WorldWideScience

Sample records for pyrophosphatases

  1. Inorganic pyrophosphatases: structural diversity serving the function

    Science.gov (United States)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  2. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  3. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-01-01

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme

  4. Heterologous expression and purification of membrane-bound pyrophosphatases

    DEFF Research Database (Denmark)

    Kellosalo, J.; Kajander, T.; Palmgren, Michael Broberg

    2011-01-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that couple the hydrolysis of inorganic pyrophosphate to pumping of protons or sodium ions. In plants and bacteria they are important for relieving stress caused by low energy levels during anoxia, drought, nutrient deficiency, cold and low l...

  5. Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases.

    Science.gov (United States)

    Kellosalo, Juho; Kajander, Tommi; Honkanen, Riina; Goldman, Adrian

    2013-02-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that enhance the survival of plants, protozoans and prokaryotes in energy constraining stress conditions. These proteins use pyrophosphate, a waste product of cellular metabolism, as an energy source for sodium or proton pumping. To study the structure and function of these enzymes we have crystallized two membrane-bound pyrophosphatases recombinantly produced in Saccharomyces cerevisae: the sodium pumping enzyme of Thermotoga maritima (TmPPase) and the proton pumping enzyme of Pyrobaculum aerophilum (PaPPase). Extensive crystal optimization has allowed us to grow crystals of TmPPase that diffract to a resolution of 2.6 Å. The decisive step in this optimization was in-column detergent exchange during the two-step purification procedure. Dodecyl maltoside was used for high temperature solubilization of TmPPase and then exchanged to a series of different detergents. After extensive screening, the new detergent, octyl glucose neopentyl glycol, was found to be the optimal for TmPPase but not PaPPase.

  6. Regulatory site of inorganic pyrophosphatase. Interaction with substrate analogs

    International Nuclear Information System (INIS)

    Baikov, A.A.; Pavlov, A.R.; Avaeva, S.M.

    1986-01-01

    The effect of four PP 1 analogs with the structure PXP (X = N, C), phosphate, and the complex Cr(H 2 O) 4 PP 1 on the activity of inorganic pyrophosphatase from baker's yeast was studied over a wide range of substrate (Mg-PP 1 ) concentrations (lower limit 0.5 μM). The enzyme activity decreased in the presence of imidodiphosphate, hydroxymethane diphosphonate [PC(OH)P], and P 1 , and a double reciprocal plot of the rate of hydrolysis of Mg-PP 1 versus its concentration became linear. Small amounts of methane diphosphonate (PCP), ethane-1-hydroxy-1,1-diphosphonate (0.1-1μM), and Cr(H 2 O) 4 PP 1 (10 μM) activated the enzyme almost 2-fold by a competitive mechanism. The activation was due to an increase in the affinity of the protein for the activating Mg 2+ ion. Ultrafiltration showed that the pyrophosphatase molecule has 2.1 and 3.1 binding sites for PCP and PC(OHP)P, respectively. These results confirm the hypothesis that the enzyme contains a regulatory site whose occupation by PP 1 , P 1 , and substrate analogs increases the affinity of the protein for the activating metal

  7. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  8. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    International Nuclear Information System (INIS)

    Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi; Rubens, Craig E.; Goldman, Adrian

    2006-01-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail

  9. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, Mika K.; Lehtiö, Lari [Institute of Biotechnology, University of Helsinki, PO Box 65, FIN-00014, Helsinki (Finland); Rajagopal, Lakshmi; Rubens, Craig E. [Division of Infectious Disease, Children’s Hospital and Regional Medical Center, Seattle, Washington 98105 (United States); Goldman, Adrian, E-mail: adrian.goldman@helsinki.fi [Institute of Biotechnology, University of Helsinki, PO Box 65, FIN-00014, Helsinki (Finland)

    2006-09-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.

  10. Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning.

    Science.gov (United States)

    Pizzio, Gaston A; Paez-Valencia, Julio; Khadilkar, Aswad S; Regmi, Kamesh; Patron-Soberano, Araceli; Zhang, Shangji; Sanchez-Lares, Jonathan; Furstenau, Tara; Li, Jisheng; Sanchez-Gomez, Concepcion; Valencia-Mayoral, Pedro; Yadav, Umesh P; Ayre, Brian G; Gaxiola, Roberto A

    2015-04-01

    Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

    Directory of Open Access Journals (Sweden)

    Stefanie Berger

    2012-01-01

    Full Text Available The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PPi and was only moderately inhibited by PPi. The breakdown of PPi was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PPi (KM=0.27±0.05 mM that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PPi. However, it cannot be excluded that other PPi-dependent enzymes take advantage of the remaining PPi and contribute to the energy balance of the cell.

  12. The interaction of uranyl ions with inorganic pyrophosphatase from baker's yeast

    International Nuclear Information System (INIS)

    Bienwald, B.; Heitmann, P.

    1978-01-01

    The interaction of uranyl ions with inorganic pyrophosphatase from baker's yeast was investigated by measurement of their effect on the protein fluorescence. Fluorescence titrations of the native enzyme with uranyl nitrate show that there is a specific binding of uranyl ions to the enzyme. It was deduced that each subunit of the enzyme binds one uranyl ion. The binding constant was estimated to be in the order of 10 7 M -1 . The enzyme which contains a small number of chemically modified carboxyl groups was not able to bind uranyl ions specifically. The modification of carboxyl groups was carried out by use of a water soluble carbodiimide and the nucleophilic reagent N-(2,4-dinitro-phenyl)-hexamethylenediamine. The substrate analogue calcium pyrophosphate displaced the uranyl ions from their binding sites at the enzyme From the results it is concluded that carboxyl groups of the active site are the ligands for the binding of uranyl ions. (author)

  13. Immobilization of inorganic pyrophosphatase on nanodiamond particles retaining its high enzymatic activity.

    Science.gov (United States)

    Rodina, Elena V; Valueva, Anastasiya V; Yakovlev, Ruslan Yu; Vorobyeva, Nataliya N; Kulakova, Inna I; Lisichkin, Georgy V; Leonidov, Nikolay B

    2015-12-21

    Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase.

  14. Inhibition of photosynthesis in isolated spinach chloroplasts by inorganic phosphate or inorganic pyrophosphatase in the presence of pyrophosphate and magnesium ions

    Energy Technology Data Exchange (ETDEWEB)

    Levine, G; Bassham, J A

    1974-01-01

    Inhibition of photosynthesis in isolated spinach chloroplasts by P/sub i/ is decreased by the presence of PP/sub i/ and increased with increasing Mg/sup 2 +/ concentration. Previously reported regulation of this photosynthesis by protein factors from spinach leaves appears to be due mostly to pyrophosphate phosphohydrolase (EC 3.6.1.1) activity which converts PP/sub i/ to P/sub i/ and to the effects of PP/sub i/ and Mg/sup 2 +/ on this pyrophosphatase activity.

  15. Inorganic pyrophosphatase in uncultivable hemotrophic mycoplasmas: identification and properties of the enzyme from Mycoplasma suis

    Directory of Open Access Journals (Sweden)

    Wittenbrink Max M

    2010-07-01

    Full Text Available Abstract Background Mycoplasma suis belongs to a group of highly specialized hemotrophic bacteria that attach to the surface of host erythrocytes. Hemotrophic mycoplasmas are uncultivable and the genomes are not sequenced so far. Therefore, there is a need for the clarification of essential metabolic pathways which could be crucial barriers for the establishment of an in vitro cultivation system for these veterinary significant bacteria. Inorganic pyrophosphatases (PPase are important enzymes that catalyze the hydrolysis of inorganic pyrophosphate PPi to inorganic phosphate Pi. PPases are essential and ubiquitous metal-dependent enzymes providing a thermodynamic pull for many biosynthetic reactions. Here, we describe the identification, recombinant production and characterization of the soluble (sPPase of Mycoplasma suis. Results Screening of genomic M. suis libraries was used to identify a gene encoding the M. suis inorganic pyrophosphatase (sPPase. The M. suis sPPase consists of 164 amino acids with a molecular mass of 20 kDa. The highest identity of 63.7% was found to the M. penetrans sPPase. The typical 13 active site residues as well as the cation binding signature could be also identified in the M. suis sPPase. The activity of the M. suis enzyme was strongly dependent on Mg2+ and significantly lower in the presence of Mn2+ and Zn2+. Addition of Ca2+ and EDTA inhibited the M. suis sPPase activity. These characteristics confirmed the affiliation of the M. suis PPase to family I soluble PPases. The highest activity was determined at pH 9.0. In M. suis the sPPase builds tetramers of 80 kDa which were detected by convalescent sera from experimentally M. suis infected pigs. Conclusion The identification and characterization of the sPPase of M. suis is an additional step towards the clarification of the metabolism of hemotrophic mycoplasmas and, thus, important for the establishment of an in vitro cultivation system. As an antigenic and conserved

  16. Expression of new human inorganic pyrophosphatase in thyroid diseases: Its intimate association with hyperthyroidism

    International Nuclear Information System (INIS)

    Koike, Eisuke; Toda, Shuji; Yokoi, Fumiaki; Izuhara, Kenji; Koike, Norimasa; Itoh, Kouichi; Miyazaki, Kohji; Sugihara, Hajime

    2006-01-01

    Inorganic pyrophosphatase (PPase) controls the level of inorganic pyrophosphate produced by biosynthesis of protein, RNA, and DNA. Thus, PPase is essential for life. PPase expression is unclear in the thyroid. We cloned a new human PPase, phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPPase), and established a rabbit polyclonal anti-LHPPase antibody. This is First study to determine the PPase expression by immunohistochemistry and Western blot. Intranuclear LHPPase expression of thyrocytes was enhanced most prominently in Graves' disease and autonomously functional thyroid nodule. To estimate a regulating factor of subcellular localization of LHPPase, we examined its expression of Graves' disease-derived thyrocytes in vitro with the disease-originated serum. Nuclear expression of LHPPase was lost in cultured thyrocytes even with the serum, while its cytoplasmic expression was retained. The data suggest that increased expression of LHPPase is associated with hyperthyroidism. Intranuclear expression of LHPPase may not be regulated by Graves' disease-derived serum factors

  17. Insights into the cellular function of YhdE, a nucleotide pyrophosphatase from Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jin Jin

    Full Text Available YhdE, a Maf-like protein in Escherichia coli, exhibits nucleotide pyrophosphatase (PPase activity, yet its cellular function remains unknown. Here, we characterized the PPase activity of YhdE on dTTP, UTP and TTP and determined two crystal structures of YhdE, revealing 'closed' and 'open' conformations of an adaptive active site. Our functional studies demonstrated that YhdE retards cell growth by prolonging the lag and log phases, particularly under stress conditions. Morphology studies showed that yhdE-knockout cells transformed the normal rod shape of wild-type cells to a more spherical form, and the cell wall appeared to become more flexible. In contrast, YhdE overexpression resulted in filamentous cells. This study reveals the previously unknown involvement of YhdE in cell growth inhibition under stress conditions, cell-division arrest and cell-shape maintenance, highlighting YhdE's important role in E. coli cell-cycle checkpoints.

  18. Determination of inorganic pyrophosphatase in rat odontoblast layer by a radiochemical method

    International Nuclear Information System (INIS)

    Granstroem, G.; Linde, A.

    1975-01-01

    The enzyme inorganic pyrophosphatase (PPsub(i)ase, EC 3.6.1.1) from the odontoblastic layer of rat incisors has been studied by means of a radiochemical micromethod. The enzyme was incubated with 32 P-pyrophosphate in tris-HCl buffer at 37degC. The reaction was linear with time fr at least 45 min, and the pH optimum was found to be 8.8, independent of the amount of pyrophosphate present. Heating the enzyme at 56degC inhibited the enzyme activity rapidly, Mg 2+ ions activated the enzyme by 15 % at an ion concentration of 4 mM, while higher concentrations were inhibitory. Ca 2+ ions and PO 4 3- ions inhibited the enzyme at all concentrations. F - ions did not affect the PPsub(i)ase at concentrations below 8 mM, whereas higher concentrations had an inhibiting effect. Urea was found to inhibit the enzyme at concentrations above 1.5 M, while EDTA was a strong inhibitor at very low concentrations. The characteristics of PPsub(i)ase agree well with the properties of the enzyme nonspecific alkaline phosphatase (EC 3.1.3.1.) studied earlier. (author)

  19. AVP2, a sequence-divergent, K{sup +}-insensitive H{sup +}-translocating inorganic pyrophosphatase from arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowicz, Y.M.; Kissinger, J.C.; Rea, P.A.

    2000-05-01

    Plant vacuolar H{sup +}-translocating inorganic pyrophosphatase have been considered to constitute a family of functionally and structurally monotonous intrinsic membrane proteins. Typified by AVPI from Arabidopsis, all characterized plant V-PPases share greater than 84% sequence identity and catalyze K{sup +}-stimulated H{sup +} translocation. Here the authors describe the molecular and biochemical characterization of AVP2, a sequence-divergent K{sup +}-insensitive, Ca{sup 2+}-hypersensitive V-PPase active in both inorganic pyrophosphate hydrolysis and H{sup +} translocation. The differences between AVP2 and AVP1 provide the first indication that plant V-PPase sequences from the same organism fall into two distinct categories. Phylogenetic analyses of these and other V-PPase sequences extend this principle by showing that AVP2, rather than being an isoform of AMP1, is but one representative of a novel category of AVP2-like (type 2) V-PPases that coexist with AVP1-like (type 1) V-PPases not only in plants, but also in apicomplexan protists such as the malarial parasite Plasmodium falciparum.

  20. Imidazopyridine- and purine-thioacetamide derivatives: potent inhibitors of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1).

    Science.gov (United States)

    Chang, Lei; Lee, Sang-Yong; Leonczak, Piotr; Rozenski, Jef; De Jonghe, Steven; Hanck, Theodor; Müller, Christa E; Herdewijn, Piet

    2014-12-11

    Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) belongs to the family of ecto-nucleotidases, which control extracellular nucleotide, nucleoside, and (di)phosphate levels. To study the (patho)physiological roles of NPP1 potent and selective inhibitors with drug-like properties are required. Therefore, a compound library was screened for NPP1 inhibitors using a colorimetric assay with p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as an artificial substrate. This led to the discovery of 2-(3H-imidazo[4,5-b]pyridin-2-ylthio)-N-(3,4-dimethoxyphenyl)acetamide (5a) as a hit compound with a Ki value of 217 nM. Subsequent structure-activity relationship studies led to the development of purine and imidazo[4,5-b]pyridine analogues with high inhibitory potency (Ki values of 5.00 nM and 29.6 nM, respectively) when assayed with p-Nph-5'-TMP as a substrate. Surprisingly, the compounds were significantly less potent when tested versus ATP as a substrate, with Ki values in the low micromolar range. A prototypic inhibitor was investigated for its mechanism of inhibition and found to be competitive versus both substrates.

  1. Molecular Cloning, Expression Analysis, and Functional Characterization of the H(+)-Pyrophosphatase from Jatropha curcas.

    Science.gov (United States)

    Yang, Yumei; Luo, Zhu; Zhang, Mengru; Liu, Chang; Gong, Ming; Zou, Zhurong

    2016-04-01

    H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J. curcas H(+)-PPase (JcVP1) complementary DNA (cDNA) by reverse transcription PCR, based on the assembled sequence of its ESTs highly matched to Hevea brasiliensis H(+)-PPase. This gene encodes a polypeptide of 765 amino acids that was predicted as a K(+)-dependent H(+)-PPase evolutionarily closest to those of other Euphorbiaceae plants. Many cis-regulatory elements relevant to environmental stresses, molecular signals, or tissue-specificity were identified by promoter prediction within the 1.5-kb region upstream of JcVP1 coding sequence. Meanwhile, the responses of JcVP1 expression to several common abiotic stresses (salt, drought, heat, cold) were characterized with a considerable accordance with the inherent stress tolerance of J. curcas. Moreover, we found that the heterologous expression of JcVP1 could significantly improve the salt tolerance in both recombinant Escherichia coli and Saccharomyces cerevisiae, and this effect could be further fortified in yeast by N-terminal addition of a vacuole-targeting signal peptide from the H(+)-PPase of Trypanosoma cruzi.

  2. Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize

    Science.gov (United States)

    Pei, Laming; Wang, Jiemin; Li, Kunpeng; Li, Yongjun; Li, Bei; Gao, Feng; Yang, Aifang

    2012-01-01

    Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress. PMID:22952696

  3. Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: New clues into catalytic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Shannon E.; Nguyen, Elaine; Ukachukwu, Chiamaka U.; Freeman, Dana M.; Quirk, Stephen; Lieberman, Raquel L.; Boggon, Titus J.

    2017-07-25

    Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters, and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition.

  4. Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: New clues into catalytic mechanism.

    Directory of Open Access Journals (Sweden)

    Shannon E Hill

    Full Text Available Dihydroneopterin triphosphate pyrophosphatase (DHNTPase, a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters, and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition.

