensively burned such that it was impossible to see if the lamps had survived. The airfoil suffered minor structural damage, with assorted dents, etc. The extended plunger on the ARU-21 release unit indicated that the pyrotechnic deployment system operated. The radio beacon base (tray) suffered some heat and fire damage, and was charred and blackened by smoke. The frangible switch in the nose survived and the switch in the belly was recovered and found to have actuated. It is assumed that this switch fired the ARU-21 squib. There were no other release switches installed in the normally open system in the aircraft.

  3. Investigating Premature Ignition of Thruster Pressure Cartridges by Vibration-Induced Electrostatic Discharge

    Science.gov (United States)

    Woods, Stephen S.; Saulsberry, Regor

    2010-01-01

    Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. Nondestructive evaluation (NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the ESD evaluation and a separate paper addresses the impact problem. A challenge to straight forward assessment existed due to the unavailability of triboelectric data characterizing the static charging characteristics of the propellants within the TPC. The approach examined the physical limitations for charge buildup within the TPC system geometry and evaluated it for discharge under simulated vibrations used to qualify components for launch. A facsimile TPC was fabricated using SS 301 for the case and surrogate worst case materials for the propellants based on triboelectric data. System discharge behavior was evaluated by applying high voltage to the point of discharge in air and by placing worst case charge accumulations within the facsimile TPC and forcing discharge. The facsimile TPC contained simulated propellant grains and lycopodium, a well characterized indicator for static discharge in dust explosions, and was subjected to accelerations equivalent to the maximum accelerations possible during launch. The magnitude of charge generated within the facsimile TPC system was demonstrated to lie in a range of 100 to 10,000 times smaller than the spark energies measured to ignite propellant grains in industry standard discharge tests. The test apparatus, methodology, and results are described in

  4. Melting experiments and field work on Komornı´ Hùrka volcano, Bohemia, by Johann Wolfgang von Goethe

    Science.gov (United States)

    Horn, Susanne; Kreher-Hartmann, Birgit; Heide, K.

    2001-09-01

    Johann Wolfgang von Goethe (1749-1832), eminent author, was also state minister and scientist as well as experimentalist in geology. Together with Döbereiner, a chemist in Jena during that time, he carried out melting experiments in porcelain and pottery kilns with rocks and minerals from the volcanic and pseudo-volcanic edifices in NW Bohemia. These experiments were to prove Goethe's theory, that remelting of an archetype rock would result in volcanic and pseudo-volcanic rocks. Especially the formation of the Komornı´ Hùrka (Kammerberg) volcano in NW Bohemia attracted Goethe during all his life. He visited this location 19 times in 1808, 1820 and 1822 and made very exact field observations. But the interpretation of these observations varied between volcanistic and neptunistic. In order to find arguments, he examined the effect of fire on rocks and minerals using porcelain and pottery kilns. The experiments did not provide the expected results and thus failed to explain the formation of Komornı´ Hùrka. During Goethe's geognostic work, including the "pyro-technical" experiments, the neptunism-volcanism-controversy about the formation of basalt raged in Europe, and, more general, about rock formation: neptunism-plutonism. Especially the effect of heat on rocks and minerals, i.e. the phenomenology of fire, played an important role in that discussion. Goethe swayed during his lifetime between neptunism and volcanism. He did not fully accept plutonism because he believed, that processes of nature are generally non-violent and that volcanic eruptions and other catastrophic phenomena are the exception rather than the rule. Therefore he tended to neptunistic ideas. In Goethe's notes there are many indications of this conflict. In contrast, the melting experiments are mentioned only few times. It was, however, possible to establish a picture of his experimental work and his fundamental concepts and ideas.

  5. Liquid Oxygen/Liquid Methane Test Summary of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility

    Science.gov (United States)

    Melcher, John C., IV; Allred, Jennifer K.

    2009-01-01

    Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.

  6. Unimolecular decomposition of 5-aminotetrazole and its tautomer 5-iminotetrazole: new insight from isopotential searching.

    Science.gov (United States)

    Paul, Kristian W; Hurley, Margaret M; Irikura, Karl K

    2009-03-19

    Aminotetrazole compounds have become attractive ingredients in gas generating compositions, solid rocket propellants, and green pyrotechnics. Therefore, a fundamental understanding of their thermal decomposition mechanisms and thermodynamics is of great interest. In this study, the specular reflection isopotential searching method was used to investigate the unimolecular decomposition mechanisms of 5-iminotetrazole (5-ITZ), 1H-5-aminotetrazole (1H-5-ATZ), and 2H-5-aminotetrazole (2H-5-ATZ). Subsequent thermochemical analysis of the unimolecular decomposition pathways was performed at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(3df,3pd) level of theory. Based upon the relative reaction barriers predicted in this study, the initial gaseous products of 5-ITZ unimolecular decomposition are HN(3) and NH(2)CN (calculated activation barrier equal to 199.5 kJ/mol). On the other hand, the initial gaseous products of 1H-5-ATZ and 2H-5-ATZ unimolecular decomposition are predicted to be N(2) and metastable CH(3)N(3) (calculated activation barriers equal to 169.2 and 153.7 kJ/mol, respectively). These predicted unimolecular decomposition products and activation barriers are in excellent agreement with thermal decomposition experiments performed by Lesnikovich et al. [Lesnikovich, A. I.; Ivashkevich, O. A.; Levchik, S. V.; Balabanovich, A. I.; Gaponik, P. N.; Kulak, A. A. Thermochim. Acta 2002, 388, 233], in which the apparent activation barriers were measured to be approximately 200 and 150 kJ/mol, respectively, for 5-ITZ and 1H-5-ATZ/2H-5-ATZ.

  7. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  8. Formulation and Performance of Novel Energetic Nanocomposites and Gas Generators Prepared by Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Clapsaddle, B J; Zhao, L; Prentice, D; Pantoya, M L; Gash, A E; Satcher Jr., J H; Shea, K J; Simpson, R L

    2005-03-24

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing nanostructured metal oxide materials. By introducing a fuel metal, such as aluminum, into the nanostructured metal oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Due to the versatility of the preparation method, binary oxidizing phases can also be prepared, thus enabling a potential means of controlling the energetic properties of the subsequent nanocomposites. Furthermore, organic additives can also be easily introduced into the nanocomposites for the production of nanostructured gas generators. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its micro-scale counterparts due to the expected increase of mass transport rates between the reactants. The unique synthesis methodology, formulations, and performance of these materials will be presented. The degree of control over the burning rate of these nanocomposites afforded by the compositional variation of a binary oxidizing phase will also be discussed. These energetic nanocomposites have the potential for releasing controlled amounts of energy at a controlled rate. Due to the versatility of the synthesis method, a large number of compositions and physical properties can be achieved, resulting in

  9. Determination of geohydrologic framework and extent of d- water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey

    Science.gov (United States)

    Lacombe, Pierre

    1986-01-01

    Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)

  10. Upravljanje rizicima u proizvodnji naoružanja i vojne opreme/Risk management in the production of weapons and military equipment

    Directory of Open Access Journals (Sweden)

    Danko M. Jovanović

    2010-01-01

    Full Text Available U radu je objašnjen pojam rizika i upravljanja rizikom u specifičnim uslovima proizvodnje naoružanja i vojne opreme (NVO. Analizirane su glavne karakteristike eksplozivnih materija, koje izazivaju najveće rizike u proizvodnji NVO. Razrađene su faze u procesu upravljanja rizicima, kao i metode upravljanja rizikom. Zaključeno je da je pri upravljanju rizicima presudan uticaj menadžmenta kompanije da rizike dovede u prihvatljive okvire. (The paper discusses the notions of risk and risk management in specific conditions of the production of weapons and military equipment (MWE. The main characteristics of explosive materials, the most frequent risk sources in the production of MWE, have been analyzed as well as the phases in the risk management process and the risk management methods. Introduction Risk is nowadays considered as a serious economical, public and political issue. Risk management enables identification and control of uncertainty varieties in order to avoid or reduce them by offering alternative activity routes to decision-makers. The production and application of modern WME involves handling hazardous materials and imposes needs for safety measures. Particularities of the WME production Explosive materials for military goods cause the greatest risks in production and charging as well as in storage and use. They consist of explosives, gunpowder, rocket propellants (solid and liquid, liquid oxidizers of rocket propellants and pyrotechnic mixtures. Reducing risks in production to an acceptable level The key of successful risk management is a clear definition of a risk assessing domain s well as the identification and characterization of potential threats. The risk management process consists of the following phases: risk identification, risk analysis, risk assessment, procedures in risk occurrences and the risk control of required measures. Conclusion The management of each company has a key role in risk management, reducing risks to

  11. Effect of fireworks on ambient air quality in Malta

    Science.gov (United States)

    Camilleri, Renato; Vella, Alfred J.

