WorldWideScience

Sample records for pyrophosphatases

  1. Inorganic pyrophosphatases: structural diversity serving the function

    Science.gov (United States)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  2. Heterologous expression and purification of membrane-bound pyrophosphatases

    DEFF Research Database (Denmark)

    Kellosalo, J.; Kajander, T.; Palmgren, Michael Broberg

    2011-01-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that couple the hydrolysis of inorganic pyrophosphate to pumping of protons or sodium ions. In plants and bacteria they are important for relieving stress caused by low energy levels during anoxia, drought, nutrient deficiency, cold and low...... to obtain structural information for drug design. We have tested the expression of eight integral membrane pyrophosphatases in Saccharomyces cerevisiae, six from bacterial and archaeal sources and two from protozoa. Two proteins originating from hyperthermophilic organisms were purified in dimeric...

  3. A proton pumping pyrophosphatase in acidocalcisomes of Herpetomonas sp.

    Science.gov (United States)

    Soares Medeiros, Lia Carolina A; Moreira, Bernardo Luis Moraes; Miranda, Kildare; de Souza, Wanderley; Plattner, Helmut; Hentschel, Joachim; Barrabin, Hector

    2005-04-01

    Acidocalcisomes are acidic calcium storage organelles found in several microorganisms. They are characterized by their acidic nature, high electron density, high content of polyphosphates and several cations. Electron microscopy contrast tuned images of Herpetomonas sp. showed the presence of several electron dense organelles ranging from 100 to 300 nm in size. In addition, X-ray element mapping associated with energy-filtering transmission electron microscopy showed that most of the cations, namely Na, Mg, P, K, Fe and Zn, are located in their matrix. Using acridine orange as an indicator dye, a pyrophosphate-driven H+ uptake was measured in cells permeabilized by digitonin. This uptake has an optimal pH of 6.5-6.7 and was inhibited by sodium fluoride (NaF) and imidodiphosphate (IDP), two H+-pyrophosphatase inhibitors. H+ uptake was not promoted by ATP. Addition of 50 microM Ca2+ induced the release of H+, suggesting the presence of a Ca2+/H+ countertransport system in the membranes of the acidic compartments. Na+ was unable to release protons from the organelles. The pyrophosphate-dependent H+ uptake was dependent of ion K+ and inhibited by Na+ Herpetomonas sp. immunolabeled with monoclonal antibodies raised against a Trypanosoma cruzi V-H+-pyrophosphatase shows intense fluorescence in cytoplasmatic organelles of size and distribution similar to the electron-dense vacuoles. Together, these results suggest that the electron dense organelles found in Herpetomonas sp. are homologous to the acidocalcisomes described in other trypanosomatids. They possess a vacuolar H+-pyrophosphatase and a Ca2+/H+ antiport. However, in contrast to the other trypanosomatids so far studied, we were not able to measure any ATP promoted H+ transport in the acidocalcisomes of this parasite.

  4. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  5. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  6. Purificantion and characterization of inorganic pyrophosphatase from Thiobacillus thiooxidans.

    Science.gov (United States)

    Tominaga, N; Mori, T

    1977-02-01

    An inorganic pyrophosphatase [EC 3.6.1.1] was isolated from Thiobacillus thiooxidans and purified 975-fold to a state of apparent homogeneity. The enzyme catalyzed the hydrolysis of inorganic pyrophosphate and no activity was found with a variety of other phosphate esters. The cation Mg2+ was required for maximum activity; Co2+ and Mn2+ supported 25 per cent and 10.6 per cent of the activity with Mg2+, respectively. The pH optimum was 8.8. The molecular weight was estimated to be 88,000 by gel filtration and SDS gel electrophoresis, and the enzyme consisted of four identical subunits. The isoelectric point was found to be 5.05. The enzyme was exceptionally heat-stable in the presence of 0.01 M Mg2+.

  7. Integral membrane pyrophosphatases: a novel drug target for human pathogens?

    Directory of Open Access Journals (Sweden)

    Henri Xhaard

    2016-03-01

    Full Text Available Membrane-integral pyrophosphatases (mPPases are found in several human pathogens, including Plasmodium species, the protozoan parasites that cause malaria. These enzymes hydrolyze pyrophosphate and couple this to the pumping of ions (H+ and/or Na+ across a membrane to generate an electrochemical gradient. mPPases play an important role in stress tolerance in plants, protozoan parasites, and bacteria. The solved structures of mPPases from Vigna radiata and Thermotoga maritima open the possibility of using structure-based drug design to generate novel molecules or repurpose known molecules against this enzyme. Here, we review the current state of knowledge regarding mPPases, focusing on their structure, the proposed mechanism of action, and their role in human pathogens. We also summarize different methodologies in structure-based drug design and propose an example region on the mPPase structure that can be exploited by these structure-based methods for drug targeting. Since mPPases are not found in animals and humans, this enzyme is a promising potential drug target against livestock and human pathogens.

  8. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  9. [Inorganic pyrophosphatase activity of the mouse spleen in the immune response and after treatment with bis-phosphonates].

    Science.gov (United States)

    Komissarenko, S V; Gulaia, N M; Gaĭvoronskaia, G G; Karlova, N P; Tarusova, N B

    1986-01-01

    The inorganic pyrophosphatase activity was determined in different tissues of mice. The immunization of mice by sheep erythrocytes increased the inorganic pyrophosphatase activity of the spleen. The in vivo administration of bisphosphonates (40 mg per 1 g of mass), which are structural analogs of inorganic pyrophosphate (methylene bisphosphonic acid--MBPA, hydroxyethylidene bisphosphonic acid--HEBPA and aminomethylene bisphosphonic acid--AMBPA), inhibited the inorganic pyrophosphatase activity only by MBPA in the thymus and spleen but not in liver. The addition of MBPA, HEBPA as well as of phosphonoacetic acid, imidobisphosphate, bis(phosphonomethyl)-phosphonic acid, MBPA and phosphoric acid monoanhydride to cytosol from the mouse spleen led to the competitive (relative to the [Mg (PPi)2-] complex) inhibition of the inorganic pyrophosphatase activity. AMBPA didn't possess the analogous effect.

  10. Fast kinetics of nucleotide binding to Clostridium perfringens family II pyrophosphatase containing CBS and DRTGG domains.

    Science.gov (United States)

    Jämsen, J; Baykov, A A; Lahti, R

    2012-02-01

    We earlier described CBS-pyrophosphatase of Moorella thermoacetica (mtCBS-PPase) as a novel phosphohydrolase that acquired a pair of nucleotide-binding CBS domains during evolution, thus endowing the protein with the capacity to be allosterically regulated by adenine nucleotides (Jämsen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327-333). We herein describe a more evolved type of CBS-pyrophosphatase from Clostridium perfringens (cpCBS-PPase) that additionally contains a DRTGG domain between the two CBS domains in the regulatory part. cpCBS-PPase retained the ability of mtCBS-PPase to be inhibited by micromolar concentrations of AMP and ADP and activated by ATP and was additionally activated by diadenosine polyphosphates (AP(n)A) with n > 2. Stopped-flow measurements using a fluorescent nucleotide analog, 2'(3')-O-(N-methylanthranoyl)-AMP, revealed that cpCBS-PPase interconverts through two different conformations with transit times on the millisecond scale upon nucleotide binding. The results suggest that the presence of the DRTGG domain affords greater flexibility to the regulatory part, allowing it to more rapidly undergo conformational changes in response to binding.

  11. Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry.

    Science.gov (United States)

    Xu, Kefeng; Chen, Zhonghui; Zhou, Ling; Zheng, Ou; Wu, Xiaoping; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2015-01-06

    A fluorometric method for pyrophosphatase (PPase) activity detection was developed based on click chemistry. Cu(II) can coordinate with pyrophosphate (PPi), the addition of pyrophosphatase (PPase) into the above system can destroy the coordinate compound because PPase catalyzes the hydrolysis of PPi into inorganic phosphate and produces free Cu(II), and free Cu(II) can be reduced by sodium ascorbate (SA) to form Cu(I), which in turn initiates the ligating reaction between nonfluorescent 3-azidocoumarins and terminal alkynes to produce a highly fluorescent triazole complex, based on which, a simple and sensitive turn on fluorometric method for PPase can be developed. The fluorescence intensity of the system has a linear relationship with the logarithm of the PPase concentration in the range of 0.5 and 10 mU with a detection limit down to 0.2 mU (S/N = 3). This method is cost-effective and convenient without any labels or complicated operations. The proposed system was applied to screen the potential PPase inhibitor with high efficiency. The proposed method can be applied to diagnosis of PPase-related diseases.

  12. Synthesis of triazole Schiff bases: novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1.

    Science.gov (United States)

    Khan, Khalid Mohammed; Siddiqui, Salman; Saleem, Muhammad; Taha, Muhammad; Saad, Syed Muhammad; Perveen, Shahnaz; Choudhary, M Iqbal

    2014-11-15

    A series of Schiff base triazoles 1–25 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 lM), 13 (IC50 = 152.83 ± 2.39 lM), and 22 (IC50 = 251.0 ± 6.64 lM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 lM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.

  13. Partial characterization of an atypical family I inorganic pyrophosphatase from cattle tick Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Costa, Evenilton P; Campos, Eldo; de Andrade, Caroline P; Façanha, Arnoldo R; Saramago, Luiz; Masuda, Aoi; Vaz, Itabajara da Silva; Fernandez, Jorge H; Moraes, Jorge; Logullo, Carlos

    2012-03-23

    The present paper presents the partial characterization of a family I inorganic pyrophosphatase from the hard tick Rhipicephalus (Boophilus) microplus (BmPPase). The BmPPase gene was cloned from the tick embryo and sequenced. The deduced amino acid sequence shared high similarity with other eukaryotic PPases, on the other hand, BmPPase presented some cysteine residues non-conserved in other groups. This pyrophosphatase is inhibited by Ca(2+), and the inhibition is antagonized by Mg(2+), suggesting that the balance between free Ca(2+) and free Mg(2+) in the eggs could be involved in BmPPase activity control. We observed that the BmPPase transcripts are present in the fat body, midgut and ovary of ticks, in two developmental stages (partially and fully engorged females). However, higher transcription amounts were found in ovary from fully engorged females. BmPPase activity was considerably abolished by the thiol reagent dithionitrobenzoic acid (DTNB), suggesting that cysteine residues are exposed in its structure. Therefore, these cysteine residues play a critical role in the structural stability of BmPPase. Molecular dynamics simulation analysis indicates that BmPPase is the first Family I PPase that could promote disulfide bonds between cysteine residues 138-339 and 167-295. Finally, we believe that these cysteine residues exposed in the BmPPase structure can play an important controlling role regarding enzyme activity, which would be an interesting mechanism of redox control. The results presented here also indicate that this enzyme can be involved in embryogenesis of this arthropod, and may be useful as a target in the development of new tick control strategies.

  14. Comparison of glyphosate and Roundup preparations influence on inorganic pyrophosphatase activity and available phosphorus content in sandy loam

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2016-03-01

    Full Text Available The aim of the study was to compare the effect of glyphosate and its formulations: Roundup 360 SL (containing isopropylamine salt of glyphosate and polyethoxylated tallow amine and Roundup TransEnergy 450 SL (containing potassium salt of glyphosate and polyethoxylated ether amine on inorganic pyrophosphatase activity and available phosphorus content in soil. The experiment was carried out on loamy sand with organic carbon content 10.9 g·kg-1. Glyphosate and its salts amounts added to soil were: 0 (control, 1, 10, 100 mg·kg-1. Samples were adjusted to 60% maximum water capacity and they were incubated in temperature 20°C. Inorganic pyrophosphatase and available phosphorus content were measured on days 1, 7, 14, 28 and 56. The obtained results show that the observed effect of glyphosate and its formulations depended on the dosage and day of experiment. The largest changes of the measured parameters were observed after application of Roundup 360 SL – formulation containing glyphosate isopro­pylamine salt and polyethoxylated tallow amine. The positive statistically significant correlation between inorganic pyrophosphatase activity and available phosphorus content was reported only in soil treated with Roundup 360 SL.

  15. Inorganic pyrophosphatase in uncultivable hemotrophic mycoplasmas: identification and properties of the enzyme from Mycoplasma suis

    Directory of Open Access Journals (Sweden)

    Wittenbrink Max M

    2010-07-01

    Full Text Available Abstract Background Mycoplasma suis belongs to a group of highly specialized hemotrophic bacteria that attach to the surface of host erythrocytes. Hemotrophic mycoplasmas are uncultivable and the genomes are not sequenced so far. Therefore, there is a need for the clarification of essential metabolic pathways which could be crucial barriers for the establishment of an in vitro cultivation system for these veterinary significant bacteria. Inorganic pyrophosphatases (PPase are important enzymes that catalyze the hydrolysis of inorganic pyrophosphate PPi to inorganic phosphate Pi. PPases are essential and ubiquitous metal-dependent enzymes providing a thermodynamic pull for many biosynthetic reactions. Here, we describe the identification, recombinant production and characterization of the soluble (sPPase of Mycoplasma suis. Results Screening of genomic M. suis libraries was used to identify a gene encoding the M. suis inorganic pyrophosphatase (sPPase. The M. suis sPPase consists of 164 amino acids with a molecular mass of 20 kDa. The highest identity of 63.7% was found to the M. penetrans sPPase. The typical 13 active site residues as well as the cation binding signature could be also identified in the M. suis sPPase. The activity of the M. suis enzyme was strongly dependent on Mg2+ and significantly lower in the presence of Mn2+ and Zn2+. Addition of Ca2+ and EDTA inhibited the M. suis sPPase activity. These characteristics confirmed the affiliation of the M. suis PPase to family I soluble PPases. The highest activity was determined at pH 9.0. In M. suis the sPPase builds tetramers of 80 kDa which were detected by convalescent sera from experimentally M. suis infected pigs. Conclusion The identification and characterization of the sPPase of M. suis is an additional step towards the clarification of the metabolism of hemotrophic mycoplasmas and, thus, important for the establishment of an in vitro cultivation system. As an antigenic and conserved

  16. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations.

    Science.gov (United States)

    Luoto, Heidi H; Nordbo, Erika; Baykov, Alexander A; Lahti, Reijo; Malinen, Anssi M

    2013-12-01

    Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.

  17. Glutamic acid-149 is important for enzymatic activity of yeast inorganic pyrophosphatase.

    Science.gov (United States)

    Gonzalez, M A; Cooperman, B S

    1986-11-04

    Modification of Saccharomyces cerevisiae inorganic pyrophosphatase (PPase) with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide is known to lead to a loss of enzymatic activity, the rate of which is decreased in the presence of ligands binding to the active site [Cooperman, B. S., & Chiu, N. Y. (1973) Biochemistry 12, 1676-1682; Heitman, P., & Uhlig, H. J. (1974) Acta Biol. Med. Ger. 32, 565-594]. In this work we show that, when such inactivation is carried out in the presence of [14C]glycine ethyl ester (GEE), GEE is covalently incorporated into PPase, incorporation into the most highly labeled tryptic peptide is site-specific, as evidenced by the reduction of such incorporation in the presence of the active site ligands Zn2+ and Pi, the extent of formation of this specifically labeled peptide correlates with the fractional loss of PPase activity, and the specifically labeled peptide corresponds to residues 145-153 and the position of incorporation within this peptide is Glu-149. The significance of our findings for the location of the active site and for the catalytic mechanism of PPase is briefly considered in the light of the 3-A X-ray crystallographic structure of Arutyunyun and his colleagues [Arutyunyun, E. G., et al. (1981) Dokl. Akad. Nauk SSSR 258, 1481-1485; Kuranova, I. P., et al. (1983) Bioorg. Khim. 9, 1611-1919; Terzyan, S. S., et al. (1984) Bioorg. Khim. 10, 1469-1482].

  18. Molecular Cloning, Expression Analysis, and Functional Characterization of the H(+)-Pyrophosphatase from Jatropha curcas.

    Science.gov (United States)

    Yang, Yumei; Luo, Zhu; Zhang, Mengru; Liu, Chang; Gong, Ming; Zou, Zhurong

    2016-04-01

    H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J. curcas H(+)-PPase (JcVP1) complementary DNA (cDNA) by reverse transcription PCR, based on the assembled sequence of its ESTs highly matched to Hevea brasiliensis H(+)-PPase. This gene encodes a polypeptide of 765 amino acids that was predicted as a K(+)-dependent H(+)-PPase evolutionarily closest to those of other Euphorbiaceae plants. Many cis-regulatory elements relevant to environmental stresses, molecular signals, or tissue-specificity were identified by promoter prediction within the 1.5-kb region upstream of JcVP1 coding sequence. Meanwhile, the responses of JcVP1 expression to several common abiotic stresses (salt, drought, heat, cold) were characterized with a considerable accordance with the inherent stress tolerance of J. curcas. Moreover, we found that the heterologous expression of JcVP1 could significantly improve the salt tolerance in both recombinant Escherichia coli and Saccharomyces cerevisiae, and this effect could be further fortified in yeast by N-terminal addition of a vacuole-targeting signal peptide from the H(+)-PPase of Trypanosoma cruzi.

  19. Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani.

    Science.gov (United States)

    Chen, Yen-Wei; Lee, Ching-Hung; Huang, Yun-Tzu; Pan, Yih-Jiuan; Lin, Shih-Ming; Lo, Yueh-Yu; Lee, Chien-Hsien; Huang, Lin-Kun; Huang, Yu-Fen; Hsu, Yu-Di; Pan, Rong-Long

    2014-04-01

    Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.

  20. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.

    Science.gov (United States)

    Huang, Yun-Tzu; Liu, Tseng-Huang; Lin, Shih-Ming; Chen, Yen-Wei; Pan, Yih-Jiuan; Lee, Ching-Hung; Sun, Yuh-Ju; Tseng, Fan-Gang; Pan, Rong-Long

    2013-07-05

    Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding.

  1. Insights into the cellular function of YhdE, a nucleotide pyrophosphatase from Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jin Jin

    Full Text Available YhdE, a Maf-like protein in Escherichia coli, exhibits nucleotide pyrophosphatase (PPase activity, yet its cellular function remains unknown. Here, we characterized the PPase activity of YhdE on dTTP, UTP and TTP and determined two crystal structures of YhdE, revealing 'closed' and 'open' conformations of an adaptive active site. Our functional studies demonstrated that YhdE retards cell growth by prolonging the lag and log phases, particularly under stress conditions. Morphology studies showed that yhdE-knockout cells transformed the normal rod shape of wild-type cells to a more spherical form, and the cell wall appeared to become more flexible. In contrast, YhdE overexpression resulted in filamentous cells. This study reveals the previously unknown involvement of YhdE in cell growth inhibition under stress conditions, cell-division arrest and cell-shape maintenance, highlighting YhdE's important role in E. coli cell-cycle checkpoints.

  2. Identification of Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1 in MCF7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Dipti Ranjan Mishra

    Full Text Available Cytosolic inorganic pyrophosphatase plays an important role in the cellular metabolism by hydrolyzing inorganic pyrophosphate (PPi formed as a by-product of various metabolic reactions. Inorganic pyrophosphatases are known to be associated with important functions related to the growth and development of various organisms. In humans, the expression of inorganic pyrophosphatase (PPA1 is deregulated in different types of cancer and is involved in the migration and invasion of gastric cancer cells and proliferation of ovarian cancer cells. However, the transcriptional regulation of the gene encoding PPA1 is poorly understood. To gain insights into PPA1 gene regulation, a 1217 bp of its 5'-flanking region was cloned and analyzed. The 5'-deletion analysis of the promoter revealed a 266 bp proximal promoter region exhibit most of the transcriptional activity and upon sequence analysis, three putative Sp1 binding sites were found to be present in this region. Binding of Sp1 to the PPA1 promoter was confirmed by Electrophoretic mobility shift assay (EMSA and Chromatin immunoprecipitation (ChIP assay. Importance of these binding sites was verified by site-directed mutagenesis and overexpression of Sp1 transactivates PPA1 promoter activity, upregulates protein expression and increases chromatin accessibility. p300 binds to the PPA1 promoter and stimulates Sp1 induced promoter activity. Trichostatin A (TSA, a histone deacetylase (HDAC inhibitor induces PPA1 promoter activity and protein expression and HAT activity of p300 was important in regulation of PPA1 expression. These results demonstrated that PPA1 is positively regulated by Sp1 and p300 coactivates Sp1 induced PPA1 promoter activity and histone acetylation/deacetylation may contribute to a local chromatin remodeling across the PPA1 promoter. Further, knockdown of PPA1 decreased colony formation and viability of MCF7 cells.

  3. Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, Candy A.; Tagliabracci, Vincent S.; Zhai, Lanmin [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Roach, Peter J., E-mail: proach@iupui.edu [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2009-12-25

    Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [{beta}-{sup 32}P]UDP-glucose to [{sup 32}P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg{sup 2+} and was greatest at alkaline pH above 8. Kinetic analysis indicated a K{sub m} of {approx}4 mM for UDP-glucose and {approx}0.3 mM for ADP-ribose. Based on V{sub max}/K{sub m} values, the enzyme was {approx}20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of M{sub r} 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.

  4. Characterization and expression analyses of the H ⁺ -pyrophosphatase gene in rye

    Indian Academy of Sciences (India)

    CHANG-SHUI WANG; QIAN-TAO JIANG; JIAN MA; XIU-YING WANG; JI-RUI WANG; GUO-YUE CHEN; PENG-FEI QI; YUAN-YING PENG; XIU-JIN LAN; YOU-LIANG ZHENG; YU-MING WEI

    2016-09-01

    The H+-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺ -PPase gene ScHP1 in rye (Secale cereale L. ‘Qinling’). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺ − PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns.ScHP1 was highly homologous with other members of the H⁺ -PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress,ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.

  5. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides

    Science.gov (United States)

    Jämsen, Joonas; Tuominen, Heidi; Salminen, Anu; Belogurov, Georgiy A.; Magretova, Natalia N.; Baykov, Alexander A.; Lahti, Reijo

    2007-01-01

    CBS (cystathionine β-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100–10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PPi-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively. PMID:17714078

  6. Characterization and expression analyses of the H⁺-pyrophosphatase gene in rye.

    Science.gov (United States)

    Wang, Chang-Shui; Jiang, Qian-Tao; Ma, Jian; Wang, Xiu-Ying; Wang, Ji-Rui; Chen, Guo-Yue; Qi, Peng-Fei; Peng, Yuan-Ying; Lan, Xiu-Jin; Zheng, You-Liang; Wei, Yu-Ming

    2016-09-01

    The H⁺-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺-PPase gene ScHP1 in rye (Secale cereale L. 'Qinling'). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺-PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H⁺-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.

  7. Isolation and in silico analysis of a novel H+-pyrophosphatase gene orthologue from the halophytic grass Leptochloa fusca

    Science.gov (United States)

    Rauf, Muhammad; Saeed, Nasir A.; Habib, Imran; Ahmed, Moddassir; Shahzad, Khurram; Mansoor, Shahid; Ali, Rashid

    2017-02-01

    Structure prediction can provide information about function and active sites of protein which helps to design new functional proteins. H+-pyrophosphatase is transmembrane protein involved in establishing proton motive force for active transport of Na+ across membrane by Na+/H+ antiporters. A full length novel H+-pyrophosphatase gene was isolated from halophytic grass Leptochloa fusca using RT-PCR and RACE method. Full length LfVP1 gene sequence of 2292 nucleotides encodes protein of 764 amino acids. DNA and protein sequences were used for characterization using bioinformatics tools. Various important potential sites were predicted by PROSITE webserver. Primary structural analysis showed LfVP1 as stable protein and Grand average hydropathy (GRAVY) indicated that LfVP1 protein has good hydrosolubility. Secondary structure analysis showed that LfVP1 protein sequence contains significant proportion of alpha helix and random coil. Protein membrane topology suggested the presence of 14 transmembrane domains and presence of catalytic domain in TM3. Three dimensional structure from LfVP1 protein sequence also indicated the presence of 14 transmembrane domains and hydrophobicity surface model showed amino acid hydrophobicity. Ramachandran plot showed that 98% amino acid residues were predicted in the favored region.

  8. Variants of the inosine triphosphate pyrophosphatase gene are associated with reduced relapse risk following treatment for HCV genotype 2/3

    DEFF Research Database (Denmark)

    Rembeck, Karolina; Waldenström, Jesper; Hellstrand, Kristoffer

    2014-01-01

    The present study evaluated the impact of variations in the inosine triphosphate pyrophosphatase (ITPase) gene (ITPA) on treatment outcome in patients with hepatitis C virus (HCV) genotype 2/3 infection receiving peginterferon-α2a and lower, conventional 800 mg daily dose of ribavirin. Previous s...

  9. Distinct isoforms of ADPglucose pyrophosphatase and ADPglucose pyrophosphorylase occur in the suspension-cultured cells of sycamore (Acer pseudoplatanus L.).

    Science.gov (United States)

    Baroja-Fernández, E; Zandueta-Criado, A; Rodríguez-López, M; Akazawa, T; Pozueta-Romero, J

    2000-09-01

    The intracellular localizations of ADPglucose pyrophosphatase (AGPPase) and ADPglucose pyrophosphorylase (AGPase) have been studied using protoplasts prepared from suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Subcellular fractionation studies revealed that all the AGPPase present in the protoplasts is associated with amyloplasts, whereas more than 60% of AGPase is in the extraplastidial compartment. Immunoblots of amyloplast- and extraplastid-enriched extracts further confirmed that AGPase is located mainly outside the amyloplast. Experiments carried out to identify possible different isoforms of AGPPase in the amyloplast revealed the presence of soluble and starch granule-bound isoforms. We thus propose that ADPglucose levels linked to starch biosynthesis in sycamore cells are controlled by enzymatic reactions catalyzing the synthesis and breakdown of ADPglucose, which take place both inside and outside the amyloplast.

  10. Characterization and solubilization of nucleotide-specific, Mg/sup 2 +/-ATPase and Mg/sup 2 +/-pyrophosphatase of tonoplast

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.J.; Mulready, P.

    1983-01-01

    Nucleotide-specific, Mg/sup 2 +/-dependent ATPase and Mg/sup 2 +/-dependent pyrophosphatase were recovered with purified tonoplast obtained from isolated Tulipa petal vacuoles. Relative Mg/sup 2 +/-dependent hydrolysis of ATP, GTP and pyrophosphate, the only substrates hydrolyzed to a substantial degree, was 1.0, 0.3, and 0.6, respectively. Tonoplast ATPase required Mg/sup 2 +/, and essentially no Mg/sup 2 +/-dependent or Mg/sup 2 +/-independent p-nitrophenylphosphatase (which was associated with intact vacuoles) occurred with the membrane. Tonoplast ATPase was stimulated 10 to 30% by KCl, but was little effected by other cations (other than NH/sub 4//sup +/) or anions. No activity was observed with CaATP as substrate. The enzyme was cold stable and was inhibited by DCCD and Dio-9, but not by oligomycin. Its pH optimum was 7.0 and its specific activity was about 50 ..mu..mol P/sub i//mg protein per h at 37/sup 0/C. Properties of membrane-bound and Polidocanol (polyoxyethylene ether, 9 lauryl ether) solubilized enzyme were similar. Reduced activity of solubilized enzyme was partially restored with phospholipids. Tonoplast ATPase appears to be an integral membrane component which requires phospholipids for maximal activity. Tonoplast Mg/sup 2 +/-pyrophosphatase had a pH optimum of greater than or equal to 8.5, was stimulated 2.5-fold by 50 mM KCl, and was largely lost upon detergent treatment. Properties of tonoplast ATPase observed are consistent with the characteristics of proton transport exhibited by isolated, intact Tulipa vacuoles. These observations suggest that tonoplast ATPase functions in proton transport. 34 references, 7 figures, 6 tables.

  11. Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast.

    Science.gov (United States)

    Hernández, Agustín; Herrera-Palau, Rosana; Madroñal, Juan M; Albi, Tomás; López-Lluch, Guillermo; Perez-Castiñeira, José R; Navas, Plácido; Valverde, Federico; Serrano, Aurelio

    2016-01-01

    Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

  12. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, Mika K.; Lehtiö, Lari [Institute of Biotechnology, University of Helsinki, PO Box 65, FIN-00014, Helsinki (Finland); Rajagopal, Lakshmi; Rubens, Craig E. [Division of Infectious Disease, Children’s Hospital and Regional Medical Center, Seattle, Washington 98105 (United States); Goldman, Adrian, E-mail: adrian.goldman@helsinki.fi [Institute of Biotechnology, University of Helsinki, PO Box 65, FIN-00014, Helsinki (Finland)

    2006-09-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.

  13. A Soluble Pyrophosphatase Is Essential to Oogenesis and Is Required for Polyphosphate Metabolism in the Red Flour Beetle (Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Klébea Carvalho

    2015-03-01

    Full Text Available Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum. A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA, and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis.

  14. A Soluble Pyrophosphatase Is Essential to Oogenesis and Is Required for Polyphosphate Metabolism in the Red Flour Beetle (Tribolium castaneum)

    Science.gov (United States)

    Carvalho, Klébea; Ribeiro, Lupis; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Souza-Menezes, Jackson; Logullo, Carlos; Nunes da Fonseca, Rodrigo; Campos, Eldo

    2015-01-01

    Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum) A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA), and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis. PMID:25811926

  15. Molecular cloning and chromosomal assignment of the human brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2)

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Hiroyuki; Soma, Osamu; Goji, Junko [Kobe Univ. School of Medicine (Japan)] [and others

    1995-11-20

    Phosphodiesterase I/nucleotide pyrophosphatase is a widely expressed membrane-bound enzyme that cleaves diester bonds of a variety of substrates. We have cloned brain-type cDNA for this enzyme from rat brain and designated it PD-I{alpha}. In this study we have isolated cDNA and genomic DNA encoding human PD-I{alpha}. Human PD-I{alpha} cDNA, designated PDNP2 in HGMW nomenclature, has a 2589-nucleotide open reading frame encoding a polypeptide of 863 amino acids with a calculated M{sub r} of 99,034. Northern blot analysis revealed that human PD-I{alpha} transcript was present in brain, lung, placenta, and kidney. The database analysis showed that human PD-I{alpha} was identical with human autotaxin (ATX), a novel tumor motility-stimulating factor, except that human PD-I{alpha} lacks 156 nucleotides and 52 amino acids of human ATX. Human PD-I{alpha} and human ATX are likely to be alternative splicing products from the same gene. The 5{prime} region of the human PDNP2 gene contains four putative binding sites of transcription factor Sp1 without typical TATA or CAAT boxes, and there is a potential octamer binding motif in intron 2. From the results of fluorescence in situ hybridization, the human PDNP2 gene is located at chromosome 8q24.1. 17 refs., 3 figs.