  5. Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in prostate cancer patients: influence of Gleason score, treatment and bone metastasis.

    Science.gov (United States)

    Battisti, Vanessa; Maders, Liési D K; Bagatini, Margarete D; Battisti, Iara E; Bellé, Luziane P; Santos, Karen F; Maldonado, Paula A; Thomé, Gustavo R; Schetinger, Maria R C; Morsch, Vera M

    2013-04-01

    The relation between adenine nucleotides and cancer has already been described in literature. Considering that the enzymes ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) act together to control nucleotide levels, we aimed to investigate the role of these enzymes in prostate cancer (PCa). E-NPP and ADA activities were determined in serum and platelets of PCa patients and controls. We also verified the influence of the Gleason score, bone metastasis and treatment in the enzyme activities. Platelets and serum E-NPP activity increased, whereas ADA activity in serum decreased in PCa patients. In addition, Gleason score, metastasis and treatment influenced E-NPP and ADA activities. We may propose that E-NPP and ADA are involved in the development of PCa. Moreover, E-NPP and ADA activities are modified in PCa patients with distinct Gleason score, with bone metastasis, as well as in patients under treatment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, Candy A.; Tagliabracci, Vincent S.; Zhai, Lanmin [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Roach, Peter J., E-mail: proach@iupui.edu [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2009-12-25

    Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [{beta}-{sup 32}P]UDP-glucose to [{sup 32}P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg{sup 2+} and was greatest at alkaline pH above 8. Kinetic analysis indicated a K{sub m} of {approx}4 mM for UDP-glucose and {approx}0.3 mM for ADP-ribose. Based on V{sub max}/K{sub m} values, the enzyme was {approx}20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of M{sub r} 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.

  7. Enhanced Proton Translocating Pyrophosphatase Activity Improves Nitrogen Use Efficiency in Romaine Lettuce1[C][W][OA

    Science.gov (United States)

    Paez-Valencia, Julio; Sanchez-Lares, Jonathan; Marsh, Ellen; Dorneles, Liane T.; Santos, Mirella P.; Sanchez, Diego; Winter, Alexander; Murphy, Sean; Cox, Jennifer; Trzaska, Marcin; Metler, Jason; Kozic, Alex; Facanha, Arnoldo R.; Schachtman, Daniel; Sanchez, Charles A.; Gaxiola, Roberto A.

    2013-01-01

    Plant nitrate (NO3−) acquisition depends on the combined activities of root high- and low-affinity NO3− transporters and the proton gradient generated by the plasma membrane H+-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa ‘Conquistador’) plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H+-PPase) of Arabidopsis (Arabidopsis thaliana). The proton-pumping and inorganic pyrophosphate hydrolytic activities of these plants are augmented compared with control plants. Immunohistochemical data show a conspicuous increase in H+-PPase protein abundance at the vasculature of the transgenic plants. Transgenic plants displayed an enhanced rhizosphere acidification capacity consistent with the augmented plasma membrane H+-ATPase proton transport values, and ATP hydrolytic capacities evaluated in vitro. These transgenic lines outperform control plants when challenged with NO3− limitations in laboratory, greenhouse, and field scenarios. Furthermore, we report the characterization of a lettuce LsNRT2.1 gene that is constitutive up-regulated in the transgenic plants. Of note, the expression of the LsNRT2.1 gene in control plants is regulated by NO3− and sugars. Enhanced accumulation of 15N-labeled fertilizer by transgenic lettuce compared with control plants was observed in greenhouse experiments. A negative correlation between the level of root soluble sugars and biomass is consistent with the strong root growth that characterizes these transgenic plants. PMID:23307651

  8. Arabidopsis CDS blastp result: AK098996 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK098996 J013102B11 At5g09650.1 inorganic pyrophosphatase family protein similar to SP|Q15181 Inorgani...c pyrophosphatase (EC 3.6.1.1) (Pyrophosphate {Homo sapiens}; contains Pfam profile PF00719: inorganic pyrophosphatase 9e-92 ...

  9. Arabidopsis CDS blastp result: AK060304 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060304 001-007-A07 At5g09650.1 inorganic pyrophosphatase family protein similar to SP|Q15181 Inorgani...c pyrophosphatase (EC 3.6.1.1) (Pyrophosphate {Homo sapiens}; contains Pfam profile PF00719: inorganic pyrophosphatase 9e-92 ...

  10. Arabidopsis CDS blastp result: AK099120 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099120 J023036A18 At5g09650.1 inorganic pyrophosphatase family protein similar to SP|Q15181 Inorgani...c pyrophosphatase (EC 3.6.1.1) (Pyrophosphate {Homo sapiens}; contains Pfam profile PF00719: inorganic pyrophosphatase 1e-86 ...

  11. A Soluble Pyrophosphatase Is Essential to Oogenesis and Is Required for Polyphosphate Metabolism in the Red Flour Beetle (Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Klébea Carvalho

    2015-03-01

    Full Text Available Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum. A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA, and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis.

  12. H+ -pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.].

    Science.gov (United States)

    Fan, Weijuan; Wang, Hongxia; Wu, Yinliang; Yang, Nan; Yang, Jun; Zhang, Peng

    2017-06-01

    Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H + -pyrophosphatase (H + -PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H + -ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1-overexpressing plants showed better growth, including enlarged root systems, under Fe-sufficient or Fe-deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up-regulation of Fe uptake genes, e.g. FRO2, IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β-amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H 2 O 2 accumulation associated with up-regulated ROS-scavenging activity. Therefore, H + -PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient-deficient soils. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Association of the polymorphism of codon 121 in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 gene with polycystic ovary syndrome in Chinese woman

    International Nuclear Information System (INIS)

    Shi, Y.; Chen, Z.; Zhang, P.; Zhao, Y.; You, L.; Sun, X.

    2008-01-01

    Objective was to determine the association of polymorphism of codon 121 in the ecto-nucleotide pyrophosphastase/phosphodiesterase 1 (E-NPP1/PC-1) gene in Chinese women with polycystic ovary syndrome (PCOS). A total of 51 PCOS patients and 61 healthy women from Chinese Han population from the Center Reproductive Medicine of Provincial Hospital affiliated to Shandong University from June 2005 to July 2006 were recruited for the determination of the polymorphism of the E-NPP/PC-1 gene. Genomic DNA was extracted from peripheral blood monocytes of patients and controls and genotyping of the gene was performed by using polymerase chain reaction, which was followed by sequencing. The frequency of the 121Q allele was 13 and 18%, respectively, in PCOS patients and healthy women, while the frequency of the 121K allele was 87 and 82% in the 2 groups. There is no significant difference in the E-NPP1/PC-1 polymorphism between PCOS patients and healthy controls among Chinese Han women. ecto-nucleotide pyrophosphatase/phosphodiesterase 1 polymorphism has no association with PCOS. Further studies are still needed to elucidate whether or not the E-NPP1/PC-1 gene has a functional role in PCOS. (author)

  14. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-05-09

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.

  15. Labeling of eukaryotic messenger RNA 5' terminus with phosphorus -32: use of tobacco acid pyrophosphatase for removal of cap structures

    International Nuclear Information System (INIS)

    Lockard, R.E.; Rieser, L.; Vournakis, J.N.

    1981-01-01

    In recent years, there has been a growing appreciation of the potential applications of 5'- 32 P-end-labeled mRNA, not only for screening recombinant clones and mapping gene structure, but also for revealing possible nucleotide sequence and structural signals within mRNA molecules themselves, which may be important for eukaryotic mRNA processing and turnover and for controlling differential rates of translational initiation. Three major problems, however, have retarded progress in this area, lack of methods for efficient and reproducible removal of m7G5ppp5'-cap structures, which maintain the integrity of an RNA molecule; inability to generate a sufficient amount of labeled mRNA, owing to the limited availability of most pure mRNA species; and the frequent problem of RNA degradation during in vitro end-labeling owing to RNAse contamination. The procedures presented here permit one to decap and label minute quantities of mRNA, effectively. Tobacco acid pyrophosphatase is relatively efficient in removing cap structures from even nanogram quantities of available mRNA, and enough radioactivity can be easily generated from minute amounts ofintact mRNA with very high-specific-activity [gamma- 32 P]ATP and the inhibition of ribonuclease contamination with diethylpyrocarbonate. These procedures can be modified and applied to almost any other type of RNA molecule as well. In Section III of this volume, we explore in detail how effectively 5'-end-labeled mRNA can be used not only for nucleotide sequence analysis, but also for mapping mRNA secondary structure

  16. Quantitative and subcellular localization analysis of the nuclear isoform dUTP pyrophosphatase in alkylating agent-induced cell responses

    International Nuclear Information System (INIS)

    Hu, Xiaolan; Yu, Yingnian; Li, Qian; Wu, Danxiao; Tan, Zhengning; Wang, Cheng; Wang, Jvping; Wu, Meiping

    2011-01-01

    Highlights: → MNNG-induced appearance of DUT-N in the extracellular fluid has cellular specificity. → MNNG alters the subcellular distribution of DUT-N in human cells in different ways. → DUT-N may be a potential biomarker to assess the risk of alkylating agents exposure. -- Abstract: Our previous proteome analysis showed that the nuclear isoform of dUTP pyrophosphatase (DUT-N) was identified in the culture medium of human amnion FL cells after exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). These results suggest that DUT-N may be a potential early biomarker to assess the risk of alkylating agents exposure. DUT-N is one of the two isoforms of deoxyuridine triphosphate nucleotidohydrolase (dUTPase). Our current knowledge of DUT-N expression in human cells is very limited. In the current study, we first investigated the appearance of DUT-N in the culture medium of different human cell lines in response to a low concentration of MNNG exposure. We verified that the MNNG-induced appearance of DUT-N in the extracellular environment is cell-specific. Western blot analysis confirmed that the intracellular DUT-N changes responded to MNNG in a concentration-dependent and cell-specific manner. Furthermore, subcellular fraction experiments showed that 0.25 μM MNNG treatment dramatically increased the DUT-N expression levels in the cytoplasmic extracts prepared from both FL and HepG2 cells, increased DUT-N levels in nuclear extracts prepared from HepG2 cells, and decreased DUT-N levels in nuclear extracts from FL cells. Morphological studies using immunofluorescence showed that a low concentration of MNNG could alter the distribution of DUT-N in FL and HepG2 cells in different ways. Taken together, these studies indicate a role of DUT-N in alkylating agent-induced cell responses.

  17. [Homozygous ectonucleotide pyrophosphatase/phosphodiesterase 1 variants in a girl with hypophosphatemic rickets and literature review].

    Science.gov (United States)

    Liu, Z Q; Chen, X B; Song, F Y; Gao, K; Qiu, M F; Qian, Y; Du, M

    2017-11-02

    Objective: To investigate the clinical features and genetic characteristics of patients with ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene variants. Method: The clinical data of a patient with ENPP1 homozygous variants from Capital Institute of Pediatrics was collected, the related literature was searched from China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform, National Center from Biotechnology Information and PubMed by using search term "ENPP1" , "hypophosphatemic rickets" . The literature retrieval was confined from 1980 to February 2017. The clinical manifestations, bone metabolism examinations, X-RAY and genotypes were reviewed. Result: Our patient was an 11 years old girl, with 7 years history of lower limb malformation. She showed significant valgus deformity of the knee (genu valgum). Metabolic examination revealed reduced level of plasma phosphate (0.86 mmol/L), a normal level of plasma calcium (2.30 mmol/L) and an elevated alkaline phosphatase level of 688 IU/L. The calcium-phosphorus product was 25.9. A homozygous nonsense variants of ENPP1 gene, c.783C>G (p.Tyr261X) in exon 7 was identified in the patient. Both parents were heterozygous carriers. Literature review identified 3 Chinese patients from one publication and 17 cases from twenty one publications around the world. None of the patients was found PHEX variants which is the most common variants among hypophosphatemic rickets patients. The disease onset age was 11 months to 10 years. Eight patients had short stature, five patients had the history of generalized arterial calcification of infancy. Four suffered from deafness, three showed localized calcifications of arteries, three patients manifested pseudoxanthoma elasticum and two suffered from ossification of posterior longitudinal ligament. Nine missense variants, six splicing variants and 4 nonsense variants were reported among these twenty patients. c.783C>G was found in two Chinese patients

  18. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H(+)-pyrophosphatase gene (SbVPPase) from Sorghum bicolor.

    Science.gov (United States)

    Anjaneyulu, Ediga; Reddy, Palle Surender; Sunita, Merla Srilakshmi; Kishor, Polavarapu B Kavi; Meriga, Balaji

    2014-06-15

    A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80-90% homology at the nucleotide and 85-95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50-70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25-100% in transgenics, while malondialdehyde (MDA) showed a 2-4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5-2.5-fold higher Na(+) and 0.4-0.8-fold higher K(+) levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    Directory of Open Access Journals (Sweden)

    Valerio Alejandro

    2011-10-01

    Full Text Available Abstract Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya. Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA. Conclusion The importance of the V-H+PPase function and the

  20. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri N.; Berger, Bettina; Tester, Mark A.; Roy, Stuart John; Plett, Darren Craig

    2013-01-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Kinetics of pyrophosphate-driven proton uptake by acidocalcisomes of Leptomonas wallacei

    International Nuclear Information System (INIS)

    Moraes Moreira, Bernardo Luiz; Soares Medeiros, Lia Carolina A.; Miranda, Kildare; Souza, Wanderley de; Hentschel, Joachim; Plattner, Helmut; Barrabin, Hector

    2005-01-01

    In this work, we show the kinetics of pyrophosphate-driven H + uptake by acidocalcisomes in digitonin-permeabilized promastigotes of Leptomonas wallacei. The vacuolar proton pyrophosphatase activity was optimal in the pH range of 7.5-8.0, was inhibited by imidiodiphosphate, and was completely dependent on K + and PPi. H + was released with the addition of Ca 2+ , suggesting the presence of a Ca 2+ /H + antiport. In addition, X-ray elemental mapping associated with energy-filtering transmission electron microscopy showed that most of the Ca, Na, Mg, P, K, Fe, and Zn were located in acidocalcisomes. L. wallacei immunolabeled with antibodies against Trypanosoma cruzi pyrophosphatase show intense fluorescence in cytoplasmatic organelles of size and distribution similar to the acidocalcisomes. Altogether, the results show that L. wallacei acidocalcisomes possess a H + -pyrophosphatase with characteristics of type I V-H + -PPase. However, we did not find any evidence, either for the presence of H + -ATPases or for Na + /H + exchangers in these acidocalcisomes

  3. ORF Alignment: NC_002663 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available IAQKVGEEGVETALAATVKDKAETICEAA 171 ... LSKLERLIASRKGADPESSYTAQLYAKGTKRIAQKVGEEGVETALAATVKDKAETICEAA Sbjct: 1 ... LSKLERLIASRKGADPESSYTAQLYAKGTKRIAQKVGEEGVETALAATVKDKAETICEAA 60 ... ...sphoribosyl-ATP pyrophosphatase (PRA-PH)] ... Length = 84 ... Query: 112 LSKLERLIASRKGADPESSYTAQLYAKGTKR

  4. pyrophosphatase gene in rye

    Indian Academy of Sciences (India)

    1Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan ... Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than ..... Total RNA extraction and first-strand cDNA synthesis were.

  5. The association of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1 K121Q gene polymorphism with the risk of type 2 diabetes mellitus in European, American, and African populations: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Jonny Karunia Fajar

    2016-07-01

    Full Text Available Introduction: Several studies regarding the association of the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1 K121Q gene polymorphism with the risk of type 2 diabetes mellitus (T2DM showed inconsistent results. This study aimed to investigate the association of ENPP1 K121Q gene polymorphism with T2DM risk using meta-analysis. The study was limited to the American, European, and African populations.Methods: PubMed and Embase databases were searched for eligible publications. The following information was extracted from each study: name of first author, publication year, country of origin, sample size of cases and controls, and size of each allele. The combined odds ratios (ORs and 95% confidence intervals (95% CIs for the association between ENPP1 K121Q gene polymorphism and T2DM risk were assessed using random or fixed effect model. A comprehensive meta-analysis (CMA 2.0 was used to analyze the data.Results: Nineteen studies (17717 cases/28022 controls on the association between ENPP1 K121Q gene polymorphism and T2DM risk were included in this meta-analysis. The results indicated that the ENPP1 K121Q gene polymorphism was associated with increased T2DM risk (Q vs. K genetic model, OR 95% CI = 1.11 [1.02–1.22], p = 0.014; QQ vs. KK + KQ, OR 95% CI = 1.14 [1.01–1.23], p = 0.039 and decreased T2DM risk (K vs. Q, OR 95% CI = 0.90 [0.82–1.00], p = 0.014; KK vs. KQ + QQ, OR 95% CI = 0.89 [0.80–0.98], p = 0.024.Conclusions: The results indicate that the ENPP1 K121Q gene polymorphism is associated with the risk of T2DM in the American, European, and African populations.

  6. -pumping pyrophosphatase in pepper plants

    KAUST Repository

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Gregoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-01-01

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved.