    2010-11-01

    Religious festivals ( festas) in the densely populated Maltese archipelago (Central Mediterranean) are ubiquitous during summer when 86 of them are celebrated between June and October, each involving the burning of fireworks both in ground and aerial displays over a period of 3 days or longer per festival. We assessed the effect of fireworks on the air quality by comparing PM 10 and its content of Al, Ba, Cu, Sr and Sb which materials are used in pyrotechnic compositions. PM 10 was collected mainly from two sites, one in Malta (an urban background site) and the other in Gozo (a rural site) during July-August 2005 when 59 feasts were celebrated and September-October 2005 when only 11 feasts occurred. For both Malta and Gozo, PM 10 and metal concentration levels measured as weekly means were significantly higher during July-August compared to September-October and there exist strong correlations between PM 10 and total metal content. Additionally, for Malta dust, Al, Ba, Cu and Sr correlated strongly with each other and also with total concentration of all five metals. The same parameters measured in April 2006 in Malta were at levels similar to those found in the previous October. Ba and Sb in dust from the urban background site in Malta during July-August were at comparable or higher concentration than recently reported values in PM 10 from a heavily-trafficked London road and this suggests that these metals are locally not dominated by sources from roadside materials such as break liner wear but more likely by particulate waste from fireworks. Our findings point to the fact that festa firework displays contribute significantly and for a prolonged period every year to airborne dust in Malta where PM 10 is an intractable air quality concern. The presence in this dust of elevated levels of Ba and especially Sb, a possible carcinogen, is of concern to health.

  12. Synthesis, Crystal Structure, Thermal Decomposition and Sensitivity Properties of (AIM)(HTNR) and (AIM)(PA)

    Institute of Scientific and Technical Information of China (English)

    TANG Zhan; YANG Li; QIAO Xiao-jing; WU Bi-dong; ZHANG Tong-lai; ZHOU Zun-ning; YU Kai-bei

    2012-01-01

    Two new energetic compounds (AIM)(HTNR) and (AIM)(PA)(AIM=2-azidoimidazole,TNR=2,4,6-trinitroresorcinol,PA=picric acid) have been prepared by AIM(2-azidoimidazolium) and TNR(2,4,6-trinitroresorcinol) or PA(picric acid) and characterized by elemental analysis and FTIR spectrum.Their crystal structures were determined by X-ray single-crystal diffraction analysis.The obtained results show that (AIM)(HTNR) crystal belongs to monoclinic,P2(1)/c space group,a=1.1306(2) nm,b=0.70305(14) nm,c=1.7398(4) nm,β=106.91°,V=1.3231(5) nm3,Dc=1.778 g/cm3,Z=4,R1=0.0524,wR2[I>2σ(I)]=0.1067 and S=1.092 and (AIM)(PA) crystal belongs to monoclinic P21/c space group,a=0.80303(16) nm,b=0.81395(16) nm,c=2.0471(4) nm,β=93.93(3)°,V=1.3349(5) nm3,Dc=1.683g/cm3,Z=4,R1=0.0784,wR2[I>2σ(I)]=0.1814 and S=1.098.Both the compounds have electrostatic attraction and hydrogen bonds,which contribute to making the constructions more stable.The decomposition of the two compounds was studied via differential scanning calorimetry(DSC) and thermogravimetry-derivative thermogravimetry(TG-DTG)techniques at a heating rate of 10 ℃/min,and the results show that both the compounds underwent one intensive exothermic decomposition stage.Sensitivity tests reveal that the title compounds were insensitive to friction and impact and sensitive to flame and could be applied in potential pyrotechnics.

  13. BNCP在雷管中的应用技术研究%Application Technology of Tetraamminebis (5-nitrotetrazolato) cobalt(Ⅲ)Perchlorate(BNCP) in Detonators

    Institute of Scientific and Technical Information of China (English)

    盛涤伦; 吕巧莉; 朱雅红; 蒲彦利; 李钊鑫

    2011-01-01

    In order to speeding the application of tetraamminebis (5-nitrotetrazolato) cobalt(Ⅲ) perchlorate(BNCP) in the weapon, the applying base technology in military detonators and performance characteristic analysis of BNCP were carried out In this paper, the typical data and specific results of structure character, heat performance, stability, compatibility, various sensitivity were given out Performances of loading technology were investigated and the explosion heat, gas specific volume, detonation velocity, exploding point and primary explosive safe characteristic of BNCP were tested and analyzed. Based on the test, the minimum initiating quantity, pressure withstanding ability of loading, hot wire sensitivity and application of BNCP in the flame and hot wire detonator were studied. It showed that BNCP could be substituted for lead azide and lead styphnate in most military pyrotechnics.%为推进新型安全钝感起爆药BNCP的军事应用,开展了BNCP在雷管中的应用基础技术研究和性能特征分析.给出了BNCP的结构表征、热性能、安定性、相容性、各种感度性能的典型数据和特点,研究了BNCP的装药工艺性能,测试与分析了BNCP的爆热、比容、爆速、爆发点和“准起爆药”的安全特征,通过试验研究了BNCP的极限起爆药量、装药耐压性、桥丝起爆感度及在军用火焰雷管、桥丝雷管中的应用.结果表明:BNCP可以代替叠氮化铅、斯蒂芬酸铅应用于大多数火焰、桥丝等军用火工品中.

  14. The use of MAVIS II to integrate the modeling and analysis of explosive valve interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ng, R.; Kwon, D.M.

    1998-12-31

    The MAVIS II computer program provides for the modeling and analysis of explosive valve interactions. This report describes the individual components of the program and how MAVIS II is used with other available tools to integrate the design and understanding of explosive valves. The rationale and model used for each valve interaction is described. Comparisons of the calculated results with available data have demonstrated the feasibility and accuracy of using MAVIS II for analytical studies of explosive valve interactions. The model used for the explosive or pyrotechnic used as the driving force in explosive valves is the most critical to be understood and modeled. MAVIS II is an advanced version that incorporates a plastic, as well as elastic, modeling of the deformations experienced when plungers are forced into a bore. The inclusion of a plastic model has greatly expanded the use of MAVIS for all categories (opening, closure, or combined) of valves, especially for the closure valves in which the sealing operation requires the plastic deformation of either a plunger or bore over a relatively large area. In order to increase its effectiveness, the use of MAVIS II should be integrated with the results from available experimental hardware. Test hardware such as the Velocity Interferometer System for Any Reflector (VISAR) and Velocity Generator test provide experimental data for accurate comparison of the actual valve functions. Variable Explosive Chamber (VEC) and Constant Explosive Volume (CEV) tests are used to provide the proper explosive equation-of-state for the MAVIS calculations of the explosive driving forces. The rationale and logistics of this integration is demonstrated through an example. A recent valve design is used to demonstrate how MAVIS II can be integrated with experimental tools to provide an understanding of the interactions in this valve.

  15. A High Temperature Hermetic Primer and a Variable Spring Tester

    Energy Technology Data Exchange (ETDEWEB)

    Begeal, D.R.

    1994-05-01

    Percussion primers are used at Sandia to ignite energetic components such as pyrotechnic actuators and thermal batteries. This report describes a High Temperature Hermetic Primer (HTHP) that was developed to replace a previous G16 Percussion Primer Subassembly (Gl6PPS). The ignition mix in these primers is the same as in the discontinued Remington 44G16 (KC1O{sub 3}, SbS{sub 3}, and Ca{sub 2}Si). The HTHP has nearly the same sensitivity as the 44G16 and a significantly lower sensitivity than the G16PPS. In parallel with the HTHP development, we also designed a Variable Spring Tester (VST) to determine percussion primer ignition sensitivity with firing pins that have the same mass as those used in field applications. The tester is capable of accelerating firing pins over a velocity range of 100 to 600 inches per second for pins weighing up to 6 grams. The desired impulse can be preselected with an accuracy of better than {plus_minus}1%. The actual impulse is measured on every shot. The VST was characterized using the WW42Cl primer, as well as with the G16PPS and the HTHP. Compared to data from conventional ball drop testers, we found that ignition sensitivities were lower and there was less scatter in the sensitivity data. Our experiments indicate that ignition sensitivity is not strictly energy dependent, but also depends on the rate of deposition, or firing pin velocity in this case. Development results for the HTHP and Variable Spring Tester are discussed and design details are shown.

