WorldWideScience

Sample records for pyrolytic methane loss

  1. Synergistic methane formation on pyrolytic graphite due to combined H+ ion and H0 atom impact

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.; Auciello, O.; Strangeby, P.C.; Vietzke, E.; Flaskamp, K.; Philipps, V.

    1986-06-01

    Exposure of graphite to multispecies hydrogenic impact, as is the case in tokamaks, could lead to synergistic mechanisms resulting in an enhancement of methane formation, and consequently in increased carbon erosion. We present results obtained in controlled experiments in our laboratories in Toronto and Juelich for the synergistic methane production due to combined sub-eV H 0 atoms and energetic H + ion impact on pyrolytic graphite. Flux densities were 10 14 -2x10 16 H 0 /cm 2 s for the sub-eV H 0 atoms and 6x10 12 -5x10 15 H + /cm 2 for H + ions of 300 eV to 2.5 keV energy. Synergistic factors (defined as the ratio of methane formation rate due to combined H 0 and H + fluxes to the sum of the formation rates due to separate species impact) ranged from about 1.5-15 for the experimental parameters used. In addition, a spectrum of formed hydrocarbons in the synergistic reaction of H + and H 0 on graphite is presented

  2. Effect of oxygen and hydrogen on microstructure of pyrolytic carbon deposited from thermal decomposition of methane and ethanol

    Science.gov (United States)

    Ren, Biyun; Zhang, Shouyang; He, LiQun; Gu, Shengyue

    2018-05-01

    Chemical vapor infiltration (CVI) is the most extensive industrial preparation of carbon/carbon (C/C) composites. Precursor affects the CVI process considerably. In the present study, using carbon fiber bundles as preforms, methane and ethanol as precursors, the C/C composites were densified by decomposition of various gases in CVI. The thickness and texture of deposited pyrolytic carbon (PyC) were characterized by polarized light microscopy (PLM). The microstructure of PyC was analyzed by Raman spectroscopy. The morphologies of PyC were characterized by scanning electron microscopy (SEM). The composition of PyC was detected by X-ray photoelectron spectroscopy (XPS). Adding hydrogen in methane precursor resulted in a sharp decrease in the deposition rate and texture of PyC. Mixture of methane and ethanol as the precursor improved the deposition rate and texture remarkably. Besides, O element in ethanol was not remained as a constitution of PyC, and it was removed before the formation of PyC.

  3. Methane losses in biogas processing; Methanverluste bei der Biogasaufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Baum, S.; Baier, U. [ZHAW, Zuercher Hochschule fuer Angewandte Wissenschaften, IBT Institut fuer Biotechnologie, Fachgruppe Umweltbiotechnologie, Waedenswil (Switzerland); Judex, J.; Biollaz, S.; Schneebeli, J. [PSI, Paul Scherrer Institut, Villigen (Switzerland)

    2008-11-15

    This report for the Swiss Federal Office of Energy (SFOE) by the Paul Scherrer Institute PSI and the Zurich University of Applied Sciences, Switzerland, presents the results of a study made on methane losses that occur during the processing of biogas to provide natural gas quality. Such losses are considered as possibly compromising the environmental advantages offered by the feeding-in of processed biogas into the national gas mains. This processing involves the removal of carbon dioxide from the biogas. The state-of-the-art in this area is discussed, relevant factors and analysis methods are looked at. An overview of methods used to prevent methane losses is presented. The results of investigations made at an installation in Lucerne, Switzerland, are presented and discussed.

  4. Feeding strategies to reduce methane loss in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Tamminga, S.; Dijkstra, J. [Group Animal Nutrition, Wageningen University, Wageningen (Netherlands); Bannink, A.; Zom, R. [Animal Sciences Group, Wageningen UR, Lelystad (Netherlands)

    2007-02-15

    The emission of greenhouse gases (GHG), notably of methane (CH4), by domestic animals and possible ways of abatement have been the subject of many international studies in recent years. From all emission sources of CH4, agriculture is by far the most important source in The Netherlands. Several techniques to measure CH4 losses from farm animals exist. Most widely used among them are respiration calorimetric chambers and sulphur hexafluoride (SF6) as a tracer gas. Also, there are several ways to express CH4 losses. The most widely used way is to express it as % of GEI. A less popular, but for dairy cows interesting way to express CH4 losses is as gram (or litre) per kg desired product, hence g CH4/kg of milk. Some years ago a series of research projects on the subject of CH4 losses from ruminants in The Netherlands were started, coordinated by the ROB-Agro research programme committee (www.robklimaat.nl). In a 2000 study the role that animal nutrition could play to alleviate the loss of CH4 from ruminant animals, notably from dairy cows, has been reviewed. Several Rob-Agro studies have been performed since and evaluated the effect of nutrition and feed additives on CH4 emission. Simultaneously, a research project, funded by the Dutch Commodity Board of Feedstuffs and the ministry of Agriculture, Nature and Food Quality (LNV), started at the end of 2002 aiming at the quantification of CH4 emission by dairy cows by applying an integrative modelling approach. The model developed was recently used to deliver estimates for the national emission of CH4 by cows. These estimates were used in the Dutch national inventory of emission of greenhouse gases from agriculture.

  5. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  6. Feeding strategies to reduce methane loss in cattle

    NARCIS (Netherlands)

    Tamminga, S.; Bannink, A.; Dijkstra, J.; Zom, R.L.G.

    2007-01-01

    This report presents an overview of the enteric methane production in cattle. The possibilities are discussed to influence methane production by feeding measures and the use of feed additives, and by management measures. The possibilities are discussed against the background of Dutch cattle

  7. Inventory of methane losses from the natural gas industry

    International Nuclear Information System (INIS)

    Burklin, C.E.; Campbell, L.M.; Campbell, M.V.

    1992-01-01

    Natural gas is being considered as an important transition fuel in an integrated national strategy to reduce emissions of greenhouse gases in the United States due to its lower carbon dioxide (CO 2 ) emission per unit of energy produced. However, the contribution of atmospheric methane (CH 4 ) from the production and handling of natural gas must also be considered. Radian Corporation has been working with the Gas Research Institute and the US Environmental Protection Agency to detail the sources of methane from the natural gas industry in the United States. All aspects of natural gas production, processing, transmission, storage and distribution are being examined. Preliminary results of preliminary testing for the below-ground gas distribution industry segment are presented. The emission rate (scf/hr) is the product of the leak rate per unit length of underground pipe and the total length of US distribution system pipelines. Preliminary estimates for the below-ground distribution segment are nearly 9 billion scf/yr. This total likely underestimates below-ground methane emissions for several reasons. These preliminary analyses suggest that significant uncertainty surround current methane emission estimates from below-ground distribution systems. Emission estimates from all segments of the US Natural Gas Industry, broken down by fugitive sources and non-fugitive sources, are also presented. The specific test methods being implemented to quantify emissions from each segment are described

  8. Deposition of pyrolytic carbon from methane in the pores of artificial graphites. Influence of the temperature (1961); Depot de carbone pyrolytique dans les pores de graphites artificiels a partir de methane. Influence de la temperature (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, R; Bochirol, L; Moreau, C; Philippot, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-07-01

    it is shown that below 1000 deg. C the carbon formed by the decomposition of methane is deposited at a depth of up to several centimetres in the porosity of graphitic supports; the probable mechanism of these reactions is given. (authors) [French] On montre qu'en dessous de 1000 deg. C le depot de carbone par decomposition de methane se produit jusqu'a une profondeur de plusieurs dizaines de millimetres dans la porosite de supports graphites, et l'on indique le mecanisme probable de ces reactions. (auteurs)

  9. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    Science.gov (United States)

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  10. Electron loss and capture from low-charge-state oxygen projectiles in methane

    International Nuclear Information System (INIS)

    Santos, A C F; Wolff, W; Sant’Anna, M M; Sigaud, G M; DuBois, R D

    2013-01-01

    Absolute cross sections for single- and double-electron loss and single- and multiple-electron capture of 15–1000 keV oxygen projectiles (q = −1, 0, 1, 2) colliding with the methane molecule are presented. The experimental data are used to examine cross-section scaling characteristics for the electron loss of various projectiles. In addition, a modified version of the free-collision model was employed for the calculation of the single- and total-electron-loss cross sections of oxygen projectiles presented in this work. The comparison of the calculated cross sections with the present experimental data shows very good agreement for projectile velocities above 1.0 au. The comparison of the present single-electron-capture cross sections with other projectiles having the same charge shows good agreement, and a common curve can be drawn through the different data sets. (paper)

  11. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  12. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Science.gov (United States)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  13. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  14. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  15. Regional emission and loss budgets of atmospheric methane (2002-2012)

    Science.gov (United States)

    Saeki, T.; Patra, P. K.; Dlugokencky, E. J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E. A.; Crotwell, A. M.; Ravi Kumar, K.; Nakazawa, T.

    2015-12-01

    Methane (CH4) plays important roles in atmospheric chemistry and short-term forcing of climate. Clear understanding of atmospheric CH4's budget of emissions and losses is required to aid sustainable development of Earth's future environment. We used an atmospheric chemistry-transport model (JAMSTEC's ACTM) for simulating atmospheric CH4. An inverse modeling system has been developed for estimating CH4 emissions (7 ensemble cases) from 53 land regions for 2002-2012 using measurements at 39 sites. Global net CH4 emissions varied between 505-509 and 524-545 Tg/yr during 2002-2004 and 2010-2012, respectively (ranges based on 6 inversion cases), with a step like increase in 2007 in agreement with atmospheric measurement. The inversion system did not account for interannual variations in radicals reacting with CH4 in atmosphere. Our results suggest that the recent update of EDGAR inventory (version 4.2FT2010) overestimated global total emissions by at least 25 Tg/yr in 2010. Increase in CH4 emission since 2004 originated in the tropical and southern hemisphere regions, with timing consistent with an increase of non-dairy cattle stocks by ~10% in 2012 from 1056 million heads in 2002, leading to ~10 Tg/yr increase in emissions from enteric fermentation. All 7 inversions robustly estimated the interannual variations in emissions, but poorly constrained the seasonal cycle amplitude or phase consistently for all regions due to sparse observational network. Forward simulation results using both the a priori and a posteriori emissions are compared with independent aircraft measurements for validation. By doing that we are able to reject the upper limit (545 Tg/yr) of global total emissions as 14 Tg/yr too high during 2008-2012, which allows us to further conclude that CH4 emission increase rate over the East Asia (China mainly) region was 7-8 Tg/yr between the 2002-2006 and 2008-2012 periods, contrary to 1-17 Tg/yr in the a priori emissions.

  16. Pyrolytic citrate synthesis and ozone annealing

    International Nuclear Information System (INIS)

    Celani, F.; Saggese, A.; Giovannella, C.; Messi, R.; Merlo, V.

    1988-01-01

    A pyrolytic procedure is described that via a citrate synthesis allowed us to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, results already to contain a large amount of superconducting microcrystals. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurement show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  17. Heat production, respiratory quotient, and methane loss subsequent to LPS challenge in beef heifers

    Science.gov (United States)

    Respiration calorimetry was used to measure energy utilization during an acute phase response (APR) to lipopolysaccharide (LPS). Eight Angus heifers (208 +/- 29.2 kg) were randomly assigned to one of two calorimeters in four 2-day periods for measurement of heat production (HP), methane (CH4), and r...

  18. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    This work presents the fabrication and characterization of suspended three-dimensional (3D) pyrolytic carbon microelectrodes for electrochemical applications. For this purpose, an optimized process with multiple steps of UV photolithography with the negative tone photoresist SU-8 followed...... by pyrolysis at 900ºC for 1h was developed. With this process, microelectrode chips with a three electrode configuration were fabricated and characterized with cyclic voltammetry (CV) using a 10mM potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. The 3D pyrolytic...... carbon microelectrodes displayed twice the higher peak current compared to 2D....

  19. Procedure for coating articles with pyrolytic carbon

    International Nuclear Information System (INIS)

    Adams, C.C.; Allen, C.L.; Besenbruch, G.E.A.

    1976-01-01

    A method to coat articles with pyrolytic carbon is described which is particularly suitable for small nuclear fuel particles as one obtains a very homogeneous layer. The pyrolytic carbon is produced according to the invention by decomposing a hydrocarbon gas mixture composed of an inert gas share (20-65 Vol%) and a mixture of acetylene and propylene. It is favourable to have the hydrocarbon mixture contain between 50 and 55 Vol% acetylene. Variations on the known procedure are given. The coating of spherical thorium dioxide particles is mentioned as an example. (UWI) [de

  20. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    phosphoric acids) and organic acids (formic and acetic acids) followed by analytical pyrolysis on a micropyrolyzer/GC/MS/FID system. It was found that sulfuric and phosphoric acids are very effective in passivating the AAEM thereby increasing the yield of anhydrosugars. An excellent correlation was discovered between the amount of acid required to obtain the maximum yield of anhydrosugars and the amount of AAEM contained in the biomass feedstock. In the micro-scale studies, up to 56% of the cellulose contained in the biomass was converted into anhydrosugars which is close to the 57% conversion obtained from pure cellulose pyrolysis. It is known that LG polymerization and subsequent charring occur at temperatures above 275°C depending on the vapor pressure of LG in the gas stream. A study of pyrolysis of acid-infused biomass feedstocks at various temperatures revealed that LG recovery is best at lower temperatures than the conventional pyrolysis temperature range of 450-500°C. Pyrolysis of acid-infused biomass failed in a continuous fluidized bed reactor due to clogging of the bed. The feedstock formed vitreous material along with the fluidizing sand that was formed from poor pyrolysis of lignin. However, more investigation of this phenomenon is a subject for future work. Pyrolysis experiments on an auger type reactor were successful in producing bio-oils with unprecedented amounts of sugars. Though there was increase in charring when compared to the control feedstock, pyrolysis of red oak infused with 0.4 wt% of sulfuric acid produced bio-oil with 18wt% of sugars. One of the four fractions of bio-oil collected contained most of the sugars, which shows significant potential for separating the sugars from bio-oil using simple means. This work points towards a new pathway for making advanced biofuels viz. upgrading pyrolytic sugars from biomass that could compete with enzymatic sugars from biomass.

  1. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, A.V.; Levinsky, H.B.

    1999-09-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.

  2. London forces in highly oriented pyrolytic graphite

    Directory of Open Access Journals (Sweden)

    L.V. Poperenko

    2017-07-01

    Full Text Available Surface of highly oriented pyrolytic graphite with terrace steps was studied using scanning tunneling microscopy with high spatial resolution. Spots with positive and negative charges were found in the vicinity of the steps. Values of the charges depended both on the microscope needle scan velocity and on its motion direction. The observed effect was theoretically explained with account of London forces that arise between the needle tip and the graphite surface. In this scheme, a terrace step works as a nanoscale diode for surface electric currents.

  3. Low-temperature preparation of pyrolytic carbon

    International Nuclear Information System (INIS)

    Kidd, R.W.; Seifert, D.A.; Browning, M.F.

    1984-01-01

    Previous studies have demonstrated that nuclear waste forms coated with chemical vapor deposited pyrolytic carbon (PyC) at about 1273 K can provide ground water leach protection. To minimize the release during coating of volatile material from the waste forms and permit the coating of waste forms with a low softening point, a study was initiated to develop parameters for the catalytic deposition of PyC at low temperatures. The parameters surveyed in a fluidized-bed coater were deposition temperatures, carbon precursors, catalyst, diluent gas, concentration, and pressure

  4. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  5. Mass loss controlled thermal pretreatment system to assess the effects of pretreatment temperature on organic matter solubilization and methane yield from food waste.

    Directory of Open Access Journals (Sweden)

    Martha Minale Yeshanew

    2016-09-01

    Full Text Available The effects of thermal pretreatment (TP on the main characteristics of food waste (FW and its biochemical methane potential (BMP and distribution of volatile fatty acids (VFAs under mesophilic condition (35 ⁰C were investigated. The TP experiments were carried out at 80 °C, 100 °C, 120 °C for 2 hour and 140 °C for 1 hour. The designed TP set-up was able to minimize the organic matter loss during the course of the pretreatments. Soluble organic fractions evaluated in terms of chemical oxygen demand (COD and soluble protein increased linearly with pretreatment temperature. In contrast, the carbohydrate solubilization was more enhanced (30 % higher solubilization by the TP at lower temperature (80 °C. A slight increment of soluble phenols was found, particularly for temperatures exceeding 100 °C. Thermally pretreated FW under all conditions exhibited an improved methane yield than the untreated FW, due to the increased organic matter solubilization. The highest cumulative methane yield of 442 (± 8.6 mL/gVSadded, corresponding to a 28.1 % enhancement compared to the untreated FW, was obtained with a TP at 80 °C. No significant variation in the VFAs trends were observed during the BMP tests under all investigated conditions.

  6. Selective CO Methanation on Highly Active Ru/TiO2 Catalysts: Identifying the Physical Origin of the Observed Activation/Deactivation and Loss in Selectivity

    DEFF Research Database (Denmark)

    Abdel-Mageed, Ali M.; Widmann, Daniel; Olesen, Sine Ellemann

    2018-01-01

    Ru /TiO2 catalysts are highly active and selective in the selective methanation of CO in the presence of large amounts of CO2, but suffer from a considerable deactivation and loss of selectivity during time on stream. Aiming at a fundamental understanding of these processes, we have systematically...... different effects such as structural effects, adlayer effects such as site blocking effects and changes in the chemical (surface) composition of the catalysts. Operando XANES / EXAFS measurements revealed that an initial activation phase is largely due to the reduction of oxidized Ru species, together...

  7. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.

    Science.gov (United States)

    Huang, Yanqin; Wei, Zhiguo; Yin, Xiuli; Wu, Chuangzhi

    2012-01-01

    Pyrolytic characteristics of acid hydrolysis residue (AHR) of corncob and pinewood (CAHR, WAHR) were investigated using a thermo-gravimetric analyzer (TGA) and a self-designed pyrolysis apparatus. Gasification reactivity of CAHR char was then examined using TGA and X-ray diffractometer. Result of TGA showed that thermal degradation curves of AHR descended smoothly along with temperature increasing from 150 °C to 850 °C, while a "sharp mass loss stage" for original biomass feedstock (OBF) was observed. Char yield from AHR (42.64-30.35 wt.%) was found to be much greater than that from OBF (26.4-19.15 wt.%). In addition, gasification reactivity of CAHR char was lower than that of corncob char, and there was big difference in micro-crystallite structure. It was also found that CAHR char reactivity decreased with pyrolysis temperature, but increased with pyrolysis heating rate and gasification temperature at 850-950 °C. Furthermore, CAHR char reactivity performed better under steam atmosphere than under CO2 atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The pyrolytic decomposition of o-, m-, and p-terphenyls and other potential reactor coolants

    Energy Technology Data Exchange (ETDEWEB)

    Juppe, G.; Hannaert, H.; Biver, F.

    1963-03-15

    Experiments were made on the pyrolytic decomposition of o-, m-, and p- terphenyls and mixtures of terphenyls with diphenyl. The effects of competing reactions were also studied by initially adding hydrogen, methane, ethane, propane, and benzene. The results indicate that the disappearance of o-, m-, and p-terphenyl seems to follow formally a first order reaction mechanism. The relative stability of the pure individual components increases in the order: oterphenyl (least stable), p-terphenyl, m-terphenyl (most stable). The activation energy was found to be in the neighborhood of 64 kcal/mole. The activation energy for the diphenyl formation during pyrolysis of an irradiated biphenyl-terphenyl mixture was found to be 47.9 kcal/mole. (P.C.H.)

  9. Methane release

    International Nuclear Information System (INIS)

    Seifert, M.

    1999-01-01

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  10. Pyrolytic Graphite as a Selective Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Fathalla, M.

    2006-01-01

    The transmission of neutrons through pyrolytic graphite (PG) crystals, set at different angles with respect to incident beam, were calculated using an additive formula. A computer program HOPG was developed to provide the required calculation. An overall agreement between the calculated neutron transmissions through a slab of 1,85 mm thick PG crystal with an angular spread of c-axes of 0,4 degree, set at different angles to the incident beam, and the available experimental ones in the wavelength range from (0,02 to 1,4) nm were obtained. A feasibility study for use of PG crystal as an efficient second-order neutron filter is detailed in terms of crystal thickness, angular spread of c-axes and its operation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of c-axes and its orientation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of 0,8 degree is sufficient for optimum scattering of second-order neutrons in the wavelength band (0,384-0,183) nm, by adjusting the filter in an appropriate orientation

  11. Neutron transmission through pyrolytic graphite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt); Habib, N. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt)]. E-mail: nadiahabib15@yahoo.com; Fathaalla, M. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt)

    2006-05-15

    Calculation of the total cross-section, neutron transmission and removal coefficient of pyrolytic graphite (PG) for thermal neutron energies were carried out using an additive formula. The formula takes into account the variation of thermal diffuse and Bragg scattering cross-sections in terms of PG temperature and mosaic spread for neutron energies in the range 1 meV to 1 eV. A computer code PG has been developed which allow calculations for the graphite in its hexagonal close-packed structure, when its c-direction is parallel with incident neutron beam (parallel orientation). The calculated total neutron cross-sections for PG in parallel orientation at different mosaic spreads were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data at room and liquid nitrogen temperatures. A feasibility study for use of PG crystals as second-order neutron filter is detailed in terms of mosaic spread, optimum thickness and temperature. The calculated removal coefficients of PG crystals show that such crystals are high efficiency second-order filter within neutron energy intervals (4-7 meV) and (10-15 meV)

  12. Reflectivity and filtering characteristics of pyrolytic graphite

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Ashry, A.; Abbas, Y.; Wahba, W.

    1988-01-01

    The neutron transmission measurements through oriented pyrolytic graphite (P.G. crystal) were carried out in the wavelength band from 0.15 nm to 6.5 nm at different orientations of the (002) plane of the crystal w.r.t. the neutron beam direction. It was found that the P.G. crystal may be tuned for optimum scattering of second-order neutrons in the wavelength ranging between 0.112 nm and 0.425 nm, by adjusting the filter in an appropriate orientation. The reflectivity of (002), (004) and (006) planes of P.G. were measured and the following results are obtained: the reflectivity of (002) plane was found to be 99% by (transmission method). The ratio of the integrated intensity of the reflected neutrons from (004) and (006) is 3.14+-0.25 and is found to be in agreement with the calculated ratio. The measurements were performed using the fixed scattering angle spectrometer installed in front of the ET-RR-1 reactor horizontal channel

  13. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    with cyclic voltammetry (CV) and impedance spectroscopy (EIS) using potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. Different 3D pyrolytic carbon microelectrodes were compared and the optimal design displayed twice the peak current and half the charge transfer......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  14. Early outcomes of pyrolytic carbon hemiarthroplasty for the treatment of trapezial-metacarpal arthritis

    NARCIS (Netherlands)

    Martinez de Aragon, J. S.; Moran, Steven L.; Rizzo, Marco; Reggin, Kirsten B.; Beckenbaugh, Robert D.

    2009-01-01

    PURPOSE: Pyrolytic carbon implants have been successfully used in the treatment of osteoarthritis of the metacarpophalangeal and proximal interphalangeal joints. Recently, pyrolytic carbon hemiarthroplasties have been proposed for the treatment of osteoarthritis of the trapezial-metacarpal (TM)

  15. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. High-temperature properties of commercial pyrolytic graphite

    International Nuclear Information System (INIS)

    Goetzel, C.G.

    1979-01-01

    Pyrolytic graphite is produced commercially as free-standing massive structures of continuously-nucleated and surface-nucleated varieties. Both are used for rocket nozzle components. The major design-significant thermal and mechanical properties of both material types are presented as a function of temperature up to 3000 K. They are compared with each other and with previous data. (author)

  17. Ellipsometric investigations of pyrolytically deposited thin indium oxide films

    International Nuclear Information System (INIS)

    Winkler, U.

    1980-01-01

    Ellipsometric measurements have been carried out of thin indium oxide films deposited pyrolytically on glass substrates. It was found that the roughness of the films affected the measuring results. Therefore, only after applying a two-layer model a reasonable interpretation of the measuring results became possible

  18. Pyrolytic and kinetic characteristics of the thermal decomposition of Perilla frutescens polysaccharide.

    Directory of Open Access Journals (Sweden)

    Quancheng Zhou

    Full Text Available The thermal decomposition of Perilla frutescens polysaccharide was examined by thermogravimetry, differential thermogravimetry, and differential thermal analysis. The results showed that the mass loss of the substance proceeded in three steps. The first stage can be attributed to the expulsion of the water from ambient temperature to 182°C. The second stage corresponded to devolatilization from 182°C to 439°C. The residue slowly degraded in the third stage. The weight loss in air is faster than that in nitrogen, because the oxygen in air accelerated the pyrolytic reaction speed reaction. The heating rate significantly affected the pyrolysis of the sample. Similar activation energies of the degradation process (210-211 kJ mol⁻¹ were obtained by the FWO, KAS, and Popescu techniques. According to Popescu mechanism functions, the possible kinetic model was estimated to be Avrami-Erofeev 20 g(α = [-ln(1-α]⁴.

  19. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    Science.gov (United States)

    Bavand, R.; Yelon, A.; Sacher, E.

    2015-11-01

    Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25-1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex, previously unidentified oxide that is initially formed. The Ru valence band (4d and 5s) spectra clearly demonstrate a loss of metallicity, a simultaneous increase of the Kubo gap, and an abrupt transfer in valence electron density from the 4d to the 5s orbitals (known as electron spill-over), as the NP size decreases below 0.5 nm. TEM photomicrographs, as a function of deposition rate, show that, at a rate that gives insufficient time for the NP condensation energy to dissipate, the initially well-separated NPs are capable of diffusing laterally and aggregating. This indicates weak NP bonding to the HOPG substrate. Carbide is formed, at both high and low deposition rates, at Ru deposition thicknesses greater than 0.25 nm, its formation explained by Ru NPs reacting with residual

  20. Study of nanometric thin pyrolytic carbon films for explosive electron emission cathode in high-voltage planar diode

    Energy Technology Data Exchange (ETDEWEB)

    Baryshevsky, Vladimir; Belous, Nikolai; Gurinovich, Alexandra; Gurnevich, Evgeny [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Kuzhir, Polina, E-mail: polina.kuzhir@gmail.com [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Maksimenko, Sergey [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Molchanov, Pavel; Shuba, Mikhail [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Roddatis, Vladimir [CIC energiGUNE, Albert Einstein 48, 01510 Minano, Alava (Spain); Institut für Materialphysik of Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Kaplas, Tommi; Svirko, Yuri [Institute of Photonics, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101 (Finland)

    2015-04-30

    We report on an experimental study of explosive electron emission properties of cathode made by nanometric thin pyrolytic carbon (PyC) films (2–150 nm) deposited on Cu substrate via methane-based chemical vapor deposition. High current density at level of 300 A/cm{sup 2} in 5 · 10{sup −5} Pa vacuum has been observed together with very stable explosive emission from the planar cathode. The Raman spectroscopy investigation proves that the PyC films remain the same after seven shots. According to the optical image analysis of the cathode before and after one and seven shots, we conclude that the most unusual and interesting feature of using the PyC films/Cu cathode for explosive emission is that the PyC layer on the top of the copper target prevents its evaporation and oxidation, which leads to higher emission stability compared to conventional graphitic/Cu cathodes, and therefore results in longer working life. - Highlights: • Explosive electron emission from pyrolytic carbon (PyC) cathode is reported. • We observe high current density, 300 A/cm{sup 2}, and stable emission parameters. • PyC integrity ensures a high application potential for high current electronics.

  1. Pyrolytic product characteristics of biosludge from the wastewater treatment plant of a petrochemical industry.

    Science.gov (United States)

    Lin, Kuo-Hsiung; Hsu, Hui-Tsung; Ko, Ya-Wen; Shieh, Zhu-Xin; Chiang, Hung-Lung

    2009-11-15

    Biosludge was produced from the wastewater treatment plant of a petrochemical industry. The element compositions of pyrolytic residues, CO, CO(2), NOx, SOx, total hydrocarbons and detailed volatile organic compounds of pyrolytic gas, and C, H, N, S content and compositions in biofuel were determined in this study. Generally, 75-80% water content in sludge cakes and about 65-70% weight of water vapor and volatile compounds were volatilized during the drying process. Propene, propane, 1-butene, n-butane, isobutene, toluene and benzene were the major volatile organic compounds (VOCs) of the pyrolytic gas, and the concentrations for most of the top 20 VOC species were greater than 5 ppm. C(5)-C(9) compounds contributed 60% by weight of biofuel; 4-hydroxy-4-methyl-2-pentanone was the highest species, accounting for 28-53% of biofuel at various pyrolytic temperatures. Based on the dried residues, there was 8.5-13% weight in pyrolytic residues, 62-82% weight in liquid products (water and crude oil) and 5.8-30% weight in the gas phase after pyrolytic processing at 500-800 degrees C. Finally, 1.5-2.5 wt% liquid fuel was produced after the distillation process. The pyrolytic residues could be reused, the pyrolytic liquid product could be used as a fuel after distillation, and the pyrolytic gas could be recycled in the pyrolytic process to achieve non-toxic discharge and reduce the cost of sludge disposal.

  2. Pyrolytic carbon coatings for nuclear fuels from commercial butane

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.; Abdelhalim, A.S.

    1976-01-01

    Uranium dioxide and graphite semi-spherical particles (average diameter = 300 um) were coated with pyrolytic carbon at relatively low temperatures (800 to 1200 0 C). The spouting gas was a mixture of commercial butane and nitrogen. The hydrocarbon served as a source for carbon whereas nitrogenated as a diluent and a support for the bed. The total gas flow rate was 3.5 lit/min and the hydrocarbon content varied from 3 to 10%. Coating efficiencies ranging from 4 to 25 percent were obtained. The densities of the coatings varied from 1.25 g/cm 3 (which corresponds to coatings of laminar microstructures) and 1.82 g/cm 3 (which suggests the formation of isotropic coatings. Metallographic examination (using polarized light) of the pyrolytic carbon formed at the experimental conditions indicated the possibility of using the coatings for nuclear fuel applications

  3. Bio-compatibility of the surface layer of pyrolytic graphite

    Czech Academy of Sciences Publication Activity Database

    Starý, V.; Bačáková, Lucie; Horník, J.; Chmelík, V.

    2003-01-01

    Roč. 433, 1-2 (2003), s. 191-198 ISSN 0040-6090 R&D Projects: GA ČR GA106/99/0626; GA MŠk OC 527.130 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 210000012 Keywords : carbon-carbon composite * pyrolytic graphite * cell adhesion Subject RIV: JI - Composite Materials Impact factor: 1.598, year: 2003

  4. Huge magnetoresistance effect of highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Du Youwei; Wang Zhiming; Ni Gang; Xing Dingyu; Xu Qingyu

    2004-01-01

    Graphite is a quasi-two-dimensional semimetal. However, for usual graphite the magnetoresistance is not so high due to its small crystal size and no preferred orientation. Huge positive magnetoresistance up to 85300% at 4.2 K and 4950% at 300 K under 8.15 T magnetic field was found in highly oriented pyrolytic graphite. The mechanism of huge positive magnetoresistance is not only due to ordinary magnetoresistance but also due to magnetic-field-driven semimetal-insulator transition

  5. A pseudo-curved oriented pyrolytic graphite neutron monochromator

    International Nuclear Information System (INIS)

    Ettedgui, H.; Gurewitz, E.; Pinto, H.

    1979-03-01

    A pseudo-curved neutron monochromator with a continuously variable curvature was constructed with four flat pieces of oriented pyrolytic graphite (OPG). Curvatures which yield maximum diffracted intensities were determined for neutrons of wavelengths 1 A and 2.4 A. The increase of the intensity relatively to that of a flat monochromator is by a factor of 2 and 1.5, for 1 A and 2.4 A, respectively. The neutron flux at three positions along the neutron path was determined by gold foils activation and compared with the flux from flat monochromators of OPG and copper

  6. Effects of dehydrated lucerne and soya bean meal on milk production and composition, nutrient digestion, and methane and nitrogen losses in dairy cows receiving two different forages.

    Science.gov (United States)

    Doreau, M; Ferlay, A; Rochette, Y; Martin, C

    2014-03-01

    Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4 × 4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but

  7. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability

    NARCIS (Netherlands)

    Li, X.; Luque-Moreno, L.C.; Oudenhoven, Stijn; Rehmann, L.; Kersten, Sascha R.A.; Schuur, Boelo

    2016-01-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid–liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created

  8. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  9. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.

    Science.gov (United States)

    Cao, H

    1996-06-01

    An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.

  10. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  11. Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations

    International Nuclear Information System (INIS)

    Balat-Pichelin, M.; Eck, J.; Heurtault, S.; Glénat, H.

    2014-01-01

    Highlights: • New results for the high temperature study of pBN in high vacuum for the heat shield of solar probes. • Physico-chemical behavior of pBN studied up to 1700 K with proton and VUV irradiations. • Rather low effect of synergistic aggressions on the microstructure of pBN material. • The α/ε ratio of pBN coating on C/C measured up to 2200 K is 20% lower than for the C/C itself. - Abstract: In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on massive pBN samples are presented through in situ mass spectrometry and mass loss rate, and post-test microstructural characterization by XRD, SEM, AFM and nano-indentation techniques, some of them leading to mechanical properties. It could be concluded that synergistic effect of high temperature, protons and VUV radiation has an impact on the emission of gaseous species, the mass loss rate and the mechanical properties of the material

  12. Alternative waste form development - low-temperature pyrolytic carbon coatings

    International Nuclear Information System (INIS)

    Oma, K.H.; Rusin, J.M.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Although several chemical vapor deposition (CVD) - coated waste forms have been successfully produced, some major disadvantages associated with the high-temperature fluidized-bed CVD coating process exist. To overcome these disadvantages, the Pacific Northwest Laboratory has initiated the development of a pyrolytic carbon CVD coating system to coat large waste-form particles at temperatures ranging from 400 to 500/degree/C. This relatively simple system has been used to coat kilogram quantities of simulated waste-glass marbles. Further development of this system could result in a viable process to coat bulk quantities of both glass and ceramic waste forms. This paper discusses various aspects of the development work, including coating techniques, parametric study, and coater equipment. 10 refs

  13. Field emission from the surface of highly ordered pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Knápek, Alexandr, E-mail: knapek@isibrno.cz [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic); Sobola, Dinara; Tománek, Pavel [Department of Physics, FEEC, Brno University of Technology, Technická 8, Brno (Czech Republic); Pokorná, Zuzana; Urbánek, Michal [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic)

    2017-02-15

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  14. Field emission from the surface of highly ordered pyrolytic graphite

    International Nuclear Information System (INIS)

    Knápek, Alexandr; Sobola, Dinara; Tománek, Pavel; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  15. Upgrading pyrolytic residue from waste tires to commercial carbon black.