  7. -pumping pyrophosphatase in pepper plants

    KAUST Repository

    Vigani, Gianpiero

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves\\' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved.

  8. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie

    2017-01-01

    .2-2.1 fold reduced relative abundance comprised elongation factor G, phosphoglycerate kinase, BipAEFTU family GTP-binding protein, ribonucleoside triphosphate reductase, adenylosuccinate synthetase, 30S ribosomal protein S1, and manganese-dependent inorganic pyrophosphatase. Surface proteome of cellobiose...

  9. ATP-consuming and ATP-generating enzymes secreted by pancreas

    DEFF Research Database (Denmark)

    Yegutkin, Gennady G; Samburski, Sergei S; Jalkanen, Sirpa

    2006-01-01

    -generating enzymes in pancreatic juice, adenylate kinase, and NDP kinase, capable of sequentially phosphorylating AMP via ADP to ATP. Activities of nonspecific phosphatases, nucleotide pyrophosphatase/phosphodiesterases, and adenosine deaminase were negligible. Taken together, CCK-8 stimulation of pancreas causes...

  10. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo ...

  11. Glucose-Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization, Stabilization and Crystallization

    OpenAIRE

    Chae, Pil Seok; Rana, Rohini R.; Gotfryd, Kamil; Rasmussen, Søren G. F.; Kruse, Andrew C.; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J.; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K.; Gellman, Samuel H.

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, “GNG amphiphiles”, is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al.

  12. Glucose-Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization, Stabilization and Crystallization

    Science.gov (United States)

    Rana, Rohini R.; Gotfryd, Kamil; Rasmussen, Søren G. F.; Kruse, Andrew C.; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J.; Gether, Ulrik; Banerjee, Surajit

    2012-01-01

    The development of a new class of surfactants for membrane protein manipulation, “GNG amphiphiles”, is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al. PMID:23165475

  13. Eriobotrya japonica

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... pyrophosphatase (V-PPiase) were isolated from loquat (Eriobotrya japonica) pulp. Thereafter, northern analysis ... #These authors contributed equally to this work. ... (TA) correlates highly with malate concentration, but does not correlate ... (1997) have shown that, a nonacid sweet lime (Citrus limmetioides) ...

  14. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study.

    Science.gov (United States)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil; Rasmussen, Søren G F; Kruse, Andrew C; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K; Gellman, Samuel H

    2013-03-21

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al. (Science, 2012, 337, 473).

  15. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    Science.gov (United States)

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-03-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase.

  16. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Javid-Majd, Farah; Yang, Dong [Department of Biochemistry and Biophysics, Texas A& M University, College Station, Texas 77843-2128 (United States); Ioerger, Thomas R. [Department of Computer Science, Texas A& M University, College Station, Texas 77843-2128 (United States); Sacchettini, James C., E-mail: sacchett@tamu.edu [Department of Biochemistry and Biophysics, Texas A& M University, College Station, Texas 77843-2128 (United States)

    2008-06-01

    The crystal structure of M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase, the second enzyme in the histidine-biosynthetic pathway, is presented. The structural and inferred functional relationships between M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase and other members of the nucleoside-triphosphate pyrophosphatase-fold family are described. Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 Å. The structure of the apoenzyme reveals that the protein is composed of five α-helices with connecting loops and is a member of the α-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between α-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.

  17. Isotopic studies on structure-function relationships of nucleic acids and enzymes. Three year progress report, May 1972--October 1975

    International Nuclear Information System (INIS)

    Boyer, P.D.

    1975-01-01

    The most important accomplishments and major contributions are tabulated with citations to published work. The more important unpublished contributions deal with the early events in ATP formation by chloroplasts, energy linkage in reaction steps of oxidative phosphorylation, molecular integrity of parental DNA, bound pyrophosphate and 18 O-exchanges by inorganic pyrophosphatase, and glutamine synthetase exchanges and mechanisms. These are being prepared for publication

  18. dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency

    Czech Academy of Sciences Publication Activity Database

    Barabás, O.; Rumlová, Michaela; Erdei, A.; Pongrácz, V.; Pichová, Iva; Vértessy, B. G.

    2003-01-01

    Roč. 278, č. 40 (2003), s. 38803-38812 ISSN 0021-9258 R&D Projects: GA AV ČR IAA4055304 Grant - others:HNRF(HU) T034120; HNRF(HU) TS044730; HNRF(HU) M27852; HHMI(US) 55000342 Institutional research plan: CEZ:AV0Z4055905 Keywords : dUTPase * M-PMV * pyrophosphatase Subject RIV: CE - Biochemistry Impact factor: 6.482, year: 2003

  19. Bisfosfonatos: Aplicaciones Actuales en Osteoporosis y Cáncer

    OpenAIRE

    Poma Carmona, Augusto; Gutiérrez, Guiselle; Casas, Jorge

    2014-01-01

    Bisphosphonates are antiresorptive agents with high affinity for hidroxiapatite crystals. They are not degraded by pyrophosphatases. Their main indications are treatment of post-menopausic osteoporosis, corticosteroid-induced osteoporosis, Paget´s disease, neoplasm-induced hypercalcemia and osteolytic bone disease by cancer. Los bisfosfonatos son compuestos antirresortivos con alta afinidad por los cristales de hidroxiapatita y no son degradados por las pirofosfatasas. Sus principales indi...

  20. Enzymatic determination of rare earth elements using pyrophosphatases

    International Nuclear Information System (INIS)

    Shekhovtsova, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive(determination limit 8x10 -6 -4x10 -4 μ g/m) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E.Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  1. The quantitative determination of metabolites of 6-mercaptopurine in biological materials. VI. Evidence for posttranscriptional modification of 6-thioguanosine residues in RNA from L5178Y cells treated with 6-mercaptopurine.

    Science.gov (United States)

    Breter, H J

    1985-05-24

    Mammalian cells incorporate 6-thioguanosine into their nucleic acids when grown in the presence of 6-mercaptopurine. 35S-labeled total RNA was prepared from L5178Y murine lymphoma cells grown in vitro in the presence of 6-[35S]mercaptopurine. Base analyses of this RNA suggested that 6-thioguanosine residues in RNA molecules undergo posttranscriptional modification. Thus, enzymatic peak-shifting analyses using anion-exchange high-performance liquid chromatography were applied to the hydrolysis products released from total RNA preparations by digestion with nuclease P1 or nuclease P1 plus nucleotide pyrophosphatase. At least eight 35S-labeled, phosphatase-sensitive compounds structurally different from [35S]6thioGMP were found in nuclease P1 digests. Four of these compounds were susceptible to cleavage with nucleotide pyrophosphatase, thus indicating that they contained phosphoric acid anhydride bonds. Individual RNA species were not separately examined, the radiochromatographic data, however, which were obtained from digests of total RNA preparations, present evidence that 6-thioguanosine 5'-diphosphate and 6-thioguanosine 5'-triphosphate exist as 5'-terminal starting nucleotides (in tRNA and rRNA) and that 6-thioguanosine becomes incorporated into the highly modified dinucleoside triphosphate structures (caps) which commonly block the 5'-termini of eukaryotic poly(A)+ mRNA-molecules.

  2. Volutin granules of Eimeria parasites are acidic compartments and have physiological and structural characteristics similar to acidocalcisomes

    Science.gov (United States)

    Medeiros, Lia Carolina Soares; Gomes, Fabio; Maciel, Luis Renato Maia; Seabra, Sergio Henrique; Docampo, Roberto; Moreno, Silvia; Plattner, Helmut; Hentschel, Joachim; Kawazoe, Urara; Barrabin, Hector; de Souza, Wanderley; DaMatta, Renato Augusto; Miranda, Kildare

    2012-01-01

    The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites. PMID:21699625

  3. Comparative enzymology of the adenosine triphosphate sulfurylases from leaf tissue of selenium-accumulator and non-accumulator plants

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, W H; Anderson, J W

    1974-01-01

    ATP sulfurylases were partially purified (20-40-fold) from leaf tissue of Astragalus bisulcatus, Astragalus racemosus (selenium-accumulator species) and Astragalus hamosus and Astragalus sinicus (non-accumulator species). Activity was measured by sulfate-dependent PP/sub 1/-ATP exchange. The enzymes were separated from pyrophosphatase and adenosine triphosphatase activities. The properties of the Astragalus ATP sulfurylases were similar to the spinach enzyme. The ATP sulfurylases from both selenium-accumulator and non-accumulator species catalyzed selenate-dependent PP/sub 1/-ATP exchange; selenate competed with sulfate. The ratio of V(selenate)/V(sulfate) and K/sub m/ (selenate)/K/sub m/(sulfate) was approximately the same for the enzyme from each species. Sulfate-dependent PP/sub 1/-ATP exchange was inhibited by ADP, chlorate and nitrate. The kinetics of the inhibition for each enzyme were consistent with an ordered reaction mechanisms, in which ATP is the first substrate to react with the enzyme and PP/sub 1/ is the first product released. Synthesis of adenosine 5'-(/sup 35/S)sulfatophosphate from (/sup 35/S)sulfate was demonstrated by coupling the Astrgalus ATP sulfurylases with Mg/sup 2 +/-dependent pyrophosphatase; the reaction was inhibited by selenate. An analogous reaction using (/sup 75/Se)selenate as substrate could not be demonstrated.

  4. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    OpenAIRE

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-01-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna,...

  5. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  6. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis.

    Science.gov (United States)

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2017-10-01

    NAD + is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD + is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD + concentrations and possibly remove and/or reuse undesirable degradation products of NAD + Here we confirmed that at 85°C, thermal degradation of NAD + results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD + in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD + breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD + is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal

  7. Cardiotoxin of the Indian cobra (Naja naja) is a pyrophosphatase

    Indian Academy of Sciences (India)

    Administrator

    and sugar phosphates at much lower rates. ... known to contain many other enzymes (Jimenez Porras, 1970). .... and the corresponding Vmax was only a third. ... far as heat stability is concerned, Fraction X shares this property with the pyro-.

  8. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase

    International Nuclear Information System (INIS)

    Porta, Jason; Kolar, Carol; Kozmin, Stanislav G.; Pavlov, Youri I.; Borgstahl, Gloria E. O.

    2006-01-01

    X-ray crystallographic analysis of human inosine triphosphate pyrophosphohydrolase provided the secondary structure and active-site structure at 1.6 Å resolution in an orthorhombic crystal form. The structure gives a framework for future structure–function studies employing site-directed mutagenesis and for the identification of substrate/product-binding sites. The structure of human inosine triphosphate pyrophosphohydrolase (ITPA) has been determined using diffraction data to 1.6 Å resolution. ITPA contributes to the accurate replication of DNA by cleansing cellular dNTP pools of mutagenic nucleotide purine analogs such as dITP or dXTP. A similar high-resolution unpublished structure has been deposited in the Protein Data Bank from a monoclinic and pseudo-merohedrally twinned crystal. Here, cocrystallization of ITPA with a molar ratio of XTP appears to have improved the crystals by eliminating twinning and resulted in an orthorhombic space group. However, there was no evidence for bound XTP in the structure. Comparison with substrate-bound NTPase from a thermophilic organism predicts the movement of residues within helix α1, the loop before α6 and helix α7 to cap off the active site when substrate is bound

  9. THREE-DIMENSIONAL OBSERVATIONS ON THICK BIOLOGICAL SPECIMENS BY HIGH VOLTAGE ELECTRON MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Tetsuji Nagata

    2011-05-01

    Full Text Available Thick biological specimens prepared as whole mount cultured cells or thick sections from embedded tissues were stained with histochemical reactions, such as thiamine pyrophosphatase, glucose-6-phosphatase, cytochrome oxidase, acid phosphatase, DAB reactions and radioautography, to observe 3-D ultrastructures of cell organelles producing stereo-pairs by high voltage electron microscopy at accerelating voltages of 400-1000 kV. The organelles demonstrated were Golgi apparatus, endoplasmic reticulum, mitochondria, lysosomes, peroxisomes, pinocytotic vesicles and incorporations of radioactive compounds. As the results, those cell organelles were observed 3- dimensionally and the relative relationships between these organelles were demonstrated.

  10. Investigation of the cofactor controlled substrate specificity of yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Dunaway-Mariano, D.; Barry, R.J.; Brush, T.; Ting, S.J.

    1986-01-01

    The PPase reaction requires the participation of three metal ion cofactors. One metal ion binds to PP activating it for reaction and the other two bind to the enzyme activating it for catalysis. Of the metal ions tested only Mg 2+ , Zn 2+ , Co 2+ , Mn 2+ can perform all these roles. Most trivalent metal ions can function to activate the PP for reaction but cannot activate the enzyme for catalysis. The Mg 2+ activated enzyme is specific for M-PP and M-PPS complexes while the Zn 2+ activated enzyme also acts on metal complexes of PPP, PPPOR, PPOR and PPF. 18 O-Incorporation studies show that the substituted phosphoryl group of the unsymmetrical PP complexes always serves as the leaving group. To gain insight into the mechanism of the cofactor control over the substrate specificity the order of substrate/cofactor binding to the enzyme was examined. Dead end inhibition studies in which Cr(III)PP served as substrate and Mg 2+ as cofactor indicate that the mechanism is rapid equilibrium ordered (CrPP binds first) while dead end inhibitor induced activator inhibition studies with Mg 2+ and MgPP indicate that the kinetic mechanism is steady state preferred order. Cofactor-enzyme binding was studied as a function of substrate structure and the results obtained rule out interference of Mg 2+ binding by substrate analogs as an explanation for the different substrate specificities of the Zn 2+ and Mg 2+ activated enzymes

  11. BIOCHEMICAL EFFECTS IN NORMAL AND STONE FORMING RATS TREATED WITH THE RIPE KERNEL JUICE OF PLANTAIN (MUSA PARADISIACA)

    Science.gov (United States)

    Devi, V. Kalpana; Baskar, R.; Varalakshmi, P.

    1993-01-01

    The effect of Musa paradisiaca stem kernel juice was investigated in experimental urolithiatic rats. Stone forming rats exhibited a significant elevation in the activities of two oxalate synthesizing enzymes - Glycollic acid oxidase and Lactate dehydrogenase. Deposition and excretion of stone forming constituents in kidney and urine were also increased in these rats. The enzyme activities and the level of crystalline components were lowered with the extract treatment. The extract also reduced the activities of urinary alkaline phosphatase, lactate dehydrogenase, r-glutamyl transferase, inorganic pyrophosphatase and β-glucuronidase in calculogenic rats. No appreciable changes were noticed with leucine amino peptidase activity in treated rats. PMID:22556626

  12. Influence of Waterlogging on Carbohydrate Metabolism in Ragi and Rice Roots

    Directory of Open Access Journals (Sweden)

    Kulkarni, S. S.

    2013-04-01

    Full Text Available Effect of different durations of waterlogging (4, 8 and 12 days stress on carbohydrate status and activities of some related enzymes in ragi and rice roots was studied. In both ragi and rice roots there was decrease in starch and total sugar content in response to waterlogging conditions. Activity of α amylase was decrease in ragi roots while opposite trend was noticed in case of rice roots. The activity of pyruvate kinase was markedly increased due to 4, 8 and 12 days waterlogging in ragi roots while such increase was noticed in rice roots due to 12 days stress. Treatment of waterlogging caused enhancement in the activity of alkaline inorganic pyrophosphatase in the roots of both ragi and rice.

  13. Zinc and magnesium in the uterus of the pregnant and pseudopregnant mouse and the effects of Mg2+ ions on uterine alkaline phosphatase.

    Science.gov (United States)

    Buxton, L E; Murdoch, R N

    1981-01-01

    The levels of zinc and magnesium in the mouse uterus during early pregnancy and pseudopregnancy were determined using atomic absorption spectroscopy techniques. The total zinc and magnesium content of the uterus increased between days 5 and 12 of pregnancy and between days 5 and 9 of content of the pseudopregnancy when decidual cells were present. However, the metals were not accumulated at a rate sufficient to match increases in uterine weight and constant concentrations (micrograms of metals per gram wet weight ot tissue) were not maintained over the various reproductive stages studied. The accumulation of the metals was associated with the presence of decidual cells, and non-decidualized horns of pseudopregnant mice failed to increase their total content of zinc and magnesium between days 5 and 9. The magnesium content of each uterus was usually between 5- and 13-fold greater than the total zinc content. mg2+ in low concentration (0-2mM) stimulated both the pyrophosphatase and orthophosphatase activities of purified preparations of the mouse uterine metalloenzyme, alkaline phosphatase. Higher concentrations (up to 8 mM) of the cation decreased pyrophosphatase activity but did not alter orthophosphatase activity. Mg/+ was more effective, however, in increasing the orthophosphatase activity of the enzyme and its stimulating effects in this case were greater in carbonate-bicarbonate buffer than in glycine-NaOH buffer. Mg2+ did not significantly influence apparent Km values or the response of the enzyme to changes in temperature. Zn2+, however, was required to maintain the stability of alkaline phosphatase apoenzyme preparations. It was concluded that during normal pregnancy and pseudopregnancy zinc and magnesium would always be present in amounts considerably greater than those required to saturate alkaline phosphatase for full catalytic activity. Thus, while the metals exert major effects on the activity and stability of the enzyme in vitro, they may not be major

  14. Crystallization and preliminary X-ray diffraction analysis of rat autotaxin

    International Nuclear Information System (INIS)

    Day, Jacqueline E.; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Hausmann, Jens; Kamtekar, Satwik

    2010-01-01

    Autotaxin (ATX), a pyrophosphatase/phosphodiesterase enzyme, is a promising drug target for many indications and is only distantly related to enzymes of previously determined structure. Here, the cloning, expression, purification, crystallization and preliminary diffraction analysis of ATX are reported. Rat autotaxin has been cloned, expressed, purified to homogeneity and crystallized via hanging-drop vapour diffusion using PEG 3350 as precipitant and ammonium iodide and sodium thiocyanate as salts. The crystals diffracted to a maximum resolution of 2.05 Å and belonged to space group P1, with unit-cell parameters a = 53.8, b = 63.3, c = 70.5 Å, α = 98.8, β = 106.2, γ = 99.8°. Preliminary X-ray diffraction analysis indicated the presence of one molecule per asymmetric unit, with a solvent content of 47%

  15. AVP1: One Protein, Many Roles

    KAUST Repository

    Schilling, Rhiannon K.