  16. NASA Tech Briefs, March 2014

    Science.gov (United States)

    2014-01-01

    Topics include: Data Fusion for Global Estimation of Forest Characteristics From Sparse Lidar Data; Debris and Ice Mapping Analysis Tool - Database; Data Acquisition and Processing Software - DAPS; Metal-Assisted Fabrication of Biodegradable Porous Silicon Nanostructures; Post-Growth, In Situ Adhesion of Carbon Nanotubes to a Substrate for Robust CNT Cathodes; Integrated PEMFC Flow Field Design for Gravity-Independent Passive Water Removal; Thermal Mechanical Preparation of Glass Spheres; Mechanistic-Based Multiaxial-Stochastic-Strength Model for Transversely-Isotropic Brittle Materials; Methods for Mitigating Space Radiation Effects, Fault Detection and Correction, and Processing Sensor Data; Compact Ka-Band Antenna Feed with Double Circularly Polarized Capability; Dual-Leadframe Transient Liquid Phase Bonded Power Semiconductor Module Assembly and Bonding Process; Quad First Stage Processor: A Four-Channel Digitizer and Digital Beam-Forming Processor; Protective Sleeve for a Pyrotechnic Reefing Line Cutter; Metabolic Heat Regenerated Temperature Swing Adsorption; CubeSat Deployable Log Periodic Dipole Array; Re-entry Vehicle Shape for Enhanced Performance; NanoRacks-Scale MEMS Gas Chromatograph System; Variable Camber Aerodynamic Control Surfaces and Active Wing Shaping Control; Spacecraft Line-of-Sight Stabilization Using LWIR Earth Signature; Technique for Finding Retro-Reflectors in Flash LIDAR Imagery; Novel Hemispherical Dynamic Camera for EVAs; 360 deg Visual Detection and Object Tracking on an Autonomous Surface Vehicle; Simulation of Charge Carrier Mobility in Conducting Polymers; Observational Data Formatter Using CMOR for CMIP5; Propellant Loading Physics Model for Fault Detection Isolation and Recovery; Probabilistic Guidance for Swarms of Autonomous Agents; Reducing Drift in Stereo Visual Odometry; Future Air-Traffic Management Concepts Evaluation Tool; Examination and A Priori Analysis of a Direct Numerical Simulation Database for High

  17. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    Science.gov (United States)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  18. NASA Tech Briefs, August 2009

    Science.gov (United States)

    2009-01-01

    Topics covered include: Aligning a Receiving Antenna Array to Reduce Interference; Collecting Ground Samples for Balloon-Borne Instruments; Tethered Pyrotechnic Apparatus for Acquiring a Ground Sample; Enhanced Video-Oculography System; Joint Carrier-Phase Synchronization and LDPC Decoding; Dual-Polarization, Sideband-Separating, Balanced Receiver for 1.5 THz Modular Battery Charge Controller; Efficient Multiplexer FPGA Block Structures Based on G4FETs; VLSI Microsystem for Rapid Bioinformatic Pattern Recognition; Low-Noise Amplifier for 100 to 180 GHz; Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures; Inert Welding/Brazing Gas Filters and Dryers; Fabricating Copper Nanotubes by Electrodeposition; Reducing Aerodynamic Drag on Empty Open Cargo Vehicles; Rotary Percussive Auto-Gopher for Deep Drilling and Sampling; More About Reconfigurable Exploratory Robotic Vehicles; Thermostatic Valves Containing Silicone-Oil Actuators; Improving Heat Flux Performance of Flat Surface in Spray-Cooling Systems; Treating Fibrous Insulation to Reduce Thermal Conductivity; Silica-Aerogel Composites Opacified with La(sub0.7)Sr(sub0.3)MnO3; Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles; Ceramic Fiber Structures for Cryogenic Load-Bearing Applications; Elastomer Reinforced with Carbon Nanotubes; Biologically Inspired Purification and Dispersion of SWCNTs; A Technique for Adjusting Eigenfrequencies of WGM Resonators; Low-Pressure, Field-Ionizing Mass Spectrometer; Modifying Operating Cycles to Increase Stability in a LITS; Chamber for Simulating Martian and Terrestrial Environments; Algorithm for Detecting a Bright Spot in an Image; Extreme Programming: Maestro Style; Adaptive Behavior for Mobile Robots; Protocol for Communication Networking for Formation Flying; Planning Complex Sequences Using Compressed Representations; and Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors.

  19. High-performance nanothermite composites based on aloe-vera-directed CuO nanorods.

    Science.gov (United States)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2013-12-26

    In this work, we demonstrate the development of high-performance nanothermite composites derived from super-reactive CuO nanorods oxidizers fabricated by simple biogenic routes using Aloe vera plant extracts. Nanorods of various length scales have been realized via simple sonoemulsion and solid-state biosynthesis routes using Aloe vera gel as a green surfactant promoting the directional growth of CuO nanorods in both solid and emulsion phase. The biosynthesized CuO nanorods (oxidizers)/fuel (nanoaluminum) composites ignited vigorously with abundant gas generation, developing high heat of reaction of 1.66 kJ g(-1) and very high pressurization rate of around 1.09 MPa μs(-1) and peak pressure of 65.4 MPa when blasted inside a constant volume pressure cell with a charge density of 0.2 g cm(-3). The pressurization rates so obtained are four times higher with twice the peak pressure in comparison to such nanothermites formulated via other available state of the art wet-chemical techniques, which reflects the catalytic role of Aloe vera surface functional groups (A. vera-sfg) enhancing the reactivity of CuO oxidizers with excess gas release rate during exothermic reaction with nanoaluminum. Through this work, Aloe vera gel has for the first time been identified as a novel biotemplate for green synthesis of nanorod structures of metal oxides, and we have also studied the utility of A. vera-sfg in the creation of super-reactive CuO oxidizers producing excellent heat of reaction and dynamic pressure characteristics as demanded in propellants, explosives, and pyrotechnics.

  20. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    Science.gov (United States)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  1. Improved self-protection using dynamically optimized expendable countermeasures

    Science.gov (United States)

    Hovland, Harald

    2007-04-01

    The use of expendable countermeasures is still found to be a viable choice for self protection against Man Portable Air Defense Systems (MANPADS) due to their simplicity, low cost, flexibility, recent improvements in decoy technology, the ability to handle multiple threats simultaneously and the off-board nature of these countermeasures. In civil aviation, the risk of general hazards linked to the use of pyrotechnics is the main argument against expendable countermeasures, whereas for military platforms, the limitation in capacity due to a limited number of rounds is often used as an argument to replace expendable countermeasures by laser-based countermeasures. This latter argument is in general not substantiated by modelling or figures of merit, although it is often argued that a laser based system allows for more false alarms, hence enabling a more sensitive missile approach warning system. The author has developed a model that accounts for the statistical effects of running out of expendable countermeasures during a mission, in terms of the overall mission survival probability. The model includes key parameters of the missile approach warning system (MAWS), and can handle multiple missile types and missile attack configurations, as well as various statistical models of missile attacks. The model enables quantitative comparison between laser based and expendable countermeasures, but also a dynamic optimization of the countermeasures in terms of whether to use small or large countermeasure programs, as well as the dynamic tuning of MAWS key parameters to optimize the overall performance. The model is also well suited for determination of the contributions of the different components of the system in the overall survival probability.

