WorldWideScience

Sample records for pyroelectric effect

  1. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    Science.gov (United States)

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  2. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Directory of Open Access Journals (Sweden)

    Gang Bai

    2015-09-01

    Full Text Available A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  3. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun; Guo, Yanyan; Li, Wei [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Yan, Xiaobing [College of Electronic and information Engineering, Hebei University, Baoding 071002 (China)

    2015-09-15

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba{sub 0.67}Sr{sub 0.33}TiO{sub 3} above T{sub c} similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  4. The off-axis pyroelectric effect observed for lithium tetraborate

    Energy Technology Data Exchange (ETDEWEB)

    Ketsman, I. [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Wooten, D. [Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433-7765 (United States); Xiao, Jie [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Losovyj, Ya.B. [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Burak, Ya.V.; Adamiv, V.T. [Institute of Physical Optics, 23 Dragomanov Street, Lviv 79005 (Ukraine); Sokolov, A. [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Petrosky, J.; McClory, J. [Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433-7765 (United States); Dowben, P.A., E-mail: pdowben@unl.ed [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States)

    2010-01-25

    We find a pyroelectric current along the <110> direction of stoichiometric Li{sub 2}B{sub 4}O{sub 7} so that the pyroelectric coefficient is nonzero but roughly 10{sup -3} smaller than along the <001> direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the <110> direction can be correlated with anomalies in the elastic stiffness C{sub 33}{sup D} contributing to concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that an inverse piezoelectric effect occurs at the (110) surface but not the (100) surface. Both effects along the <110> direction or at the (110) surface are distinct the conventional as a bulk pyroelectric effect.

  5. Secondary pyroelectric and electrocaloric effects in thin films

    Science.gov (United States)

    Tong, Trong

    The pyroelectric and electrocaloric effect play an important role in many applications such as energy harvesting and solid-state cooling. This dissertation focuses on the characterization of the pyroelectric and electric coefficient in thin film using novel laser-based technique. The implementation of the systems is described in detail, and heat transport models are developed to interpret the experimental data. The temperature oscillation caused by the modulated laser power or the entropy change are calculated over a wide range of the modulation frequency. These techniques are applied to characterize Pb(ZrTi)O3 and Ba(SrTi)O3 films growth by Pulse Laser Deposition (PLD) and sol-gel method. The secondary pyroelectric and electrocaloric contributions caused by clamping substrate effect are discussed. A wide range frequency analysis is applied to extract the secondary pyroelectric coefficient. The secondary pyroelectric effect is found to have the same dependence on applied field as the pyroelectric coefficient and is approximately 15% and 20% of the total response for PbZr 0.2Ti0.8O3 and Ba0.6Sr0.4TiO 3 grown by PLD, respectively. By comparing the pyroelectric and electrocaloric coefficient measured on the same devices, our result shows the secondary contribution to the electrocaloric coefficient has the opposite sign as the primary effect and therefore reduces the overall entropy change of Pb(ZrTi)O3 in an electric field. Finally, the sol-gel method is used to produce Pb(ZrTi)O 3 thin films. The sample fabrication is described in detail along with physical characterization and the pyroelectric measurement. Sol-gel PZT films are perovskite phase with (100) orientation. The pyroelectric coefficient is measured to be 135 microC m-2 K-1.

  6. Piezoelectric and pyroelectric effects of a crystalline polymer

    Science.gov (United States)

    Kundu, Nikhil K.; Kundu, Malay

    1990-01-01

    Polyvinylidene flouride (PVDF) is a crystalline polymer to both piezoelectric and pyroelectric nature. Piezoelectricity produces electrical signals when mechanically deformed, and pyroelectricity is the electrical polarization induced by thermal absorption in crystals. To demonstrate the piezoelectric effect PVDF is subjected to impact loads which produce electrical charges proportional to mechanical stresses. A heat source was used to demonstrate the pyroelectric nature of PVDF. The rise in temperature due to absorbed energy by the polymer produces electrical output. The qualitative test results obtained are graphically reproduced.

  7. Effect of space exposure on pyroelectric infrared detectors (A0135)

    Science.gov (United States)

    Robertson, J. B.; Clark, I. O.; Crouch, R. K.

    1984-01-01

    The effects of long-duration space exposure and launch environment on the performance of pyroelectric detectors which is important for the prediction of performance degradation, setting exposure limits, or determining shielding requirements was investigated. Air pollution monitoring and thermal mapping of the Earth, which includes the remote sensing of aerosols and limb scanning infrared radiometer projects, requires photodetection in the 6- to 20 micro m region of the spectrum. Pyroelectric detectors can detect radiation in the 1- to 100 micro m region while operating at room temperature. This makes tahe pyroelectric detector a prime candidate to fill the thermal infrared detector requirements.