    Science.gov (United States)

    Zhang, Xue; Li, Hengxiang; Cao, Qing; Jin, Li'e; Wang, Fumeng

    2018-05-01

    The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.

  16. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Herman, I.P.; Hyde, R.A.; McWilliams, B.M.; Weisberg, A.H.; Wood, L.L.

    1982-01-01

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  17. Landfill Methane

    Science.gov (United States)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  18. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bavand, R.; Yelon, A.; Sacher, E., E-mail: edward.sacher@polymtl.ca

    2015-11-15

    Highlights: • Ru nanoparticle 3d, 3p, and 3s core XPS spectra were found to be composed of three symmetric components. The first component, Ru1, is due to zerovalent R, while components Ru2 and Ru3 are attributed to surface oxide species. • The nanoparticle surface additionally possesses a carbon-rich surface, from residual gas hydrocarbons present in the vacuum. • TEM photomicrographs show the aggregation and partial coalescence of nanoparticles deposited at high deposition rates, provoked by the high rate of release of the heat of condensation, indicating weak bonding to the HOPG substrate. • The analysis of the valence band indicates an increase of the Kubo gap with decreasing NP size, accompanied by an abrupt electron spill-over from the 4d to the 5s orbital. - Abstract: Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25–1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex

  19. Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance.

    Science.gov (United States)

    Jin, Tao; Rover, Marjorie R; Petersen, Elspeth M; Chi, Zhanyou; Smith, Ryan G; Brown, Robert C; Wen, Zhiyou; Jarboe, Laura R

    2017-09-01

    Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.

  20. Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-09-01

    Full Text Available Nitrite, NO2- (in neutral), and NO (in acidic media) were used as analytical probe to investigate the electrocatalytic properties of Prussian blue nanoparticles (PB) modified edge plane pyrolytic graphite (EPPG) electrode. Results indicate...

  1. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel)

    International Nuclear Information System (INIS)

    Banar, Müfide; Akyıldız, Vildan; Özkan, Aysun; Çokaygil, Zerrin; Onay, Özlem

    2012-01-01

    Highlights: ► We pyrolyzed Tire Derived Fuel (TDF) at different heating rates and temperatures. ► We determine convenient pyrolysis temperature for pyrolytic oil. ► The product can be used as fuel for combustion system in industry. ► TDF pyrolysis is advisable recycling system because of low hazardous constituents. - Abstract: In recent years, waste utilization before disposing to the land is the most important point about waste management. Due to the increasing emphasis on recycling, related to the two European Commission Directives (EC End of Life Vehicle Directive, EC Waste Landfill Directive) affecting the management of waste tires, there is interest in the development of alternative technologies for recycling waste tires. One of them is pyrolysis. For this purpose, a fixed bed reactor was used to pyrolysis of Tire Derived Fuel (TDF) at the temperatures of 350, 400, 450, 500, 550 and 600 °C with the heating rates of 5 and 35 °C/min. The maximum pyrolytic oil yield (38.8 wt.%) was obtained at 400 °C with 5 °C/min heating rate. The yield of pyrolytic oil decreased with increasing pyrolysis temperatures whereas the yield of gases increased. The fuel properties of the pyrolytic oil including higher heating value (HHV), elemental composition, flash point, viscosity, distillation and density were determined. Pyrolytic oil was characterized by fourier transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance spectroscopy ( 1 H NMR) and gas chromatography–mass spectroscopy (GC–MS) techniques and also, the amount of polychlorinated dibenzodioxins/polychlorinated dibenzofurans (PCDDs/PCDFs) and congener distribution characteristics were studied for determination of environmental effects. It was seen that the pyrolytic oils have similar fuel properties with the diesel. It was also found that pyrolytic oil contained 0.00118 I-TEQs/g at very low level. Finally, the pyrolytic oil can be evaluated for energy recovery according to Regulation

  2. Influence of pyrolytic temperature on uranium adsorption capability by biochar derived from macauba coconut residue

    International Nuclear Information System (INIS)

    Guilhen, Sabine Neusatz; Fungaro, Denise Alves; Coleti, Jorge; Tenório, Jorge Alberto Soares

    2017-01-01

    Biochar (BC) is a carbon-rich product obtained when biomass is thermally decomposed at relatively low temperatures (under 700°C) and limited supply of oxygen in a process called pyrolysis. The conversion of biomass into BC can not only result in renewable energy source of synthetic gas and bio-oil, but also decrease the content of CO 2 in the atmosphere, as well as improving soil fertility. Because of its porous structure, charged surface and surface functional groups, BC exhibits a great potential as an adsorbent. Brazilian agro energy chain involves tons of biomass waste, providing a wide range of biomass with different chemical and physical properties. BC characteristics strongly depend on the feedstock and the pyrolysis conditions, in which the temperature is the key parameter. The aim of this study was to evaluate the adsorption potential for the removal of uranium, U(VI), from aqueous solutions using BC obtained through the pyrolysis of the Macauba (Acrocomia aculeata) coconut endocarp as a function of the final pyrolytic temperature. BCs produced at higher temperatures are likely to present lower H/C and O/C ratios, indicating the loss of easily degradable carbon compounds such as volatile matter. In contrast, low-temperature pyrolysis produces not only a higher BC yield, but also richer in surface functional groups which will likely enable interactions with the U(VI) ions. The endocarp was subjected to six different pyrolytic temperatures, ranging from 250°C to 750 °C. The influence of parameters such as pH, sorbent dose and initial concentration on the adsorption of U(VI) was investigated. The maximum adsorption capacity (q) was achieved for the BC obtained at 250°C (BC250), which presented a removal percentage of approx. 86%, demonstrating the potential of the BC from macauba endocarp for treatment of wastewaters. Thus, submitting the endocarp to temperatures higher than 250°C becomes unnecessary, saving time and reducing operating costs. (author)

  3. Influence of pyrolytic temperature on uranium adsorption capability by biochar derived from macauba coconut residue

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz; Fungaro, Denise Alves [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Coleti, Jorge; Tenório, Jorge Alberto Soares, E-mail: snguilhen@ipen.br, E-mail: dfungaro@ipen.br, E-mail: jorgecoleti@usp.br, E-mail: jtenorio@usp.br [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais

    2017-07-01

    Biochar (BC) is a carbon-rich product obtained when biomass is thermally decomposed at relatively low temperatures (under 700°C) and limited supply of oxygen in a process called pyrolysis. The conversion of biomass into BC can not only result in renewable energy source of synthetic gas and bio-oil, but also decrease the content of CO{sub 2} in the atmosphere, as well as improving soil fertility. Because of its porous structure, charged surface and surface functional groups, BC exhibits a great potential as an adsorbent. Brazilian agro energy chain involves tons of biomass waste, providing a wide range of biomass with different chemical and physical properties. BC characteristics strongly depend on the feedstock and the pyrolysis conditions, in which the temperature is the key parameter. The aim of this study was to evaluate the adsorption potential for the removal of uranium, U(VI), from aqueous solutions using BC obtained through the pyrolysis of the Macauba (Acrocomia aculeata) coconut endocarp as a function of the final pyrolytic temperature. BCs produced at higher temperatures are likely to present lower H/C and O/C ratios, indicating the loss of easily degradable carbon compounds such as volatile matter. In contrast, low-temperature pyrolysis produces not only a higher BC yield, but also richer in surface functional groups which will likely enable interactions with the U(VI) ions. The endocarp was subjected to six different pyrolytic temperatures, ranging from 250°C to 750 °C. The influence of parameters such as pH, sorbent dose and initial concentration on the adsorption of U(VI) was investigated. The maximum adsorption capacity (q) was achieved for the BC obtained at 250°C (BC250), which presented a removal percentage of approx. 86%, demonstrating the potential of the BC from macauba endocarp for treatment of wastewaters. Thus, submitting the endocarp to temperatures higher than 250°C becomes unnecessary, saving time and reducing operating costs

  4. Continuous thermal degradation of pyrolytic oil in a bench scale CSTR reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Hwan; Nam, Ki Yun [Climate Change Technology Research Division, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea)

    2010-05-15

    Continuous thermal degradation of two pyrolytic oils with low (LPO) and high boiling point distribution (HPO) was conducted in a constant stirrer tank reactor (CSTR) with bench scale. Raw pyrolytic oil as a reactant was obtained from the commercial rotary kiln pyrolysis plant for municipal plastic waste. The degradation experiment was conducted by temperature programming with 10 C/min of heating rate up to 450 C and then maintained with long lapse time at 450 C. Liquid product was sampled at initial reaction time with different degradation temperatures up to 450 C and then constant interval lapse time at 450 C. The product characteristics over two pyrolytic oils were compared by using a continuous reaction system. As a reactant, heavy pyrolytic oil (HPO) showed higher boiling point distribution than that of diesel and also light pyrolytic oil (LPO) was mainly consisting of a mixture of gasoline and kerosene range components. In the continuous reaction, LPO showed higher yield of liquid product and lower residue than those of HPO. The characteristics of liquid products were influenced by the type of raw pyrolytic oil. Also, the result obtained under degradation temperature programming was described. (author)

  5. Effect of filling surface-treated pyrolytic char on resistivity of rubber films

    Directory of Open Access Journals (Sweden)

    Pattraporn Yamkaya

    2015-03-01

    Full Text Available In this research, natural rubber (NR films filled with pyrolytic tire char, carbon black N234 and N330 were compared for their electrical resistivity. The filler loading was varied to be 5, 10, 15, 20 and 25% of dry rubber content. The effect of surfactant which is 2 %w/v sodium dodecyl sulfate (SDS was also investigated. In the experiments, it was necessary to disperse the pyrolytic char in ethyl alcohol while disperse carbon black (CB in ammonium hydroxide solution prior to mixing with the rubber latex and the filled NR film was prepared by casting the mixture on a plate. It was found that increasing the amount of pyrolytic char in the NR film could lower its resistivity. The surfactant, SDS, could help better dispersion of both CB and pyrolytic char, thereby decreasing the resistivity. In a separate experiment where hexane vapor was absorbed in NR film without surfactant, in the first 30 seconds, the rate of increasing resistivity of the CB-filled film was not seen as clearly as that of pyrolytic-char-filled film. For the films with surfactant, the slow increase in resistivity of the NR films filled with N330 and pyrolytic char during adsorbing hexane vapor was observed.

  6. Swift heavy ions induced irradiation effects in monolayer graphene and highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Zeng, J.; Yao, H.J.; Zhang, S.X.; Zhai, P.F.; Duan, J.L.; Sun, Y.M.; Li, G.P.; Liu, J.

    2014-01-01

    Monolayer graphene and highly oriented pyrolytic graphite (HOPG) were irradiated by swift heavy ions ( 209 Bi and 112 Sn) with the fluence between 10 11 and 10 14 ions/cm 2 . Both pristine and irradiated samples were investigated by Raman spectroscopy. It was found that D and D′ peaks appear after irradiation, which indicated the ion irradiation introduced damage both in the graphene and graphite lattice. Due to the special single atomic layer structure of graphene, the irradiation fluence threshold Φ th of the D band of graphene is significantly lower ( 11 ions/cm 2 ) than that (2.5 × 10 12 ions/cm 2 ) of HOPG. The larger defect density in graphene than in HOPG indicates that the monolayer graphene is much easier to be damaged than bulk graphite by swift heavy ions. Moreover, different defect types in graphene and HOPG were detected by the different values of I D /I D′ . For the irradiation with the same electronic energy loss, the velocity effect was found in HOPG. However, in this experiment, the velocity effect was not observed in graphene samples irradiated by swift heavy ions

  7. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  8. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  9. Pyrolytic Graphite as a Tunable Second order Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A study has been carried out on the neutron transmission through pyrolytic graphite (PG) crystals in order to check its applicability as an efficient tunable second order neutron filter. The neutron transmission have been calculated as a function of neutron wavelengths in the range from 0.01 nm up to 0.7 nm at various PG mosaic spread, thickness and orientation of its c-axis with respect to the beam direction The Computer package Graphite has been used to provide the required calculation. It was shown that highly aligned (10 FWHM on mosaic spread) PG crystal ∼2 cm thick, may be tuned for optimum scattering of 2 second order neutrons within some favorable wavelength intervals in the range between 0.112 and 0.425 nm by adjusting the crystal in an appropriate orientation. .However, a less quality and thinner PG was found to almost eliminate 2 second order neutrons at only tuned values of wavelength corresponding to the poison of the triple intersection points of the curves (hkl) ± and (00l)

  10. Characteristics of Pyrolytic Graphite as a Neutron Monochromator

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Fathallah, M.

    2011-01-01

    Pyrolytic graphite (PG) has become nearly indispensable in neutron spectroscopy. Since the integrated reflectivity of the monochromatic neutrons from PG crystals cut along its c-axis is high within a wavelength band from 0.1 nm up to .65 nm. The monochromatic features of PG crystal is detailed in terms of the optimum mosaic spread, crystal thickness and reactor moderating temperature for efficient integrated neutron reflectivity within the wavelength band. A computer code Mono-PG has been developed to carry out the required calculations for the PG hexagonal close-packed structure. Calculation shows that, 2 mm thick of PG crystal having 0.30 FWHM on mosaic spread are the optimum parameters of PG crystal as a monochromator at selected neutron wavelength shorter than 2 nm. However, the integrated neutron intensity of 2nd and 3rd orders from thermal reactor flux is even higher than that of the 1st order one at neutron wavelengths longer than 2 nm. While, from cold reactor flux, integrated neutron intensity of the 1st order within the wavelength band from 0.25 up to 0.5 nm is higher than the 2nd and 3rd ones

  11. Neutron transmission measurements of poly and pyrolytic graphite crystals

    Science.gov (United States)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  12. Neutron transmission measurements of poly and pyrolytic graphite crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Kilany, M.

    1989-01-01

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be b coh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while orientated at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hk1) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K. (author)

  13. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  14. Tailoring stress in pyrolytic carbon for fabrication of nanomechanical string resonators

    DEFF Research Database (Denmark)

    Quang, Long Nguyen; Larsen, Peter Emil; Boisen, Anja

    2018-01-01

    In order to achieve high resonance frequencies and quality factors of pyrolytic carbon MEMS string resonators the resonator material needs to have a large tensile stress. In this study, the influence of pyrolysis temperature, dwell time and ramping rate on the residual stress in thin pyrolytic...... carbon films is investigated with the bending plate method. The results show that the pyrolysis temperature is the most important parameter for tailoring the residual stress, with a transition from tensile stress at temperature below 800ºC to compressive stress at temperatures above 800ºC. Two kinds...... of photoresist: positive (AZ5214E) and negative (SU-8) and different pyrolysis conditions are used to fabricate pyrolytic carbon string resonators at variable pyrolysis conditions. The best performance is obtained for devices with a length of 400 µm fabricated at a pyrolysis temperature of 700ºC, ramping rate...

  15. Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: process design and economic evaluation

    NARCIS (Netherlands)

    Oudenhoven, Stijn; van der Ham, Aloysius G.J.; van den Berg, Henderikus; Westerhof, Roel Johannes Maria; Kersten, Sascha R.A.

    2016-01-01

    Removing alkali and alkaline earth metals (AAEMs) from biomass, with pyrolytic acids, before pyrolysis leads to increased organic oil and sugar yields. These pyrolytic acids are produced and concentrated within the pyrolysis process itself. The purpose of this paper was to evaluate under which

  16. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  17. Determination of soil-entrapped methane

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, M.C.R.; Neue, H.U.; Lantin, R.S.; Aduna, J.B. [Soil and Water Sciences Division, Manila (Philippines)

    1996-12-31

    A sampling method was developed and modified to sample soil from paddy fields for entrapped methane determination. A 25-cm long plexiglass tube (4.4-cm i.d.) fitted with gas bag was used to sample soil and entrapped gases to a depth of 15-cm. The sampling tube was shaken vigorously to release entrapped gases. Headspace gas in sampling tube and gas bag was analyzed for methane. The procedure was verified by doing field sampling weekly at an irrigated ricefield in the IRRI Research Farm on a Maahas clay soil. The modified sampling method gave higher methane concentration because it eliminated gas losses during sampling. The method gave 98% {+-} 5 recovery of soil-entrapped methane. Results of field sampling showed that the early growth stage of the rice plant, entrapped methane increased irrespective of treatment. This suggests that entrapped methane increased irrespective of treatment. This suggests that entrapped methane was primarily derived from fermentation of soil organic matter at the early growth stage. At the latter stage, the rice plant seems to be the major carbon source for methane production. 7 refs., 4 figs., 4 tabs.

  18. Physical and combustion characterization of pyrolytic oils derived from biomass material upgraded by catalytic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Vitolo, S.; Ghetti, P. (Universita di Pisa, Pisa (Italy). Dipartimento di Ingegneria Chimica)

    1994-11-01

    Physical and combustion properties of a pyrolytic bio-oil are determined both as-obtained and after catalytic hydrodeoxygenation. The tests demonstrate that the hydrogenation treatment improves the oil as regards combustibility, viscosity and acidity. Combustion properties of the oil have been characterized by evaporation and temperature programmed combustion profiles. Short communication. 21 refs., 4 figs., 2 tabs.

  19. Catalytic hydrotreatment of pyrolytic lignins to give alkylphenolics and aromatics using a supported Ru catalyst

    NARCIS (Netherlands)

    Kloekhorst, Arjan; Wildschut, Jelle; Heeres, Hero Jan

    2014-01-01

    The catalytic hydrotreatment of two pyrolytic lignins (pine and forestry residue), obtained from the corresponding fast pyrolysis oils, and organosolv Alcell lignin as a benchmark was explored in a batch set-up using Ru/C as the catalyst (400 degrees C, 4 h, 100 bar initial H-2 pressure). The

  20. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    Science.gov (United States)

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  1. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  2. Global Methane Initiative

    Science.gov (United States)

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  3. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  4. Graphitization kinetics of fluidized-bed pyrolytic carbons

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1975-08-01

    Graphitization of 12 fluidized-bed pyrocarbons was studied as a function of heat-treatment time and temperature (1350 to 3000 0 C) to investigate the effect of initial microstructure on the graphitization process. The term ''graphitization'' is defined to include any thermally induced structural change, whether or not any layer stacking order is attained. A broad range of CVD microstructures was prepared at temperatures from 1150 to 1900 0 C and various propylene and methane concentrations. The twelve carbons spanned a wide range of graphitizabilities, primarily as a function of deposition temperature. Hydrocarbon concentration was of much less importance except for deposition at 1900 0 C. Hydrogen content of the as-deposited carbons decreased with increasing temperature of deposition, and initial graphitization behavior of the low-temperature carbons appeared to be related to hydrogen content and evolution. Rates of change in the parameters varied widely throughout the range of heat-treatment times (HTt) and temperatures (HTT) for the different carbons showing differences between the more graphitizable or ''soft'' carbons from the nongraphitizing or ''hard'' carbons. ΔH for nongraphitizing carbons was 175 +- 15 kcal below 1950 0 C, 240 +- 35 kcal at 1950 to 2700 0 C, and 330 +- 20 kcal above 2700 0 C. For graphitizing carbons deposited at 1150 0 C, values near 245 kcal were obtained from anti chi data for the HTT range 1350 to 1650 0 C, while densification data yielded values of about 160 kcal in the same range. The behaviors observed for graphitizable carbons above 2000 0 C are consistent with literature. Different kinetic behaviors below 2000 0 C were shown to be due to different initial microstructures as well as to different parameters measured. (U.S.)

  5. Cathode deposits in fullerene formation — microstructural evidence for independent pathways of pyrolytic carbon and nanobody formation

    Science.gov (United States)

    Taylor, G. H.; Gerald, J. D. Fitz; Pang, L.; Wilson, M. A.

    1994-01-01

    Microstructures in cathode deposits formed during fullerene production by electrical arcing in helium have been examined in detail. This has provided new information about the mechanisms by which nanobodies (nanotubes and nanoparticles) and pyrolytic carbon are deposited. Nanobodies and pyrolytic carbon form independently; the former probably grow in the plasma then deposit on the electrode but much of the latter deposits directly on the electrode surface.

  6. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition

    International Nuclear Information System (INIS)

    Han, Young-Soo; Lee, Jai-Young

    2003-01-01

    The electrochemical characteristics of graphite coated with pyrolytic carbon materials using tumbling chemical vapor deposition (CVD) process have been studied for the active material of anodes in lithium ion secondary batteries. Coating of pyrolytic carbons on the surface of graphite particles, which tumble in a rotating reactor tube, was performed through the pyrolysis of liquid propane gas (LPG). The surface morphology of these graphite particles coated with pyrolytic carbon has been observed with scanning electron microscopy (SEM). The surface of graphite particles can well be covered with pyrolytic carbon by tumbling CVD. High-resolution transmission electron microscopy (HRTEM) image of these carbon particles shows that the core part is highly ordered carbon, while the shell part is disordered carbon. We have found that the new-type carbon obtained from tumbling CVD has a uniform core (graphite)-shell (pyrolytic carbon) structure. The electrochemical property of the new-type carbons has been examined using a charge-discharge cycler. The coating of pyrolytic carbon on the surface of graphite can effectively reduce the initial irreversible capacity by 47.5%. Cyclability and rate-capability of theses carbons with the core-shell structure are much better than those of bare graphite. From electrochemical impedance spectroscopy (EIS) spectra, it is found that the coating of pyrolytic carbon on the surface of graphite causes the decrease of the contact resistance in the carbon electrodes, which means the formation of solid electrolyte interface (SEI) layer is suppressed. We suggest that coating of pyrolytic carbon by the tumbling CVD is an effective method in improving the electrochemical properties of graphite electrodes for lithium ion secondary batteries

  7. The Erosion of Diamond and Highly Oriented Pyrolytic Graphite After 1.5 Years of Space Exposure

    Science.gov (United States)

    De Groh, Kim K.; Banks, Bruce A.

    2018-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft, it is important to know the LEO AO erosion yield (Ey, volume loss per incident oxygen atom) of materials susceptible to AO reaction. The Polymers Experiment was developed to determine the AO Ey of various polymers and other materials flown in ram and wake orientations in LEO. The experiment was flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). As part of the experiment, a sample containing Class 2A diamond (100 plane) and highly oriented pyrolytic graphite (HOPG, basal and edge planes) was exposed to ram AO and characterized for erosion. The materials were salt-sprayed prior to flight to provide isolated sites of AO protection. The Ey of the samples was determined through post-flight electron microscopy recession depth measurements. The experiment also included a Kapton H witness sample for AO fluence determination. This paper provides an overview of the MISSE 7 mission, a description of the flight experiment, the characterization techniques used, the mission AO fluence, and the LEO Ey results for diamond and HOPG (basal and edge planes). The data is compared to the Ey of pyrolytic graphite exposed to four years of space exposure as part of the MISSE 2 mission. The results indicate that diamond erodes, but with a very low Ey of 1.58 +/- 0.04 x 10(exp -26) cm(exp 3)/atom. The different HOPG planes displayed significantly different amounts of erosion from each other. The HOPG basal plane had an Ey of 1.05 +/- 0.08 x 10(exp -24) cm(exp 3)/atom while the edge plane had a lower Ey of only 5.38 +/- 0.90 x 10(exp -25) -cm(exp 3)/atom. The Ey data from this ISS spaceflight experiment provides valuable information for understanding of chemistry

  8. Study of composite MWCNT/pyrolytic Cr interface by NEXAFS spectroscopy

    International Nuclear Information System (INIS)

    Petrova, O V; Nekipelov, S V; Mingaleva, A E; Sivkov, V N; Obiedkov, A M; Kaverin, B S; Kremlev, K V; Ketkov, S Yu; Gusev, S A; Vyalikh, D V; Molodtsov, S L

    2016-01-01

    A composite material based on MWCNT covered by pyrolytic Cr has been prepared by MOCVD growth technique using bis(arene)chromium compounds as the pyrolytic Cr source. Their structures and morphologies were preliminary studied by X-ray diffraction and scanning and scanning electron microscopy. The atomic and chemical composition of the interface, MWCNT surface and Cr-coating of the composite were studied by total electron yield mode in the range NEXAFS C1s - and Cr2p - absorption edge with use of synchrotron radiation of RGBL at BESSY-II. The study has shown that top layers of the MWCNT in composite have no essential destruction, the coating of the MWCNT surfaces is continuous and consists of Cr 2 O 3 . The chromium oxide adhesion is provided by chemical binding between the carbon atoms of the MWCNT top layer and the oxygen atoms of the coating. (paper)

  9. Experimental investigation of linear thermal expansion of pyrolytic graphite at high temperatures

    Science.gov (United States)

    Senchenko, V. N.; Belikov, R. S.

    2017-11-01

    Using the previously described [1] experimental setup for investigation of the thermophysical properties of refractory materials under high pressure and temperature a few experiments with pyrolytic graphite were carried out. The density of the material was equal to 2.18 g/cm3. Experimental data on the linear thermal expansion in the perpendicular and parallel to the basal plane direction were obtained. Thermal expansion in the perpendicular to the basal plane direction during the heating from room temperature up to the melting point was 16.4 ± 1.6%. The results obtained allow calculating the density of pyrolytic graphite in the wide range of high temperatures up to the melting point.

  10. Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol.

    Science.gov (United States)

    Chi, Zhanyou; Rover, Marjorie; Jun, Erin; Deaton, Mark; Johnston, Patrick; Brown, Robert C; Wen, Zhiyou; Jarboe, Laura R

    2013-12-01

    The application of pyrolytic sugars for biofuel production through fermentation is challenged by inhibitory contaminant compounds. Inhibition is so severe that only 0.25% sugar syrup can be used. In this study, overliming was tested as a simple detoxification method, using the Escherichia coli KO11+ lgk to directly convert levoglucosan into ethanol. After treatment with at least 14.8 g/L of Ca(OH)2, fermentation with 2% (w/v) pyrolytic sugar syrup was observed with no inhibition of ethanol production. Further investigation of treatment time and temperature showed that 8-16 h of treatment at 20°C, and 1-4 h of treatment at 60°C are necessary to obtain consistent ethanol production. The samples treated with 18.5 g/L Ca(OH)2 at 60°C for 4 h showed no inhibition at 2.5%. Multiple contaminants removed by the overliming treatment were identified. This study demonstrates that overliming is a promising method for detoxification of pyrolytic sugars for fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Maksymilian Kurek

    2016-07-01

    Full Text Available Micro- and nanomechanical string resonators, which essentially are highly stressed bridges, are of particular interest for micro- and nanomechanical sensing because they exhibit resonant behavior with exceptionally high quality factors. Here, we fabricated and characterized nanomechanical pyrolytic carbon resonators (strings and cantilevers obtained through pyrolysis of photoresist precursors. The developed fabrication process consists of only three processing steps: photolithography, dry etching and pyrolysis. Two different fabrication strategies with two different photoresists, namely SU-8 2005 (negative and AZ 5214e (positive, were compared. The resonant behavior of the pyrolytic resonators was characterized at room temperature and in high vacuum using a laser Doppler vibrometer. The experimental data was used to estimate the Young’s modulus of pyrolytic carbon and the tensile stress in the string resonators. The Young’s moduli were calculated to be 74 ± 8 GPa with SU-8 and 115 ± 8 GPa with AZ 5214e as the precursor. The tensile stress in the string resonators was 33 ± 7 MPa with AZ 5214e as the precursor. The string resonators displayed maximal quality factor values of up to 3000 for 525-µm-long structures.

  12. Doses from radioactive methane

    International Nuclear Information System (INIS)

    Phipps, A.W.; Kendall, G.M.; Fell, T.P.; Harrison, J.D.

    1990-01-01

    A possible radiation hazard arises from exposure to methane labelled with either a 3 H or a 14 C nuclide. This radioactive methane could be released from a variety of sources, e.g. land burial sites containing radioactive waste. Standard assumptions adopted for vapours would not apply to an inert alkane like methane. This paper discusses mechanisms by which radioactive methane would irradiate tissues and provides estimates of doses. Data on skin thickness and metabolism of methane are discussed with reference to these mechanisms. It is found that doses are dominated by dose from the small fraction of methane which is inhaled and metabolised. This component of dose has been calculated under rather conservative assumptions. (author)

  13. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  14. Titan's Methane Cycle is Closed

    Science.gov (United States)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  15. Methane-oxidizing seawater microbial communities from an Arctic shelf

    Science.gov (United States)

    Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice

    2018-06-01

    Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB methylotrophs were present in abundances similar to natural seawater communities. The dissimilarities in MOB taxa, methane concentrations, and stable isotope ratios between the sea ice and water column point toward different methane dynamics in the two environments.

  16. Subsurface methane formation in graphite due to exposure to H+ and D+

    International Nuclear Information System (INIS)

    Chiu, S.; Haasz, A.A.

    1994-01-01

    The extent of H-D mixing in the form of mixed-isotope methane formation during simultaneous H + /D + bombardment of graphite was measured and found to be a sensitive function of H + -D + ion range separation. The result strongly supports the model that methane molecules are formed at the end of ion range in the bulk of graphite. A long steadily decreasing transient was observed in the methane emission when bombarding a virgin graphite sample with 10 keV D + at 800 K. The effect was less pronounced for low density fine grain isographites (EK98) than for high density pyrolytic graphite (HPG99) and monocrystal carbons. We propose a model which attributes this transient to the creation of new internal ''surfaces'', formed during ion irradiation along with ion-created micropaths. The increase in internal surface area effectively ''dilutes'' the inner surface hydrogen concentration in the region where incident hydrogen ions thermalize. We propose that, initially, methane molecules are formed mainly on inherent internal surfaces (pore and grain/crystallite boundary surfaces) in the region where hydrogen ions thermalize; then as damage builds up, newly produced internal ''surfaces'' also contribute to methane formation. (orig.)

  17. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  18. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie; Sun, Miao; Caps, Valerie; Pelletier, Jeremie; Abou-Hamad, Edy

    2013-01-01

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin

  19. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of

  20. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode

    International Nuclear Information System (INIS)

    Yu Lin; Duan Jizhou; Zhao Wei; Huang Yanliang; Hou Baorong

    2011-01-01

    Highlights: → The sulphate-reducing bacteria (SRB) have the ability to catalyze the hydrogen evolution and oxidation on pyrolytic graphite electrode. → The SRB biofilm decreases the overpotential and electron transfer resistance by the CV and EIS detection. → The SRB biofilm can transfer electrons to the 0.24 V polarized pyrolytic graphite electrode and the maximum current is 0.035 mA, which is attributed to SRB catalyzed hydrogen oxidation. → The SRB biofilm also can obtain electron from the -0.61 V polarized PGE to catalyze the hydrogen evolution. - Abstract: Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the -0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

  1. Mechanics of coalbed methane production

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J C; Rollins, J B [Crawley, Gillespie and Associates, Inc. (United Kingdom)

    1994-12-31

    Understanding the behaviour of coalbed methane reservoirs and the mechanics of production is crucial to successful management of coalbed methane resources and projects. This paper discusses the effects of coal properties and coalbed methane reservoir characteristics on gas production rates and recoveries with a review of completion techniques for coalbed methane wells. 4 refs., 17 figs.

  2. Kinetic electron emission from highly oriented pyrolytic graphite surfaces induced by singly charged ions

    CERN Document Server

    Cernusca, S; Winter, H; Aumayr, F; Loerincik, J; Sroubek, Z

    2002-01-01

    We present total electron yields determined by current measurements for normal impact of H sup + , H sub 2 sup + , H sub 3 sup + , C sup + , N sup + and O sup + ions (E<=10 keV) on a clean highly oriented pyrolytic graphite surface. The kinetic energy of the projectiles has been varied from near threshold up to 10 keV. By comparing the results to similar data obtained for a polycrystalline Au surface the role of different target properties for kinetic electron emission can be analysed.

  3. Small-angle neutron scattering and cyclic voltammetry study on electrochemically oxidized and reduced pyrolytic carbon

    International Nuclear Information System (INIS)

    Braun, A.; Kohlbrecher, J.; Baertsch, M.; Schnyder, B.; Koetz, R.; Haas, O.; Wokaun, A.

    2004-01-01

    The electrochemical double layer capacitance and internal surface area of a pyrolytic carbon material after electrochemical oxidation and subsequent reduction was studied with cyclic voltammetry and small-angle neutron scattering. Oxidation yields an enhanced internal surface area (activation), and subsequent reduction causes a decrease of this internal surface area. The change of the Porod constant, as obtained from small-angle neutron scattering, reveals that the decrease in internal surface area is not caused merely by a closing or narrowing of the pores, but by a partial collapse of the pore network

  4. Electron-impact and pyrolytic eliminations from 4-tert-butylcyclohexyl xanthates

    International Nuclear Information System (INIS)

    Eadon, G.; Jefson, M.

    1976-01-01

    The stereochemistry of electron--impact induced xanthic acid elimination reactions was assessed by mass spectrographic studies of cis and trans deuterated 4-tert-butylcyclohexyl xanthates and their derivatives. Cis elimination was observed to be about 30 times as facile as trans elimination in the axial xanthate reaction. In the equatorial ester derivative reactions, the cis elimination was found to be slightly preferred. The electron-impact induced elimination results were compared with pyrolytic elimination results for the xanthates; and similar stereochemistry was observed for each type of elimination

  5. Mass spectrometric characterization of a pyrolytic radical source using femtosecond ionization

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H M; Beaud, P; Mischler, B; Radi, P P; Tzannis, A P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radicals play, as reactive species, an important role in the chemistry of combustion. In contrast to atmospheric flames where spectra are congested due to high vibrational and rotational excitation, experiments in the cold environment of a molecular beam (MB) yield clean spectra that can be easily attributed to one species by Resonantly Enhanced Multi Photon Ionization (REMP). A pyrolytic radical source has been set up. To characterize the efficiency of the source `soft` ionization with femto second pulses is applied which results in less fragmentation, simplifying the interpretation of the mass spectrum. (author) figs., tabs., refs.

  6. Wide area methane emissions mapping with airborne IPDA lidar

    Science.gov (United States)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  7. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  8. Methane prediction in collieries

    CSIR Research Space (South Africa)

    Creedy, DP

    1999-06-01

    Full Text Available The primary aim of the project was to assess the current status of research on methane emission prediction for collieries in South Africa in comparison with methods used and advances achieved elsewhere in the world....

  9. Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces.

    Science.gov (United States)

    Gong, Jian-Ru; Wan, Li-Jun; Yuan, Qun-Hui; Bai, Chun-Li; Jude, Hershel; Stang, Peter J

    2005-01-25

    A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.

  10. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  11. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  12. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  13. Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior

    Science.gov (United States)

    Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo

    2005-04-01

    Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.