  2. NASA Tech Briefs, June 2013

    Science.gov (United States)

    2013-01-01

    Topics include: Cloud Absorption Radiometer Autonomous Navigation System - CANS, Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis, Discrete Data Qualification System and Method Comprising Noise Series Fault Detection, Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s, Application Program Interface for the Orion Aerodynamics Database, Hyperspectral Imager-Tracker, Web Application Software for Ground Operations Planning Database (GOPDb) Management, Software Defined Radio with Parallelized Software Architecture, Compact Radar Transceiver with Included Calibration, Software Defined Radio with Parallelized Software Architecture, Phase Change Material Thermal Power Generator, The Thermal Hogan - A Means of Surviving the Lunar Night, Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers, Nano-Ceramic Coated Plastics, Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use, Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO, Dual-Compartment Inflatable Suitlock, Modular Connector Keying Concept, Genesis Ultrapure Water Megasonic Wafer Spin Cleaner, Piezoelectrically Initiated Pyrotechnic Igniter, Folding Elastic Thermal Surface - FETS, Multi-Pass Quadrupole Mass Analyzer, Lunar Sulfur Capture System, Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use, Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter, Qualification of UHF Antenna for Extreme Martian Thermal Environments, Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project, ISS Live!, Space Operations Learning Center (SOLC) iPhone/iPad Application, Software to Compare NPP HDF5 Data Files, Planetary Data Systems (PDS) Imaging Node Atlas II, Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit, Translating MAPGEN to ASPEN for

  3. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    Science.gov (United States)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  4. Application and Research of Medium and Large Caliber Ammunition Mass Centroid Mass of Partial and Length Automation of the Measurement System%中大口径弹药物理量自动化测量系统的应用与研究

    Institute of Scientific and Technical Information of China (English)

    毛明旭; 于晓光; 陈涛; 刘志强; 赵学龙

    2015-01-01

    介绍了一组中大口径弹药质量质心质偏及长度自动化测量系统的应用与研究,本套装备可实现多种型号、多种尺寸火工品的质量、质心、质偏、长度的自动化测量,详细介绍了本套装备的测量原理以及测量系统的设计;设备经实际应用检验,满足工艺要求,实现了无人化操作,提高了测量效率和测量精度,提高了本质安全度,降低了工人劳动强度,避免了火工品表面刮伤和火工品倾覆等危险事件的发生。%This paper introduced a set of new applications and large-caliber ammunition centroid qualita-tive study quality and length of partial automation of the measuring system,and this set of equipment can achieve the quality,centroid,quality bias and length of automation measure of EED of a variety of models and sizes. The article detailed the design of the sets of equipment measuring principle and the measure-ment system. After practical application test,the equipment meets the process requirements,and achieves unmanned operation,and improves measurement efficiency and accuracy,and improves the intrinsic safe-ty,and reduces labor intensity,and avoids the product surface scratches and Pyrotechnics overturning and other dangerous events.

  5. Mars Express releases Beagle 2

    Science.gov (United States)

    2003-12-01

    At 9:31 CET, the crucial sequence started to separate the Beagle 2 lander from Mars Express. As data from Mars Express confirm, the pyrotechnic device was fired to slowly release a loaded spring, which gently pushed Beagle 2 away from the mother spacecraft. An image from the onboard visual monitoring camera (VMC) showing the lander drifting away is expected to be available later today. Since the Beagle 2 lander has no propulsion system of its own, it had to be put on the correct course for its descent before it was released. For this reason, on 16 December the trajectory of the whole Mars Express spacecraft had to be adjusted to ensure that Beagle 2 would be on course to enter the atmosphere of Mars. This manoeuvre, called "retargeting'' was critical: if the entry angle is too steep, the lander could overheat and burn up in the atmosphere; if the angle is too shallow, the lander might skim like a pebble on the surface of a lake and miss its target. This fine targeting and today's release were crucial manoeuvres for which ESA's Ground Control Team at ESOC (European Space Operations Centre) had trained over the past several months. The next major milestone for Mars Express will be the manoeuvre to enter into orbit around Mars. This will happen at 3:52 CET on Christmas morning, when Beagle 2 is expected to land on the surface of Mars. "Good teamwork by everybody - ESA, industry and the Beagle 2 team - has got one more critical step accomplished. Mars, here comes Europe!" said David Southwood, ESA Director of Science.

  6. The Efficiency of an Integrated Program Using Falconry to Deter Gulls from Landfills

    Directory of Open Access Journals (Sweden)

    Ericka Thiériot

    2015-04-01

    Full Text Available Gulls are commonly attracted to landfills, and managers are often required to implement cost-effective and socially accepted deterrence programs. Our objective was to evaluate the effectiveness of an intensive program that integrated the use of trained birds of prey, pyrotechnics, and playback of gull distress calls at a landfill located close to a large ring-billed gull (Larus delawarensis colony near Montreal, Quebec, Canada. We used long-term survey data on bird use of the landfill, conducted behavioral observations of gulls during one season and tracked birds fitted with GPS data loggers. We also carried out observations at another landfill located farther from the colony, where less refuse was brought and where a limited culling program was conducted. The integrated program based on falconry resulted in a 98% decrease in the annual total number of gulls counted each day between 1995 and 2014. A separate study indicated that the local breeding population of ring-billed gulls increased and then declined during this period but remained relatively large. In 2010, there was an average (±SE of 59 ± 15 gulls/day using the site with falconry and only 0.4% ± 0.2% of these birds were feeding. At the other site, there was an average of 347 ± 55 gulls/day and 13% ± 3% were feeding. Twenty-two gulls tracked from the colony made 41 trips towards the landfills: twenty-five percent of the trips that passed by the site with falconry resulted in a stopover that lasted 22 ± 7 min compared to 85% at the other landfill lasting 63 ± 15 min. We concluded that the integrated program using falconry, which we consider more socially acceptable than selective culling, was effective in reducing the number of gulls at the landfill.

  7. FY06 L2C2 HE program report Zaug et al.

    Energy Technology Data Exchange (ETDEWEB)

    Zaug, J M; Crowhurst, J C; Howard, W M; Fried, L E; Glaesemann, K R; Bastea, S

    2008-08-01

    thermochemical code is also used by well over 500 U.S. government DoD and DOE community users who calculate the chemical properties of detonated high explosives, propellants, and pyrotechnics. To satisfy the growing needs of LLNL and the general user community we continue to improve the robustness of our Cheetah code. The P-T range of current speed of sound experiments will soon be extended by a factor of four and our recently developed technological advancements permit us to, for the first time, study any chemical specie or fluid mixture. New experiments will focus on determining the miscibility or coexistence curves of detonation product mixtures. Our newly constructed ultrafast laser diagnostics will permit us to determine what chemical species exist under conditions approaching Chapman-Jouguet (CJ) detonation states. Furthermore we will measure the time evolution of candidate species and use our chemical kinetics data to develop new and validate existing rate laws employed in future versions of our Cheetah thermochemical code.

  8. Results of Experiments on Convective Precipitation Enhancement in the Camaguey Experimental Area, Cuba.

    Science.gov (United States)

    Koloskov, Boris; Zimin, Boris; Beliaev, Vitaly; Seregin, Yury; Chernikov, Albert; Petrov, Victor; Valdés, Mario; Martínez, Daniel; Pérez, Carlos A.; Puente, Guillermo

    1996-09-01

    Experiments on randomized seeding of individual convective clouds and cloud clusters were conducted in the Camaguey experimental area, Cuba, from 1985 through 1990 in order to elucidate whether cold-cloud dynamic seeding can be used to augment convective rainfall. An information measuring system was set up, and primary tools included three instrumented aircraft (AN-26, AN-12 CYCLONE, IL-14), MRL-5 and ARS-3 radars, a system for radiosounding, two special rain gauge networks, and surface weather stations.A total of 232 randomized experiments were carried out during this experimentation period, and 117 individual clouds and 115 cloud clusters were studied during 136 `go' days. Pyrotechnic flares containing silver iodide were ejected in a selected cloud when the seeder aircraft was flying through its top. The seeding effects were monitored by the MRL-5 radar, which was equipped with an automated system for digital processing of data.A total of 46 convective clouds, 29 seeded and 17 nonseeded, were studied during an exploratory experiment in 1985. Analyses of the radar properties of seeded and nonseeded clouds have indicated that the response of convective clouds to AgI seeding is dependent on their type, and the treatment within the range of cloud tops from 6 to 8 km—that is, at top temperatures between 10° and 20°C, is found to increase their maximum height by 13% and the lifetime by 30%, and to enhance rainfall.A confirmatory phase of the experiment in the Camaguey experimental area was conducted during 1986 90. A total of 46 individual convective clouds, 24 seeded and 22 nonseeded, were identified, and their properties were determined using three-dimensional radar data. The results have shown that the AgI seeding of growing clouds with top temperatures over the range from 10° to 20°C increases their lifetime by 24%, maximum height by 9%, area by 64%, and rain volume by 120%, as compared to unseeded clouds. The lifetime, area, and rainfall results are

  9. Common Cause Case Study: An Estimated Probability of Four Solid Rocket Booster Hold-Down Post Stud Hang-ups

    Science.gov (United States)

    Cross, Robert

    2005-01-01

    Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.