    2016-12-16

    Constitutive expression of the Arabidopsis vacuolar proton-pumping pyrophosphatase (H+-PPase) gene (AVP1) increases plant growth under various abiotic stress conditions and, importantly, under nonstressed conditions. Many interpretations have been proposed to explain these phenotypes, including greater vacuolar ion sequestration, increased auxin transport, enhanced heterotrophic growth, and increased transport of sucrose from source to sink tissues. In this review, we evaluate all the roles proposed for AVP1, using findings published to date from mutant plants lacking functional AVP1 and transgenic plants expressing AVP1. It is clear that AVP1 is one protein with many roles, and that one or more of these roles act to enhance plant growth. The complexity suggests that a systems biology approach to evaluate biological networks is required to investigate these intertwined roles.

  16. AVP1: One Protein, Many Roles

    KAUST Repository

    Schilling, Rhiannon K.; Tester, Mark A.; Marschner, Petra; Plett, Darren C.; Roy, Stuart J.

    2016-01-01

    Constitutive expression of the Arabidopsis vacuolar proton-pumping pyrophosphatase (H+-PPase) gene (AVP1) increases plant growth under various abiotic stress conditions and, importantly, under nonstressed conditions. Many interpretations have been proposed to explain these phenotypes, including greater vacuolar ion sequestration, increased auxin transport, enhanced heterotrophic growth, and increased transport of sucrose from source to sink tissues. In this review, we evaluate all the roles proposed for AVP1, using findings published to date from mutant plants lacking functional AVP1 and transgenic plants expressing AVP1. It is clear that AVP1 is one protein with many roles, and that one or more of these roles act to enhance plant growth. The complexity suggests that a systems biology approach to evaluate biological networks is required to investigate these intertwined roles.

  17. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit

    2015-01-14

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  18. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit; Credendino, Raffaele; Poater, Albert; Oliva, Romina M.; Cavallo, Luigi

    2015-01-01

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  19. Different Principles of ADP-Ribose-Mediated Activation and Opposite Roles of the NUDT9 Homology Domain in the TRPM2 Orthologs of Man and Sea Anemone

    Directory of Open Access Journals (Sweden)

    Frank Kühn

    2017-10-01

    Full Text Available A decisive element in the human cation channel TRPM2 is a region in its cytosolic C-terminus named NUDT9H because of its homology to the NUDT9 enzyme, a pyrophosphatase degrading ADP-ribose (ADPR. In hTRPM2, however, the NUDT9H domain has lost its enzymatic activity but serves as a binding domain for ADPR. As consequence of binding, gating of the channel is initiated. Since ADPR is produced after oxidative DNA damage, hTRPM2 mediates Ca2+ influx in response to oxidative stress which may lead to cell death. In the genome of the sea anemone Nematostella vectensis (nv, a preferred model organism for the evolution of key bilaterian features, a TRPM2 ortholog has been identified that contains a NUDT9H domain as well. Heterologous expression of nvTRPM2 in HEK-293 cells reveals a cation channel with many close similarities to the human counterpart. Most notably, nvTRPM2 is activated by ADPR, and Ca2+ is a co-agonist. However, the intramolecular mechanisms of ADPR gating as well as the role of NUDT9H are strikingly different in the two species. Whereas already subtle changes of NUDT9H abolish ADPR gating in hTRPM2, the region can be completely removed from nvTRPM2 without loss of responses to ADPR. An alternative ADPR binding site seems to be present but has not yet been characterized. The ADP-ribose pyrophosphatase (ADPRase function of nvNUDT9H has been preserved but can be abolished by numerous genetic manipulations. All these manipulations create channels that are sensitive to hydrogen peroxide which fails to induce channel activity in wild-type nvTRPM2. Therefore, the function of NUDT9H in nvTRPM2 is the degradation of ADPR, thereby reducing agonist concentration in the presence of oxidative stress. Thus, the two TRPM2 orthologs have evolved divergently but nevertheless gained analogous functional properties, i.e., gating by ADPR with Ca2+ as co-factor. Opposite roles are played by the respective NUDT9H domains, either binding of ADPR and mediating

  20. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  1. AT32P-dependent estimation of nanomoles of fatty acids: Its use in the assay of phospholipase A2 activity

    International Nuclear Information System (INIS)

    Sarafianos, S.G.; Nair, P.P.; Kumar, S.

    1990-01-01

    A procedure for the assay of free fatty acids which has been adapted for the assay of phospholipase A2 is described. This consists of the conversion of long chain fatty acids to fatty acyl-CoA using the Mg2(+)-dependent fatty acyl-CoA synthetase, [alpha-32P]ATP and coenzyme A. In order to ensure the complete conversion of the acid to its CoA ester pyrophosphatase is also added to the incubation mixture. AM32P formed in stoichiometric amounts is separated from the remaining AT32P by polyethyleneimine-cellulose thin-layer chromatography and the fatty acid content is calculated from the specific radioactivity of AT32P. As little as 1 to 3 nmol of fatty acids hydrolyzed from any phospholipid using nanogram amounts of phospholipase A2 can be estimated with reliability. The real advantage of the method is that it combines the sensitivity of a radiochemical procedure without having to use radiolabeled substrates for the assay of phospholipases

  2. Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant

    Science.gov (United States)

    Waisertreiger, Irina S.-R.; Menezes, Miriam R.; Randazzo, James; Pavlov, Youri I.

    2010-01-01

    Base analogs are powerful antimetabolites and dangerous mutagens generated endogenously by oxidative stress, inflammation, and aberrant nucleotide biosynthesis. Human inosine triphosphate pyrophosphatase (ITPA) hydrolyzes triphosphates of noncanonical purine bases (i.e., ITP, dITP, XTP, dXTP, or their mimic: 6-hydroxyaminopurine (HAP) deoxynucleoside triphosphate) and thus regulates nucleotide pools and protects cells from DNA damage. We demonstrate that the model purine base analog HAP induces DNA breaks in human cells and leads to elevation of levels of ITPA. A human polymorphic allele of the ITPA, 94C->A encodes for the enzyme with a P32T amino-acid change and leads to accumulation of nonhydrolyzed ITP. The polymorphism has been associated with adverse reaction to purine base-analog drugs. The level of both spontaneous and HAP-induced DNA breaks is elevated in the cell line with the ITPA P32T variant. The results suggested that human ITPA plays a pivotal role in the protection of DNA from noncanonical purine base analogs. PMID:20936128

  3. Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant

    Directory of Open Access Journals (Sweden)

    Irina S.-R. Waisertreiger

    2010-01-01

    Full Text Available Base analogs are powerful antimetabolites and dangerous mutagens generated endogenously by oxidative stress, inflammation, and aberrant nucleotide biosynthesis. Human inosine triphosphate pyrophosphatase (ITPA hydrolyzes triphosphates of noncanonical purine bases (i.e., ITP, dITP, XTP, dXTP, or their mimic: 6-hydroxyaminopurine (HAP deoxynucleoside triphosphate and thus regulates nucleotide pools and protects cells from DNA damage. We demonstrate that the model purine base analog HAP induces DNA breaks in human cells and leads to elevation of levels of ITPA. A human polymorphic allele of the ITPA, 94C->A encodes for the enzyme with a P32T amino-acid change and leads to accumulation of nonhydrolyzed ITP. The polymorphism has been associated with adverse reaction to purine base-analog drugs. The level of both spontaneous and HAP-induced DNA breaks is elevated in the cell line with the ITPA P32T variant. The results suggested that human ITPA plays a pivotal role in the protection of DNA from noncanonical purine base analogs.

  4. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Arif, A.; Mohsin, A.M.; Shafiq, S.; Zafar, Y.; Hameed, S.M.; Arif, M.; Javed, M.; Gaxiola, R.A.

    2005-01-01

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na/sup +/ ions from the soil to the vacoules by providing energy gradient to the cation exchangers. It was also found that K/sup +/ concentration decreased below detection limit in salt treated transgenic plants. Sodium and potassium ion uptake in the dehydrated AVP1 transgenic plant was two times more when compared to the dehydrated wild type plants. Relative water contents of dehydrated AVP1 transgenic plants was higher than that of dehydrated wild type which indicates that accumulation of solutes retain more water in the cell which helps to maintain the turgor and allows the plants to survive in saline and water deficit environments. Electron microscopic ultra structure studies of leaves showed that there is an increase of starch synthesis in the chloroplasts of AVP1 transgenic plants when compared to control. Immunogold labeling of AVP1 protein in transgenic and control leaf cells and some other physiological studies are in progress. AVP1 gene is encoded by a single gene so it is more feasible to produce transgenic crop plants with AVP1 to induce salt and drought tolerance unlike P type ATPAases which are encoded by at least 26 genes. (author)

  5. Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase.

    Science.gov (United States)

    Kriegel, Anne; Andrés, Zaida; Medzihradszky, Anna; Krüger, Falco; Scholl, Stefan; Delang, Simon; Patir-Nebioglu, M Görkem; Gute, Gezahegn; Yang, Haibing; Murphy, Angus S; Peer, Wendy Ann; Pfeiffer, Anne; Krebs, Melanie; Lohmann, Jan U; Schumacher, Karin

    2015-12-01

    The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH. © 2015 American Society of Plant Biologists. All rights reserved.

  6. Cole Disease Results from Mutations in ENPP1.

    Science.gov (United States)

    Eytan, Ori; Morice-Picard, Fanny; Sarig, Ofer; Ezzedine, Khaled; Isakov, Ofer; Li, Qiaoli; Ishida-Yamamoto, Akemi; Shomron, Noam; Goldsmith, Tomer; Fuchs-Telem, Dana; Adir, Noam; Uitto, Jouni; Orlow, Seth J; Taieb, Alain; Sprecher, Eli

    2013-10-03

    The coexistence of abnormal keratinization and aberrant pigmentation in a number of cornification disorders has long suggested a mechanistic link between these two processes. Here, we deciphered the genetic basis of Cole disease, a rare autosomal-dominant genodermatosis featuring punctate keratoderma, patchy hypopigmentation, and uncommonly, cutaneous calcifications. Using a combination of exome and direct sequencing, we showed complete cosegregation of the disease phenotype with three heterozygous ENPP1 mutations in three unrelated families. All mutations were found to affect cysteine residues in the somatomedin-B-like 2 (SMB2) domain in the encoded protein, which has been implicated in insulin signaling. ENPP1 encodes ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which is responsible for the generation of inorganic pyrophosphate, a natural inhibitor of mineralization. Previously, biallelic mutations in ENPP1 were shown to underlie a number of recessive conditions characterized by ectopic calcification, thus providing evidence of profound phenotypic heterogeneity in ENPP1-associated genetic diseases. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis.

    Science.gov (United States)

    Chourabi, Marwa; Liew, Mei Shan; Lim, Shawn; H'mida-Ben Brahim, Dorra; Boussofara, Lobna; Dai, Liang; Wong, Pui Mun; Foo, Jia Nee; Sriha, Badreddine; Robinson, Kim Samirah; Denil, Simon; Common, John Ea; Mamaï, Ons; Ben Khalifa, Youcef; Bollen, Mathieu; Liu, Jianjun; Denguezli, Mohamed; Bonnard, Carine; Saad, Ali; Reversade, Bruno

    2018-02-01

    Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Comparative proteomic analysis reveals proteins putatively involved in toxin biosynthesis in the marine dinoflagellate Alexandrium catenella.

    Science.gov (United States)

    Wang, Da-Zhi; Gao, Yue; Lin, Lin; Hong, Hua-Sheng

    2013-01-22

    Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing) coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to), alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  9. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing

    Directory of Open Access Journals (Sweden)

    Muammar eMansor

    2015-08-01

    Full Text Available Large, sulfur-cycling, calcite-precipitating bacteria in the genus Achromatium represent a significant proportion of bacterial communities near sediment-water interfaces throughout the world. Our understanding of their potentially crucial roles in calcium, carbon, sulfur, nitrogen, and iron cycling is limited because they have not been cultured or sequenced using environmental genomics approaches to date. We utilized single-cell genomic sequencing to obtain one incomplete and two nearly complete draft genomes for Achromatium collected at Warm Mineral Springs, FL. Based on 16S rRNA gene sequences, the three cells represent distinct and relatively distant Achromatium populations (91-92% identity. The draft genomes encode key genes involved in sulfur and hydrogen oxidation; oxygen, nitrogen and polysulfide respiration; carbon and nitrogen fixation; organic carbon assimilation and storage; chemotaxis; twitching motility; antibiotic resistance; and membrane transport. Known genes for iron and manganese energy metabolism were not detected. The presence of pyrophosphatase and vacuolar (V-type ATPases, which are generally rare in bacterial genomes, suggests a role for these enzymes in calcium transport, proton pumping, and/or energy generation in the membranes of calcite-containing inclusions.

  10. Pyrophosphate levels strongly influence ascorbate and starch content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Sonia eOsorio

    2013-08-01

    Full Text Available Ascorbate (vitamin C deficiency leads to low immunity, scurvy, and other human diseases and is therefore a global health problem. Given that plants are major ascorbate sources for humans, biofortification of this vitamin in our foodstuffs is of considerable importance. Ascorbate is synthetized by a number of alternative pathways: (i from the glycolytic intermediates D-glucose-6P (the key intermediates are GDP-D-mannose and L-galactose, (ii from the breakdown of the cell wall polymer pectin which uses the methyl ester of D-galacturonic acid as precursor and (iii from myo-inositol as precursor via myo-inositol oxygenase. We report here the engineering of fruit-specific overexpression of a bacterial pyrophosphatase, which hydrolyzes the inorganic pyrophosphate (PPi to orthophosphate (Pi. This strategy resulted in increased vitamin C levels up to 2.5 fold in ripe fruit as well as increasing in the major sugars, sucrose and glucose, yet decreasing the level of starch. When considered together, these finding indicate an intimate linkage between ascorbate and sugar biosynthesis in plants. Moreover, the combined data reveal the importance of PPi metabolism in tomato fruit metabolism and development.

  11. Calcium uptake and proton transport by acidocalcisomes of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Peter Rohloff

    Full Text Available Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to humans. They possess an acidic matrix that contains several cations bound to phosphates, which are mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. Calcium uptake occurs through a Ca(2+/H(+ countertransporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. We report the purification and characterization of an acidocalcisome fraction from T. gondii tachyzoites after subcellular fractionation and further discontinuous iodixanol gradient purification. Proton and calcium transport activities in the fraction were characterized by fluorescence microscopy and spectrophotometric methods using acridine orange and arsenazo III, respectively. This work will facilitate the understanding of the function of acidocalcisomes in Apicomplexan parasites, as we can now isolate highly purified fractions that could be used for proteomic analysis to find proteins that may clarify the biogenesis of these organelles.

  12. H(+) -pyrophosphatase from Salicornia europaea confers tolerance to simultaneously occurring salt stress and nitrogen deficiency in Arabidopsis and wheat.

    Science.gov (United States)

    Lv, Sulian; Jiang, Ping; Nie, Lingling; Chen, Xianyang; Tai, Fang; Wang, Duoliya; Fan, Pengxiang; Feng, Juanjuan; Bao, Hexigeduleng; Wang, Jinhui; Li, Yinxin

    2015-11-01

    High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H(+) -PPase is involved in salt-stimulated NO3 (-) uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H(+) -PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K(+) /Na(+) ratio in leaves and exhibited increased NO3 (-) uptake, inorganic pyrophosphate-dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up-regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up-regulation of H(+) -PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland. © 2015 John Wiley & Sons Ltd.