  16. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene.

    Science.gov (United States)

    Kumar, Tanweer; Uzma; Khan, Muhammad Ramzan; Abbas, Zaheer; Ali, Ghulam Muhammad

    2014-03-01

    Sugarcane plant is a glycophyte, hence its growth and sucrose contents are severely affected by drought and salinity stresses. Bioengineering approaches offer a plausible and rapid solution to mitigate these losses. Therefore for genetic improvement of sugarcane against these stresses, the present study was conceived to transform Arabidopsis Vacuolar Pyrophosphatase (AVP1) gene--confers tolerance against drought and salinity--into sugarcane through Agrobacterium. For this purpose, highly regenerable apical buds of sugarcane variety CP77-400 were used as explants. EHA105 strain of Agrobacterium harboring pGreen0029 vector containing AVP1 gene driven under 35SCaMV promoter was employed for transformation. The key factors studied include application of acetosyringone, cefotaxime, kanamycin, and co-cultivation period for successful transformation. Maximum regeneration frequency of 77.5 % was achieved on MS media containing 1 mg/l BAP, 1 mg/l Kn, 1 mg/l GA₃, 0.25 mg/l NAA, 50 μM acetosyringone, 500 mg/l cefotaxime, and 150 mg/l kanamycin on 3 days of co-cultivation. The results revealed that apical buds are distinctive viable tissues for sugarcane transformation and regeneration to produce a large number of CP77-400 transgenic plants in shorter period of time without intervening mosaics and chimeras. The AVP1 transcripts expression in transgenic lines at various levels was detected by RT-PCR. Longer and profuse root system was observed in transgenic plants in comparison with control plants. Concomitantly, only transgenic plants were able to withstand higher NaCl salt stress as well as scarcity of water thus, showing tolerance against salinity and drought stresses.

  17. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria.

    Science.gov (United States)

    Anashkin, Viktor A; Salminen, Anu; Tuominen, Heidi K; Orlov, Victor N; Lahti, Reijo; Baykov, Alexander A

    2015-11-13

    Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P(1),P(n)-diadenosine 5'-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ~10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Cystathionine β-synthase (CBS) domains confer multiple forms of Mg2+-dependent cooperativity to family II pyrophosphatases.

    Science.gov (United States)

    Salminen, Anu; Anashkin, Viktor A; Lahti, Matti; Tuominen, Heidi K; Lahti, Reijo; Baykov, Alexander A

    2014-08-15

    Regulated family II pyrophosphatases (CBS-PPases) contain a nucleotide-binding insert comprising a pair of cystathionine β-synthase (CBS) domains, termed a Bateman module. By binding with high affinity to the CBS domains, AMP and ADP usually inhibit the enzyme, whereas ATP activates it. Here, we demonstrate that AMP, ADP, and ATP bind in a positively cooperative manner to CBS-PPases from four bacteria: Desulfitobacterium hafniense, Clostridium novyi, Clostridium perfringens, and Eggerthella lenta. Enzyme interaction with substrate as characterized by the Michaelis constant (Km) also exhibited positive catalytic cooperativity that decreased in magnitude upon nucleotide binding. The degree of both types of cooperativity increased with increasing concentration of the cofactor Mg(2+) except for the C. novyi PPase where Mg(2+) produced the opposite effect on kinetic cooperativity. Further exceptions from these general rules were ADP binding to C. novyi PPase and AMP binding to E. lenta PPase, neither of which had any effect on activity. A genetically engineered deletion variant of D. hafniense PPase lacking the regulatory insert was fully active but differed from the wild-type enzyme in that it was insensitive to nucleotides and bound substrate non-cooperatively and with a smaller Km value. These results indicate that the regulatory insert acts as an internal inhibitor and confers dual positive cooperativity to CBS domain-containing PPases, making them highly sensitive regulators of the PPi level in response to the changes in cell energy status that control adenine nucleotide distribution. These regulatory features may be common among other CBS domain-containing proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Acidosis is a key regulator of osteoblast ecto-nucleotidase pyrophosphatase/phosphodiesterase 1 (NPP1) expression and activity.

    Science.gov (United States)

    Orriss, Isabel R; Key, Michelle L; Hajjawi, Mark O R; Millán, José L; Arnett, Timothy R

    2015-12-01

    Previous work has shown that acidosis prevents bone nodule formation by osteoblasts in vitro by inhibiting mineralisation of the collagenous matrix. The ratio of phosphate (Pi ) to pyrophosphate (PPi ) in the bone microenvironment is a fundamental regulator of bone mineralisation. Both Pi and PPi , a potent inhibitor of mineralisation, are generated from extracellular nucleotides by the actions of ecto-nucleotidases. This study investigated the expression and activity of ecto-nucleotidases by osteoblasts under normal and acid conditions. We found that osteoblasts express mRNA for a number of ecto-nucleotidases including NTPdase 1-6 (ecto-nucleoside triphosphate diphosphohydrolase) and NPP1-3 (ecto-nucleotide pyrophosphatase/phosphodiesterase). The rank order of mRNA expression in differentiating rat osteoblasts (day 7) was Enpp1 > NTPdase 4 > NTPdase 6 > NTPdase 5 >  alkaline phosphatase > ecto-5-nucleotidase > Enpp3 > NTPdase 1 > NTPdase 3 > Enpp2 > NTPdase 2. Acidosis (pH 6.9) upregulated NPP1 mRNA (2.8-fold) and protein expression at all stages of osteoblast differentiation compared to physiological pH (pH 7.4); expression of other ecto-nucleotidases was unaffected. Furthermore, total NPP activity was increased up to 53% in osteoblasts cultured in acid conditions (P acidosis. Further studies showed that mineralised bone formation by osteoblasts cultured from NPP1 knockout mice was increased compared with wildtypes (2.5-fold, P acidosis. These results indicate that increased NPP1 expression and activity might contribute to the decreased mineralisation observed when osteoblasts are exposed to acid conditions. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  20. Vacuolar H+-translocating inorganic pyrophosphatase (Vpp1) marks partial aleurone cell fate in cereal endosperm development.

    Science.gov (United States)

    Wisniewski, Jean-Pierre; Rogowsky, Peter M

    2004-10-01

    Cereal endosperm is a model system for cell fate determination in plants. In wild-type plants the outermost endosperm cells adopt aleurone cell fate, while all underlying cells display starchy endosperm cell fate. Mutant analysis showed that cell fate is determined by position rather than lineage. To further characterise the precise cell fate of the outermost cells, we performed a differential screen and isolated the novel marker gene Vpp1 . It encodes a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase) and is mainly expressed in kernels, leaves and tassels. In kernels, its expression is restricted to the aleurone layer with the maximum of expression shifting from the adaxial to the abaxial side during early stages. Together with three other marker genes Vpp1 was then used to analyse the cell fate of the outermost cells in Dap3 , Dap7 , cr4 and dek1 mutants, all of which have aberrant aleurone layers. In the Dap3 and Dap7 mutants the Vpp1 and Ltp2 markers but not the A1 and Zein markers were expressed in patches without aleurone indicating that the outermost cells had some but not all features of aleurone cells and did not simply adopt starchy endosperm cell fate. A similar result was obtained in the cr4 mutant, although Ltp2 expression was less generalised. In other Dap7 patches characterised by multiple aleurone-like cell layers the expression of Vpp1 and Ltp2 confirmed the aleurone cell fate of the cells in the additional cell layers. The analysis of dek1 mutants confirmed the starchy endosperm cell fate of the majority but not all outermost cells. Based on these data we propose a model suggesting a stepwise commitment to aleurone cell fate. Sequential steps are marked by the expression of Vpp1 , the expression of Ltp2 , the acquisition of a regular shape and thick walls and finally pigmentation coupled with A1 expression.

  1. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    Science.gov (United States)

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (Ptomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

  2. The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis.

    Science.gov (United States)

    Deka, Ranjit K; Brautigam, Chad A; Liu, Wei Z; Tomchick, Diana R; Norgard, Michael V

    2013-04-19

    Treponema pallidum, an obligate parasite of humans and the causative agent of syphilis, has evolved the capacity to exploit host-derived metabolites for its survival. Flavin-containing compounds are essential cofactors that are required for metabolic processes in all living organisms, and riboflavin is a direct precursor of the cofactors FMN and FAD. Unlike many pathogenic bacteria, Treponema pallidum cannot synthesize riboflavin; we recently described a flavin-uptake mechanism composed of an ABC-type transporter. However, there is a paucity of information about flavin utilization in bacterial periplasms. Using a discovery-driven approach, we have identified the TP0796 lipoprotein as a previously uncharacterized Mg(2+)-dependent FAD pyrophosphatase within the ApbE superfamily. TP0796 probably plays a central role in flavin turnover by hydrolyzing exogenously acquired FAD, yielding AMP and FMN. Biochemical and structural investigations revealed that the enzyme has a unique bimetal Mg(2+) catalytic center. Furthermore, the pyrophosphatase activity is product-inhibited by AMP, indicating a possible role for this molecule in modulating FMN and FAD levels in the treponemal periplasm. The ApbE superfamily was previously thought to be involved in thiamine biosynthesis, but our characterization of TP0796 prompts a renaming of this superfamily as a periplasmic flavin-trafficking protein (Ftp). TP0796 is the first structurally and biochemically characterized FAD pyrophosphate enzyme in bacteria. This new paradigm for a bacterial flavin utilization pathway may prove to be useful for future inhibitor design.

  3. Cloning of a Vacuolar H+-pyrophosphatase Gene from the Halophyte Suaeda corniculata whose Heterologous Overexpression Improves Salt,Saline-alkali and Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Liang Liu; Ying Wang; Nan Wana; Yuan-Yuan Dong; Xiu-Duo Fan; Xiu-Ming Liu; Jing Yang

    2011-01-01

    Salt,saline-alkali conditions,and drought are major environmental factors limiting plant growth and productivity.The vacuolar H+-translocating inorganic pyrophosphatase (V-H+-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells.Expression of V-H+-PPase increases in plants under a number of abiotic stresses,and is thought to have an important role in adaptation to abiotic stress.In this work,we report the isolation and characterization of the gene,ScVP,encoding a vacuolar inorganic pyrophosphatase (V-H+-PPase) from the halophyte,Suaeda corniculata.Semiquantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots,stems and leaves under treatment with salt,saline-alkali and drought.Compared with wild-type (WT) Arabidopsis,transgenic plants overexpressing ScVP accumulated more Na+ in leaves and roots,and showed increased tolerance to high salinity,saline-alkali and drought stresses.The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses.The root length of transgenic plants under salt stress was longer than that of WT plants.Furthermore,the rate of water loss during drought stress was higher in WT than in transgenic plants.Collectively,these results indicate that ScVP plays an important role in plant tolerance to salt,saline-alkali and drought stress.

  4. Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus.

    Science.gov (United States)

    Gamboa, M C; Baltierra, F; Leon, G; Krauskopf, E

    2013-12-01

    Vacuolar solute accumulation has been shown to be a mechanism by which plants are capable of increasing drought and salt tolerance. The exposure of plants to NaCl induces H+ transport into the vacuole by specialized pumps. One of them corresponds to the vacuolar H+-pyrophosphatase, which generates a H+ gradient across the vacuolar membrane. In our laboratory we isolated the first cDNA sequence of a vacuolar pyrophosphatase type I (EVP1) from Eucalyptus globulus. Using real-time PCR we confirmed that EVP1 participates in Eucalyptus plants' response to drought and salt stress through an ABA independent pathway. Additionally, the overexpression of EVP1 in transgenic Arabidopsis resulted in an enhancement of drought and salt tolerance. Interestingly we established that the transgenic plants had a higher number of root hairs, which may have a positive effect on the plant's response to drought and salt stress. These results suggest that EVP1 plays an active role in abiotic stress tolerance in E. globulus, and that it may be potentially used to enhance drought and stress tolerance of plants.

  5. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    Directory of Open Access Journals (Sweden)

    Valerio Alejandro

    2011-10-01

    Full Text Available Abstract Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya. Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA. Conclusion The importance of the V-H+PPase function and the

  6. cDNA Cloning of a Vacuolar H+-Pyrophosphatase and Its Expression in Hordeum brevisubulatum (Trin.) Link in Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    L(U) Shi-you; JING Yu-xiang; PANG Xiao-bin; ZHAO Hua-yan; MA Lan-qing; LI Yan-fang

    2005-01-01

    A cDNA clone encoding a vacuolar H+-pyrophosphatase (V-H+-PPase) was isolated from Hordeum brevisubulatum (Trin.) Link by using RACE method. Sequence analysis revealed that HbVP1 contained 2 319 nucleotides of open reading frame (ORF) and 420 nucleotides of 3'-untranslated region. Its encoding protein consisted of 773 amino acid residues,which includes 14 transmembrane helices. The predicated molecular mass is 80.4 kDa with pI of 4.90. The V-H+-PPases in higher plants shared low identity (40-55%) with those of protozoa, marine alga and archaebacteria. HbVP1 transcripts accumulated abundantly in roots, shoots and seeds, and it was also strongly induced by salt treatment.

  7. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.

    Science.gov (United States)

    Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping

    2016-01-01

    A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.

  8. Presence of an isoform of H+-pyrophosphatase located in the alveolar sacs of a scuticociliate parasite of turbot: physiological consequences.

    Science.gov (United States)

    Mallo, Natalia; Lamas, Jesús; Defelipe, Ana-Paula; Decastro, Maria-Eugenia; Sueiro, Rosa-Ana; Leiro, José-Manuel

    2016-04-01

    H+-pyrophosphatases (H+-PPases) are integral membrane proteins that couple pyrophosphate energy to an electrochemical gradient across biological membranes and promote the acidification of cellular compartments. Eukaryotic organisms, essentially plants and protozoan parasites, contain various types of H+-PPases associated with vacuoles, plasma membrane and acidic Ca+2 storage organelles called acidocalcisomes. We used Lysotracker Red DND-99 staining to identify two acidic cellular compartments in trophozoites of the marine scuticociliate parasite Philasterides dicentrarchi: the phagocytic vacuoles and the alveolar sacs. The membranes of these compartments also contain H+-PPase, which may promote acidification of these cell structures. We also demonstrated for the first time that the P. dicentrarchi H+-PPase has two isoforms: H+-PPase 1 and 2. Isoform 2, which is probably generated by splicing, is located in the membranes of the alveolar sacs and has an amino acid motif recognized by the H+-PPase-specific antibody PABHK. The amino acid sequences of different isolates of this ciliate are highly conserved. Gene and protein expression in this isoform are significantly regulated by variations in salinity, indicating a possible physiological role of this enzyme and the alveolar sacs in osmoregulation and salt tolerance in P. dicentrarchi.

  9. Crystal structures of the CBS and DRTGG domains of the regulatory region of Clostridiumperfringens pyrophosphatase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate.

    Science.gov (United States)

    Tuominen, H; Salminen, A; Oksanen, E; Jämsen, J; Heikkilä, O; Lehtiö, L; Magretova, N N; Goldman, A; Baykov, A A; Lahti, R

    2010-05-07

    Nucleotide-binding cystathionine beta-synthase (CBS) domains serve as regulatory units in numerous proteins distributed in all kingdoms of life. However, the underlying regulatory mechanisms remain to be established. Recently, we described a subfamily of CBS domain-containing pyrophosphatases (PPases) within family II PPases. Here, we express a novel CBS-PPase from Clostridium perfringens (CPE2055) and show that the enzyme is inhibited by AMP and activated by a novel effector, diadenosine 5',5-P1,P4-tetraphosphate (AP(4)A). The structures of the AMP and AP(4)A complexes of the regulatory region of C. perfringens PPase (cpCBS), comprising a pair of CBS domains interlinked by a DRTGG domain, were determined at 2.3 A resolution using X-ray crystallography. The structures obtained are the first structures of a DRTGG domain as part of a larger protein structure. The AMP complex contains two AMP molecules per cpCBS dimer, each bound to a single monomer, whereas in the activator-bound complex, one AP(4)A molecule bridges two monomers. In the nucleotide-bound structures, activator binding induces significant opening of the CBS domain interface, compared with the inhibitor complex. These results provide structural insight into the mechanism of CBS-PPase regulation by nucleotides. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-05-09

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.

  11. Contribution of PPi-Hydrolyzing Function of Vacuolar H(+)-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes.

    Science.gov (United States)

    Asaoka, Mariko Mariko Asaoka; Segami, Shoji; Ferjani, Ali; Maeshima, Masayoshi

    2016-01-01

    The vacuolar-type H(+)-pyrophosphatase (H(+)-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H(+)-PPase improves growth in various plant species, and loss-of-function mutants (fugu5s) of H(+)-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiological significance of this important enzyme, we newly generated three varieties of H(+)-PPase overexpressing lines with different levels of activity that we analyzed together with the loss-of-function mutant fugu5-3. The H(+)-PPase overexpressors exhibited enhanced activity of H(+)-PPase during vegetative growth, but no change in the activity of vacuolar H(+)-ATPase. Overexpressors with high enzymatic activity grew more vigorously with fresh weight increased by more than 24 and 44%, compared to the wild type and fugu5-3, respectively. Consistently, the overexpressors had larger rosette leaves and nearly 30% more cells in leaves than the wild type. When uncoupling mutated variants of H(+)-PPase, that could hydrolyze PPi but could not translocate protons, were introduced into the fugu5-3 mutant background, shoot growth defects recovered to the same levels as when a normal H(+)-PPase was introduced. Taken together, our findings clearly demonstrate that additional expression of H(+)-PPase improves plant growth by increasing cell number, predominantly as a consequence of the PPi-hydrolyzing activity of the enzyme.

  12. 沙田柚无机焦磷酸酶基因的 cDNA 克隆及序列分析%Cloning and sequence analysis of inorganic pyrophosphatase gene from Citrus grandis var.shatianyu

    Institute of Scientific and Technical Information of China (English)

    秦新民; 万珊; 李惠敏; 覃屏生; 张渝

    2015-01-01

    植物自交不亲和性是植物生殖过程中普遍存在的一种现象,是植物特异性识别并拒绝自身花粉或亲缘关系很相近的花粉的一种遗传机制。无机焦磷酸酶(inorganic pyrophosphatase,IPPase)在植物生长发育方面起重要作用。该研究根据沙田柚花柱消减文库中 EST 序列(无机焦磷酸酶基因内部片段),设计了2对特异引物5′-GSP1,5′-nGSP1,3′-GSP2 and 3′-nGSP2,通过 SMART-RACE PCR 技术从所构建的沙田柚花柱抑制性消减文库中克隆了沙田柚无机焦磷酸酶基因的 cDNA 全长序列,利用 Blastn、DNAman 和 Expasy 软件对所克隆的基因进行同源性分析,以及基因编码的氨基酸的分子量、等电点、疏水性等理化性质分析。结果表明:IPPase 基因 cDNA 全长为1136 bp(GenBank 登录号为 KF990474),开放阅读框(ORF)全长为654 bp,共编码217个氨基酸,包括170 bp 5′UTR 和312 bp 的3′UTR;编码的蛋白质的分子量为24.4 kDa,等电点为5.96;蛋白结构域分析显示沙田柚 IPPase 与焦磷酸酶具有相同的保守结构域;对沙田柚 IPPase 蛋白质序列进行疏水性分析,结果表明沙田柚 IPPase 基因编码的肽链中疏水性最大值约为3.21,最小值约为-2.98,属于亲水性蛋白,无跨膜区域;Blastn 搜索的结果显示,沙田柚 I P Pase 基因序列与多种植物的 I P P 基因高度同源;序列分析表明,沙田柚 I P Pase 基因核苷酸的同源性与毛果杨(Populus trichocarpa )和橡胶树(Hevea bra-siliensis )I P Pase 基因均为87%;氨基酸序列与克莱门柚(Citrus clementina )无机焦磷酸酶完全一致。该研究结果可为深入研究无机焦磷酸酶在沙田柚自交不亲和中的作用机理提供基础。%Self-incompatibility (SI)is the prevalence of phenomenon in the process of plant reproduction,it is an in-traspecific reproductive barrier adopted by angiosperms that allows the pistil to distinguish between self (genetically

  13. Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought.

    Science.gov (United States)

    Li, Xiaojuan; Guo, Chengjin; Gu, Juntao; Duan, Weiwei; Zhao, Miao; Ma, Chunying; Du, Xiaoming; Lu, Wenjing; Xiao, Kai

    2014-02-01

    Establishing crop cultivars with strong tolerance to P and N deprivation, high salinity, and drought is an effective way to improve crop yield and promote sustainable agriculture worldwide. A vacuolar H+-pyrophosphatase (V-H+-PPase) gene in wheat (TaVP) was functionally characterized in this study. TaVP cDNA is 2586-bp long and encodes a 775-amino-acid polypeptide that contains 10 conserved membrane-spanning domains. Transcription of TaVP was upregulated by inorganic phosphate (Pi) and N deprivation, high salinity, and drought. Transgene analysis revealed that TaVP overexpression improved plant growth under normal conditions and specifically under Pi and N deprivation stresses, high salinity, and drought. The improvement of growth of the transgenic plants was found to be closely related to elevated V-H+-PPase activities in their tonoplasts and enlarged root systems, which possibly resulted from elevated expression of auxin transport-associated genes. TaVP-overexpressing plants showed high dry mass, photosynthetic efficiencies, antioxidant enzyme activities, and P, N, and soluble carbohydrate concentrations under various growth conditions, particularly under the stress conditions. The transcription of phosphate and nitrate transporter genes was not altered in TaVP-overexpressing plants compared with the wild type, suggesting that high P and N concentrations regulated by TaVP were caused by increased root absorption area instead of alteration of Pi and NO3- acquisition kinetics. TaVP is important in the tolerance of multiple stresses and can serve as a useful genetic resource to improve plant P- and N-use efficiencies and to increase tolerance to high salinity and drought.

  14. Mutational analysis of residues in the regulatory CBS domains of Moorella thermoacetica pyrophosphatase corresponding to disease-related residues of human proteins.

    Science.gov (United States)

    Jämsen, Joonas; Tuominen, Heidi; Baykov, Alexander A; Lahti, Reijo

    2011-02-01

    mtCBS-PPase [CBS (cystathionine β-synthase) domain-containing pyrophosphatase from Moorella thermoacetica] contains a pair of CBS domains that strongly bind adenine nucleotides, thereby regulating enzyme activity. Eight residues associated with the CBS domains of mtCBS-PPase were screened to explore possible associations with regulation of enzyme activity. The majority of the substitutions (V99A, R168A, Y169A, Y169F, Y188A and H189A) enhanced the catalytic activity of mtCBS-PPase, two substitutions (R170A and R187G) decreased activity, and one substitution (K100G) had no effect. AMP-binding affinity was markedly decreased in the V99A, R168A and Y169A mutant proteins, and elevated in the R187G and H189A mutant proteins. Remarkably, the R168A and Y169A substitutions changed the effect of AMP from inhibition to activation. The stoichiometry of AMP binding increased from one to two AMP molecules per CBS domain pair in the Y169F, R170A, R187G and Y188A variants. The ADP-binding affinity decreased in three and increased in four mutant proteins. These findings identify residues determining the strength and selectivity of nucleotide binding, as well as the direction (inhibition or activation) of the subsequent effect. The data suggest that mutations in human CBS domain-containing proteins can be translated into a bacterial context. Furthermore, our data support the hypothesis that the CBS domains act as an 'internal inhibitor' of mtCBS-PPase.

  15. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Evidence for the presence of a FAD pyrophosphatase and a FMN phosphohydrolase in yeast mitochondria: a possible role in flavin homeostasis.

    Science.gov (United States)

    Pallotta, Maria Luigia

    2011-10-01

    Despite the crucial roles of flavin cofactors in metabolism, we know little about the enzymes responsible for the turnover of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) and their subcellular localization. The mechanism by which mitochondria obtain their own flavin cofactors is an interesting point of investigation, because FMN and FAD are mainly located in mitochondria, where they act as redox cofactors of a number of dehydrogenases and oxidases that play a crucial function in both bioenergetics and cellular regulation. In this context, the capability of yeast mitochondria to metabolize externally added and endogenous FAD and FMN was investigated and use was made of purified and bioenergetically active mitochondria prepared starting from the Saccharomyces cerevisiae cell. To determine whether flavin metabolism can occur, the amounts of flavins in aliquots of neutralized perchloric extracts of both spheroplasts and mitochondria were measured by HPLC, and the competence of S. cerevisiae mitochondria to metabolize FAD and FMN was investigated both spectroscopically and via HPLC. FAD deadenylation and FMN dephosphorylation were studied with respect to dependence on substrate concentration, pH profile and inhibitor sensitivity. The existence of two novel mitochondrial FAD pyrophosphatase (diphosphatase) (EC 3.6.1.18) and FMN phosphohydrolase (EC 3.1.3.2) activities, which catalyse the reactions FAD + H₂O → FMN + AMP and FMN + H₂O → riboflavin + Pi respectively, is here shown by fractionation studies. Considering cytosolic riboflavin, FMN and FAD concentrations, as calculated by measuring both spheroplast and mitochondrial contents via HPLC, probably mitochondria play a major role in regulating the flavin pool in yeast and in relation to flavin homeostasis.

  17. QM/MM analysis suggests that Alkaline Phosphatase (AP) and Nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily

    Science.gov (United States)

    Hou, Guanhua

    2011-01-01

    Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proficiency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP−, in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parameterized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semi-quantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and coworkers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters

  18. Enhancing melting curve analysis for the discrimination of loop-mediated isothermal amplification products from four pathogenic molds: Use of inorganic pyrophosphatase and its effect in reducing the variance in melting temperature values.

    Science.gov (United States)

    Tone, Kazuya; Fujisaki, Ryuichi; Yamazaki, Takashi; Makimura, Koichi

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) is widely used for differentiating causative agents in infectious diseases. Melting curve analysis (MCA) in conjunction with the LAMP method reduces both the labor required to conduct an assay and contamination of the products. However, two factors influence the melting temperature (Tm) of LAMP products: an inconsistent concentration of Mg(2+) ion due to the precipitation of Mg2P2O7, and the guanine-cytosine (GC) content of the starting dumbbell-like structure. In this study, we investigated the influence of inorganic pyrophosphatase (PPase), an enzyme that inhibits the production of Mg2P2O7, on the Tm of LAMP products, and examined the correlation between the above factors and the Tm value using MCA. A set of LAMP primers that amplify the ribosomal DNA of the large subunit of Aspergillus fumigatus, Penicillium expansum, Penicillium marneffei, and Histoplasma capsulatum was designed, and the LAMP reaction was performed using serial concentrations of these fungal genomic DNAs as templates in the presence and absence of PPase. We compared the Tm values obtained from the PPase-free group and the PPase-containing group, and the relationship between the GC content of the theoretical starting dumbbell-like structure and the Tm values of the LAMP product from each fungus was analyzed. The range of Tm values obtained for several fungi overlapped in the PPase-free group. In contrast, in the PPase-containing group, the variance in Tm values was smaller and there was no overlap in the Tm values obtained for all fungi tested: the LAMP product of each fungus had a specific Tm value, and the average Tm value increased as the GC% of the starting dumbbell-like structure increased. The use of PPase therefore reduced the variance in the Tm value and allowed the differentiation of these pathogenic fungi using the MCA method.

  19. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS.

    Science.gov (United States)

    Kowalska, Joanna; Lewdorowicz, Magdalena; Zuberek, Joanna; Grudzien-Nogalska, Ewa; Bojarska, Elzbieta; Stepinski, Janusz; Rhoads, Robert E; Darzynkiewicz, Edward; Davis, Richard E; Jemielity, Jacek

    2008-06-01

    Analogs of the mRNA cap are widely employed to study processes involved in mRNA metabolism as well as being useful in biotechnology and medicinal applications. Here we describe synthesis of six dinucleotide cap analogs bearing a single phosphorothioate modification at either the alpha, beta, or gamma position of the 5',5'-triphosphate chain. Three of them were also modified with methyl groups at the 2'-O position of 7-methylguanosine to produce anti-reverse cap analogs (ARCAs). Due to the presence of stereogenic P centers in the phosphorothioate moieties, each analog was obtained as a mixture of two diastereomers, D1 and D2. The mixtures were resolved by RP HPLC, providing 12 different compounds. Fluorescence quenching experiments were employed to determine the association constant (K(AS)) for complexes of the new analogs with eIF4E. We found that phosphorothioate modifications generally stabilized the complex between eIF4E and the cap analog. The most strongly bound phosphorothioate analog (the D1 isomer of the beta-substituted analog m(7)Gpp(S)pG) was characterized by a K(AS) that was more than fourfold higher than that of its unmodified counterpart (m(7)GpppG). All analogs modified in the gamma position were resistant to hydrolysis by the scavenger decapping pyrophosphatase DcpS from both human and Caenorhabditis elegans sources. The absolute configurations of the diastereomers D1 and D2 of analogs modified at the alpha position (i.e., m(7)Gppp(S)G and m(2) (7,2'-O )Gppp(S)G) were established as S(P) and R(P) , respectively, using enzymatic digestion and correlation with the S(P) and R(P) diastereomers of guanosine 5'-O-(1-thiodiphosphate) (GDPalphaS). The analogs resistant to DcpS act as potent inhibitors of in vitro protein synthesis in rabbit reticulocyte lysates.