  14. Decomposition mechanism of melamine borate in pyrolytic and thermo-oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hoffendahl, Carmen; Duquesne, Sophie; Fontaine, Gaëlle; Bourbigot, Serge, E-mail: serge.bourbigot@ensc-lille.fr

    2014-08-20

    Highlights: • Decomposition of melamine borate in pyrolytic and thermo-oxidative conditions was investigated. • With increasing temperature, orthoboric acid forms boron oxide releasing water. • Melamine decomposes evolving melamine, ammonia and other fragments. • Boron oxide is transformed into boron nitride and boron nitride-oxide structures through presence of ammonia. - Abstract: Decomposition mechanism of melamine borate (MB) in pyrolytic and thermo-oxidative conditions is investigated in the condensed and gas phases using solid state NMR ({sup 13}C and {sup 11}B), X-ray photoelectron spectroscopy (XPS), pyrolysis-gas chromatography–mass spectrometry (py-GCMS) and thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TGA–FTIR). It is evidenced that orthoboric acid dehydrates to metaboric and then to boron oxide. The melamine is partially sublimated. At the same time, melamine condensates, i.e., melem and melon are formed. Melon is only formed in thermo-oxidative conditions. At higher temperature, melem and melon decompose releasing ammonia which reacts with the boron oxide to form boron nitride (BN) and BNO structures.

  15. Contribution to the study of hard, low-density pyrolytic carbons

    International Nuclear Information System (INIS)

    Boutin, F.R.

    1966-06-01

    Apparent contradictions in the properties of pyrolytic carbons obtained at 1600 deg C (hardness and graphitization) are studied. It is shown that structure of the deposit is turbostratic with high internal stresses (δ -2 ), and it graphitizes (by thermal treatment over 2000 deg C) in a similar manner to graphitisable carbon. Because the deposit forms lamellar compounds, it is presumed that the structure is similar to that of graphitisable carbon. Since it is not structure dependant, the hardness originates from the 'growth texture' and is not comparable with the hardness of a non-graphitisable carbon. The pyrolytic carbon studied is composed of regions, on the overage a few microns across, formed by the stacking of small carbon platelets, interlocked and showing a preferred orientation. The mis-orientation of the various regions produces general disorientation. We estimate that the introduction of the particles of some material such as thermal black which are observed in the electron microscope are responsible for the mis-orientation. The density and hardness of the deposit are a result of the interlocking of platelets, which creates a closed porosity and prevents any sliding of the atomic planes. (author) [fr

  16. Absence of field anisotropy in the intrinsic ferromagnetic signals of highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Ballestar, A.; Setzer, A.; Esquinazi, P.; Garcia, N.

    2011-01-01

    We have measured the magnetization of bulk samples of highly oriented pyrolytic graphite (HOPG) at magnetic fields applied parallel and perpendicular to the graphene layers. Within experimental error the intrinsic ferromagnetic signals of the samples show similar magnetic moments at saturation for the two magnetic field directions, in contrast to recently published data (J. Cervenka et al., Nat. Phys. 5 (2009) 840). To check that the SQUID device provides correctly the small ferromagnetic signals obtained after subtracting the 100 times larger diamagnetic background, we have prepared a sample with a superconducting Pb-film deposited on one of the HOPG surfaces. We show that the field dependence of the measured magnetic moment and after the background subtraction is highly reliable even in the sub-μ emu range providing the real magnetic properties of the embedded small ferromagnetic and superconducting signals. - Research Highlights: → We have measured the magnetization of bulk samples of highly oriented pyrolytic graphite (HOPG) at magnetic fields applied parallel and perpendicular to the graphene layers.→ Within experimental error the intrinsic ferromagnetic signals of the samples show similar magnetic moments at saturation for the two magnetic field directions.→ The absence of magnetic anisotropy of the intrinsic ferromagnetic order found in HOPG samples contrasts recently published data by Cervenka et al., Nat Phys 5, 840 (2009).

  17. Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids.

    Science.gov (United States)

    Lian, Jieni; Chen, Shulin; Zhou, Shuai; Wang, Zhouhong; O'Fallon, James; Li, Chun-Zhu; Garcia-Perez, Manuel

    2010-12-01

    This paper describes a new scheme to convert anhydrosugars found in pyrolysis oils into ethanol and lipids. Pyrolytic sugars were separated from phenols by solvent extraction and were hydrolyzed into glucose using sulfuric acid as a catalyst. Toxicological studies showed that phenols and acids were the main species inhibiting growth of the yeast Saccharomyces cerevisiae. The sulfuric acids, and carboxylic acids from the bio-oils, were neutralized with Ba(OH)(2). The phase rich in sugar was further detoxified with activated carbon. The resulting aqueous phase rich in glucose was fermented with three different yeasts: S. cerevisiae to produce ethanol, and Cryptococcus curvatus and Rhodotorula glutinis to produce lipids. Yields as high as 0.473 g ethanol/g glucose and 0.167 g lipids/g sugar (0.266 g ethanol equivalent/g sugar), were obtained. These results confirm that pyrolytic sugar fermentation to produce ethanol is more efficient than for lipid production. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake.

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2014-07-01

    Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.

  19. Flux and energy dependence of methane production from graphite due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.; Stangeby, P.C.

    1986-06-01

    Carbon is in widespread use for limiter surfaces, as well as first wall coatings in current tokamaks. Chemical erosion via methane formation, due to energetic H + impact, is expected to contribute to the total erosion rate of carbon from these surfaces. Experimental results are presented for the methane yield from pyrolytic graphite due to H + exposure, using a mass analyzed ion beam. H + energies of 0.1-3 keV and flux densities of ∼ 5x10 13 to l0 16 H + /cm 2 s were used. The measured methane yield (CH 4 /H + ) initially increases with flux density, then reaches a maximum, which is followed by a gradual decrease. The magnitude of the maximum yield and the flux density at which it occurs depends on the graphite temperature. The yields obtained at temperatures corresponding to yield maxima at specific flux densities also show an initial increase, followed by a shallow maximum and a gradual decrease as a function of flux density; the maximum occurs at ∼10 15 H + /cm 2 s. Also presented are results on the methane production dependence on ion energy over the range 0.1 to 3 keV, and graphite temperature dependence measurements

  20. Significance of dissolved methane in effluents of anaerobically ...

    Science.gov (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  1. Coalbed methane: new frontier

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.

    2003-02-01

    There are large numbers of stacked coal seams permeated with methane or natural gas in the Western Canadian Sedimentary Basin, and approximately 20 coalbed methane pilot projects are operating in the area, and brief descriptions of some of them were provided. Coalbed methane reserves have a long life cycle. A definition of coalbed methane can be a permeability challenged reservoir. It is not uncommon for coalbed methane wells to flow water for periods varying from 2 to 6 months after completion before the production of natural gas. A made-in-Canada technological solution is being developed by CDX Canada Inc., along with its American parent company. The techniques used by CDX are a marriage between coal mining techniques and oil and gas techniques. A brief description of coalification was provided. Nexen is participating in the production of gas from an Upper Mannville coal at 1 000-metres depth in a nine-well pilot project. The Alberta Foothills are considered prime exploration area since older coal is carried close to the surface by thrusting. CDX Canada uses cavitation completion in vertical wells. Cavitation consists in setting the casing above the coal seam and drilling ahead under balanced. The design of wells for coalbed methane gas is based on rock and fluid mechanics. Hydraulic fracturing completions is also used, as are tiltmeters. An enhanced coalbed methane recovery pilot project is being conducted by the Alberta Research Council at Fenn-Big Valley, located in central Alberta. It injects carbon dioxide, which shows great potential for the reduction of greenhouse gas emissions. 1 figs.

  2. Deposition of pyrolytic carbon from C2H2--C3H6--Ar gas mixtures: coating under adiabatic conditions

    International Nuclear Information System (INIS)

    Gyarmati, E.; Gupta, A.K.; Puetter, B.

    In this report a method is described by which pyrolytic carbon can be deposited from ethylene-propylene-argon gas mixtures at temperatures between 1230 and 1330 0 C in 55-mm fluidized bed apparatus without heat exchange with the apparatus

  3. Structure-property relations for silicon nitride matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon fibers

    NARCIS (Netherlands)

    Kooi, B.J.; Hosson, J.Th.M. De; Olivier, C.; Veyret, J.B.

    1999-01-01

    Si3N4 matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon (SiC) fibers, were studied using tensile testing and transmission electron microscopy. Three types of samples were evaluated all with a nominal coating thickness of 200 nm. The composites were densified by hot pressing at

  4. Methane of the coal

    International Nuclear Information System (INIS)

    Vasquez, H.

    1997-01-01

    In the transformation process of the vegetable material to the coal (Carbonization), the products that are generated include CH 4, CO2, N2 and H2. The methane is generated by two mechanisms: below 50 centigrade degree, as product of microbial decomposition, the methanogenic is generated; and above 50 centigrade degree, due to the effects of the buried and increase of the range of the coal, the thermogenic methane is detachment, as a result of the catagenic. The generated methane is stored in the internal surfaces of the coal, macro and micro pores and in the natural fractures. The presence of accumulations of gas of the coal has been known in the entire world by many years, but only as something undesirable for its danger in the mining exploitation of the coal

  5. Catalytic aromatization of methane.

    Science.gov (United States)

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  6. Erosion of CFC, pyrolytic and boronated graphite under short pulsed laser irradiation

    International Nuclear Information System (INIS)

    Kraaij, G.J.; Bakker, J.; Stad, R.C.L. van der

    1992-07-01

    The effect of short pulsed laser irradiation of '0/3' ms and up to 10 MJ/m 2 on different types of carbon base materials is described. These materials are investigated as candidate protection materials for the Plasma Facing Components of NET/ITER. These materials are: carbon fibre composite graphite, pyrolytic graphite and boronated graphite. The volume of the laser induced craters was measured with an optical topographic scanner, and these data are evaluated with a simple model for the erosion. As a results, the enthalpy of ablation is estimated as 30±3 MJ/kg. A comparison is made with finite element numerical calculations, and the effect of lateral heat transfer is estimated using an analytical model. (author). 8 refs., 23 figs., 4 tabs

  7. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  8. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D; Haering, P; Haas, O; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  9. Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Shen Ziyong; Hou Shimin; Zhao Xingyu; Xue Zengquan; Shi Zujin; Gu Zhennan

    2007-01-01

    Carbon onions produced by DC arc discharge method were deposited on highly oriented pyrolytic graphite (HOPG) surface and their adsorption and manipulation was studied using an atomic force microscopy (AFM). Well-dispersed adsorption of carbon onions on HOPG surface was obtained and aggregations of onions were not observed. The van der Waals interaction between the onion and HOPG surface and that between two onions, were calculated and discussed using Hamaker's theory. The manipulation of adsorbed onions on HOPG surface was realized using the AFM in both the raster mode and the vector mode. The controllability and precision of two manipulation modes were compared and the vector mode manipulation was found superior, and is a useful technique for the construction of nano-scale devices based on carbon onions

  10. Interaction of noble-metal fission products with pyrolytic silicon carbide

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1982-01-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO 2 or UC 2 are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group

  11. Characterization of a polychromatic neutron beam diffracted by pyrolytic graphite crystals

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    The beam spectrum for polychromatic neutrons diffracted by pyrolytic graphite crystals was characterized. The theoretical beam spectrum was obtained using the diffraction model for a mosaic crystal. The lattice vibration effects were included in the calculation using the reported vibration amplitude of the crystal and the measured time-of-flight spectra in the thermal region. The calculated beam spectrum was compared with the results obtained in the absence of thermal motion. The lattice vibration effects became more important for the higher diffraction orders and a large decrease in the neutron flux induced by the vibrations was identified in the epithermal region. The validity of the beam spectrum was estimated by comparing with the effective quantities determined from prompt gamma-ray measurements and Cd-ratios measured both for 1/nu and non-1/nu nuclides.

  12. Phase transitions to 120 GPa for shock-compressed pyrolytic and hot-pressed boron nitride

    International Nuclear Information System (INIS)

    Gust, W.H.; Young, D.A.

    1977-01-01

    Shock-compression characteristics of two types of hexagonal graphitelike boron nitride have been investigated. Highly oriented very pure pyrolytic boron nitride exhibits shock-velocity versus particle-velocity discontinuities that appear to be manifestations of the initiation of a sluggish phase transition. This transition begins at 20 GPa and is driven to completion (melting) at 75 GPa. Discontinuities in the plot for impure hot-pressed boron nitride indicate initiation at 10 GPa and completion at 20 GPa. The (U/sub s/, U/sub p/) plots follow essentially the same paths for 4.0 < U/sub p/ < 5.2 km/sec. No evidence for a transition to a metalliclike state was seen. Temperature calculations indicate that the material is liquid above approx.80 GPa

  13. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie

    2013-07-15

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin structure: H.sub.4SiW.sub.12O.sub.40, H.sub.3PW.sub.12O.sub.40, H.sub.4SiMo.sub.12O.sub.40, or H.sub.3PMo.sub.12O.sub.40, can be when supported on silica.

  14. Methanization - Technical sheet

    International Nuclear Information System (INIS)

    Bastide, Guillaume

    2015-02-01

    This document explains fundamentals of methanization such as biological reactions and conditions suitable for biogas production (temperature, pH, anaerobic medium, and so on). It also proposes an overview of available techniques, of the present regulation, of environmental impacts, and of costs and profitability of methanization installations. Examples of installations are provided, as well as a set of questions and answers. Perspectives of development are finally discussed in terms of sector development potential, of regulatory evolution, of new perspectives for gas valorisation, of need of acquisition of reference data due to the relatively low number of existing installations, and of research and development

  15. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  16. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  17. Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures

    International Nuclear Information System (INIS)

    Naeem, M.A.; Khalid, M.; Arshad, M.; Ahmad, R.

    2014-01-01

    Variation in pyrolytic temperatures and feedstocks affects the yield and nutrient composition of biochar. Selection of suitable feedstock and optimum pyrolytic temperature is crucial before using it for agricultural purposes. We compared biochars produced from two feedstocks (wheat straw and rice) at three temperatures (300, 400 and 500 degree C). Biochar yield decreased significantly (p<0.05) with increasing pyrolysis temperature, while ash contents were increased. The cation exchange capacity was significantly higher (119 cmolc kg/sup -1/) at temperature 400 degree C. The pH, electrical conductivity (EC) and carbon content of biochars increased significantly with increasing temperature and maximum pH (10.4) and EC (3.35 dS m/sup -1/) were observed in rice straw biochar (WSB) at 500 degree C and carbon content (662 g kg/sup -1/) in wheat straw biochar (RSB) at 500 degree C. Concentration of phosphorus (P) and potassium (K) increased significantly with increasing temperature, while of nitrogen (N) decreased. Overall, the maximum N (13.8 g kg/sup -1/at 300 degree C) and P (3.4 g kg/sup -1/at 500 degree C) concentrations were observed in WSB while, maximum K (48 g kg/sup -1/ at 500 degree C)in RSB. High pyrolysis temperature reduced AB-DTPA extractable nutrients (expect Mn). The highest AB-DTPA extractable nutrients such as P (113 mg kg/sup -1/) and Ca (1.07 g kg/sup -1/) were observed in WSB at 300 degree C while, K (18 g kg/sup -1/) and magnesium (Mg) (1.55 g kg/sup -1/) in RSB at 300 degree C. Selected feedstock and use of low pyrolysis temperature may produce nutrient-rich biochar, with high CEC and low pH and these could have positive effects on calcareous soils. (author)

  18. Permafrost slowly exhales methane

    Science.gov (United States)

    Herndon, Elizabeth M.

    2018-04-01

    Permafrost soils store vast quantities of organic matter that are vulnerable to decomposition under a warming climate. Recent research finds that methane release from thawing permafrost may outpace carbon dioxide as a major contributor to global warming over the next century.

  19. Methane pellet moderator development

    International Nuclear Information System (INIS)

    Foster, C.A.; Schechter, D.E.; Carpenter, J.M.

    2004-01-01

    A methane pellet moderator assembly consisting of a pelletizer, a helium cooled sub-cooling tunnel, a liquid helium cooled cryogenic pellet storage hopper and a 1.5L moderator cell has been constructed for the purpose demonstrating a system for use in high-power spallation sources. (orig.)

  20. Methane emissions from grasslands

    NARCIS (Netherlands)

    Pol - van Dasselaar, van den A.

    1998-01-01

    Introduction

    Methane (CH 4 ) is an important greenhouse gas. The concentration of greenhouse gases in the atmosphere has been increasing since pre-industrial times, mainly due to human activities. This increase gives concern,

  1. Direct Aromaization of Methane

    Energy Technology Data Exchange (ETDEWEB)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  2. Methane emissions from natural wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

    1993-09-01

    Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

  3. Modelling global methane emissions from livestock: Biological and nutritional controls

    Science.gov (United States)

    Johnson, Donald E.

    1992-01-01

    The available observations of methane production from the literature have been compiled into a ruminant methane data base. This data base includes 400 treatment mean observations of methane losses from cattle and sheep, and minor numbers of measurements from other species. Methane loss varied from 2.0 to 11.6 percent of dietary gross energy. Measurements included describe the many different weights and physiological states of the animals fed and diets ranging from all forage to all concentrate diets or mixtures. An auxiliary spreadsheet lists approximately 1000 individual animal observations. Many important concepts have emerged from our query and analysis of this data set. The majority of the world's cattle, sheep, and goats under normal husbandry circumstances likely produce methane very close to 6 percent of their daily diets gross energy (2 percent of the diet by weight). Although individual animals or losses from specific dietary research circumstances can vary considerably, the average for the vast majority of groups of ruminant livestock are likely to fall between 5.5 to 6.5 percent. We must caution, however, that little experimental data is available for two-thirds of the world's ruminants in developing countries. Available evidence suggests similar percentage of emissions, but this supposition needs confirmation. More importantly, data is skimpy or unavailable to describe diet consumption, animal weight, and class distribution.

  4. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    Science.gov (United States)

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. Copyright © 2015, American Association for the Advancement of Science.

  5. Methane from dairy waste

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-22

    This short article describes a facility which will incorporate features to allow for the recovery of the methane gas that is produced in the manufacture of cheese and spray-dried whey powder at the site. The dairy plant is expected to produce about 1,385 m/sup 3//day of methane which will supplement the operation of oil burners and replace the annual consumption of 4,000 bbl of heavy fuel oil. In addition, development of the treatment system would eliminate the consumption of 7,200 kWh/day of electrical energy that would otherwise be required to operate an aerobic disposal system. Total annual energy savings, when the project is fully operational in the spring of 1984, are expected to reach $321,000.

  6. Methanation: reality or fiction?

    International Nuclear Information System (INIS)

    Gay, Michel

    2015-01-01

    The author discusses whether it is possible to partly replace oil and natural gas by electricity-based gas, i.e. to produce methane from water by electrolysis, or by using molecule cracking in dedicated nuclear reactors, and carbon dioxide. He outlines the benefits of this perspective in terms of reduction of imports, and of national electricity production optimisation. He also discusses the drawbacks: it will be difficult to produce the huge required quantity of CO 2 ; it will be even more difficult to produce the required quantity of electricity; the e-methane production cost is much higher than that of the currently imported natural gas. In appendix, the author discusses some key figures related to energy in France (consumption, shares, imports, crucial role of nuclear energy for the future)

  7. Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Wang, Lumin; Was, Gary

    2010-01-01

    Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

  8. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  9. Photofragment imaging of methane

    International Nuclear Information System (INIS)

    Heck, A.J.; Zare, R.N.; Chandler, D.W.

    1996-01-01

    The photolysis of methane is studied using photofragment imaging techniques. Our study reveals that the photolysis of methane proceeds via many different pathways. The photofragment imaging technique is used to resolve and characterize these various pathways and provides therefore unique insight into the dynamical processes that govern this photodissociation. The formation of H-atom photofragments following absorption of a Lyman-α photon, and H 2 photofragments following absorption of two ultraviolet photons (λ=210 endash 230 nm) are studied. The measured H-atom photofragment images reveal that a channel that produces fast H atoms concomitant with methyl fragments is dominant in the Lyman-α photolysis of methane. This channel leads to an anisotropic recoil of the fragments. A secondary channel is observed leading to the formation of somewhat slower H atoms, but an unique identification of this second channel is not possible from the data. At least part of these slower H atoms are formed via a channel that produces H atoms concomitant with CH and H 2 photofragments. The recoil of these slower H atoms appears to be isotropic. The measured, state-resolved H 2 (v,J), photofragment images reveal that two channels lead to H 2 photofragments from the two-photon photolysis of methane: a channel that leads to H 2 products concomitant with methylene fragments; and a channel that leads to H 2 products concomitant with CH and H fragments. H 2 (v,J) rotational and vibrational distributions are measured for each of these two channels separately. The H 2 products formed via the H 2 +CH 2 channel are rotationally and vibrationally highly excited, whereas those formed via the H 2 +CH+H channel are rotationally and vibrationally cooler. Rotational distributions of H 2 formed via the H 2 +CH+H channel are well reproduced by Boltzmann distributions. (Abstract Truncated)

  10. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  11. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  12. Genomic selection for methane emission

    DEFF Research Database (Denmark)

    de Haas, Yvette; Pryce, Jennie E; Wall, Eileen

    2016-01-01

    Climate change is a growing area of international concern, and it is well established that the release of greenhouse gases (GHG) is a contributing factor. Of the various GHG produced by ruminants, enteric methane (CH4 ) is the most important contributor. One mitigation strategy is to reduce methane...... emission through genetic selection. Our first attempt used beef cattle and a GWAS to identify genes associated with several CH4 traits in Angus beef cattle. The Angus population consisted of 1020 animals with phenotypes on methane production (MeP), dry matter intake (DMI), and weight (WT). Additionally......, two new methane traits: residual genetic methane (RGM) and residual phenotypic methane (RPM) were calculated by adjusting CH4 for DMI and WT. Animals were genotyped using the 800k Illumina Bovine HD Array. Estimated heritabilities were 0.30, 0.19 and 0.15 for MeP, RGM and RPM respectively...

  13. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    Science.gov (United States)

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  14. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  15. Cf/C composites: correlation between CVI process parameters and Pyrolytic Carbon microstructure

    Directory of Open Access Journals (Sweden)

    F. Burgio

    2014-10-01

    Full Text Available Chemical Vapour Infiltration (CVI technique has been long used to produce carbon/carbon composites. The Pyrolytic Carbon (Py-C matrix infiltrated by CVI could have different microstructures, i.e. Rough Laminar (RL, Smooth Laminar (SL or Isotropic (ISO. These matrix microstructures, characterized by different properties, influence the mechanical behaviour of the obtained composites. Tailoring the process parameters, it is possible to direct the infiltration towards a specific Py-C type. However, the factors, influencing the production of a specific matrix microstructure, are numerous and interconnected, e.g. temperature, pressure, flow rates etc. Due to the complexity of the physical and chemical phenomena involved in CVI process, up to now it has not been possible to obtain a general correlation between CVI process parameters and Py–C microstructure. This study is aimed at investigating the relationship between infiltration temperature and the microstructure of obtained Py-C, for a pilot - sized CVI/CVD reactor. Fixing the other process parameters and varying only the temperature, from 1100°C to 1300°C, the Py-C infiltration was performed on fibrous preforms. Polarized light microscopy, with quantitative measurements of average extinction angle (Ae, and Raman spectroscopy were used to characterize the obtained Py-C microstructures

  16. Cf/C composites: correlation between CVI process parameters and Pyrolytic Carbon microstructure

    Directory of Open Access Journals (Sweden)

    F. Burgio

    2014-10-01

    Full Text Available Chemical Vapour Infiltration (CVI technique has been long used to produce carbon/carbon composites. The Pyrolytic Carbon (Py-C matrix infiltrated by CVI could have different microstructures, i.e. Rough Laminar (RL, Smooth Laminar (SL or Isotropic (ISO. These matrix microstructures, characterized by different properties, influence the mechanical behaviour of the obtained composites. Tailoring the process parameters, it is possible to direct the infiltration towards a specific Py-C type. However, the factors, influencing the production of a specific matrix microstructure, are numerous and interconnected, e.g. temperature, pressure, flow rates etc. Due to the complexity of the physical and chemical phenomena involved in CVI process, up to now it has not been possible to obtain a general correlation between CVI process parameters and Py–C microstructure. This study is aimed at investigating the relationship between infiltration temperature and the microstructure of obtained Py-C, for a pilot - sized CVI/CVD reactor. Fixing the other process parameters and varying only the temperature, from 1100°C to 1300°C, the Py-C infiltration was performed on fibrous preforms. Polarized light microscopy, with quantitative measurements of average extinction angle (Ae, and Raman spectroscopy were used to characterize the obtained Py-C microstructures.

  17. Theoretical Study of the Kinetics of the Pyrolytic Elimination Reaction of Ethyl Chloride

    Directory of Open Access Journals (Sweden)

    Isaiah Ajibade Adejoro

    2010-01-01

    Full Text Available The products of the gas-phase elimination of ethyl chloride are hydrogen chloride and ethane. Using AM1, MNDO and PM3 Hamiltonians of quantum mechanical computer code called MOPAC, a procedure for the kinetics and computation of the Arrhenius parameters for the pyrolytic elimination reaction of ethyl chloride was devised in order to evaluate the predictive ability of the three Hamiltonians used. The first-order rate coefficient for the three Hamiltonians are 1.15x10-8s-1, 4.55x10-15s-1 and 5.36x10-4s-1 for AM1, MNDO and PM3 respectively. The results obtained showed that the rate constant for the computed Arrhenius parameters compare well with the experimental values in the literature, thus showing that the computational procedure adequately simulates experimental results; also the semi-empirical AMI calculation has the best predictive ability with experiment followed by PM3 while MNDO has the least.

  18. A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Masek, Ondrej; Konno, Miki; Hosokai, Sou; Sonoyama, Nozomu; Norinaga, Koyo; Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2008-01-15

    The increasing interest in biomass, as a renewable source of energy, is stimulating a search for suitable biomass resources as well as the development of technologies for their effective utilization. This work concentrated on characteristics of processes occurring during pyrolytic gasification of upgraded food industry residues, namely residue from industrial production of liquid coffee, and assessed its suitability for conversion in an allothermal gasifier. The influence of several operating parameters on product composition was examined with three different laboratory-scale reactors, studying the primary pyrolysis and secondary pyrolysis of nascent volatiles, and the steam gasification of char. The experimental results show that a high degree of conversion of UCG into volatiles and gases (up to 88% C-basis) can be achieved by fast pyrolysis even at temperatures as low as 1073 K. In addition, the degree of conversion is not influenced by the presence or concentration of steam, which is an important factor in allothermal gasification. Mathematical simulation of an allothermal gasifier showed that net cold-gas efficiency as high as 86% can be reached. (author)

  19. Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa.

    Directory of Open Access Journals (Sweden)

    Naihao Ye

    Full Text Available Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min(-1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO, Kissinger-Akahira-Sunose (KAS and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n=3, whereas that of maize straw can be described by the Mampel Power Law (n=2. The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol(-1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.

  20. Effects of deposited pyrolytic carbon on some mechanical properties of zircaloy-4 tubes. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Shrkawy, S W; Abdel-razek, I D; El-Sayed, H A [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Zircaloy cladding tubes are not compatible with the uranium fuel pellets as they suffer from failure due to pelletclad interaction (PCI). A carbon coating, as used in the canadian CANLUB fuel elements, is thought to improve the cladding performance with respect to the PCI problem. In this paper pyrolytic carbon coating was deposited on zircaloy-4 cladding tubes by the thermal cracking of commercial butant gas at the temperature range 250-450 degree C. In order to evaluate the effect of gaseous species on the mechanical properties of the tubes tensile and microhardness testing measurements were performed on samples prepared from the coated tubes. The fractured surface of the tensile zircaloy tubes and the deposited carbon coating, both, were examined by the SEM. The results of the tensile tests of zircaloy-4 tubes indicated that the coating process has insignificant effect on the ultimate strength of the tubes tested. The values of Vickers hardness numbers were not significantly changed across the tubes thickness. The microstructure of deposited carbon, due to the cracking process, was granular in all the temperature range (250-450 degree C) studied. 9 figs., 1 tab.

  1. The optical constants and spectral specular reflectivity of highly oriented pyrolytic graphite (HOPG)

    International Nuclear Information System (INIS)

    Havstad, M.A.; Schildbach, M.A.; McLean, W. II.

    1993-08-01

    Measurements of the specular reflectivity and the optical constants of highly ordered pyrolytic graphite (HOPG) have been made using two independent optical systems. The first measures reflectance (at 1.06 μm and 293 K) by comparing the intensity of a laser beam before and after reflecting off the sample. The second determines the complex index of raft-action (from 0.55 to 8.45 μm, with sample temperatures of 293, 480, 900 and 1300 K) by ellipsometry. Agreement between the two methods is good. Moderate reflectivities are observed over the full spectral range of measurement: the spectral directional-hemispherical reflectivity at normal incidence varies from 0.41 at 0.55 μm to 0.74 at 8.45 μm. The components of the complex index of refraction increase smoothly with wavelength. The index of refraction increases from 3.10 at 0.55 μm to 7.84 at 8.45 μm. The extinction coefficient varies from 2.01 to 6.66 over the same range

  2. Pyrolytic graphite as an efficient second-order neutron filter at tuned positions of boundary crossing

    International Nuclear Information System (INIS)

    Adib, M.; Abdel Kawy, A.; Habib, N.; El Mesiry, M.

    2010-01-01

    An investigation of pyrolytic graphite (PG) crystal as an efficient second order neutron filter at tuned boundary crossings has been carried out. The neutron transmission through PG crystal at these tuned crossing points as a function of first- and second-order wavelengths were calculated in terms of PG mosaic spread and thickness. The filtering features of PG crystals at these tuned boundary crossings were deduced. It was shown that, there are a large number of tuned positions at double and triple boundary crossings of the curves (hkl) are very promising as tuned filter positions. However, only fourteen of them are found to be most promising ones. These tuned positions are found to be within the neutron wavelengths from 0.133 up to 0.4050 nm. A computer package GRAPHITE has been used in order to provide the required calculations in the whole neutron wavelength range in terms of PG mosaic spread and its orientation with respect to incident neutron beam direction. It was shown that 0.5 cm thick PG crystal with angular mosaic spread of 2 0 is sufficient to remove 2nd-order neutrons at the wavelengths corresponding to the positions of the intersection boundaries curves (hkl).

  3. Electronic Transport and Raman Spectroscopy Characterization in Ion-Implanted Highly Oriented Pyrolytic Graphite

    Science.gov (United States)

    de Jesus, R. F.; Turatti, A. M.; Camargo, B. C.; da Silva, R. R.; Kopelevich, Y.; Behar, M.; Balzaretti, N. M.; Gusmão, M. A.; Pureur, P.

    2018-02-01

    We report on Raman spectroscopy, temperature-dependent in-plane resistivity, and in-plane magnetoresistance experiments in highly oriented pyrolytic graphite (HOPG) implanted with As and Mn. A pristine sample was also studied for comparison. Two different fluences were applied, φ = 0.5× 10^{16} {ions}/{cm}2 and φ = 1.0× 10^{16} {ions}/{cm}2. The implantations were carried out with 20 keV ion energy at room temperature. The Raman spectroscopy results reveal the occurrence of drastic changes of the HOPG surface as a consequence of the damage caused by ionic implantation. For the higher dose, the complete amorphization limit is attained. The resistivity and magnetoresistance results were obtained placing electrical contacts on the irradiated sample surface. Owing to the strong anisotropy of HOPG, the electrical current propagates mostly near the implanted surface. Shubnikov-de Haas (SdH) oscillations were observed in the magnetoresistance at low temperatures. These results allow the extraction of the fundamental SdH frequencies and the carriers' effective masses. In general, the resistivity and magnetoresistance results are consistent with those obtained from Raman measurements. However, one must consider that the electrical conduction in our samples occurs as in a parallel association of a largely resistive thin sheet at the surface strongly modified by disorder with a thicker layer where damage produced by implantation is less severe. The SdH oscillations do not hint to significant changes in the carrier density of HOPG.

  4. Investigation on the recombination kinetics of the pyrolytic free-radicals in the irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Chengyue; Wu Yiyong; Yue Long; Shi Yaping; Xiao Jingdong

    2012-01-01

    Highlights: ► Free radicals behavior was exposure during the irradiation and anneal during the post storage. ► Both of the recombination and oxygen reaction affect the post-annealing evolution of free radicals. ► The activation energy and the surface reaction rate were calculated by the analysis of the free radical anneal process. - Abstract: The free radical behavior of 60 and 110 keV proton-irradiated polyimide were investigated using electron paramagnetic resonance measurements. The results indicate that during proton irradiation, a type of pyrolytic carbon free radical was formed with a g value of 2.0025. The radical population was found, after proton irradiation to decrease in a combination of an exponential and linear modes with an annealing time in the range of 50–120 °C. The exponential part indicated a radical recombination process while the linear part is due to the reaction of the radical with the ambient. Using the annealing results, the recombination activation energy of the radicals was determined as 12.4 ± 0.2 and 17.6 ± 0.2 kJ/mol for 60 and 110 keV irradiated polyimide, respectively, with a surface reaction rate of about 0.02/h. It is possible that the kinetic study presented here is used as one of the criteria for predicting the optical properties of polyimide material in spacecraft. The mechanism of the free radical evolution will be discussed in this paper.

  5. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification

    International Nuclear Information System (INIS)

    Masek, Ondrej; Konno, Miki; Hosokai, Sou; Sonoyama, Nozomu; Norinaga, Koyo; Hayashi, Jun-ichiro

    2008-01-01

    The increasing interest in biomass, as a renewable source of energy, is stimulating a search for suitable biomass resources as well as the development of technologies for their effective utilization. This work concentrated on characteristics of processes occurring during pyrolytic gasification of upgraded food industry residues, namely residue from industrial production of liquid coffee, and assessed its suitability for conversion in an allothermal gasifier. The influence of several operating parameters on product composition was examined with three different laboratory-scale reactors, studying the primary pyrolysis and secondary pyrolysis of nascent volatiles, and the steam gasification of char. The experimental results show that a high degree of conversion of UCG into volatiles and gases (up to 88% C-basis) can be achieved by fast pyrolysis even at temperatures as low as 1073 K. In addition, the degree of conversion is not influenced by the presence or concentration of steam, which is an important factor in allothermal gasification. Mathematical simulation of an allothermal gasifier showed that net cold-gas efficiency as high as 86% can be reached

  7. Removal of copper by oxygenated pyrolytic tire char: kinetics and mechanistic insights.

    Science.gov (United States)

    Quek, Augustine; Balasubramanian, Rajashekhar

    2011-04-01

    The kinetics of copper ion (Cu(II)) removal from aqueous solution by pyrolytic tire char was modeled using five different conventional models. A modification to these models was also developed through a modified equation that accounts for precipitation. Conventional first- and second-order reaction models did not fit the copper sorption kinetics well, indicating a lack of simple rate-order dependency on solute concentration. Instead, a reversible first-order rate reaction showed the best fit to the data, indicating a dependence on surface functional groups. Due to the varying solution pH during the sorption process, modified external and internal mass transfer models were employed. Results showed that the sorption of copper onto oxygenated chars was limited by external mass transfer and internal resistance with and without the modification. However, the modification of the sorption process produced very different results for unoxygenated chars, which showed neither internal nor external limitation to sorption. Instead, its slow sorption rate indicates a lack of surface functional groups. The sorption of Cu(II) by oxygenated and unoxygenated chars was also found to occur via three and two distinct stages, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodium-Ion Storage.