  13. Maintenance of cyclic GMP-AMP homeostasis by ENPP1 is involved in pseudorabies virus infection.

    Science.gov (United States)

    Wang, Jiang; Lu, Shao-Fang; Wan, Bo; Ming, Sheng-Li; Li, Guo-Li; Su, Bing-Qian; Liu, Jiao-Yang; Wei, Yu-Shuang; Yang, Guo-Yu; Chu, Bei-Bei

    2018-03-01

    In a previous study, we demonstrated that porcine cyclic GMP-AMP (cGAMP) synthase (cGAS) catalyzes cGAMP production and is an important DNA sensor for the pseudorabies virus (PRV)-induced activation of interferon β (IFN-β). Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) has recently been identified as the hydrolase of cGAMP in rodents, but its role in porcine cells is not clear. Our recent study demonstrated that porcine ENPP1 is responsible for the homeostasis of cGAMP and is critical for PRV infection. Porcine ENPP1 mRNA is predominantly expressed in muscle. PRV infection was enhanced by ENPP1 overexpression and attenuated by silencing of ENPP1. During PRV infection, the activation of IFN-β and NF-κB was reduced in ENPP1 overexpressed cells and promoted in ENPP1 knockdown cells. Investigation of the molecular mechanisms of ENPP1 during PRV infection showed that ENPP1 hydrolyzed cGAMP in PRV-infected or cGAMP-transfected cells and inhibited IRF3 phosphorylation, reducing IFN-β secretion. These results, combined with those for porcine cGAS, demonstrate that ENPP1 acts coordinately with cGAS to maintain the reservoir of cGAMP and participates in PRV infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae.

    Science.gov (United States)

    Beutler, Martin; Milucka, Jana; Hinck, Susanne; Schreiber, Frank; Brock, Jörg; Mussmann, Marc; Schulz-Vogt, Heide N; de Beer, Dirk

    2012-11-01

    We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Enhancement of Nucleoside Production in Hirsutella sinensis Based on Biosynthetic Pathway Analysis

    Science.gov (United States)

    Liu, Zhi-Qiang; Zhang, Bo; Lin, Shan; Baker, Peter James; Chen, Mao-Sheng; Xue, Ya-Ping; Wu, Hui; Xu, Feng; Yuan, Shui-Jin; Teng, Yi; Wu, Ling-Fang

    2017-01-01

    To enhance nucleoside production in Hirsutella sinensis, the biosynthetic pathways of purine and pyrimidine nucleosides were constructed and verified. The differential expression analysis showed that purine nucleoside phosphorylase, inosine monophosphate dehydrogenase, and guanosine monophosphate synthase genes involved in purine nucleotide biosynthesis were significantly upregulated 16.56-fold, 8-fold, and 5.43-fold, respectively. Moreover, dihydroorotate dehydrogenase, uridine nucleosidase, uridine/cytidine monophosphate kinase, and inosine triphosphate pyrophosphatase genes participating in pyrimidine nucleoside biosynthesis were upregulated 4.53-fold, 10.63-fold, 4.26-fold, and 5.98-fold, respectively. To enhance the nucleoside production, precursors for synthesis of nucleosides were added based on the analysis of biosynthetic pathways. Uridine and cytidine contents, respectively, reached 5.04 mg/g and 3.54 mg/g when adding 2 mg/mL of ribose, resulting in an increase of 28.6% and 296% compared with the control, respectively. Meanwhile, uridine and cytidine contents, respectively, reached 10.83 mg/g 2.12 mg/g when adding 0.3 mg/mL of uracil, leading to an increase of 176.3% and 137.1%, respectively. This report indicated that fermentation regulation was an effective way to enhance the nucleoside production in H. sinensis based on biosynthetic pathway analysis. PMID:29333435

  16. A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion

    International Nuclear Information System (INIS)

    Francia, Maria E.; Wicher, Sarah; Pace, Douglas A.; Sullivan, Jack; Moreno, Silvia N.J.; Arrizabalaga, Gustavo

    2011-01-01

    The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na + /H + exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca 2+ concentration [Ca 2+ ] i , and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.

  17. Analysis of the ectoenzymes ADA, ALP, ENPP1, and ENPP3, in the contents of ovarian endometriomas as candidate biomarkers of endometriosis.

    Science.gov (United States)

    Trapero, Carla; Jover, Lluis; Fernández-Montolí, Maria Eulàlia; García-Tejedor, Amparo; Vidal, August; Gómez de Aranda, Inmaculada; Ponce, Jordi; Matias-Guiu, Xavier; Martín-Satué, Mireia

    2018-02-01

    The diagnosis of endometriosis, a prevalent chronic disease with a strong inflammatory component, is usually delayed due to the lack of noninvasive diagnostic tests. Purinergic signaling, a key cell pathway, is altered in many inflammatory disorders. The aim of the present work was to evaluate the levels of adenosine deaminase (ADA), alkaline phosphatase (ALP), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), and ENPP3, elements of purinergic signaling, as biomarker candidates for endometriosis. A case-control comparative study was conducted to determine ADA, ALP, ENPP1 and ENPP3 levels in echo-guided aspirated fluids of endometriomas (case group) and simple ovarian cysts (control group) using the ELISA technique. Adenosine deaminase, ALP, ENPP1, and ENPP3 were present and quantifiable in the contents of endometriomas and simple cysts. There were significant differences in ADA and ENPP1 levels in endometriomas in comparison with simple cysts (2787 U/L and 103.9 ng/mL more in endometriomas, for ADA and ENPP1, respectively). Comparisons of ALP and ENPP3 levels between the two groups did not reveal significant differences. The ectoenzymes ADA and ENPP1 are biomarker candidates for endometriosis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Hypophosphatemic rickets developed after treatment with etidronate disodium in a patient with generalized arterial calcification in infancy

    Directory of Open Access Journals (Sweden)

    Kentaro Miyai

    2015-12-01

    Full Text Available Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1 was originally reported as a responsible gene for generalized arterial calcification in infancy (GACI. Though the prognosis of GACI patients is poor because of myocardial infarction and heart failure in relation to medial calcification of the coronary arteries, some patients rescued by bisphosphonate treatment have been reported. Recently, ENPP1 is also reported as responsible for autosomal recessive hypophosphatemic rickets type 2. We show here a boy with homozygous ENPP1 mutations diagnosed as having GACI in early infancy. After the diagnosis, he was treated with etidronate disodium (EHDP in combination with antihypertensive drugs. The calcification of major arteries was diminished and disappeared by the age of eight months. He also showed mild hypophosphatemia (2.6–3.7 mg/dl from the age of one year. After the treatment with EHDP for five years, he showed genu valgum with hypophosphatemia (2.6 mg/dl. He was diagnosed as having hypophosphatemic rickets at the age of seven years. The findings that hyper-mineralization of the arteries and hypo-mineralization of the bone observed in the same patient are noteworthy. ENPP1 could be regarded as a controller of the calcification of the whole body at least in part.

  19. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    Science.gov (United States)

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. The inevitable journey to being.

    Science.gov (United States)

    Russell, Michael J; Nitschke, Wolfgang; Branscomb, Elbert

    2013-07-19

    Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell's terminology, become ever more complicated-more chemical and less physical-as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life's mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients-involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors-were imposed which functioned as the original 'carbon-fixing engine'. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: 'the pyrophosphatase engine'.

  1. Lysophosphatidic acid generation by pulmonary NKT cell ENPP-2/autotaxin exacerbates hyperoxic lung injury.

    Science.gov (United States)

    Nowak-Machen, Martina; Lange, Martin; Exley, Mark; Wu, Sherry; Usheva, Anny; Robson, Simon C

    2015-12-01

    Hyperoxia is still broadly used in clinical practice in order to assure organ oxygenation in critically ill patients, albeit known toxic effects. In this present study, we hypothesize that lysophosphatidic acid (LPA) mediates NKT cell activation in a mouse model of hyperoxic lung injury. In vitro, pulmonary NKT cells were exposed to hyperoxia for 72 h, and the induction of the ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP-2) was examined and production of lysophosphatidic acid (LPA) was measured. In vivo, animals were exposed to 100 % oxygen for 72 h and lungs and serum were harvested. Pulmonary NKT cells were then incubated with the LPA antagonist Brp-LPA. Animals received BrP-LPA prior to oxygen exposure. Autotaxin (ATX, ENPP-2) was significantly up-regulated on pulmonary NKT cells after hyperoxia (p NKT cells. LPA levels were significantly reduced by incubating NKT cells with LPA-BrP during oxygen exposure (p NKT cell numbers in vivo. BrP-LPA injection significantly improved survival as well as significantly decreased lung injury and lowered pulmonary NKT cell numbers. We conclude that NKT cell-induced hyperoxic lung injury is mediated by pro-inflammatory LPA generation, at least in part, secondary to ENPP-2 up-regulation on pulmonary NKT cells. Being a potent LPA antagonist, BrP-LPA prevents hyperoxia-induced lung injury in vitro and in vivo.

  2. Thermodynamic limits on the size and size distribution of nucleic acids synthesized in vitro: the role of pyrophosphate hydrolysis.

    Science.gov (United States)

    Peller, L

    1977-02-08

    The free-energy change of phosphodiester bond formation from nucleoside triphosphates is more favorable than with nucleoside diphosphates as substrates. Base-stacking interactions can make significant contributions to both delta G degrees ' values. Pyrophosphate hydrolysis when it accompanies the former reaction dominates all thermodynamic considerations. Three experimental situations are discussed in which high-molecular-weight polynucleotides are synthesized without a strong driving force for covalent bond formation. For one of these, a kinetic scheme is presented which encompasses an early narrow Poisson distribution of chain lengths with ultimate passage to a disperse equilibrium population of chain sizes. Hydrolytic removal of pyrophosphate expands the time scale for this undesirable process by a factor of 10(9), while it enormously elevates the thermodynamic ceiling for the average degrees of polymerization in the other two examples. The electron micrographically revealed broad size population from an early study of partial replication of a T7 DNA template is found to adhere (fortuitously) to a disperse most probable representation. Some possible origins are examined for the branched structures in this product, as well as in a later investigation of replication of this nucleic acid. The achievement of both very high molecular weights and sharply peaked size distributions in polynucleotides synthesized in vitro will require coupling to inorganic pyrophosphatase action as in vivo.

  3. Bacterial community transcription patterns during a marine phytoplankton bloom.

    Science.gov (United States)

    Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Kiene, Ronald P; Moran, Mary Ann

    2012-01-01

    Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. A Novel PHEX Mutation in Japanese Patients with X-Linked Hypophosphatemic Rickets

    Directory of Open Access Journals (Sweden)

    Tetsuya Kawahara

    2015-01-01

    Full Text Available X-linked hypophosphatemic rickets (XLH is a dominant inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. Inactivating mutations in the gene encoding phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX have been found to be associated with XLH. Here, we report a 16-year-old female patient affected by hypophosphatemic rickets. We evaluated her serum fibroblast growth factor 23 (FGF23 levels and conducted sequence analysis of the disease-associated genes of FGF23-related hypophosphatemic rickets: PHEX, FGF23, dentin matrix protein 1, and ectonucleotide pyrophosphatase/phosphodiesterase 1. She was diagnosed with XLH based on her clinical features and family history. Additionally, we observed elevated FGF23 levels and a novel PHEX exon 9 mutation (c.947G>T; p.Gly316Val inherited from her father. Although bioinformatics showed that the mutation was neutral, Gly316 is perfectly conserved among humans, mice, and rats, and there were no mutations in other FGF23-related rickets genes, suggesting that in silico analysis is limited in determining mutation pathogenicity. In summary, we present a female patient and her father with XLH harboring a novel PHEX mutation that appears to be causative of disease. Measurement of FGF23 for hypophosphatemic patients is therefore useful for the diagnosis of FGF23-dependent hypophosphatemia.

  5. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    Science.gov (United States)

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Application of plant biotechnology to address water and salt stress in developing countries (abstract)

    International Nuclear Information System (INIS)

    Masmoudi, K.

    2005-01-01

    Drought and salinity are major constraints on crop production and food security, and have adverse impact especially on socio-economic aspect in the Middle East and North Africa region. Studies of the physiological response of wheat to salt stress indicate that sequestering sodium that enters the leaf away from the cell cytosol, and enhancing osmotic adjustment capability, can ameliorate the negative impact of soil water salinity on plant growth. Sodium at high millimolar levels in the cytoplasm is toxic to plant and yeast cells, Sequestration of Na/sup +/ ions into the vacuole through the action of tonoplast proton pumps (an H/sup +/-ATPase in the case of yeast, and either an H/sup +/-pyrophosphatase (H/sup +/-PPase) or H/sup +/-ATPase in the case of plants) and an Na/sup +//H/sup +/ anti porter is one mechanism that confers salt tolerance to these organisms. The cloning and characterization of genes encoding these tonoplast transport proteins from crop plants may contribute to our understanding of how to enhance crop plant response to saline stress. We cloned wheat ortho logs of the Arabidopsis genes AtNHXI and AVP I using a wheat cDNA library, The full length sequence for the wheat Na/sup +//H/sup +/ anti porter (TNHX3) and the vacuolar H/sup +/-pyrophosphatase (TVP I) were deposited in Genbank database under the accession number AY296910 and AY296911, respectively. The deduced amino acid sequence of TNHXj is l homologous to the sequences of other NHX gene products cloned from wheat as well as barley and Arabidopsis. The vacuolar H/sup +/-PPase pump we cloned, TVP I is the first member of this gene family cloned from wheat. Function of TNHXj as a cation/proton antiporter was demonstrated using the nhxl yeast mutant. TNHXj was capable of suppressing the hygromycin sensitivity of nhxl. Functional characterization of the wheat H/sup +/-PPase TVP I was demonstrated using the yeast enal (plasma membrane Na/sup +/-efflux transporter) mutant. Expression of TVP I in enal

  7. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    Science.gov (United States)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  8. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  9. Permeability of Rickettsia prowazekii to NAD

    International Nuclear Information System (INIS)

    Atkinson, W.H.; Winkler, H.H.

    1989-01-01

    Rickettsia prowazekii accumulated radioactivity from [adenine-2,8-3H]NAD but not from [nicotinamide-4-3H]NAD, which demonstrated that NAD was not taken up intact. Extracellular NAD was hydrolyzed by rickettsiae with the products of hydrolysis, nicotinamide mononucleotide and AMP, appearing in the incubation medium in a time- and temperature-dependent manner. The particulate (membrane) fraction contained 90% of this NAD pyrophosphatase activity. Rickettsiae which had accumulated radiolabel after incubation with [adenine-2,8-3H]NAD were extracted, and the intracellular composition was analyzed by chromatography. The cells contained labeled AMP, ADP, ATP, and NAD. The NAD-derived intracellular AMP was transported via a pathway distinct from and in addition to the previously described AMP translocase. Exogenous AMP (1 mM) inhibited uptake of radioactivity from [adenine-2,8-3H]NAD and hydrolysis of extracellular NAD. AMP increased the percentage of intracellular radiolabel present as NAD. Nicotinamide mononucleotide was not taken up by the rickettsiae, did not inhibit hydrolysis of extracellular NAD, and was not a good inhibitor of the uptake of radiolabel from [adenine-2,8-3H]NAD. Neither AMP nor ATP (both of which are transported) could support the synthesis of intracellular NAD. The presence of intracellular [adenine-2,8-3H]NAD within an organism in which intact NAD could not be transported suggested the resynthesis from AMP of [adenine-2,8-3H]NAD at the locus of NAD hydrolysis and translocation

  10. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    Science.gov (United States)

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  11. Comparative Proteomic Analysis Reveals Proteins Putatively Involved in Toxin Biosynthesis in the Marine Dinoflagellate Alexandrium catenella

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    2013-01-01

    Full Text Available Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P < 0.05, and 53 proteins were identified using database searching. These proteins were involved in a variety of biological processes, i.e., protein modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal transduction, and translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to, alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  12. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  13. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  14. A rhodium(III)-based inhibitor of autotaxin with antiproliferative activity.

    Science.gov (United States)

    Kang, Tian-Shu; Wang, Wanhe; Zhong, Hai-Jing; Liang, Jia-Xin; Ko, Chung-Nga; Lu, Jin-Jian; Chen, Xiu-Ping; Ma, Dik-Lung; Leung, Chung-Hang

    2017-02-01

    Cancer of the skin is by far the most common of all cancers. Melanoma accounts for only about 1% of skin cancers but causes a large majority of skin cancer deaths. Autotaxin (ATX), also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), regulates physiological and pathological functions of lysophosphatidic acid (LPA), and is thus an important therapeutic target. We synthesized ten metal-based complexes and a novel cyclometalated rhodium(III) complex 1 was identified as an ATX enzymatic inhibitor using multiple methods, including ATX enzymatic assay, thermal shift assay, western immunoblotting and so on. Protein thermal shift assays showed that 1 increased the melting temperature (T m ) of ATX by 3.5°C. 1 also reduced ATX-LPA mediated downstream survival signal pathway proteins such as ERK and AKT, and inhibited the activation of the transcription factor nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3). 1 also exhibited strong anti-proliferative activity against A2058 melanoma cells (IC 50 =0.58μM). Structure-activity relationship indicated that both the rhodium(III) center and the auxiliary ligands of complex 1 are important for bioactivity. 1 represents a promising scaffold for the development of small-molecule ATX inhibitors for anti-tumor applications. To our knowledge, complex 1 is the first metal-based ATX inhibitor reported to date. Rhodium complexes will have the increased attention in therapeutic and bioanalytical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain.