  20. Co-expression of vacuolar Na(+)/H(+) antiporter and H(+)-pyrophosphatase with an IRES-mediated dicistronic vector improves salinity tolerance and enhances potassium biofortification of tomato.

    Science.gov (United States)

    Gouiaa, Sandra; Khoudi, Habib

    2015-09-01

    Potassium (K) deficiency is a worldwide problem. Thus, the K biofortification of crops is needed to enhance human nutrition. Tomato represents an ideal candidate for such biofortification programs thanks to its widespread distribution and its easy growth on a commercial scale. However, although tomato is moderately tolerant to abiotic stresses, the crop losses due to salinity can be severe. In this study, we generated transgenic tomato plants over-expressing a Na(+)-K(+)/H(+) exchanger gene (TNHXS1), singly or with H(+)-pyrophosphatase (H(+)-PPiase) gene using a bicistronic construct. Transgenic tomato lines co-expressing both genes (LNV) significantly showed higher salinity tolerance than the wild-type (WT) plans or those expressing the TNHXS1 gene alone (LN). Indeed, under salt stress conditions, double transgenic plants produced higher biomass and retained more chlorophyll and catalase (CAT) activity. In addition, they showed earlier flowering and produced more fruits. To address K deficiencies in humans, an increase of 50% in K content of vegetable products was proposed. In this study, ion content analysis revealed that, under salt stress, fruits from double transgenic plants accumulated 5 times more potassium and 9 times less sodium than WT counterparts. Interestingly, the ionomic analysis of tomato fruits also revealed that LNV had a distinct profile compared to WT and to LN plants. Indeed, LNV fruits accumulated less Fe(2+), Ca(2+), Mg(2+) and Zn(2+), but more Mn(2+). This study demonstrates the effectiveness of bicistronic constructs as an important tool for the enhancement of biofortification and salt stress tolerance in crops.

  1. Prokaryotic Expression, Purification and Preliminary Analysis on Inorganic Pyrophosphatase from Rhodobacter sphaeroides%球形红细菌无机焦磷酸酶的原核表达、纯化及初步分析

    Institute of Scientific and Technical Information of China (English)

    黄园波; 王艳兴; 戴梦瑶; 马建辉; 孙梅好

    2013-01-01

    无机焦磷酸酶(inorganic pyrophosphatase,PPase)水解在许多生物大分子的生物合成过程中产生焦磷酸并释放能量,形成的热力学拉力可促进合成反应的进行.球形红细菌(Rhodobacter sphaeroides 2.4.1)无机焦磷酸酶(RsPPase)属于Ⅱ型可溶性焦磷酸酶,钴离子对于其活性的维持具有重要的功能,而其活性调控及其表达对细菌生长的影响尚未报道.研究克隆、原核表达纯化RsPPase.结果发现,钴离子会导致谷胱甘肽S-转移酶(glutathione sulfotransferase,GST)标签不能进行蛋白酶切,且融合蛋白GST-PPase水解焦磷酸的催化效率较低(Km/kcat=2.0×104 mol/(L·s));在球形红细菌胞内表达大肠杆菌焦磷酸酶(Km/kcat=5.5×107 mol/(L·s))没有影响细菌的生长,暗示球形红细菌胞内PPase活性足够高.通过对其结构的模拟推测,在钴离子存在的情况下为闭合构象,GST标签的存在可能影响PPase羧基端结构域的运动,而影响其结合底物和释放产物的能力;在钴离子不存在的情况下为开放构象,GST标签具有较大的自由度,可暴露蛋白酶识别位点酶切产生无标签RsPPase.

  2. Isolation and characterization of TgVP1, a type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii. The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor.

    Science.gov (United States)

    Drozdowicz, Yolanda M; Shaw, Michael; Nishi, Manami; Striepen, Boris; Liwinski, Helene A; Roos, David S; Rea, Philip A

    2003-01-10

    Here we report the isolation and characterization of a type I vacuolar-type H(+)-pyrophosphatase (V-PPase), TgVP1, from an apicomplexan, Toxoplasma gondii, a parasitic protist that is particularly amenable to molecular and genetic manipulation. The 816-amino acid TgVP1 polypeptide is 50% sequence-identical (65% similar) to the prototypical type I V-PPase from Arabidopsis thaliana, AVP1, and contains all the sequence motifs characteristic of this pump category. Unlike AVP1 and other known type I enzymes, however, TgVP1 contains a 74-residue N-terminal extension encompassing a 42-residue N-terminal signal peptide sequence, sufficient for targeting proteins to the secretory pathway of T. gondii. Providing that the coding sequence for the entire N-terminal extension is omitted from the plasmid, transformation of Saccharomyces cerevisiae with plasmid-borne TgVP1 yields a stable and functional translation product that is competent in aminomethylenediphosphonate (AMDP)-inhibitable K(+)-activated pyrophosphate (PP(i)) hydrolysis and PP(i)-energized H(+) translocation. Immunofluorescence microscopy of both free and intracellular T. gondii tachyzoites using purified universal V-PPase polyclonal antibodies reveals a punctate apical distribution for the enzyme. Equivalent studies of the tachyzoites during host cell invasion, by contrast, disclose a transverse radial distribution in which the V-PPase is associated with a collar-like structure that migrates along the length of the parasite in synchrony with and in close apposition to the penetration furrow. Although treatment of T. gondii with AMDP concentrations as high as 100 microm had no discernible effect on the efficiency of host cell invasion and integration, concentrations commensurate with the I(50) for the inhibition of TgVP1 activity in vitro (0.9 microm) do inhibit cell division and elicit nuclear enlargement concomitant with the inflation and eventual disintegration of acidocalcisome-like vesicular structures. A

  3. The Research Progress of H+-Pyrophosphatase-Mediated Enhancements on Plant Phosphorus Use%H+焦磷酸酶促进植物磷利用的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨玉梅; 张梦如; 罗著; 刘畅; 龚明; 邹竹荣

    2015-01-01

    植物的生长发育离不开磷这种大量营养元素,但其利用过程中仍旧存在几大主要问题:磷短缺、磷污染以及土壤有效磷含量低,而通过基因工程策略提高植物磷利用效率无疑是最有效的应对解决途径。其中,由植物质子焦磷酸酶(H+-PPase)介导的成效尤为突出,各种H+-PPase过表达转基因植株具有多方面且几乎一致的优异表型(包括耐低磷,耐盐,抗旱等),这可能与H+-PPase不同的细胞定位及其多功能性有关,并且涉及到质膜H+-ATPase的中间作用以及磷/糖的信号调控、代谢和转运。本文着重对H+-PPase与植物磷胁迫的内在关系、促进植物磷利用的研究成效及其可能的作用机理等方面进行综述,以期为H+-PPase在植物抗逆基因工程中发挥更大作用提供理论依据。%Phosphorus (Pi) is an essential macronutrient element for plant growth and development. However, Pi utilization in plants is still of several major limitations such as shortage of Pi reservoir, environmental pollution by soil Pi loss through leaching and runoff, and low content of absorbable Pi in soil. Accordingly, improvement on plant Pi use efficiency, mainly through the strategy of genetic engineering, has been well recognized as the most practical solution. Therein, a remarkable success mediated by plant H+-pyrophosphatase (H+-PPase) has been achieved, with multifarious meliorated traits (e.g. tolerances to salt, drought, and Pi deficiency) prevalently found in numerous transgenic plants. This outperformance is largely linked to the multifunction and different cellular locations of H+-PPase, and also correlated with the intermediate contribution of plasma membrane H+-ATPase, as well as the signalling&metabolism&transport of Pi and sugar. With a particular focus, this review summarized the current studies of H+-PPase on its major aspects such as the intrinsic relation with Pi stress, the facilitation on plant Pi

  4. Glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) metabolism computational network analysis between chimpanzee and human left cerebrum.

    Science.gov (United States)

    Sun, Lingjun; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Lin, Hong

    2011-12-01

    We identified significantly higher expression of the genes glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) from human left cerebrums versus chimpanzees. Yet the distinct low- and high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism networks between chimpanzee and human left cerebrum remain to be elucidated. Here, we constructed low- and high-expression activated and inhibited upstream and downstream AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network between chimpanzee and human left cerebrum in GEO data set by gene regulatory network inference method based on linear programming and decomposition procedure, under covering AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 pathway and matching metabolism enrichment analysis by CapitalBio MAS 3.0 integration of public databases, including Gene Ontology, KEGG, BioCarta, GenMapp, Intact, UniGene, OMIM, etc. Our results show that the AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network has more activated and less inhibited molecules in chimpanzee, but less activated and more inhibited in the human left cerebrum. We inferred stronger carbohydrate, glutathione and proteoglycan metabolism, ATPase activity, but weaker base excision repair, arachidonic acid and drug metabolism as a result of inducing cell growth in low-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of chimpanzee left cerebrum; whereas stronger lipid metabolism, amino acid catabolism, DNA repair but weaker inflammatory response, cell proliferation, glutathione and carbohydrate metabolism as a result of inducing cell differentiation in high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of human left cerebrum. Our inferences are consistent with recent reports and computational activation and inhibition gene number patterns, respectively.

  5. 菠萝叶片绿色组织与贮水组织液泡膜ATPase和焦磷酸酶特性%Characteristics of Tonoplast Adenosinetriphosphatase and Inorganic Py-rophosphatase in the Chlorenchyma and the Water Storage Parenchyma of Ananas comosus Leaves

    Institute of Scientific and Technical Information of China (English)

    陈立松; NOSEAkihiro; 等

    2002-01-01

    研究了景天酸代谢(CAM)植物菠萝叶片绿色组织与贮水组织液泡膜AT Pase和焦磷酸酶(PPase)特性.绿色组织有较高的ATPase和PPase活力.贮水组织(绿色组织 )ATPase和PPase活力的最佳温度分别为43和49℃(37和46℃).当温度小于最佳温度时,A TPase和PPase活力随着温度的上升而上升;而当温度大于最佳温度时,ATPase和PPase活力 随着温度的上升而下降.在(10~46℃)10~37℃的温度范围,绿色组织(PPase)ATPase活 力随着温度的上升而上升的速度大于贮水组织中(PPase)ATPase活力上升的速度,绿色组 织有(相对)较高的ATPase和PPase活力;但在(49~61℃)43~55℃的温度范围,贮水组织 中(PPase)ATPase活力随着温度的上升而下降的速度小于绿色组织中(PPase)ATPase活力 下降的速度,贮水组织有相对较高的ATPase和PPase活力.此外,贮水组织中这两种酶活力 的热稳定性强于绿色组织中这两种酶活力的热稳定性.对这两种酶活力的最佳pH和底物依赖性也进行了研究.%The characteristics of tonoplast adenosinetri hosphatase(ATPase) and inorganic pyrophosphatase(Ppase) in the chlorenchyma and the water storage parenchyma(WSP) of crassulacean acid metabolism(CAM) plant Ananas comosus(pineapple) leaves were investigated. The activities of tonoplas t ATPase and Ppase in the chlorenchyma were higher than those in the WSP. The op timum temperatures of tonoplast ATPase and Ppase activities in the WSP were 43℃ and 49℃, respectively and in the chlorenchyma, 37℃ and 46℃, respectively. Th e activities of tonoplast ATPase increased with temperature rise when the tempe ratures were less than their optimum temperatures and decreased when the tempera tures were higher than their optimum temperatures. The increase in tonoplast(Ppa se) ATPase activity in the chlorenchyma was faster than that in the WSP in the t emperature ranges of(10-46℃)10-37℃, and the chlorenchyma obviously had(relativ ely

  6. Porcine ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1/CD203a)

    DEFF Research Database (Denmark)

    Petersen, Cathrine Bie; Hillig, Ann-Britt Nygaard; Viuff, Birgitte;

    2007-01-01

    /phosphodiesterase 1 (NPP1/CD203a). The porcine NPP1/CD203a encoding gene was mapped to chromosome 1 using a radiation hybrid panel, and transcription was investigated by RT-PCR analysis of several tissues. The cDNA was cloned and introduced into COS7 cells resulting in expression of functionally active enzyme...... and verification of the specificity of an SWC9 reacting monoclonal antibody. The antibody was used for immunohistochemical examination of various porcine tissues. Most prominent expression of NPP1/CD203a was found in lung macrophages and liver sinusoids....

  7. Etopic expression of "Arabidopsis" H(+)-pyrophosphatase AVP1 enhances drought resistance in bottle gourd

    Science.gov (United States)

    Bottle gourd ("Lagenaria siceraria" Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the "Arabidopsis AVP1" gene that encodes a vacuolar H(+)-pyro...

  8. A vacuolar H(+)-pyrophosphatase differential activation and energy coupling integrate the responses of weeds and crops to drought stress.

    Science.gov (United States)

    Venancio, Josimara Barcelos; Catunda, Michelle Guedes; Ogliari, Juarez; Rima, Janaína Aparecida Hottz; Okorokova-Facanha, Anna Lvovna; Okorokov, Lev Alexandrovitich; Facanha, Arnoldo Rocha

    2014-06-01

    Cyperus rotundus L. is a C4 weed of large vegetative and reproductive vigor endowed with competitive advantages over most crop species mainly under adverse environmental conditions. Vacuole functions are critical for the mechanisms of drought resistance, and here the modulation of the primary system of vacuolar ion transport is investigated during a transient water stress imposed to this weed and to C4 crop species (Zea mays L.). The vacuolar H(+) pumps, the H(+)-ATPase and H(+)-PPiase, expression, activities and the energy coupling were spectrophotometrically investigated as key elements in the differential drought-resistance mechanisms developed by weeds and crops. In C. rotundus tonoplasts, ATP hydrolysis was more sensitive to drought than its coupled H(+) transport, which was in turn at least 3-folds faster than that mediated by the H(+)-PPiase. Its PPi hydrolysis was only slightly affected by severe water deficit, contrasting with the disruption induced in the PPi-dependent H(+)-gradient. This effect was antagonized by plant rehydration as the H(+)-PPiase activity was highly stimulated, reassuming a coupled PPi-driven H(+) pumping. Maize tonoplasts exhibited 2-4 times lower hydrolytic activities than that of C. rotundus, but were able to overactivate specifically PPi-dependent H(+) pumping in response to stress relief, resulting in an enhanced H(+)-pumps coupling efficiency. These results together with immunoanalysis revealed profiles consistent with pre- and post-translational changes occurring on the tonoplast H(+)-pumps, which differ between weeds and crops upon water deficit. The evidences highlight an unusual modulation of the H(+)-PPiase energy coupling as a key biochemical change related to environmental stresses adaptive capacity of plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Co-expression of tonoplast Cation/H(+) antiporter and H(+)-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions.

    Science.gov (United States)

    Bao, Ai-Ke; Du, Bao-Qiang; Touil, Leila; Kang, Peng; Wang, Qiang-Long; Wang, Suo-Min

    2016-03-01

    Salinity and drought are major environmental factors limiting the growth and productivity of alfalfa worldwide as this economically important legume forage is sensitive to these kinds of abiotic stress. In this study, transgenic alfalfa lines expressing both tonoplast NXH and H(+)-PPase genes, ZxNHX and ZxVP1-1 from the xerophyte Zygophyllum xanthoxylum L., were produced via Agrobacterium tumefaciens-mediated transformation. Compared with wild-type (WT) plants, transgenic alfalfa plants co-expressing ZxNHX and ZxVP1-1 grew better with greater plant height and dry mass under normal or stress conditions (NaCl or water-deficit) in the greenhouse. The growth performance of transgenic alfalfa plants was associated with more Na(+), K(+) and Ca(2+) accumulation in leaves and roots, as a result of co-expression of ZxNHX and ZxVP1-1. Cation accumulation contributed to maintaining intracellular ions homoeostasis and osmoregulation of plants and thus conferred higher leaf relative water content and greater photosynthesis capacity in transgenic plants compared to WT when subjected to NaCl or water-deficit stress. Furthermore, the transgenic alfalfa co-expressing ZxNHX and ZxVP1-1 also grew faster than WT plants under field conditions, and most importantly, exhibited enhanced photosynthesis capacity by maintaining higher net photosynthetic rate, stomatal conductance, and water-use efficiency than WT plants. Our results indicate that co-expression of tonoplast NHX and H(+)-PPase genes from a xerophyte significantly improved the growth of alfalfa, and enhanced its tolerance to high salinity and drought. This study laid a solid basis for reclaiming and restoring saline and arid marginal lands as well as improving forage yield in northern China.

  10. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances.

    Science.gov (United States)

    Li, Min; Yu, Chunmei; Wang, Yaoyi; Li, Wentao; Wang, Ying; Yang, Yun; Liu, Huihui; Li, Yujuan; Tan, Feng; Zhang, Jian

    2014-10-01

    Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na(+) and K(+), as well as the Na(+)/K(+) ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources.

  11. A Real-Time and Hands-On Research Course in Protein Purification and Characterization: Purification and Crystal Growth of Human Inosine Triphosphate Pyrophosphatase

    Science.gov (United States)

    Kreiling, Jodi L.; Brader, Kerry; Kolar, Carol; Borgstahl, Gloria E. O.

    2011-01-01

    A new lecture/laboratory course to offer advanced biochemical training for undergraduate and early graduate students has been developed in the Department of Chemistry at the University of Nebraska at Omaha. This unique course offers students an opportunity to work hands-on with modern instrumentation not normally found in a predominately…

  12. A Real-Time and Hands-On Research Course in Protein Purification and Characterization: Purification and Crystal Growth of Human Inosine Triphosphate Pyrophosphatase

    Science.gov (United States)

    Kreiling, Jodi L.; Brader, Kerry; Kolar, Carol; Borgstahl, Gloria E. O.

    2011-01-01

    A new lecture/laboratory course to offer advanced biochemical training for undergraduate and early graduate students has been developed in the Department of Chemistry at the University of Nebraska at Omaha. This unique course offers students an opportunity to work hands-on with modern instrumentation not normally found in a predominately…

  13. Sequence Classification: 521594 [

    Lifescience Database Archive (English)

    Full Text Available sine pentaphosphate phosphohydrolase.; Guanosine-5prime-triphosphate,3prime-diphosphate pyrophosphatase.; gu...anosine-5'-triphosphate,3'-diphosphate pyrophosphatase; pppGpp-5prime-phosphohydrolase. || http://www.ncbi.nlm.nih.gov/protein/51473490 ...

  14. Arabidopsis CDS blastp result: AK099120 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099120 J023036A18 At5g09650.1 inorganic pyrophosphatase family protein similar to SP|Q15181 Inorganic... pyrophosphatase (EC 3.6.1.1) (Pyrophosphate {Homo sapiens}; contains Pfam profile PF00719: inorganic pyrophosphatase 1e-86 ...

  15. Arabidopsis CDS blastp result: AK098996 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK098996 J013102B11 At5g09650.1 inorganic pyrophosphatase family protein similar to SP|Q15181 Inorganic... pyrophosphatase (EC 3.6.1.1) (Pyrophosphate {Homo sapiens}; contains Pfam profile PF00719: inorganic pyrophosphatase 9e-92 ...

  16. Arabidopsis CDS blastp result: AK060304 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060304 001-007-A07 At5g09650.1 inorganic pyrophosphatase family protein similar to SP|Q15181 Inorganic... pyrophosphatase (EC 3.6.1.1) (Pyrophosphate {Homo sapiens}; contains Pfam profile PF00719: inorganic pyrophosphatase 9e-92 ...

  17. Arabidopsis CDS blastp result: AK110681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110681 002-169-H04 At5g09650.1 inorganic pyrophosphatase family protein similar to SP|Q15181 Inorganic... pyrophosphatase (EC 3.6.1.1) (Pyrophosphate {Homo sapiens}; contains Pfam profile PF00719: inorganic pyrophosphatase 8e-63 ...

  18. Oligomerization and enzyme activity analysis on inorganic pyrophosphatase from Rhodobacter sphaeroides%球形红细菌无机焦磷酸酶的寡聚化及酶活性分析

    Institute of Scientific and Technical Information of China (English)

    陈果果; 孙梅好

    2016-01-01

    球形红细菌(Rhodobacter sphaeroides)是一种重要的微生物资源,其无机焦磷酸酶(PPase)属于Ⅱ型可溶性焦磷酸酶.通过原核表达和纯化,得到了正常型RsPPase和突变型RsPPasemono,进一步进行了寡聚化和酶活性分析.结果表明:突变型RsPPasemono为单聚体,在钴离子存在条件下会导致谷胱甘肽S-转移酶(glutathione sulfotransferase,GST)标签进行蛋白酶切,且去标签后的RsPPasemono催化效率较高(Kcat/Km(PPi)=12.64L·μmol-1·min-1),相对于RsPPase-GST提高了12倍;在无钴离子存在条件下仍能进行蛋白酶切,且保持催化效率(Kcat/Km(PPi) =0.34 L·μmol-1·min-1).

  19. NCBI nr-aa BLAST: CBRC-SCER-04-0003 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-SCER-04-0003 ref|ZP_01687887.1| V-type H(+)-translocating pyrophosphatase [Microscilla marina... ATCC 23134] gb|EAY31094.1| V-type H(+)-translocating pyrophosphatase [Microscilla marina ATCC 23134] ZP_01687887.1 2.4 28% ...

  20. Protein: MPB3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB3 ENPP7 ENPP7 Ectonucleotide pyrophosphatase/phosphodiesterase family member 7 Alkaline sphingomyelin... phosphodiesterase, Intestinal alkaline sphingomyelinase 9606 Homo sapiens Q6UWV6 339221 Q6UWV6 ...

  1. DISTRIBUTION OF ENZYMES CLEAVING PYRIDINE NUCLEOTIDES IN ANIMAL TISSUES

    Science.gov (United States)

    Jacobson, K. Bruce; Kaplan, Nathan O.

    1957-01-01

    1. The distribution of DPN and DPNH pyrophosphatases and DPNase in centrifugally prepared fractions of organs of several species of animals is reported. 2. A DPNH pyrophosphatase was found in the soluble fraction of pigeon and of rabbit liver. This enzyme did not split DPN but accounted for over 50 per cent of the DPNH pyrophosphatase activity of the whole homogenates. 3. All the organs tested, including the pigeon liver and rabbit liver, contained a microsomal pyrophosphatase that attacked both DPNH and DPN. This microsomal enzyme split DPNH faster than DPN in all cases. 4. DPN pyrophosphatase and DPNase activity were generally concentrated in the microsomal fraction of liver, of kidney, and of brain. 5. The DPNase of hamster liver was virtually inactive at pH 7.5 but was optimally active at pH 5.5. Considerable difference was found with respect to pH on the activity of DPNase from organs of different animals. 6. The inhibition of mitochondrial and microsomal DPNH oxidation by nicotinamide was noted during the course of these experiments. 7. The significance of some of the distribution patterns is discussed. PMID:13416309

  2. Disease: H00431 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available tion of the posterior longitudinal ligament of spine (OPLL) is an osteogenetic disorder of the spine found a...ts causes myelopathy in patients with OPLL. Genetic linkage studies revealed gene...s encoding collagens, nucleotide pyrophosphatase, and TGF-beta3 in association with susceptibility to the disea

  3. NCBI nr-aa BLAST: CBRC-DRER-18-0110 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-18-0110 ref|YP_001029450.1| hypothetical protein Mlab_0005 [Methanocorpus...culum labreanum Z] gb|ABN06183.1| V-type H(+)-translocating pyrophosphatase [Methanocorpusculum labreanum Z] YP_001029450.1 6e-04 26% ...

  4. Sequence Classification: 399123 [

    Lifescience Database Archive (English)

    Full Text Available TMB Non-TMH TMB TMB TMB Non-TMB >gi|15609834|ref|NP_217213.1| PROBABLE DEOXYURIDINE 5'-TRIP...HOSPHATE NUCLEOTIDOHYDROLASE DUT (DUTPASE) (DUTP PYROPHOSPHATASE) (DEOXYURIDINE 5'-TRIPHOSPHATASE) (...DUTP DIPHOSPHATASE) (DEOXYURIDINE-TRIPHOSPHATASE) || http://www.ncbi.nlm.nih.gov/protein/15609834 ...

  5. Sequence Classification: 389358 [

    Lifescience Database Archive (English)

    Full Text Available TMB Non-TMH TMB TMB TMB Non-TMB >gi|31793869|ref|NP_856362.1| PUTATIVE DEOXYURIDINE 5'-TRIP...HOSPHATE NUCLEOTIDOHYDROLASE DUT (DUTPASE) (DUTP PYROPHOSPHATASE) (DEOXYURIDINE 5'-TRIPHOSPHATASE) (...DUTP DIPHOSPHATASE) (DEOXYURIDINE-TRIPHOSPHATASE) || http://www.ncbi.nlm.nih.gov/protein/31793869 ...

  6. Radiation effects on rat testes. VIII. Kinetic properties of hydrolases following partial body gamma irradiation of rats.

    Science.gov (United States)

    Gupta, G S; Bawa, S R

    1975-05-01

    Kinetic properties such as Michaelis constant (Km), maximum velocity (Vmax), temperature coefficient (Q10) and energy of activation (Ea) for hydrolysis of adenosine-5'-phosphate at pH 9.5 and sodium pyrophosphate at pH 8.35 by normal and radiated testes supernatants have been described. Kinetic parameters are related to respective phosphohydrolases (phosphatases). (1) Km values for 5'nucleotidase and inorganic pyrophosphatase of normal testis were determined as 1.25 X 10(-3)M and 0.81 X 10(-3)M respectively; (II) Vmax correspond to 318 mug P/15 min and 430 mug P/15 min for 100 mg tissue respectively; (III) Q10 for 5 nucleotidase is 1.7 and for inorganic pyrophosphatase is 4.2 at a temperature 10-30degreesC; (IV) Ea for hydrolysis of AMP and sodium pyrophosphate were calculated by Arrhenius plots as 17000 and 9000 cal/mol. (V) Km values for irradiated enzymes are similar to the control values suggesting that the binding capacities of these enzymes with their substrates remain unaffected after radiation; (VI) Vmax for radiated enzymes correspond to a value of 500 mug P/100 mg tissue/15 min for 5'nucleotidase and 118 mug P/100 mug tissue/15 min for inorganic pyrophosphatase; (VII) 110 for 5'nucleotidase is 2.2 and inorganic pyrophosphatase 1.16 at 10-30degreesC; (VIII) Ea for irradiated 5'nucleotidase is comparable to those of normal rats whereas for inorganic pyrophosphatase Ea is moderately declined. The observed changes have been related to the different types of metabolic activity in germinal and nongerminal cells of testes.

  7. Structural basis for substrate discrimination and integrin binding by autotaxin

    OpenAIRE

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M. H. G.; van Meeteren, Laurens A.; Houben, Anna; Zeijl, Leonie van; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.

    2011-01-01

    Autotaxin (ATX) or ecto-nucleotide pyrophosphatase/phosphodiesterase-2 (ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemo-attractant for many cell types. ATX-LPA signaling has roles in various pathologies including tumour progression and inflammation. However, the molecular basis of substrate recognition and catalysis, and the mechanism of interaction with target cells, has been elusive. Here we present the crystal stru...

  8. Distribution and Characterization of Antigens Found in Subcellular Fractions of African Trypanosomes.

    Science.gov (United States)

    1979-08-01

    subcellular marker, we will compare the subcellular distribution of activity using two other substrates, inosine diphosphate and thiamine pyrophosphate, also...diphosphatase and its identity with thiamine pyrophosphatase. J. Biol. Chem. 243 2934-2942. -’/ t.~ i B6 .~ 4. jo 4 A IN ie %f I.., Ad~ ,de~M 1. ~A~1’ -. 44,t * ’j " *’ 7A-. lb. Ai

  9. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Javid-Majd, Farah; Yang, Dong [Department of Biochemistry and Biophysics, Texas A& M University, College Station, Texas 77843-2128 (United States); Ioerger, Thomas R. [Department of Computer Science, Texas A& M University, College Station, Texas 77843-2128 (United States); Sacchettini, James C., E-mail: sacchett@tamu.edu [Department of Biochemistry and Biophysics, Texas A& M University, College Station, Texas 77843-2128 (United States)

    2008-06-01

    The crystal structure of M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase, the second enzyme in the histidine-biosynthetic pathway, is presented. The structural and inferred functional relationships between M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase and other members of the nucleoside-triphosphate pyrophosphatase-fold family are described. Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 Å. The structure of the apoenzyme reveals that the protein is composed of five α-helices with connecting loops and is a member of the α-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between α-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.

  10. The exopolyphosphatase TbrPPX1 of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Freimoser Florian

    2011-01-01

    Full Text Available Abstract Background Exopolyphosphatases and pyrophosphatases play important but still incompletely understood roles in energy metabolism, and also in other aspects of cell biology such as osmoregulation or signal transduction. Earlier work has suggested that a human exopolyphosphatase, Prune, might exhibit cyclic nucleotide phosphodiesterase activity. Results The kinetoplastida, a large order of unicellular eukaryotes that contains many important pathogens such as Trypanosoma brucei (human sleeping sickness, Trypanosoma cruzi (Chagas disease or Leishmania ssp (several clinically dinstinct leishmaniases all contain several exo- and pyrophosphatases. The current study provides a systematic classification of these enzymes, which now allows to situate the information that is already available on some of these enzymes. It then analyses the exopolyphosphatase TbrPPX1 of T. brucei in detail, using RNA interference and genetic knockouts in an attempt to define its function, and immunofluorescence microscopy to study its subcellular localization. TbrPPX1 is an exopolyphosphatase that does hydrolyze pentasodium triphosphate, but not organic triphosphates such as ATP, pyrophosphate or long-chain polyphosphates. Finally, the study investigates the potential cyclic nucleotide phosphodiesterase activity of TbrPPX1. Conclusions All kinetoplastid genomes that are currently available contain genes for an exopolyphosphatase and two classes of pyrophosphatases, one associated with the acidocalcisomes and one cytoplasmic. TbrPPX1 represents the T. brucei exopolyphosphatase. It is located throughout the cytoplasm, and its genetic ablation does not produce a dramatic phenotype. Importantly, TbrPPX1 does not exhibit any cyclic nucleotide specific phosphodiesterase activity, which definitively eliminates it as an additional player in cAMP signalling of the kinetoplastida.