    Science.gov (United States)

    Cho, Se Youn; Kang, Minjee; Choi, Jaewon; Lee, Min Eui; Yoon, Hyeon Ji; Kim, Hae Jin; Leal, Cecilia; Lee, Sungho; Jin, Hyoung-Joon; Yun, Young Soo

    2018-04-01

    Na-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN-2800 prepared by heating at 2800 °C has a distinctive sp 2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm -1 , presenting significantly high rate capability at 600 C (60 A g -1 ) and stable cycling behaviors over 40 000 cycles as an anode for Na-ion storage. The results of this study show the unusual graphitization behaviors of a char-type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN-2800, even surpassing those of supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The transport phase of pyrolytic oil exiting a fast fluidized bed reactor

    Science.gov (United States)

    Daugaard, Daren Einar

    An unresolved and debated aspect in the fast pyrolysis of biomass is whether the bio-oil exits as a vapor or as an aerosol from the pyrolytic reactor. The determination of the bio-oil transport phase will have direct and significant impact on the design of fast pyrolysis systems. Optimization of both the removal of particulate matter and collection of bio-oil will require this information. In addition, the success of catalytic reforming of bio-oil to high-value chemicals will depend upon this transport phase. A variety of experimental techniques were used to identify the transport phase. Some tests were as simple as examining the catch of an inline filter while others attempted to deduce whether vapor or aerosol predominated by examining the pressure drop across a flow restriction. In supplementary testing, the effect of char on aerosol formation and the potential impact of cracking during direct contact filtering are evaluated. The study indicates that for pyrolysis of red oak approximately 90 wt-% of the collected bio-oil existed as a liquid aerosol. Conversely, the pyrolysis of corn starch produced bio-oil predominately in the vapor phase at the exit of the reactor. Furthermore, it was determined that the addition of char promotes the production of aerosols during pyrolysis of corn starch. Direct contact filtering of the product stream did not collect any liquids and the bio-oil yield was not significantly reduced indicating measurable cracking or coking did not occur.

  10. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics

    Directory of Open Access Journals (Sweden)

    R. Tuffi

    2018-01-01

    Full Text Available The thermal behavior and pyrolytic kinetic analysis of main waste polymers (polypropylene (PP, polyethylene film (PE, poly(ethylene terephthalate (PET, polystyrene (PS and three synthetic mixtures representing commingled postconsumer plastics wastes (CPCPWs output from material recovery facilities were studied. Thermogravimetry (TG pyrolysis experiments revealed that the thermal degradation of single polymers and the synthetic mixture enriched in PP occurred in one single step. The other two mixtures underwent a two-consecutive, partially overlapping degradation steps, whose peaks related to the first-order derivative of TG were deconvoluted into two distinct processes. Further TG experiments carried out on binary mixtures (PS/PP, PET/PP, PET/PEfilm and PP/PEfilm showed a thermal degradation reliance on composition, structure and temperatures of single polymer components. A kinetic analysis was made for each step using the Kissinger-Akahira-Sunose (KAS method, thus determining almost constant activation energy (Ea for pyrolysis of PS, PET, PP and PE film in the range 0.25<α<0.85, unlike for pyrolysis of CPCPWs, with particular reference to CPCPW1 and the second step of CPCPW2 and CPCPW3, both ascribable to degradation of PP and PE film. To account for the reliability of these values the integral isoconversional modified method developed by Vyazovkin was also applied.

  11. THE EFFECT OF APPLIED STRESS ON THE GRAPHITIZATION OF PYROLYTIC GRAPHITE

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, R H; Crooks, D D; Fenn, Jr, R W; Hammond, M L

    1963-06-15

    Metallographic and x-ray diffraction studies were made of the effect of applied stress at high temperature on the structure of pyrolytic graphite (PG). The dominant factor was whether the PG was above or below its graphitization temperature, which, in turn, was not strongly dependent on applied stress. Below the graphitization temperature, the PG showed a high proportion of disordered layers (0.9), a fairly large mean tilt angle (20 deg ) and a small crystailite size (La --150 A). Fracture occurred at low stress and strain and the materiai exhibited a high apparent Young's modulus ( approximates 4 x 10/sup 6/ psi). Above the graphitization temperature, graphitization was considerably enhanced by strain up to about 8%. The disorder parameter was decreased from a zero strain value of 0.3 to 0.l5 with strain, the mean tilt angle was decreased to 4 deg , and a fivefold increase in crystallite size occurred. When the strainenhanced graphitization was complete, the material exhibited a low apparent modulus ( approximates 0.5 x 10/sup 6/ psi) and large plastic strains (>100%) for a constant stress ( approximates 55 ksi). Graphitization was shown to be a spontaneous process that is promoted by breaking cross-links thermally, and the process is furthered by chemical attack and plastic strain. (auth)

  12. Surface modification of highly oriented pyrolytic graphite by reaction with atomic nitrogen at high temperatures

    International Nuclear Information System (INIS)

    Zhang Luning; Pejakovic, Dusan A.; Geng Baisong; Marschall, Jochen

    2011-01-01

    Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 deg. C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 deg. C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 deg. C show the D mode near 1360 cm -1 , which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.

  13. Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa.

    Science.gov (United States)

    Ye, Naihao; Li, Demao; Chen, Limei; Zhang, Xiaowen; Xu, Dong

    2010-09-10

    Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min(-1) under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n=3), whereas that of maize straw can be described by the Mampel Power Law (n=2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol(-1), respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.

  14. Electrochemical formation and characterization of Au nanostructures on a highly ordered pyrolytic graphite surface

    International Nuclear Information System (INIS)

    Arroyo Gómez, José J.; Zubieta, Carolina; Ferullo, Ricardo M.; García, Silvana G.

    2016-01-01

    Graphical abstract: - Highlights: • The electrodeposition of Au on HOPG tends to follow the response predicted for a 3D instantaneous nucleation mechanism in the potential range considered. • By choosing suitable nucleation and growth pulses, one-dimensional deposits were possible, preferentially located on step edges of the HOPG substrate. • Quantum-mechanical calculations confirmed the tendency of Au atoms to join selectively on the HOPG step edges, at the early stages of Au electrodeposition. - Abstract: The electrochemical formation of Au nanoparticles on a highly ordered pyrolytic graphite (HOPG) substrate using conventional electrochemical techniques and ex-situ AFM is reported. From the potentiostatic current transients studies, the Au electrodeposition process on HOPG surfaces was described, within the potential range considered, by a model involving instantaneous nucleation and diffusion controlled 3D growth, which was corroborated by the microscopic analysis. Initially, three-dimensional (3D) hemispherical nanoparticles distributed on surface defects (step edges) of the substrate were observed, with increasing particle size at more negative potentials. The double potential pulse technique allowed the formation of rounded deposits at low deposition potentials, which tend to form lines of nuclei aligned in defined directions leading to 3D ordered structures. By choosing suitable nucleation and growth pulses, one-dimensional (1D) deposits were possible, preferentially located on step edges of the HOPG substrate. Quantum-mechanical calculations confirmed the tendency of Au atoms to join selectively on surface defects, such as the HOPG step edges, at the early stages of Au electrodeposition.

  15. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  16. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    Science.gov (United States)

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  17. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    Frederic, S.; Lugardon, A.

    2007-01-01

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  18. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  19. Methane and compost from straw. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rijkens, B A

    1982-01-01

    A concept is developed in which the farmer collects the straw and ferments it anaerobically to compost and methane at the farm. The methane can be used for heating and for production of mechanical energy, while the compost can be returned to the land at any suitable moment. This way of processing conserves part of the energy, present in the straw, that would otherwise be lost by the field-burning or the ploughing-in. In the meantime it solves the field-burning and environmental problems and it provides the possibility to recycle the organic matter in the humus, as well as all the fertilizing compounds K, P, Mg and nitrogen. There are indications that the arable land will need a restocking with humus that has been lost during many years of (modern) farming, leading to loss in structure and production capacity. This study collects the global technical and economical data, enabling us to indicate under which circumstances and local conditions the methane and compost concept would be feasible and would be an alternative to field-burning, ploughing-in or to the purely energetic use of the straw.

  20. Pyrolysis of methane by microwaves. Pt. 1

    International Nuclear Information System (INIS)

    Avni, R.; Winefordner, J.D.; Nickel, H.

    1975-04-01

    The pyrolysis of methane and mixtures of argon-methane by microwaves (2,450 MHz) was investigated. The microwave plasma diagnostic study was performed using electrical probes, namely, the double floating probe technique. Parameters such as electric field strength and current densities were measured and from their relationship the electron temperature, electric conductivity, electron and ion densities were evaluated as function of gas pressure, microwave power input and distance of the probe from the microwave cavity. Various spectroscopic techniques were used for the measurement of temperatures in the microwave plasma; the 'reversal temperature' by measuring the intensities of the electronic vibrational bands of CN and OH molecules and 'rotational temperature' from the measured intensities of rotational OH lines. The 'rotational' as well as the 'reversal temperature' were found to be identical and this temperature was assumed to be the temperature of the gas in the microwave plasma. Energy balance calculation, based upon the electrical energy input and thermal losses, were performed in order to determine if steady state conditions existed in the microwave plasma. Emission and absorption spectroscopy were used for determining the active species formed in the pyrolysis of methane and also of mixtures of CH 4 -Ar, by the microwave plasma. (orig.) [de

  1. Methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S

    2005-07-15

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  2. Methane from wood

    International Nuclear Information System (INIS)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S.

    2005-07-01

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  3. Methanogenesis and methane genes

    International Nuclear Information System (INIS)

    Reeve, J.N.; Shref, B.A.

    1991-01-01

    An overview of the pathways leading to methane biosynthesis is presented. The steps investigated to date by gene cloning and DNA sequencing procedures are identified and discussed. The primary structures of component C of methyl coenzyme M reductase encoded by mcr operons in different methanogens are compared. Experiments to detect the primary structure of the genes encoding F420 reducing hydrogenase (frhABG) and methyl hydrogen reducing hydrogenase (mvhDGA) in methanobacterium thermoautotrophicum strain H are compared with each other and with eubacterial hydrogenase encoding genes. A biotechnological use for hydrogenases from hypermorphillic archaebacteria is suggested. (author)

  4. Reaction of methane with coal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K.; Batts, B.D.; Wilson, M.A.; Gorbaty, M.L.; Maa, P.S.; Long, M.A.; He, S.J.X.; Attala, M.I. [Macquarie University, Macquarie, NSW (Australia). School of Chemistry

    1997-10-01

    A study of the reactivities of Australian coals and one American coal with methane or methane-hydrogen mixtures, in the range 350-400{degree}C and a range of pressures (6.0-8.3 MPa, cold) is reported. The effects of aluminophosphates (AIPO) or zeolite catalysts, with and without exchanged metals, on reactivity have also been examined. Yields of dichloromethane extractable material are increased by using a methane rather than a nitrogen atmosphere and different catalysts assist dissolution to various extends. It appears that surface exchanged catalysts are effective, but incorporating metals during AIPO lattice formation is detrimental. Aluminium phosphate catalysts are unstable to water produced during coal conversion, but are still able to increase extraction yields. For the American coal, under methane-hydrogen and a copper exchanged zeolite, 51.5% conversion was obtained, with a product selectivity close to that obtained under hydrogen alone, and with only 2% hydrogen consumption. The conversion under methane-hydrogen was also to that obtained under hydrogen alone, while a linear dependence of conversion on proportion of methane would predict a 43% conversion under methane-hydrogen. This illustrates a synergistic effect of the methane-hydrogen atmosphere for coal liquefaction using this catalyst systems. 31 refs., 5 figs., 7 tabs.

  5. Methane adsorption on activated carbon

    NARCIS (Netherlands)

    Perl, Andras; Koopman, Folkert; Jansen, Peter; de Rooij, Marietta; van Gemert, Wim

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room

  6. Methane production from stable manures

    Energy Technology Data Exchange (ETDEWEB)

    Poch, M

    1955-04-01

    A brief description of the methane-bacteria is given, their classification, biochemistry, and ecology, and a table of gas production expected from a dozen waste materials. Descriptions of three fermentation systems are given. The Ducellier-Isman, Massaux consists of 2 or 3 tanks of 6 to 14 m/sup 3/ capacity which daily produces 5 to 17 m/sup 3/ gas. Rotted manure is placed in the tanks, covered with water and liquid manure, and allowed to ferment for 3 months. The older tanks are unmixed, but the newest have provision for breaking the scum layer. Gas production virtually ceases during the winter, much manual labor is involved, and high losses of organic matter are caused by use of already rotted manure. The Darmstadt system, developed by Reinhold and similar to the systems of Harnisch and Mueller, consists of a 15 m/sup 3/ covered pit into which farm wastes and household wastes are fed through piping. The tank is heated and stirred, solids making their way from one end of the tank to the outlet in a matter of weeks, from which they are shoveled and stacked. Gas production is 0.3 to 0.5 m/sup 3/ gas/m/sup 3/ tank daily. A good deal of manual labor is involved, and losses of nutrients occur after the solids are extracted from the tank and piled. A fully mechanized Schmidt-Egersgluess system, the Biological Humus Gasworks (Bihugas), consists of heated (30/sup 0/ to 35/sup 0/), mixed tanks, gas compressor, gas storage tank, and effluent storage tank. Three m/sup 3/ tank capacity are required per head of cattle and gas production is 2 to 2.5 m/sup 3//livestock unit/day. Straw is stored to be ready for use as fermentation feedstock when the cattle are in the fields. The length of digestion in the process is 18 to 20 days.

  7. Effects of deposition conditions on the properties of pyrolytic carbon deposited in a fluidized bed

    International Nuclear Information System (INIS)

    Lowden, Richard Andrew; Hunn, John D.; Nunn, Stephen D.; Kercher, Andrew K.; Price, Jeffery R.; Jellison, Gerald Earle Jr.

    2005-01-01

    The high-density, isotropic pyrolytic carbon layer beneath the silicon carbide (IPyC) plays a key role in the irradiation performance of coated particle fuel. The IPyC layer protects the kernel from reactions with chlorine during deposition of the SiC layer, provides structural support for the SiC layer, and protects the SiC from fission products and carbon monoxide. The process conditions used by the Germans to deposit the IPyC coating produced a highly isotropic, but somewhat permeable IPyC coating. The permeability of the IPyC coating was acceptable for use with the dense German UO 2 kernels, but may not be suitable when coating UCO kernels. The UCO kernels are typically more porous and thus have a larger surface area than UO 2 kernels. The lower density and the higher surface area of UCO kernels could make them more susceptible to attack by HCl gas during the silicon carbide (SiC) coating process, which could result in heavy metal dispersion into the buffer and IPyC coatings and a higher level of as-manufactured SiC defects. The relationship between IPyC deposition conditions, permeability, and anisotropy must be understood and the appropriate combination of anisotropy and permeability for particle fuel containing UCO kernels selected. A reference set of processing conditions have been determined from review of historical information and results of earlier coating experiments employing 350 and 500 (micro)m UO 2 kernels. It was decided that a limited study would be conducted, in which only coating gas fraction (CGF) and temperature would be varied. Coatings would be deposited at different rates and with a range of microstructures. Thickness, density, porosity and anisotropy would be measured and permeability evaluated using a chlorine leach test. The results would be used to select the best IPyC coating conditions for use with the available natural enrichment uranium carbide/uranium oxide (NUCO) kernels. The response plots from the investigation of the

  8. Oxygen-Methane Thruster

    Science.gov (United States)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  9. Search for interstellar methane

    International Nuclear Information System (INIS)

    Knacke, R.F.; Kim, Y.H.; Noll, K.S.; Geballe, T.R.

    1990-01-01

    Researchers searched for interstellar methane in the spectra of infrared sources embedded in molecular clouds. New observations of several lines of the P and R branches of the nu 3 band of CH4 near 3.3 microns give column densities in the range N less than 1(-2) times 10 to the minus 16th power cm(-2). Resulting abundance ratios are (CH4)/(CO) less than 3.3 times 10 to the minus 2nd power toward GL961 in NGC 2244 and less than 2.4 times 10 to the minus 3rd power toward GL989 in the NGC 2264 molecular cloud. The limits, and those determined in earlier observations of BN in Orion and GL490, suggest that there is little methane in molecular clouds. The result agrees with predictions of chemical models. Exceptions could occur in clouds where oxygen may be depleted, for example by H2O freezing on grains. The present observations probably did not sample such regions

  10. Mechanical Properties and Structures of Pyrolytic Carbon Coating Layer in HTR Coated Particle Fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Young Min; Kim, Woong Ki; Cho, Moon Sung

    2009-01-01

    The TRISO(tri-isotropic)-coated fuel particle for a HTR(High Temperature gas-cooled Reactor) has a diameter of about 1 mm, composed of a nuclear fuel kernel and four different outer coating layers, consisting of a buffer PyC (pyrolytic carbon) layer, inner PyC layer, SiC layer, and outer PyC layer with different coating thicknesses following a specific fuel design. While the fuel kernel is a source for a heat generation by a nuclear fission of fissile uranium, each of the four coating layers acts as a different role in view of retaining the generated fission products and the other interactions during an in-reactor service. Among these coating layers, PyC properties are scarcely in agreement among various investigators and the dependency of their changes upon the deposition condition is comparatively large due to their additional anisotropic properties. Although a recent review work has contributed to an establishment of relationship between the material properties and QC measurements, the data on the mechanical properties and structural parameters of PyC coating layers remain still unclearly evaluated. A review work on dimensional changes of PyC by neutron irradiation was one of re-evaluative works recently attempted by the authors. In this work, an attempt was made to analyze and re-evaluate the existing data of the experimental results of the mechanical properties, i.e., Young's modulus and fracture stress, in relation with the coating conditions, density and the BAF (Bacon Anisotropy Factor), an important structural parameter, of PyC coating layers obtained from various experiments performed in the early periods of the HTR coated particle development

  11. Reactions of modulated molecular beams with pyrolytic graphite IV. Water vapor

    International Nuclear Information System (INIS)

    Olander, D.R.; Acharya, T.R.; Ullman, A.Z.

    1977-01-01

    The reaction of water vapor with the prism plane face of anneal pyrolytic graphite was investigated by modulated molecular beam--mass spectrometry methods. The equivalent water vapor pressure of the beam was approx.2 x 10 -5 Torr and the graphite temperature was varied from 300 to 2500 0 K. The mechanism was deduced from three types of experiments: isotope exchange utilizing modulated H 2 O and steady D 2 O beams; measurements of the phase difference between H 2 O and neon reflected from the surface from a mixed primary beam of these species; and reaction of a modulated H 2 O beam to produce CO and H 2 . Based upon the isotope exchange experiments chemisorption of water on graphite was found to be dissociative and reversible. Incident water molecules chemisorbed with a sticking probability of 0.15 +- 0.02 to form the complexes C--OH and C--H. Recombination of the surface complexes reverses the adsorption step and is responsible for the isotope exchange properties of the graphite surface. This process is unactivated. Reaction to produce CO and H 2 also results from collisions of the primary surface complexes, but this step has an activation energy of 170 kJ/mole. This reaction yields bound complexes tentatively identified as C--O and H--C--H, which then decompose to produce the stable reaction products. All of the above steps exhibit characteristic times on the order of milliseconds, and are therefore detectable by the modulated beam method. All surface intermediates are strongly affected by solution and diffusion in the bulk of the solid

  12. STM observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Lapshin, Rostislav V., E-mail: rlapshin@gmail.com [Solid Nanotechnology Laboratory, Institute of Physical Problems, Zelenograd, Moscow 124460 (Russian Federation); Department of Photosensitive Nano and Microsystems, Moscow Institute of Electronic Technology, Zelenograd, Moscow 124498 (Russian Federation)

    2016-01-01

    Graphical abstract: - Highlights: • A previously unknown 3D box-shaped graphene (BSG) nanostructure has been detected. • The nanostructure is a multilayer system of parallel nanochannels having quadrangular cross-section. • Typical width of a nanochannel facet makes 25 nm, typical wall/facet thickness is 1 nm. • A mechanism qualitatively explaining the nanostructure formation has been proposed. • Possible applications of the BSG nanostructure are briefly discussed. - Abstract: A description is given of a three-dimensional box-shaped graphene (BSG) nanostructure formed/uncovered by mechanical cleavage of highly oriented pyrolytic graphite (HOPG). The discovered nanostructure is a multilayer system of parallel hollow channels located along the surface and having quadrangular cross-section. The thickness of the channel walls/facets is approximately equal to 1 nm. The typical width of channel facets makes about 25 nm, the channel length is 390 nm and more. The investigation of the found nanostructure by means of a scanning tunneling microscope (STM) allows us to draw a conclusion that it is possible to make spatial constructions of graphene similar to the discovered one by mechanical compression, bending, splitting, and shifting graphite surface layers. The distinctive features of such constructions are the following: simplicity of the preparation method, small contact area between graphene planes and a substrate, large surface area, nanometer cross-sectional sizes of the channels, large aspect ratio. Potential fields of application include: ultra-sensitive detectors, high-performance catalytic cells, nanochannels for DNA manipulation, nanomechanical resonators, electron multiplication channels, high-capacity sorbents for hydrogen storage.

  13. Effects of Processing Parameters on the Density and Microstructure of Pyrolytic Carbon

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Park, Jeong Nam; Park, Jong Hoon; Cho, Moon Sung; Lee, Young Woo; Park, Ji Yeon

    2007-01-01

    Chemical vapor deposition (CVD) of pyrolytic carbon (PyC) and silicon carbide (SiC) has been applied to TRISO-coated fuel particles for high-temperature gas-cooled reactors (HTGR). The porous PyC coating layer, called the buffer layer, attenuates fission recoils and provides void volume for gaseous fission products and carbon monoxide. The inner PyC layer acts as a containment to gaseous products. The outer PyC layer protects the SiC coating layer by inducing a compressive stress and provides chemical compatibility with a graphite matrix in the fuel compact. The PyC layers undergo shrinkage due to neutron irradiation, affecting the design and modeling of fuel particles. Because the dimensional change of PyC depends on the detailed microstructure of PyC, it differs from one fabrication route to another one. This requires a new design of irradiation experiment applicable to spherical objects and leads to an international collaborative work called PYCASSO (PYrocarbon irradiation for Creep And Swelling/Shrinkage of Objects). KAERI proposed four different types of PyC layers coated on ZrO 2 particles, buffer with a density of 1.0 and dense PyCs with densities of 1.7, 1.9 and 2.1 g/cm 3 , for the irradiation experiment. In this study, we fabricated PyC-coated particles with various coating densities for supporting the PYCASSO experiment. We also investigated effects of processing parameters such as temperature, hydrocarbon concentration and gas flow rate on the density and microstructure of the PyC layer

  14. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.

    Science.gov (United States)

    Delsontro, Tonya; McGinnis, Daniel F; Sobek, Sebastian; Ostrovsky, Ilia; Wehrli, Bernhard

    2010-04-01

    Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.

  15. Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel.

    Science.gov (United States)

    Esfandbod, Maryam; Merritt, Christopher R; Rashti, Mehran Rezaei; Singh, Balwant; Boyd, Sue E; Srivastava, Prashant; Brown, Christopher L; Butler, Orpheus M; Kookana, Rai S; Chen, Chengrong

    2017-01-01

    Char as a carbon-rich material, can be produced under pyrolytic conditions, wildfires or prescribed burn offs for fire management. The objective of this study was to elucidate mechanistic interactions of copper (Cu 2+ ) and nickel (Ni 2+ ) with different chars produced by pyrolysis (green waste, GW; blue-Mallee, BM) and forest fires (fresh-burnt by prescribed fire, FC; aged char produced by wild fire, AC). The pyrolytic chars were more effective sorbents of Cu 2+ (∼11 times) and Ni 2+ (∼5 times) compared with the forest fire chars. Both cross-polarization (CPMAS-NMR) and Bloch decay (BDMAS-NMR) 13 C NMR spectroscopies showed that forest fire chars have higher woody components (aromatic functional groups) and lower polar groups (e.g. O-alkyl C) compared with the pyrolytic chars. The polarity index was greater in the pyrolytic chars (0.99-1.34) than in the fire-generated chars (0.98-1.15), while aromaticity was lower in the former than in the latter. Fourier transform infrared (FTIR) and Raman spectroscopies indicated the binding of carbonate and phosphate with both Cu 2+ and Ni 2+ in all chars, but with a greater extent in pyrolytic than forest fire-generated chars. These findings have demonstrated the key role of char's oxygen-containing functional groups in determining their sorption capacity for the Cu 2+ and Ni 2+ in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Methane production and methane consumption: a review of processes underlying wetland methane fluxes.

    NARCIS (Netherlands)

    Segers, R.

    1998-01-01

    Potential rates of both methane production and methane consumption vary over three orders of magnitude and their distribution is skew. These rates are weakly correlated with ecosystem type, incubation temperature, in situ aeration, latitude, depth and distance to oxic/anoxic interface. Anaerobic

  17. Methane distribution and oxidation around the Lena Delta in summer 2013

    Science.gov (United States)

    Bussmann, Ingeborg; Hackbusch, Steffen; Schaal, Patrick; Wichels, Antje

    2017-11-01

    methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d-1 (median 24). The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.

  18. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  19. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  20. Titan's methane clock

    Science.gov (United States)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  1. Selection, rejection and optimisation of pyrolytic graphite (PG) crystal analysers for use on the new IRIS graphite analyser bank

    International Nuclear Information System (INIS)

    Marshall, P.J.; Sivia, D.S.; Adams, M.A.; Telling, M.T.F.

    2000-01-01

    This report discusses design problems incurred by equipping the IRIS high-resolution inelastic spectrometer at the ISIS pulsed neutron source, UK with a new 4212 piece pyrolytic graphite crystal analyser array. Of the 4212 graphite pieces required, approximately 2500 will be newly purchased PG crystals with the remainder comprising of the currently installed graphite analysers. The quality of the new analyser pieces, with respect to manufacturing specifications, is assessed, as is the optimum arrangement of new PG pieces amongst old to circumvent degradation of the spectrometer's current angular resolution. Techniques employed to achieve these criteria include accurate calliper measurements, FORTRAN programming and statistical analysis. (author)

  2. Process and apparatus for pyrolytic decomposition and coking of mixtures of finely divided solid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A

    1933-09-18

    A process is described for pyrolytic decomposition and coking of mixtures of finely divided solid and semi-solid carbonaceous material and hydrocarbon oils, whereby the mixture is first heated to a high temperature; the heated products are introduced into a coking zone, where vapors are separated from nonvaporous residue afterwards to be cracked and condensed, characterized in that the mixture is heated to a high temperature under substantially noncoking conditions and that nonvaporous residue obtained in the coking zone is coked as a relatively thin layer on an externally intensely heated surface, preferably of heat-conducting, fireproof material, such as carborundum, fused-aluminum oxide, or clay.

  3. DEPOSITION AND PROPERTIES OF A LITTLE-ORIENTED PYROLYTIC CARBON; Deposition et proprietes d'un carbone pyrolytique peu oriente

    Energy Technology Data Exchange (ETDEWEB)

    Rappeneau, J; Bocquet, M; Yvars, M; David, C; Auriol, A

    1963-06-15

    Pyrolytic carbon obtained by thermal decomposition of acetylene, at partial pressures of 0.02 to 0.1 atm, on walls heated to between 1550 and 1650 deg C, is characterized by its low density (1.35) and a not very marked preferred orientation of the crystallites. The latter property is expressed by an absence of laminar structure in the deposit and by its good compatibility with an artiticial graphite substrate. Following a description of the method of deposition and an outline of the structural properties, certain physical and chemical properties of the substance are examined. (auth)

  4. Influence of Cu(NO32 initiation additive in two-stage mode conditions of coal pyrolytic decomposition

    Directory of Open Access Journals (Sweden)

    Larionov Kirill

    2017-01-01

    Full Text Available Two-stage process (pyrolysis and oxidation of brown coal sample with Cu(NO32 additive pyrolytic decomposition was studied. Additive was introduced by using capillary wetness impregnation method with 5% mass concentration. Sample reactivity was studied by thermogravimetric analysis with staged gaseous medium supply (argon and air at heating rate 10 °C/min and intermediate isothermal soaking. The initiative additive introduction was found to significantly reduce volatile release temperature and accelerate thermal decomposition of sample. Mass-spectral analysis results reveal that significant difference in process characteristics is connected to volatile matter release stage which is initiated by nitrous oxide produced during copper nitrate decomposition.

  5. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  7. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Chen, Yuan; Ding, Jing; Wang, Weilong

    2016-01-01

    Highlights: • Energy storage of methane reforming in a tubular packed reactor is investigated. • Thermochemical storage efficiency approaches maximum at optimal temperature. • Sensible heat and heat loss play important roles in the energy storage system. • The reaction and energy storage models of methane reforming reactor are established. • The simulated methane conversion and energy storage efficiency fit with experiments. - Abstract: High temperature heat transfer and energy storage performances of methane reforming with carbon dioxide in tubular packed reactor are investigated under different operating conditions. Experimental results show that the methane reforming in tubular packed reactor can efficiently store high temperature thermal energy, and the sensible heat and heat loss besides thermochemical energy storage play important role in the total energy storage process. When the operating temperature is increased, the thermochemical storage efficiency first increases for methane conversion rising and then decreases for heat loss rising. As the operating temperate is 800 °C, the methane conversion is 79.6%, and the thermochemical storage efficiency and total energy efficiency can be higher than 47% and 70%. According to the experimental system, the flow and reaction model of methane reforming is established using the laminar finite-rate model and Arrhenius expression, and the simulated methane conversion and energy storage efficiency fit with experimental data. Along the flow direction, the fluid temperature in the catalyst bed first decreases because of the endothermic reaction and then increases for the heat transfer from reactor wall. As a conclusion, the maximum thermochemical storage efficiency will be obtained under optimal operating temperature and optimal flow rate, and the total energy efficiency can be increased by the increase of bed conductivity and decrease of heat loss coefficient.

  8. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M; Kataja, K [VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  9. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M.; Kataja, K. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  10. Methane hydroxylation: a biomimetic approach

    International Nuclear Information System (INIS)

    Shilov, Aleksandr E; Shteinman, Al'bert A

    2012-01-01

    The review addresses direct methane oxidation — an important fundamental problem, which has attracted much attention of researchers in recent years. Analysis of the available results on biomimetic and bio-inspired methane oxygenation has demonstrated that assimilating of the experience of Nature on oxidation of methane and other alkanes significantly enriches the arsenal of chemistry and can radically change the character of the entire chemical production, as well as enables the solution of many material, energetic and environmental problems. The bibliography includes 310 references.

  11. Global Methane Biogeochemistry

    Science.gov (United States)

    Reeburgh, W. S.

    2003-12-01

    Methane (CH4) has been studied as an atmospheric constituent for over 200 years. A 1776 letter from Alessandro Volta to Father Campi described the first experiments on flammable "air" released by shallow sediments in Lake Maggiore (Wolfe, 1996; King, 1992). The first quantitative measurements of CH4, both involving combustion and gravimetric determination of trapped oxidation products, were reported in French by Boussingault and Boussingault, 1864 and Gautier (1901), who reported CH4 concentrations of 10 ppmv and 0.28 ppmv (seashore) and 95 ppmv (Paris), respectively. The first modern measurements of atmospheric CH4 were the infrared absorption measurements of Migeotte (1948), who estimated an atmospheric concentration of 2.0 ppmv. Development of gas chromatography and the flame ionization detector in the 1950s led to observations of vertical CH4 distributions in the troposphere and stratosphere, and to establishment of time-series sampling programs in the late 1970s. Results from these sampling programs led to suggestions that the concentration of CH4, as that of CO2, was increasing in the atmosphere. The possible role of CH4 as a greenhouse gas stimulated further research on CH4 sources and sinks. Methane has also been of interest to microbiologists, but findings from microbiology have entered the larger context of the global CH4 budget only recently.Methane is the most abundant hydrocarbon in the atmosphere. It plays important roles in atmospheric chemistry and the radiative balance of the Earth. Stratospheric oxidation of CH4 provides a means of introducing water vapor above the tropopause. Methane reacts with atomic chlorine in the stratosphere, forming HCl, a reservoir species for chlorine. Some 90% of the CH4 entering the atmosphere is oxidized through reactions initiated by the OH radical. These reactions are discussed in more detail by Wofsy (1976) and Cicerone and Oremland (1988), and are important in controlling the oxidation state of the atmosphere

  12. Synthetic methane for power storage

    NARCIS (Netherlands)

    Botta, G.; Barankin, Michael; Walspurger, S.

    2013-01-01

    With increased share of energy generated from variable renewable sources, storage becomes a critical issue to ensure constantly balanced supply/demand. Methane is a promising vector for energy storage and transport.

  13. Methane flux from boreal peatlands

    International Nuclear Information System (INIS)

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  14. Enteric Methane Emission from Pigs

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Theil, Peter Kappel; Knudsen, Knud Erik Bach

    2011-01-01

    per kg meat produced is increased (Fernández et al. 1983; Lekule et al. 1990). The present chapter will summarise our current knowledge concerning dietary and enteric fermentation that may influence the methane (CH4) emission in pigs. Enteric fermentation is the digestive process by which.......3 % of the worlds pig population. The main number of pigs is in Asia (59.6 %) where the main pig population stay in China (47.8 % of the worlds pig population). The objective of the chapter is therefore: To obtain a general overview of the pigs’ contribution to methane emission. Where is the pigs’ enteric gas...... produced and how is it measured. The variation in methane emission and factors affecting the emission. Possibility for reducing the enteric methane emission and the consequences....

  15. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  16. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  17. Design and Thermal Analysis for Irradiation of Pyrolytic Carbon/Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Department of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.

  18. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    Science.gov (United States)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  19. Pretreatment of wheat straw for fermentation to methane

    International Nuclear Information System (INIS)

    Hashimoto, A.G.