    Science.gov (United States)

    Masha, Roland T; Houreld, Nicolette N; Abrahamse, Heidi

    2013-02-01

    Low-intensity laser irradiation (LILI) has been shown to stimulate cellular functions leading to increased adenosine triphosphate (ATP) synthesis. This study was undertaken to evaluate the effect of LILI on genes involved in the mitochondrial electron transport chain (ETC, complexes I-IV) and oxidative phosphorylation (ATP synthase). Four human skin fibroblast cell models were used in this study: normal non-irradiated cells were used as controls while wounded, diabetic wounded, and ischemic cells were irradiated. Cells were irradiated with a 660 nm diode laser with a fluence of 5 J/cm(2) and gene expression determined by quantitative real-time reverse transcription (RT) polymerase chain reaction (PCR). LILI upregulated cytochrome c oxidase subunit VIb polypeptide 2 (COX6B2), cytochrome c oxidase subunit VIc (COX6C), and pyrophosphatase (inorganic) 1 (PPA1) in diabetic wounded cells; COX6C, ATP synthase, H+transporting, mitochondrial Fo complex, subunit B1 (ATP5F1), nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 11 (NDUFA11), and NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) in wounded cells; and ATPase, H+/K+ exchanging, beta polypeptide (ATP4B), and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) (ATP5G2) in ischemic cells. LILI at 660 nm stimulates the upregulation of genes coding for subunits of enzymes involved in complexes I and IV and ATP synthase.

  16. Equilibria and partitioning of complexes in the S-adenosylmethionine synthetase reaction

    International Nuclear Information System (INIS)

    Markham, G.D.

    1987-01-01

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase) catalyzes a reaction in which the [enzyme-ATP-methionine] complex reacts to form an intermediate [enzyme-AdoMet-PPPi] complex: hydrolysis of PPPi yields an [enzyme-AdoMet-PPi-Pi] complex from which AdoMet is the last product to dissociate. Analysis of reaction mixtures which were quenched with acid during turnover of E. coli AdoMet synthetase with saturating substrates containing [α - 32 P]ATP showed that PPPi is present in an amount corresponding to 45% of the total enzyme active sites, reflecting the portion of enzyme present in an [enzyme-AdoMet-PPPi] complex. Similar experiments in which excess pyrophosphatase was included (to hydrolyze PPi as it was released from AdoMet synthetase), showed that enzyme-bound PPi is present in an amount corresponding to 22% of the total AdoMet synthetase. The enzyme not present in complexes with PPPi or PPi is probably distributed between the [enzyme-ATP-methionine] and the [enzyme-AdoMet] complexes. AdoMet synthetase forms enzyme-bound 32 PPPi from added 32 PPi and Pi; the equilibrium constant [enzyme-AdoMet-PPi-Pi]/[enzyme-AdoMet-PPPi] is 2.0, greatly displaced from the equilibrium for hydrolysis of free PPPi. Since the ratio of enzyme-bound PPi to PPPi is 0.5 during the steady state, the PPPi hydrolysis step is not at equilibrium during turnover. Formation of [ 32 P]ATP from the [enzyme-AdoMet- 32 PPPi] complex was not detected

  17. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  18. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  19. Wide range of interacting partners of pea Gβ subunit of G-proteins suggests its multiple functions in cell signalling.

    Science.gov (United States)

    Bhardwaj, Deepak; Lakhanpaul, Suman; Tuteja, Narendra

    2012-09-01

    Climate change is a major concern especially in view of the increasing global population and food security. Plant scientists need to look for genetic tools whose appropriate usage can contribute to sustainable food availability. G-proteins have been identified as some of the potential genetic tools that could be useful for protecting plants from various stresses. Heterotrimeric G-proteins consisting of three subunits Gα, Gβ and Gγ are important components of a number of signalling pathways. Their structure and functions are already well studied in animals but their potential in plants is now gaining attention for their role in stress tolerance. Earlier we have reported that over expressing pea Gβ conferred heat tolerance in tobacco plants. Here we report the interacting partners (proteins) of Gβ subunit of Pisum sativum and their putative role in stress and development. Out of 90 transformants isolated from the yeast-two-hybrid (Y2H) screening, seven were chosen for further investigation due to their recurrence in multiple experiments. These interacting partners were confirmed using β-galactosidase colony filter lift and ONPG (O-nitrophenyl-β-D-galactopyranoside) assays. These partners include thioredoxin H, histidine-containing phosphotransfer protein 5-like, pathogenesis-related protein, glucan endo-beta-1, 3-glucosidase (acidic isoform), glycine rich RNA binding protein, cold and drought-regulated protein (corA gene) and soluble inorganic pyrophosphatase 1. This study suggests the role of pea Gβ subunit in stress signal transduction and development pathways owing to its capability to interact with a wide range of proteins of multiple functions. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Park

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR associated protein 9 (Cas9 system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9 offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF activation domain to dCas9 bound with the VP64 (tetramer of VP16 activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1 and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1. The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.

  1. Profiling trait anxiety: transcriptome analysis reveals cathepsin B (Ctsb as a novel candidate gene for emotionality in mice.

    Directory of Open Access Journals (Sweden)

    Ludwig Czibere

    Full Text Available Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait "anxiety". We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB or low (LAB anxiety-related behavior, and also show signs of comorbid depression-like behavior. We identified and confirmed sex-independent differences in the basal expression of 13 candidate genes, using tissue from the entire brain, including coronin 7 (Coro7, cathepsin B (Ctsb, muscleblind-like 1 (Mbnl1, metallothionein 1 (Mt1, solute carrier family 25 member 17 (Slc25a17, tribbles homolog 2 (Trib2, zinc finger protein 672 (Zfp672, syntaxin 3 (Stx3, ATP-binding cassette, sub-family A member 2 (Abca2, ectonucleotide pyrophosphatase/phosphodiesterase 5 (Enpp5, high mobility group nucleosomal binding domain 3 (Hmgn3 and pyruvate dehydrogenase beta (Pdhb. Additionally, we confirmed brain region-specific differences in the expression of synaptotagmin 4 (Syt4.Our identification of about 90 polymorphisms in Ctsb suggested that this gene might play a critical role in shaping our mouse model's behavioral endophenotypes. Indeed, the assessment of anxiety-related and depression-like behaviors of Ctsb knock-out mice revealed an increase in depression-like behavior in females. Altogether, our results suggest that Ctsb has significant effects on emotionality, irrespective of the tested mouse strain, making it a promising target for future pharmacotherapy.

  2. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics.

    Science.gov (United States)

    Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro

    2014-01-01

    Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.

  3. A plant-like proton-pump partnership in the malaria parasite

    International Nuclear Information System (INIS)

    Allen, R.J.W.; Saliba, K.J.; Zissis, S.; Kirk, K.

    2001-01-01

    Full text: The 'intraerythrocytic' form of the human malaria parasite. Plasmodium falciparum contains an acidic 'digestive vacuole' which is believed to be the main site of haemoglobin degradation, and the major site of action of many antimalarial drugs. The mechanism/s by which this organelle is acidified have not been investigated. In plant cells, the internal acidic vacuole has on its membrane two types of H + -pumps which contribute to the generation of an acidic pH: a vacuolar-type H + -ATPase (V-H + -ATPase) and a vacuolar H + -pyrophosphatase (V-H + -PPase). The presence of a V-H + -ATPase on the digestive vacuole membrane of P. falciparum has been demonstrated by immuno-electron microscopy (J. Biol. Chem. (2000) 275: 34353-34358) but its functional activity on this organelle has not been demonstrated. Two V-H + -PPase genes have been shown to be expressed in the intraerythrocytic stage of the P. falciparum parasite (Mol. Biochem. Parasitol. (2001) 114: 183-195); however, immunological methods failed to detect either on the parasite digestive vacuole. In this study we use a combination of NMR spectroscopy and fluorescence techniques to show that (i) P. falciparum contains low levels of pyrophosphate, and (ii) that both ATP and pyrophosphate are able to energise the acidification of the parasite's digestive vacuole. We propose that, like many plant cells the digestive vacuole of P. falciparum parasites has, on its membrane, a V-H + -PPase as well as a V-H + -ATPaSe, and that both pumps contribute to the pH regulation of this organelle

  4. Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa.

    Science.gov (United States)

    Yi, Young-Joo; Sutovsky, Miriam; Kennedy, Chelsey; Sutovsky, Peter

    2012-01-01

    Inorganic pyrophosphate (PPi) is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1) in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF) rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS) and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies.

  5. Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa.

    Directory of Open Access Journals (Sweden)

    Young-Joo Yi

    Full Text Available Inorganic pyrophosphate (PPi is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1 in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies.

  6. Synthesis of carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1).

    Science.gov (United States)

    Gao, Mingzhang; Wang, Min; Zheng, Qi-Huang

    2016-03-01

    The target tracer carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives, N-(3-[(11)C]methoxy-4-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (3-[(11)C]4a) and N-(4-[(11)C]methoxy-3-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (4-[(11)C]4a); 2-((6-amino-9H-purin-8-yl)thio)-N-(3-[(11)C]methoxy-4-methoxyphenyl)acetamide (3-[(11)C]8a) and 2-((6-amino-9H-purin-8-yl)thio)-N-(4-[(11)C]methoxy-3-methoxyphenyl)acetamide (4-[(11)C]8a), were prepared by O-[(11)C]methylation of their corresponding precursors with [(11)C]CH3OTf under basic condition (2N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-555GBq/μmol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Human adenovirus early region 4 open reading frame 1 genes encode growth-transforming proteins that may be distantly related to dUTP pyrophosphatase enzymes.

    OpenAIRE

    Weiss, R S; Lee, S S; Prasad, B V; Javier, R T

    1997-01-01

    An essential oncogenic determinant of subgroup D human adenovirus type 9 (Ad9), which uniquely elicits estrogen-dependent mammary tumors in rats, is encoded by early region 4 open reading frame 1 (E4 ORF1). Whereas Ad9 E4 ORF1 efficiently induces transformed foci on the established rat embryo fibroblast cell line CREF, the related subgroup A Ad12 and subgroup C Ad5 E4 ORF1s do not (R. T. Javier, J. Virol. 68:3917-3924, 1994). In this study, we found that the lack of transforming activity asso...

  8. Acidosis-Induced Changes in Proteome Patterns of the Prostate Cancer-Derived Tumor Cell Line AT-1.

    Science.gov (United States)

    Ihling, Angelika; Ihling, Christian H; Sinz, Andrea; Gekle, Michael

    2015-09-04

    Under various pathological conditions, such as inflammation, ischemia and in solid tumors, physiological parameters (local oxygen tension or extracellular pH) show distinct tissue abnormalities (hypoxia and acidosis). For tumors, the prevailing microenvironment exerts a strong influence on the phenotype with respect to proliferation, invasion, and metastasis formation and therefore influences prognosis. In this study, we investigate the impact of extracellular metabolic acidosis (pH 7.4 versus 6.6) on the proteome patterns of a prostate cancer-derived tumor cell type (AT-1) using isobaric labeling and LC-MS/MS analysis. In total, 2710 proteins were identified and quantified across four biological replicates, of which seven were significantly affected with changes >50% and used for validation. Glucose transporter 1 and farnesyl pyrophosphatase were found to be down-regulated after 48 h of acidic treatment, and metallothionein 2A was reduced after 24 h and returned to control values after 48 h. After 24 and 48 h at pH 6.6, glutathione S transferase A3 and NAD(P)H dehydrogenase 1, cellular retinoic acid-binding protein 2, and Na-bicarbonate transporter 3 levels were found to be increased. The changes in protein levels were confirmed by transcriptome and functional analyses. In addition to the experimental in-depth investigation of proteins with changes >50%, functional profiling (statistical enrichment analysis) including proteins with changes >20% revealed that acidosis upregulates GSH metabolic processes, citric acid cycle, and respiratory electron transport. Metabolism of lipids and cholesterol biosynthesis were downregulated. Our data comprise the first comprehensive report on acidosis-induced changes in proteome patterns of a tumor cell line.

  9. Functional Study of the P32T ITPA Variant Associated with Drug Sensitivity in Humans

    Science.gov (United States)

    Stepchenkova, Elena I.; Tarakhovskaya, Elena R.; Spitler, Kathryn; Frahm, Christin; Menezes, Miriam R.; Simone, Peter D.; Kolar, Carol; Marky, Luis A.; Borgstahl, Gloria E. O.; Pavlov, Youri I.

    2009-01-01

    Sanitization of the cellular nucleotide pools from mutagenic base analogs is necessary for the accuracy of transcription and replication of genetic material and plays a substantial role in cancer prevention. The undesirable mutagenic, recombinogenic and toxic incorporation of purine base analogs (i.e. ITP, dITP, XTP, dXTP or 6-hydroxyaminopurine (HAP) deoxynucleoside triphosphate) into nucleic acids is prevented by inosine triphosphate pyrophosphatase (ITPA). The ITPA gene is a highly conserved, moderately expressed gene. Defects in ITPA orthologs in model organisms cause severe sensitivity to HAP and chromosome fragmentation. A human polymorphic allele 94C->A encodes for the enzyme with a P32T amino acid change and leads to accumulation of non-hydrolyzed ITP. ITPase activity is not detected in erythrocytes of these patients. The P32T polymorphism has also been associated with adverse sensitivity to purine base analog drugs. We have found that the ITPA-P32T mutant is a dimer in solution, as is wild-type ITPA, and has normal ITPA activity in vitro, but the melting point of ITPA-P32T is 5 degrees C lower than that of wild-type. ITPA-P32T is also fully functional in vivo in model organisms as determined by a HAP mutagenesis assay and its complementation of a bacterial ITPA defect. The amount of ITPA protein detected by western blot is severely diminished in a human fibroblast cell line with the 94C->A change. We propose that the P32T mutation exerts its effect in certain human tissues by cumulative effects of destabilization of transcripts, protein stability and availability. PMID:19631656

  10. A plant-like proton-pump partnership in the malaria parasite

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R J.W.; Saliba, K J; Zissis, S; Kirk, K [Australian National University, ACT (Australia)

    2001-07-01

    Full text: The 'intraerythrocytic' form of the human malaria parasite. Plasmodium falciparum contains an acidic 'digestive vacuole' which is believed to be the main site of haemoglobin degradation, and the major site of action of many antimalarial drugs. The mechanism/s by which this organelle is acidified have not been investigated. In plant cells, the internal acidic vacuole has on its membrane two types of H{sup +}-pumps which contribute to the generation of an acidic pH: a vacuolar-type H{sup +}-ATPase (V-H{sup +}-ATPase) and a vacuolar H{sup +}-pyrophosphatase (V-H{sup +}-PPase). The presence of a V-H{sup +}-ATPase on the digestive vacuole membrane of P. falciparum has been demonstrated by immuno-electron microscopy (J. Biol. Chem. (2000) 275: 34353-34358) but its functional activity on this organelle has not been demonstrated. Two V-H{sup +}-PPase genes have been shown to be expressed in the intraerythrocytic stage of the P. falciparum parasite (Mol. Biochem. Parasitol. (2001) 114: 183-195); however, immunological methods failed to detect either on the parasite digestive vacuole. In this study we use a combination of NMR spectroscopy and fluorescence techniques to show that (i) P. falciparum contains low levels of pyrophosphate, and (ii) that both ATP and pyrophosphate are able to energise the acidification of the parasite's digestive vacuole. We propose that, like many plant cells the digestive vacuole of P. falciparum parasites has, on its membrane, a V-H{sup +}-PPase as well as a V-H{sup +}-ATPaSe, and that both pumps contribute to the pH regulation of this organelle.

  11. Towards novel efficient and stable nuclear import signals: synthesis and properties of trimethylguanosine cap analogs modified within the 5',5'-triphosphate bridge.