  11. The effects of carbon tetrachloride on rat liver microsomes during the first hour of poisoning in vivo, and the modifying actions of promethazine

    Science.gov (United States)

    Slater, T. F.; Sawyer, B. C.

    1969-01-01

    The effects of an oral administration of carbon tetrachloride on various liver microsomal and supernatant components were studied 1hr. and 2hr. after dosing. The modifications of such early changes resulting from a concomitant administration of promethazine together with the carbon tetrachloride were also investigated. The microsomal components studied were: cytochromes P-450 and b5; inorganic pyrophosphatase; NADH– and NADPH–cytochrome c reductases; NADH– and NADPH–neotetrazolium reductases; a lipid-peroxidation system associated with the oxidation of NADPH and stimulated by ADP and Fe2+. NAD– and NADP– DT-diaphorases were measured in the supernatant solution remaining after isolation of liver microsomes, and the distribution of RNA phosphorus between the microsomes and supernatant solution was also determined. Carbon tetrachloride produced a rapid fall in inorganic pyrophosphatase activity, a rather slower decrease in cytochrome P-450 content of the microsomes and small increases in the activities of NADH–cytochrome c reductase and neotetrazolium reductases. The activities of NADPH–cytochrome c reductase, the NADPH–ADP/Fe2+-linked lipid-peroxidation system, DT-diaphorases and the content of cytochrome b5 in the microsomes were unchanged. There was also a loss of RNA phosphorus from the microsomes into the supernatant solution. The RNA phosphorus redistribution, the decrease in inorganic pyrophosphatase and the increases in neotetrazolium reductase activities were at least partially prevented by a concomitant dosing with promethazine. However, the decrease in cytochrome P-450 was not affected by promethazine treatment. These early changes are discussed in terms of the liver necrosis produced by carbon tetrachloride and which is greatly retarded in its onset by the administration of promethazine. PMID:5767054

  12. THREE-DIMENSIONAL OBSERVATIONS ON THICK BIOLOGICAL SPECIMENS BY HIGH VOLTAGE ELECTRON MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Tetsuji Nagata

    2011-05-01

    Full Text Available Thick biological specimens prepared as whole mount cultured cells or thick sections from embedded tissues were stained with histochemical reactions, such as thiamine pyrophosphatase, glucose-6-phosphatase, cytochrome oxidase, acid phosphatase, DAB reactions and radioautography, to observe 3-D ultrastructures of cell organelles producing stereo-pairs by high voltage electron microscopy at accerelating voltages of 400-1000 kV. The organelles demonstrated were Golgi apparatus, endoplasmic reticulum, mitochondria, lysosomes, peroxisomes, pinocytotic vesicles and incorporations of radioactive compounds. As the results, those cell organelles were observed 3- dimensionally and the relative relationships between these organelles were demonstrated.

  13. Vacuolar proton pumps in malaria parasite cells.

    Science.gov (United States)

    Moriyama, Yoshinori; Hayashi, Mitsuko; Yatsushiro, Shouki; Yamamoto, Akitsugu

    2003-08-01

    The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite.

  14. Reference: 152 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n et al. 2005 Jan. Plant J. 41(1):117-24. Intracellular pH homeostasis is a prerequisite for biological processes and require...s the action of proton pumps. The vacuolar H(+)-ATPase (V-ATPase) is involved in regulating... pH in endomembrane compartments of all eukaryotic cells. In plants, there is an ...additional endomembrane proton pump, H(+)-pyrophosphatase (H(+)-PPase). However, the relative roles of the t...wo types of pumps in endomembrane acidification and energization of secondary active transport are unclear. Here

  15. Precise calibration of equilibrium oxygen isotope fractionations between dissolved phosphate and water from 3 to 37 °C

    Science.gov (United States)

    Chang, Sae Jung; Blake, Ruth E.

    2015-02-01

    The stable oxygen isotope composition of orthophosphate (δ18OPO4) is a widely used (paleo)temperature indicator and more recently, a useful tracer of phosphorus-cycling. In natural aqueous systems (e.g., oceans, rivers, soil/ground water) the largest reactive phosphorus pool is dissolved inorganic phosphate. Here, we present a new experimentally-determined equation for thermodynamic equilibrium O-isotope fractionations between dissolved phosphate and water, catalyzed by the enzyme inorganic pyrophosphatase (PPase) between 3 and 37 °C;

  16. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    Science.gov (United States)

    2015-10-01

    rich region (PRR), several TRAF-interacting motifs, and a C-terminal transmem- brane domain, which anchors the protein on the outer membranes of...signaling complexes at mitochondrial outer membranes [123,124,128,129]. These signalingy cytokines TRAF4 6 MAPKs AP-1 ARD9 MDP MAVS TRAF3? Viral...2 FUBP2_HUMAN 3 7.5 No 82 Q9P0L0 Vesicle -associated membrane protein-associated protein A VAPA_HUMAN 3 6 No 83 Q15181 Inorganic pyrophosphatase

  17. Transcriptional analysis of Rickettsia prowazekii invasion gene homolog (invA) during host cell infection.

    Science.gov (United States)

    Gaywee, Jariyanart; Radulovic, Suzana; Higgins, James A; Azad, Abdu F

    2002-11-01

    An invasion gene homolog, invA, of Rickettsia prowazekii has recently been identified to encode a member of the Nudix hydrolase subfamily which acts specifically on dinucleoside oligophosphates (Np(n)N; n >/= 5), a group of cellular signaling molecules known as alarmones. InvA is thought to enhance intracellular survival by regulating stress-induced toxic nucleotide levels during rickettsial infection. To further characterize the physiological function of InvA, the gene expression pattern during various stages of rickettsial intracellular growth was investigated. Using semiquantitative reverse transcription-PCR (RT-PCR) and real-time fluorescent probe-based quantitative RT-PCR, a differential expression profile of invA during rickettsial host cell infection was examined. The invA transcript temporarily increased during the early period of infection. Expression of rickettsial groEL, a molecular indicator of cellular stresses, was also shown to be upregulated during the early period of infection. Furthermore, invA was cotranscribed in a polycistronic message with rrp, a gene encoding the response regulator protein homolog, which is a part of a two-component signal transduction system. These results support our earlier findings that under such stress conditions dinucleoside oligophosphate pyrophosphatase may function as a buffer, enhancing rickettsial survival within the cytoplasm of a eukaryotic cell. The expression of rickettsial dinucleoside oligophosphate pyrophosphatase may be regulated by a part of the two-component signal transduction system similar to that described for response regulators in other bacterial systems.

  18. Volutin granules of Eimeria parasites are acidic compartments and have physiological and structural characteristics similar to acidocalcisomes

    Science.gov (United States)

    Medeiros, Lia Carolina Soares; Gomes, Fabio; Maciel, Luis Renato Maia; Seabra, Sergio Henrique; Docampo, Roberto; Moreno, Silvia; Plattner, Helmut; Hentschel, Joachim; Kawazoe, Urara; Barrabin, Hector; de Souza, Wanderley; DaMatta, Renato Augusto; Miranda, Kildare

    2012-01-01

    The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites. PMID:21699625

  19. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.; Sacchettini, James C. (TAM)

    2008-06-23

    Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 {angstrom}. The structure of the apoenzyme reveals that the protein is composed of five -helices with connecting loops and is a member of the {alpha}-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between {alpha}-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.

  20. Constant enthalpy change value during pyrophosphate hydrolysis within the physiological limits of NaCl.

    Science.gov (United States)

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-10-11

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 M NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 M NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of -35 kJ/mol was obtained for the halophile and non-halophiles at 1.5-4.0 and 0.1-2.0 M NaCl, respectively. These results show that solvation changes caused by up to 4.0 M NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl.

  1. A Regulatory Role of NAD Redox Status on Flavin Cofactor Homeostasis in S. cerevisiae Mitochondria

    Directory of Open Access Journals (Sweden)

    Teresa Anna Giancaspero

    2013-01-01

    Full Text Available Flavin adenine dinucleotide (FAD and nicotinamide adenine dinucleotide (NAD are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H and FAD levels are maintained remains quite unclear in Saccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms. A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18, which is inhibited by NAD+ and NADH according to a noncompetitive inhibition, with Ki values that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation in S. cerevisiae.

  2. Autotaxin, Pruritus and Primary Biliary Cholangitis (PBC).

    Science.gov (United States)

    Sun, Ying; Zhang, Weici; Evans, Jilly F; Floreani, Annarosa; Zou, Zhengsheng; Nishio, Yukiko; Qi, Ruizhao; Leung, Patrick S C; Bowlus, Christopher L; Gershwin, M Eric

    2016-08-01

    Autotaxin (ATX) is a 125-kD type II ectonucleotide pyrophosphatase/phosphodiesterase (ENPP2 or NPP2) originally discovered as an unknown "autocrine motility factor" in human melanoma cells. In addition to its pyrophosphatase/phosphodiesterase activities ATX has lysophospholipase D (lysoPLD) activity, catalyzing the conversion of lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). ATX is the only ENPP family member with lysoPLD activity and it produces most of the LPA in circulation. In support of this, ATX heterozygous mice have 50% of normal LPA plasma levels. The ATX-LPA signaling axis plays an important role in both normal physiology and disease pathogenesis and recently has been linked to pruritus in chronic cholestatic liver diseases, including primary biliary cholangitis (PBC). Several lines of evidence have suggested that a circulating puritogen is responsible, but the identification of the molecule has yet to be definitively identified. In contrast, plasma ATX activity is strongly associated with pruritus in PBC, suggesting a targetable molecule for treatment. We review herein the biochemistry of ATX and the rationale for its role in pruritus.

  3. Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl*

    Science.gov (United States)

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-01-01

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 m NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 m NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of −35 kJ/mol was obtained for the halophile and non-halophiles at 1.5–4.0 and 0.1–2.0 m NaCl, respectively. These results show that solvation changes caused by up to 4.0 m NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl. PMID:23965994

  4. The PurR regulon in Lactococcus lactis – transcriptional regulation of the purine nucleotide metabolism and translational machinery

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Martinussen, Jan; Kilstrup, Mogens

    2012-01-01

    Purine nucleotides are either synthesized de novo from 5-phosphoribosyl-1-pyrophosphate (PRPP) or salvaged from the environment. In Lactococcus lactis, transcription of the de novo synthesis operons, purCSQLF and purDEK, has genetically been shown to be activated by the PurR protein when bound to......-related functions. Of special interest is the presence of PurBox motifs in rrn promoters, suggesting a novel connection between nucleotide availability and the translational machinery........ This suggests that binding of the PurR protein to the PurBox takes over the role of the -35 sequence. The study has expanded the PurR regulon to include promoters in nucleotide metabolism, C(1) compound metabolism, phosphonate transport, pyrophosphatase activity, (p)ppGpp metabolism, and translation...

  5. AVP1: One Protein, Many Roles

    KAUST Repository

    Schilling, Rhiannon K.

    2016-12-16

    Constitutive expression of the Arabidopsis vacuolar proton-pumping pyrophosphatase (H+-PPase) gene (AVP1) increases plant growth under various abiotic stress conditions and, importantly, under nonstressed conditions. Many interpretations have been proposed to explain these phenotypes, including greater vacuolar ion sequestration, increased auxin transport, enhanced heterotrophic growth, and increased transport of sucrose from source to sink tissues. In this review, we evaluate all the roles proposed for AVP1, using findings published to date from mutant plants lacking functional AVP1 and transgenic plants expressing AVP1. It is clear that AVP1 is one protein with many roles, and that one or more of these roles act to enhance plant growth. The complexity suggests that a systems biology approach to evaluate biological networks is required to investigate these intertwined roles.

  6. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K. (UIUC)

    2011-12-22

    Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.

  7. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit

    2015-01-14

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  8. Structural and Functional Highlights of Vacuolar Soluble Protein 1 from Pathogen Trypanosoma brucei brucei.

    Science.gov (United States)

    Jamwal, Abhishek; Round, Adam R; Bannwarth, Ludovic; Venien-Bryan, Catherine; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2015-12-18

    Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg(2+) and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1.

  9. Structural and Functional Highlights of Vacuolar Soluble Protein 1 from Pathogen Trypanosoma brucei brucei*

    Science.gov (United States)

    Jamwal, Abhishek; Round, Adam R.; Bannwarth, Ludovic; Venien-Bryan, Catherine; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2015-01-01

    Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg2+ and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1. PMID:26494625

  10. [Macrogeographic genetic variability in the gastropod mollusk Littorina sitkana from the northwest Pacific].

    Science.gov (United States)

    Zaslavskaya, N I; Pudovkin, A I

    2005-03-01

    Variation at four highly polymorphic allozyme loci (inorganic pyrophosphatase, peptidase, and two esterase loci) was examined in 25 settlements of the marine snail Littorina sitkana (Mollusca, Gastropoda). The sampling localities covered a wide part of the species range: from the Peter the Great Bay (the Sea of Japan) at the southwest to the Mednyi Island (Commander Islands) at the northeast. Like other littorines lacking the pelagic stage, L. sitkana was characterized by significant genetic differentiation (G(ST) for the pooled sample was 0.310). Cluster analysis and nonmetric multidimensional scaling conducted on a matrix of pairwise genetic distances between all of the settlements studied revealed four genetically different groups: southern Primorye, northern Prymorye, Sakhalin, and Kuril-Commanders. The population-genetic structure of the L. sitkana settlements is close to that described by the isolation-by-distance and stepping-stone models: the geographic and the genetic distances between the most settlements examined are distinctly correlated.

  11. Changes in the inorganic status and enzyme activities in senescent leaves of chickpea, Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Chandrashekkhar V. Murumkar

    2014-01-01

    Full Text Available The changes in the level of some inorganic constituents and the activities of some important enzyme systems in senescent leaves of chickpea (Cicer arietinum L. have been studied. In senescent leaves, a marked decline in the potassium and phosphorus contents was evident which was accompanied by the accumulation of calcium, silicon, chloride and manganese. Leaf senescence was accompanied by a great increase in hydrolytic processes, as revealed by the increase in the activities of acid phosphatase, alkaline phosphatase, ATPase, inorganic pyrophosphatase and 3-phosphoglycerate phosphatase. The activities of nitrogen metabolism enzymes, namely nitrate reductase, nitrite reductase, glutamine synthetase and alanine aminotransferase, and of photorespiratory enzymes -- phosphoglycolate phosphatase, glycolate oxidase and catalase, were lower in senescent leaves. Leaf senescence was further associated with an increase in the activities of peroxidase and polyphenol oxidase, a considerable depression in pyruvate kinase activity, and a slight elevation in aldolase activity.

  12. Influence of Waterlogging on Carbohydrate Metabolism in Ragi and Rice Roots

    Directory of Open Access Journals (Sweden)

    Kulkarni, S. S.

    2013-04-01

    Full Text Available Effect of different durations of waterlogging (4, 8 and 12 days stress on carbohydrate status and activities of some related enzymes in ragi and rice roots was studied. In both ragi and rice roots there was decrease in starch and total sugar content in response to waterlogging conditions. Activity of α amylase was decrease in ragi roots while opposite trend was noticed in case of rice roots. The activity of pyruvate kinase was markedly increased due to 4, 8 and 12 days waterlogging in ragi roots while such increase was noticed in rice roots due to 12 days stress. Treatment of waterlogging caused enhancement in the activity of alkaline inorganic pyrophosphatase in the roots of both ragi and rice.

  13. The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chen

    2016-08-01

    Full Text Available The appropriate supply of dNTPs is critical for cell growth and genome integrity. Here, we investigated the interrelationship between dUTP pyrophosphatase (dUTPase and ribonucleotide reductase (RNR in the regulation of genome stability. Our results demonstrate that reducing the expression of dUTPase increases genome stress in cancer. Analysis of clinical samples reveals a significant correlation between the combination of low dUTPase and high R2, a subunit of RNR, and a poor prognosis in colorectal and breast cancer patients. Furthermore, overexpression of R2 in non-tumorigenic cells progressively increases genome stress, promoting transformation. These cells display alterations in replication fork progression, elevated genomic uracil, and breaks at AT-rich common fragile sites. Consistently, overexpression of dUTPase abolishes R2-induced genome instability. Thus, the expression level of dUTPase determines the role of high R2 in driving genome instability in cancer cells.

  14. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein

    Science.gov (United States)

    Deka, Ranjit K.; Brautigam, Chad A.; Liu, Wei Z.

    2015-01-01

    ABSTRACT The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete’s periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg2+-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg2+-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp’s dual activities, thereby underscoring the role of Mg2+ in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. PMID:25944861

  15. The compartmentalisation of phosphorylated free oligosaccharides in cells from a CDG Ig patient reveals a novel ER-to-cytosol translocation process.

    Directory of Open Access Journals (Sweden)

    Delphine Peric

    Full Text Available BACKGROUND: Biosynthesis of the dolichol linked oligosaccharide (DLO required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man(5GlcNAc(2-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc(3Man(9GlcNAc(2-PP-dolichol. After transfer of Glc(3Man(9GlcNAc(2 onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P. Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation. METHODS AND PRINCIPAL FINDINGS: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man(7GlcNAc(2-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man(7GlcNAc(2-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man(7GlcNAc(2-P appears in the cytosol without detectable generation of ER luminal Man(7GlcNAc(2-P. CONCLUSIONS AND SIGNIFICANCE: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that

  16. Multifunctional nanoparticle-protein conjugates with controllable bioactivity and pH responsiveness

    Science.gov (United States)

    Liu, Feng; Xue, Lulu; Yuan, Yuqi; Pan, Jingjing; Zhang, Chenjie; Wang, Hongwei; Brash, John L.; Yuan, Lin; Chen, Hong

    2016-02-01

    The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion. This approach has considerable potential in areas such as controlled delivery and release of drugs, biosensing, and biocatalysis.The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion

  17. Antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism.

    Science.gov (United States)

    da Conceição, Rodrigo Rodrigues; Laureano-Melo, Roberto; Oliveira, Kelen Carneiro; de Carvalho Melo, Maria Clara; Kasamatsu, Tereza Sayoko; de Barros Maciel, Rui Monteiro; de Souza, Janaina Sena; Giannocco, Gisele

    2016-04-01

    Thyroidectomy is a surgical procedure indicated in cases of several maligned or benign thyroid diseases, thus, the aim of our study was to verify how the hypothyroidism induced by thyroidectomy influences behavioral parameters and its relation to thyroid hormones metabolism and neurogenesis at hippocampus. For this purpose, Adult male Wistar rats underwent to thyroidectomy to induce hypothyroidism. Behavioral tests, the thyroid profile and hippocampal gene expression were evaluated in control and in thyroidectomized animals. It was observed that thyroidectomized group had a significant increasing in serum thyroid-stimulating hormone (TSH) and a decreasing in thyroxine (T4) levels as well as in triiodothyronine (T3) serum level. It was also observed reduction of the monocarboxylate transporter 8 (Mct8), thyroid hormone receptor alfa (Trα1), deiodinase type 2 (Dio2), ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2) and brain-derived neurotrophic factor (Bdnf) mRNA expression in hippocampus of thyroidectomized animals. In the forced swimming test, it was verified that thyroidectomy promotes a decrease in time of immobility and climbing when compared with the control group. In summary, we demonstrated that antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism. This effect could be associated to an impaired neuronal activity in acute stress response as it is observed in forced swimming paradigm.

  18. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system

    Science.gov (United States)

    Chen, Xiugui; Lu, Xuke; Shu, Na; Wang, Shuai; Wang, Junjuan; Wang, Delong; Guo, Lixue; Ye, Wuwei

    2017-01-01

    The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has been widely used for genome editing in various plants because of its simplicity, high efficiency and design flexibility. However, to our knowledge, there is no report on the application of CRISPR/Cas9-mediated targeted mutagenesis in cotton. Here, we report the genome editing and targeted mutagenesis in upland cotton (Gossypium hirsutum L., hereafter cotton) using the CRISPR/Cas9 system. We designed two guide RNAs to target distinct sites of the cotton Cloroplastos alterados 1 (GhCLA1) and vacuolar H+-pyrophosphatase (GhVP) genes. Mutations in these two genes were detected in cotton protoplasts. Most of the mutations were nucleotide substitutions, with one nucleotide insertion and one substitution found in GhCLA1 and one deletion found in GhVP in cotton protoplasts. Subsequently, the two vectors were transformed into cotton shoot apexes through Agrobacterium-mediated transformation, resulting in efficient target gene editing. Most of the mutations were nucleotide deletions, and the mutation efficiencies were 47.6–81.8% in transgenic cotton plants. Evaluation using restriction-enzyme-PCR assay and sequence analysis detected no off-target mutations. Our results indicated that the CRISPR/Cas9 system was an efficient and specific tool for targeted mutagenesis of the cotton genome. PMID:28287154

  19. Characterization of the major integral protein of vacuolar membrane.

    Science.gov (United States)

    Maeshima, M

    1992-04-01

    The vacuolar membrane of radish (Raphanus sativus) taproot contained a large quantity of a protein of 23 kilodaltons that accounted for more than 25% of the total membrane proteins. The protein, tentatively named VM 23, was purified and characterized. VM 23 tends to aggregate at high temperature even in the presence of 1% sodium dodecyl sulfate. The apparent molecular size of VM 23 was estimated to be about 400 kilodaltons by polyacrylamide gel electrophoresis in the presence of 0.1% Triton X-100. VM 23 was partially extracted from the vacuolar membranes with chloroform:methanol, indicating its high hydrophobicity. The hydrophobic carboxyl modifier N,N'-dicyclohexylcarbodiimide bound covalently to VM 23. The results suggest that VM 23 may act as a secondary transport system coupled with the proton transport. The antibody against radish VM 23 reacted with the major proteins in the vacuolar membranes of mung bean (Vigna radiata) and castor bean (Ricinus communis) hypocotyls and pumpkin (Cucurbita moschata) epicotyl, but not with that of sugar beet (Beta vulgaris) taproot. VM 23 comigrated with vacuolar H(+)-pyrophosphatase on sucrose density gradient centrifugation after sonication of membranes, indicating that it is associated with the vacuolar membrane.

  20. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  1. Subcellular localization of rickettsial invasion protein, InvA.

    Science.gov (United States)

    Gaywee, Jariyanart; Sacci, John B; Radulovic, Suzana; Beier, Magda S; Azad, Abdu F

    2003-01-01

    To understand further the molecular basis of rickettsial host cell invasion, Rickettsia prowazekii invasion gene homolog (invA) has been characterized. Our previous experiments have shown that InvA is an Ap5A pyrophosphatase, a member of the Nudix hydrolase family, which is up-regulated during the internalization, early growth phase, and exit steps during rickettsial mammalian cell infection. In addition to the molecular characterization, subcellular localization of InvA was investigated. InvA-specific antibodies were raised in mice and used for immunoelectron microscopy. The generated antibodies were shown to recognize InvA and by immunogold labeling showed InvA in the cytoplasm of rickettsiae. A cytoplasmic location for InvA would allow for a rapid response to any internal substance and efficient functioning in hydrolysis of toxic metabolic by-products that are accumulated in the rickettsial cytoplasm during host cell invasion. Protecting bacteria from a hazardous environment could enhance their viability and allow them to remain metabolically active, which is a necessary step for the rickettsial obligate intracellular lifestyle.

  2. Pyrophosphate levels strongly influence ascorbate and starch content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Sonia eOsorio

    2013-08-01

    Full Text Available Ascorbate (vitamin C deficiency leads to low immunity, scurvy, and other human diseases and is therefore a global health problem. Given that plants are major ascorbate sources for humans, biofortification of this vitamin in our foodstuffs is of considerable importance. Ascorbate is synthetized by a number of alternative pathways: (i from the glycolytic intermediates D-glucose-6P (the key intermediates are GDP-D-mannose and L-galactose, (ii from the breakdown of the cell wall polymer pectin which uses the methyl ester of D-galacturonic acid as precursor and (iii from myo-inositol as precursor via myo-inositol oxygenase. We report here the engineering of fruit-specific overexpression of a bacterial pyrophosphatase, which hydrolyzes the inorganic pyrophosphate (PPi to orthophosphate (Pi. This strategy resulted in increased vitamin C levels up to 2.5 fold in ripe fruit as well as increasing in the major sugars, sucrose and glucose, yet decreasing the level of starch. When considered together, these finding indicate an intimate linkage between ascorbate and sugar biosynthesis in plants. Moreover, the combined data reveal the importance of PPi metabolism in tomato fruit metabolism and development.

  3. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    Science.gov (United States)

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  4. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing

    Directory of Open Access Journals (Sweden)

    Muammar eMansor

    2015-08-01

    Full Text Available Large, sulfur-cycling, calcite-precipitating bacteria in the genus Achromatium represent a significant proportion of bacterial communities near sediment-water interfaces throughout the world. Our understanding of their potentially crucial roles in calcium, carbon, sulfur, nitrogen, and iron cycling is limited because they have not been cultured or sequenced using environmental genomics approaches to date. We utilized single-cell genomic sequencing to obtain one incomplete and two nearly complete draft genomes for Achromatium collected at Warm Mineral Springs, FL. Based on 16S rRNA gene sequences, the three cells represent distinct and relatively distant Achromatium populations (91-92% identity. The draft genomes encode key genes involved in sulfur and hydrogen oxidation; oxygen, nitrogen and polysulfide respiration; carbon and nitrogen fixation; organic carbon assimilation and storage; chemotaxis; twitching motility; antibiotic resistance; and membrane transport. Known genes for iron and manganese energy metabolism were not detected. The presence of pyrophosphatase and vacuolar (V-type ATPases, which are generally rare in bacterial genomes, suggests a role for these enzymes in calcium transport, proton pumping, and/or energy generation in the membranes of calcite-containing inclusions.

  5. A Novel PHEX Mutation in Japanese Patients with X-Linked Hypophosphatemic Rickets

    Directory of Open Access Journals (Sweden)

    Tetsuya Kawahara

    2015-01-01

    Full Text Available X-linked hypophosphatemic rickets (XLH is a dominant inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. Inactivating mutations in the gene encoding phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX have been found to be associated with XLH. Here, we report a 16-year-old female patient affected by hypophosphatemic rickets. We evaluated her serum fibroblast growth factor 23 (FGF23 levels and conducted sequence analysis of the disease-associated genes of FGF23-related hypophosphatemic rickets: PHEX, FGF23, dentin matrix protein 1, and ectonucleotide pyrophosphatase/phosphodiesterase 1. She was diagnosed with XLH based on her clinical features and family history. Additionally, we observed elevated FGF23 levels and a novel PHEX exon 9 mutation (c.947G>T; p.Gly316Val inherited from her father. Although bioinformatics showed that the mutation was neutral, Gly316 is perfectly conserved among humans, mice, and rats, and there were no mutations in other FGF23-related rickets genes, suggesting that in silico analysis is limited in determining mutation pathogenicity. In summary, we present a female patient and her father with XLH harboring a novel PHEX mutation that appears to be causative of disease. Measurement of FGF23 for hypophosphatemic patients is therefore useful for the diagnosis of FGF23-dependent hypophosphatemia.

  6. Positional isotope exchange analysis of the Mycobacterium smegmatis cysteine ligase (MshC).

    Science.gov (United States)

    Williams, LaKenya; Fan, Fan; Blanchard, John S; Raushel, Frank M

    2008-04-22

    MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins, which is an intermediate in the biosynthetic pathway of mycothiol, i.e., 1-D-myo-inosityl-2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside (MSH or AcCys-GlcN-Ins). MSH is produced by Mycobacterium tuberculosis, members of the Actinomycetes family, to maintain an intracellular reducing environment and protect against oxidative and antibiotic induced stress. The biosynthesis of MSH is essential for cell growth, and therefore, the MSH biosynthetic enzymes present potential targets for inhibitor design. The formation of kinetically competent adenylated intermediates was suggested by the observation of positional isotope exchange (PIX) reaction using [betagamma-(18)O6]-ATP in the presence of cysteine. The PIX rate depends on the presence of cysteine and increases with concentrations of cysteine. The loss of PIX activity upon the addition of small concentrations of pyrophosphatase suggests that the PP(i) is free to dissociate from the active site of cysteine ligase into the bulk solution. The PIX activity is also eliminated at high concentrations of GlcN-Ins, consistent with the mechanism in which GlcN-Ins binds after cysteine-adenylate formation. This PIX analysis confirms that MshC catalyzes the formation of a kinetically competent cysteinyl-adenylate intermediate after the addition of ATP and cysteine.

  7. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  8. Calcium uptake and proton transport by acidocalcisomes of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Peter Rohloff

    Full Text Available Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to humans. They possess an acidic matrix that contains several cations bound to phosphates, which are mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. Calcium uptake occurs through a Ca(2+/H(+ countertransporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. We report the purification and characterization of an acidocalcisome fraction from T. gondii tachyzoites after subcellular fractionation and further discontinuous iodixanol gradient purification. Proton and calcium transport activities in the fraction were characterized by fluorescence microscopy and spectrophotometric methods using acridine orange and arsenazo III, respectively. This work will facilitate the understanding of the function of acidocalcisomes in Apicomplexan parasites, as we can now isolate highly purified fractions that could be used for proteomic analysis to find proteins that may clarify the biogenesis of these organelles.