  8. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Katti, Aavishkar; Yadav, R.A., E-mail: rayadav@bhu.ac.in

    2017-01-23

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping. - Highlights: • Effect of pyroelectric field on screening photovoltaic solitons is studied. • Illumination induced pyroelectric field is considered for the first time. • Self trapping depends on external, pyroelectric and photovoltaic space charge field.

  9. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Science.gov (United States)

    Katti, Aavishkar; Yadav, R. A.

    2017-01-01

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping.

  10. Long—Range Effects on the Pyroelectric Coefficient of Ferroelectric Superlattice

    Institute of Scientific and Technical Information of China (English)

    DONGWen; WUYin-Zhong; 等

    2002-01-01

    Long-range effects on the pyroelectric coefficient of a ferroelectric superlattice consisting of two different ferroelectric materials are investigated based on the transverse Ising model.The effects of the interfacial coupling and the thickness of one period on the pyroelectric coefficient of the ferroelectric superlattics are studied by taking into account the long-range interaction.It is found that with the increase of the strength of the long-range interaction,the pyroelectric coefficient decreases when the temperature is lower than the phase transition temperature;the mumber of the pyroelectric peaks decreases gradually and the phase transition temperature increases,It is also found that with the decrease of the interfacial coupling and the thickness of one period.the phase transition temperature and the number of the pyroelectric peaks decrease.

  11. Thermal Energy Harvesting Using Pyroelectric and Piezoelectric Effect

    Science.gov (United States)

    Kang, Miwon; Yeatman, Eric M.

    2016-11-01

    This paper presents a prototype of a thermal energy harvesting mechanism using both pyroelectric and piezoelectric effect. Thermal energy is one of abundant energy sources from various processes. Waste heat from a chip on a circuit board of the electronic device involves temperature differences from a few degrees C to over 100 °C. Therefore, 95 °C of a heat reservoir was used in this study. A repetitive time-dependant temperature variation is applied by a linear sliding table. The influence of heat conditions was investigated, by changing velocity and frequency of this linear sliding table. This energy harvesting mechanism employs Lead Zirconate Titanate (PZT-5H), a bimetal beam and two neodymium magnets. The pyroelectric effect is caused by a time-dependent temperature variation, and the piezoelectric effect is caused by stress from deformation of the bimetal. A maximum power output 0.54 μW is obtained at an optimal condition when the load resistance is 610 kΩ.

  12. Long-Range Effects on the Pyroelectric Coefficient of Ferroelectric Superlattice

    Institute of Scientific and Technical Information of China (English)

    DONG Wen; YAO Dong-Lai; WU Yin-Zhong; LI Zhen-Ya

    2002-01-01

    Long-range effects on the pyroelectric coefficient of a ferroelectric superlattice consisting of two differentferroelectric materials are investigated based on the transverse Ising model. The effects of the interfacial coupling andthe thickness of one period on the pyroelectric coefficient of the ferroelectric superlattice are studied by taking intoaccount the long-range interaction. It is found that with the increase of the strength of the long-range interaction, thepyroelectric coefficient decreases when the temperature is lower than the phase transition temperature; the number ofthe pyroelectric peaks decreases gradually and the phase transition temperature increases. It is also found that with thedecrease of the interfacial coupling and the thickness of one period, the phase transition temperature and the number ofthe pyroelectric peaks decrease.

  13. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  14. Energy harvesting from pavements via PVDF: hybrid piezo-pyroelectric effects

    Science.gov (United States)

    Tao, Junliang; Hu, Jie; Wu, Guangxi

    2016-04-01

    In the U.S., there are over 4 million miles (6 million km) of roadways and more than 250 million registered vehicles. The energy lost in the pavement system due to traffic-induced vibration and deformation is enormous. If effectively harvested, such energy can serve as an alternative sustainable energy source that can be easily integrated to the transportation system. The potential of PVDF, which is a piezoelectric polymer material, is investigated as a potential energy harvester integrated in pavement systems. The uniqueness of this study lies in that the electrical response of PVDF under coupled mechanical and thermal stimulations are studied. It is well known that most piezoelectric materials are also pyroelectric materials, which convert temperature change into electricity. However, the potential of PVDF as a hybrid piezo-pyroelectric energy harvester has been seldom studied. Through series of well controlled experiments, it is found that there exists interesting coupling phenomenon between piezoelectric and pyroelectric effects of PVDF: the voltage generated by simultaneous mechanical and thermal stimulations is the sum of voltages generated by separate stimulations. In addition, an estimation of power generation through piezoelectric and pyroelectric effect is conducted. Finally, the overall effects of temperature on hybrid piezo-pyroelectric energy harvesting are discussed.