    1986-01-01

    The effects of pretreating wheat straw with gamma-ray irradiation, ammonium hydroxide, and sodium hydroxide on methane yield, fermentation rate constant, and loss of feedstock constituents were evaluated using laboratory-scale batch fermentors. Results showed that methane yield increased as pretreatment alkali concentration increased, with the highest yield being 37% over untreated straw for the pretreatment consisting of sodium hydroxide dosage of 34 g OH - /kg volatile solids, at 90 0 C for 1 h. Gamma-ray irradiation had no significant effect on methane yield. Alkaline pretreatment temperatures above 100 0 C caused a decrease in methane yield. After more than 100 days of fermentation, all of the hemicellulose and more than 80% of the cellulose were degraded. The loss in cellulose and hemicellulose accounted for 100% of the volatile solids lost. No consistent effect of pretreatments on batch fermentation rates was noted. Semicontinuous fermentations of straw-manure mixtures confirmed the relative effectiveness of sodium- and ammonium-hydroxide pretreatments

  20. Methane gas from cow dung

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The Khadi and Village Industries Commission offers a gobar gas (methane gas) production scheme. The gas plant, available in sizes of 60 to 3000 cu ft, requires only low maintenance expenditures. The cow dung, which is at present being wasted or burned as domestic fuel, can be used for manufacturing methane for fuel gas. The residue will be a good fertilizer for increasing food production. There are now about 4000 gobar gas plants in India.

  1. Methane production from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J Q; Liao, P H; Lo, K V

    1988-01-01

    Cheese whey was treated in a 17.5-litre laboratory-scale up-flow anaerobic sludge blanket reactor operated over a range of hydraulic retention times and organic loading rates. The reactor performance was determined in terms of methane production, volatile fatty acids conversion and chemical oxygen demand (COD) reduction. At a constant influent strength, the methane production rate decreased with decreasing hydraulic retention time. At constant hydraulic retention time the methane production rate increased as the influent strength was increased up to a concentration of 28.8 g COD litre/sup -1/. The methane production rate was similar for two influent concentrations studied at hydraulic retention times longer than 10 days. The effect of short hydraulic retention times on methane production rate was more pronounced for the higher influent concentration than for the lower influent concentration. The highest methane production rate of 9.57 litres CH/sub 4/ litre/sup -1/ feed day/sup -1/ was obtained at a loading rate of 5.96 g/sup -1/ COD litre/sup -1/ and an influent concentration of 28.8 g COD litre/sup -1/. A high treatment efficiency in terms of chemical oxygen demand reduction was obtained. In general, over 98% removal of chemical oxygen demand was achieved. The results indicated that anaerobic digestion of cheese whey using an upflow sludge blanket reactor could reduce pollution strength and produce energy for a cheese plant.

  2. The California Baseline Methane Survey

    Science.gov (United States)

    Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.

    2017-12-01

    The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.

  3. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  4. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant.

    Science.gov (United States)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja; Holmgren, Magnus A; Liebetrau, Jan; Scheutz, Charlotte

    2017-10-01

    A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured by ground-based remote sensing varied from 5 to 25kgh -1 (corresponding to a methane loss of 0.6-3.0% of upgraded methane produced), depending on operating conditions and the measurement method applied. Overall methane emissions measured by the on-site measuring approaches varied between 5 and 17kgh -1 (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could be explained, in that the two largest methane-emitting sources, contributing about 90% of the entire site's emissions, were found to be the open digestate storage tank and a pressure release valve on the compressor station. Copyright © 2017. Published by Elsevier Ltd.

  5. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  6. Is methane a new therapeutic gas?

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2012-09-01

    Full Text Available Abstract Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the exact mechanism underlying the anti-inflammatory effects is required to be further elucidated. Methane can cross the membrane and is easy to collect due to its abundance in natural gas. Although methane is flammable, saline rich in methane can be prepared for clinical use. These seem to be good news in application of methane as a therapeutic gas. Conclusion Several problems should be resolved before its wide application in clinical practice.

  7. Synthesis of gold nanoparticles on the surface of pyrolytic graphite using penicillin as a stabilizing reagent and the catalytic oxidation of α-naphthylamine

    Science.gov (United States)

    Song, Y. Z.; Song, Y.; Cheng, Z. P.; Zhou, J. F.; Wei, C.

    2013-01-01

    Electrochemical synthesis of gold nanoparticles on the surface of pyrolytic graphite using penicillin as a stabilizing reagent was proposed. The gold nanoparticles were characterized by scanning electron microscopy, cyclic voltammetry, IR spectra, UV spectra, and powder X-ray diffraction spectra. The electro-chemical catalysis of penicillin for α-naphthylamine was demonstrated.

  8. Hearing loss

    Science.gov (United States)

    Decreased hearing; Deafness; Loss of hearing; Conductive hearing loss; Sensorineural hearing loss; Presbycusis ... Symptoms of hearing loss may include: Certain sounds seeming too loud Difficulty following conversations when two or more people are talking ...

  9. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, David L. [Univ. of Delaware, Lewes, DE (United States)

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  10. Methane as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Karlsdottir, S.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Methane is a key component in the atmosphere where its concentration has increased rapidly since pre-industrial time. About 2/3 of it is caused by human activities. Changes in methane will affect the concentrations of other gases, and a model is a very important tool to study sensitivity due to changes in concentration of gases. The author used a three-dimensional global chemistry transport model to study the effect of changes in methane concentration on other trace gases. The model includes natural and anthropogenic emissions of NOx, CO, CH{sub 4} and non-methane hydrocarbons. Wet and dry deposition are also included. The chemical scheme in the model includes 49 compounds, 101 reactions, and 16 photolytic reactions. The trace gas concentrations are calculated every 30 min, using a quasi steady state approximation. Model calculations of three cases are reported and compared. Enhanced methane concentration will have strongest effect in remote regions. In polluted areas local chemistry will have remarked effect. The feedback was always positive. Average atmospheric lifetime calculated in the model was 7.6 years, which agrees with recent estimates based on observations. 8 refs.

  11. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  12. Covalent Modification of Highly Ordered Pyrolytic Graphite with a Stable Organic Free Radical by Using Diazonium Chemistry.

    Science.gov (United States)

    Seber, Gonca; Rudnev, Alexander V; Droghetti, Andrea; Rungger, Ivan; Veciana, Jaume; Mas-Torrent, Marta; Rovira, Concepció; Crivillers, Núria

    2017-01-26

    A novel, persistent, electrochemically active perchlorinated triphenylmethyl (PTM) radical with a diazonium functionality has been covalently attached to highly ordered pyrolytic graphite (HOPG) by electrografting in a single-step process. Electrochemical scanning tunneling microscopy (EC-STM) and Raman spectroscopy measurements revealed that PTM molecules had a higher tendency to covalently react at the HOPG step edges. The cross-section profiles from EC-STM images showed that there was current enhancement at the functionalized areas, which could be explained by redox-mediated electron tunneling through surface-confined redox-active molecules. Cyclic voltammetry clearly demonstrated that the intrinsic properties of the organic radical were preserved upon grafting and DFT calculations also revealed that the magnetic character of the PTM radical was preserved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Methane layering in bord and pillar workings.

    CSIR Research Space (South Africa)

    Creedy, DP

    1997-08-01

    Full Text Available This report reviews the state of knowledge on the occurrence, investigation, detection, monitoring, prevention and dispensation of methane layers in coal mines. Mining practice throughout the world in respect of methane layering is generally reliant...

  14. A Possible Sink for Methane on Mars

    NARCIS (Netherlands)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-01-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  15. IPNS grooved, solid methane moderator

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Schulke, A.W.; Scott, T.L.; Wozniak, D.G.; Benson, B.E.; Leyda, B.D.

    1985-01-01

    There are two motives for using cold moderators in pulsed neutron sources, to provide higher fluxes of long-wavelength neutrons, and to extend the epithermal range with its short pulse structure to lower energies. For both these purposes solid methane, operated at the lowest possible temperatures, is the best material we know of. Two problems accompany the use of solid methane in high power sources, namely heat transport in view of the low thermal conductivity of solid methane, and deterioration due to radiation damage. We have designed a system suitable to operate in IPNS, subject to nuclear heating of about 25 W, which incorporates an aluminum foam matrix to conduct the heat from within the moderator. We report the results of the first few months' operation and of a few tests that we have performed

  16. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  17. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, Peter W.G.; Ogink, Nico

    2018-01-01

    The breath methane concentration method uses the methane concentrations in the cow's breath during feed bin visits as a proxy for the methane production rate. The objective of this study was to assess the uncertainty of a breath methane concentration method in a feeder and its capability to measure

  18. Handbook methane potential; Handbok metanpotential

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My (AnoxKaldnes AB (Sweden)); Schnurer, Anna (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2011-07-15

    Before using a organic material for biogas production it is essential to evaluate the methane production potential. The methane potential is one important tool possible to use during planning of new plants but also when new materials are considered for already running biogas plants. The chemical composition of different organic material varies extensively and this will have an impact on both the degradability and the methane potential. Information about the methane potential of a specific material can sometimes be found in the literature or can be calculated after a chemical/ physical or biological characterization. Here, the BMP test (Biochemical Methane Potential) is a commonly used method. Today the BMP test is a commonly used method to determine the methane potential. Many national and international research groups, consultants as well as personal at biogas plants are using this method and there is a lot of data available in the literature from such tests. In addition there are several protocols giving guidelines on how to execute a BMP-test. The BMP-test is performed in many different ways, not always under optimized conditions, and there is a lack of information on how to interpret the obtained data. This report summarizes knowledge from the literature and the experience from a Swedish referee group, consisting of persons being active performers of BMP-tests. The report does not include a standardized protocol as the procedure can be performed in different ways depending on available equipment and on the type of material to be tested. Instead the report discusses different factors of great importance for a successful test giving reliable results. The report also summarizes important information concerning the interpretation and how to present results in order to allow comparison of data from different test.

  19. The pyrolytic-plasma method and the device for the utilization of hazardous waste containing organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Opalińska, Teresa [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Wnęk, Bartłomiej, E-mail: bartlomiej.wnek@itr.org.pl [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Witowski, Artur; Juszczuk, Rafał; Majdak, Małgorzata [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Bartusek, Stanilav [VŠB—Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava − Poruba Czech Republic (Czech Republic)

    2016-11-15

    Highlights: • A first stage of the process of waste utilization consisted in pyrolysis of waste. • Then the pyrolytic gas was oxidized with a use of non-equilibrium plasma. • The device for the process implementation was built and characterized. • Correctness of the device operation was proven with a use of the decomposition of PE. • Usefulness of the method was proven in the process of utilization of EW. - Abstract: This paper is focused on the new method of waste processing. The waste, including hazardous waste, contain organic compounds. The method consists in two main processes: the pyrolysis of waste and the oxidation of the pyrolytic gas with a use of non-equilibrium plasma. The practical implementation of the method requires the design, construction and testing of the new device in large laboratory scale. The experiments were carried out for the two kinds of waste: polyethylene as a model waste and the electronic waste as a real waste. The process of polyethylene decomposition showed that the operation of the device is correct because 99.74% of carbon moles contained in the PE samples was detected in the gas after the process. Thus, the PE samples practically were pyrolyzed completely to hydrocarbons, which were completely oxidized in the plasma reactor. It turned out that the device is useful for decomposition of the electronic waste. The conditions in the plasma reactor during the oxidation process of the pyrolysis products did not promote the formation of PCDD/Fs despite the presence of the oxidizing conditions. An important parameter determining the efficiency of the oxidation of the pyrolysis products is gas temperature in the plasma reactor.

  20. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    International Nuclear Information System (INIS)

    Ruiz, Frine; Benzo, Zully; Quintal, Manuelita; Garaboto, Angel; Albornoz, Alberto; Brito, Joaquin L.

    2006-01-01

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo 6+ and Mo 2+ ) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO 3 . Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo 6+ and Mo 5+ ) and carbide (Mo 2+ ) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar + ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform

  1. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    International Nuclear Information System (INIS)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-01-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al 3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al 3+ films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni 3+ /Ni 2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni 3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni 3+ /Ni 2+ varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted

  2. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  3. Methane from benzene in argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Das, Tomi Nath; Dey, G.R.

    2013-01-01

    Highlights: ► Efficient on-line conversion of benzene to methane at room temperature. ► Absence of other H-atom donor suggests new type of chemistry. ► For parent loss > 90%, methane yield was ∼40% of limit due to H-atom availability. ► Surface moisture contributed ·OH radical for trace phenolic products’ formation. ► This method may emerge as an exploitable tactic for pollutants’ usable alterations. -- Abstract: A first-time account of direct, on-line, instantaneous and efficient chemical conversion of gas phase benzene to methane in argon Dielectric Barrier Discharge (DBD) is presented. In the absence of another overt hydrogen-donating source, potency of analogous parents toward methane generation is found to follow the order: benzene > toluene > p-xylene. Simultaneous production of trace amounts of phenolic surface deposits suggest (a) prompt decomposition of the parent molecules, including a large fraction yielding atomic transients (H-atom), (b) continuous and appropriate recombination of such parts, and (c) trace moisture in parent contributing ·OH radicals and additional H-atoms, which suitably react with the unreacted fraction of the parent, and also other intermediates. Results highlight Ar DBD to be a simple and exploitable technology for transforming undesirable hazardous aromatics to usable/useful low molecular weight open-chain products following the principles of green chemistry and engineering

  4. Methane-fueled vehicles: A promising market for coalbed methane

    International Nuclear Information System (INIS)

    Deul, M.

    1993-01-01

    The most acceptable alternative fuel for motor vehicles is compressed natural gas (CNG). An important potential source of such gas is coalbed methane, much of which is now being wasted. Although there are no technological impediments to the use of CNG it has not been adequately promoted for a variety of reasons: structural, institutional and for coalbed gas, legal. The benefits of using CNG fuel are manifold: clean burning, low cost, abundant, and usable in any internal combustion engine. Even though more than 30,000 CNG vehicles are now in use in the U.S.A., they are not readily available, fueling stations are not easily accessible, and there is general apathy on the part of the public because of negligence by such agencies as the Department of Energy, the Department of Transportation and the Environmental Protection Agency. The economic benefits of using methane are significant: 100,000 cubic feet of methane is equivalent to 800 gallons of gasoline. Considering the many millions of cubic feet methane wasted from coal mines conservation and use of this resource is a worthy national goal

  5. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  6. Experimental study of methanic fermentation of straw

    Energy Technology Data Exchange (ETDEWEB)

    Dopter, P; Beerens, H

    1952-12-03

    The amount of liquid manure obtainable was a limiting factor in methanic fermentation of wheat straw. An equal volume of 0.2% aqueous solution of Na formate could be substituted for 90% of the normal requirements of liquid manure. This shortened the preliminary stages of cellulosic fermentation when no methane was produced and slightly increased the subsequent yield of methane.

  7. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  8. 46 CFR 154.703 - Methane (LNG).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  9. Methane emission reduction: an application of FUND

    NARCIS (Netherlands)

    Tol, R.S.J.; Heintz, R.J.; Lammers, P.E.M.

    2003-01-01

    Methane is, after carbon dioxide, the most important anthropogenic greenhouse gas. Governments plan to abate methane emissions. A crude set of estimates of reduction costs is included in FUND, an integrated assessment model of climate change. In a cost-benefit analysis, methane emission reduction is

  10. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  11. Alternative waste form development: low-temperature pyrolytic-carbon coatings

    International Nuclear Information System (INIS)

    Oma, K.H.; Rusin, J.M.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Large simulted waste-forms can be coated with PyC in screw-agitated coater (SAC) at low temperatures. Higher coating rates are obtained using Ni(CO) 4 as a catalyst rather than Fe(CO) 5 or Co(AcAc) 2 ; coating quality and deposition rates are improved when C 2 H 2 is used as carbon-source gas rather than methane, propane, heptane and toluene; H 2 is a better carrier gas than Ar or N 2 . Improved coating quality and deposition rates are obtained with H 2 ; deposition rates increase with Ni(CO) 4 concentration, C 2 H 2 concentration and reaction temperature. Increasing the Ni(CO) 4 and C 2 H 2 concentrations reduces the quality of the coatings; however, better adhesion of the coating to the substrate is obtained as temperature is increased; highest quality catalyzed PyC coatings have been obtained using 0.001 and 0.01 mole % Ni(CO) 4 , 1.5 to 3.0 mole % C 2 H 2 , and the balance H 2 at 425 and 525 0 C; and deposition rates are higher in the fluidized bed coater than the SAC

  12. An Atmosphere-based Method for Detection and Quantification of Methane Emisions from Natural Gas Infrastructure in an Urban Environment

    Science.gov (United States)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Nehrkorn, T.; Zahniser, M. S.; Sargent, M. R.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2015-12-01

    Methane emissions from the natural gas supply-chain are highly uncertain and can vary widely among components and processes. We present an atmosphere-based method for detecting and quantifying the area and time-averaged surface flux of methane from natural gas infrastructure, and its application to the case-study of Boston, Massachusetts. Continuous measurements of atmospheric methane at a network of stations, inside and outside the city, are used to quantify the atmospheric methane gradient due to emissions from the urban area. Simultaneous observations of atmospheric ethane, and data on the ethane and methane content of the pipeline gas flowing through the region, are used to trace the atmospheric methane enhancement to the natural gas source. An atmospheric transport model is used to quantitatively relate the observed methane enhancement to a surface flux from the whole urban region. We find that methane emissions from natural gas in the urban region over one year was equal to 2.7 ± 0.6 % of the natural gas delivered to the region. Our findings for Boston suggest natural-gas-consuming regions, generally, may be larger sources of methane to the atmosphere than is current estimated and represent areas of significant resource loss.

  13. The Global Methane Budget 2000-2012

    Science.gov (United States)

    Saunois, Marielle; Bousquet, Philippe; Poulter, Benjamin; Peregon, Anna; Ciais, Philippe; Canadell, Josep G.; Dlugokencky, Edward J.; Etiope, Giuseppe; Bastviken, David; Houweling, Sander; hide

    2016-01-01

    scenarios. Bottom-up approaches suggest larger global emissions (736 TgCH4 yr(exp -1), range 596-884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (approximately 64% of the global budget, less than 30deg N) as compared to mid (approximately 32%, 30-60deg N) and high northern latitudes (approximately 4%, 60-90deg N). Top-down inversions consistently infer lower emissions in China (approximately 58 TgCH4 yr(exp -1), range 51-72, minus14% ) and higher emissions in Africa (86 TgCH4 yr(exp -1), range 73-108, plus 19% ) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30-40% on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center

  14. Methane Group Ions in Saturn’s Outer Magnetosphere?

    Science.gov (United States)

    Sittler, E. C.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Smith, H.; Shappirio, M.; Reisenfeld, D. B.

    2009-12-01

    Yelle et al. [2008] have estimated from Cassini Ion Neutral Mass Spectrometer (INMS) measurements that methane is escaping from Titan’s upper atmosphere at the rate of 2.5-3.0×109 mol/cm2/s and in order to explain this loss rate Strobel [2008] has proposed a hydrodynamic escape model to explain such high loss rates. This translates to loss of 2.8×1027 methane mol/s. The consequence of this work is the formation of a methane torus around Saturn which will dissociate to CH3 and other fragments of methane. The CH3 will then become ionized to form CH3+ with pickup energies ≈ keV after which it can be detected by the Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS). Up till now the ion composition within Saturn’s outer magnetosphere in the vicinity of Titan’s orbit have yielded negative results with water group ions W+ dominating. The water group ions probably result from the emission of fast neutrals from the Enceladus torus via charge exchange reactions but still gravitationally bound to Saturn [see Johnson et al., 2005 and Sittler et al. 2006] and then become ionized in the outer magnetosphere as ~≈keV pickup ions. The CAPS IMS produces two ion composition data products, one called Straight Through (ST) and the other Linear Electric Field (LEF). The first has a higher sensitivity, while the latter has a greater discrimination in time-of-flight (TOF). For ST data O+ and CH4+ have similar TOF with the primary discriminator being the O- fragment which appears at a different TOF than for mass 16 ions. One can also look for other discriminators called ghost peaks. In case of LEF W+ ions produce TOF peak close to that for atomic O+ and the methane will produce TOF close to that for atomic C+ which has a significantly different(shorter) TOF than O+. We will be reporting on our continual search for methane ions within Saturn’s outer magnetosphere. References: 1. Yelle, R. V., J. Cui and I.C.F. Müller-Wodarg, JGR, 2008. 2. Strobel, D. F., Icarus

  15. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  16. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  17. Methane Dynamics in Flooded Lands

    Science.gov (United States)

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas m...

  18. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  19. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  20. Pregnancy Loss

    Science.gov (United States)

    ... To receive Pregnancy email updates Enter email Submit Pregnancy loss Pregnancy loss is a harsh reality faced ... have successful pregnancies. Expand all | Collapse all Why pregnancy loss happens As many as 10 to 15 ...

  1. The Geologic Signature of Anaerobic Oxidation of Methane (Invited)

    Science.gov (United States)

    Ussler, W.; Paull, C. K.

    2010-12-01

    authigenic carbonates may be appear in the geologic record. Based on the stochiometry of the AOM reaction [CH4 + SO4= → HCO3- + HS-], HCO3- and HS- should occur in a 1:1 molar ratio in sediment pore water. Methane-derived carbonates are common in methane-rich sediments and methane venting areas, however the corresponding amount of HS- precipitated as iron monosulfides (FeS) is not. The prediction, based on their molecular weights and densities, is that the volume ratio of authigenic carbonate to FeS should be 2:1. However, in anoxic Black Sea sediments, where a high degree of preservation would be expected, the authigenic carbonate to FeS ratio is ~50:1. Massive accumulations of FeS associated with authigenic carbonates have not been observed. There are a number of fates for the HS- produced by AOM: (1) HS- is oxidized in situ adding sulfate back to the pore water pool; (2) HS- selectively diffuses (relative to HCO3-) towards the seafloor and is oxidized in the benthic water column; or (3) FeS precipitates, but is oxidized when authigenic carbonates are exhumed leaving a vuggy texture. None of these explanations are entirely satisfactory for the early diagenetic loss of HS- from sediments, but strongly suggest that massive accumulations of FeS derived from AOM will not be found in the geologic record.

  2. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  3. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  4. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  6. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  7. Pyrolytic indices of diagenetic transformation of lignin as biogeochemical proxies for soil organic matter quality and C storage potential

    Science.gov (United States)

    Jiménez-González, Marco A.; Almendros, Gonzalo; Álvarez, Ana M.; Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.

    2017-04-01

    The environmental factors involved in soil organic carbon sequestration remain unclear. The functional relationships between the macromolecular structure of the soil organic matter (SOM) and its resilience has been a constant in classical biogeochemical models. Other more recent hypotheses have postulated that preservation by soil minerals may play a chief role in the accumulation of stable SOM forms. However, additional experimental data are required to demonstrate a cause-to-effect relationship between preservation and stabilization. Some authors might consider that models neglecting the role of macromolecular structure are swapping cause and effect i.e., that SOM structurally flexible, weakly condensed and having 'open' structures is the one with high potential to interact with the soil mineral matrix, leading to stable microaggregates. In this study up to 35 topsoil samples (0-5 cm) were collected from different Spanish soils with contrasted values of organic C (the dependent variable), geological substrate and vegetation type. A wide array of uni- and multivariate chemometric models were applied to independent variables consisting of total abundances of the major aromatic compounds, i.e., alkylbenzenes and methoxyphenols released from whole soil samples using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). These two families of compounds were selected since they are classically considered to inform on the degree of microbial reworking of lignins, which is an important precursor of the aromatic moiety of the SOM. A series of pyrolytic surrogate indices (aiming to express SOM diagenetic transformation in relation to the original biogenic molecular composition) were especially successful in forecasting SOC, viz: a) ratio between alkylbenzenes and methoxyphenols, b) ratio between short-chain (C0-C4) and long-chain (>C4) alkylbenzenes, c) ratio between methoxyphenols and short-chain alkylbenzenes, and d) ratios between methoxyphenols with different side

  8. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.

    Science.gov (United States)

    Ritchie, R O; Dauskardt, R H; Pennisi, F J

    1992-01-01

    A scanning electron microscopy study is reported of the nature and morphology of fracture surfaces in pyrocarbons commonly used for the manufacture of mechanical heart-valve prostheses. Specifically, silicon-alloyed low-temperature-isotropic (LTI)-pyrolytic carbon is examined, both as a coating on graphite and as a monolithic material, following overload, stress corrosion (static fatigue), and cyclic fatigue failures in a simulated physiological environment of 37 degrees C Ringer's solution. It is found that, in contrast to most metallic materials yet in keeping with many ceramics, there are no distinct fracture morphologies in pyro-carbons which are characteristic of a specific mode of loading; fracture surfaces appear to be identical for both catastrophic and subcritical crack growth under either sustained or cyclic loading. We conclude that caution should be used in assigning the likely cause of failure of pyrolytic carbon heart-valve components using fractographic examination.

  9. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite.

    Science.gov (United States)

    Ivanova, Elena P; Nguyen, Song Ha; Guo, Yachong; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Wandiyanto, Jason V; Garvey, Christopher J; Mahon, Peter J; Mainwaring, David E; Crawford, Russell J

    2017-09-01

    The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH 2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid

  10. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun, E-mail: lujun@mail.buct.edu.cn

    2016-09-15

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al{sup 3+} ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al{sup 3+} films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni{sup 3+}/Ni{sup 2+} also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni{sup 3+} making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni{sup 3+}/Ni{sup 2+} varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted.

  11. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  12. Fluid-bed methane proposed

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The first full scale plant for the production of methane from organic waste could be built in the next few years believes M.J. Nyns of the University of Louvain, Belgium, utilizing either expanded bed or fluidised bed systems, with more than one stage, in a continuous flow arrangement. Up to 8.0 m cubed gas/m cubed digester/day could be produced with residence times reduced to 34 hours.

  13. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  14. Microwave Hydrogen Production from Methane

    Science.gov (United States)

    2012-04-01

    combustion NOx control of reciprocating engine exhaust and fuel cell application of biogas . Our target is to obtain the methane conversion efficiency...demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater...running on biogas and is currently conducting the field demonstration of the unit at Tollenaar Dairy in Elk Grove, CA. SMUD, California Air Resources

  15. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate.

    Science.gov (United States)

    Cunha, Camila S; Veloso, Cristina M; Marcondes, Marcos I; Mantovani, Hilario C; Tomich, Thierry R; Pereira, Luiz Gustavo R; Ferreira, Matheus F L; Dill-McFarland, Kimberly A; Suen, Garret

    2017-12-01

    The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Prediction of the methane conversion factor (Ym) for dairy cows on the basis of national farm data

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Weisbjerg, Martin Riis; Brask, Maike

    2016-01-01

    Methane constitutes a significant loss of feed gross energy in ruminants, and there is an ongoing struggle for identifying feed and animal characteristics feasible for documentation of National Greenhouse Gas Inventories. The aim of the current study was to develop a model that predicts the methane...... and feed composition as variables, and one using yield of energy corrected milk and feed composition as variables. The methane conversion factor was significantly reduced with increased content of starch and fat in the ration, whereas neutral detergent fibre content surprisingly did not have a significant...

  17. Evidence for methane in Martian meteorites.

    Science.gov (United States)

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  18. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  19. Method of pyrolytic decomposition and coking of a mixture of finely distributed solid or semisolid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-09

    A method of pyrolytic decomposition and coking of a mixture of finely distributed of solid or semi-solid carbonaceous material and hydrocarbon oils is disclosed whereby the mixture is exposed to a decomposition temperature and later is brought into the zone of decomposition where vapors are separated from the unvaporized residue and the vapors are exposed to fractional condensation for the purpose of obtaining a light product of distillation. The method is characterized by the mixture being exposed to heating by means of indirect exchange of heat in a heating zone or by means of a direct addition of a hot heat-conducting medium, or by means of both the mentioned indirect exchange of heat and direct heat under such conditions that the unvaporized residue obtained from the thus-heated mixture in the decomposition zone is transformed to solid coke in this zone by being heated to coking temperature in a comparatively thin layer on the surface of the decomposition zone that has been heated to a high temperature.

  20. Structures and electrochemical properties of pyrolytic carbon films infiltrated from gas phase into electro-conductive substrates derived from wood

    International Nuclear Information System (INIS)

    Ohzawa, Yoshimi; Mitani, Masami; Li, Jianling; Nakajima, Tsuyoshi

    2004-01-01

    Using the pressure-pulsed chemical vapor infiltration technique, pyrolytic carbon (pyrocarbon) films were deposited into two sorts of conductive porous substrates, that is, the carbonized wood (A) and the TiN-coated wood (B). Structures and electrochemical properties were investigated as the negative electrodes of lithium-ion secondary battery. The electrodes had the three-dimensionally continuous current paths in the pyrocarbon-based anodes without the organic binders and the additional conductive fillers. The pyrocarbon films adhered tightly to the carbonized wood or TiN as current collector. These macro-structures of electrodes were effective in improving the high rate property. The sort of substrates affected the nano-structure of pyrocarbon. The pyrocarbon in sample (A) had the relatively high crystallinity, whereas the pyrocarbon in sample (B) was disordered. The capacity of pyrocarbon in sample (B) was higher than that of sample (A), reflecting the disordered microstructure of pyrocarbon film (B). However, sample (A) showed higher Coulombic efficiency at first cycle (i.e. 87%) than that of sample (B), which would result from the high crystallinity, laminar microstructure and low surface area of pyrocarbon in sample (A)

  1. Evaluation of Melanogenesis in A-375 Cells in the Presence of DMSO and Analysis of Pyrolytic Profile of Isolated Melanin

    Science.gov (United States)

    Chodurek, Ewa; Orchel, Arkadiusz; Orchel, Joanna; Kurkiewicz, Sławomir; Gawlik, Natalia; Dzierżewicz, Zofia; Stępień, Krystyna

    2012-01-01

    The increase of a skin malignant melanoma (melanoma malignum) incidence in the world has been observed in recent years. The tumour, especially in advanced stadium with metastases, is highly resistant to conventional treatment. One of the strategies is to modulate melanogenesis using chemical compounds. In this study, the processes of differentiation and melanogenesis induced by dimethylsulfoxide (DMSO) in human melanoma cells (A-375) were investigated. Natural melanin isolated from A-375 melanoma cell line treated with 0.3% DMSO was analyzed by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) method. The products derived from pheomelanin have not been stated in the pyrolytic profile of analyzed melanin. Within all products derived from eumelanins, 1,2-benzenediol has been predominated. It has been shown that in the melanoma cells stimulated with 0.3% and 1% DMSO, the increase of transcriptional activity of the tyrosinase gene took place. It was accompanied by the rise of tyrosinase activity and an accumulation of melanin in the cells. The better knowledge about the structure of melanins can contribute to establish the uniform criteria of malignant melanoma morbidity risk. PMID:22654640

  2. Thermal desorption spectroscopy of pyrolytic graphite cleavage faces after keV deuterium irradiation at 330-1000 K

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaki, T.; Tokiguchi, K.

    1992-01-01

    Thermal desorption spectroscopy (TDS) measurements were made on D 2 and CD 4 from surface layers of pyrolytic graphite cleavage faces after 3 keV D + 3 irradiation to 1.5 x 10 18 D/cm 2 at irradiation temperatures from 330 to 1000 K. Thermal desorption of both D 2 and CD 4 was observed to rise simultaneously at around 700 K. The D 2 peak was found at T m = 900-1000 K, while the CD 4 peak appeared at a lower temperature, 800-840 K. The T m for the D 2 TDS increased, while that for the CD 4 decreased with increasing irradiation temperature. These results obviously indicate that the D 2 desorption is detrapping/recombination limited, while the CD 4 desorption is most likely to be diffusion limited. The amount of thermally desorbed D 2 after the D + irradiation was observed to monotonously decrease as the irradiation temperature was increased from 330 to 1000 K. These tendencies agreed with previous results for the irradiation temperature dependencies of both C1s chemical shift (XPS) and the interlayer spacing, d 002 (HRTEM), on the graphite basal face. (orig.)

  3. Growth and characterization of stoichiometric BCN films on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mannan, Md. Abdul, E-mail: amannan75@yahoo.co [Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Synchrotron Radiation Research Unit, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Noguchi, Hideyuki; Kida, Tetsuya; Nagano, Masamitsu [Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Hirao, Norie; Baba, Yuji [Synchrotron Radiation Research Unit, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2010-05-31

    Hexagonal boron carbonitride (h-BCN) hybrid films have been synthesized on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition using tris-(dimethylamino)borane as a single-source molecular precursor. The films were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) and Raman spectroscopic measurements. XPS measurement showed that the B atoms were bonded to C and N atoms to form the sp{sup 2}-B-C-N atomic hybrid chemical environment. The atomic composition estimated from the XPS of the typical sample was found to be almost B{sub 1}C{sub 1}N{sub 1}. NEXAFS spectra of the B K-edge and the N K-edge had the peaks due to the {pi}* and {sigma}* resonances of sp{sup 2} hybrid orbitals implying the existence of the sp{sup 2} hybrid configurations of h-BCN around the B atoms. The G band at 1592 and D band at 1352 cm{sup -1} in the Raman spectra also suggested the presence of the graphite-like sp{sup 2}-B-C-N atomic hybrid bonds. The films consisted of micrometer scale crystalline structure of around 10 {mu}m thick has been confirmed by the field emission scanning electron microscopy.

  4. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors

    Directory of Open Access Journals (Sweden)

    H. Ushida

    2016-12-01

    Full Text Available Under tritium production method using a high-temperature gas-cooled reactor loaded Li compound, Li compound has to be coated by ceramic materials in order to suppress the spreading of tritium to the whole reactor. Pyrolytic carbon (PyC is a candidate of the coating material because of its high resistance for gas permeation. In this study, hydrogen permeation experiments using a PyC-coated isotropic graphite tube were conducted and hydrogen diffusivity, solubility and permeability were evaluated. Tritium permeation behavior through PyC-coated Li compound particles was simulated by using obtained data. Hydrogen permeation flux through PyC in a steady state is proportional to the hydrogen pressure and is larger than that through Al2O3 which is also candidate coating material. However, total tritium leak within the supposed reactor operation period through the PyC-coated Li compound particles is lower than that through the Al2O3-coated ones because the hydrogen absorption capacity in PyC is considerably larger than that in Al2O3.

  5. Electrochemical modification of a pyrolytic graphite sheet for improved negative electrode performance in the vanadium redox flow battery

    Science.gov (United States)

    Kabir, Humayun; Gyan, Isaiah O.; Francis Cheng, I.

    2017-02-01

    The vanadium redox flow battery is a promising technology for buffering renewable energies. It is recognized that negative electrode is the limitation in this device where there are problems of slow heterogeneous electron transfer (HET) of V3+/2+ and parasitic H2 evolution. Any methods aimed at addressing one of these barriers must assess the effects on the other. We examine electrochemical enhancement of a common commercially available material. Treatment of Panasonic pyrolytic graphite sheets is through oxidation at 2.1 V vs. Ag/AgCl for 1 min in 1 M H2SO4. This increases the standard HET rate for V3+/2+ from 3.2 × 10-7 to 1 × 10-3 cm/s, one of the highest in literature and shifts voltammetric reductive peak potential from -1.0 V to -0.65 V in 50 mM V3+ in 1 M H2SO4. Infrared analysis of the surfaces indicates formation of Csbnd OH, Cdbnd O, and Csbnd O functionalities. These groups catalyze HET with V3+/2+ as hypothesized by Skyllas-Kasacos. Also of significance is that electrode modification decreases the fraction of the current directed towards H2 evolution. This proportion decreases by two orders of a magnitude from 12% to 0.1% as measured at the respective voltammetric peak potentials of -1.0 V (pristine) and -0.65 V (modified).