  9. The role of phosphatases in the initiation of skeletal mineralization.

    Science.gov (United States)

    Millán, José Luis

    2013-10-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.

  10. Donor's age and replicative senescence favour the in-vitro mineralization potential of human fibroblasts.

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; Di Bari, Caterina; Cocconi, Andrea; Quaglino, Daniela

    2015-12-01

    Aberrant mineralization of soft connective tissues (ectopic calcification) may occur as a frequent age-related complication. Still, it remains unclear the role of mesenchymal cell donor's age and of replicative senescence on ectopic calcification. Therefore, the ability of cells to deposit in-vitro hydroxyapatite crystals and the expression of progressive ankylosis protein homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), tissue non specific alkaline phosphatase (TNAP) and osteopontin (OPN) have been evaluated in human dermal fibroblasts derived from neonatal (nHDF) and adult (aHDF) donors (ex-vivo ageing model) or at low and high cumulative population doublings (CPD) up to replicative senescence (in-vitro ageing model). This study demonstrates that: 1) replicative senescence favours hydroxyapatite formation in cultured fibroblasts; 2) donor's age acts as a major modulator of the mineralizing potential of HDF, since nHDF are less prone than aHDF to induce calcification; 3) donor's age and replicative senescence play in concert synergistically increasing the calcification process; 4) the ANKH+ENPP1/TNAP ratio, being crucial for pyrophosphate/inorganic phosphate balance, is greatly influenced by donor's age, as well as by replicative senescence, and regulates mineral deposition; 5) OPN is only modulated by replicative senescence.

  11. Compounded PHOSPHO1/ALPL deficiencies reduce dentin mineralization.

    Science.gov (United States)

    McKee, M D; Yadav, M C; Foster, B L; Somerman, M J; Farquharson, C; Millán, J L

    2013-08-01

    Phosphatases are involved in bone and tooth mineralization, but their mechanisms of action are not completely understood. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) regulates inhibitory extracellular pyrophosphate through its pyrophosphatase activity to control mineral propagation in the matrix; mice without TNAP lack acellular cementum, and have mineralization defects in dentin, enamel, and bone. PHOSPHO1 is a phosphatase found within membrane-bounded matrix vesicles in mineralized tissues, and double ablation of Alpl and Phospho1 in mice leads to a complete absence of skeletal mineralization. Here, we describe mineralization abnormalities in the teeth of Phospho1(-/-) mice, and in compound knockout mice lacking Phospho1 and one allele of Alpl (Phospho1(-/-);Alpl(+/-) ). In wild-type mice, PHOSPHO1 and TNAP co-localized to odontoblasts at early stages of dentinogenesis, coincident with the early mineralization of mantle dentin. In Phospho1 knockout mice, radiography, micro-computed tomography, histology, and transmission electron microscopy all demonstrated mineralization abnormalities of incisor dentin, with the most remarkable findings being reduced overall mineralization coincident with decreased matrix vesicle mineralization in the Phospho1(-/-) mice, and the almost complete absence of matrix vesicles in the Phospho1(-/-);Alpl(+/-) mice, whose incisors showed a further reduction in mineralization. Results from this study support prominent non-redundant roles for both PHOSPHO1 and TNAP in dentin mineralization.

  12. Inhibiting Self-Pollen: Self-Incompatibility in Papaver Involves Integration of Several Signaling Events

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cellular responses rely on signal perception and integration. A nice example of this is self incompatibility (SI), which is an important mechanism to prevent inbreeding. It prevents self-fertilization by using a highly discriminatory cellular recognition and rejection mechanism. Most S1 systems are genetically specified by the S-locus, which has a pollen and a pistil S-component. A receptor-ligand interaction is used by Papaver rhoeas to control SI. S proteins encoded by the pistil part of the S-locus interact with incompatible pollen to achieve rapid inhibition of tip growth. The incompatible SI interaction triggers a Ca2+ -dependent signaling cascade. A number of SI-specific events are triggered in incompatible pollen, including rapid depolymerization of the actin cytoskeleton; phosphorylation of soluble inorganic pyrophosphatases (SPPases), Prp26.1; activation of a mitogen activated protein kinase, p56; programmed cell death (PCD) involving a caspase-3-like activlty. These events contribute to prevent self-fertilization. We are attempting to establish the functional signiflcance of these events, and their possible involvement in integrating a coordinated signaling response. Here we describe the identification of these components shown to be involved in SI, together with recent progress in identifying links between some of them. These data constitute the first steps in elucidating how SI signaling is integrated.

  13. Role of ENPP1 on adipocyte maturation.

    Directory of Open Access Journals (Sweden)

    Jian Liang

    Full Text Available BACKGROUND: It is recognized that the ability of adipose tissue to expand in response to energy excess, i.e. adipocyte maturation, is important in determining systemic abnormalities in glucose and lipid metabolism. Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1, also known as PC-1 has been recently reported to be involved in the pathogenesis of insulin resistance and related diseases. However, its role on adipose tissue physiology as a mechanism of systemic insulin resistance is not understood. This study was performed to evaluate whether ENPP1 is regulated during adipogenesis and whether over-expression in adipocytes can affect adipocyte maturation, a potential novel mechanism of ENPP1-related insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: ENPP1 expression was found down-regulated during 3T3-L1 maturation, and over-expression of human ENPP1 in 3T3-L1 (pQCXIP-ENPP1 vector resulted in adipocyte insulin resistance and in defective adipocyte maturation. Adipocyte maturation was more efficient in mesenchymal embryonal cells from ENPP1 knockout mice than from wild-type. CONCLUSIONS: We identify ENPP1 as a novel mechanism of defective adipocyte maturation. This mechanism could contribute to the pathogenesis of insulin resistance in absence of obesity.

  14. Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant

    Directory of Open Access Journals (Sweden)

    Irina S.-R. Waisertreiger

    2010-01-01

    Full Text Available Base analogs are powerful antimetabolites and dangerous mutagens generated endogenously by oxidative stress, inflammation, and aberrant nucleotide biosynthesis. Human inosine triphosphate pyrophosphatase (ITPA hydrolyzes triphosphates of noncanonical purine bases (i.e., ITP, dITP, XTP, dXTP, or their mimic: 6-hydroxyaminopurine (HAP deoxynucleoside triphosphate and thus regulates nucleotide pools and protects cells from DNA damage. We demonstrate that the model purine base analog HAP induces DNA breaks in human cells and leads to elevation of levels of ITPA. A human polymorphic allele of the ITPA, 94C->A encodes for the enzyme with a P32T amino-acid change and leads to accumulation of nonhydrolyzed ITP. The polymorphism has been associated with adverse reaction to purine base-analog drugs. The level of both spontaneous and HAP-induced DNA breaks is elevated in the cell line with the ITPA P32T variant. The results suggested that human ITPA plays a pivotal role in the protection of DNA from noncanonical purine base analogs.

  15. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants.

    Science.gov (United States)

    Jonik, Claudia; Sonnewald, Uwe; Hajirezaei, Mohammad-Reza; Flügge, Ulf-Ingo; Ludewig, Frank

    2012-12-01

    An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll-specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP-glucose pyrophosphorylase in leaves. Both approaches make use of re-routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6-phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a 'pull' approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of 'pull' and 'push' approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.

  16. X-Ray Solution Scattering Study of Four Escherichia coli Enzymes Involved in Stationary-Phase Metabolism.

    Science.gov (United States)

    Dadinova, Liubov A; Shtykova, Eleonora V; Konarev, Petr V; Rodina, Elena V; Snalina, Natalia E; Vorobyeva, Natalia N; Kurilova, Svetlana A; Nazarova, Tatyana I; Jeffries, Cy M; Svergun, Dmitri I

    2016-01-01

    The structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS) and other structural techniques. The proteins are (i) class I fructose-1,6-bisphosphate aldolase (FbaB); (ii) inorganic pyrophosphatase (PPase); (iii) 5-keto-4-deoxyuronate isomerase (KduI); and (iv) glutamate decarboxylase (GadA). The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies. In agreement with previously reported crystal structures, PPase forms hexamers in solution that are similar to the previously reported X-ray crystal structure. Both KduI and GadA that are responsible for carbohydrate (pectin) metabolism and acid stress responses, respectively, form polydisperse mixtures consisting of different oligomeric states. Overall the SAXS experiments yield additional insights into shape and organization of these metabolic enzymes and further demonstrate the utility of hybrid methods, i.e., solution SAXS combined with X-ray crystallography, bioinformatics and predictive 3D-structural modeling, as tools to enrich structural studies. The results highlight the structural complexity that the protein components of metabolic networks may adopt which cannot be fully captured using individual structural biology techniques.

  17. Plasma cell alloantigen ENPP1 is expressed by a subset of human B cells with potential regulatory functions.

    Science.gov (United States)

    Yoon, Jeongheon; Wang, Hongsheng; Kim, Yong Chan; Yoshimoto, Momoko; Abbasi, Sadia; Morse Iii, Herbert C

    2016-09-01

    Plasma cell alloantigen 1 (PC1), also known as ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1), is an enzyme involved primarily in hydrolysis of adenosine triphosphate at the cell surface. Although the expression pattern of PC1 is relatively broad, its expression in B cells is found at significant levels only in terminally differentiated germinal center B cells, plasma cells and a subset of B-1a cells in mice. Here we describe studies designed to determine whether expression of PC1 might define novel populations of human B cells with similarities to mouse B cells. We found that PC1 is expressed in small populations of human B lineage cells in peripheral blood, cord blood, tonsils, bone marrow and pediatric peritoneal fluid, with the highest levels in plasma cells. The characteristics of human PC1(+) B cells differ from mouse peritoneal B-1a subsets and from features of the human CD20(+)CD27(+)CD43(+)CD70(-) B-cell subset proposed to be human B-1 cells. Expression of PC1 was greatly increased in B cells stimulated with the combination of CD40 ligand, interleukin (IL)-4 and IL-21. In addition, PC1(+) B cells activated CD4(+) T regulatory cells. ENPP1 thus defines a subset of human B cells that differs significantly from mouse peritoneal B-1a and proposed human B-1 cells.

  18. Extracellular 4'-phosphopantetheine is a source for intracellular coenzyme A synthesis.

    Science.gov (United States)

    Srinivasan, Balaji; Baratashvili, Madina; van der Zwaag, Marianne; Kanon, Bart; Colombelli, Cristina; Lambrechts, Roald A; Schaap, Onno; Nollen, Ellen A; Podgoršek, Ajda; Kosec, Gregor; Petković, Hrvoje; Hayflick, Susan; Tiranti, Valeria; Reijngoud, Dirk-Jan; Grzeschik, Nicola A; Sibon, Ody C M

    2015-10-01

    The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA. Here CoA was hydrolyzed extracellularly by ectonucleotide pyrophosphatases to 4'-phosphopantetheine, a biologically stable molecule able to translocate through membranes via passive diffusion. Inside the cell, 4'-phosphopantetheine was enzymatically converted back to CoA by the bifunctional enzyme CoA synthase. Phenotypes induced by intracellular CoA deprivation were reversed when exogenous CoA was provided. Our findings answer long-standing questions in fundamental cell biology and have major implications for the understanding of CoA-related diseases and therapies.

  19. Selective export of autotaxin from the endoplasmic reticulum.

    Science.gov (United States)

    Lyu, Lin; Wang, Baolu; Xiong, Chaoyang; Zhang, Xiaotian; Zhang, Xiaoyan; Zhang, Junjie

    2017-04-28

    Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structural basis of substrate discrimination and integrin binding by autotaxin

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M.H.G.; van Meeteren, Laurens A.; Houben, Anna J.S.; van Zeijl, Leonie; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Kasiem, Mobien; Harlos, Karl; Vander Kooi, Craig W.; Smyth, Susan S.; Ovaa, Huib; Bollen, Mathieu; Morris, Andrew J.; Moolenaar, Wouter H.; Perrakis, Anastassis (Pfizer); (Leuven); (Oxford); (NCI-Netherlands); (Kentucky)

    2013-09-25

    Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.

  1. Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts.

    Science.gov (United States)

    Lemire, Joan M; Patis, Carrie; Gordon, Leslie B; Sandy, John D; Toole, Bryan P; Weiss, Anthony S

    2006-08-01

    Hutchinson-Gilford Progeria syndrome (HGPS) is a rare genetic disorder that displays features of segmental aging. It is manifested predominantly in connective tissue, with most prominent histological changes occurring in the skin, cartilage, bone and cardiovascular tissues. Detailed quantitative real time reverse-transcription polymerase chain reaction studies confirmed the previous observation that platelet-derived growth factor A-chain transcripts are consistently elevated 11+/-2- to 13+/-2-fold in two HGPS dermal fibroblast lines compared with age-matched controls. Furthermore, we identified two additional genes with substantially altered transcript levels. Nucleotide pyrophosphatase transcription was virtually shut down with decreased expression of 13+/-3- to 59+/-3-fold in HGPS, whereas aggrecan mRNA was elevated to 24+/-5 times to 41+/-4 times that of chronologically age-matched controls. Aggrecan, normally a component of cartilage and not always detectable in normal fibroblasts cultures, was secreted by HGPS fibroblast lines and was produced as a proteoglycan. This demonstrates that elevated aggrecan expression and its secretion are aberrant features of HGPS. We conclude that HGPS cells can display massively altered transcript levels leading to the secretion of inappropriate protein species.

  2. NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae.

    Science.gov (United States)

    Kemmer, G; Reilly, T J; Schmidt-Brauns, J; Zlotnik, G W; Green, B A; Fiske, M J; Herbert, M; Kraiss, A; Schlör, S; Smith, A; Reidl, J

    2001-07-01

    Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks almost all the biosynthetic enzymes necessary for the de novo synthesis of that cofactor. Factor V can be provided as either nicotinamide adenosine dinucleotide (NAD), nicotinamide mononucleotide (NMN), or nicotinamide riboside (NR) in vitro, but little is known about the source or the mechanism of uptake of these substrates in vivo. As shown by us earlier, at least two gene products are involved in the uptake of NAD, the outer membrane lipoprotein e (P4), which has phosphatase activity and is encoded by hel, and a periplasmic NAD nucleotidase, encoded by nadN. It has also been observed that the latter gene product is essential for H. influenzae growth on media supplemented with NAD. In this report, we describe the functions and substrates of these two proteins as they act together in an NAD utilization pathway. Data are provided which indicate that NadN harbors not only NAD pyrophosphatase but also NMN 5'-nucleotidase activity. The e (P4) protein is also shown to have NMN 5'-nucleotidase activity, recognizing NMN as a substrate and releasing NR as its product. Insertion mutants of nadN or deletion and site-directed mutants of hel had attenuated growth and a reduced uptake phenotype when NMN served as substrate. A hel and nadN double mutant was only able to grow in the presence of NR, whereas no uptake of NMN was observed.

  3. Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG.

    Science.gov (United States)

    Gajadeera, Chathurada; Willby, Melisa J; Green, Keith D; Shaul, Pazit; Fridman, Micha; Garneau-Tsodikova, Sylvie; Posey, James E; Tsodikov, Oleg V

    2015-03-01

    Owing to the rise in drug resistance in tuberculosis combined with the global spread of its causative pathogen, Mycobacterium tuberculosis (Mtb), innovative anti mycobacterial agents are urgently needed. Recently, we developed a novel primase-pyrophosphatase assay and used it to discover inhibitors of an essential Mtb enzyme, primase DnaG (Mtb DnaG), a promising and unexplored potential target for novel antituberculosis chemotherapeutics. Doxorubicin, an anthracycline antibiotic used as an anticancer drug, was found to be a potent inhibitor of Mtb DnaG. In this study, we investigated both inhibition of Mtb DnaG and the inhibitory activity against in vitro growth of Mtb and M. smegmatis (Msm) by other anthracyclines, daunorubicin and idarubicin, as well as by less cytotoxic DNA intercalators: aloe-emodin, rhein and a mitoxantrone derivative. Generally, low-μM inhibition of Mtb DnaG by the anthracyclines was correlated with their low-μM minimum inhibitory concentrations. Aloe-emodin displayed threefold weaker potency than doxorubicin against Mtb DnaG and similar inhibition of Msm (but not Mtb) in the mid-μM range, whereas rhein (a close analog of aloe-emodin) and a di-glucosylated mitoxantrone derivative did not show significant inhibition of Mtb DnaG or antimycobacterial activity. Taken together, these observations strongly suggest that several clinically used anthracyclines and aloe-emodin target mycobacterial primase, setting the stage for a more extensive exploration of this enzyme as an antibacterial target.

  4. Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of Trypanosoma cruzi

    Science.gov (United States)

    Niyogi, Sayantanee; Jimenez, Veronica; Girard-Dias, Wendell; de Souza, Wanderley; Miranda, Kildare; Docampo, Roberto

    2015-01-01

    ABSTRACT The contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease, collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress; it also has a role in cell shrinking after hyperosmotic stress. Here, we report that, in addition to its role in osmoregulation, the CVC of T. cruzi has a role in the biogenesis of acidocalcisomes. Expression of dominant-negative mutants of the CVC-located small GTPase Rab32 (TcCLB.506289.80) results in lower numbers of less-electron-dense acidocalcisomes, lower content of polyphosphate, lower capacity for acidocalcisome acidification and Ca2+ uptake that is driven by the vacuolar proton pyrophosphatase and the Ca2+-ATPase, respectively, as well as less-infective parasites, revealing the role of this organelle in parasite infectivity. By using fluorescence, electron microscopy and electron tomography analyses, we provide further evidence of the active contact of acidocalcisomes with the CVC, indicating an active exchange of proteins between the two organelles. PMID:25964650

  5. Expression patterns reveal niche diversification in a marine microbial assemblage.

    Science.gov (United States)

    Gifford, Scott M; Sharma, Shalabh; Booth, Melissa; Moran, Mary Ann

    2013-02-01

    Resolving the ecological niches of coexisting marine microbial taxa is challenging due to the high species richness of microbial communities and the apparent functional redundancy in bacterial genomes and metagenomes. Here, we generated over 11 million Illumina reads of protein-encoding transcripts collected from well-mixed southeastern US coastal waters to characterize gene expression patterns distinguishing the ecological roles of hundreds of microbial taxa sharing the same environment. The taxa with highest in situ growth rates (based on relative abundance of ribosomal protein transcripts) were typically not the greatest contributors to community transcription, suggesting strong top-down ecological control, and their diverse transcriptomes indicated roles as metabolic generalists. The taxa with low in situ growth rates typically had low diversity transcriptomes dominated by specialized metabolisms. By identifying protein-encoding genes with atypically high expression for their level of conservation, unique functional roles of community members emerged related to substrate use (such as complex carbohydrates, fatty acids, methanesulfonate, taurine, tartrate, ectoine), alternative energy-conservation strategies (proteorhodopsin, AAnP, V-type pyrophosphatases, sulfur oxidation, hydrogen oxidation) and mechanisms for negotiating a heterogeneous environment (flagellar motility, gliding motility, adhesion strategies). On average, the heterotrophic bacterioplankton dedicated 7% of their transcriptomes to obtaining energy by non-heterotrophic means. This deep sequencing of a coastal bacterioplankton transcriptome provides the most highly resolved view of bacterioplankton niche dimensions yet available, uncovering a spectrum of unrecognized ecological strategies.

  6. UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species.

    Science.gov (United States)

    Shrivastava, Alok Kumar; Chatterjee, Antra; Yadav, Shivam; Singh, Prashant Kumar; Singh, Shilpi; Rai, L C

    2015-09-01

    Comparative proteomics together with physiological variables revealed different responses among three species of diazotrophic cyanobacterium Anabaena exposed to UV-B stress at the same time points. Perceptible decline in PSII activity, ATP pool, nitrogenase activity and respiration rate was observed for all the three species; this being maximum in Anabaena doliolum, followed by Anabaena sp. PCC 7120 and minimum in Anabaena L31. Statistical analysis of the protein abundance divided majority of them as early accumulated in A. L31, late accumulated in A. sp. PCC 7120 and downregulated in A. doliolum. Tolerance of A. L31 may be ascribed to post-translational modification reflected through the highest number of protein isoforms in its proteome followed by A. PCC 7120 and A. doliolum. Furthermore, increase in abundance of cyanophycinase, glutamine synthetase and succinate semialdehyde dehydrogenase in A. L31 suggests operation of an alternate pathway for assimilation of nitrogen and carbon under UV-B stress. An early accumulation of four proteins viz., glutamate ammonia ligase (Alr2328), transketolase (Alr3344), inorganic pyrophosphatase (All3570), and trigger protein (Alr3681) involved respectively in amino acid metabolism, energy metabolism, biosynthesis of cofactor and trigger protein and chaperone like activity across three species, suggests them to be marker of UV-B stress in Anabaena spp. This article is part of a Special Issue entitled: Proteomics in India.

  7. X-Ray Solution Scattering Study of Four Escherichia coli Enzymes Involved in Stationary-Phase Metabolism.

    Directory of Open Access Journals (Sweden)

    Liubov A Dadinova

    Full Text Available The structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS and other structural techniques. The proteins are (i class I fructose-1,6-bisphosphate aldolase (FbaB; (ii inorganic pyrophosphatase (PPase; (iii 5-keto-4-deoxyuronate isomerase (KduI; and (iv glutamate decarboxylase (GadA. The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies. In agreement with previously reported crystal structures, PPase forms hexamers in solution that are similar to the previously reported X-ray crystal structure. Both KduI and GadA that are responsible for carbohydrate (pectin metabolism and acid stress responses, respectively, form polydisperse mixtures consisting of different oligomeric states. Overall the SAXS experiments yield additional insights into shape and organization of these metabolic enzymes and further demonstrate the utility of hybrid methods, i.e., solution SAXS combined with X-ray crystallography, bioinformatics and predictive 3D-structural modeling, as tools to enrich structural studies. The results highlight the structural complexity that the protein components of metabolic networks may adopt which cannot be fully captured using individual structural biology techniques.

  8. Energization of vacuolar transport in plant cells and its significance under stress.

    Science.gov (United States)

    Seidel, Thorsten; Siek, Michèle; Marg, Berenice; Dietz, Karl-Josef

    2013-01-01

    The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Hypophosphatemic rickets developed after treatment with etidronate disodium in a patient with generalized arterial calcification in infancy

    Directory of Open Access Journals (Sweden)

    Kentaro Miyai

    2015-12-01

    Full Text Available Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1 was originally reported as a responsible gene for generalized arterial calcification in infancy (GACI. Though the prognosis of GACI patients is poor because of myocardial infarction and heart failure in relation to medial calcification of the coronary arteries, some patients rescued by bisphosphonate treatment have been reported. Recently, ENPP1 is also reported as responsible for autosomal recessive hypophosphatemic rickets type 2. We show here a boy with homozygous ENPP1 mutations diagnosed as having GACI in early infancy. After the diagnosis, he was treated with etidronate disodium (EHDP in combination with antihypertensive drugs. The calcification of major arteries was diminished and disappeared by the age of eight months. He also showed mild hypophosphatemia (2.6–3.7 mg/dl from the age of one year. After the treatment with EHDP for five years, he showed genu valgum with hypophosphatemia (2.6 mg/dl. He was diagnosed as having hypophosphatemic rickets at the age of seven years. The findings that hyper-mineralization of the arteries and hypo-mineralization of the bone observed in the same patient are noteworthy. ENPP1 could be regarded as a controller of the calcification of the whole body at least in part.

  10. Comparative Proteomic Analysis Reveals Proteins Putatively Involved in Toxin Biosynthesis in the Marine Dinoflagellate Alexandrium catenella

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    2013-01-01

    Full Text Available Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P < 0.05, and 53 proteins were identified using database searching. These proteins were involved in a variety of biological processes, i.e., protein modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal transduction, and translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to, alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  11. Hyperacidification of Vacuoles by the Combined Action of Two Different P-ATPases in the Tonoplast Determines Flower Color

    Directory of Open Access Journals (Sweden)

    Marianna Faraco

    2014-01-01

    Full Text Available The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2+ transporters in bacteria only, that resides in the vacuolar membrane (tonoplast. In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H+ P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H+ transport activity on its own but can physically interact with PH5 and boost PH5 H+ transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.

  12. Ikaros can enhance immune activity though the interaction with Autotaxin in LDIR exposed immune cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jin; Kim, Min Young; Kim, Ji Young; Kim, Hee Sun; KIm, Cha Soon; Nam, Seon Young; Yang, Kwang Hee; Jin, Young Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Seoul (Korea, Republic of)

    2009-04-15

    Ikaros, one of transcription factors, plays major roles in the differentiation and biology of leukocytes, including all classes of lymphocytes (NK, T, and B cells), monocytes/macrophages, and dendritic cells. Ikaros was also shown to regulate early neutrophils differentiation. Therefore, Ikaros appears to be a major determinant in the development and function of immune system. Autotaxin (ATX), which is also called nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2), is an exo-enzyme originally identified as a tumor cell autocrine motility factor. ATX functions as a lysophospholipase D, converting lysophosphatidylcholine (LPC) into the lipid mediator lysophosphatidic acid (LPA). LPA bind together with specific G protein-coupled receptors, which elicit a wide range of cellular responses including the cell proliferation, migration and neurite remodeling. In the Recent report, ATX stimulate human endothelial cells (HUVECs) growth and cytokine production. In our previous study, we showed that low-dose ionizing radiation (LDIR) enhanced the cell proliferation cell coupled with Ikaros phosphorylation. In addition, we found that LDIR increased the expression level of cyclin E and cdk2 protein in IM-9 B lymphoblast cells. In this report, therefore, we try to find Ikaros binding proteins after LDIR in IM-9 lymphoblastic cell lines to examine whether the effects of LDIR induced cell proliferation are one of immune activation responses or not.

  13. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session.

    Science.gov (United States)

    Moritz, Cesar Eduardo Jacintho; Teixeira, Bruno Costa; Rockenbach, Liliana; Reischak-Oliveira, Alvaro; Casali, Emerson André; Battastini, Ana Maria Oliveira

    2017-02-01

    Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.

  14. Strong anion-exchange fast performance liquid chromatography as a versatile tool for preparation and purification of RNA produced by in vitro transcription.

    Science.gov (United States)

    Koubek, Jiri; Lin, Ku Feng; Chen, Yet Ran; Cheng, Richard Ping; Huang, Joseph Jen Tse

    2013-10-01

    Here we demonstrate the use of strong anion-exchange fast performance liquid chromatography (FPLC) as a simple, fast, and robust method for RNA production by in vitro transcription. With this technique, we have purified different transcription templates from unreacted reagents in large quantities. The same buffer system could be used to readily remove nuclease contamination from the overexpressed pyrophosphatase, the important reagent for in vitro transcription. In addition, the method can be used to monitor in vitro transcription reactions to enable facile optimization of reaction conditions, and we have compared the separation performance between strong and weak anion-exchange FPLC for various transcribed RNAs, including the Diels-Alder ribozyme, the hammerhead ribozyme tRNA, and 4.5S RNA. The functionality of the purified tRNA(Cys) has been confirmed by the aminoacylation assay. Only the purification by strong anion-exchange FPLC has led to the enrichment of the functional tRNA from run-off transcripts as revealed by both enzymatic and electrophoretic analysis.

  15. Marine phosphate oxygen isotopes and organic matter remineralization in the oceans.

    Science.gov (United States)

    Colman, Albert S; Blake, Ruth E; Karl, David M; Fogel, Marilyn L; Turekian, Karl K

    2005-09-13

    We show that the isotopic composition of oxygen (delta18O) in dissolved inorganic phosphate (Pi) reveals the balance between Pi transport and biological turnover rates in marine ecosystems. Our delta18Op of Pi (delta18Op) measurements herein indicate the importance of cell lysis in the regeneration of Pi in the euphotic zone. Depth profiles of the delta18Op in the Atlantic and Pacific Oceans are near a temperature-dependent isotopic equilibrium with water. Small deviations from equilibrium below the thermocline suggest that P remineralization in the deep ocean is a byproduct of microbial carbon and energy requirements. However, isotope effects associated with phosphohydrolase enzymes involved in P remineralization are quite large and could potentially lead to significant disequilibration of Pi oxygen. The observed near equilibration of deep water Pi likely calls for continued slow rates of microbial uptake and release of Pi and/or extracellular pyrophosphatase-mediated oxygen exchange between water and Pi along the deep water flow path.

  16. A Toxoplasma gondii protein with homology to intracellular type Na{sup +}/H{sup +} exchangers is important for osmoregulation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Maria E.; Wicher, Sarah [Department of Biological Sciences, University of Idaho, Life Sciences South Room 142, Moscow, ID 83844 (United States); Pace, Douglas A. [Center for Tropical and Emerging Global Diseases and Department of Cellular Biology University of Georgia, Athens, GA 30602 (United States); Sullivan, Jack [Department of Biological Sciences, University of Idaho, Life Sciences South Room 142, Moscow, ID 83844 (United States); Moreno, Silvia N.J. [Center for Tropical and Emerging Global Diseases and Department of Cellular Biology University of Georgia, Athens, GA 30602 (United States); Arrizabalaga, Gustavo, E-mail: gustavo@uidaho.edu [Department of Biological Sciences, University of Idaho, Life Sciences South Room 142, Moscow, ID 83844 (United States)

    2011-06-10

    The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na{sup +}/H{sup +} exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca{sup 2+} concentration [Ca{sup 2+}]{sub i}, and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.

  17. A Toxoplasma gondii protein with homology to intracellular type Na⁺/H⁺ exchangers is important for osmoregulation and invasion.