  10. History of solid propellants in the 20. century; Histoire des propergols solides au 20. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ph.; Davenas, A.; McDonald, A.J.; Bret, P.; Moreau, J.P.; Boisson, J.; Kuentzmannn, P.; Maire, G.; Pontvianne, G.; Tranchant, J.; Evans, G.; Reydellet, D.; Vallet, G.; Eymard, M.; Pascal, Ph.; Kuentzmann, P.; Bonnevie, E.; Guery, J.F.; Lengelle, G.; Lhuillier, J.N.; Rat, R.; Keromnes, A.; Mathieu, D.; Simonetti, Ph.; Betin, P.; Thevenin, M.; Serra, J.J.; Delbac, P.; Lepeuple, G.; Miermont, H.; Guillot, J.; Vidal, M.; Citon, C.; Tauzia, J.M.; Chounet, G.; Cardin, J.; Longevialle, Y.; Uhrig, G.

    2004-07-01

    This colloquium has been jointly organized by the research center of history of sciences and techniques (CRHST) and the association of the friends of the gunpowder and pyrotechnical patrimony (A3P). It gathers historians of sciences and techniques and specialists of solid propellants and their applications who make a review of the approaches that have led to todays propellants efficiency and mastery. This books contains 2 introductive talks, 24 articles, a round table and some concluding remarks. The articles deal with: 1 - from the black powder rockets to the space shuttle: France, pioneer of solid propulsion, from Vaillant to Damblanc (1821-1938); the development of solid propellants in the 20. century; lessons learnt from the Challenger accident; 2 - the institutions: the laboratory of ballistics of Sevran-Livry (1945-1969); an historical overview of ONERA's researches on solid propellants; the cast propellants at the Direction of Explosives (1945-1955); 3 - the propellants: the manufacturing secrets of the extruded double base propellants; the development of cast double base propellants; the invention of composite propellants; 4 - space applications: the Diamant adventure; the solid propellant engines of Ariane 5, an endless story; P80, a new generation of solid propellant engines for space applications; 6 - physics and models: from ap{sup n} to 3-D simulations: the combustion of solid propellants in the 20. century; the mechanical behaviour of solid propellant loads (1960-70 years); composite propellants and static electricity (SE) or the occurrence of SE in the manufacturing and implementation of composite propellants; a priori calculation of the performances and synthesis of new energy materials for propellants; 6 - defense applications: French solid propellant rockets and missiles up to the 1960's; from PHI 1500 to PHI 1930 or the fabulous history of metallic and roving propulsion systems; the G2P, the propulsion system of the M4, the exploratory

  11. Design, Development and Test Challenges: Separation Mechanisms for the Orion Pad Abort-1 Flight Test

    Science.gov (United States)

    Dinsel, Alison; Morrey, Jeremy M.; OMalley, Patrick; Park, Samuel

    2011-01-01

    On May 6, 2010, NASA launched the first successful integrated flight test, Pad Abort-1, of the Orion Project from the White Sands Missile Range in Las Cruces, New Mexico. This test demonstrated the ability to perform an emergency pad abort of a full-scale 4.8 m diameter, 8200 kg crew capsule. During development of the critical separation mechanisms for this flight test, various challenges were overcome related to environments definition, installation complications, separation joint retraction speed, thruster ordnance development issues, load path validation and significant design loads increases. The Launch Abort System retention and release (LAS R&R) mechanism consisted of 6 discrete structural connections between the LAS and the crew module (CM) simulator, each of which had a preloaded tension tie, Superbolt torque-nut and frangible nut. During the flight test, the frangible nuts were pyrotechnically split, permitting the CM to separate from the LAS. The LAS separation event was the driving case in the shock environment for many co-located hardware items. During development testing, it was necessary to measure the source shock during the separation event so the predicted shock environment could be validated and used for certification testing of multiple hardware items. The Lockheed Martin test team measured the source separation shock due to the LAS R&R function, which dramatically decreased the predicted environment by 90% at 100 Hz. During development testing a hydraulic tensioner was used to preload the joint; however, the joint relaxation with the tensioner proved unsatisfactory so the design was modified to include a Superbolt torque-nut. The observed preload creep during lab testing was 4% after 30 days, with 2.5% occurring in the first 24 hours. The conversion of strain energy (preload) to kinetic energy (retraction) was measured to be 50-75%. Design features and careful monitoring of multiple strain gauges on each tension tie allowed a pure tensile load

  12. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    Science.gov (United States)

    Delap, Damon C.; Glidden, Joel Micah; Lamoreaux, Christopher

    2013-01-01

    The Orion CSM umbilical retention and release mechanism supports and protects all of the cross-module commodities between the spacecrafts crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. The mechanism employs a single separation interface which is retained with pyrotechnically actuated separation bolts and supports roughly two dozen electrical and fluid connectors. When module separation is commanded, either for nominal on-orbit CONOPS or in the event of an abort, the mechanism must release the separation interface and sever all commodity connections within milliseconds of command receipt. There are a number of unique and novel aspects of the design solution developed by the Orion mechanisms team. The design is highly modular and can easily be adapted to other vehiclesmodules and alternate commodity sets. It will be flight tested during Orions Exploration Flight Test 1 (EFT-1) in 2014, and the Orion team anticipates reuse of the design for all future missions. The design packages fluid, electrical, and ordnance disconnects in a single separation interface. It supports abort separations even in cases where aerodynamic loading prevents the deployment of the umbilical arm. Unlike the Apollo CSM umbilical which was a destructive separation device, the Orion design is resettable and flight units can be tested for separation performance prior to flight.Initial development testing of the mechanisms separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. These changes addressed the root cause of the binding failure by providing better control of connector alignment. The new design was tuned and validated analytically via Monte Carlo simulation. The

  13. NASA Tech Briefs, December 2009

    Science.gov (United States)

    2009-01-01

    Topics include: A Deep Space Network Portable Radio Science Receiver; Detecting Phase Boundaries in Hard-Sphere Suspensions; Low-Complexity Lossless and Near-Lossless Data Compression Technique for Multispectral Imagery; Very-Long-Distance Remote Hearing and Vibrometry; Using GPS to Detect Imminent Tsunamis; Stream Flow Prediction by Remote Sensing and Genetic Programming; Pilotless Frame Synchronization Using LDPC Code Constraints; Radiometer on a Chip; Measuring Luminescence Lifetime With Help of a DSP; Modulation Based on Probability Density Functions; Ku Telemetry Modulator for Suborbital Vehicles; Photonic Links for High-Performance Arraying of Antennas; Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration; Hardware-Efficient Monitoring of I/O Signals; Video System for Viewing From a Remote or Windowless Cockpit; Spacesuit Data Display and Management System; IEEE 1394 Hub With Fault Containment; Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph; Waveguide Transition for Submillimeter-Wave MMICs; Magnetic-Field-Tunable Superconducting Rectifier; Bonded Invar Clip Removal Using Foil Heaters; Fabricating Radial Groove Gratings Using Projection Photolithography; Gratings Fabricated on Flat Surfaces and Reproduced on Non-Flat Substrates; Method for Measuring the Volume-Scattering Function of Water; Method of Heating a Foam-Based Catalyst Bed; Small Deflection Energy Analyzer for Energy and Angular Distributions; Polymeric Bladder for Storing Liquid Oxygen; Pyrotechnic Simulator/Stray-Voltage Detector; Inventions Utilizing Microfluidics and Colloidal Particles; RuO2 Thermometer for Ultra-Low Temperatures; Ultra-Compact, High-Resolution LADAR System for 3D Imaging; Dual-Channel Multi-Purpose Telescope; Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting; CMOS Camera Array With Onboard Memory; Quickly Approximating the Distance Between Two Objects; Processing Images of Craters for

  14. Disposal of energetic materials by alkaline pressure hydrolysis and combined techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bunte, G.; Krause, H.H.; Hirth, T. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)

    1997-07-01

    Due to the reduction of armament and especially due to the German reunification we are met by objective of the diposal of energetic materials. Environmentally friendly disposal methods available for the different propellants, explosives and pyrotechnics are urgently needed. The main component of gun and rocket propellants is the energetic polymer nitrocellulose. One method to dispose nitrocellulose containing propellants is the combination of rapid chemical destruction by pressure hydrolysis and the biological degradation of the reaction mixture. The study describes the results of pressure hydrolysis of different gun and rocket propellants. Under alkaline conditions (propellant to NaOH ratio 2.3:1; reaction temperature 150 C; pressure below 30 bar) biological degradable reaction products were formed. The main products in the liquid phase were simple mono- and dicarboxylic acids. Dependent on the reaction conditions 30-50% of the nitrogen content of the propellants was transformed to nitrite and nitrate. The gaseous nitrogen containing products were N{sub 2} (16-46%), N{sub 2}O (2-23%), NO{sub x} (0-5%). Overall 40%-60% of the propellant nitrogen was transformed to gaseous products. In the solid residues a nitrogen content between 2% and 9% was found. The residues were mostly due to additives used in propellant manufacturing. In the case of nitrocellulose pressure hydrolysis below 30 bar and reaction temperature about 150 C are sufficient. (orig.) [Deutsch] Nicht zuletzt aufgrund der in den letzten Jahren erfolgten Abruestungsmassnahmen sowie auch der Wiedervereinigung beider deutscher Staaten ergab sich die Problematik der Entsorgung von energetischen Materialien. Alternativ zur Verbrennung besteht Bedarf an der Entwicklung von Entsorgungsverfahren, die eine umweltfreundliche Entsorgung von Treibladungspulvern, Raketenfesttreibstoffen oder pyrotechnischen Komponenten ermoeglichen. Eine interessante Methode zur Beseitigung von auf Nitrocellulose basierenden