  15. Pyroelectric properties and electrocaloric effect in TGS1-xPx single crystals

    Science.gov (United States)

    Sampathkumar, P.; Srinivasan, K.

    2016-10-01

    Triglycine sulfate (TGS) single crystals modified with phosphoric acid (TGS1-xPx) have been grown by slow evaporation technique at room temperature. Lattice parameters were identified by using single crystal x-ray diffractometer. The dielectric, pyroelectric, ferroelectric properties and electrocaloric effect have been investigated. Curie temperature of grown crystals was determined from dielectric constant measurements at various temperatures at a frequency of 1 kHz. The Curie temperature is found decreased for the TGS single crystals with the addition of phosphoric acid. Room temperature P-E hysteresis loops of TGS1-xPx single crystals are presented. The values of coercive field Ec, spontaneous polarization Ps and internal bias field Eb were obtained from the hysteresis loops. Discussion on pyroelectric properties as a function of temperature and applied electric field is presented. Figure of merits (FOMs) were determined to study the pyroelectric performance of the grown crystals. Among all compositions of x, x = 0.2 (i.e., TGS0.8P0.2) single crystals exhibited the largest pyroelectric coefficient and pyroelectric figure of merit at room temperature. From the above investigations the electrocaloric temperature change, ΔT of TGS1-xPx single crystals at selected applied fields and temperatures are obtained by indirect method and discussed.

  16. Effective Pyroelectric Coefficient and Polarization Offset of Compositionally Step-like Graded Ferroelectric Structures

    Institute of Scientific and Technical Information of China (English)

    CAO Hai-Xia; WU Yin-Zhong; LI Zhen-Ya

    2005-01-01

    In this paper, the effective pyroelectric coefficient and polarization offset of the compositionally step-like graded multilayer ferroelectric structures have been studied by use of the first-principles approach. It is exhibited that the dielectric gradient has a nontrivial influence on the effective pyroelectric coefficient, but has a little influence on the polarization offset; and the polarization gradient plays an important role in the abnormal hysteresis loop phenomenon of the co.mpositionally step-like graded ferroelectric structures. Moreover, the origin of the polarization offset is explored,which can be attributed to the polarization gradient in the compositionally step-like graded structure.

  17. The Third Way of Thermal-Electric Conversion beyond Seebeck and Pyroelectric Effects

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-14

    Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, people are aware of only two ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with distinct working conditions and limitations. Here, we report the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, the-third-way converts the time-dependent ambient temperature fluctuation into electricity, similar to the behavior of pyroelectricity. However, the-third-way is also distinct from pyroelectric effect in the sense that it does not require polar materials but applies to general conducting systems. We demonstrate that the-third-way results from the temperature-fluctuation-induced dynamical charge redistribution. It is a consequence of the fundamental nonequilibrium thermodynamics and has a deep connection to the topological phase in quantum mechanics. Our findings expand our knowledge and provide new means of thermal-electric energy harvesting.

  18. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, M. T.; Zhang, J.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Trolier-McKinstry, S. [Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, Pennsylvania 16802 (United States); Mantese, J. V. [United Technologies Research Center, East Hartford, Connecticut 06118 (United States); Whatmore, R. W. [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork City, County Cork (Ireland)

    2013-11-28

    Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm{sup −2} °C{sup −1}, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  19. Minimization of pyroelectric effects in relaxor-PbTiO{sub 3} crystals for piezoelectric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanxue, E-mail: yanxuetang@gmail.com [Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234 (China); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Shen, Zongyang [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403 (China); Zhang, Shujun; Jiang, Wenhua [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Luo, Jun [TRS Technologies Inc., 2820 E. College Ave., State College, PA 16801 (United States); Shrout, Thomas R. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-05-01