    Science.gov (United States)

    Francia, Maria E; Wicher, Sarah; Pace, Douglas A; Sullivan, Jack; Moreno, Silvia N J; Arrizabalaga, Gustavo

    2011-06-10

    The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na(+)/H(+) exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca(2+) concentration [Ca(2+)](i), and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.

  18. Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation

    Science.gov (United States)

    Albers, Harald M. H. G.; Dong, Anping; van Meeteren, Laurens A.; Egan, David A.; Sunkara, Manjula; van Tilburg, Erica W.; Schuurman, Karianne; van Tellingen, Olaf; Morris, Andrew J.; Smyth, Susan S.; Moolenaar, Wouter H.; Ovaa, Huib

    2010-01-01

    Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC50 ∼ 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX. PMID:20360563

  19. Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli.

    Science.gov (United States)

    Di Cagno, Raffaella; De Angelis, Maria; Coda, Rossana; Minervini, Fabio; Gobbetti, Marco

    2009-06-01

    This work was aimed at investigating the molecular mechanisms of Quorum Sensing (QS) in Lactobacillus plantarum DC400 when co-cultured with other sourdough lactobacilli. The growth and survival of L. plantarum DC400 was not affected when co-cultivated with Lactobacillus sanfranciscensis DPPMA174 or Lactobacillus rossiae A7. Nevertheless, 2-DE analysis showed that the level of protein expression of L. plantarum DC400 increased under co-culture conditions. Although several proteins were commonly induced in both co-cultures, the highest induction was found in co-culture with L. rossiae A7. Overexpressed proteins, related to QS and stress response mechanisms, were identified: DnaK, GroEL, 30S ribosomal protein S1 and S6, ATP synthase subunit beta, adenosylmethionine synthetase (MetK), phosphopyruvate hydratase, phosphoglycerate kinase, elongation factor Tu, putative manganese-dependent inorganic pyrophosphatase, d-lactate dehydrogenase, triosephosphate isomerase, fructose-bisphosphate aldolase and nucleoside-diphosphate kinase. As shown by real-time PCR, expression of the luxS gene of L. plantarum DC400 was also affected during co-cultivation. According to overexpression of MetK and luxS during co-cultivation, synthesis of AI-2-like substances was also influenced by the type of microbial co-cultures. This study showed that expression of some genes/proteins, also QS-related, in L. plantarum was influenced by co-cultivation of other sourdough lactobacilli.

  20. Microgravity effects on Arabidopsis thaliana energy pool

    Science.gov (United States)

    Dobrota, C.; Piso, M. I.; Banciu, H.; Keul, A.

    The flexibility of plant bioenergetics helps plants to acclimate to environmental stresses Our work is focused on standard free energy changes for PPi and ATP hydrolysis in order to assess the relative importance of PPi versus ATP as an energy donor in the plant cytosol of Arabidopsis plants exposed to microgravity The results indicated that PPi would be particularly favored as a phosphoryl donor relative to ATP under cytosolic conditions known to accompany stresses Recent researches showed that besides its functions inside the cell ATP may be released to the extracellular milieu where it functions as the primary signaling molecule of a diverse range of physiological processes It seems that extracellular ATP is essential for maintaining plant cell viability We intend to study how the production and the release of ATP is influenced by the microgravity References begin enumerate item Chivasaa S Bongani K Ndimbab W Simonc J Lindseyc K and Slabasc A 2005 Extracellular ATP Functions as an Endogenous External Metabolite Regulating Plant Cell Viability The Plant Cell 17 3019-3034 item Palma D A Blumwald E and Plaxton W C 2000 Upregulation of vacuolar H -translocating pyrophosphatase by phosphate starvation of Brassica napus rapeseed suspension cell cultures FEBS Letters 486 155-158 item Plaxton W C 2004 Plant response to stress Biochemical adaptations to phosphate deficiency In R Goodman ed Encyclopedia of Plant and Crop Science Marcel Dekker Inc N Y end enumerate

  1. Proteoglycan synthesis in normal and Lowe syndrome fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Harper, G.S.; Hascall, V.C.; Yanagishita, M.; Gahl, W.A.

    1987-04-25

    Lowe (oculocerebrorenal) syndrome (LS) is an X-linked disorder characterized by congenital cataracts, generalized hypotonia, mental retardation, and renal Fanconi syndrome. The basic defect remains unknown, but the possibility that fibroblasts express reduced sulfation of glycosaminoglycans has been studied in several laboratories. A mechanism involving overproduction of an enzyme (nucleotide pyrophosphatase) active against adenosine 3'-phosphate, 5'-phosphosulfate (PAPS) has been postulated. Decreased synthesis of normally sulfated glycosaminoglycans was also reported. We measured the synthesis of proteoglycans and glycosaminoglycans by incorporation of (/sup 3/H)glucosamine and Na/sub 2/(/sup 35/)SO/sub 4/ into cultured fibroblasts from four LS patients and related it directly to the synthesis in six normal fibroblast cultures. We found that the rate of synthesis varied greatly among the normal cultures (cv, 30%), but not significantly between LS and the normal. The LS fibroblasts' ability to sulfate glycosaminoglycans was assayed as the amount of /sup 3/H-glycosaminoglycan eluting at low ionic strength on anion exchange chromatography, the amount of non-sulfated disaccharide present in chondroitinase digests of labeled proteoglycans, and the ratio of /sup 35/S to 3H incorporation into proteoglycans. Each parameter suggested that the LS cells were synthesizing normally sulfated glycosaminoglycans (e.g. % delta Di-0S, 21 +/- 6 in normal; 27 +/- 6 in LS). The cells' ability to sulfate glycosaminoglycans was tested under conditions of markedly stimulated glycosaminoglycan synthesis, by treating the cultures with a beta-D-xyloside.

  2. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.

    Science.gov (United States)

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Cheng, Lailiang; Hao, Yu-Jin

    2016-03-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants.

  3. FAD synthesis and degradation in the nucleus create a local flavin cofactor pool.

    Science.gov (United States)

    Giancaspero, Teresa Anna; Busco, Giovanni; Panebianco, Concetta; Carmone, Claudia; Miccolis, Angelica; Liuzzi, Grazia Maria; Colella, Matilde; Barile, Maria

    2013-10-04

    FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg(-1) protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min(-1)·mg(-1) protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.

  4. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    Science.gov (United States)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  5. Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol.

    Science.gov (United States)

    Wilkins, Katie A; Bosch, Maurice; Haque, Tamanna; Teng, Nianjun; Poulter, Natalie S; Franklin-Tong, Vernonica E

    2015-03-01

    Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD.

  6. Catalytic mechanism of MraY and WecA, two paralogues of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily.

    Science.gov (United States)

    Al-Dabbagh, Bayan; Olatunji, Samir; Crouvoisier, Muriel; El Ghachi, Meriem; Blanot, Didier; Mengin-Lecreulx, Dominique; Bouhss, Ahmed

    2016-08-01

    The MraY transferase catalyzes the first membrane step of bacterial cell wall peptidoglycan biosynthesis, namely the transfer of the N-acetylmuramoyl-pentapeptide moiety of the cytoplasmic precursor UDP-MurNAc-pentapeptide to the membrane transporter undecaprenyl phosphate (C55P), yielding C55-PP-MurNAc-pentapeptide (lipid I). A paralogue of MraY, WecA, catalyzes the transfer of the phospho-GlcNAc moiety of UDP-N-acetylglucosamine onto the same lipid carrier, leading to the formation of C55-PP-GlcNAc that is essential for the synthesis of various bacterial cell envelope components. These two enzymes are members of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, which are essential for bacterial envelope biogenesis. Despite the availability of detailed biochemical information on the MraY enzyme, and the recently published crystal structure of MraY of Aquifex aeolicus, the molecular basis for its catalysis remains poorly understood. This knowledge can contribute to the design of potential inhibitors. Here, we report a detailed catalytic study of the Bacillus subtilis MraY and Thermotoga maritima WecA transferases. Both forward and reverse exchange reactions required the presence of the second substrate, C55P and uridine monophosphate (UMP), respectively. Both enzymes did not display any pyrophosphatase activity on the nucleotide substrate. Moreover, we showed that the nucleotide substrate UDP-MurNAc-pentapeptide, as well as the nucleotide product UMP, can bind to MraY in the absence of lipid ligands. Therefore, our data are in favour of a single displacement mechanism. During this "one-step" mechanism, the oxyanion of the polyprenyl-phosphate attacks the β-phosphate of the nucleotide substrate, leading to the formation of lipid product and the liberation of UMP. The involvement of an invariant aspartyl residue in the deprotonation of the lipid substrate is discussed.

  7. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea

    Directory of Open Access Journals (Sweden)

    Inês A. C. ePereira

    2011-04-01

    Full Text Available The number of sequenced genomes of sulfate-reducing organisms (SRO has increased significantly in the recent years, providing an opportunity for a broader perspective into the energy metabolism of such organisms. In this work we carried out a comparative survey of energy metabolism genes found in twenty-five available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologues, Rnf and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(PH, β-oxidation and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation.

  8. Acidosis-Induced Changes in Proteome Patterns of the Prostate Cancer-Derived Tumor Cell Line AT-1.

    Science.gov (United States)

    Ihling, Angelika; Ihling, Christian H; Sinz, Andrea; Gekle, Michael

    2015-09-04

    Under various pathological conditions, such as inflammation, ischemia and in solid tumors, physiological parameters (local oxygen tension or extracellular pH) show distinct tissue abnormalities (hypoxia and acidosis). For tumors, the prevailing microenvironment exerts a strong influence on the phenotype with respect to proliferation, invasion, and metastasis formation and therefore influences prognosis. In this study, we investigate the impact of extracellular metabolic acidosis (pH 7.4 versus 6.6) on the proteome patterns of a prostate cancer-derived tumor cell type (AT-1) using isobaric labeling and LC-MS/MS analysis. In total, 2710 proteins were identified and quantified across four biological replicates, of which seven were significantly affected with changes >50% and used for validation. Glucose transporter 1 and farnesyl pyrophosphatase were found to be down-regulated after 48 h of acidic treatment, and metallothionein 2A was reduced after 24 h and returned to control values after 48 h. After 24 and 48 h at pH 6.6, glutathione S transferase A3 and NAD(P)H dehydrogenase 1, cellular retinoic acid-binding protein 2, and Na-bicarbonate transporter 3 levels were found to be increased. The changes in protein levels were confirmed by transcriptome and functional analyses. In addition to the experimental in-depth investigation of proteins with changes >50%, functional profiling (statistical enrichment analysis) including proteins with changes >20% revealed that acidosis upregulates GSH metabolic processes, citric acid cycle, and respiratory electron transport. Metabolism of lipids and cholesterol biosynthesis were downregulated. Our data comprise the first comprehensive report on acidosis-induced changes in proteome patterns of a tumor cell line.

  9. Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus

    Directory of Open Access Journals (Sweden)

    Valenzuela Jesus G

    2009-06-01

    Full Text Available Abstract Background Sand fly saliva plays an important role in blood feeding and Leishmania transmission as it was shown to increase parasite virulence. On the other hand, immunity to salivary components impedes the establishment of infection. Therefore, it is most desirable to gain a deeper insight into the composition of saliva in sand fly species which serve as vectors of various forms of leishmaniases. In the present work, we focused on Phlebotomus (Adlerius arabicus, which was recently shown to transmit Leishmania tropica, the causative agent of cutaneous leishmaniasis in Israel. Results A cDNA library from salivary glands of P. arabicus females was constructed and transcripts were sequenced and analyzed. The most abundant protein families identified were SP15-like proteins, ParSP25-like proteins, D7-related proteins, yellow-related proteins, PpSP32-like proteins, antigen 5-related proteins, and 34 kDa-like proteins. Sequences coding for apyrases, hyaluronidase and other putative secreted enzymes were also represented, including endonuclease, phospholipase, pyrophosphatase, amylase and trehalase. Mass spectrometry analysis confirmed the presence of 20 proteins predicted to be secreted in the salivary proteome. Humoral response of mice bitten by P. arabicus to salivary antigens was assessed and many salivary proteins were determined to be antigenic. Conclusion This transcriptomic analysis of P. arabicus salivary glands is the first description of salivary proteins of a sand fly in the subgenus Adlerius. Proteomic analysis of P. arabicus salivary glands produced the most comprehensive account in a single sand fly species to date. Detailed information and phylogenetic relationships of the salivary proteins are provided, expanding the knowledge base of molecules that are likely important factors of sand fly-host and sand fly-Leishmania interactions. Enzymatic and immunological investigations further demonstrate the value of functional

  10. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence.

    Science.gov (United States)

    Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing

    2014-05-14

    Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new

  11. A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatidic acid formation in vivo and regulates urethral tension.

    Directory of Open Access Journals (Sweden)

    Hiroshi Saga

    Full Text Available Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2, is a secreted enzyme that has lysophospholipase D activity, which converts lysophosphatidylcholine to bioactive lysophosphatidic acid. Lysophosphatidic acid activates at least six G-protein coupled recpetors, which promote cell proliferation, survival, migration and muscle contraction. These physiological effects become dysfunctional in the pathology of cancer, fibrosis, and pain. To date, several autotaxin/ENPP2 inhibitors have been reported; however, none were able to completely and continuously inhibit autotaxin/ENPP2 in vivo. In this study, we report the discovery of a highly potent autotaxin/ENPP2 inhibitor, ONO-8430506, which decreased plasma lysophosphatidic acid formation. The IC50 values of ONO-8540506 for lysophospholipase D activity were 6.4-19 nM for recombinant autotaxin/ENPP2 proteins and 4.7-11.6 nM for plasma from various animal species. Plasma lysophosphatidic acid formation during 1-h incubation was almost completely inhibited by the addition of >300 nM of the compound to human plasma. In addition, when administered orally to rats at a dose of 30 mg/kg, the compound demonstrated good pharmacokinetics in rats and persistently inhibited plasma lysophosphatidic acid formation even at 24 h after administration. Smooth muscle contraction is a known to be promoted by lysophosphatidic acid. In this study, we showed that dosing rats with ONO-8430506 decreased intraurethral pressure accompanied by urethral relaxation. These findings demonstrate the potential of this autotaxin/ENPP2 inhibitor for the treatment of various diseases caused by lysophosphatidic acid, including urethral obstructive disease such as benign prostatic hyperplasia.

  12. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes

    Science.gov (United States)

    Kowalska, Joanna; Wypijewska del Nogal, Anna; Darzynkiewicz, Zbigniew M.; Buck, Janina; Nicola, Corina; Kuhn, Andreas N.; Lukaszewicz, Maciej; Zuberek, Joanna; Strenkowska, Malwina; Ziemniak, Marcin; Maciejczyk, Maciej; Bojarska, Elzbieta; Rhoads, Robert E.; Darzynkiewicz, Edward; Sahin, Ugur; Jemielity, Jacek

    2014-01-01

    Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, β- or γ-position of the 5′,5′-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m27,3′-OGpppG. Higher expression of cancer antigens would make mRNAs containing m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2 favorable for anticancer immunization. PMID:25150148

  13. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification.

    Science.gov (United States)

    Yadav, Manisha C; Simão, Ana Maria Sper; Narisawa, Sonoko; Huesa, Carmen; McKee, Marc D; Farquharson, Colin; Millán, José Luis

    2011-02-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PP(i)). Mutations in the TNAP gene cause hypophosphatasia, a heritable form of rickets and osteomalacia. Here we show that PHOSPHO1, a phosphatase with specificity for phosphoethanolamine and phosphocholine, plays a functional role in the initiation of calcification and that ablation of PHOSPHO1 and TNAP function prevents skeletal mineralization. Phospho1(-/-) mice display growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life. Primary cultures of Phospho1(-/-) tibial growth plate chondrocytes and chondrocyte-derived matrix vesicles (MVs) show reduced mineralizing ability, and plasma samples from Phospho1(-/-) mice show reduced levels of TNAP and elevated plasma PP(i) concentrations. However, transgenic overexpression of TNAP does not correct the bone phenotype in Phospho1(-/-) mice despite normalization of their plasma PP(i) levels. In contrast, double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality. We conclude that PHOSPHO1 has a nonredundant functional role during endochondral ossification, and based on these data and a review of the current literature, we propose an inclusive model of skeletal calcification that involves intravesicular PHOSPHO1 function and P(i) influx into MVs in the initiation of mineralization and the functions of TNAP, nucleotide pyrophosphatase phosphodiesterase-1, and collagen in the extravesicular progression of mineralization.

  14. Characterization of pbt genes conferring increased Pb2+ and Cd2+ tolerance upon Achromobacter xylosoxidans A8.

    Science.gov (United States)

    Hložková, Kateřina; Suman, Jáchym; Strnad, Hynek; Ruml, Tomas; Paces, Vaclav; Kotrba, Pavel

    2013-12-01

    The cluster of pbtTFYRABC genes is carried by plasmid pA81. Its elimination from Achromobacter xylosoxidans A8 resulted in increased sensitivity towards Pb(2+) and Cd(2+). Predicted pbtTRABC products share strong similarities with Pb(2+) uptake transporter PbrT, transcriptional regulator PbrR, metal efflux P1-ATPases PbrA and CadA, undecaprenyl pyrophosphatase PbrB and its signal peptidase PbrC from Cupriavidus metallidurans CH34. Expression of pbtABC or pbtA in a metal-sensitive Escherichia coli GG48 rendered the strain Pb(2+)-, Cd(2+)- and Zn(2+)-tolerant and caused decreased accumulation of the metal ions. Accumulation of Pb(2+), but not of Cd(2+) or Zn(2+), was promoted in E. coli expressing pbtT. Additional genes of the pbt cluster are pbtF and pbtY, which encode the cation diffusion facilitator (CDF)-like transporter and a putative fatty acid hydroxylase of unknown function, respectively. Expression of pbtF did not confer increased metal tolerance upon E. coli GG48, although the protein showed measurable Pb(2+)-efflux activity. Unlike the pbtT promoter, promoters of pbtABC, pbtF and pbtY contain features characteristic of promoters controlled by metal-responsive transcriptional regulators of the MerR family. Upregulation of pbtABC, pbtF and pbtY upon Pb(2+), Cd(2+) and Zn(2+) exposure was confirmed in wild-type Achromobacter xylosoxidans A8. Gel shift assays proved binding of purified PbtR to the respective promoters.

  15. Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa.

    Directory of Open Access Journals (Sweden)

    Young-Joo Yi

    Full Text Available Inorganic pyrophosphate (PPi is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1 in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies.

  16. Dissecting nutrient-related co-expression networks in phosphate starved poplars

    Science.gov (United States)

    Kavka, Mareike; Polle, Andrea

    2017-01-01

    Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term “response to P starvation” was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category “galactolipid synthesis”. Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating “DNA modification” and “cell division” as well as “defense” and “RNA modification” and “signaling” were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented

  17. The Genome of Syntrophomonas Wolfei: New Insights into Syntrophic Metabolism and Biohydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, Jessica R; Sims, David R; Han, Cliff F; Kim, E; Lykidis, Athanasios; Lapidus, Alla; McDonald, Erin; Rohlin, Lars; Culley, David E; Gunsalus, Robert; McInerney, Michael J

    2010-08-01

    Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains ten RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate, or unsaturated fatty acids to re-oxidize reduced cofactors. S. wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologs for β-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from 4 to 8 carbons in length. S. wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H2 from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.

  18. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota.

    Directory of Open Access Journals (Sweden)

    Bettina Siebers

    Full Text Available Here, we report on the complete genome sequence of the hyperthermophilic Crenarchaeum Thermoproteus tenax (strain Kra1, DSM 2078(T a type strain of the crenarchaeotal order Thermoproteales. Its circular 1.84-megabase genome harbors no extrachromosomal elements and 2,051 open reading frames are identified, covering 90.6% of the complete sequence, which represents a high coding density. Derived from the gene content, T. tenax is a representative member of the Crenarchaeota. The organism is strictly anaerobic and sulfur-dependent with optimal growth at 86°C and pH 5.6. One particular feature is the great metabolic versatility, which is not accompanied by a distinct increase of genome size or information density as compared to other Crenarchaeota. T. tenax is able to grow chemolithoautotrophically (CO₂/H₂ as well as chemoorganoheterotrophically in presence of various organic substrates. All pathways for synthesizing the 20 proteinogenic amino acids are present. In addition, two presumably complete gene sets for NADH:quinone oxidoreductase (complex I were identified in the genome and there is evidence that either NADH or reduced ferredoxin might serve as electron donor. Beside the typical archaeal A₀A₁-ATP synthase, a membrane-bound pyrophosphatase is found, which might contribute to energy conservation. Surprisingly, all genes required for dissimilatory sulfate reduction are present, which is confirmed by growth experiments. Mentionable is furthermore, the presence of two proteins (ParA family ATPase, actin-like protein that might be involved in cell division in Thermoproteales, where the ESCRT system is absent, and of genes involved in genetic competence (DprA, ComF that is so far unique within Archaea.

  19. A STUDY OF THE NUCLEOSIDE TRI- AND DIPHOSPHATE ACTIVITIES OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Ernster, Lars; Jones, Lois C.

    1962-01-01

    Rat liver microsomes catalyze the hydrolysis of the triphosphates of adenosine, guanosine, uridine, cytidine, and inosine into the corresponding diphosphates and inorganic orthophosphate. The activities are stimulated by Na2S2O4, and inhibited by atebrin, chlorpromazine, sodium azide, and deaminothyroxine. Sodium deoxycholate inhibits the ATPase activity in a progressive manner; the release of orthophosphate from GTP and UTP is stimulated by low, and inhibited by high, concentrations of deoxycholate, and that from CTP and ITP is unaffected by low, and inhibited by high, concentrations of deoxycholate. Subfractionation of microsomes with deoxycholate into ribosomal, membrane, and soluble fractions reveals a concentration of the triphosphatase activity in the membrane fraction. Rat liver microsomes also catalyze the hydrolysis of the diphosphates of the above nucleosides into the corresponding monophosphates and inorganic orthophosphate. Deoxycholate strongly enhances the GDPase, UDPase, and IDPase activities while causing no activation or even inhibition of the ADPase and CDPase activities. The diphosphatase is unaffected by Na2S2O4 and is inhibited by azide and deaminothyroxine but not by atebrin or chlorpromazine. Upon fractionation of the microsomes with deoxycholate, a large part of the GDPase, UDPase, and IDPase activities is recovered in the soluble fraction. Mechanical disruption of the microsomes with an Ultra Turrax Blender both activates and releases the GDPase, UDPase, and IDPase activities, and the former effect occurs more readily than the latter. The GDPase, UDPase, and IDPase activities of the rat liver cell reside almost exclusively in the microsomal fraction, as revealed by comparative assays of the mitochondrial, microsomal, and final supernatant fractions of the homogenate. The microsomes exhibit relatively low nucleoside monophosphatase and inorganic pyrophosphatase activities, and these are unaffected by deoxycholate or mechanical treatment

  20. Nuclear translocation of β-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.

    Science.gov (United States)

    Herencia, Carmen; Martínez-Moreno, Julio M; Herrera, Concepción; Corrales, Fernando; Santiago-Mora, Raquel; Espejo, Isabel; Barco, Monserrat; Almadén, Yolanda; de la Mata, Manuel; Rodríguez-Ariza, Antonio; Muñoz-Castañeda, Juan R

    2012-01-01

    Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, β-catenin nuclear translocation, up-regulation of genes related to the Wnt/β-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/β-catenin inactivation. Hepatocytes with nuclear translocation of β-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase β-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin β-chain were down-regulated in this protocol. In conclusion, our results suggest that activation of the Wnt/β-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.

  1. Biochemical characterization of an α1,2-colitosyltransferase from Escherichia coli O55:H7.

    Science.gov (United States)

    Wu, Zhigang; Zhao, Guohui; Li, Tiehai; Qu, Jingyao; Guan, Wanyi; Wang, Jiajia; Ma, Cheng; Li, Xu; Zhao, Wei; Wang, Peng G; Li, Lei

    2016-05-01

    Colitose, also known as 3,6-dideoxy-L-galactose or 3-deoxy-L-fucose, is one of only five naturally occurring 3,6-dideoxyhexoses. Colitose was found in lipopolysaccharide of a number of infectious bacteria, including Escherichia coli O55 & O111 and Vibrio cholera O22 & O139. To date, no colitosyltransferase (ColT) has been characterized, probably due to the inaccessibility of the sugar donor, GDP-colitose. In this study, starting with chemically prepared colitose, 94.6 mg of GDP-colitose was prepared via a facile and efficient one-pot two-enzyme system involving an L-fucokinase/GDP-L-Fuc pyrophosphorylase and an inorganic pyrophosphatase (EcPpA). WbgN, a putative ColT from E. coliO55:H5 was then cloned, overexpressed, purified and biochemically characterized by using GDP-colitose as a sugar donor. Activity assay and structural identification of the synthetic product clearly demonstrated that wbgN encodes an α1,2-ColT. Biophysical study showed that WbgN does not require metal ion, and is highly active at pH 7.5-9.0. In addition, acceptor specificity study indicated that WbgN exclusively recognizes lacto-N-biose (Galβ1,3-GlcNAc). Most interestingly, it was found that WbgN exhibits similar activity toward GDP-l-Fuc (kcat/Km= 9.2 min(-1)mM(-1)) as that toward GDP-colitose (kcat/Km= 12 min(-1)mM(-1)). Finally, taking advantage of this, type 1 H-antigen was successfully synthesized in preparative scale.

  2. Functional Study of the P32T ITPA Variant Associated with Drug Sensitivity in Humans

    Science.gov (United States)

    Stepchenkova, Elena I.; Tarakhovskaya, Elena R.; Spitler, Kathryn; Frahm, Christin; Menezes, Miriam R.; Simone, Peter D.; Kolar, Carol; Marky, Luis A.; Borgstahl, Gloria E. O.; Pavlov, Youri I.

    2009-01-01

    Sanitization of the cellular nucleotide pools from mutagenic base analogs is necessary for the accuracy of transcription and replication of genetic material and plays a substantial role in cancer prevention. The undesirable mutagenic, recombinogenic and toxic incorporation of purine base analogs (i.e. ITP, dITP, XTP, dXTP or 6-hydroxyaminopurine (HAP) deoxynucleoside triphosphate) into nucleic acids is prevented by inosine triphosphate pyrophosphatase (ITPA). The ITPA gene is a highly conserved, moderately expressed gene. Defects in ITPA orthologs in model organisms cause severe sensitivity to HAP and chromosome fragmentation. A human polymorphic allele 94C->A encodes for the enzyme with a P32T amino acid change and leads to accumulation of non-hydrolyzed ITP. ITPase activity is not detected in erythrocytes of these patients. The P32T polymorphism has also been associated with adverse sensitivity to purine base analog drugs. We have found that the ITPA-P32T mutant is a dimer in solution, as is wild-type ITPA, and has normal ITPA activity in vitro, but the melting point of ITPA-P32T is 5 degrees C lower than that of wild-type. ITPA-P32T is also fully functional in vivo in model organisms as determined by a HAP mutagenesis assay and its complementation of a bacterial ITPA defect. The amount of ITPA protein detected by western blot is severely diminished in a human fibroblast cell line with the 94C->A change. We propose that the P32T mutation exerts its effect in certain human tissues by cumulative effects of destabilization of transcripts, protein stability and availability. PMID:19631656

  3. Profiling trait anxiety: transcriptome analysis reveals cathepsin B (Ctsb as a novel candidate gene for emotionality in mice.

    Directory of Open Access Journals (Sweden)

    Ludwig Czibere

    Full Text Available Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait "anxiety". We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB or low (LAB anxiety-related behavior, and also show signs of comorbid depression-like behavior. We identified and confirmed sex-independent differences in the basal expression of 13 candidate genes, using tissue from the entire brain, including coronin 7 (Coro7, cathepsin B (Ctsb, muscleblind-like 1 (Mbnl1, metallothionein 1 (Mt1, solute carrier family 25 member 17 (Slc25a17, tribbles homolog 2 (Trib2, zinc finger protein 672 (Zfp672, syntaxin 3 (Stx3, ATP-binding cassette, sub-family A member 2 (Abca2, ectonucleotide pyrophosphatase/phosphodiesterase 5 (Enpp5, high mobility group nucleosomal binding domain 3 (Hmgn3 and pyruvate dehydrogenase beta (Pdhb. Additionally, we confirmed brain region-specific differences in the expression of synaptotagmin 4 (Syt4.Our identification of about 90 polymorphisms in Ctsb suggested that this gene might play a critical role in shaping our mouse model's behavioral endophenotypes. Indeed, the assessment of anxiety-related and depression-like behaviors of Ctsb knock-out mice revealed an increase in depression-like behavior in females. Altogether, our results suggest that Ctsb has significant effects on emotionality, irrespective of the tested mouse strain, making it a promising target for future pharmacotherapy.

  4. Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development.

    Science.gov (United States)

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-05-01

    Vacuole represents a major storage organelle playing vital roles in pH homoeostasis and cellular detoxification. The chemical and functional properties of tonoplast in response to chilling temperature and their roles in chilling injury are largely unknown. In the current study, lipid composition of tonoplast and the activities of two vacuolar proton pumps, H?-ATPase (V-ATPase) and H?-pyrophosphatase (V-PPase), were investigated in accordance with the development of blackheart, a form of chilling injury in pineapple fruit (Ananas comosus). Chilling temperature at 10 °C for 1 week induced irreversible blackheart injury in concurrence with a substantial decrease in V-ATPase activity. By contrast, the activity was increased after 1 week at 25 °C. The activity of V-PPase was not changed under both temperatures. Level of total phospholipids of tonoplast decreased at 10 °C, but increased at 25 °C. There was no change at the level of total glycolipids under both temperatures. Thus, low temperature increased the ratio of total glycolipids vs. total phospholipids of tonoplast. Phosphatidylcholine and phosphatidylethanolamine were the predominant phospholipids of tonoplast. Low temperature increased the relative level of phosphatidic acid but decreased the percentage of both phosphatidylcholine and phosphatidylethanolamine. Unsaturated fatty acids accounted for over 60 % of the total tonoplast fatty acids, with C18:1 and C18:2 being predominant. Low temperature significantly decreased the percentage of C18:3. Modification of membrane lipid composition and its effect on the functional property of tonoplast at low temperature were discussed in correlation with their roles in the development of chilling injury in pineapple fruit.