  15. New functional polyether binders for low vulnerability propellants; Nouveaux liants polyethers fonctionnels pour propergols a faible vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)

    Moreau-Friot, C.; Eck, G.; Jacob, G.; Chevalier, S.; Golfier, M.; Guengant, Y. [Groupe SNPE Propulsion/ Centre de Recherches du Boucher, 91 - Vert le Petit (France)

    2002-09-01

    tests have been performed at laboratory scales over samples (50 mm diameter by 50 mm high) conditioned into aluminium containers. These containers are heated at 3.3 deg C per hour until a pyrotechnic reaction occurs. Polyether binder propellants don't lead to violent reactions (type V). In conclusion, a new binder for propellants use has been obtained: a new polymer has been synthesised. Its formulation characteristics have been demonstrated and the first slow cook-off tests are very interesting. Technologic demonstrators are actually currently in preparation. (authors)

  16. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    , pyrotechnic devices, and high pressure gasses. Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure—roads, bridges, airframes, and buildings—necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider where and how large spacecraft are manufactured, tested, and launched could result in unforeseen cost to modify existing (or develop new) infrastructure, or incur additional risk due to increased handling operations or eliminating key verifications. Although this paper focuses on the canceled Altair spacecraft as a case study, the issues identified here have wide applicability to other large payloads, including concepts under consideration for NASA’s Evolvable Mars Campaign.

  17. Development and Testing of a Green-Propellant Micro-Hybrid Thruster with Electrostatic Ignition

    Science.gov (United States)

    Whitmore, Stephen A.; Judson, Michael D.

    2012-01-01

    , requiring an energy input of 14,850 Joules for catalytic dissociation. The hydrocarbon-seeded micro-hybrid was also adapted as a non-pyrotechnic ignitor for a 900 N (200-lbf) thrust hybrid motor. The motor was successfully ignited 4 consecutive times with no hardware swaps or propellant additions. The amount of ABS seed material that can be fit into the injector cap is the only limit to the number of available repeat firings. This series of tests marks the first time a hybrid motor was ever ignited by other than a solid-propellant pyrotechnic charge or bi-propellant flame ignitor. Nitrous oxide hybrid motors are typically difficult to ignite and usually require multiple solid-propellant charges to initiate combustion, so this nonpyrotechnic ignition is a significant accomplishment. The controlled hydrocarbon-seeding approach is fundamentally different from all other green propellant solutions offered by the aerospace industry. Although the proposed system is more correctly a hybrid technology; the system retains all the simple features of a monopropellant design. To date no optimization study has been performed to identify the best grain geometry for electrostatic ignition. Fortunately, because the grain segments are fabricated using rapid-prototyping technology, changing the grain geometry is as simple as modifying the 3-D printer CAD-file. Vacuum Isp exceeding 270 seconds has been demonstrated (Ref v), a value significantly higher than those offered by competing green monopropellant options. The propellants of choice, N2O/GOX and ABS are 100% non-toxic, non-explosive, and environmentally benign. Because the inert oxidizer and fuel components are mixed only within the combustion chamber, the system retains the inherent safety of a hybrid rocket and can be piggy-backed as a secondary payload with no overall mission risk increase to the primary payload, an excellent characteristic for secondary launch systems.

  18. Thermo Vacuum and Vibration Tests on a Shape Memory Alloy (SMA) Actuated Release Mechanism for Microsatellite

    Science.gov (United States)

    Gardi, R.

    2002-01-01

    Seen the efforts to find alternative actuation systems to the pyrotechnic devices, our department is developing and testing release mechanisms, for microsatellites, actuated by Shape Memory Alloy (SMA) wires. Following up increasing interest on SMA actuated mechanisms, the author has been developing, in the last few years, a mechanism of which a prototype version has been presented in the last IAF congress. The present work describes the test phase of the mechanism, aimed at proving the capability of the parts of withstanding the severe space environmental conditions. The mechanism task is to open a steel rope loop, replacing a pyrotechnic guillotine. It is activated by three SMA wires that, shrinking, pull a sleeve and separate the two parts of the mechanism where the extremities of the rope are fixed. In the paper, after a short review of the past design and realization activities, we describe the tests conducted and their results. After the room condition tests, the mechanism has been set up for thermo-vacuum tests. In high vacuum condition, 10-10 bar, we validate the thermodynamic model for the SMA alloy. In room condition, free convection around the wires subtracts a large amount of the energy provided to the wires due to Joule effect, and then we have been obliged to actuate the mechanism with a power greater than that needed in vacuum, providing a constant current of 5 Amperes. In the thermo-vacuum chamber of the University we can simulate space environment and we can power the mechanism exactly with the current (3A) that will be actually employed during the mission. Moreover, the environmental control of the chamber allowed us to test the real capability of the mechanism, and of the SMA wires, to operate correctly at different temperatures. Inside the chamber a set of lamps irradiate energy toward the mechanism and heat it, simulating the solar and albedo radiation. Cooling the internal surface of the chamber with liquid nitrogen, we can simulate the

  19. Prototype SMA actuated locking device for small space magnetic bearing flywheels%采用SMA驱动的小型空间磁悬浮飞轮锁紧机构

    Institute of Scientific and Technical Information of China (English)

    闫晓军; 张小勇; 聂景旭; 张绍卫

    2011-01-01

    磁悬浮飞轮锁紧机构在卫星发射时锁紧飞轮,减小其振动和冲击载荷;在发射后解锁,保证飞轮正常工作.目前已有的以火工品或步进电机驱动的锁紧机构具有冲击大、体积较大、不可重复使用等缺点.提出了一种采用形状记忆合金(SMA,Shape Memory Alloy)驱动的空间磁悬浮飞轮锁紧机构的设计方案,并在Liang本构模型的基础上发展了机构驱动单元的设计方法.之后,完成了锁紧机构的样机研制和调试,并开展了地面的性能测试、振动试验和高温环境试验.研究结果表明:SMA锁紧机构安装体积小,在星载28 V电压下能在6 s内完全锁紧,在1 s内完全解锁,并能够通过振动和环境实验.SMA驱动的磁悬浮飞轮锁紧机构具有锁紧力大、同步性好、可重复使用、低冲击、无污染等优势,有很大的工程应用潜力.%Based on magnetic levitation principle, the magnetic bearing flywheel is a new type of inertial actuator used in satellite attitude control. A locking device was used to eliminate the gap between the rotor and stator of magnetic bearing flywheel so as to protect it from shock and vibration damage during launch phase. The present pyrotechnical or motor actuated locking devices have the disadvantages of high shock, large size and un-resetable. A prototype shape memory alloys (SMA)actuated locking device for small space magnetic bearing flywheel was developed in this investigation. A method and procedures to design the actuator element based on Liang's constitutive model was presented. Then the SMA locking device was assembled and the function, environment and vibration tests were carried out. Test results show that the device can complete lock function within 6 s and release function within 1 s under satellite power supply of 28 V. It can also undergo the environment and vibration tests which simulate the launch phase. It is concluded that the new SMA locking device owning advantages of great

  20. The Reactivity of Energetic Materials At Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L E

    2006-10-23

    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Although the history of HE materials is long, their condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary for efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In modeling HE materials there is a need to better understand the physical, chemical, and mechanical behaviors from fundamental theoretical principles. Among the quantities of interest in plastic-bonded explosives (PBXs), for example, are thermodynamic stabilities, reaction kinetics, equilibrium transport coefficients, mechanical moduli, and interfacial properties between HE materials and the polymeric binders. These properties are needed (as functions of stress state and temperature) for the development of improved micro-mechanical models, which represent the composite at the level of grains and binder. Improved micro-mechanical models are needed to describe the responses of PBXs to dynamic stress or thermal loading, thus yielding information for use in developing continuum models. Detailed descriptions of the chemical reaction mechanisms of condensed energetic materials at high densities and temperatures are essential for understanding events that occur at the reactive front under combustion or detonation conditions. Under

  1. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.