    To minimize pyroelectric effects while keeping high piezoelectric effects in relaxor-PbTiO{sub 3} single crystals, the crystallographic orientation dependence of the pyroelectric and piezoelectric coefficients were investigated for binary (1 − x)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–xPbTiO{sub 3} (PMN–PT), ternary (1 − x − y)Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}–yPb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–xPbTiO{sub 3} (PIN–PMN–PT) and Mn-doped PIN–PMN–PT single crystals with the “4R” multidomain state. The secondary pyroelectric coefficients were calculated from the thermodynamic inter-relationship between the piezoelectric, elastic, and thermal expansion coefficients, being on the order of (1.16–1.23) × 10{sup −4} C m{sup −2} K{sup −1} for binary crystals and (0.97–2.03) × 10{sup −4} C m{sup −2} K{sup −1} for ternary ones. The primary pyroelectric coefficients were –(6.73–6.84) × 10{sup −4} C m{sup −2} K{sup −1} and −(5.44–6.43) × 10{sup −4} C m{sup −2} K{sup −1} for binary and ternary crystals, respectively. The pyroelectric coefficients could be reduced by matrix rotation, but at the cost of decreasing longitudinal piezoelectric coefficients d{sub 33}. Of particular interest is that the maximum piezoelectric coefficients d{sub 24}{sup ∗} at θ = ±55{sup o} and d{sub 34}{sup ∗} at θ = ±35{sup o} by a counterclockwise rotation of θ about the X axis (θ is the rotation angle about the coordinate axes), or d{sub 15}{sup ∗} at θ = ±55{sup o}, and d{sub 35}{sup ∗} at θ = ±35{sup o} by a counterclockwise rotation the Y axis, were found on the order of 3000 pC N{sup −1}. The corresponding pyroelectric coefficients could be reduced by ∼20%. The reduced pyroelectric coefficients that can contribute to decrease undesirable output signals, together with the high piezoelectric coefficients, enable relaxor-PT crystals as favorable candidates for high

  20. A Strip Cell in Pyroelectric Devices

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2016-03-01

    Full Text Available The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively.

  1. Effect of Polarization Fatigue on Harvesting Energy Using Pyroelectric Materials

    Directory of Open Access Journals (Sweden)

    Saber Mohammadi

    2014-01-01

    Full Text Available The phenomenon of polarization fatigue in ferroelectric materials is defined and the effect of this phenomenon on harvested energy using these materials has been studied. In order to illustrate this effect, the harvested energy using PZN-4.5PT single crystal was compared in two cases of fatigued and nonfatigued samples. The results have been calculated between two temperatures of 100 and 130°C using Ericsson thermodynamic cycle.

  2. Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes

    Science.gov (United States)

    Esin, A.; Baturin, I.; Nikitin, T.; Vasilev, S.; Salehli, F.; Shur, V. Ya.; Kholkin, A. L.

    2016-10-01

    The natural ability of peptides and proteins to self-assemble into elongated fibrils is associated with several neurogenerative diseases. Diphenylalanine (FF) tubular structures that have the same structural motif as in Aβ-amyloid peptide (involved in Alzheimer's disease) are shown to possess remarkable physical properties ranging from piezoelectricity to electrochemical activities. In this work, we also discover a significant pyroelectric activity and measure the temperature dependence of the pyroelectric coefficient in the temperature range of 20-100 °C. Pyroelectric activity decreases with temperature contrary to most ferroelectric materials and significant relaxation of pyrocurrent is observed on cooling after heating above 50 °C. This unusual behavior is assigned to the temperature-induced disorder of water molecules inside the nanochannels. Pyroelectric coefficient and current and voltage figures of merit are estimated and future applications of pyroelectric peptide nanostructures in biomedical applications are outlined.

  3. Radiation generation with pyroelectric crystals

    Science.gov (United States)

    Geuther, Jeffrey A.

    2007-12-01

    Pyroelectric crystals heated or cooled in vacuum have been used to produce low-energy x-ray devices since 1992. In the course of this thesis, experiments with lithium tantalate (LiTaO3) and lithium niobate (LiNbO 3) were performed to extend the usefulness of pyroelectric radiation sources. Paired-crystal x-ray generators were shown to double the x-ray energy and yield, and allow the k-shell fluorescence of any metal up to thorium (Z = 90). It was demonstrated that the electron emission from a single pyroelectric crystal could be transmitted through a beryllium window to allow the electron beam to be extracted from the vacuum chamber. The electron emission current and energy were measured, and a mathematical model was developed to predict emission current and energy. Magnetic deflection experiments were used to verify that the electric field produced by the pyroelectric effect in lithium tantalate was sufficient to ionize gas. Finally, a paired-crystal system was used to ionize a deuterium fill gas near a metallic tip mounted to a pyroelectric crystal, and accelerate these ions into a deuterated target mounted to the opposing crystal. This technique was used to produce a compact, low-power fusion neutron source driven by pyroelectric crystals.