    Science.gov (United States)

    Zytek, Malgorzata; Kowalska, Joanna; Lukaszewicz, Maciej; Wojtczak, Blazej A; Zuberek, Joanna; Ferenc-Mrozek, Aleksandra; Darzynkiewicz, Edward; Niedzwiecka, Anna; Jemielity, Jacek

    2014-12-07

    A trimethylguanosine (TMG) cap is present at the 5' end of several small nuclear and nucleolar RNAs. Recently, it has been reported that the TMG cap is a potential nuclear import signal for nucleus-targeting therapeutic nucleic acids and proteins. The import is mediated by recognition of the TMG cap by the snRNA transporting protein, snurportin1. This work describes the synthesis and properties of a series of dinucleotide TMG cap (m3(2,2,7)GpppG) analogs modified in the 5',5'-triphosphate bridge as tools to study TMG cap-dependent biological processes. The bridge was altered at different positions by introducing either bridging (imidodiphosphate, O to NH and methylenebisphosphonate, O to CH2) or non-bridging (phosphorothioate, O to S and boranophosphate, O to BH3) modifications, or by elongation to tetraphosphate. The stability of novel analogs in blood serum was studied to reveal that the α,β-bridging O to NH substitution (m3(2,2,7)GppNHpG) confers the highest resistance. Short RNAs capped with analogs containing α,β-bridging (m3(2,2,7)GppNHpG) or β-non-bridging (m3(2,2,7)GppSpG D2) modifications were resistant to decapping pyrophosphatase, hNudt16. Preliminary studies on binding by human snurportin1 revealed that both O to NH and O to S substitutions support this binding. Due to favorable properties in all three assays, m3(2,2,7)GppNHpG was selected as a promising candidate for further studies on the efficiency of the TMG cap as a nuclear import signal.

  12. Comparative pharmacogenetic analysis of risk polymorphisms in Caucasian and Vietnamese children with acute lymphoblastic leukemia: prediction of therapeutic outcome?

    Science.gov (United States)

    Hoang, Phuong Thu Vu; Ambroise, Jérôme; Dekairelle, Anne-France; Durant, Jean-François; Butoescu, Valentina; Chi, Vu Luan Dang; Huynh, Nghia; Nguyen, Tan Binh; Robert, Annie; Vermylen, Christiane; Gala, Jean-Luc

    2015-03-01

    Acute lymphoblastic leukemia (ALL) is the most common of all paediatric cancers. Aside from predisposing to ALL, polymorphisms could also be associated with poor outcome. Indeed, genetic variations involved in drug metabolism could, at least partially, be responsible for heterogeneous responses to standardized leukemia treatments, hence requiring more personalized therapy. The aims of this study were to (a) to determine the prevalence of seven common genetic polymorphisms including those that affect the folate and/or thiopurine metabolic pathways, i.e. cyclin D1 (CCND1-G870A), γ-glutamyl hydrolase (GGH-C452T), methylenetetrahydrofolate reductase (MTHFR-C677T and MTHFR-A1298C), thymidylate synthase promoter (TYMS-TSER), thiopurine methyltransferase (TPMT*3A and TPMT*3C) and inosine triphosphate pyrophosphatase (ITPA-C94A), in Caucasian (n = 94, age Vietnamese (n = 141, age Vietnamese (P < 0.001 and P = 0.02, respectively). Compared with children with a low MGRS (≤ 3), those with a high MGRS (≥ 4) were 2.06 (95% CI = 1.01, 4.22; P = 0.04) times more likely to relapse. Adding MGRS into a multivariate Cox regression model with race/ethnicity and four clinical variables improved the predictive accuracy of the model (AUC from 0.682 to 0.709 at 24 months). Including MGRS into a clinical model improved the predictive accuracy of short and medium term prognosis, hence confirming the association between well determined pharmacogenotypes and outcome of paediatric ALL. Whether variants on other genes associated with folate metabolism can substantially improve the predictive value of current MGRS is not known but deserves further evaluation. © 2014 The British Pharmacological Society.

  13. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens.

    Science.gov (United States)

    Moulin, Morgane; Alguacil, Javier; Gu, Siyi; Mehtougui, Asmaa; Adams, Erin J; Peyrottes, Suzanne; Champagne, Eric

    2017-12-01

    Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.

  14. Analysis of meniscal degeneration and meniscal gene expression

    Directory of Open Access Journals (Sweden)

    Norton James H

    2010-01-01

    Full Text Available Abstract Background Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1 to determine the prevalence of meniscal degeneration in OA patients, and 2 to examine gene expression in OA meniscal cells compared to normal meniscal cells. Methods Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens, and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR. Results The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P HLA-DPA1, integrin, beta 2 (ITGB2, ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1, ankylosis, progressive homolog (ANKH and fibroblast growth factor 7 (FGF7, were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5 and prostaglandin E synthase (PTGES, were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific. Conclusion Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel

  15. The Druggable Pocketome of Corynebacterium diphtheriae: A New Approach for in silico Putative Druggable Targets

    Science.gov (United States)

    Hassan, Syed S.; Jamal, Syed B.; Radusky, Leandro G.; Tiwari, Sandeep; Ullah, Asad; Ali, Javed; Behramand; de Carvalho, Paulo V. S. D.; Shams, Rida; Khan, Sabir; Figueiredo, Henrique C. P.; Barh, Debmalya; Ghosh, Preetam; Silva, Artur; Baumbach, Jan; Röttger, Richard; Turjanski, Adrián G.; Azevedo, Vasco A. C.

    2018-01-01

    Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by Corynebacterium diphtheriae (Cd). In this work, we used an in silico approach along the 13 complete genome sequences of C. diphtheriae followed by a computational assessment of structural information of the binding sites to characterize the “pocketome druggability.” To this end, we first computed the “modelome” (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (∼9%) structure models. The amino acid sequences of these modeled structures were compared with the remaining 12 genomes and consequently, 438 conserved protein sequences were obtained. The RCSB-PDB database was consulted to check the template structures for these conserved proteins and as a result, 401 adequate 3D models were obtained. We subsequently predicted the protein pockets for the obtained set of models and kept only the conserved pockets that had highly druggable (HD) values (137 across all strains). Later, an off-target host homology analyses was performed considering the human proteome using NCBI database. Furthermore, the gene essentiality analysis was carried out that gave a final set of 10-conserved targets possessing highly druggable protein pockets. To check the target identification robustness of the pipeline used in this work, we crosschecked the final target list with another in-house target identification approach for C. diphtheriae thereby obtaining three common targets, these were; hisE-phosphoribosyl-ATP pyrophosphatase, glpX-fructose 1,6-bisphosphatase II, and rpsH-30S ribosomal protein S8. Our predicted results suggest that the in silico approach used could potentially aid in experimental polypharmacological target determination in C. diphtheriae and other pathogens, thereby, might complement the existing and new drug-discovery pipelines

  16. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    Full Text Available The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  17. Genome wide adaptations of Plasmodium falciparum in response to lumefantrine selective drug pressure.

    Directory of Open Access Journals (Sweden)

    Leah Mwai

    Full Text Available The combination therapy of the Artemisinin-derivative Artemether (ART with Lumefantrine (LM (Coartem® is an important malaria treatment regimen in many endemic countries. Resistance to Artemisinin has already been reported, and it is feared that LM resistance (LMR could also evolve quickly. Therefore molecular markers which can be used to track Coartem® efficacy are urgently needed. Often, stable resistance arises from initial, unstable phenotypes that can be identified in vitro. Here we have used the Plasmodium falciparum multidrug resistant reference strain V1S to induce LMR in vitro by culturing the parasite under continuous drug pressure for 16 months. The initial IC(50 (inhibitory concentration that kills 50% of the parasite population was 24 nM. The resulting resistant strain V1S(LM, obtained after culture for an estimated 166 cycles under LM pressure, grew steadily in 378 nM of LM, corresponding to 15 times the IC(50 of the parental strain. However, after two weeks of culturing V1S(LM in drug-free medium, the IC(50 returned to that of the initial, parental strain V1S. This transient drug tolerance was associated with major changes in gene expression profiles: using the PFSANGER Affymetrix custom array, we identified 184 differentially expressed genes in V1S(LM. Among those are 18 known and putative transporters including the multidrug resistance gene 1 (pfmdr1, the multidrug resistance associated protein and the V-type H+ pumping pyrophosphatase 2 (pfvp2 as well as genes associated with fatty acid metabolism. In addition we detected a clear selective advantage provided by two genomic loci in parasites grown under LM drug pressure, suggesting that all, or some of those genes contribute to development of LM tolerance--they may prove useful as molecular markers to monitor P. falciparum LM susceptibility.

  18. Nerve growth factor induced changes in the Golgi apparatus of PC-12 rat pheochromocytoma cells as studied by ligand endocytosis, cytochemical and morphometric methods.

    Science.gov (United States)

    Hickey, W F; Stieber, A; Hogue-Angeletti, R; Gonatas, J; GOnatas, N K

    1983-10-01

    Cells of the PC-12 rat pheochromocytoma cell line respond to nerve growth factor (NGF) by sprouting neurites and biochemically differentiating into sympathetic ganglion-like cells. NGF-stimulated ('differentiated') and unstimulated ('undifferentiated') cells were studied by cytochemical techniques for the localization of the enzymes acid phosphatase (ACPase) and thiamine pyrophosphatase (TPPase), and by a morphometric analysis of the distribution of endocytosed wheat-germ agglutinin labelled with horseradish peroxidase (WGA-HRP). Both cytochemical stains showed the enzymes to be distributed in lysosomes and certain cisternae of the Golgi apparatus in both NGF stimulated and unstimulated cells. ACPase was not confined to GERL (Golgi-endoplasmic reticulum-lysosome) as in certain other cells. The morphometric studies demonstrated that the reaction product of the internalized WGA-HRP occupied 4.7% of the cytoplasmic area in unstimulated cells and 4.5% in NGF-stimulated ones. Despite this similarity, the distribution of the WGA-HRP among the studied intracellular compartments in these two cell groups varied. In the NGF-stimulated cells 3.3% of the WGA-HRP reaction product was found in the innermost Golgi cisterna(e) while in unstimulated cells only 0.3% was seen in this compartment. Similarly, 4.3% of the WGA-HRP stain was found in small vesicles at the 'trans' aspect of the Golgi apparatus in stimulated cells, when only 0.3% of the stain occupied this compartment in 'undifferentiated' cells. The morphometric analysis also revealed that when the PC-12 cells were stimulated with NGF, the Golgi apparatus increased in area by approximately 70%. These findings are consistent with the hypothesis that NGF induced differentiation of PC-12 cells is coupled with enhanced endocytosis of WGA and probably of its 'receptor' to the innermost Golgi cisterna(e) and the closely associated vesicles.

  19. Central role of pyrophosphate in acellular cementum formation.

    Directory of Open Access Journals (Sweden)

    Brian L Foster

    Full Text Available Inorganic pyrophosphate (PP(i is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PP(i are controlled by antagonistic functions of factors that decrease PP(i and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP, and those that increase local PP(i and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1. The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PP(i in cementum formation, we analyzed root development in knock-out ((-/- mice featuring PP(i dysregulation.Excess PP(i in the Alpl(-/- mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PP(i in both Ank and Enpp1(-/- mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PP(i regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PP(i output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PP(i mineralizing conditions, cementoblasts increased Ank (5-fold and Enpp1 (20-fold, while increasing PP(i inhibited mineralization and associated increases in Ank and Enpp1 mRNA.Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating local levels of PP(i, directing and

  20. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  1. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.

    Science.gov (United States)

    Chen, Li-Song; Nose, Akihiro

    2004-09-01

    Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. These results corroborate our hypothesis that day-night changes in the contents of energy-rich compounds differ between CAM species and are related to the

  2. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  3. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells.

    Science.gov (United States)

    Migocka, Magdalena; Papierniak, Anna; Kosatka, Ewelina; Klobus, Grazyna

    2011-10-01

    The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.

  4. Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl.

    Directory of Open Access Journals (Sweden)

    Isabela Ramos

    Full Text Available BACKGROUND: The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS: Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+-PPase, considered as a marker for acidocalcisomes are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS: We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic

  5. Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP.

    Science.gov (United States)

    Lauhon, Charles T

    2012-11-06

    Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate.

  6. Proteomic profiling and post-translational modifications in human keratinocytes treated with Mucuna pruriens leaf extract.

    Science.gov (United States)

    Cortelazzo, Alessio; Lampariello, Raffaella L; Sticozzi, Claudia; Guerranti, Roberto; Mirasole, Cristiana; Zolla, Lello; Sacchetti, Gianni; Hajek, Joussef; Valacchi, Giuseppe

    2014-02-03

    Mucuna pruriens (Mp) is a plant belonging to the Fabaceae family, with several medicinal properties among which its potential to treat diseases where reactive oxygen species (ROS) play an important role in the pathogeneses. The aim was to investigate the effects of Mp leaf methanolic extract (MPME) on human keratinocytes protein expression and its role in preventing proteins oxidation after oxidative stress (OS) exposure. The effects of MPME on HaCaT cells protein expression were evaluated treating cells with different concentrations of MPME, with glucose oxidase (GO, source of OS) and with MPME subsequently treated with GO. The protein patterns of treated HaCaT cells are analyzed by two-dimensional gel electrophoresis (2-DE) and compared with that of untreated HaCaT. Immunoblotting was then used to evaluate the role of MPME in preventing the 4-hydroxynonenal protein adducts (4-HNE PAs) formation (marker of OS). Eighteen proteins, identified by mass spectrometry (LC-ESI-CID-MS/MS), were modulated distinctly by MPME in HaCaT. Overall, MPME counteract GO effect, reducing the GO-induced overexpression of several proteins involved in stress response (T-complex protein 1, Protein disulfide-isomerase A3, Protein DJ-1, and Stress-induced-phosphoprotein 1), in cell energy methabolism (Inorganic pyrophosphatase, Triosephosphate isomerase isoform 1, 2-phosphopyruvate-hydratase alpha-enolase, and Fructose-bisphosphate aldolase A isoform 1), in cytoskeletal organization (Cytokeratins 18, 9, 2, Cofilin-1, Annexin A2 and F-actin-capping protein subunit beta isoform 1) and in cell cycle progression (Eukaryotic translation initiation factor 5A-1 isoform B). In addition, MPME decreased the 4-HNE PAs levels, in particular on 2-phosphopyruvate-hydratase alpha-enolase and Cytokeratin 9. Our findings show that MPME might be helpful in the treatment of OS-related skin diseases by preventing protein post-translational modifications (4-HNE PAs). © 2013 Published by Elsevier Ireland Ltd.

  7. Day–Night Changes of Energy-rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch

    Science.gov (United States)

    CHEN, LI-SONG; NOSE, AKIHIRO

    2004-01-01

    • Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. • Methods The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. • Key Results In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. • Conclusions These results corroborate our hypothesis that day–night changes in the contents of energy

  8. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence.

    Science.gov (United States)

    Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing

    2014-05-14

    Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new

  9. [A comparison of proteomic analysis of Helicobacter pylori in patients with gastritis and gastric cancer between areas of high and low incidence of gastric cancer].

    Science.gov (United States)

    Liu, Lin-na; Zhang, Jing; Ding, Shi-gang; Zhong, Li Jun; Li, Guang-chuan; Shi, Yan-yan; Wang, Ye

    2011-12-18

    To identify the differentially expressed proteins of Helicobacter pylori (Hp) in patients with gastritis and gastric cancer from areas of high and low incidence of gastric cancer by 2-dimensional electrophoresis (2-DE), and to discuss the role of bacterial factor in pathogenesis. Hp in the endoscopic biopsy specimens of gastric mucosa of patients with gastritis and gastric cancer from areas of high (Xining) and low (Beijing) incidence of gastric cancer, were separated, cultured and saved at -80°C. The bacteria were recovered. Then the whole-cell protein of the Hp were extracted and characterized by 2-DE. The different protein spots were analyzed by PDQuest analysis software and identified by electrospray ionization quadruple time-of-flight mass spectrometry (ESI-Q-TOF-MS), and searched by the Mascot database. Nine differentially expressed proteins were identified, and four protein spots were over expressed in the protein maps from gastric cancer in both areas, which were: Urease subunit alpha, chaperone protein dnaK, superoxide dismutase, DNA-directed RNA polymerase subunit alpha; two protein spots were over expressed in the protein maps from gastritis in both areas, which were: Probablethiol peroxidase, nucleoside diphosphate kinase; 60×10(3) chaperonin, and inorganic pyrophosphatase were over expressed only in the protein map from gastric cancer in Xining; S-ribosyl homocysteinelyase was over expressed only in the protein map from gastric cancer in Beijing. There are differences between proteomic analyses of Hp in patients with gastritis and gastric cancer in areas of high and low incidents of gastric cancer, but 2/3 of the protein spots over expressed in the areas are consistent. The protein spots over expressed from gastric cancer in the area with high incidence of gastric cancer are more than in the area with low incidence of gastric cancer. For the Hp extracted from patients with gastric cancer, the mechanism of gastric cancer may be similar, but the role

  10. Alkalosis and Dialytic Clearance of Phosphate Increases Phosphatase Activity: A Hidden Consequence of Hemodialysis.

    Directory of Open Access Journals (Sweden)

    Ricardo Villa-Bellosta

    Full Text Available Extracellular pyrophosphate is a potent endogenous inhibitor of vascular calcification, which is degraded by alkaline phosphatase (ALP and generated by hydrolysis of ATP via ectonucleotide pyrophosphatase/phosphodiesterase 1 (eNPP1. ALP activity (as routinely measured in clinical practice represents the maximal activity (in ideal conditions, but not the real activity (in normal or physiological conditions. For the first time, the present study investigated extracellular pyrophosphate metabolism during hemodialysis sessions (including its synthesis via eNPP1 and its degradation via ALP in physiological conditions.45 patients in hemodialysis were studied. Physiological ALP activity represents only 4-6% of clinical activity. ALP activity increased post-hemodialysis by 2% under ideal conditions (87.4 ± 3.3 IU/L vs. 89.3 ± 3.6 IU/L and 48% under physiological conditions (3.5 ± 0.2 IU/L vs. 5.2 ± 0.2 IU/L. Pyrophosphate synthesis by ATP hydrolysis remained unaltered post-hemodialysis. Post-hemodialysis plasma pH (7.45 ± 0.02 significantly increased compared with the pre-dialysis pH (7.26 ± 0.02. The slight variation in pH (~0.2 units induced a significant increase in ALP activity (9%. Addition of phosphate in post-hemodialysis plasma significantly decreased ALP activity, although this effect was not observed with the addition of urea. Reduction in phosphate levels and increment in pH were significantly associated with an increase in physiological ALP activity post-hemodialysis. A decrease in plasma pyrophosphate levels (3.3 ± 0.3 μmol/L vs. 1.9 ± 0.1 μmol/L and pyrophosphate/ATP ratio (1.9 ± 0.2 vs. 1.4 ± 0.1 post-hemodialysis was also observed.Extraction of uremic toxins, primarily phosphate and hydrogen ions, dramatically increases the ALP activity under physiological conditions. This hitherto unknown consequence of hemodialysis suggests a reinterpretation of the clinical value of this parameter.