    Science.gov (United States)

    Yin, Ping; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-01-19

    has become an increasingly efficient tool for exploring new HEDMs with both high energy and low sensitivity. As a highly dense building block, introduction of oxygen not only improves density significantly but also gives rise to a better oxygen balance. Furthermore, the N-O functionalized strategy is highly suitable for a broad variety of N-heterocycles including five-membered azoles and six-membered azines. Newly explored N-halogen and N-B functionalization strategies have endowed the resulting HEDMs with some new energetic characteristics. Typical examples include the N-halogenated fused triazole and FOX-7 as potential hypergolic oxidizers with very short ignition delay times. In addition, some exploratory studies of N-B functionalized heterocycles have expanded energetic applications as hypergolic ionic liquids, green pyrotechnic colorants, and high-oxygen carriers. Overall, flexible N-functionalization methodologies involving different N-X bond formation have not only provided an efficient approach to diverse energetic ingredients but also expanded the application scope of energetic materials. Discussion and perspectives of N-functionalized protocols are given to summarize possible structure-property correlations, thus providing efficient guidelines for future design of new HEDMs.

  2. Emptying Time of a Tank Filled up with Explosive Paste. Comparison between Experimental Measurements and Predictions Based on Rheological Characterization of the Paste

    Science.gov (United States)

    Guillemin, J. P.; Bonnefoy, O.; Thomas, G.; Brunet, L.; Forichon-Chaumet, N.

    2008-07-01

    One industrial process used by Nexter Munitions to manufacture pyrotechnical materials consists in preparing an emulsion of wax in TNT (2,4,6-trinitrotoluene) and adding Aluminium and ONTA (3-nitro-1,2,4-triazole-5-one) particles. When the suspension is homogeneous, it is allowed to flow by gravity through a pipe located at the bottom of the tank and to fill up a shell body. The suspension is characterized by a solid volume fraction of 53.4%, which leads to high viscosities. In some circumstances, the emptying time is prohibitively long and the economic profitability is reduced. This study has been performed to make the emptying time lower with the constraint of unchanged volume fractions and grains mean diameter. So, we investigated the influence of the grain size distribution on the suspension viscosity. Different samples of Aluminium and ONTA have been used, with rather small differences in grain size distributions. The suspensions have been prepared in the industrial tank and the flow cast times measured. It has been observed that they differ by one order of magnitude. To avoid situations with too high emptying times, a procedure has been implemented to make prior characterization of the suspension rheology. Because of particles sedimentation and emulsion destabilisation, the classical Couette rheometer is not adapted. So, we designed and built a small size tank (113 cm3), where the suspension is continuously stirred and kept homogeneous. The measurement of the torque and rotational speed together with the use of the Couette analogy allowed us to observe an Ostwald fluid behaviour (flow consistency index k, flow behaviour index n). For a better prediction, we established a correlation between the measured (k, n) values and the grain size distributions. We characterized each suspension by the ratio of φ to φm, where φ is the solid volume fraction (imposed by the commercial specifications) and φm is the maximum packing fraction. Because of the strong analogy

  3. Sr - an element shows the way - Applications of Sr isotopes for provenance, tracing and migration (Invited)

    Science.gov (United States)

    Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.

    2010-12-01

    Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications

  4. 爆炸条件下溶菌酶反应产物的基质辅助激光解吸-飞行时间质谱分析%Analysis of Reaction Products of Lysozyme under the Explosion Condition by Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    刘素红; 夏攀; 张成功; 张立; 郭寅龙

    2014-01-01

    Identification and determination of explosives and explosive residues were a subject of continuing strong interest in analytical chemistry and forensic science. In this paper, the reaction products of lysozyme under the explosion condition were analyzed by a MALDI-TOFMS (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry) method. There was no difference in the tryptic digest between the normal lysozyme and the reaction products generated by detonator, while some adduct peaks such as [MH+17]+, [MH+18]+, [MH+28]+, [MH+32]+, and [MH+44]+ were discovered in the explosives. This may be attributed to the reaction between the lysozyme and the active small molecule gases such as NH3, H2O, CO/N2, O2, CO2, which were generated during the explosion. Characteristic peaks which were produced by lysozyme and the active small molecule gases from different explosives can be used to discriminate the six explosives. For example, H2O molecules which were generated during the exploration by tri-nitrotoluene (TNT) can specifically react with VFGRCE-LAAAMKRHGLDNYR (m/z 2307) to produce a characteristic peak at m/z 2325 (2307+18). Also, H2O molecules which were generated by hexahydro-1,3,5-trinitroazine (RDX) can completely react with IVSDGNGMNAWVAWRNRCK (m/z 2177) to produce a characteristic peak at m/z (2177+18). Characteristic peak at m/z 1301 was produced by GYSLGNWVCAAK (m/z 1269) and O2 molecules for the identification of pentaerythritol tetranitrate (PETN). While for black powder, O2 and H2O can both react with IVSDGNGMNAWVAWR (m/z 1676) to produce product ions peaks at m/z 1694 and 1708. However, only the O2 molecules can react with IVSDGNGMNAWVAWR for pyrotechnic composition. As for ammon explosive, which is a mixture of inorganic explosives and organic explosives, CO2 molecules can react with a plurality of reac-tion sites of lysozyme to produce a series of characteristic peaks signals such as m/z 1313 (1269+44), 1720 (1676+44), 1848 (1804+44), 2722

  5. Progress in model development to quantify High Explosive Violent Response (HEVR) to mechancial insult

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2008-07-29

    The rapid release of chemical energy has found application for industrial and military purposes since the invention of gunpowder. Black powder, smokeless powder of various compositions, and pyrotechnics all exhibit the rapid release of energy without detonation when they are being used as designed. The rapidity of energy release for these materials is controlled by adjustments to the particle surface area (propellant grain configuration or powder particle size) in conjunction with the measured pressure-dependent burning rate, which is very subsonic. In this way a manufacturing process can be used to engineer the desired violence of the explosion. Detonations in molecular explosives, in contrast, propagate with a supersonic velocity that depends on the loading density, but is independent of the surface area. In ideal detonations, the reaction is complete within a small distance of the propagating shock front. Non-ideal detonations in molecular and composite explosives proceed with a slower velocity, and the reaction may continue well behind the shock front. We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the application described here, we are studying an HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive developed in the UK, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult, drop or impact that is well below the threshold for detonation have been observed to react violently. This behavior is known as High Explosive Violent Reaction (HEVR). The basis of our model is the observation that the mechanical insult produces damage in a volume of the

  6. NASA Tech Briefs, November 1995. Volume 19, No. 11

    Science.gov (United States)

    1995-01-01

    The contents include: 1) Mission Accomplished; 2) Resource Report: Marshall Space Flight Center; 3) NASA 1995 Software of the Year Award; 4) Microbolometers Based on Epitaxial YBa2Cu3O(sub 7-x) Thin Films; 5) Garnet Random-Access Memory; 6) Fabrication of SNS Weak Links on SOS Substrates; 7) High-Voltage MOSFET Switching Circuit; 8) Asymmetric Switching for a PWM H-Bridge Power Circuit; 9) Better Ohmic Contacts for InP Semiconductor Devices; 10) Low-Bandgap Thermovoltaic Materials and Devices; 11) Digital Frequency-Differencing Circuit; 12) Imaging Magnetometer; 13) Computer-Assisted Monitoring of a Complex System; 14) Buffered Telemetry Demodulator; 15) Compact Multifunction Inspection Head; 16) Optical Detection of Fractures in Ceramic Diaphragms; 17) Eddy-Current Detection of Cracks in Reinforced Carbon/Carbon; 18) Apparent Thermal Conductivity of Multilayer Insulation; 19) Optimizing Misch-Metal Compositions in Metal Hydride Anodes; 20) Device for Sampling Surface Contamination; 21) Probabilistic Failure Assessment for Fatigue; 22) Probabilistic Fatigue and Flaw-Propagation Analysis; 23) Windows Program for Driving the TDU-850 Printer; 24) Subband/Transform MATLAB Functions for Processing Images; 25) Computing Equilibrium Chemical Compositions; 26) Program Processes Thermocouple Readings; 27) ICAN-Second-Generation Integrated Composite Analyzer; 28) Integrated Composite Analyzer with Damping Capabilities; 29) Computing Efficiency of Transfer of Microwave Power; 30) Program Calculates Power Demands of Electronic Designs; 31) Cost-Estimation Program; 32) Program Estimates Areas Required by Electronic Designs; 33) Program to Balance Mapped Turbopump Assemblies; 34) BiblioTech; 35) Controlling Mirror Tilt With a Bimorph Actuator; 36) Burst-Disk Device Simulates Effect of Pyrotechnic Device; 37) Bearing-Mounting Concept Accommodates Thermal Expansion; 38) Parallel-Plate Acoustic Absorbers for Hot Environments; 39) Adjustable-Length Strut Withstands Large Cyclic