  4. Study on Pyroelectric Harvesters with Various Geometry

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2015-08-01

    Full Text Available Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance.

  5. Dynamics of pyroelectric accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  6. Pyroelectric and electrocaloric effect of <1 1 1>-oriented 0.9PMN-0.1PT single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Luo Laihui, E-mail: llhsic@126.com [Department of Physics, Ningbo University, Ningbo 315211 (China); Chen Hongbing [Institute of Materials Science and Engineering, Ningbo University, Ningbo 315211 (China); Zhu Yuejin; Li Weiping [Department of Physics, Ningbo University, Ningbo 315211 (China); Luo Haosu [Shanghai Institute of ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang Yuepin [Department of Physics, Ningbo University, Ningbo 315211 (China)

    2011-08-11

    Highlights: > Here, we use indirect method to measure pyroelectric and electrocaloric effect. > The largest temperature change achieves {approx}1 deg. C with a small field change. > The mechanism of electrocaloric effect of PMN-PT is explained. > The largest ({partial_derivative}P/{partial_derivative}T){sub E} value achieves -0.5 {mu}C/cm{sup 2} K. > PMN-PT has excellent pyroelectric effect. - Abstract: In this paper, the polarization vs. electric field hysteresis loops of <1 1 1>-oriented 0.9PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}-0.1PbTiO{sub 3} (0.9PMN-0.1PT) single crystal at different temperatures (20-110 deg. C) were measured. The adiabatic temperature change {Delta}T of <1 1 1>-oriented 0.9PMN-0.1PT single crystal due to the application or withdraw of electric field were calculated through the thermodynamic relation. The largest temperature change {Delta}T achieves {approx}1 K with only a change of 40 kV/cm electric field, the mechanism of the electrocaloric effect (ECE) is discussed for 0.9PMN-0.1PT crystal. The pyroelectric coefficient of 0.9PMN-0.1PT under bias field was calculated according to the data of hysteresis loop. The result shows that 0.9PMN-0.1PT have large pyroelectric coefficient under bias field, the largest ({partial_derivative}P/{partial_derivative}T){sub E} value achieves -0.5 {mu}C/cm{sup 2} K.

  7. Investigation of the effect of noise on the operation of the charge sensitive amplifier with compensated pyroelectric interference

    Directory of Open Access Journals (Sweden)

    Starcev V. I.

    2015-08-01

    Full Text Available The authors consider the problems that arise during the operation of the charge sensitive amplifier (CSA in critical conditions. Simplified schemes and mathematical models of the CSA are presented in order to study the effect of noise of operational amplifier and high-resistance resistor of negative feedback loop. The dependence of the CSA noise level on the pyroelectric interference compensation value is studied. Mathematical analysis data is confirmed by computer circuit simulation.

  8. Pyroelectric Harvesters for Generating Cyclic Energy

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-04-01

    Full Text Available Pyroelectric energy conversion is a novel energy process which directly transforms waste heat energy from cyclic heating into electricity via the pyroelectric effect. Application of a periodic temperature profile to pyroelectric cells is necessary to achieve temperature variation rates for generating an electrical output. The critical consideration in the periodic temperature profile is the frequency or work cycle which is related to the properties and dimensions of the air layer; radiation power and material properties, as well as the dimensions and structure of the pyroelectric cells. This article aims to optimize pyroelectric harvesters by matching all these requirements. The optimal induced charge per period increases about 157% and the efficient period band decreases about 77%, when the thickness of the PZT cell decreases from 200 μm to 50 μm, about a 75% reduction. Moreover, when using the thinner PZT cell for harvesting the pyroelectric energy it is not easy to focus on a narrow band with the efficient period. However, the optimal output voltage and stored energy per period decrease about 50% and 74%, respectively, because the electrical capacitance of the 50 μm thick pyroelectric cell is about four times greater than that of the 200 μm thick pyroelectric cell. In addition, an experiment is used to verify that the work cycle to be able to critically affect the efficiency of PZT pyroelectric harvesters. Periods in the range between 3.6 s and 12.2 s are useful for harvesting thermal cyclic energy by pyroelectricity. The optimal frequency or work cycle can be applied in the design of a rotating shutter in order to control the heated and unheated periods of the pyroelectric cells to further enhance the amount of stored energy.