  11. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI and pseudoxanthoma elasticum (PXE

    Directory of Open Access Journals (Sweden)

    Alexander Apschner

    2014-07-01

    Full Text Available In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf, which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1, a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues – most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin. Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord

  12. Structural polarity and dynamics of male germline stem cells in an insect (milkweed bug Oncopeltus fasciatus).

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2008-01-01

    Knowing the structure opens a door for a better understanding of function because there is no function without structure. Male germline stem cells (GSCs) of the milkweed bug (Oncopeltus fasciatus) exhibit a very extraordinary structure and a very special relationship with their niche, the apical cells. This structural relationship is strikingly different from that known in the fruit fly (Drosophila melanogaster) -- the most successful model system, which allowed deep insights into the signaling interactions between GSCs and niche. The complex structural polarity of male GSCs in the milkweed bug combined with their astonishing dynamics suggest that cell morphology and dynamics are causally related with the most important regulatory processes that take place between GSCs and niche and ensure maintenance, proliferation, and differentiation of GSCs in accordance with the temporal need of mature sperm. The intricate structure of the GSCs of the milkweed bug (and probably of some other insects, i.e., moths) is only accessible by electron microscopy. But, studying singular sections through the apical complex (i.e., GSCs and apical cells) is not sufficient to obtain a full picture of the GSCs; especially, the segregation of projection terminals is not tangible. Only serial sections and their overlay can establish whether membrane ingrowths merely constrict projections or whether a projection terminal is completely cut off. To sequence the GSC dynamics, it is necessary to include juvenile stages, when the processes start and the GSCs occur in small numbers. The fine structural analysis of segregating projection terminals suggests that these terminals undergo autophagocytosis. Autophagosomes can be labeled by markers. We demonstrated acid phosphatase and thiamine pyrophosphatase (TPPase). Both together are thought to identify autophagosomes. Using the appropriate substrate of the enzymes and cerium chloride, the precipitation of electron-dense cerium phosphate granules

  13. Vibrio Phage KVP40 Encodes a Functional NAD+ Salvage Pathway.

    Science.gov (United States)

    Lee, Jae Yun; Li, Zhiqun; Miller, Eric S

    2017-05-01

    The genome of T4-type Vibrio bacteriophage KVP40 has five genes predicted to encode proteins of pyridine nucleotide metabolism, of which two, nadV and natV , would suffice for an NAD + salvage pathway. NadV is an apparent nicotinamide phosphoribosyltransferase (NAmPRTase), and NatV is an apparent bifunctional nicotinamide mononucleotide adenylyltransferase (NMNATase) and nicotinamide-adenine dinucleotide pyrophosphatase (Nudix hydrolase). Genes encoding the predicted salvage pathway were cloned and expressed in Escherichia coli , the proteins were purified, and their enzymatic properties were examined. KVP40 NadV NAmPRTase is active in vitro , and a clone complements a Salmonella mutant defective in both the bacterial de novo and salvage pathways. Similar to other NAmPRTases, the KVP40 enzyme displayed ATPase activity indicative of energy coupling in the reaction mechanism. The NatV NMNATase activity was measured in a coupled reaction system demonstrating NAD + biosynthesis from nicotinamide, phosphoribosyl pyrophosphate, and ATP. The NatV Nudix hydrolase domain was also shown to be active, with preferred substrates of ADP-ribose, NAD + , and NADH. Expression analysis using reverse transcription-quantitative PCR (qRT-PCR) and enzyme assays of infected Vibrio parahaemolyticus cells demonstrated nadV and natV transcription during the early and delayed-early periods of infection when other KVP40 genes of nucleotide precursor metabolism are expressed. The distribution and phylogeny of NadV and NatV proteins among several large double-stranded DNA (dsDNA) myophages, and also those from some very large siphophages, suggest broad relevance of pyridine nucleotide scavenging in virus-infected cells. NAD + biosynthesis presents another important metabolic resource control point by large, rapidly replicating dsDNA bacteriophages. IMPORTANCE T4-type bacteriophages enhance DNA precursor synthesis through reductive reactions that use NADH/NADPH as the electron donor and NAD

  14. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium

    Directory of Open Access Journals (Sweden)

    Pauline Chaignaud

    2017-09-01

    Full Text Available Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially

  15. The Degeneration of Meniscus Roots Is Accompanied by Fibrocartilage Formation, Which May Precede Meniscus Root Tears in Osteoarthritic Knees.

    Science.gov (United States)

    Park, Do Young; Min, Byoung-Hyun; Choi, Byung Hyune; Kim, Young Jick; Kim, Mijin; Suh-Kim, Haeyoung; Kim, Joon Ho

    2015-12-01

    Fibrocartilage metaplasia in tendons and ligaments is an adaptation to compression as well as a pathological feature during degeneration. Medial meniscus posterior roots are unique ligaments that resist multidirectional forces, including compression. To characterize the degeneration of medial meniscus posterior root tears in osteoarthritic knees, with an emphasis on fibrocartilage and calcification. Cross-sectional study; Level of evidence, 3. Samples of medial meniscus posterior roots were harvested from cadaveric specimens and patients during knee replacement surgery and grouped as follows: normal reference, no tear, partial tear, and complete tear. Degeneration was analyzed with histology, immunohistochemistry, and real-time polymerase chain reaction. Uniaxial tensile tests were performed on specimens with and without fibrocartilage. Quantifiable data were statistically analyzed by the Kruskal-Wallis test with the Dunn comparison test. Thirty, 28, and 42 samples harvested from 99 patients were allocated into the no tear, partial tear, and complete tear groups, respectively. Mean modified Bonar tendinopathy scores for each group were 3.97, 9.31, and 14.15, respectively, showing a higher degree of degeneration associated with the extent of the tear (P fibrocartilage according to the extent of the tear. Tear margins revealed fibrocartilage in 59.3% of partial tear samples and 76.2% of complete tear samples, with a distinctive cleavage-like shape. Root tears with a similar shape were induced within fibrocartilaginous areas during uniaxial tensile testing. Even in the no tear group, 56.7% of samples showed fibrocartilage in the anterior margin of the root, adjacent to the meniscus. An increased stained area of calcification and expression of the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene were observed in the complete tear group compared with the no tear group (P Fibrocartilage and calcification increased in medial meniscus posterior roots, associated

  16. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity.

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Jiang, Huan-Xin; Huang, Jing-Hao; Chen, Li-Song

    2014-10-28

    Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. C. sinensis

  17. One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides.

    Science.gov (United States)

    Rexer, Thomas F T; Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo

    2018-01-01

    Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl 2 . The maximum reaction rate of GDP-mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl 2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc) 2 -Man 1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc) 2 -Man 1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established

  18. One pot synthesis of GDP‐mannose by a multi‐enzyme cascade for enzymatic assembly of lipid‐linked oligosaccharides

    Science.gov (United States)

    Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo

    2017-01-01

    Abstract Glycosylation of proteins is a key function of the biosynthetic‐secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell‐cell adhesion, blood‐group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein‐based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose‐1‐phosphate‐guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1‐domain polyphosphate kinase 2 (1D‐Ppk2) expressed in E. coli for the cell‐free production and regeneration of GDP‐mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP‐mannose is produced at various conditions, that is pH 7–8, temperature 25–35°C and co‐factor concentrations of 5–20 mM MgCl2. The maximum reaction rate of GDP‐mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP‐mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane‐deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER‐associated lipid‐linked oligosaccharide (LLO) assembly. Thereby, in a one‐pot reaction, phytanyl‐PP‐(GlcNAc)2‐Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl‐PP‐(GlcNAc)2‐Man1 can serve as a substrate for the synthesis of LLO for the cell‐free in vitro glycosylation of proteins. A high‐performance anion exchange chromatography method with UV and conductivity detection (HPAEC‐UV/CD) assay was optimized and

  19. Dynamics of biopolymers on nanomaterials studied by quasielastic neutron scattering and MD simulations

    Science.gov (United States)

    Dhindsa, Gurpreet K.

    Neutron scattering has been proved to be a powerful tool to study the dynamics of biological systems under various conditions. This thesis intends to utilize neutron scattering techniques, combining with MD simulations, to develop fundamental understanding of several biologically interesting systems. Our systems include a drug delivery system containing Nanodiamonds with nucleic acid (RNA), and two specific model proteins, beta-Casein and Inorganic Pyrophosphatase (IPPase). RNA and nanodiamond (ND) both are suitable for drug-delivery applications in nano-biotechnology. The architecturally flexible RNA with catalytic functionality forms nanocomposites that can treat life-threatening diseases. The non-toxic ND has excellent mechanical and optical properties and functionalizable high surface area, and thus actively considered for biomedical applications. In this thesis, we utilized two tools, quasielastic neutron scattering (QENS) and Molecular Dynamics Simulations to probe the effect of ND on RNA dynamics. Our work provides fundamental understanding of how hydrated RNA motions are affected in the RNA-ND nanocomposites. From the experimental and Molecular Dynamics Simulation (MD), we found that hydrated RNA motion is faster on ND surface than a freestanding one. MD Simulation results showed that the failure of Stokes Einstein relation results the presence of dynamic heterogeneities in the biomacromolecules. Radial pair distribution function from MD Simulation confirmed that the hydrophilic nature of ND attracts more water than RNA results the de-confinement of RNA on ND. Therefore, RNA exhibits faster motion in the presence of ND than freestanding RNA. In the second project, we studied the dynamics of a natively disordered protein beta-Casein which lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of beta-Casein are explored by Quasielastic Neutron Scattering (QENS). We investigated the mean square displacement (MSD) of

  20. Presence of multiple acid phosphatases activity in seedlings of cucumber, radish and rocket salad Presença de atividade de múltiplas fosfatases ácidas em plântulas de pepino, rabanete e rúcula

    Directory of Open Access Journals (Sweden)

    Luciane Almeri Tabaldi

    2008-06-01

    Full Text Available Acid phosphatases (3.1.3.2 are a group of enzymes widely distributed in nature, which catalyze the hydrolysis of a variety of phosphate esters in the pH range of 4-6. We confirmed the presence of acid phosphatases in seedlings of cucumber (Cucumis sativus, radish (Raphanus sativus and rocket salad (Eruca vesicaria under different assay conditions using a rapid and simple preparation. The results showed that the optimum pH and temperature used for all species were close to 5.5 and 35°C, respectively. The enzyme was inhibited by molybdate, fluoride, azide, levamisole, orthovanadate, Zn2+ and Cu2+. Suramin had no effect on enzyme activity. The acid phosphatase from cucumber, radish and rocket salad hydrolyzed a wide variety of phosphate esters and the highest activity was observed with PPi, ATP and GTP. These results demonstrate that the enzyme investigated in this study is different from well known ester phosphate cleaving plant enzymes (apyrase and inorganic pyrophosphatases and this preparation could be a useful tool to future toxicological studies and to study initially all isoforms of acid phosphatase.As fosfatases ácidas (3.1.3.2 são um grupo de enzimas amplamente distribuídas na natureza, as quais catalisam a hidrólise de uma variedade de ésteres de fosfato com uma variação de pH entre quatro e seis. Foi confirmada a presença de fosfatases ácidas em plântulas de pepino (Cucumis sativus, rabanete (Raphanus sativus e rúcula (Eruca vesicaria sob diferentes condições de ensaio usando uma preparação rápida e simples. Os resultados mostraram que o pH e a temperatura ótimos para todas as espécies foram 5,5 e 35°C, respectivamente. A enzima foi inibida por molibdato, fluoreto, azida, levamisole, ortovanadato, Zn2+ e Cu2+. O inibidor suramim não afetou a atividade enzimática. As fosfatases ácidas de pepino, rabanete e rúcula hidrolisaram uma ampla variedade de ésteres de fosfato e a maior atividade foi observada com PPi, ATP

  1. Abnormal Mechanical Loading Induces Cartilage Degeneration by Accelerating Meniscus Hypertrophy and Mineralization After ACL Injuries In Vivo.

    Science.gov (United States)

    Du, Guoqing; Zhan, Hongsheng; Ding, Daofang; Wang, Shaowei; Wei, Xiaochun; Wei, Fangyuan; Zhang, Jianzhong; Bilgen, Bahar; Reginato, Anthony M; Fleming, Braden C; Deng, Jin; Wei, Lei

    2016-03-01

    Although patients with an anterior cruciate ligament (ACL) injury have a high risk of developing posttraumatic osteoarthritis (PTOA), the role of meniscus hypertrophy and mineralization in PTOA after an ACL injury remains unknown. The purpose of this study was to determine if menisci respond to abnormal loading and if an ACL injury results in meniscus hypertrophy and calcification. The hypotheses were that (1) abnormal mechanical loading after an ACL injury induces meniscus hypertrophy and mineralization, which correlates to articular cartilage damage in vivo, and (2) abnormal mechanical loading on bovine meniscus explants induces the overexpression of hypertrophic and mineralization markers in vitro. Controlled laboratory study. In vivo guinea pig study (hypothesis 1): Three-month-old male Hartley guinea pigs (n = 9) underwent ACL transection (ACLT) on the right knee; the left knee served as the control. Calcification in the menisci was evaluated by calcein labeling 1 and 5 days before knee harvesting at 5.5 months. Cartilage and meniscus damage and mineralization were quantified by the Osteoarthritis Research Society International score and meniscus grade, respectively. Indian hedgehog (Ihh), matrix metalloproteinase-13 (MMP-13), collagen type X (Col X), progressive ankylosis homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), alkaline phosphatase (ALP), inorganic pyrophosphate (PPi), and inorganic phosphate (Pi) concentrations were evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. In vitro bovine meniscus explant study (hypothesis 2): Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 1, 2, and 3 hours. Cell viability was determined using live/dead staining. The levels of mRNA expression and protein levels were measured using real-time quantitative reverse transcription polymerase chain reaction and Western blot after 24, 48, and 72 hours in culture. The conditioned medium was collected for sulfated

  2. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    Science.gov (United States)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  3. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    Science.gov (United States)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    , toothpaste and as a release of waste water treatment plants (Young et al., 2009). Anthropogenic effects will not be discussed further in the following. On this basis, we consider three different cases of pyromorphite formation as illustrated on the conceptual scheme of Fig. 1. Case 1: Pyromorphite grown recently (within the last hundreds of years) on rock surfaces in former mines. Both, phosphate released geochemically from igneous rocks and phosphate released biologically during leaching from litter/lysis of microbial cells and soil organic matter decomposition are possible sources. Case 2: Pyromorphite formation on mine dumps, below vegetation (recent, during tens to hundreds of years). Based on the specific setting of these samples investigated here (they were found exclusively below a large fern; see more details in the section on sample description), biologically-mediated P release provides the phosphate for pyromorphite growth. Case 3: Pyromorphite growth in the oxidized zones of ore bodies prior to human interference. Most samples of our study belong to this case.Phosphorus generally forms very strong covalent bonds (Huminicki and Hawthorne, 2002) and there is only negligible exchange of oxygen isotopes between phosphate and ambient water under most near-surface conditions without biological activity (Winter et al., 1940; Longinelli, 1965). The only important exchange of oxygen isotopes between phosphate and ambient water involves biological activity and the oxygen isotope composition of phosphate (δ18OP) may be modified by different enzymatic/cellular processes. Once phosphate is taken up by organisms, intracellular pyrophosphatase mediates internal P cycling. This is associated with a temperature-dependent equilibrium isotope fractionation due to the reversible exchange of O atoms between the phosphate molecule and cell water. As a result the δ18OP is equilibrated with the ambient water, and the equilibrium temperature can be calculated following the revised