  7. X-38: Parachute Canister Fired from Plywood Mockup during Flight Termination System Test

    Science.gov (United States)

    1996-01-01

    The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally

  8. X-38: Plywood Mockup of Aft End Used for Flight Termination System Parachute Test

    Science.gov (United States)

    1996-01-01

    This photo shows a plywood mockup of the X-38's aft end, minus vertical stabilizers, mounted on a truck for an economical test of the X-38's Flight Termination System (FTS) on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The FTS seven-foot diameter parachute was launched safely away from the mockup by a pyrotechnic firing system. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be

  9. Combustion characteristics of SMX and SMX based propellants

    Science.gov (United States)

    Reese, David A.

    density and performance, smokeless combustion products, and stable combustion, SMX appears to be a viable replacement for existing energetic ingredients in a wide variety of propellant, explosive, and pyrotechnic applications.

  10. The Milky Way's Tiny but Tough Galactic Neighbour

    Science.gov (United States)

    2009-10-01

    Today ESO announces the release of a stunning new image of one of our nearest galactic neighbours, Barnard's Galaxy, also known as NGC 6822. The galaxy contains regions of rich star formation and curious nebulae, such as the bubble clearly visible in the upper left of this remarkable vista. Astronomers classify NGC 6822 as an irregular dwarf galaxy because of its odd shape and relatively diminutive size by galactic standards. The strange shapes of these cosmic misfits help researchers understand how galaxies interact, evolve and occasionally "cannibalise" each other, leaving behind radiant, star-filled scraps. In the new ESO image, Barnard's Galaxy glows beneath a sea of foreground stars in the direction of the constellation of Sagittarius (the Archer). At the relatively close distance of about 1.6 million light-years, Barnard's Galaxy is a member of the Local Group, the archipelago of galaxies that includes our home, the Milky Way. The nickname of NGC 6822 comes from its discoverer, the American astronomer Edward Emerson Barnard, who first spied this visually elusive cosmic islet using a 125-millimetre aperture refractor in 1884. Astronomers obtained this latest portrait using the Wide Field Imager (WFI) attached to the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in northern Chile. Even though Barnard's Galaxy lacks the majestic spiral arms and glowing, central bulge that grace its big galactic neighbours, the Milky Way, the Andromeda and the Triangulum galaxies, this dwarf galaxy has no shortage of stellar splendour and pyrotechnics. Reddish nebulae in this image reveal regions of active star formation, where young, hot stars heat up nearby gas clouds. Also prominent in the upper left of this new image is a striking bubble-shaped nebula. At the nebula's centre, a clutch of massive, scorching stars send waves of matter smashing into the surrounding interstellar material, generating a glowing structure that appears ring-like from our perspective

  11. Mars Express — how to be fastest to the Red Planet

    Science.gov (United States)

    2003-05-01

    are extra gears to make sure that the lander stays securely attached to the spacecraft during the launch, but once in space they are not needed any more. A pyrotechnic device will be activated to release them. This will be a key step, necessary so that Beagle 2 can be ejected when the spacecraft arrives at Mars. Every effort has been made to ensure that things go smoothly. Schmidt says: “We have tested all aspects of the mission well enough to be confident that there will be no errors or trivial mistakes. Mars Express has been developed in record time, but there have been no compromises on testing, including the ground segment." Orbiting and landing on Mars Six days before arrival at Mars, the lander will be released. This operation is regarded as one of the most complex of the Mars Express mission. Beagle 2, which weighs only 65 kilograms, is too light to carry a steering mechanism and is not designed to receive commands during cruise and landing. So Beagle 2 can only reach its planned landing site by relying on the orbiter to put it into the correct trajectory and drop it at a very precise point in space and at a specified speed. The ground control team at the European Space Operations Centre (ESOC) in Darmstadt, Germany, will guide this manoeuvre. To be ready for the approach to Mars and the ejection operations, engineers have been training for months with simulators that resemble sophisticated computer games. Tests will continue after Mars Express’s launch. Approaching Mars, the orbiter will eject the lander and then be left on a collision course with the planet. In another key manoeuvre, ground controllers will have to adjust its trajectory, reducing its speed to 1.8 kilometres per second. At that speed, the planet’s gravity will be able to ‘capture’ the Mars Express orbiter and put it into Mars orbit. Ground controllers will still have to perform several manoeuvres to get the spacecraft into its final operational state - a highly elliptical polar orbit

  12. Encouragement from Jupiter for Europe's Titan Probe

    Science.gov (United States)

    1996-04-01

    remaining after searching reviews of the Probe's design and readiness. Shock tests will check that Huygens is not harmed by the firing of pyrotechnic devices used to release the protective shell and the parachutes, after the Probe's incandescent entry into Titan's atmosphere. In addition, the so-called Titan Test will be repeated. This subjects the Probe to a simulation of the very cold atmosphere of the target moon. A previous test showed some components in Huygens approaching the lower limit of acceptable temperatures. The repeated test will verify that subsequent minor modifications have succeeded in reducing effect of the chilling. Background facts about the Cassini/Huygens mission Huygens is a medium-sized mission of ESA's Horizon 2000 programme for space science, and a contribution to the joint NASA-ESA Cassini mission. Christiaan Huygens discovered Saturn's moon Titan in 1655, and the mission named after him aims to deliver a 343-kilogram Probe to Titan and carry a package of scientific instruments through the atmosphere. Six sets of instruments will analyse the chemical composition of the atmosphere, observe the weather and topography of Titan, and examine the nature of its surface. Titan is larger than the planet Mercury, and its unique atmosphere rich in nitrogen and hydrocarbons may resemble the atmosphere of the primitive Earth, before life began. Nominal dates for the Huygens mission are as follows: - launch, 6 October 1997 - arrival at Saturn, 26 June 2004 - release of Huygens, 6 November 2004 - entry into Titan's atmosphere, 27 November 2004. The Saturn Orbiter, the other element in the Cassini mission, will relay the signals from Huygens to the Earth, before settling down to prolonged observations of Saturn and its rings and moons. European and American scientists are partners in all the experiments, both in the Orbiter and in the Huygens Probe. Farthest out for Europe Huygens will travel to a greater distance from the Sun than any previous ESA mission, out

  13. NARRATIVE: A short history of my life in science A short history of my life in science

    Science.gov (United States)

    Manson, Joseph R.

    2010-08-01

    the scale of my chemical experiments to simple things such as growing crystals of all available salts, making interesting colors and dyes, and a whole variety of pyrotechnics. The fireworks and small explosives were largely carried out without the knowledge of my parents, and it was surely fortunate that my lab was well away from the house because fires nearly got out of hand a couple of times. Interest in becoming a chemist continued into my high-school years until I took a traditional course in elementary physics. This course was a little out of the ordinary because it was taught by the industrial shop teacher, Mr John M Leete, a man who had an interest in science but very little scientific training or knowledge. He had been given this course because there was nobody else available to teach it, and the way he chose to handle his assignment was to gather the eight or so students around a circular table and spend each hour of class time reading a book together and trying to understand it. This turned out to be an interesting and effective way to learn, with Mr Leete probably learning just as much as the students. The experience of this course made quite an impression, not only because of the fascination of the subject matter, but also because of what it demonstrated about the process of teaching and learning. It was at this time that I realized that physics was the science that I wanted to pursue. I finished high-school at the beginning of 1961, and after working in a local tobacco factory for a short period I enrolled as an undergraduate at the University of Richmond, a college with a very beautiful campus on the outskirts of Richmond and relatively close to home in Petersburg. Another advantage of living in Richmond was that I could continue playing in the Richmond Symphony Orchestra, eventually becoming its principal bassoonist. Music was an interest that developed in high school, which was when I first became a member of the Richmond Symphony, and later in college