  6. International Methane Partnership Fighting Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Due to the growth of international attention on the problem of climate change combined with the attractiveness of methane mitigation technologies, the capture and use of methane in agriculture, coal mines, landfills, and the oil and gas sector has increasingly become popular over the past few years. Highlighting this, several countries hosted the international 'Methane to Market' Partnership Conference and Exposition in October 2007 in Beijing, China.

  7. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  8. Evaluation of methane emissions from Taiwanese paddies

    International Nuclear Information System (INIS)

    Liu, C.-W.; Wu, C.-Y.

    2004-01-01

    The main greenhouse gases are carbon dioxide, methane and nitrous oxide. Methane is the most important because the warming effect of methane is 21 times greater than that of carbon dioxide. Methane emitted from rice paddy fields is a major source of atmospheric methane. In this work, a methane emission model (MEM), which integrates climate change, plant growth and degradation of soil organic matter, was applied to estimate the emission of methane from rice paddy fields in Taiwan. The estimated results indicate that much methane is emitted during the effective tillering and booting stages in the first crop season and during the transplanting stage in the second crop season in a year. Sensitivity analysis reveals that the temperature is the most important parameter that governs the methane emission rate. The order of the strengths of the effects of the other parameters is soil pH, soil water depth (SWD) and soil organic matter content. The masses of methane emitted from rice paddy fields of Taiwan in the first and second crop seasons are 28,507 and 350,231 tons, respectively. The amount of methane emitted during the second crop season is 12.5 times higher than that emitted in the first crop season. With a 12% reduction in planted area during the second crop season, methane emission could be reduced by 21%. In addition, removal of rice straw left from the first crop season and increasing the depth of flooding to 25 cm are also strategies that could help reduce annual emission by up to 18%

  9. Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota.

    Science.gov (United States)

    Gvakharia, Alexander; Kort, Eric A; Brandt, Adam; Peischl, Jeff; Ryerson, Thomas B; Schwarz, Joshua P; Smith, Mackenzie L; Sweeney, Colm

    2017-05-02

    Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.

  10. Direct Quantification of Methane Emissions Across the Supply Chain: Identification of Mitigation Targets

    Science.gov (United States)

    Darzi, M.; Johnson, D.; Heltzel, R.; Clark, N.

    2017-12-01

    Researchers at West Virginia University's Center for Alternative Fuels, Engines, and Emissions have recently participated in a variety of studies targeted at direction quantification of methane emissions from across the natural gas supply chain. These studies included assessing methane emissions from heavy-duty vehicles and their fuel stations, active unconventional well sites - during both development and production, natural gas compression and storage facilities, natural gas engines - both large and small, two- and four-stroke, and low-throughput equipment associated with coal bed methane wells. Engine emissions were sampled using conventional instruments such as Fourier transform infrared spectrometers and heated flame ionization detection analyzers. However, to accurately quantify a wide range of other sources beyond the tailpipe (both leaks and losses), a full flow sampling system was developed, which included an integrated cavity-enhanced absorption spectrometer. Through these direct quantification efforts and analysis major sources of methane emissions were identified. Technological solutions and best practices exist or could be developed to reduce methane emissions by focusing on the "lowest-hanging fruit." For example, engine crankcases from across the supply chain should employ vent mitigation systems to reduce methane and other emissions. An overview of the direct quantification system and various campaign measurements results will be presented along with the identification of other targets for additional mitigation.

  11. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  12. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  13. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer

    Science.gov (United States)

    A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...

  14. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    Science.gov (United States)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  15. Lithium chemistry of lithium doped magnesium oxide catalysts used in the oxidative coupling of methane

    NARCIS (Netherlands)

    Korf, S.J.; Roos, J.A.; de Bruijn, N.A.; van Ommen, J.G.; Ross, J.R.H.

    1990-01-01

    Active sites are created on the surface of a Li/MgO catalyst used for the selective oxidation of methane by the gradual loss of carbon dioxide from surface carbonate species in the presence of oxygen. Decomposition of the carbonate species in the absence of oxygen is detrimental to the activity of

  16. Methane impurity production in the fusion reactor environment

    International Nuclear Information System (INIS)

    Dawson, P.T.

    1984-11-01

    Fusion requires temperatures of the order of 10 8 degrees C. In order to attain the required temperature it will be essential to minimise the energy losses from the plasma. Impurities are a major cause of plasma cooling. Ionization of impurity species in the plasma leads to a subsequent decay and emission of radiation. The most common low Z contaminants to be consideed are water and methane produced by reaction of hydrogen isotopes with oxygen and carbon. This review focuses on the methane production problem. We will be concerned with the sources of carbon in the reactor and also with the reactivity of carbon with hydrogen molecules, atoms and ions and the synergistic effects which can arise from coincident fluxes of electrons and photons and the effects of radiation-induced damage of the materials involved. While the reactor first wall will provide the most hostile environment for methane producton, most of the reactions discussed can occur in breeder blankets and also in other tritium facilities such as fuel handling, purification and storage facilities

  17. Methane distribution and oxidation around the Lena Delta in summer 2013

    Directory of Open Access Journals (Sweden)

    I. Bussmann

    2017-11-01

    postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d−1 (median 24. The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.

  18. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.

    Science.gov (United States)

    Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J

    2017-01-17

    Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.

  19. Heat transfer comparison between methane and hydrogen in a spark ignited engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, Roger; Demuynck, Joachim; Paepe, Michel de; Verhelst, Sebastian [Ghent Univ. (Belgium)

    2010-07-01

    Hydrogen is one of the alternative fuels which are being investigated at Ghent University. NO{sub x} emissions will occur at high engine loads and they are a constraint for power and efficiency optimization. The formation of NO{sub x} emissions is temperature dependent. Consequently, the heat transfer from the burning gases to the cylinder walls has to be accurately modelled if precise computer calculations of the emissions are wanted. Several engine heat transfer models exist but they have been cited to be inaccurate for hydrogen. We have measured the heat flux in a spark ignited engine with a commercially available heat flux sensor. This paper investigates the difference between the heat transfer of hydrogen and a fossil fuel, in this case methane. Measurements with the same indicated power output are compared and the effect of the heat loss on the indicated efficiency is investigated. The power output of hydrogen combustion is lowered by burning lean in contrast to using a throttle in the case of methane. Although the peak in the heat flux of hydrogen is 3 times higher compared to methane for a high engine power output, the indicated efficiency is only 3% lower. The heat loss for hydrogen at a low engine load is smaller than that of methane which results in a higher indicated efficiency. The richness of the hydrogen-air mixture has a great influence on the heat transfer process in contrast to the in-cylinder mass in the case of methane. (orig.)

  20. Electron impact spectroscopy of methane, silane, and germane

    International Nuclear Information System (INIS)

    Dillon, M.A.; Wang, R.G.; Spence, D.

    1985-01-01

    Electronic spectra of the group IV/sub a/ hydrides, i.e., methane (CH 4 ), silane (SiH 4 ), and germane (GeH 4 ) have been investigated by means of electron energy loss spectroscopy in an energy range that includes all single-electron excitation from the valence shell. Electron impact spectra of the three gases recorded using electrons of 200-eV incidence are presented. The conditions employed were chosen to favor the excitation of states by direct scattering and to exclude those transitions requiring an exchange mechanism

  1. Plasma catalytic reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  2. Methanization takes countryside by storm

    International Nuclear Information System (INIS)

    Du Guerny, St.

    2011-01-01

    A new plant is operating in Brittany: it transforms cattle effluents and slaughterhouse wastes into electric power through natural fermentation. Thus, every year, 75.000 tons of organic wastes will produce methane and 1.5 MW. Other projects exist in the same region. One faced the opposition of the population. Therefore, the idea is now to develop smaller projects. France is very late compared to Germany and the Netherlands. The Grenelle de l'Environnement seems to have boosted these projects, notably due to the increase of the electricity purchase price proposed by EDF. Another issue is discussed: the development of this industrial sector in France

  3. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere

    OpenAIRE

    Yamamoto, A.; Yamanaka, Y.; Tajika, E.

    2009-01-01

    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  4. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  5. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  6. Mechanistic insights into heterogeneous methane activation

    International Nuclear Information System (INIS)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; Yoo, Jong Suk; Kulkarni, Ambarish

    2017-01-01

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

  7. Methane from the East Siberian Arctic shelf

    DEFF Research Database (Denmark)

    Petrenko...[], Vasilii V.; Etheridge, David M.

    2010-01-01

    In their Report “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf” (5 March, p. 1246), N. Shakhova et al. write that methane (CH4) release resulting from thawing Arctic permafrost “is a likely positive feedback to climate warming.” They add...

  8. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  9. Trading coalbed methane for carbon dioxide

    International Nuclear Information System (INIS)

    Greenberger, L.S.

    1991-01-01

    This article discusses a proposal for reducing methane emissions in coal mining activities and at the same time reducing the burden on utilities to cut carbon dioxide emissions. Emission credits would be issued to mines that recover the methane for use. These credits could then be bought by utilities and exchanged for the right to emit carbon dioxide

  10. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  11. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  12. Reaction between infusion water and methane

    Energy Technology Data Exchange (ETDEWEB)

    Ettinger, I L

    1977-09-01

    This paper discusses the effect of infused water on the initial gas emission rate and on the pore structure of the coal. Water traps methane in micro-pores, so that lengthy periods are needed for the methane to penetrate large voids and cavities.

  13. Methane storage in porous activated carbons

    NARCIS (Netherlands)

    András Perl; prof. dr. Wim van Gemert

    2014-01-01

    Locally produced methane, - either as biomethane or power-to-gas product, has to be stored to provide a reliable gas source for the fluctuating demand of any local gas distribution network. Additionally, methane is a prominent transportation fuel but its suitability for vehicular application depends

  14. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  15. Effect of substrate temperature on the properties of pyrolytically deposited nitrogen-doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Golshahi, S.; Rozati, S.M.; Botelho do Rego, A.M.; Wang, J.; Elangovan, E.; Martins, R.; Fortunato, E.

    2013-01-01

    Highlights: ► Hall-effect measurement introduces the optimum temperature of 450 °C for fabricating p-type high quality ZnO films. ► X-ray photoelectron spectroscopy (XPS) proved the nitrogen presence at the surface of doped ZnO thin films at all substrate temperatures. ► Films prepared at lower substrate temperature (300 °C and 350 °C) own wider band gaps. ► Surface roughness strongly is affected by substrate temperature variations. - Abstract: The effect of substrate temperature (T s ) on the properties of pyrolytically deposited nitrogen (N) doped zinc oxide (ZnO) thin films was investigated. The T s was varied from 300 °C to 500 °C, with a step of 50 °C. The positive sign of Hall coefficient confirmed the p-type conductivity in the films deposited at 450 °C and 500 °C. X-ray diffraction studies confirmed the ZnO structure with a dominant peak from (1 0 0) crystal plane, irrespective of the variation in T s . The presence of N in the ZnO structure was evidenced through X-ray photoelectron spectroscopy (XPS) analysis. The obtained high N concentration reveals that the 450 °C is the optimal T s . Atomic force microscope (AFM) analysis showed that the surface roughness was increased with the increasing T s until 400 °C but then decreased. It is found that the transmittance of the deposited films is increased with the increasing T s . The optical band gap calculated from the absorption edge showed that the films deposited with T s of 300 °C and 350 °C possess higher values than those deposited at higher T s .

  16. New pyrolytic and spectroscopic data on Orgueil and Murchison insoluble organic matter: A different origin than soluble?

    Science.gov (United States)

    Remusat, Laurent; Derenne, Sylvie; Robert, François; Knicker, Heike

    2005-08-01

    Pyrolysis with and without tetramethylammonium hydroxide (TMAH), vacuum pyrolysis, and solid state 15N nuclear magnetic resonance (NMR) were used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites. Conventional pyrolysis reveals a set of poorly functionalized aromatic compounds, ranging from one to four rings and with random methyl substitutions. These compounds are in agreement with spectroscopic and pyrolytic results previously reported. For the first time, TMAH thermochemolysis was used to study extraterrestrial material. The detection of aromatics bearing methyl esters and methoxy groups reveals the occurrence of ester and ether bridges between aromatic units in the macromolecular network. No nitrogen-containing compounds were detected with TMAH thermochemolysis, although they are a common feature in terrestrial samples. Along with vacuum pyrolysis results, thermochemolysis shows that nitrogen is probably sequestered in condensed structures like heterocyclic aromatic rings, unlike oxygen, which is mainly located within linkages between aromatic units. This is confirmed by solid state 15N NMR performed on IOM from Orgueil, showing that nitrogen is present in pyrrole, indole, and carbazole moieties. These data show that amino acids are neither derived from the hydrolysis of IOM nor from a common precursor. In order to reconcile the literature isotopic data and the present molecular results, it is proposed that aldehydes and ketones (1) originated during irradiation of ice in space and (2) were then mobilized during the planetesimal hydrothermalism, yielding the formation of amino acids. If correct, prebiotic molecules are the products of the subsurface chemistry of planetesimals and are thus undetectable through astronomical probes.

  17. Characteristics of Waste Plastics Pyrolytic Oil and Its Applications as Alternative Fuel on Four Cylinder Diesel Engines

    Directory of Open Access Journals (Sweden)

    Nosal Nugroho Pratama

    2014-02-01

    Full Text Available Waste plastics recycling using pyrolysis method is not only able to decrease a number of environment pollutant but also able to produce economical and high quality hydrocarbon products. Two experiments were conducted to completely study Waste Plastic Pyrolytic Oil (WPPO characteristics and its applications.  First experiment investigated oil characteristics derived from pyrolysis process in two stages batch reactors: pyrolysis and catalytic reforming reactor, at maximum temperature 500oC and 450oC respectively. Waste Polyethylene (PE, Polypropylene (PP, Polystyrene (PS, Polyethylene Terepthalate (PET and others were used as raw material. Nitrogen flow rate at 0.8 l/minutes was used to increase oil weight percentage. Indonesian natural zeolite was used as catalyst. Then, second experiment was carried out on Diesel Engine Test Bed (DETB used blending of WPPO and Biodiesel fuel with a volume ratio of 1:9. This experiment was specifically conducted to study how much potency of blending of WPPO and biodiesel in diesel engine. The result of first experiment showed that the highest weight percentage of WPPO derived from mixture of PE waste (50%wt, PP waste (40%wt and PS waste (10%wt is 45.13%wt. The more weight percentage of PE in feedstock effected on the less weight percentage of WPPO, the more percentage of C12-C20 content in WPPO and the higher calorific value of WPPO. Characteristics of WPPO such as, Specific Gravity, Flash point, Pour Point, Kinematic Viscosity, Calorific value and percentage of C12-C20 showed interesting result that WPPO could be developed as alternative fuel on diesel fuel blending due to the proximity of their characteristics. Performance of diesel engine using blending of WPPO and biodiesel on second experiment gave good result so the WPPO will have great potency to be valuable alternative liquid fuel in future, especially on stationary diesel engine and transportation engine application.

  18. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.

    Science.gov (United States)

    Ashraf, Ali; Wu, Yanbin; Wang, Michael C; Aluru, Narayana R; Dastgheib, Seyed A; Nam, SungWoo

    2014-11-04

    We report the intrinsic water contact angle (WCA) of multilayer graphene, explore different methods of cleaning multilayer graphene, and evaluate the efficiency of those methods on the basis of spectroscopic analysis. Highly ordered pyrolytic graphite (HOPG) was used as a model material system to study the wettability of the multilayer graphene surface by WCA measurements. A WCA value of 45° ± 3° was measured for a clean HOPG surface, which can serve as the intrinsic WCA for multilayer graphene. A 1 min plasma treatment (100 W) decreased the WCA to 6°, owing to the creation of surface defects and functionalization by oxygen-containing groups. Molecular dynamics simulations of water droplets on the HOPG surface with or without the oxygen-containing defect sites confirmed the experimental results. Heat treatment at near atmospheric pressure and wet chemical cleaning methods using hydrofluoric acid and chloroform did not change the WCA significantly. Low-pressure, high-temperature annealing under argon and hydrogen reduced the WCA to 54°, close to the intrinsic WCA of HOPG. Raman spectroscopy and atomic force microscopy did not show any significant change for the HOPG surface after this treatment, confirming low-pressure, high-temperature annealing as an effective technique to clean multilayer graphene without damaging the surface. Time-of-flight secondary ion mass spectrometry indicated the existence of hydrocarbon species on the surface of the HOPG sample that was exposed to air for <5 min and the absence of these impurities in the bulk. X-ray photoelectron spectroscopy analyses of the sample surfaces after the different cleaning techniques were performed to correlate the WCA to the surface chemistry. X-ray photoelectron spectroscopy results revealed that the WCA value changed drastically, depending on the amounts of oxygen-containing and hydrocarbon-containing groups on the surface.

  19. Nonequilibrium clumped isotope signals in microbial methane

    Science.gov (United States)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  20. Enteric methane emissions from German dairy cows

    DEFF Research Database (Denmark)

    Dammgen, U; Rosemann, C; Haenel, H D

    2012-01-01

    Up to now, the German agricultural emission inventory used a model for the assessment of methane emissions from enteric fermentation that combined an estimate of the energy and feed requirements as a function of performance parameters and diet composition, with the constant methane conversion rate......, as stated by IPCC. A methane emission model was selected here that is based on German feed data. It was combined with the hitherto applied model describing energy requirements. The emission rates thus calculated deviate from those previously obtained. In the new model, the methane conversion rate is back......-calculated from emission rates and gross energy intake rates. For German conditions of animal performance and diet composition, the national means of methane conversion rates range between 71 kJ MJ(-1) and 61 kJ MJ(-1) for low and high performances (4700 kg animal(-1) a(-1) in 1990 to 7200 kg animal(-1) a(-1...

  1. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  2. Decarbonisation of fossil energy via methane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G.; Agar, D.W.; Schultz, I. [Technische Univ. Dortmund (Germany)

    2010-12-30

    Despite the rising consumption of energy over the last few decades, the proven reserves of fossil fuels have steadily increased. Additionally, there are potentially tremendous reserves of methane hydrates available, which remain to be exploited. The use of fossil energy sources is thus increasingly being dictated less by supply than by the environmental concerns raised by climate change. In the context of the decarbonisation of the global energy system that this has stimulated, new means must be explored for using methane as energy source. Noncatalytic thermal pyrolysis of methane is proposed here as a promising concept for utilising methane with low to zero carbon dioxide emissions. Following cracking, only the energy content of the hydrogen is used, while the carbon can be stored safely and retrievably in disused coal mines. The thermodynamics and different process engineering concepts for the technical realisation of such a carbon moratorium technology are discussed. The possible contribution of methane pyrolysis to carbon negative geoengineering is also addressed. (orig.)

  3. Carbon and hydrogen isotope composition and C-14 concentration in methane from sources and from the atmosphere: Implications for a global methane budget

    Science.gov (United States)

    Wahlen, Martin

    1994-01-01

    The topics covered include the following: biogenic methane studies; forest soil methane uptake; rice field methane sources; atmospheric measurements; stratospheric samples; Antarctica; California; and Germany.

  4. Experiencing Loss

    DEFF Research Database (Denmark)

    Kristiansen, Maria; Younis, Tarek; Hassani, Amani

    2015-01-01

    In this article, we explore how Islam, minority status and refugee experiencesintersect in shaping meaning-making processes following bereavement. We do this througha phenomenological analysis of a biographical account of personal loss told by Aisha, a Muslim Palestinian refugee living in Denmark......, who narrates her experience of losing herhusband to lung cancer. By drawing on a religious framework, Aisha creates meaning fromher loss, which enables her to incorporate this loss into her life history and sustain agency.Her narrative invites wider audiences to witness her tale of overcoming loss...

  5. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  6. Methane measurements manual; Handbok metanmaetningar

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Magnus Andreas (SP Technical research institute of Sweden, Boraas (Sweden))

    2011-02-15

    Emissions to air in different parts of the system may arise in biogas plants, where there is biological treatment of organic matter by anaerobic degradation, and during upgrading of biogas to vehicle fuel. There are mainly four reasons why these emissions must be minimized. These are safety, greenhouse gas emissions, economy and smell. This manual gathers experience of several years of work with measurement of methane emissions from biogas and upgrading facilities. This work has been done mainly in the context of Swedish Waste Management's system of voluntary commitment. The purpose of this manual is to standardize methods and procedures when methane measurements are carried out so that the results are comparable between different providers. The main target group of the manual is measurement consultants performing such measurements. Calculation template in Excel is part of the manual, which further contributes to the measurements evaluated in a standardized way. The manual contains several examples which have been calculated in the accompanying Excel template. The handbook also contains a chapter mainly intended for facility staff, in which implementation of accurate leak detection is described, and where there are hints of a system of so-called intermediate inspections to detect leaks in time

  7. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  8. Methane bubbling from northern lakes: present and future contributions to the global methane budget.

    Science.gov (United States)

    Walter, Katey M; Smith, Laurence C; Chapin, F Stuart

    2007-07-15

    Large uncertainties in the budget of atmospheric methane (CH4) limit the accuracy of climate change projections. Here we describe and quantify an important source of CH4 -- point-source ebullition (bubbling) from northern lakes -- that has not been incorporated in previous regional or global methane budgets. Employing a method recently introduced to measure ebullition more accurately by taking into account its spatial patchiness in lakes, we estimate point-source ebullition for 16 lakes in Alaska and Siberia that represent several common northern lake types: glacial, alluvial floodplain, peatland and thermokarst (thaw) lakes. Extrapolation of measured fluxes from these 16 sites to all lakes north of 45 degrees N using circumpolar databases of lake and permafrost distributions suggests that northern lakes are a globally significant source of atmospheric CH4, emitting approximately 24.2+/-10.5Tg CH4yr(-1). Thermokarst lakes have particularly high emissions because they release CH4 produced from organic matter previously sequestered in permafrost. A carbon mass balance calculation of CH4 release from thermokarst lakes on the Siberian yedoma ice complex suggests that these lakes alone would emit as much as approximately 49000Tg CH4 if this ice complex was to thaw completely. Using a space-for-time substitution based on the current lake distributions in permafrost-dominated and permafrost-free terrains, we estimate that lake emissions would be reduced by approximately 12% in a more probable transitional permafrost scenario and by approximately 53% in a 'permafrost-free' Northern Hemisphere. Long-term decline in CH4 ebullition from lakes due to lake area loss and permafrost thaw would occur only after the large release of CH4 associated thermokarst lake development in the zone of continuous permafrost.

  9. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.

    Science.gov (United States)

    Dauskardt, R H; Ritchie, R O; Takemoto, J K; Brendzel, A M

    1994-07-01

    A fracture-mechanics based study has performed to characterize the fracture toughness and rates of cyclic fatigue-crack growth of incipient flaws in prosthetic heart-valve components made of pyrolytic carbon-coated graphite. Such data are required to predict the safe structural lifetime of mechanical heart-valve prostheses using damage-tolerant analysis. Unlike previous studies where fatigue-crack propagation data were obtained using through-thickness, long cracks (approximately 2-20 mm long), growing in conventional (e.g., compact-tension) samples, experiments were performed on physically small cracks (approximately 100-600 microns long), initiated on the surface of the pyrolytic-carbon coating to simulate reality. Small-crack toughness results were found to agree closely with those measured conventionally with long cracks. However, similar to well-known observations in metal fatigue, it was found that based on the usual computations of the applied (far-field) driving force in terms of the maximum stress intensity, Kmax, small fatigue cracks grew at rates that exceeded those of long cracks at the same applied stress intensity, and displayed a negative dependency on Kmax; moreover, they grew at applied stress intensities less than the fatigue threshold value, below which long cracks are presumed dormant. To resolve this apparent discrepancy, it is shown that long and small crack results can be normalized, provided growth rates are characterized in terms of the total (near-tip) stress intensity (incorporating, for example, the effect of residual stress); with this achieved, in principle, either form of data can be used for life prediction of implant devices. Inspection of the long and small crack results reveals extensive scatter inherent in both forms of growth-rate data for the pyrolytic-carbon material.

  10. Memory loss

    Science.gov (United States)

    ... barbiturates or ( hypnotics ) ECT (electroconvulsive therapy) (most often short-term memory loss) Epilepsy that is not well controlled Illness that ... appointment. Medical history questions may include: Type of memory loss, such as short-term or long-term Time pattern, such as how ...

  11. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  12. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant

    DEFF Research Database (Denmark)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja

    2017-01-01

    (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could......A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing...... measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured...

  13. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL; FINAL

    International Nuclear Information System (INIS)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-01-01

    landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste

  14. Low-Altitude Aerial Methane Concentration Mapping

    Directory of Open Access Journals (Sweden)

    Bara J. Emran

    2017-08-01

    Full Text Available Detection of leaks of fugitive greenhouse gases (GHGs from landfills and natural gas infrastructure is critical for not only their safe operation but also for protecting the environment. Current inspection practices involve moving a methane detector within the target area by a person or vehicle. This procedure is dangerous, time consuming, labor intensive and above all unavailable when access to the desired area is limited. Remote sensing by an unmanned aerial vehicle (UAV equipped with a methane detector is a cost-effective and fast method for methane detection and monitoring, especially for vast and remote areas. This paper describes the integration of an off-the-shelf laser-based methane detector into a multi-rotor UAV and demonstrates its efficacy in generating an aerial methane concentration map of a landfill. The UAV flies a preset flight path measuring methane concentrations in a vertical air column between the UAV and the ground surface. Measurements were taken at 10 Hz giving a typical distance between measurements of 0.2 m when flying at 2 m/s. The UAV was set to fly at 25 to 30 m above the ground. We conclude that besides its utility in landfill monitoring, the proposed method is ready for other environmental applications as well as the inspection of natural gas infrastructure that can release methane with much higher concentrations.

  15. 30 CFR 75.323 - Actions for excessive methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  16. Termites facilitate methane oxidation and shape the methanotrophic community

    NARCIS (Netherlands)

    Ho, A.; Erens, H.; Mujinya, B.B.; Boeckx, P.; Baert, G.; Schneider, B.; Frenzel, P.; Boon, N.; Van Ranst, E.

    2013-01-01

    Termite-derived methane contributes 3-4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of methane produced can be consumed by methanotrophs that inhabit the mound material. Yet, methanotroph

  17. Methane Leakage from Oil & Gas Operations. What have we learned from recent studies in the U.S.?

    Science.gov (United States)

    Zavala-Araiza, Daniel; Hamburg, Steven

    2016-04-01

    Methane, the principal component of natural gas, is a powerful greenhouse gas. Methane losses from the natural gas supply chain erode the climate benefits of fuel switching to natural gas from other fossil fuels, reducing or eliminating them for several decades or longer. Global data on methane emissions from the oil and gas sector is uncertain and as a consequence, measuring and characterizing methane emissions is critical to the design of effective mitigation strategies. In this work, we synthesize lessons learned from dozens of U.S. studies that characterized methane emissions along each stage of the natural gas supply chain. These results are relevant to the design of methane measurement campaigns outside the U.S. A recurring theme in the research conducted in the U.S. is that public emissions inventories (e.g., The U.S. Environmental Protection Agency's National Greenhouse gas Inventory) tend to underestimate emissions for two key reasons: (1) use of non-representative emission factors and (2) inaccurate activity data (incomplete counts of facilities and equipment). Similarly, the accuracy of emission factors and the effectiveness of mitigation strategies are heavily affected by the existence of low-probability, unpredictable high emitters-which have been observed all along the supply chain- and are spatiotemporally variable. We conducted a coordinated campaign to measure methane emissions in a major gas producing region of the U.S. (Barnett Shale region of Texas) using a diversity of approaches. As part of this study we identified methods for effective quantification of regional fossil methane emissions using atmospheric data (through replicate mass balance flights and source apportionment using methane to ethane ratios) as well as how to build an accurate inventory that includes a statistical estimator that more rigorously captures the magnitude and frequency of high emitters. We found agreement between large-scale atmospheric sampling estimates and source

  18. Methane emissions form terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, P.; Dentener, F.; Grassi, G.; Leip, A.; Somogyi, Z.; Federici, S.; Seufert, G.; Raes, F. [European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2006-07-01

    In a recent issue of Nature Keppler et al. (2006) report the discovery that terrestrial plants emit CH4 under aerobic conditions. Until now it was thought that bacterial decomposition of plant material under anaerobic conditions, such as in wetlands and water flooded rice paddies, is the main process leading to emissions from terrestrial ecosystems. In a first attempt to upscale these measurements, the authors estimate that global total emissions may be 149 Tg CH4/yr (62-236 Tg CH4/yr), with the main contribution estimated from tropical forests and grasslands (107 Tg CH4/yr with a range of 46-169 Tg CH4/yr). If confirmed, this new source of emission would constitute a significant fraction of the total global methane sources (estimated 500-600 Tg CH4/yr for present day total natural and anthropogenic sources) and have important implications for the global CH4 budget. To accommodate it within the present budget some sources would need to be re-assessed downwards and/or some sinks re-assessed upwards. Furthermore, also considering that methane is a {approx}23 times more powerful greenhouse gas than CO2, the possible feedbacks of these hitherto unknown CH4 emissions on global warming and their impacts on greenhouse gases (GHG) mitigation strategies need to be carefully evaluated. The merit of the paper is without doubt related to the remarkable discovery of a new process of methane emissions active under aerobic conditions. However, we think that the applied approach of scaling up emissions from the leaf level to global totals by using only few measured data (mainly from herbaceous species) and the Net Primary Productivity of the main biomes is scientifically questionable and tends to overestimate considerably the global estimates, especially for forest biomes. Furthermore, some significant constraints on the upper limit of the global natural CH4 emissions arise from the pre-industrial CH4 budget. Pre-industrial atmospheric CH4 mixing ratios have been measured

  19. Validation of landfill methane measurements from an unmanned aerial system

    DEFF Research Database (Denmark)

    Allen, Grant; Williams, Paul; Ricketts, hugo

    Landfill gas is made up of roughly equal amounts of methane and carbon dioxide. Modern UK landfills capture and use much of the methane gas as a fuel. But some methane escapes and is emitted to the atmosphere. Methane is an important greenhouse gas and controls on methane emissions are a part...... of international and national strategies to limit climate change. Better estimates of methane emissions from landfills and other similar sources would allow the UK to improve the quantification and control of greenhouse gas emissions. This project tested the accuracy of methane measurement using an unmanned aerial...

  20. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  1. Status of the methanization sector in France

    International Nuclear Information System (INIS)

    2011-09-01

    This report aims at describing the status of methanization installations, either operating or under construction, on the French national territory, all sectors included (industry, agriculture, sewage treatment, municipal wastes). In a first part, the authors propose a definition of methanization, a presentation of the various implementation techniques, a presentation of the different sectors using methanization (industry, agriculture and breeding, sewage treatment plants, household wastes), and a presentation of a survey. Then, they comment and discuss more precisely the different sectors, their history, their geographical distribution in France, their technologies, their effluents, their production, their economic data, their perspectives

  2. Methane storage in metal-organic frameworks.

    Science.gov (United States)

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  3. Martian methane plume models for defining Mars rover methane source search strategies

    Science.gov (United States)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  4. Weight Loss

    Science.gov (United States)

    ... Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home Food MyFoodAdvisor ... Fit Types of Activity Weight Loss Assess Your Lifestyle Getting Started Food Choices In My Community Home ...

  5. Effect of substrate temperature on the properties of pyrolytically deposited nitrogen-doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Golshahi, S., E-mail: golshahi@iaurasht.ac.ir [Department of Physics, Rasht Branch, Islamic Azad University, Rasht (Iran, Islamic Republic of); Rozati, S.M. [Department of Physics, University of Guilan, 41335-1914 Rasht (Iran, Islamic Republic of); Botelho do Rego, A.M. [Centro de Quimica-Fisica Molecular and IN, Technical University of Lisbon, IST 1049-001 Lisboa (Portugal); Wang, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Elangovan, E.; Martins, R.; Fortunato, E. [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa (UNL), 2829-516 Caparica (Portugal)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hall-effect measurement introduces the optimum temperature of 450 Degree-Sign C for fabricating p-type high quality ZnO films. Black-Right-Pointing-Pointer X-ray photoelectron spectroscopy (XPS) proved the nitrogen presence at the surface of doped ZnO thin films at all substrate temperatures. Black-Right-Pointing-Pointer Films prepared at lower substrate temperature (300 Degree-Sign C and 350 Degree-Sign C) own wider band gaps. Black-Right-Pointing-Pointer Surface roughness strongly is affected by substrate temperature variations. - Abstract: The effect of substrate temperature (T{sub s}) on the properties of pyrolytically deposited nitrogen (N) doped zinc oxide (ZnO) thin films was investigated. The T{sub s} was varied from 300 Degree-Sign C to 500 Degree-Sign C, with a step of 50 Degree-Sign C. The positive sign of Hall coefficient confirmed the p-type conductivity in the films deposited at 450 Degree-Sign C and 500 Degree-Sign C. X-ray diffraction studies confirmed the ZnO structure with a dominant peak from (1 0 0) crystal plane, irrespective of the variation in T{sub s}. The presence of N in the ZnO structure was evidenced through X-ray photoelectron spectroscopy (XPS) analysis. The obtained high N concentration reveals that the 450 Degree-Sign C is the optimal T{sub s}. Atomic force microscope (AFM) analysis showed that the surface roughness was increased with the increasing T{sub s} until 400 Degree-Sign C but then decreased. It is found that the transmittance of the deposited films is increased with the increasing T{sub s}. The optical band gap calculated from the absorption edge showed that the films deposited with T{sub s} of 300 Degree-Sign C and 350 Degree-Sign C possess higher values than those deposited at higher T{sub s}.

  6. Wave-induced release of methane : littoral zones as a source of methane in lakes

    OpenAIRE

    Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank

    2010-01-01

    This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...

  7. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    Science.gov (United States)

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  8. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    Science.gov (United States)

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  9. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application.