  5. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  6. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI and pseudoxanthoma elasticum (PXE

    Directory of Open Access Journals (Sweden)

    Alexander Apschner

    2014-07-01

    Full Text Available In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf, which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1, a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues – most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin. Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord

  7. Genome wide adaptations of Plasmodium falciparum in response to lumefantrine selective drug pressure.

    Directory of Open Access Journals (Sweden)

    Leah Mwai

    Full Text Available The combination therapy of the Artemisinin-derivative Artemether (ART with Lumefantrine (LM (Coartem® is an important malaria treatment regimen in many endemic countries. Resistance to Artemisinin has already been reported, and it is feared that LM resistance (LMR could also evolve quickly. Therefore molecular markers which can be used to track Coartem® efficacy are urgently needed. Often, stable resistance arises from initial, unstable phenotypes that can be identified in vitro. Here we have used the Plasmodium falciparum multidrug resistant reference strain V1S to induce LMR in vitro by culturing the parasite under continuous drug pressure for 16 months. The initial IC(50 (inhibitory concentration that kills 50% of the parasite population was 24 nM. The resulting resistant strain V1S(LM, obtained after culture for an estimated 166 cycles under LM pressure, grew steadily in 378 nM of LM, corresponding to 15 times the IC(50 of the parental strain. However, after two weeks of culturing V1S(LM in drug-free medium, the IC(50 returned to that of the initial, parental strain V1S. This transient drug tolerance was associated with major changes in gene expression profiles: using the PFSANGER Affymetrix custom array, we identified 184 differentially expressed genes in V1S(LM. Among those are 18 known and putative transporters including the multidrug resistance gene 1 (pfmdr1, the multidrug resistance associated protein and the V-type H+ pumping pyrophosphatase 2 (pfvp2 as well as genes associated with fatty acid metabolism. In addition we detected a clear selective advantage provided by two genomic loci in parasites grown under LM drug pressure, suggesting that all, or some of those genes contribute to development of LM tolerance--they may prove useful as molecular markers to monitor P. falciparum LM susceptibility.

  8. Counter-regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis

    Institute of Scientific and Technical Information of China (English)

    Laura E Zweifler; Mudita K Patel; Francisco H Nociti Jr; Helen F Wimer; Jose L Milla n; Martha J Somerman; Brian L Foster

    2015-01-01

    Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cementum, and between cementum and bone. Biomineralization is regulated by the ratio of inorganic phosphate (Pi) to mineral inhibitor pyrophosphate (PPi), where local Pi and PPi concentrations are controlled by phosphatases including tissue-nonspecific alkaline phosphatase (TNAP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). The focus of this study was to define the roles of these phosphatases in cementogenesis. TNAP was associated with earliest cementoblasts near forming acellular and cellular cementum. With loss of TNAP in the Alpl null mouse, acellular cementum was inhibited, while cellular cementum production increased, albeit as hypomineralized cementoid. In contrast, NPP1 was detected in cementoblasts after acellular cementum formation, and at low levels around cellular cementum. Loss of NPP1 in the Enpp1 null mouse increased acellular cementum, with little effect on cellular cementum. Developmental patterns were recapitulated in a mouse model for acellular cementum regeneration, with early TNAP expression and later NPP1 expression. In vitro, cementoblasts expressed Alpl gene/protein early, whereas Enpp1 gene/protein expression was significantly induced only under mineralization conditions. These patterns were confirmed in human teeth, including widespread TNAP, and NPP1 restricted to cementoblasts lining acellular cementum. These studies suggest that early TNAP expression creates a low PPi environment promoting acellular cementum initiation, while later NPP1 expression increases PPi, restricting acellular cementum apposition. Alterations in PPi have little effect on cellular cementum formation, though matrix mineralization is affected.

  9. Isolation and characterization of a conserved domain in the eremophyte H+-PPase family.

    Directory of Open Access Journals (Sweden)

    Yanqin Wang

    Full Text Available H(+-translocating inorganic pyrophosphatases (H(+-PPase were recognized as the original energy donors in the development of plants. A large number of researchers have shown that H(+-PPase could be an early-originated protein that participated in many important biochemical and physiological processes. In this study we cloned 14 novel sequences from 7 eremophytes: Sophora alopecuroid (Sa, Glycyrrhiza uralensis (Gu, Glycyrrhiza inflata (Gi, Suaeda salsa (Ss, Suaeda rigida (Sr, Halostachys caspica (Hc, and Karelinia caspia (Kc. These novel sequences included 6 ORFs and 8 fragments, and they were identified as H(+-PPases based on the typical conserved domains. Besides the identified domains, sequence alignment showed that there still were two novel conserved motifs. A phylogenetic tree was constructed, including the 14 novel H(+-PPase amino acid sequences and the other 34 identified H(+-PPase protein sequences representing plants, algae, protozoans and bacteria. It was shown that these 48 H(+-PPases were classified into two groups: type I and type II H(+-PPase. The novel 14 eremophyte H(+-PPases were classified into the type I H(+-PPase. The 3D structures of these H(+-PPase proteins were predicted, which suggested that all type I H(+-PPases from higher plants and algae were homodimers, while other type I H(+-PPases from bacteria and protozoans and all type II H(+-PPases were monomers. The 3D structures of these novel H(+-PPases were homodimers except for SaVP3, which was a monomer. This regular structure could provide important evidence for the evolutionary origin and study of the relationship between the structure and function among members of the H(+-PPase family.

  10. A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces lividans.

    Science.gov (United States)

    You, Delin; Wang, Lianrong; Yao, Fen; Zhou, Xiufen; Deng, Zixin

    2007-05-22

    A novel DNA modification system by sulfur (S) in Streptomyces lividans 66 was reported to be encoded by a cluster of five genes designated dndA-E [Zhou, X., He, X., Liang, J., Li, A., Xu, T., Kieser, T., Helmann, J. D., and Deng, Z. (2005) Mol. Microbiol. 57, 1428-1438]. The dndA gene was cloned and the protein product expressed in Escherichia coli, purified to homogeneity, and characterized as a homodimeric protein of ca. 91 kDa. Purified DndA has a yellow color and UV-visible spectra characteristic of a pyridoxal phosphate-containing enzyme and was proven to be a cysteine desulfurase able to catalyze removal of elemental S atoms from l-cysteine to produce l-alanine with substrate specificity similar to that of E. coli IscS. DndC was also purified to homogeneity and found to contain a 4Fe-4S cluster by spectral analysis and have obvious ATP pyrophosphatase activity. DndA could catalyze iron-sulfur cluster assembly by activation of apo-Fe DndC protein prepared by removal of its iron-sulfur cluster using alpha,alpha'-dipyridyl. A mutated DndA, with serine substituted for cysteine at position 327, which was confirmed to have lost its corresponding cysteine desulfurase activity, also lost its ability to reactivate the apo-Fe DndC. The likely involvement of an interaction between DndA and DndC in the biochemical pathway for the unusual site-specific DNA modification in S. lividans 66 is discussed.

  11. Coordinate expression of NADPH-dependent flavin reductase, Fre-1, and Hint-related 7meGMP-directed hydrolase, DCS-1.

    Science.gov (United States)

    Kwasnicka, Dorota A; Krakowiak, Agnieszka; Thacker, Colin; Brenner, Charles; Vincent, Steven R

    2003-10-03

    A novel human cytosolic flavin reductase, Nr1, was recently described that contains FMN, FAD, and NADPH cofactors. Though the targets of the related NADPH-dependent flavoprotein reductases, cytochrome P450 reductase, methionine synthase reductase, and nitric oxide synthase, are known, the cellular function of Nr1 is not clear. To explore expression and regulation of Nr1, we cloned fre-1, the Caenorhabditis elegans ortholog of Nr1, and discovered that it is transcribed as a bicistronic pre-mRNA together with dcs-1, the ortholog of the recently described scavenger mRNA decapping enzyme. We used the novel substrate, 7meGpppBODIPY, to demonstrate that DCS-1 has low micromolar specificity for guanine ribonucleotides with the 7me modification, whereas trimethylated G substrates are poor competitors. Contrary to earlier classification, DCS-1 is not a pyrophosphatase but a distant member of the Hint branch of the histidine triad superfamily of nucleotide hydrolases and transferases. These observations are consistent with the hypothesis that DCS-1 homologs may function in the metabolism of capped oligonucleotides generated following exosome-dependent degradation of short-lived mRNA transcripts. We find that fre-1 and dcs-1 are coordinately expressed through worm development, are induced by heat shock, and have a nearly identical expression profile in human tissues. Furthermore, immunocytochemical analysis of the endogenous proteins in COS cells indicates that both are present in the nucleus and concentrated in a distinct perinuclear structure. Though no connection between these enzymes had been anticipated, our data and data from global expression and protein association studies suggest that the two enzymes jointly participate in responses to DNA damage, heat shock, and other stresses.

  12. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.

    Science.gov (United States)

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem Y; Ressl, Susanne; Wiersma-Koch, Helen; Borland, Jamar; Brown, Clayton L; Johnson, Tory A; Singh, Zorawar; Herschlag, Daniel

    2016-11-02

    Naively one might have expected an early division between phosphate monoesterases and diesterases of the alkaline phosphatase (AP) superfamily. On the contrary, prior results and our structural and biochemical analyses of phosphate monoesterase PafA, from Chryseobacterium meningosepticum, indicate similarities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodiesterase (NPP)] and distinct differences from the three metal ion AP superfamily monoesterase, from Escherichia coli AP (EcAP). We carried out a series of experiments to map out and learn from the differences and similarities between these enzymes. First, we asked why there would be independent instances of monoesterases in the AP superfamily? PafA has a much weaker product inhibition and slightly higher activity relative to EcAP, suggesting that different metabolic evolutionary pressures favored distinct active-site architectures. Next, we addressed the preferential phosphate monoester and diester catalysis of PafA and NPP, respectively. We asked whether the >80% sequence differences throughout these scaffolds provide functional specialization for each enzyme's cognate reaction. In contrast to expectations from this model, PafA and NPP mutants with the common subset of active-site groups embedded in each native scaffold had the same monoesterase:diesterase specificities; thus, the >10(7)-fold difference in native specificities appears to arise from distinct interactions at a single phosphoryl substituent. We also uncovered striking mechanistic similarities between the PafA and EcAP monoesterases, including evidence for ground-state destabilization and functional active-site networks that involve different active-site groups but may play analogous catalytic roles. Discovering common network functions may reveal active-site architectural connections that are critical for function, and identifying regions of functional modularity may facilitate the design of new enzymes

  13. Crystal arthritides - gout and calcium pyrophosphate arthritis : Part 1: Epidemiology and pathophysiology.

    Science.gov (United States)

    Schlee, S; Bollheimer, L C; Bertsch, T; Sieber, C C; Härle, P

    2017-02-23

    Gout and calcium pyrophosphate deposition disease (CPPD, pseudogout) are still the most frequent inflammatory arthritides in multimorbid elderly patients. Gout and CPPD are different diseases and based on different pathophysiological principles. Gout is closely associated with the metabolic syndrome and is an independent risk factor for cardiovascular mortality. The prevalence of asymptomatic hyperuricemia is estimated to be 10-20% of adults in industrial nations and prevalence is strongly associated with age. More than 7% of persons aged over 65 years suffer from clinically manifest gout. The underlying pathophysiological principle is an imbalance between the formation and elimination of uric acid. The degradation of the purine bases adenine and guanosine to uric acid is catalysed by xanthine oxidase and genetic polymorphisms and mutations play an important role in absorption and excretion processes. Furthermore, carrier proteins, such as URAT-1 or OAT-4 also have an influence on these processes. An imbalance of the physiological processes results in the solubility product being exceeded, which in consequence leads to crystallization of urate. This induces a cascade of massive inflammatory reactions at the molecular and cellular level with the activation of cytokines. The inflammatory process can be stopped by neutrophil extracellular traps (NETs) that modulate aggregation and degradation of chemokines and cytokines and partitioning of crystallized urate against immune cells. Calcium pyrophosphate dehydrate (CPP) crystals are formed in the cartilage and CPP deposition can be found in 30% of people aged over 80 years. Inorganic pyrophosphate (PPi) is synthesized in chondrocytes and plays an important part in the formation of calcium pyrophosphate crystals. The degradation is catalyzed by inorganic pyrophosphatases. If there is dysregulation of this homeostasis more PPi is produced, which ultimately contributes to the formation of the CPP crystals.

  14. Brain death induces the alteration of liver protein expression profiles in rabbits.

    Science.gov (United States)

    Du, Bing; Li, Ling; Zhong, Zhibiao; Fan, Xiaoli; Qiao, Bingbing; He, Chongxiang; Fu, Zhen; Wang, Yanfeng; Ye, Qifa

    2014-08-01

    At present, there is no accurate method for evaluating the quality of liver transplant from a brain-dead donor. Proteomics are used to investigate the mechanisms involved in brain death‑induced liver injury and to identify sensitive biomarkers. In the present study, age‑ and gender‑matched rabbits were randomly divided into the brain death and sham groups. The sham served as the control. A brain‑death model was established using an intracranial progressive pressurized method. The differentially expressed proteins extracted from the liver tissues of rabbits that were brain‑dead for 6 h in the two groups were determined by two‑dimensional gel electrophoresis and matrix‑assisted laser desorption ionization time of flight mass spectrometry. Although there was no obvious functional and morphological difference in 2, 4 and 6 h after brain death, results of the proteomics analysis revealed 973±34 and 987±38 protein spots in the control and brain death groups, respectively. Ten proteins exhibited a ≥2‑fold alteration. The downregulated proteins were: aldehyde dehydrogenase, runt‑related transcription factor 1 (RUNX1), inorganic pyrophosphatase, glutamate‑cysteine ligase regulatory subunit and microsomal cytochrome B5. By contrast, the expression of dihydropyrimidinase-related protein 4, peroxiredoxin‑6, 3‑phosphoinositide‑dependent protein kinase‑1, 3-mercaptopyruvate and alcohol dehydrogenase were clearly upregulated. Immunohistochemistry and western blot analysis results revealed that the expression of RUNX1 was gradually increased in a time‑dependent manner in 2, 4, and 6 h after brain death. In conclusion, alteration of the liver protein expression profile induced by brain death indicated the occurrence of complex pathological changes even if no functional or morphological difference was identified. Thus, RUNX1 may be a sensitive predict factor for evaluating the quality of brain death donated liver.

  15. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3' to 5' exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  16. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3` to 5` exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  17. Genome-wide analysis identifies colonic genes differentially associated with serum leptin and insulin concentrations in C57BL/6J mice fed a high-fat diet.

    Science.gov (United States)

    Kim, Sung-Eun; Choo, Jinsil; Yoon, Joon; Chu, Jae Ryang; Bae, Yun Jung; Lee, Seungyeoun; Park, Taesung; Sung, Mi-Kyung

    2017-01-01

    Obesity-induced chronic inflammation is known to increase the risk of ulcerative colitis, Crohn's disease, and colorectal cancer. Accumulating evidence suggests that leptin and insulin are key molecules linking obesity with diseases of the lower intestine. Here, we identified serum phenotype-associated genes in the colon of diet-induced obese mice as early biomarkers of obesity-associated colonic diseases. C57BL/6J mice were fed with either normal diet (ND, 15% of fat calories) or high-fat diet (HFD, 45% of fat calories) for 8 weeks. Serum concentrations of insulin, insulin-like growth factor-1 (IGF-1), leptin, and adiponectin were measured as obesity-related phenotypic markers. Genome-wide gene expression profiles of colon tissue were determined, followed by statistical analyses to detect differentially expressed and serum phenotype-associated genes. HFD-fed mice showed higher serum concentrations of leptin (P insulin (P insulin, IGF-1, and adiponectin, respectively. We identified 17 leptin-associated genes and 4 insulin-associated genes that inversely responded to HFD and ND. Among these, leptin-associated Peli3 (Pellino E3 ubiquitin protein ligase family member 3), Creb1 (cAMP responsive element binding protein 1), and Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2, autotaxin) and insulin-associated Centg1 (AGAP2, ArfGAP with GTPase domain) are reported to play a role either in obesity or colonic diseases. mRNA expression of these genes was validated by RT-qPCR. Our data suggest Peli3, Creb1, Enpp2, and Centg1 as potential early biomarker candidates for obesity-induced pathophysiological changes in the colon. Future studies verifying the function of these candidates are needed for the prevention, early detection, and treatment of colon diseases.

  18. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals.

    Directory of Open Access Journals (Sweden)

    Dana Willner

    Full Text Available The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota.

  19. Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5'-Nucleotidase by Rat Cortical Astrocytes In Vitro.

    Science.gov (United States)

    Brisevac, Dusica; Adzic, Marija; Laketa, Danijela; Parabucki, Ana; Milosevic, Milena; Lavrnja, Irena; Bjelobaba, Ivana; Sévigny, Jean; Kipp, Markus; Nedeljkovic, Nadezda

    2015-11-01

    Extracellular ATP (eATP) acts as a danger-associated molecular pattern which induces reactive response of astrocytes after brain insult, including morphological remodeling of astrocytes, proliferation, chemotaxis, and release of proinflammatory cytokines. The responses induced by eATP are under control of ecto-nucleotidases, which catalyze sequential hydrolysis of ATP to adenosine. In the mammalian brain, ecto-nucleotidases comprise three enzyme families: ecto-nucleoside triphosphate diphosphohydrolases 1-3 (NTPDase1-3), ecto-nucleotide pyrophosphatase/phospodiesterases 1-3 (NPP1-3), and ecto-5'-nucleotidase (eN), which crucially determine ATP/adenosine ratio in the pericellular milieu. Altered expression of ecto-nucleotidases has been demonstrated in several experimental models of human brain dysfunctions. In the present study, we have explored the pattern of NTPDase1-3, NPP1-3, and eN expression by cultured cortical astrocytes challenged with 1 mmol/L ATP (eATP). At the transcriptional level, eATP upregulated expression of NTPDase1, NTPDase2, NPP2, and eN, while, at translational and functional levels, these were paralleled only by the induction of NTPDase2 and eN. Additionally, eATP altered membrane topology of eN, from clusters localized in membrane domains to continuous distribution along the cell membrane. Our results suggest that eATP, by upregulating NTPDase2 and eN and altering the enzyme membrane topology, affects local kinetics of ATP metabolism and signal transduction that may have important roles in the process related to inflammation and reactive gliosis.

  20. Analysis of meniscal degeneration and meniscal gene expression

    Directory of Open Access Journals (Sweden)

    Norton James H

    2010-01-01

    Full Text Available Abstract Background Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1 to determine the prevalence of meniscal degeneration in OA patients, and 2 to examine gene expression in OA meniscal cells compared to normal meniscal cells. Methods Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens, and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR. Results The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P HLA-DPA1, integrin, beta 2 (ITGB2, ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1, ankylosis, progressive homolog (ANKH and fibroblast growth factor 7 (FGF7, were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5 and prostaglandin E synthase (PTGES, were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific. Conclusion Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel

  1. Central role of pyrophosphate in acellular cementum formation.

    Directory of Open Access Journals (Sweden)

    Brian L Foster

    Full Text Available BACKGROUND: Inorganic pyrophosphate (PP(i is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PP(i are controlled by antagonistic functions of factors that decrease PP(i and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP, and those that increase local PP(i and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1. The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PP(i in cementum formation, we analyzed root development in knock-out ((-/- mice featuring PP(i dysregulation. RESULTS: Excess PP(i in the Alpl(-/- mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PP(i in both Ank and Enpp1(-/- mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PP(i regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PP(i output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PP(i mineralizing conditions, cementoblasts increased Ank (5-fold and Enpp1 (20-fold, while increasing PP(i inhibited mineralization and associated increases in Ank and Enpp1 mRNA. CONCLUSIONS: Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating

  2. Reaction mechanism of mRNA guanylyltransferase from rat liver: isolation and characterization of a guanylyl-enzyme intermediate.

    Science.gov (United States)

    Mizumoto, K; Kaziro, Y; Lipmann, F

    1982-03-01

    Rat liver RNA guanylyltransferase catalyzes a GTP-PPi exchange reaction in the absence of acceptor RNA [Mizumoto, K. & Lipmann, F. (1979) Proc. Natl. Acad. Sci. USA 76, 4961-4965] suggesting that the reaction proceeds through the formation of a covalent guanylylated intermediate. We now present more direct evidence for the existence of the enzyme-GMP intermediate: (i) the enzyme-[32P]GMP intermediate was formed on incubation of rat liver guanylyltransferase with [alpha-32P]GTP and migrated as a single radioactive band with Mr 69,000 on NaDodSO4/polyacrylamide gel electrophoresis, and (ii) the intermediate isolated on gel filtration can transfer its GMP moiety to ppGpCpC-poly(A2,U2,G) to form the capped RNA molecule or it can react with PPi to regenerate GTP. The formation of the intermediate was dependent on Mg2+ and was strongly inhibited by PPi. The addition of pyrophosphatase markedly increased the amount of the intermediate complex. On blue dextran-Sepharose affinity column chromatography, the activity of guanylyltransferase to form an enzyme-[32P]GMP intermediate comigrated with activities of cap formation and GTP-PPi exchange. A phosphoamide type linkage between GMP and enzyme is suggested by its acidlabile and alkali-stable nature and also by the susceptibility to acidic hydroxylamine. These results indicate that the reaction catalyzed by rat liver guanylyltransferase occurs through the following two partial steps: (i) E + GTP in equilibrium E-pG + PPi; and (ii) E-pG + ppN .....leads to GpppN .....+ E.

  3. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells.

    Science.gov (United States)

    Migocka, Magdalena; Papierniak, Anna; Kosatka, Ewelina; Klobus, Grazyna

    2011-10-01

    The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.

  4. Label-free Quantitative Proteomics of Mouse Cerebrospinal Fluid Detects β-Site APP Cleaving Enzyme (BACE1) Protease Substrates In Vivo.

    Science.gov (United States)

    Dislich, Bastian; Wohlrab, Felix; Bachhuber, Teresa; Müller, Stephan A; Kuhn, Peer-Hendrik; Hogl, Sebastian; Meyer-Luehmann, Melanie; Lichtenthaler, Stefan F

    2015-10-01

    Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1-/- and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1-/- and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1-/- mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors.

  5. The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine.

    Science.gov (United States)

    Requena, Cristina E; Pérez-Moreno, Guiomar; Horváth, András; Vértessy, Beáta G; Ruiz-Pérez, Luis M; González-Pacanowska, Dolores; Vidal, Antonio E

    2016-09-01

    Decitabine (5-aza-2'-deoxycytidine, aza-dCyd) is an anti-cancer drug used clinically for the treatment of myelodysplastic syndromes and acute myeloid leukaemia that can act as a DNA-demethylating or genotoxic agent in a dose-dependent manner. On the other hand, DCTPP1 (dCTP pyrophosphatase 1) and dUTPase are two 'house-cleaning' nucleotidohydrolases involved in the elimination of non-canonical nucleotides. In the present study, we show that exposure of HeLa cells to decitabine up-regulates the expression of several pyrimidine metabolic enzymes including DCTPP1, dUTPase, dCMP deaminase and thymidylate synthase, thus suggesting their contribution to the cellular response to this anti-cancer nucleoside. We present several lines of evidence supporting that, in addition to the formation of aza-dCTP (5-aza-2'-deoxycytidine-5'-triphosphate), an alternative cytotoxic mechanism for decitabine may involve the formation of aza-dUMP, a potential thymidylate synthase inhibitor. Indeed, dUTPase or DCTPP1 down-regulation enhanced the cytotoxic effect of decitabine producing an accumulation of nucleoside triphosphates containing uracil as well as uracil misincorporation and double-strand breaks in genomic DNA. Moreover, DCTPP1 hydrolyses the triphosphate form of decitabine with similar kinetic efficiency to its natural substrate dCTP and prevents decitabine-induced global DNA demethylation. The data suggest that the nucleotidohydrolases DCTPP1 and dUTPase are factors involved in the mode of action of decitabine with potential value as enzymatic targets to improve decitabine-based chemotherapy.

  6. Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids.

    Science.gov (United States)

    Sandoval, Francisco J; Zhang, Yi; Roje, Sanja

    2008-11-07

    FAD synthetases (EC 2.7.7.2) catalyze biosynthesis of FAD from FMN and ATP. Monofunctional FAD synthetases are known to exist in mammals and yeast; bifunctional enzymes also catalyzing phosphorylation of riboflavin to FMN are known to exist in bacteria. Previously known eukaryotic enzymes with FAD synthetase activity have no sequence similarity to prokaryotic enzymes with riboflavin kinase and FAD synthetase activities. Proteins homologous to bacterial bifunctional FAD synthetases, yet shorter and lacking amino acid motifs at the C terminus, were found by bioinformatic analyses in vascular plant genomes, suggesting that plants contain a type of FAD synthetase previously known to exist only in prokaryotes. The Arabidopsis thaliana genome encodes two of such proteins. Both proteins, which we named AtRibF1 and AtRibF2, carry N-terminal extensions with characteristics of organellar targeting peptides. AtRibF1 and AtRibF2 cDNAs were cloned by reverse transcription-PCR. Only FAD synthetase activity was detected in the recombinant enzymes produced in Escherichia coli. FMN and ATP inhibited both enzymes. Kinetic parameters of AtRibF1 and AtRibF2 for the two substrates were similar. Confocal microscopy of protoplasts transformed with enhanced green fluorescence protein-fused proteins showed that AtRibF1 and AtRibF2 are targeted to plastids. In agreement with subcellular localization to plastids, Percoll-isolated chloroplasts from pea (Pisum sativum) synthesized FAD from imported riboflavin. Riboflavin kinase, FMN hydrolase, and FAD pyrophosphatase activities were detected in Percoll-isolated chloroplasts and mitochondria from pea. We propose from these new findings a model for subcellular distribution of enzymes that synthesize and hydrolyze flavin nucleotides in plants.

  7. Genome-wide analysis identifies colonic genes differentially associated with serum leptin and insulin concentrations in C57BL/6J mice fed a high-fat diet

    Science.gov (United States)

    Yoon, Joon; Chu, Jae Ryang; Bae, Yun Jung; Lee, Seungyeoun; Park, Taesung; Sung, Mi-Kyung

    2017-01-01

    Obesity-induced chronic inflammation is known to increase the risk of ulcerative colitis, Crohn’s disease, and colorectal cancer. Accumulating evidence suggests that leptin and insulin are key molecules linking obesity with diseases of the lower intestine. Here, we identified serum phenotype-associated genes in the colon of diet-induced obese mice as early biomarkers of obesity-associated colonic diseases. C57BL/6J mice were fed with either normal diet (ND, 15% of fat calories) or high-fat diet (HFD, 45% of fat calories) for 8 weeks. Serum concentrations of insulin, insulin-like growth factor-1 (IGF-1), leptin, and adiponectin were measured as obesity-related phenotypic markers. Genome-wide gene expression profiles of colon tissue were determined, followed by statistical analyses to detect differentially expressed and serum phenotype-associated genes. HFD-fed mice showed higher serum concentrations of leptin (P < 0.001) and insulin (P < 0.01) than those in the ND group, whereas serum IGF-1 and adiponectin concentrations did not differ between the two dietary groups. Among differentially expressed genes affected by HFD, 135, 128, 110, and 341 genes were associated with serum levels of leptin, insulin, IGF-1, and adiponectin, respectively. We identified 17 leptin-associated genes and 4 insulin-associated genes that inversely responded to HFD and ND. Among these, leptin-associated Peli3 (Pellino E3 ubiquitin protein ligase family member 3), Creb1 (cAMP responsive element binding protein 1), and Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2, autotaxin) and insulin-associated Centg1 (AGAP2, ArfGAP with GTPase domain) are reported to play a role either in obesity or colonic diseases. mRNA expression of these genes was validated by RT-qPCR. Our data suggest Peli3, Creb1, Enpp2, and Centg1 as potential early biomarker candidates for obesity-induced pathophysiological changes in the colon. Future studies verifying the function of these candidates are needed

  8. Dynamics of biopolymers on nanomaterials studied by quasielastic neutron scattering and MD simulations

    Science.gov (United States)

    Dhindsa, Gurpreet K.