    Science.gov (United States)

    Jin, Zhengyu; Chang, Fengmin; Meng, Fanlin; Wang, Cuiping; Meng, Yao; Liu, Xiaoji; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2017-10-01

    Aiming at closed-loop sustainable sewage sludge treatment, an optimal and economical pyrolytic temperature was found at 400-450 °C considering its pyrolysis efficiency of 65%, fast cracking of hydrocarbons, proteins and lipids and development of aromatized porous structure. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) tests demonstrated the development of adsorptive functional groups and crystallographic phases of adsorptive minerals. The optimal sludge-char, with a medium specific surface area of 39.6 m 2  g -1 and an iodine number of 327 mgI 2 g -1 , performed low heavy metals lixiviation. The application of sludge-char in raw sewage could remove 30% of soluble chemical oxygen demand (SCOD), along with an acetic acid adsorption capacity of 18.0 mg g -1 . The developed mesopore and/or macropore structures, containing rich acidic and basic functional groups, led to good biofilm matrices for enhanced microbial activities and improved autotrophic nitrification in anoxic stage of an A/O reactor through adsorbed extra carbon source, and hence achieved the total nitrogen (TN) removal up to 50.3%. It is demonstrated that the closed-loop sewage sludge treatment that incorporates pyrolytic sludge-char into in-situ biological sewage treatment can be a promising sustainable strategy by further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. SUPPLEMENTARY INFORMATION Non-oxidative methane ...

    Indian Academy of Sciences (India)

    dell

    SUPPLEMENTARY INFORMATION. Non-oxidative methane dehydroaromatization reaction over highly active α-MoC1-x ZSM-5 derived from pretreatment. BUDDE PRADEEP KUMAR, ARVIND KUMAR SINGH and SREEDEVI UPADHYAYULA*. Heterogeneous Catalysis & Reaction Engineering Laboratory, Department of ...

  11. Sustainability: Bypassing the methane cycle : News & Views

    NARCIS (Netherlands)

    Bodelier, Paul L. E.

    2015-01-01

    A genetically modified rice with more starch in its grains also provides fewer nutrients for methane-producing soil microbes. This dual benefit might help to meet the urgent need for globally sustainable food production.

  12. Composite hydrogen-solid methane moderators

    International Nuclear Information System (INIS)

    Picton, D.; Bennington, S.; Ansell, S.; Fernandez-Garcia, J.; Broome, T.

    2004-01-01

    This paper describes the results of Monte-Carlo calculations for a coupled moderator on a low-power pulsed neutron spallation source and is part of the design study for a second target station for the ISIS spallation source. Various options were compared including hydrogen, solid methane, grooving the solid methane and compound moderators made of hydrogen in front of solid methane. To maximise the neutron current at low energies two strategies appear to emerge from the calculations. For instruments that view a large area of moderator surface a layer of hydrogen in front of a thin solid-methane moderator is optimum, giving a gain of about a factor 10 relative to the current liquid hydrogen moderator on the existing ISIS tantalum target. For instruments that only view a restricted area higher flux, corresponding to a gain of 13.5, can be achieved with the use of a single groove or re-entrant hole in the moderator. (orig.)

  13. Biological conversion of coal gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Vega, J L; Clausen, E C; Gaddy, J L

    1988-08-01

    Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria. Peptostreptococcus productus metabolized coal gas to mainly acetate and CO/sub 2/. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH/sub 4/ and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO/sub 2/ and H/sub 2/ to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates. 21 refs., 1 fig., 7 tabs.

  14. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  15. Enteric methane emissions from German pigs

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Schulz, Joachim; Klausing, Heinrich Kleine

    2012-01-01

    Methane emissions from enteric fermentation of pigs are object of emission reporting. Hitherto they were treated as part of the energy balance of pigs, in accordance with IPCC guidance documents. They were calculated from the gross energy intake rate and a constant methane conversion ratio....... Meanwhile numerous experimental data on methane emissions from enteric fermentation is available in Germany and abroad; the results are compiled in this work. These results also allow for a description of transformation processes in the hind gut and a subsequent establishment of models that relate emissions...... to feed and performance data. The model by Kirchgeßner et al. (1995) is based on German experimental data and reflects typical national diet compositions. It is used to quantify typical emissions and methane conversion ratios. The results agree with other experimental findings at home and abroad...

  16. Oxygen-Methane Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  17. Oxygen-Methane Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  18. Bio-methane. Challenges and technical solutions

    International Nuclear Information System (INIS)

    Blaisonneau, Laurent; Carlu, Elieta; Feuillette, Vincent

    2012-06-01

    Among the new energy sectors in development, biogas has many benefits: several valorization possibilities (bio-methane, electricity and heat), continuous production, easy storage. In Europe, and particularly in France, the bio-methane market will be in the next years a driver for the improvement of the economic, environmental and social performance of the actors of the value chain of biogas. ENEA releases a report on the current state of the bio-methane market in Europe. This publication mainly describes: An outlook of the market evolution and the corresponding stakes for the actors of this sector, the technical and economic characteristics, maturity level and specificities of each biogas upgrading process, An analysis of the French regulatory framework for bio-methane injection into the grid

  19. Methane Tracking and Mitigation Options - EPA CMOP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the sub-model for EPA's MARKAL model, which tracks methane emissions from the energy system, and limited other sources (landfills and manure...

  20. Formation temperatures of thermogenic and biogenic methane

    Science.gov (United States)

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, Anna M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  1. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  2. Abiotic Production of Methane in Terrestrial Planets

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  3. Upconversion detector for methane atmospheric sensor

    DEFF Research Database (Denmark)

    Meng, Lichun; Fix, Andreas; Høgstedt, Lasse

    2017-01-01

    We demonstrate an efficient upconversion detector (UCD) for a methane (CH4) atmospheric sensor. The UCD shows comparable performance with a conventional detector when measuring the backscattered signal from the hard target located 2.3 km away.......We demonstrate an efficient upconversion detector (UCD) for a methane (CH4) atmospheric sensor. The UCD shows comparable performance with a conventional detector when measuring the backscattered signal from the hard target located 2.3 km away....

  4. A biomimetic methane-oxidising catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H [Warwick Univ., Coventry (United Kingdom). Dept. of Biological Sciences

    1997-12-31

    The diminishing resources of petroleum oil has meant that there has been considerable efforts in recent years to find a suitable substitute for gasoline as a transportation fuel. Methanol has been identified as a suitable substitute since it is a readily combustible fuel which can be manufactured from a number of different sources. Methane is commonly used as a starting material for the production of synthesis gas (CO + H{sub 2}) and hence methanol. It is well known that the cleavage of the C-H bond of methane is extremely difficult (bond energy is around 104 kcal/mol) and that fairly drastic conditions are required to convert methane into methanol. Temperatures around 1200 deg C and pressures of up to 100 atmospheres over metal catalysts in a series of reactions are required to effect this process. Efforts have been made to reduce the temperature and the number of steps by using lanthanide ruthenium oxide catalyst but such reactions are still thermodynamically endothermic. An energetically more efficient reaction would be the direct conversion of methane to methanol using oxygen as the oxidant: CH{sub 4} + 1/2O{sub 2} -> CH{sub 3}OH {Delta}H deg = - 30.7 kcal/mol. Such a direct oxidation route is manifest in the bacterially-mediated oxidation of methane by methanotrophic bacteria. These organisms effect the direct oxidation of methane to methanol by the enzyme methane monooxygenase (MMO) as part of the reaction sequences to oxidize methane to carbon dioxide. (14 refs.)

  5. Biochemical composition and methane production correlations

    OpenAIRE

    Charnier, Cyrille; Latrille, Eric; Moscoviz, Roman; Miroux, Jérémie; Steyer, Jean-Philippe

    2016-01-01

    Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. General parameters of the organic matter can be used to describe its composition such as sugar, protein and lipid contents, Chemical Oxygen Demand (COD), Biochemical Methane Potential (BMP) and kinetic of methane production. These parameters are required for the monitoring of digesters but their characterization are time consuming and expensive; thus, these parameters are rarely assessed all together....

  6. A biomimetic methane-oxidising catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H. [Warwick Univ., Coventry (United Kingdom). Dept. of Biological Sciences

    1996-12-31

    The diminishing resources of petroleum oil has meant that there has been considerable efforts in recent years to find a suitable substitute for gasoline as a transportation fuel. Methanol has been identified as a suitable substitute since it is a readily combustible fuel which can be manufactured from a number of different sources. Methane is commonly used as a starting material for the production of synthesis gas (CO + H{sub 2}) and hence methanol. It is well known that the cleavage of the C-H bond of methane is extremely difficult (bond energy is around 104 kcal/mol) and that fairly drastic conditions are required to convert methane into methanol. Temperatures around 1200 deg C and pressures of up to 100 atmospheres over metal catalysts in a series of reactions are required to effect this process. Efforts have been made to reduce the temperature and the number of steps by using lanthanide ruthenium oxide catalyst but such reactions are still thermodynamically endothermic. An energetically more efficient reaction would be the direct conversion of methane to methanol using oxygen as the oxidant: CH{sub 4} + 1/2O{sub 2} -> CH{sub 3}OH {Delta}H deg = - 30.7 kcal/mol. Such a direct oxidation route is manifest in the bacterially-mediated oxidation of methane by methanotrophic bacteria. These organisms effect the direct oxidation of methane to methanol by the enzyme methane monooxygenase (MMO) as part of the reaction sequences to oxidize methane to carbon dioxide. (14 refs.)

  7. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  8. Methane emission by adult ostriches (Struthio camelus).

    Science.gov (United States)

    Frei, Samuel; Dittmann, Marie T; Reutlinger, Christoph; Ortmann, Sylvia; Hatt, Jean-Michel; Kreuzer, Michael; Clauss, Marcus

    2015-02-01

    Ostriches (Struthio camelus) are herbivorous birds with a digestive physiology that shares several similarities with that of herbivorous mammals. Previous reports, however, claimed a very low methane emission from ostriches, which would be clearly different from mammals. If this could be confirmed, ostrich meat would represent a very attractive alternative to ruminant-and generally mammalian-meat by representing a particularly low-emission agricultural form of production. We individually measured, by chamber respirometry, the amount of oxygen consumed as well as carbon dioxide and methane emitted from six adult ostriches (body mass 108.3±8.3 kg) during a 24-hour period when fed a pelleted lucerne diet. While oxygen consumption was in the range of values previously reported for ostriches, supporting the validity of our experimental setup, methane production was, at 17.5±3.2 L d(-1), much higher than previously reported for this species, and was of the magnitude expected for similar-sized, nonruminant mammalian herbivores. These results suggest that methane emission is similar between ostriches and nonruminant mammalian herbivores and that the environmental burden of these animals is comparable. The findings furthermore indicate that it appears justified to use currently available scaling equations for methane production of nonruminant mammals in paleo-reconstructions of methane production of herbivorous dinosaurs. Copyright © 2014. Published by Elsevier Inc.

  9. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  10. Hidden loss

    DEFF Research Database (Denmark)

    Kieffer-Kristensen, Rikke; Johansen, Karen Lise Gaardsvig

    2013-01-01

    to participate. RESULTS: All children were affected by their parents' ABI and the altered family situation. The children's expressions led the authors to identify six themes, including fear of losing the parent, distress and estrangement, chores and responsibilities, hidden loss, coping and support. The main......PRIMARY OBJECTIVE: The purpose of this study was to listen to and learn from children showing high levels of post-traumatic stress symptoms after parental acquired brain injury (ABI), in order to achieve an in-depth understanding of the difficulties the children face in their everyday lives...... finding indicates that the children experienced numerous losses, many of which were often suppressed or neglected by the children to protect the ill parents. CONCLUSIONS: The findings indicated that the children seemed to make a special effort to hide their feelings of loss and grief in order to protect...

  11. Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea.

    Science.gov (United States)

    Wang, Jiaqi; Shen, Lidong; He, Zhanfei; Hu, Jiajie; Cai, Zhaoyang; Zheng, Ping; Hu, Baolan

    2017-11-01

    Nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples anaerobic methane oxidation and nitrite reduction, is a recently discovered bioprocess coupling microbial nitrogen and carbon cycles. The discovery of this microbial process challenges the traditional knowledge of global methane sinks and nitrogen losses. In this study, the abundance and activity of N-DAMO bacteria were investigated and their contributions to methane sink and nitrogen loss were estimated in different seasons and different partitions of an intertidal zone of the East China Sea. The results showed that N-DAMO bacteria were extensively and continuously present in the intertidal zone, with the number of cells ranging from 5.5 × 10 4 to 2.8 × 10 5 copy g -1 soil and the potential activity ranging from 0.52 to 5.7 nmol CO 2  g -1 soil day -1 , contributing 5.0-36.6% of nitrite- and sulfate-dependent anaerobic methane oxidation in the intertidal zone. The N-DAMO activity and its contribution to the methane consumption were highest in the spring and in the low intertidal zone. These findings showed that the N-DAMO process is an important methane and nitrogen sink in the intertidal zone and varies with the seasons and the partitions of the intertidal zone.

  12. The determination of methane resources from liquidated coal mines

    Science.gov (United States)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  13. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  14. Evaluation of methane fugitive emissions in systems of natural gas transportation. The Bolivia-Brazil pipeline case; Avaliacao das emissoes fugitivas de metano em sistemas de transporte de gas natural. O caso do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Daniele Mesquita Bordalo da; La Rovere, Emilio Lebre [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], Emails: danielembc@poli.ufrj.br, emilio@ppe.ufrj.br; Sarno, Ruy Alberto Campos [Transportadora Brasileira Gasoduto Bolivia-Brasil S.A., Rio de Janeiro, RJ (Brazil)], E-mail: ruy@tbg.com.br

    2010-07-01

    This paper verifies the total annual of fugitive emissions of methane from the Bolivia-Brazil pipeline, presently the largest pipeline in operation in Brazil, beside to estimate the financial loss associated to those emissions.

  15. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Science.gov (United States)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  16. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition

    KAUST Repository

    Reddy Enakonda, Linga; Zhou, Lu; Saih, Youssef; Ould-Chikh, Samy; Lopatin, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-01-01

    Activation of Fe2O3-Al2O3 with CH4 (instead of H2) is a meaningful method to achieve catalytic methane decomposition (CMD). This reaction of CMD is more economic and simple against commercial methane steam reforming (MSR) as it produces COx-free H2

  17. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  18. Methane distribution and methane oxidation in the water column of the Elbe estuary, Germany

    Czech Academy of Sciences Publication Activity Database

    Matoušů, Anna; Osudar, R.; Šimek, Karel; Bussmann, I.

    2017-01-01

    Roč. 79, č. 3 (2017), s. 443-458 ISSN 1015-1621 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : estuary * methane * methane budget * ethane oxidation * River Elbe Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 2.821, year: 2016

  19. Variability and quasi-decadal changes in the methane budget over the period 2000–2012

    Directory of Open Access Journals (Sweden)

    M. Saunois

    2017-09-01

    another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2 inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands, with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability. As a result, the methane loss (in particular through OH oxidation varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.

  20. Variability and quasi-decadal changes in the methane budget over the period 2000-2012

    Science.gov (United States)

    Saunois, Marielle; Bousquet, Philippe; Poulter, Ben; Peregon, Anna; Ciais, Philippe; Canadell, Josep G.; Dlugokencky, Edward J.; Etiope, Giuseppe; Bastviken, David; Houweling, Sander; Janssens-Maenhout, Greet; Tubiello, Francesco N.; Castaldi, Simona; Jackson, Robert B.; Alexe, Mihai; Arora, Vivek K.; Beerling, David J.; Bergamaschi, Peter; Blake, Donald R.; Brailsford, Gordon; Bruhwiler, Lori; Crevoisier, Cyril; Crill, Patrick; Covey, Kristofer; Frankenberg, Christian; Gedney, Nicola; Höglund-Isaksson, Lena; Ishizawa, Misa; Ito, Akihiko; Joos, Fortunat; Kim, Heon-Sook; Kleinen, Thomas; Krummel, Paul; Lamarque, Jean-François; Langenfelds, Ray; Locatelli, Robin; Machida, Toshinobu; Maksyutov, Shamil; Melton, Joe R.; Morino, Isamu; Naik, Vaishali; O'Doherty, Simon; Parmentier, Frans-Jan W.; Patra, Prabir K.; Peng, Changhui; Peng, Shushi; Peters, Glen P.; Pison, Isabelle; Prinn, Ronald; Ramonet, Michel; Riley, William J.; Saito, Makoto; Santini, Monia; Schroeder, Ronny; Simpson, Isobel J.; Spahni, Renato; Takizawa, Atsushi; Thornton, Brett F.; Tian, Hanqin; Tohjima, Yasunori; Viovy, Nicolas; Voulgarakis, Apostolos; Weiss, Ray; Wilton, David J.; Wiltshire, Andy; Worthy, Doug; Wunch, Debra; Xu, Xiyan; Yoshida, Yukio; Zhang, Bowen; Zhang, Zhen; Zhu, Qiuan

    2017-09-01

    suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.

  1. Investigations of Methane Production in Hypersaline Environments

    Science.gov (United States)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  2. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  3. Multiparametric methane sensor for environmental monitoring

    Science.gov (United States)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  4. An Aerial ``Sniffer Dog'' for Methane

    Science.gov (United States)

    Nathan, Brian; Schaefer, Dave; Zondlo, Mark; Khan, Amir; Lary, David

    2012-10-01

    The Earth's surface and its atmosphere maintain a ``Radiation Balance.'' Any factor which influences this balance is labeled as a mechanism of ``Radiative Forcing'' (RF). Greenhouse Gas (GHG) concentrations are among the most important forcing mechanisms. Methane, the second-most-abundant noncondensing greenhouse gas, is over 25 times more effective per molecule at radiating heat than the most abundant, Carbon Dioxide. Methane is also the principal component of Natural Gas, and gas leaks can cause explosions. Additionally, massive quantities of methane reside (in the form of natural gas) in underground shale basins. Recent technological advancements--specifically the combination of horizontal drilling and hydraulic fracturing--have allowed drillers access to portions of these ``plays'' which were previously unreachable, leading to an exponential growth in the shale gas industry. Presently, very little is known about the amount of methane which escapes into the global atmosphere from the extraction process. By using remote-controlled robotic helicopters equipped with specially developed trace gas laser sensors, we can get a 3-D profile of where and how methane is being released into the global atmosphere.

  5. 14C measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1978-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 CCH 4 > -45% 0 and microbially-produced or biogenic methane had delta 13 CCH 4 0 . Groundwaters containing significant biogenic methane had abnormally heavy delta 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate, have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. (orig.) [de

  6. Methane emissions from different coastal wetlands in New England, US

    Science.gov (United States)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  7. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19 F, the β - decay product of 19 O (t 1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, |V zz | = 2.91(17) x 10 22 V m -2 , suggests that the incident 19 O atoms are stabilized at an interlayer position with point group C 3v . Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19 O beam

  8. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    Science.gov (United States)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.

  9. Wafer-scale laser pantography: Fabrication of n-metal-oxide-semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions

    International Nuclear Information System (INIS)

    McWilliams, B.M.; Herman, I.P.; Mitlitsky, F.; Hyde, R.A.; Wood, L.L.

    1983-01-01

    A complete set of processes sufficient for manufacture of n-metal-oxide-semiconductor (n-MOS) transistors by a laser-induced direct-write process has been demonstrated separately, and integrated to yield functional transistors. Gates and interconnects were fabricated of various combinations of n-doped and intrinsic polysilicon, tungsten, and tungsten silicide compounds. Both 0.1-μm and 1-μm-thick gate oxides were micromachined with and without etchant gas, and the exposed p-Si [100] substrate was cleaned and, at times, etched. Diffusion regions were doped by laser-induced pyrolytic decomposition of phosphine followed by laser annealing. Along with the successful manufacture of working n-MOS transistors and a set of elementary digital logic gates, this letter reports the successful use of several laser-induced surface reactions that have not been reported previously

  10. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.

    Science.gov (United States)

    Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M

    1990-02-01

    Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.

  11. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe135 penetration for molten salt breeder reactor

    International Nuclear Information System (INIS)

    Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo

    2015-01-01

    Highlights: • Rough laminar pyrolytic carbon coating (RLPyC) is prepared by a fixed-bed method. • The salt-infiltration into IG-110 is 13.5%, less than 0.01% of RLPyC under 1.5 atm. • The helium diffusion coefficient of RLPyC coated graphite is 2.16 × 10 −8 cm 2 /s. • The coated graphite can inhibit the liquid fluoride salt and Xe 135 penetration. - Abstract: A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe 135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 10 5 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 10 5 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 10 5 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe 135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10 −12 m 2 /s, much less than 1.21 × 10 −6 m 2 /s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe 135 penetration

  12. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    Science.gov (United States)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  13. Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

    Directory of Open Access Journals (Sweden)

    Z. M. Loh

    2015-01-01

    Full Text Available This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E. The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS and the CSIRO Conformal-Cubic Atmospheric Model (CCAM. Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September–October–November, rather than winter, maximum for wetland emissions.

  14. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)

    International Nuclear Information System (INIS)

    Iversen, N.; Jorgensen, B.B.

    1985-01-01

    Concomitant radiotracer measurements were made of in situ rates of sulfate reduction and anaerobic methane oxidation in 2-3-m-long sediment cores. Methane accumulated to high concentrations (> 1 mM CH 4 ) only below the sulfate zone, at 1 m or deeper in the sediment. Sulfate reduction showed a broad maximum below the sediment surface and a smaller, narrow maximum at the sulfate-methane transition. Methane oxidation was low (0.002-0.1 nmol CH 4 cm -3 d -1 ) throughout the sulfate zone and showed a sharp maximum at the sulfate-methane transition, coinciding with the sulfate reduction maximum. Total anaerobic methane oxidation at two stations was 0.83 and 1.16 mmol CH 4 m -2 d -1 , of which 96% was confined to the sulfate-methane transition. All the methane that was calculated to diffuse up into the sulfate-methane transition was oxidized in this zone. The methane oxidation was equivalent to 10% of the electron donor requirement for the total measured sulfate reduction. A third station showed high sulfate concentrations at all depths sampled and the total methane oxidation was only 0.013 mmol m -2 d -1 . From direct measurements of rates, concentration gradients, and diffusion coefficients, simple calculations were made of sulfate and methane fluxes and of methane production rates

  15. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  16. Estimation of methane generation based on anaerobic digestion ...

    African Journals Online (AJOL)

    Drake

    Technology ... generation of methane from waste at Kiteezi landfill was measured using .... estimate methane gas generation by the anaerobic decomposition ..... Z (2007). Climate Change 2007. The Physical Science Basis. Contribution of ...

  17. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters

    DEFF Research Database (Denmark)

    Tang, Kam W.; McGinnis, Daniel F.; Frindte, Katharina

    2014-01-01

    The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane...... peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope...... analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water...

  18. Hydrogen Recovery by ECR Plasma Pyrolysis of Methane, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible microwave plasma methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  19. Methanization of domestic and industrial wastes

    International Nuclear Information System (INIS)

    2011-01-01

    After having recalled that methanization helps meeting objectives of the Grenelle de l'Environnement regarding waste valorisation and production of renewable heat and electricity, this publication presents the methanization process which produces a humid product (digestate) and biogas by using various wastes (from agriculture, food industry, cities, households, sludge and so on). The numbers of existing and planned methanization units are evoked. The publication discusses the main benefits (production of renewable energy, efficient waste processing, and compact installations), drawbacks (costs, necessary specific abilities, impossibility to treat all organic materials) and associated recommendations. Actions undertaken by the ADEME are evoked. In conclusion, the publication outlines some priorities related to the development of this sector, its benefits, and the main strategic recommendations

  20. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  1. Biogas and Methane Yield from Rye Grass

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2015-01-01

    Full Text Available Biogas production in the Czech Republic has expanded substantially, including marginal regions for maize cultivation. Therefore, there are increasingly sought materials that could partially replace maize silage, as a basic feedstock, while secure both biogas production and its quality.Two samples of rye grass (Lolium multiflorum var. westerwoldicum silage with different solids content 21% and 15% were measured for biogas and methane yield. Rye grass silage with solid content of 15% reached an average specific biogas yield 0.431 m3·kg−1 of organic dry matter and an average specific methane yield 0.249 m3·kg−1 of organic dry matter. Rye grass silage with solid content 21% reached an average specific biogas yield 0.654 m3·kg−1 of organic dry matter and an average specific methane yield 0.399 m3·kg−1 of organic dry matter.

  2. Methane production from fermentation of winery waste

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale reactor receiving a mixture of screened dairy manure and winery waste was studied at 35 degrees C and a hydraulic retention time of 4 days. The maximum methane production rate of 8.14 liter CH/sub 4//liter/day was achieved at a loading rate of 7.78 g VS/liter/day (VS = volatile solids). The corresponding methane yield was 1.048 liter CH/sub 4//g VS added. Using a mixture of winery wastes and screened dairy manure as the feed material to anaerobic reactor resulted in a significant increase in total methane production compared to that from screened dairy manure alone. The biodegradation efficiency increased with the addition of winery wastes to screened dairy manure. 18 references.

  3. Effects of Plant Secondary Metabolites on Methane Production and Fermentation Parameters in In vitro Ruminal Cultures

    Directory of Open Access Journals (Sweden)

    Mihaela Giuburunca

    2014-10-01

    Full Text Available Enteric fermentation process is of concern worldwide for its contribution to global warming. It is known that ruminant animals, due to natural fermentation process contribute substantially to the increase in methane production. Methanogenesis process represents besides its contribution to greenhouse gases emissions an energy loss to the animal. To reduce ruminal methane productions in an ecologically and sustainable way, many attempts have been initiated, such as: uses of chemicals additives or ionophore antibiotics, defaunation process or immunization against ruminal methanogenesis. In the last years, a new strategy has been evaluated whether plant secondary metabolites can be used as natural additives to reduce ruminal methane emissions. The present study has been conducted to investigate the effects of trans-cinnamic, caffeic, p-coumaric acids and catechin hydrate, four plant secondary metabolites (PSMs on methane production and fermentation in in vitro ruminal cultures. The four PSMs were added anaerobically in a 6 mM concentration to 100 ml serum bottles containing 500 mg grass hay as a substrate, 10 ml rumen fluid collected from a fistulated sheep before morning feeding and 40 ml 141 DSM culture medium. The bottles were incubated at 39 ̊C. After 24 h, the following variables were measured: total gas volume, pH, methane and volatile fatty acids (VFAs production. The results showed that caffeic (p = 0.058 and p-coumaric (p = 0.052 acids tended to decrease methane production in comparison to control but the decrease was not statistic significantly at α= 0.05. The other two PSMs had no significant effect on methane production. Addition of PSMs did not affected the total gas volume, the pH and VFAs profile (P>0.05 in relation to the control (no PSM added. In conclusion, caffeic and p-coumaric acids in 6 mM concentration showed some promising effects for decreasing ruminal methane emissions without affecting ruminal fermentation parameters but

  4. Methane emissions from paddy cultivation and livestock farming in Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    Peng E.K.

    2017-01-01

    Full Text Available In this study, implementation of Tier 1 methodology of 2006 IPCC (Intergovernmental Panel on Climate Change Guidelines in paddy cultivation and livestock farming has been applied to estimate methane emissions in Sarawak, Malaysia within the years from 1998 to 2009. Methane emission inventory has been developed in this study, based on volume 4, 2006 IPCC Guidelines. Based on cultivation area and livestock population data as input to Tier 1 methodology, variations in paddy cultivation area and amount of livestock has been identified as the main contributor to emissions of methane. Methane emissions increased from 1.61 to 1.72 Gg CH4/year during 1998 to 1999. Based on results obtained, the outcomes show that there would be a significant drop of methane emission from buffalo and sheep. Although there are gain and loss in emissions from enteric fermentation, drastic reduction is observed from 0.65 Gg CH4/year in 1998 to 0.44 Gg CH4/year in 2009 as well as 0.05 Gg CH4/year to 0.02 Gg CH4/year for buffalo and sheep respectively. Simultaneously, methane emissions from manure management of buffalo has decreased from 0.024 Gg CH4/year in 1998 to 0.016 Gg CH4/year in 2009 while for sheep, its emission from manure management dropped from 0.002 Gg CH4/year in 1998 to 0.0007 Gg CH4/year in 2009. Overall emission from paddy cultivation can be considered in upward trend due to gain from 1998 at 1.61 Gg CH4/year to 1.67 Gg CH4/year in 2009. As an addition, significant rise in methane emission by 0.24 Gg CH4/year from 2000 to 2006 as well as 0.1 Gg CH4/year from 2007 to 2009 show momentum gaining in enteric fermentation of cattle. It also indicates future increment in methane emission from cattle which coherently affects the state’s emission level. As for emissions from manure management, emissions from cattle, goat and deer are gaining momentum in Sarawak.

  5. Global Inventory of Methane Hydrate: How Large is the Threat? (Invited)

    Science.gov (United States)

    Buffett, B. A.; Frederick, J. M.

    2010-12-01

    Methane hydrate is a dark horse in the science of climate change. The volume of methane sequestered in marine sediments is large enough to pose a potential threat, yet the expected contribution to future warming is not known. Part of the uncertainty lies in the poorly understood details of methane release from hydrate. Slow, diffusive loss of methane probably results in oxidation by sulfate and precipitation to CaCO3 in the sediments, with little effect on climate. Conversely, a direct release of methane into the atmosphere is liable to have strong and immediate consequences. Progress in narrowing the possibilities requires a better understanding of the mechanisms responsible for methane release. Improvements are also needed in our estimates of the hydrate inventory, as this sets a limit on the possible response. Several recent estimates of the hydrate inventory have been constructed using mechanistic models. Many of the model parameters (e.g. sedimentation rate and sea floor temperature) can be estimated globally, while others (e.g. vertical fluid flow) are not well known. Available observations can be used to estimate the poorly known parameters, but it is reasonable to question whether the results from a limited number of sites are representative of other locations. Fluid flow is a case in point because most hydrate locations are associated with upward flow. On the other hand, simple models of sediment compaction predict downward flow relative to the sea floor, which acts to impede hydrate formation. A variety of mechanisms can produce upward flow, including time-dependent sedimentation, seafloor topography, subsurface fractures, dehydration of clay minerals and gradual burial of methane hydrate below the stability zone. Each of these mechanisms makes specific predictions for the magnitude of flow and the proportion of sea floor that is likely to be affected. We assess the role of fluid flow on the present-day inventory and show that the current estimates for

  6. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  7. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm −1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm −1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  8. Methane Emissions from Natural Gas in the Urban Region of Boston, Massachusetts

    Science.gov (United States)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Zahniser, M. S.; Nehrkorn, T.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2014-12-01

    Methane emissions from the natural gas supply chain must be quantified to assess environmental impacts of natural gas and to develop emission reduction strategies. We report natural gas emission rates for one year in the urban region of Boston, MA, using an atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission rate, 20.6 ± 1.7 (95 % CI) g CH4 m-2 yr-1. Simultaneous observations of atmospheric ethane, compared with the ethane to methane ratio in pipeline gas, demonstrate that natural gas accounted for 58 - 100 % of methane emissions, depending on season. Using government statistics and geospatial data on energy consumption, we estimate the fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end-use, was 2.9 ± 0.3 % in the Boston urban region, compared to 1.1 % inferred by the Massachusetts greenhouse gas inventory.

  9. Diets in methane emissions during rumination process in cattle production systems

    Directory of Open Access Journals (Sweden)

    Luz Elena Santacoloma Varón

    2011-05-01

    Full Text Available The population of ruminants in the world is increasing, since its products constitute a source of protein of high nutritional value for the human population; nevertheless, this increase, will contribute in great proportion to the global warming and to the deterioration of the ozone layer, since between the subproducts of the ruminal fermentation, carbonic gas and methane are found. &e last one is produced by the anaerobic bacteria present in the rumen that di'erent types of substrata use, principally H2 and CO2. &e action of the bacteria producers of methane depends to a great extent on the type of substrata presented in the diet, and of the chemical and physical characteristics of the same one. &erefore, it is possible to diminish the e'ects that the productive systems of ruminants have on the environment, o'ering the animals nutritional alternatives that besides reducing the emission of methane to the atmosphere, will also reduce the energetic losses that for this concept it presents in the ruminants. In the present review the idea of using forages of the tropic that contain secondary metabolics that could concern the population of protozoan’s combined with forages of high nutritional value is presented and the idea of obtaining very good proved productive results is possible to simultaneously diminishes the gas emission of methane to the atmosphere

  10. Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Ma, Lanxin; Leng, Yu

    2015-01-01

    Highlights: • Effects of key factors on chemical reaction for solar methane reforming are studied. • MCRT and FVM method coupled with UDFs is used to establish numerical model. • Heat and mass transfer model coupled with thermochemical reaction is established. • LTNE model coupled with P1 approximation is used for porous matrix solar reactor. • A formula between H 2 production and conductivity of porous matrix is put forward. - Abstract: With the aid of solar energy, methane reforming process can save up to 20% of the total methane consumption. Monte Carlo Ray Tracing (MCRT) method and Finite Volume Method (FVM) combined method are developed to establish the heat and mass transfer model coupled with thermochemical reaction kinetics for porous medium solar thermochemical reactor. In order to provide more temperature information, local thermal non-equilibrium (LTNE) model coupled with P1 approximation is established to investigate the thermal performance of porous medium solar thermochemical reaction. Effects of radiative heat loss and thermal conductivity of porous matrix on temperature distribution and thermochemical reaction for solar driven steam methane reforming process are numerically studied. Besides, the relationship between hydrogen production and thermal conductivity of porous matrix are analyzed. The results illustrate that hydrogen production shows a 3 order polynomial relation with thermal conductivity of porous matrix

  11. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts.

    Science.gov (United States)

    McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C

    2015-02-17

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  12. Impact of cell design and operating conditions on the performances of SOFC fuelled with methane

    Science.gov (United States)

    Laurencin, J.; Lefebvre-Joud, F.; Delette, G.

    An in-house-model has been developed to study the thermal and electrochemical behaviour of a planar SOFC fed directly with methane and incorporated in a boiler. The usual Ni-YSZ cermet has been considered for the anode material. It has been found that methane reforming into hydrogen occurs only at the cell inlet in a limited depth within the anode. A sensitivity analysis has allowed establishing that anode thicknesses higher than ∼400-500 μm are required to achieve both the optimal methane conversion and electrochemical performances. The direct internal reforming (DIR) mechanisms and the impact of operating conditions on temperature gradients and SOFC electrical efficiencies have been investigated considering the anode supported cell configuration. It has been shown that the temperature gradient is minimised in the autothermal mode of cell operation. Thermal equilibrium in the stack has been found to be strongly dependent on radiative heat losses with the stack envelope. Electrochemical performance and cell temperature maps have been established as a function of methane flow rates and cell voltages.

  13. Industrial energy conservation by methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D L

    1981-11-01

    An engineering study was conducted to evalutate the possibility of making an entire dairy cooperative self-sufficient by methane fermentation of the whey permeate from the cheese plant and the dairy cattle manure from the dairy farms to fuel gas. A cooperative consisting of 284 dairy farms and one central cheese plant producing 9.5 Gg of cheese annually was used as the basis for evaluation. The feasibility was evaluated at four practical levels of technology. Preliminary economic analysis revealed that the cost of methane was competitive with current prices for purchased fuel. (Refs. 29).

  14. Terrestrial plant methane production and emission

    DEFF Research Database (Denmark)

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard

    2012-01-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  15. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  16. Methane recovery from landfill in China

    Energy Technology Data Exchange (ETDEWEB)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  17. Methanator fueled engines for pollution control

    Science.gov (United States)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  18. Renewable methane from anaerobic digestion of biomass

    International Nuclear Information System (INIS)

    Chynoweth, D.P.; Owens, J.M.

    2001-01-01

    Production of methane via anaerobic digestion of energy crops and organic wastes would benefit society by providing a clean fuel from renewable feedstocks. This would replace fossil fuel-derived energy and reduce environmental impacts including global warming and acid rain. Although biomass energy is more costly than fossil fuel-derived energy, trends to limit carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies of biomass energy would make it cost competitive. Methane derived from anaerobic digestion is competitive in efficiencies and costs to other biomass energy forms including heat, synthesis gases, and ethanol. (author)

  19. Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW in Indonesia using non-isothermal and isothermal experimental

    Directory of Open Access Journals (Sweden)

    Indra Mamad Gandidi

    2017-09-01

    Full Text Available Municipal solid waste (MSW, disposed of at open dumping sites, poses health risks, contaminates surface water, and releases greenhouse gasses such as methane. However, pyrolysis offers the opportunity to convert MSW into Bio-Oil (BO for clean energy resource. In this paper, an MSW sample consisting of plastic, paper and cardboard, rubber and textiles, and vegetable waste is pyrolysed on a laboratory scale in a fixed-bed vacuum reactor. In the non-isothermal process, the sample was fed into the reactor and then heated. In the isothermal process, the reactor is first heated and then the sample is added. The non-isothermal process created greater BO in both quality and quantity. The BO had a larger amount of gasoline species than diesel-48 fuel, with at 33.44%the BO produced by isothermal pyrolysis and 36.42% in non-isothermal pyrolysis. However the product of isothermal pyrolysis had a higher acid content that reduced its heating value.

  20. The Methanizer : A Small Scale Biogas Reactor for a Restaurant

    NARCIS (Netherlands)

    Vasudevan, R.; Karlsson, O.; Dhejne, K.; Derewonko, P.; Brezet, J.C.

    2010-01-01

    The purpose of this study is to determine the technical and economic feasibility of a smallscale bioreactor called the Methanizer for a restaurant. The bioreactor converts organic waste produced by the restaurant into methane. This methane can be used to power the restaurant’s cooking stoves. The

  1. Aquatic herbivores facilitate the emission of methane from wetlands

    NARCIS (Netherlands)

    Dingemans, B.J.J.; Bakker, E.S.; Bodelier, P.L.E.

    2011-01-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on

  2. 30 CFR 75.1106-1 - Test for methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for methane. 75.1106-1 Section 75.1106-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-1 Test for methane. Until December 31, 1970, a permissible flame safety lamp may be used to make tests for methane required by the...

  3. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  4. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  5. Effect of weir impoundments on methane dynamics in a river

    Czech Academy of Sciences Publication Activity Database

    Bednařík, A.; Blaser, M.; Matoušů, Anna; Hekera, P.; Rulík, M.

    2017-01-01

    Roč. 584, April (2017), s. 164-174 ISSN 0048-9697 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : methane production * methane emission * methane ebullition * river impoundment * river sediment Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 4.900, year: 2016

  6. Estimating historical landfill quantities to predict methane emissions

    NARCIS (Netherlands)

    Lyons, S.; Murphy, L.; Tol, R.S.J.

    2010-01-01

    There are no observations for methane emissions from landfill waste in Ireland. Methane emissions are imputed from waste data. There are intermittent data on waste sent to landfill. We compare two alternative ways to impute the missing waste " data" and evaluate the impact on methane emissions. We

  7. Reactive ion etching of tellurite and chalcogenide waveguides using hydrogen, methane, and argon

    International Nuclear Information System (INIS)

    Vu, K. T.; Madden, S. J.

    2011-01-01

    The authors report in detail on the reactive plasma etching properties of tellurium and demonstrate a high quality etching process using hydrogen, methane, and argon. Very low loss planar ridge waveguides are demonstrated. Optical losses in tellurium dioxide waveguides below 0.1 dB/cm in most of the near infrared region of the electromagnetic spectrum and at 1550 nm have been achieved--the lowest ever reported by more than an order of magnitude and clearly suitable for planar integrated devices. The etch process is also shown to be suitable for chalcogenide glasses which may be of importance in applications such as phase change memory devices and nonlinear integrated optics.

  8. What drove the methane cycle in the past - evidence from carbon isotopic data of methane enclosed in polar ice cores

    OpenAIRE

    Möller, Lars

    2013-01-01

    During the last glacial cycle, greenhouse gas concentrations fluctuated on decadal and longer timescales. Concentrations of methane, as measured in polar ice cores, show a close connection with Northern Hemisphere temperature variability, but the contribution of the various methane sources and sinks to changes in concentration is still a matter of debate. This thesis assess changes in methane cycling over the past 160,000 years by measurements of the carbon isotopic composition d13C of methan...

  9. Uranium loss from BISO-coated weak-acid-resin HTGR fuel

    International Nuclear Information System (INIS)

    Pearson, R.L.; Lindemer, T.B.

    1977-02-01

    Recycle fuel for the High-Temperature Gas-Cooled Reactor (HTGR) contains a weak-acid-resin (WAR) kernel, which consists of a mixture of UC 2 , UO 2 , and free carbon. At 1900 0 C, BISO-coated WAR UC 2 or UC 2 -UO 2 kernels lose a significant portion of their uranium in several hundred hours. The UC 2 decomposes and uranium diffuses through the pyrolytic coating. The rate of escape of the uranium is dependent on the temperature and the surface area of the UC 2 , but not on a temperature gradient. The apparent activation energy for uranium loss, ΔH, is approximately 90 kcal/mole. Calculations indicate that uranium loss from the kernel would be insignificant under conditions to be expected in an HTGR

  10. Gas-liquid equilibrium in mixtures of methane + m-xylene, and methane + m-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Simnick, J J; Sebastian, H M; Lin, H M; Chao, K C

    1979-01-01

    Compositions of saturated equilibrium liquid and vapor phases as determined in a flow apparatus for methane + m-xylene mixtures at 370/sup 0/, 450/sup 0/, 520/sup 0/, and 600/sup 0/F (190/sup 0/, 230/sup 0/, 270/sup 0/, and 310/sup 0/C) and up to 200 atm, and for methane + m-cresol at 370/sup 0/, 520/sup 0/, 660/sup 0/, and 730/sup 0/F (190/sup 0/, 270/sup 0/, 350/sup 0/, and 390/sup 0/C) and up to 250 atm. Compared with published data on its solubility in benzene, methane appears to be more soluble in m-xylene at similar conditions but substantially less soluble in m-cresol. This difference indicates that the functional groups CH/sub 3/ and OH play different roles in determining the solubility of methane.

  11. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques...... in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were...

  12. A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate

    Science.gov (United States)

    Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.

    2003-12-01

    In order to mimic and study the process of anaerobic methane oxidation in methane hydrate regions we developed four high-pressure anaerobic bioreactors, designed to incubate environmental sediment samples, and enrich for populations of microbes associated with anaerobic methane oxidation (AMO). We obtained sediment inocula from a bacterial mat at the southern Hydrate Ridge, Cascadia, having cell counts approaching 1010 cells/cc. Ultimately, our goal is to produce an enriched culture of these microbes for characterization of the biochemical processes and chemical fluxes involved, as well as the unique adaptations required for, AMO. Molecular phylogenetic information along with results from fluorescent in situ hybridization indicate that consortia of Archaea and Bacteria are present which are related to those previously described for marine sediment AMO environments. Using a medium of enriched seawater and sediment in a 3:1 ratio, the system was incubated at 4° C under 43 atm of methane pressure; the temperature and pressure were kept constant. We have followed the reactions for seven months, particularly the vigorous consumption rates of dissolved sulfate and alkalinity production, as well as increases in HS-, and decreases in Ca concentrations. We also monitored the dissolved inorganic C (DIC) δ 13C values. The data were reproduced, and indicated that the process is extremely sensitive to changes in methane pressure. The rates of decrease in sulfate and increase in alkalinity concentrations were complimentary and showed considerable linearity with time. When the pressure in the reactor was decreased below the methane hydrate stability field, following the methane hydrate dissociation, sulfate reduction abruptly decreased. When the pressure was restored all the reactions returned to their previous rates. Much of the methane oxidation activity in the reactor is believed to occur in association with the methane hydrate. Upon the completion of one of the experiments

  13. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.

    Science.gov (United States)

    Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-12-23

    Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.

  14. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    Science.gov (United States)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  15. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    methane hydrate in sea bed near continental margin and underneath of permafrost ... clathrate structure,6,7 IR spectroscopy analysis of vibra- tional form of guest .... Hydrogen (H71) of the hydroxyl group of methanol is found to have formed ...

  16. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  17. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1979-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 Csub(CH 4 )>-45 per mille and microbially produced or biogenic methane had delta 13 Csub(CH 4 ) 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  18. Coal Mine Methane in Russia [Russian Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  19. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  20. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    Science.gov (United States)

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  1. Can rapeseed lower methane emission from heifers?

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Sørensen, Martin Tang; Weisbjerg, Martin Riis

    2013-01-01

    Twelve heifers were assigned to either a control diet (CON) with 26 g fat per kg dry matter (DM) or a supplemented diet (FAT) with crushed rapeseed with 53 g fat per kg DM. Methane (CH4) emission was measured by open-circuit indirect calorimetry for four days when the heifers weighed approximately...

  2. Methane emission from tidal freshwater marshes

    NARCIS (Netherlands)

    Van der Nat, F.J.; Middelburg, J.J.

    2000-01-01

    In two tidal freshwater marshes, methane emission, production and accumulation in the pore-water have been studied. The two sites differ in their dominant vegetation, i.e., reed and bulrush, and in their heights above sea level. The reed site was elevated in relation to the bulrush site and had

  3. A review of the radiolysis of methane

    International Nuclear Information System (INIS)

    Norfolk, D.J.

    1975-08-01

    The review had three objectives: to determine the yields of the primary products and to describe the sequence of reactions in which they take part; to ascertain the effect on these reactions of changes in the physical state of the methane and the quantum energy of the radiation, and of the presence of chemically inert sensitisers; and to identify the situation most similar to the adsorbed phase radiolysis of methane on alumina, and so to predict the likely radiolytic reactions in this system. The main primary product yields in methane gas under γ-irradiation are estimated to be G(CH 4 +) approximately 1.75, G(CH 3 +) approximately 1.46, G(CH 3 ) approximately 1.4 and G(CH 2 ) approximately 1.0. The situation most similar to adsorbed phase radiolysis is inert gas sensitised photolysis at energies below 12.6eV. In this system the major primary process is homolytic dissociation of methane to CH 3 +H. (author)

  4. Methane uptake in urban forests and lawns

    Science.gov (United States)

    Peter M. Groffman; Richard V. Pouyat

    2009-01-01

    The largest natural biological sink for the radiatively active trace gas methane (CH4) is bacteria in soils that consume CH4 as an energy and carbon source. This sink has been shown to be sensitive to nitrogen (N) inputs and alterations of soil physical conditions. Given this sensitivity, conversion of native ecosystems to...

  5. Methane and Root Dynamics in Arctic Soil

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica

    on the global climate. We investigated two aspects of arctic ecosystem dynamics which are not well represented in climatic models: i) soil methane (CH4) oxidation in dry heath tundra and barren soils and ii) root dynamics in wetlands. Field measurements were carried out during the growing season in Disko Island...

  6. Following Carbon Isotopes from Methane to Molecules

    Science.gov (United States)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  7. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary

  8. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a

  9. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  10. Anaerobic oxidation of methane and ammonium.

    NARCIS (Netherlands)

    Strous, M.; Jetten, M.S.M.

    2004-01-01

    Anaerobic oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. First, both of them were once deemed biochemically impossible and nonexistent in nature, but have now been

  11. Tidal influence on subtropical estuarine methane emissions

    Science.gov (United States)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  12. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  13. Market research on biogas valorizations and methanization. Final report

    International Nuclear Information System (INIS)

    2010-09-01

    This market research aims at giving an overview of the existing methanization installations and of their dynamics in France, at assessing biogas production and use, at analyzing the methanization market, and at defining development perspectives for this sector by 2020. Based on a survey of methanization installations, on interviews with many actors of this sector, and on a seminar organized on this topic, this report presents and comments market data for biogas valorization and methanization in different sectors: household, agricultural, and industrial and waste water processing plants. It comments evolution trends by 2020 for these sectors, and the role that the emerging sector of centralized methanization could have in the years to come

  14. Methane: a new stake for negotiations on climate?

    International Nuclear Information System (INIS)

    2008-01-01

    After having outlined that the issue of methane emissions could be, after the reduction of emissions from deforestation and degradation and the reduction of greenhouse gas emissions, an additional matter of discussion for the struggle against climate change, this article comments some data concerning methane emissions in six African countries. Generally, the main source of methane is agriculture (often more than 90 per cent) except in Gambia where wastes represent 77.8 per cent of methane emissions. This high level of methane emissions by agriculture could be a problem for these countries, whereas perspectives of waste valuation already exist

  15. Assessing dissolved methane patterns in central New York groundwater

    Directory of Open Access Journals (Sweden)

    Lauren E. McPhillips

    2014-07-01

    New hydrological insights for this region: There was no significant difference between methane concentrations in valleys versus upslope locations, in water wells less than or greater than 1 km from a conventional gas well, and across different geohydrologic units. Methane concentrations were significantly higher in groundwater dominated by sodium chloride or sodium bicarbonate compared with groundwater dominated by calcium bicarbonate, indicating bedrock interactions and lengthy residence times as controls. A multivariate regression model of dissolved methane using only three variables (sodium, hardness, and barium explained 77% of methane variability, further emphasizing the dominance of geochemistry and hydrogeology as controls on baseline methane patterns.

  16. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Methane, Ethane, and Nitrogen Stability on Titan

    Science.gov (United States)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  18. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  19. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  20. Could Methane Oxidation in Lakes Be Enhanced by Eutrophication?

    Science.gov (United States)

    Van Grinsven, S.; Villanueva, L.; Harrison, J.; S Sinninghe Damsté, J.

    2017-12-01

    Climate change and eutrophication both affect aquatic ecosystems. Eutrophication is caused by high nutrient inputs, leading to algal blooms, oxygen depletion and disturbances of the natural balances in aquatic systems. Methane, a potent greenhouse gas produced biologically by anaerobic degradation of organic matter, is often released from the sediments of lakes and marine systems to overlying water and the atmosphere. Methane oxidation, a microbial methane consumption process, can limit methane emission from lakes and reservoirs by 50-80%. Here, we studied methane oxidation in a seasonally stratified reservoir: Lacamas Lake in Washington, USA. We found this lake has a large summer storage capacity of methane in its deep water layer, with a very active microbial community capable of oxidizing exceptionally high amounts of methane. The natural presence of terminal electron acceptors is, however, too low to support these high potential rates. Addition of eutrophication-related nutrients such as nitrate and sulfate increased the methane removal rates by 4 to 7-fold. The microbial community was studied using 16S rRNA gene amplicon sequencing and preliminary results indicate the presence of a relatively unknown facultative anaerobic methane oxidizer of the genus Methylomonas, capable of using nitrate as an electron donor. Experiments in which anoxic and oxic conditions were rapidly interchanged showed this facultative anaerobic methane oxidizer has an impressive flexibility towards large, rapid changes in environmental conditions and this feature might be key to the unexpectedly high methane removal rates in eutrophied and anoxic watersheds.

  1. Clumped isotope effects during OH and Cl oxidation of methane

    DEFF Research Database (Denmark)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan Albrecht

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produ......A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH...... effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE...... reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane...

  2. SAES St 909 pilot scale methane cracking tests

    International Nuclear Information System (INIS)

    Klein, J. E.; Sessions, H. T.

    2008-01-01

    Pilot scale (0.5 kg) SAES St 909 methane cracking tests were conducted for potential tritium process applications. Up to 1400 hours tests were done at 700 deg.C, 202.7 kPa (1520 torr) with a 0.03 sLPM feed of methane plus impurities, in a 20 vol% hydrogen, balance helium, stream. Carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered, but equating nitrogen to an equivalent amount of methane was nitrogen feed composition dependent. A decreased hydrogen feed increased methane getter rates while a 30 deg.C drop in one furnace zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate. (authors)

  3. Potential for reduction of methane emissions from dairy cows

    DEFF Research Database (Denmark)

    Johannes, Maike; Hellwing, Anne Louise Frydendahl; Lund, Peter

    2010-01-01

    Methane is a gas cows naturally produce in the rumen. However, it is also a potential greenhouse gas. Therefore, there is a certain interest from an environmental point of view to reduce methane emissions from dairy cows. Estimates from earlier studies indicate that there is a potential to reduce...... methane production by 10 to 25% by changing the feeding strategies. Several feedstuffs influence methane production, such as additional fat. The increase of the concentrate proportion can potentially decrease methane by decreasing the rumen degradability of the diet or by changing the rumen fermentation......, while fibre and sugar enhance methane emissions. Fat can be regarded as the most promising feed additive at the moment. At AU, respiration chambers have been installed to enable methane measurements from dairy cows combined with digestibility trials, and at present studies are being conducted concerning...

  4. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    Science.gov (United States)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  5. Bacterial overgrowth and methane production in children with encopresis.

    Science.gov (United States)

    Leiby, Alycia; Mehta, Devendra; Gopalareddy, Vani; Jackson-Walker, Susan; Horvath, Karoly

    2010-05-01

    To assess the prevalence of small intestinal bacterial overgrowth (SIBO) and methane production in children with encopresis. Radiographic fecal impaction (FI) scores were assessed in children with secondary, retentive encopresis and compared with the breath test results. Breath tests with hypoosmotic lactulose solution were performed in both the study patients (n = 50) and gastrointestinal control subjects (n = 39) groups. The FI scores were significantly higher in the patients with encopresis who were methane producers (P encopresis and 9 of 39 (23%) of control subjects (P = .06). Methane was produced in 56% of the patients with encopresis versus 23.1% of the control subjects in the gastrointestinal group (P encopresis had a higher prevalence of SIBO, elevated basal methane levels, and higher methane production. Methane production was associated with more severe colonic impaction. Further study is needed to determine whether methane production is a primary or secondary factor in the pathogenesis of SIBO and encopresis.

  6. The global warming potential of methane reassessed with combined stratosphere and troposphere chemistry

    Science.gov (United States)

    Holmes, C. D.; Archibald, A. T.; Eastham, S. D.; Søvde, O. A.

    2017-12-01

    Methane is a direct and indirect greenhouse gas. The direct greenhouse effect comes from the radiation absorbed and emitted by methane itself. The indirect greenhouse effect comes from radiatively active gases that are produced during methane oxidation: principally O3, H2O, and CO2. Methane also suppresses tropospheric OH, which indirectly affects numerous greenhouses gases and aerosols. Traditionally, the methane global warming potential (GWP) has included the indirect effects on tropospheric O3 and OH and stratospheric H2O, with these effects estimated independently from unrelated tropospheric and stratospheric chemistry models and observations. Using this approach the CH4 is about 28 over 100 yr (without carbon cycle feedbacks, IPCC, 2013). Here we present a comprehensive analysis of the CH4 GWP in several 3-D global atmospheric models capable of simulating both tropospheric and stratospheric chemistry (GEOS-Chem, Oslo CTM3, UKCA). This enables us to include, for the first time, the indirect effects of CH4 on stratospheric O3 and stratosphere-troposphere coupling. We diagnose the GWP from paired simulations with and without a 5% perturbation to tropospheric CH4 concentrations. Including stratospheric chemistry nearly doubles the O3 contribution to CH4 GWP because of O3 production in the lower stratosphere and because CH4 inhibits Cl-catalyzed O3 loss in the upper stratosphere. In addition, stratosphere-troposphere coupling strengthens the chemical feedback on its own lifetime. In the stratosphere, this feedback operates by a CH4 perturbation thickening the stratospheric O3 layer, which impedes UV-driven OH production in the troposphere and prolongs the CH4 lifetime. We also quantify the impact of CH4-derived H2O on the stratospheric HOx cycles but these effects are small. Combining all of the above, these models suggest that the 100-yr GWP of CH4 is over 33.5, a 20% increase over the latest IPCC assessment.

  7. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  8. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    Science.gov (United States)

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Constraining the relationships between anaerobic oxidation of methane and sulfate reduction under in situ methane concentrations

    Science.gov (United States)

    Zhuang, G.; Wegener, G.; Joye, S. B.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled

  10. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  11. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  12. Coalbed methane: from hazard to resource

    Science.gov (United States)

    Flores, R.M.

    1998-01-01

    Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 yr. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (eg, tunnels, vertical and horizontal drillholes, shsfts) and by drainage boreholes. The 1970s 'energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970s research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 years. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (e.g., tunnels, vertical and horizontal drillholes, shafts) and by drainage boreholes. The 1970's `energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been

  13. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.

    Science.gov (United States)

    Ma, Yuhui; Niu, Ruxuan; Wang, Xiaona; Wang, Qunhui; Wang, Xiaoqiang; Sun, Xiaohong

    2014-11-01

    This is the first study on the co-pyrolysis of spent substrate of Pleurotus ostreatus and coal tar pitch, and the activated carbon prepared from the pyrolytic char. Thermogravimetry (TG) analysis was carried out taking spent substrate, coal tar pitch and spent substrate-coal tar pitch mixture. The activation energies of pyrolysis reactions were obtained via the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods. The kinetic models were determined by the master-plots method. The activated carbons were characterised by N2-adsorption, Fourier transform infrared spectroscopy and X-ray diffraction. Experimental results demonstrated a synergistic effect happened during co-pyrolysis, which was characterised by a decreased maximum decomposition rate and an enhanced char yield. The average activation energies of the pyrolysis reactions of spent substrate, coal tar pitch and the mixture were 115.94, 72.92 and 94.38 kJ mol(-1) for the Flynn-Wall-Ozawa method, and 112.17, 65.62 and 89.91 kJ mol(-1) for the Kissinger-Akahira-Sunose method. The reaction model functions were f(α) = (1-α)(3.42), (1-α)(1.72) and (1-α)(3.07) for spent substrate, coal tar pitch and the mixture, respectively. The mixture char-derived activated carbon had a Brunauer-Emmett-Teller surface area up to 1337 m(2) g(-1) and a total pore volume of 0.680 cm(3) g(-1). Mixing spent substrate with coal tar pitch led to the creation of more micropores and a higher surface area compared with the single spent substrate and coal tar pitch char. Also, the mixture char-derived activated carbon had a higher proportion of aromatic stacking. This study provides a reference for the utilisation of spent substrate and coal tar pitch via co-pyrolysis, and their pyrolytic char as a promising precursor of activated carbon. © The Author(s) 2014.

  14. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe{sup 135} penetration for molten salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinliang [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Yanling, E-mail: jlsong1982@yeah.net [School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); He, Xiujie; Zhang, Baoliang [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Bai, Shuo [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-01-15

    Highlights: • Rough laminar pyrolytic carbon coating (RLPyC) is prepared by a fixed-bed method. • The salt-infiltration into IG-110 is 13.5%, less than 0.01% of RLPyC under 1.5 atm. • The helium diffusion coefficient of RLPyC coated graphite is 2.16 × 10{sup −8} cm{sup 2}/s. • The coated graphite can inhibit the liquid fluoride salt and Xe{sup 135} penetration. - Abstract: A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe{sup 135} penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 10{sup 5} Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 10{sup 5} Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 10{sup 5} Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe{sup 135} penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10{sup −12} m{sup 2}/s, much less than 1.21 × 10{sup −6} m{sup 2}/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe{sup 135} penetration.

  15. Contribution to the study of hard, low-density pyrolytic carbons; Contribution a l'etude des carbones pyrolytiques de variete dure et de faible densite

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, F R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Apparent contradictions in the properties of pyrolytic carbons obtained at 1600 deg C (hardness and graphitization) are studied. It is shown that structure of the deposit is turbostratic with high internal stresses ({delta}{sup -2}), and it graphitizes (by thermal treatment over 2000 deg C) in a similar manner to graphitisable carbon. Because the deposit forms lamellar compounds, it is presumed that the structure is similar to that of graphitisable carbon. Since it is not structure dependant, the hardness originates from the 'growth texture' and is not comparable with the hardness of a non-graphitisable carbon. The pyrolytic carbon studied is composed of regions, on the overage a few microns across, formed by the stacking of small carbon platelets, interlocked and showing a preferred orientation. The mis-orientation of the various regions produces general disorientation. We estimate that the introduction of the particles of some material such as thermal black which are observed in the electron microscope are responsible for the mis-orientation. The density and hardness of the deposit are a result of the interlocking of platelets, which creates a closed porosity and prevents any sliding of the atomic planes. (author) [French] On etudie les proprietes apparemment contradictoires du pyrocarbone 1600 deg C, durete et graphitabilite. On montre que le pyrocarbone possede la structure d'un carbone turbostratique a fort taux de distorsion et qu'il subit, par traitement a des temperatures superieures a 2000 deg C, une transformation de graphitation comparable a celle que l'on observe sur les cokes graphitables. Comme le pyrocarbone forme de plus des composes d'insertion, sa structure est comparable a celle d'un carbone graphitable. La durete, qui n'a pas d'origine structurale, est donc liee a la 'texture de croissance' du depot et ne peut etre comparee a celle d'un coke dur et non graphitable. Le pyrocarbone etudie est constitue de domaines, dont les dimensions sont de l

  16. Carbon and hydrogen isotope composition and C-14 concentration in methane from sources and from the atmosphere: Implications for a global methane budget. Final report, 1 January-30 June 1991

    International Nuclear Information System (INIS)

    Wahlen, M.

    1994-03-01

    The topics covered include the following: biogenic methane studies; forest soil methane uptake; rice field methane sources; atmospheric measurements; stratospheric samples; Antarctica; California; and Germany

  17. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  18. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    Subramanian, S.; Kudla, R.J.; Chattha, M.S.

    1992-01-01

    The objective of this paper is to investigate the modes of methane (CH 4 ) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH 4 appear to account for the higher CH 4 conversions observed under net reducing conditions

  19. Demonstration of an ethane spectrometer for methane source identification.

    Science.gov (United States)

    Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E

    2014-07-15

    Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (6%), pipeline grade natural gas (30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.

  20. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters.

    Science.gov (United States)

    Yoon, Sukhwan; Carey, Jeffrey N; Semrau, Jeremy D

    2009-07-01

    Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO(2) removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO(2) credits is increased, can also be economically attractive.

  1. Living with vision loss

    Science.gov (United States)

    Diabetes - vision loss; Retinopathy - vision loss; Low vision; Blindness - vision loss ... of visual aids. Some options include: Magnifiers High power reading glasses Devices that make it easier to ...

  2. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  3. Methane potential of sterilized solid slaughterhouse wastes.

    Science.gov (United States)

    Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo

    2012-07-01

    The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Methanization - how to better figure out profitability

    International Nuclear Information System (INIS)

    Deschaseaux, Christelle

    2013-01-01

    This article discusses the content of a study to be published on the conditions of profitability for methanization installations, in order to enable the assessment of the influence of the modifications of different parameters such as purchase tariffs, subsidies, taxes, investment management and exploitation costs. An analysis has been performed on different categories of projects: farm projects (80 to 250 kW), collective farm projects with a small collective dwelling (350 kW) and local projects (1 to 2,5 MW), hybrid farm-industrial projects, and projects based only on industrial wastes. The analysis has been made with respect to final use: co-generation or bio-methane production. It appears that most of projects still need subsidies but that there is no correlation between installed power and production cost

  5. Methane oxidation in contrasting soil types

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica; Nielsen, Cecilie Skov; Westergaard-Nielsen, Andreas

    2017-01-01

    Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4. Here, we present...... subsequently scaled to the entire study area of 0.15 km2, a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4-C m−2 (3.7 ± 1.2 g CO2-eq m−2). The result was a net landscape sink of 12.71 kg CH4-C (0.48 tonne CO2-eq) during the growing season...

  6. Operating a locomotive on liquid methane fuel

    International Nuclear Information System (INIS)

    Stolz, J.L.

    1992-01-01

    This paper reports that several years ago, Burlington Northern Railroad looked into the feasibility of operating a diesel railroad locomotive to also run on compressed natural gas in a dual-fuel mode. Recognizing the large volume of on-board storage required and other limitations of CNG in the application, a program was begun to fuel a locomotive with liquefied natural gas. Because natural gas composition can vary with source and processing, it was considered desirable to use essentially pure liquid methane as the engine fuel. Initial testing results show the locomotive system achieved full diesel-rated power when operating on liquid methane and with equivalent fuel efficiency. Extended testing, including an American Association of Railroad 500-hour durability test, was undertaken to obtain information on engine life, wear rate and lubrication oil life

  7. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  8. Dams release methane even in temperate zoned

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2010-01-01

    The Wohlen lake (near Bern) is a retaining dam built 90 years ago that has undergone a campaign to measure the quantity of methane released. The campaign lasted 1 year and the result was unexpected: 0.15 g/m 2 *day which one of the highest release rates in temperate zones. This result is all the more stunning since water stays only 2 days in average in the reservoir and that the drowned area is not important. In fact the river Aar that feeds the lake is loaded with organic matter coming from humane activities: agriculture and 3 sewage plants. This organic matter decays in the lake releasing methane. (A.C.)

  9. Guide of good practices for methanization projects

    International Nuclear Information System (INIS)

    Delatte, Constant; Orozco-Souel, Paola; Rouxel, Anaick; Tanneau, Patrick; Schreiber, Konrad; Jaubert, Jean Noel; Micone, Philippe; Dionne, Denis; Renner, Christophe; Ollivier, Denis

    2011-12-01

    This guide aims at providing project holders with guidance on factors which may influence social acceptability of methanization projects and with recommendations regarding communication and dialogue for a better project integration, with a technical support in order to guarantee project quality for a minimised environmental impact, and at convincing and reassuring local communities which plan to implement a methanization project, notably with respect to issues like odours, safety or landscape integration. The guide first outlines the importance of a serious and credible approach, and aims project holders at demonstrating an actual reasonable economic control of energy, environmental and social issues related to their project. The second part proposes technical solutions regarding the limitation of impact on air quality, preservation and restoration of soil quality and water resources, landscape integration, transport management and noise prevention. Feedbacks on experiences with different types of installations (agricultural, industrial, and so on) are also provided. A good practice charter is finally proposed

  10. Infrared radiation models for atmospheric methane

    Science.gov (United States)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  11. Methane, where does it come from and what is its impact on climate?

    International Nuclear Information System (INIS)

    Andre, Jean-Claude; Boucher, Olivier; Bousquet, Philippe; Chanin, Marie-Lise; Chappellaz, Jerome; Tardieu, Bernard; Denegre, Jean; Beauvais, Muriel; Lefaudeux, Francois; Appert, Olivier; Desmarest, Patrice; Feillet, Pierre; Jarry, Bruno; Minster, Jean-Francois; Masson-Delmotte, Valerie; Dessus, Benjamin; Le Treut, Herve

    2013-01-01

    This report proposes a detailed presentation of knowledge on methane and on its role in the atmosphere. The first part addresses methane and the greenhouse effect: general considerations on methane in the atmosphere, radiative properties and importance with respect to the greenhouse effect, methane and future climate change. The second part proposes a presentation of methane sources and sinks. The third part addresses the study of methane fluxes: possible approaches to assess methane fluxes, measurement of atmospheric methane, the issue of atmospheric inversion (an approach to convert atmospheric observations into methane fluxes, lessons learned from atmospheric inversions, perspectives to improve knowledge on methane fluxes). The next chapters discuss the past, present and future evolution of methane in the atmosphere, discuss the carbon equivalence of methane (Kyoto protocol, policies of climate change, global warming power, role of methane, metrics, emission reduction), and comment the current perceivable evolutions, propose some methodological recommendations and actions to be implemented on the short term with no regret

  12. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  13. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills.

    Science.gov (United States)

    Thompson, Shirley; Sawyer, Jennifer; Bonam, Rathan; Valdivia, J E

    2009-07-01

    The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOC(f)) were applied in all models. Most models performed better when the DOC(f) was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOC(f) and 171%, 115%, and 81% at 0.77 DOC(f). The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOC(f) and 0.77 DOC(f) the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 +/- 45% and 2.3 yielding 57 +/- 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.

  14. Thermal Conversion of Methane to Acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2000-01-01

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  15. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    International Nuclear Information System (INIS)

    Mitchell, Jonathan L.

    2012-01-01

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or ∼0.04 W m –2 , is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is ∼0.5-1 W m –2 in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  16. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  17. Methane emission by adult ostriches (Struthio camelus)

    OpenAIRE

    Frei S; Dittmann MT; Reutlinger C; Ortmann S; Hatt J-M; Kreuzer M; Clauss M

    2015-01-01

    Ostriches (Struthio camelus) are herbivorous birds with a digestive physiology that shares several similarities with that of herbivorous mammals. Previous reports however claimed a very low methane emission from ostricheswhichwould be clearly different from mammals. If this could be confirmed ostrich meatwould represent a very attractive alternative to ruminant—and generally mammalian—meat by representing a particularly low emission agricultural form of production. We individually measured by...

  18. The White Paper on bio-methane

    International Nuclear Information System (INIS)

    Saint Jouan, Cedric de

    2016-01-01

    After a presentation of the France Biomethane think tank, this publication indicates its main proposals for the development of the bio-methane sector. Then, it details these proposals which are classified under three main axes: to facilitate the procurement of administrative authorisations and plant exploitation, to strengthen the confidence of financial actors in order to facilitate the achievement of installations, and to promote the use of biomethane as biofuel

  19. Inhibition of methane production by Methanobacterium formicicum

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P N; Shaw, B G

    1976-01-01

    The effects of volatile fatty acids, ammonia and copper on methane production by growing cultures of Methanobacterium formicicum were studied. Acetate and butyrate were not inhibitory, but propionate was inhibitory above certain concentrations, as was ammonia. Copper was inhibitory, but inhibitory concentrations are difficult to define as varying amounts may be precipitated as the sulphide. The results are compared with those from piggery-waste digesters and it is suggested that failure of farm-waste digesters from such inhibitions is unlikely.

  20. Nitrogen as a regulatory factor of methane oxidation in soils and sediments

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Laanbroek, H.J.

    2004-01-01

    The oxidation of methane by methane-oxidising microorganisms is an important link in the global methane budget. Oxic soils are a net sink while wetland soils are a net source of atmospheric methane. It has generally been accepted that the consumption of methane in upland as well as lowland systems