    Neutron scattering has been proved to be a powerful tool to study the dynamics of biological systems under various conditions. This thesis intends to utilize neutron scattering techniques, combining with MD simulations, to develop fundamental understanding of several biologically interesting systems. Our systems include a drug delivery system containing Nanodiamonds with nucleic acid (RNA), and two specific model proteins, beta-Casein and Inorganic Pyrophosphatase (IPPase). RNA and nanodiamond (ND) both are suitable for drug-delivery applications in nano-biotechnology. The architecturally flexible RNA with catalytic functionality forms nanocomposites that can treat life-threatening diseases. The non-toxic ND has excellent mechanical and optical properties and functionalizable high surface area, and thus actively considered for biomedical applications. In this thesis, we utilized two tools, quasielastic neutron scattering (QENS) and Molecular Dynamics Simulations to probe the effect of ND on RNA dynamics. Our work provides fundamental understanding of how hydrated RNA motions are affected in the RNA-ND nanocomposites. From the experimental and Molecular Dynamics Simulation (MD), we found that hydrated RNA motion is faster on ND surface than a freestanding one. MD Simulation results showed that the failure of Stokes Einstein relation results the presence of dynamic heterogeneities in the biomacromolecules. Radial pair distribution function from MD Simulation confirmed that the hydrophilic nature of ND attracts more water than RNA results the de-confinement of RNA on ND. Therefore, RNA exhibits faster motion in the presence of ND than freestanding RNA. In the second project, we studied the dynamics of a natively disordered protein beta-Casein which lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of beta-Casein are explored by Quasielastic Neutron Scattering (QENS). We investigated the mean square displacement (MSD) of

  9. Role of somatomedin-B-like domains on ENPP1 inhibition of insulin signaling.

    Science.gov (United States)

    Dimatteo, Claudia; Marucci, Antonella; Palazzo, Antonio; Cisternino, Carmela; Marsano, René Massimiliano; Trischitta, Vincenzo; Di Paola, Rosa

    2013-03-01

    The exact mechanism by which ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin signaling is not known. ENPP1 contains two somatomedin-B-like domains (i.e. SMB 1 and 2) involved in ENPP1 dimerization in animal cells. The aim of the present study was to investigate if these domains modulate ENPP1 inhibitory activity on insulin signaling in human insulin target cells (HepG2). ENPP1 (ENPP1-3'myc), ENPP1 deleted of SMB 1 (ENPP1-ΔI-3'myc) or of SMB 2 (ENPP1-ΔII-3'myc) domain were cloned in frame with myc tag in mammalian expression vector pRK5. Plasmids were transiently transfected in human liver HepG2 cells. ENPP1 inhibitory activity on insulin signaling, dimerization and protein-protein interaction with insulin receptor (IR), reported to mediate the modulation of ENPP1 inhibitory activity, were studied. As compared to untransfected cells, a progressive increase of ENPP1 inhibitory activity on insulin-induced IR β-subunit autophosphorylation and on Akt-S(473) phosphorylation was observed in ENPP1-3'myc, ENPP1-ΔI-3'myc and ENPP1-ΔII-3'myc cells. Under non reducing conditions a 260 kDa homodimer, indicating ENPP1 dimerization, was observed. The ratio of non reduced (260 kDa) to reduced (130 kDa) ENPP1 was significantly decreased by two thirds in ENPP1-ΔII-3'myc vs. ENPP1-3'myc but not in ENPP1-ΔI-3'myc. A similar ENPP1/IR interaction was detectable by co-immunoprecipitation in ENPP1-3'myc, ENPP1-ΔI-3'myc and ENPP1-ΔII-3'myc cells. In conclusion, SMB 1 and SMB 2 are negative modulators of ENPP1 inhibitory activity on insulin signaling. For SMB 2 such effect might be mediated by a positive role on protein dimerization. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. A combinatorial approach towards achieving an injectable, self-contained, phosphate-releasing scaffold for promoting biomineralization in critical size bone defects.

    Science.gov (United States)

    Nayef, Lamees; Mekhail, Mina; Benameur, Laila; Rendon, Juan S; Hamdy, Reggie; Tabrizian, Maryam

    2016-01-01

    An injectable, guanosine 5'-diphosphate (GDP)-crosslinked chitosan sponge was investigated as a drug delivery system (DDS) for accelerating biomineralization in critical size bone defects (CSBDs). Two approaches were examined both individually, and in combination, in order to achieve this goal. The first approach involved the encapsulation and release of Bone Morphogenetic Protein 7 (BMP-7), a powerful mineralization stimulant. Results confirmed that the rapid gelation of the chitosan sponge prompted high encapsulation of BMP-7 and provided a controlled release over a period of 30 days with no burst release. The second approach was aimed at encapsulating pyrophosphatase (PPtase) in the chitosan sponge to cleave pyrophosphate (PPi) - a mineralization inhibitor and a degradation by-product of the chitosan sponge - into phosphate ions (Pi). PPtase was successfully encapsulated in the chitosan sponge and was able to completely eliminate PPi from the media by cleaving them to Pi. Chitosan sponges releasing Pi into the media were shown to increase overall biomineralization fourfold as compared to controls, an amount equivalent to biomineralization caused by direct injection of 1μg of free BMP-7 to the cells. Even though the combined encapsulation of 1μg BMP-7 and PPtase in the sponges did not demonstrate an additional increase in biomineralization, encapsulation of low concentrations of BMP-7 can promote mesenchymal stem cell migration into the sponge after application in vivo. The findings suggest that the sponge-PPtase system likely allows excellent bone regeneration with lower concentrations of BMP-7, reducing risks and expense of the treatment. There are bone defects, known as critical size defects, which do not heal on their own and require a therapeutic intervention. The current commercially-available therapies use large quantities of growth factors, such as Bone Morphogenetic Proteins (BMPs), which makes them expensive and a source for a myriad of unwanted side

  11. Alkalosis and Dialytic Clearance of Phosphate Increases Phosphatase Activity: A Hidden Consequence of Hemodialysis.

    Directory of Open Access Journals (Sweden)

    Ricardo Villa-Bellosta

    Full Text Available Extracellular pyrophosphate is a potent endogenous inhibitor of vascular calcification, which is degraded by alkaline phosphatase (ALP and generated by hydrolysis of ATP via ectonucleotide pyrophosphatase/phosphodiesterase 1 (eNPP1. ALP activity (as routinely measured in clinical practice represents the maximal activity (in ideal conditions, but not the real activity (in normal or physiological conditions. For the first time, the present study investigated extracellular pyrophosphate metabolism during hemodialysis sessions (including its synthesis via eNPP1 and its degradation via ALP in physiological conditions.45 patients in hemodialysis were studied. Physiological ALP activity represents only 4-6% of clinical activity. ALP activity increased post-hemodialysis by 2% under ideal conditions (87.4 ± 3.3 IU/L vs. 89.3 ± 3.6 IU/L and 48% under physiological conditions (3.5 ± 0.2 IU/L vs. 5.2 ± 0.2 IU/L. Pyrophosphate synthesis by ATP hydrolysis remained unaltered post-hemodialysis. Post-hemodialysis plasma pH (7.45 ± 0.02 significantly increased compared with the pre-dialysis pH (7.26 ± 0.02. The slight variation in pH (~0.2 units induced a significant increase in ALP activity (9%. Addition of phosphate in post-hemodialysis plasma significantly decreased ALP activity, although this effect was not observed with the addition of urea. Reduction in phosphate levels and increment in pH were significantly associated with an increase in physiological ALP activity post-hemodialysis. A decrease in plasma pyrophosphate levels (3.3 ± 0.3 μmol/L vs. 1.9 ± 0.1 μmol/L and pyrophosphate/ATP ratio (1.9 ± 0.2 vs. 1.4 ± 0.1 post-hemodialysis was also observed.Extraction of uremic toxins, primarily phosphate and hydrogen ions, dramatically increases the ALP activity under physiological conditions. This hitherto unknown consequence of hemodialysis suggests a reinterpretation of the clinical value of this parameter.

  12. Functional characterization of the incomplete phosphotransferase system (PTS of the intracellular pathogen Brucella melitensis.

    Directory of Open Access Journals (Sweden)

    Marie Dozot

    Full Text Available BACKGROUND: In many bacteria, the phosphotransferase system (PTS is a key player in the regulation of the assimilation of alternative carbon sources notably through catabolic repression. The intracellular pathogens Brucella spp. possess four PTS proteins (EINtr, NPr, EIIANtr and an EIIA of the mannose family but no PTS permease suggesting that this PTS might serve only regulatory functions. METHODOLOGY/PRINCIPAL FINDINGS: In vitro biochemical analyses and in vivo detection of two forms of EIIANtr (phosphorylated or not established that the four PTS proteins of Brucella melitensis form a functional phosphorelay. Moreover, in vitro the protein kinase HprK/P phosphorylates NPr on a conserved serine residue, providing an additional level of regulation to the B. melitensis PTS. This kinase activity was inhibited by inorganic phosphate and stimulated by fructose-1,6 bisphosphate. The genes encoding HprK/P, an EIIAMan-like protein and NPr are clustered in a locus conserved among α-proteobacteria and also contain the genes for the crucial two-component system BvrR-BvrS. RT-PCR revealed a transcriptional link between these genes suggesting an interaction between PTS and BvrR-BvrS. Mutations leading to the inactivation of EINtr or NPr significantly lowered the synthesis of VirB proteins, which form a type IV secretion system. These two mutants also exhibit a small colony phenotype on solid media. Finally, interaction partners of PTS proteins were identified using a yeast two hybrid screen against the whole B. melitensis ORFeome. Both NPr and HprK/P were shown to interact with an inorganic pyrophosphatase and the EIIAMan-like protein with the E1 component (SucA of 2-oxoglutarate dehydrogenase. CONCLUSIONS/SIGNIFICANCE: The B. melitensis can transfer the phosphoryl group from PEP to the EIIAs and a link between the PTS and the virulence of this organism could be established. Based on the protein interaction data a preliminary model is proposed in which

  13. Impact of ribavirin dosage in chronic hepatitis C patients treated with simeprevir, pegylated interferon plus ribavirin combination therapy.

    Science.gov (United States)

    Tahata, Yuki; Hiramatsu, Naoki; Oze, Tsugiko; Urabe, Ayako; Morishita, Naoki; Yamada, Ryoko; Yakushijin, Takayuki; Hosui, Atsushi; Oshita, Masahide; Kaneko, Akira; Hagiwara, Hideki; Mita, Eiji; Ito, Toshifumi; Yamada, Yukinori; Inada, Masami; Katayama, Kazuhiro; Tamura, Shinji; Imai, Yasuharu; Hikita, Hayato; Sakamori, Ryotaro; Yoshida, Yuichi; Tatsumi, Tomohide; Hayashi, Norio; Takehara, Tetsuo

    2016-10-01

    The factors associated with sustained virologic response (SVR) in chronic hepatitis C (CH-C) genotype 1 patients treated with simeprevir (SMV), pegylated interferon (Peg-IFN) plus ribavirin (RBV) triple therapy have not been fully investigated. Two hundred and twenty-nine treatment-naïve CH-C patients treated with SMV triple therapy were enrolled in this study. The overall SVR rate was 87% in per-protocol analysis. In multivariate analysis, the interleukin (IL) 28B genotype (rs8099917, TT vs. non-TT, odds ratio [OR]: 0.044, P = 0.001) and RBV dose (< 10/10-12/ ≥ 12 mg/kg/day, OR: 4.513, P = 0.041) were significant factors associated with SVR. In patients with the IL28B non-TT genotype, RBV dose affected SVR dose-dependently in stratified analysis of RBV dose (P = 0.015); it was 44% (8/18) for patients administered <10 mg/kg/day of RBV, 78% (14/18) for those administered 10-12 mg/kg/day of RBV, and 100% (3/3) for those administered ≥12 mg/kg/day of RBV, whereas in patients with the IL28B TT genotype, a significant correlation between SVR and RBV dose was not observed (P = 0.229). Regarding RBV dose reduction of less than 10 mg/kg/day, the inosine triphosphate pyrophosphatase (ITPA) genotype (rs1127354, CC vs. non-CC, OR: 0.239, P = 0.003) and age (by 1 y.o., OR: 1.084, P = 0.002) were significant independent factors. RBV dosage affected SVR dose-dependently in patients with the IL28B non-TT genotype treated with SMV triple therapy. Special attention to anemia progression and RBV dosage should be paid to aged patients with the ITPA CC genotype. J. Med. Virol. 88:1776-1784, 2016. © 2016 Wiley Periodicals, Inc.

  14. Functional studies of ATP sulfurylase from Penicillium chrysogenum

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, P.A.

    1985-01-01

    ATP sulfurylase from Penicillium chrysogenum has a specific activity (V/sub max/) of 6-7 units x mg protein/sup -1/ determined with the physiological substrates of MgATP and SO/sub 4//sup 2 -/ and assayed by (A) initial velocity measurements with APS kinase and inorganic pyrophosphatase present and (B) analysis of nonlinear reaction progress curves. The fact both assays give the same results show the intrinsic activity of ATP sulfurylase is much higher than previously reported. In initial velocity dead-end inhibition studies, the sulfate analog S/sub 2/O/sub 3//sup 2 -/ is a competitive inhibitor of SO/sub 42/..sqrt.. and a noncompetitive inhibitor of MgATP. Monovalent oxyanions such as NO/sub 3//sup -/, ClO/sub 3//sup -/, ClO/sub 4//sup -/, and FSO/sub 3//sup -/ behave as uncompetitive inhibitors of MgATP and thus seem not to be true sulfate analogs. The reverse reaction was assayed by the pyrophosphate dependent release of /sup 35/SO/sub 4//sup 2 -/ from AP/sup 35/S. Product inhibition by MgATP or SO/sub 4//sup 2 -/ is competitive with APS and mixed-type with PP/sub i/. Imidodiphosphate can serve as an alternative substrate for PP/sub i/. ATP sulfurylase binds (but does not hydrolyze) APS. A Scatchard plot of the APS binding is nonlinear, suggesting at least two types of sites. The cumulative results are qualitatively consistent with the random addition of MgATP and SO/sub 4//sup 2 -/ and the ordered release of first MgPP/sub i/ then APS, with APS release being partially rate limiting. Certain quantitative discrepancies suggest either an unknown variable (e.g. enzyme concentration) complicates the analysis or, in light of binding studies that the actual mechanism is more complicated (e.g. alternating sites) than any of the conventional models examined.

  15. One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides.

    Science.gov (United States)

    Rexer, Thomas F T; Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo

    2017-09-18

    Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA) and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, i.e. pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl2 . The maximum reaction rate of GDP-mannose achieved was 2.7 µM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1▵TM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc)2 -Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc)2 -Man1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model

  16. Structural polarity and dynamics of male germline stem cells in an insect (milkweed bug Oncopeltus fasciatus).

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2008-01-01

    Knowing the structure opens a door for a better understanding of function because there is no function without structure. Male germline stem cells (GSCs) of the milkweed bug (Oncopeltus fasciatus) exhibit a very extraordinary structure and a very special relationship with their niche, the apical cells. This structural relationship is strikingly different from that known in the fruit fly (Drosophila melanogaster) -- the most successful model system, which allowed deep insights into the signaling interactions between GSCs and niche. The complex structural polarity of male GSCs in the milkweed bug combined with their astonishing dynamics suggest that cell morphology and dynamics are causally related with the most important regulatory processes that take place between GSCs and niche and ensure maintenance, proliferation, and differentiation of GSCs in accordance with the temporal need of mature sperm. The intricate structure of the GSCs of the milkweed bug (and probably of some other insects, i.e., moths) is only accessible by electron microscopy. But, studying singular sections through the apical complex (i.e., GSCs and apical cells) is not sufficient to obtain a full picture of the GSCs; especially, the segregation of projection terminals is not tangible. Only serial sections and their overlay can establish whether membrane ingrowths merely constrict projections or whether a projection terminal is completely cut off. To sequence the GSC dynamics, it is necessary to include juvenile stages, when the processes start and the GSCs occur in small numbers. The fine structural analysis of segregating projection terminals suggests that these terminals undergo autophagocytosis. Autophagosomes can be labeled by markers. We demonstrated acid phosphatase and thiamine pyrophosphatase (TPPase). Both together are thought to identify autophagosomes. Using the appropriate substrate of the enzymes and cerium chloride, the precipitation of electron-dense cerium phosphate granules

  17. 硅改善盐胁迫下库拉索芦荟生长和离子吸收与分布%Silicate Improves Growth and Ion Absorption and Distribution in Aloe vera under Salt Stress

    Institute of Scientific and Technical Information of China (English)

    徐呈祥; 刘友良; 郑青松; 刘兆普

    2006-01-01

    Si 2.0 mmol/L处理明显缓解NaCl 100、200mmol/L胁迫120 d对库拉索芦荟(Aloe vera)生长的抑制作用.Si可显著降低NaCl胁迫下芦荟植株中的Na+和Cl-含量,提高K+含量,从而显著降低K+/Na+,促进根对K+的选择性吸收(ASK,Na)和K+向地上部的选择性运输(TSK,Na),以维持植株体内的离子稳态.根系和叶片横切面的X-射线能谱微区分析结果进一步证实了这一结果.Si改善盐胁迫下芦荟对K+的选择性吸收和运输的机制之一是通过显著提高盐胁迫下芦荟根细胞质膜H+-ATPase、液泡膜H+-ATPase和液泡膜H+-PPase的活性.%Si 2.0 mmol/L in irrigation solution alleviated significantly the inhibition of NaCl stress of 100 or 200mmol/L to aloe growth. Exogenously applied Si decreased significantly Na+ and Cl- contents, increased K+content and K+/Na+ ratio and selectivity ratio of absorption (ASK, Na) and of translocation (TSK, Na) to K+ and Na+in aloe plant under both NaCl 100 and 200 mmol/L stresses for 30 d. In this way, the ion homeostasis in aloe plant under NaCl stress was maintained, as was proved by X-ray microanalysis of root tip and leaf across sections.One of the mechanisms to achieve this may be the significant enhancement of H+-ATPase activities by the addition of silicate in plasma membrane and tonoplast, H+-pyrophosphatase (H+-PPase) activity in tonoplast isolated from aloe root tips under NaCl stress.

  18. Abnormal Mechanical Loading Induces Cartilage Degeneration by Accelerating Meniscus Hypertrophy and Mineralization After ACL Injuries In Vivo.

    Science.gov (United States)

    Du, Guoqing; Zhan, Hongsheng; Ding, Daofang; Wang, Shaowei; Wei, Xiaochun; Wei, Fangyuan; Zhang, Jianzhong; Bilgen, Bahar; Reginato, Anthony M; Fleming, Braden C; Deng, Jin; Wei, Lei

    2016-03-01

    Although patients with an anterior cruciate ligament (ACL) injury have a high risk of developing posttraumatic osteoarthritis (PTOA), the role of meniscus hypertrophy and mineralization in PTOA after an ACL injury remains unknown. The purpose of this study was to determine if menisci respond to abnormal loading and if an ACL injury results in meniscus hypertrophy and calcification. The hypotheses were that (1) abnormal mechanical loading after an ACL injury induces meniscus hypertrophy and mineralization, which correlates to articular cartilage damage in vivo, and (2) abnormal mechanical loading on bovine meniscus explants induces the overexpression of hypertrophic and mineralization markers in vitro. Controlled laboratory study. In vivo guinea pig study (hypothesis 1): Three-month-old male Hartley guinea pigs (n = 9) underwent ACL transection (ACLT) on the right knee; the left knee served as the control. Calcification in the menisci was evaluated by calcein labeling 1 and 5 days before knee harvesting at 5.5 months. Cartilage and meniscus damage and mineralization were quantified by the Osteoarthritis Research Society International score and meniscus grade, respectively. Indian hedgehog (Ihh), matrix metalloproteinase-13 (MMP-13), collagen type X (Col X), progressive ankylosis homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), alkaline phosphatase (ALP), inorganic pyrophosphate (PPi), and inorganic phosphate (Pi) concentrations were evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. In vitro bovine meniscus explant study (hypothesis 2): Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 1, 2, and 3 hours. Cell viability was determined using live/dead staining. The levels of mRNA expression and protein levels were measured using real-time quantitative reverse transcription polymerase chain reaction and Western blot after 24, 48, and 72 hours in culture. The conditioned medium was collected for sulfated

  19. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    Science.gov (United States)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  20. Regulacin de la mineralizacin sea por factores inorgnicos y peptdicos Regulation of Bone Mineralization by inorganic and peptide factors

    Directory of Open Access Journals (Sweden)

    A.L Negri

    2011-10-01

    osteoctico perilacunar.Orthotopic mineralization begins with the production of matrix vesicles that are produced by polarized budding of the surface of condrocytes, osteoblasts and odontoblasts. It occurs in two steps: The first one is the formation of hydroxiapatite crystals within the matrix vesicles, followed by the propagation of the hydroxiapatite crystals through the membrane vesicle into the extra cellular matrix. In the regulation of orthotopic mineralization, apart from tissue-specific cells, a great number of enzymes, inorganic and peptide factors participate, that have complex interactions among them. Inorganic pyrophosphate (PPi antagonizes the ability of phosphate (Pi to crystallize with calcium and to form hydroxiapatite, thus suppressing its propagation. For the normal mineralization to continue, an adjusted balance of the extra cellular Pi and PPi levels is needed. Three molecules have been identified that have a central role in the regulation of extra cellular PPi levels: tissue non-specific alkaline phosphatase (TNAP, which hydrolyzes PPi, the nucleotide pyrophosphatase phosphodiesterase 1 (NPP1, which generates PPi from triphosphate nucleosides, and the multiple-steps transmembrane protein ANK which transfers PPi from the intracellular to the extracellular compartment. There are, in turn, two SIBLING proteins called DMP1 and MEPE that regulate mineralization. The expression of DMP1 by the osteocyte is dramatically induced in response to mechanical loading increasing bone mineralization. MEPE protein contains a protease resistant motif called ASARM, which is believed to be the candidate for the mineralization inhibitor (minhibin. Osteopontin is another mineralization inhibitor in its phosphorilated form and its secretion is markedly reduced in knockout mice for NPP1. Present data seem to support the hypothesis that these molecules could be the translators of bone strain and participate in the regulation of mineralization of the perilacunar osteocytic space.

  1. Presence of multiple acid phosphatases activity in seedlings of cucumber, radish and rocket salad Presença de atividade de múltiplas fosfatases ácidas em plântulas de pepino, rabanete e rúcula

    Directory of Open Access Journals (Sweden)

    Luciane Almeri Tabaldi

    2008-06-01

    Full Text Available Acid phosphatases (3.1.3.2 are a group of enzymes widely distributed in nature, which catalyze the hydrolysis of a variety of phosphate esters in the pH range of 4-6. We confirmed the presence of acid phosphatases in seedlings of cucumber (Cucumis sativus, radish (Raphanus sativus and rocket salad (Eruca vesicaria under different assay conditions using a rapid and simple preparation. The results showed that the optimum pH and temperature used for all species were close to 5.5 and 35°C, respectively. The enzyme was inhibited by molybdate, fluoride, azide, levamisole, orthovanadate, Zn2+ and Cu2+. Suramin had no effect on enzyme activity. The acid phosphatase from cucumber, radish and rocket salad hydrolyzed a wide variety of phosphate esters and the highest activity was observed with PPi, ATP and GTP. These results demonstrate that the enzyme investigated in this study is different from well known ester phosphate cleaving plant enzymes (apyrase and inorganic pyrophosphatases and this preparation could be a useful tool to future toxicological studies and to study initially all isoforms of acid phosphatase.As fosfatases ácidas (3.1.3.2 são um grupo de enzimas amplamente distribuídas na natureza, as quais catalisam a hidrólise de uma variedade de ésteres de fosfato com uma variação de pH entre quatro e seis. Foi confirmada a presença de fosfatases ácidas em plântulas de pepino (Cucumis sativus, rabanete (Raphanus sativus e rúcula (Eruca vesicaria sob diferentes condições de ensaio usando uma preparação rápida e simples. Os resultados mostraram que o pH e a temperatura ótimos para todas as espécies foram 5,5 e 35°C, respectivamente. A enzima foi inibida por molibdato, fluoreto, azida, levamisole, ortovanadato, Zn2+ e Cu2+. O inibidor suramim não afetou a atividade enzimática. As fosfatases ácidas de pepino, rabanete e rúcula hidrolisaram uma ampla variedade de ésteres de fosfato e a maior atividade foi observada com PPi, ATP

  2. Polimorfismo K121Q do gene ENPP1 e cardiopatia isquêmica em pacientes com diabete melito Polimorfismo K121Q del gen ENPP1 y cardiopatía isquémica en pacientes con diabetes melitus ENPP1 K121Q polymorphism and ischemic heart disease in diabetic patients

    Directory of Open Access Journals (Sweden)

    Milene Moehlecke

    2010-02-01

    ,6% hombres; edad 59,5±10,4 años. Se definió la ECI por la presencia de angina o infarto agudo de miocardio mediante el cuestionario cardiovascular de la Organización Mundial de la Salud y/o alteraciones compatibles en el ECG (código Minnesota o centellograma miocárdico. El polimorfismo K121Q fue genotipificado mediante la técnica de PCR y digestión enzimática. RESULTADOS: La ECI estuvo presente en 209 (36,5% pacientes. La frecuencia de los genotipos KK, KQ y QQ entrel os pacientes con ECI fue del 60,8%, 34,4% y 4,8%, semejante a la distribución de los genotipos entre los pacientes sin ECI (64,0%, 32,7% y 3,3%, P = 0,574. No se observó diferencia en las características clínicas o de laboratorio entre los tres genotipos, ni en relación con la presencia de síndrome metabólico. CONCLUSIÓN: No se encontró ninguna asociación entre el polimorfismo K121A del gen ENPP1 y la presencia de ECI o características fenotípicas de resistencia insulínica.BACKGROUND: The ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1 gene is a candidate gene for insulin resistance. Insulin resistance is a major component of metabolic syndrome (MetS and has been implicated in ischemic heart disease (IHD. OBJECTIVE: To evaluate the association between the K121Q polymorphism of the ENPP1 gene and IHD in white patients with type 2 diabetes mellitus (DM. METHODS: A cross-sectional study was performed in type 2 DM patients (n = 573, 50.6% males, age 59.5±10.4 years. IHD was defined by the presence of angina or myocardial infarction according to the Worth Health Organization cardiovascular questionnaire and/or compatible electrocardiographic (Minnesota Code, or perfusional abnormalities in myocardial scintigraphy. The K121Q polymorphism of ENPP1 gene was genotyped using PCR-based methods and restriction enzyme digestion. RESULTS: IHD was present in 209 (36.5% patients. The distribution of KK, KQ and QQ genotypes among patients with IHD was 60.8%, 34.4% and 4.8%, not different from

  3. Nitric Oxide Modulates the Activities of Plasma Membrane H+-ATPase and PPase in Wheat Seedling Roots and Promotes the Salt Tolerance Against Salt Stress%一氧化氮调节盐胁迫下小麦幼苗根部质膜H+-ATPase和焦磷酸酶活性提高耐盐性

    Institute of Scientific and Technical Information of China (English)

    阮海华; 沈文飚; 徐朗莱

    2004-01-01

    采用外源一氧化氮(NO)供体硝普钠(SNP)研究了NO对盐胁迫下小麦(Triticum aestivum L.)幼苗耐盐性的影响.结果表明,0.1 mmol/L SNP处理显著缓解了1 50 mmol/L NaCl胁迫对小麦幼苗生长的抑制效应,包括水分丧失以及叶绿素降解,从而提高了小麦幼苗的耐盐性.进一步结合1 mg/mL血红蛋白处理则显著逆转了SNP诱导的上述效应;利用亚硝酸钠和铁氰化钾作为对照也证实了NO对小麦幼苗耐盐性的专一性调节作用,并可能与NO对小麦幼苗根部质膜H+-ATPase和焦磷酸酶活性诱导有关.此外,尽管NO显著提高了盐胁迫下小麦幼苗根部细胞质膜H+-ATPase和焦磷酸酶的ATP水解活性,但是对跨膜H+转运则没有明显影响.应用外源CaSO4和EGTA处理也证实,Ca2+可能在NO诱导的质膜H+-ATPase和焦磷酸酶活性的提高过程中起信号作用.另外,分析盐胁迫下小麦幼苗根部Na+和K+含量的变化也发现,NO对Na+含量没有明显影响,但是却显著提高了K+水平和K+/Na+比,这可能也是NO提高小麦幼苗耐盐性的原因之一.%Effects of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the salt tolerance of wheat ( Triticurn aestivurn L.) seedlings indicated that NO donor significantly alleviated the growth inhibition, water loss and the decay of chlorophyll in wheat seedlings caused by 150 mmol/L NaCl salt stress, thus led to the promotion of salt tolerance against salt stress. Combined with 1 mg/mL hemoglobin treatment reverted the above SNP actions by restoring the growth of wheat seedlings and chlorophyll content to the level found in untreated wheat seedlings under salt stress. The specific role of NO in regulating the salt tolerance of wheat seedlings under salt stress was confirmed by using NaNO2 and K3[Fe(CN)6] as control. Further investigation showed that the effect of both which might be related to the induction of plasma membrane H+-ATPase and H+-PPase (H+-pyrophosphatase

  4. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    Science.gov (United States)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    , toothpaste and as a release of waste water treatment plants (Young et al., 2009). Anthropogenic effects will not be discussed further in the following. On this basis, we consider three different cases of pyromorphite formation as illustrated on the conceptual scheme of Fig. 1. Case 1: Pyromorphite grown recently (within the last hundreds of years) on rock surfaces in former mines. Both, phosphate released geochemically from igneous rocks and phosphate released biologically during leaching from litter/lysis of microbial cells and soil organic matter decomposition are possible sources. Case 2: Pyromorphite formation on mine dumps, below vegetation (recent, during tens to hundreds of years). Based on the specific setting of these samples investigated here (they were found exclusively below a large fern; see more details in the section on sample description), biologically-mediated P release provides the phosphate for pyromorphite growth. Case 3: Pyromorphite growth in the oxidized zones of ore bodies prior to human interference. Most samples of our study belong to this case.Phosphorus generally forms very strong covalent bonds (Huminicki and Hawthorne, 2002) and there is only negligible exchange of oxygen isotopes between phosphate and ambient water under most near-surface conditions without biological activity (Winter et al., 1940; Longinelli, 1965). The only important exchange of oxygen isotopes between phosphate and ambient water involves biological activity and the oxygen isotope composition of phosphate (δ18OP) may be modified by different enzymatic/cellular processes. Once phosphate is taken up by organisms, intracellular pyrophosphatase mediates internal P cycling. This is associated with a temperature-dependent equilibrium isotope fractionation due to the reversible exchange of O atoms between the phosphate molecule and cell water. As a result the δ18OP is equilibrated with the ambient water, and the equilibrium temperature can be calculated following the revised