  9. The pyroelectric constant and dielectric coefficient measurement of pyroelectric thin films

    CERN Document Server

    Altintas, E

    1998-01-01

    Pyroelectric coefficient measurements were made in various temperature for poled and unpoled form of PVDF which is pyroelectric material. For these experiments the quasi-static techniques was used. PVDF samples were poled in various electric strengths and relation between poling field strength and pyroelectric coefficient was investigated. It was observed that as poling field strength was increased, the pyroelectric coefficient increased as well. The other study was the effect of poling temperature on pyroelectricity. The best result was obtained when PVDF sample was poled at 340 K. This temperature value is about the Curie temperature of PVDF is and given in the literature. For poled and unpoled samples, there was an increase in pyroelectric coefficient with the increase of measurement temperature up to T sub c. The dielectric permittivity and dielectric loss measurement of PVDF which is a semi-crystalline polymer was taken in the 125-375 K temperature and 100-20 khz frequency interval. The measurements show...

  10. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    Science.gov (United States)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  11. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites

    NARCIS (Netherlands)

    Khanbareh, H.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Functional granular composites of lead titanate particles in an epoxy matrix prepared by dielectrophoresis show enhanced dielectric, piezoelectric and pyroelectric properties compared to 0-3 composites for different ceramic volume content from 10% to 50%. Two structuring parameters, the interparticl

  12. Tunable liquid microlens array driven by pyroelectric effect: full interferometric characterization

    Science.gov (United States)

    Miccio, Lisa; Grilli, Simonetta; Vespini, Veronica; Ferraro, Pietro

    2008-09-01

    Liquid lenses with adjustable focal length are of great interest in the field of microfluidic devices. They are, usually, realized by electrowetting effect after electrodes patterning on a hydrofobic substrate. Applications are possible in many fields ranging from commercial products such as digital cameras to biological cell sorting. We realized an open array of liquid lenses with adjustable focal length without electrode patterning. We used a z-cut Lithium Niobate crystal (LN) as substrate and few microliters of an oily substance to obtain the droplets array. The spontaneous polarization of LN crystals is reversed by the electric field poling process, thus enabling the realization of periodically poled LN (PPLN) crystals. The substrate consists of a two-dimensional square array of reversed domains with a period around 200 μm. Each domain presents an hexagonal geometry due to the crystal structure. PPLN is first covered by a thin and homogeneous layer of the above mentioned liquid and therefore its temperature is changed by means of a digitally controlled hot plate. During heating and cooling process there is a rearrangement of the liquid layer until it reaches the final topography. Lenses formation is due to the superficial tension changing at the liquid-solid interface by means of the pyroelectric effect. Such effect allows to create a two-dimensional lens pattern of tunable focal length without electrodes. The temporal evolution of both shape and focal length lenses are quantitatively measured by Digital Holographic Microscopy. Array imaging properties and quantitative analysis of the lenses features and aberrations are presented.

  13. Wind-driven pyroelectric energy harvesting device

    Science.gov (United States)

    Xie, Mengying; Zabek, Daniel; Bowen, Chris; Abdelmageed, Mostafa; Arafa, Mustafa

    2016-12-01

    Pyroelectric materials have recently received attention for harvesting waste heat owing to their potential to convert temperature fluctuations into useful electrical energy. One of the main challenges in designing pyroelectric energy harvesters is to provide a means to induce a temporal heat variation in a pyroelectric material autonomously from a steady heat source. To address this issue, we propose a new form of wind-driven pyroelectric energy harvester, in which a propeller is set in rotational motion by an incoming wind stream. The speed of the propeller’s shaft is reduced by a gearbox to drive a slider-crank mechanism, in which a pyroelectric material is placed on the slider. Thermal cycling is obtained as the reciprocating slider moves the pyroelectric material across alternative hot and cold zones created by a stationary heat lamp and ambient temperature, respectively. The open-circuit voltage and closed-circuit current are investigated in the time domain at various wind speeds. The device was experimentally tested under wind speeds ranging from 1.1 to 1.6 m s-1 and charged an external 100 nF capacitor through a signal conditioning circuit to demonstrate its effectiveness for energy harvesting. Unlike conventional wind turbines, the energy harvested by the pyroelectric material is decoupled from the wind flow and no mechanical power is drawn from the transmission; hence the system can operate at low wind speeds (<2 m s-1).

  14. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects.

    Science.gov (United States)

    Wang, Shuhua; Wang, Zhong Lin; Yang, Ya

    2016-04-20

    A hybridized nanogenerator is demonstrated, which has the structure of PVDF nanowires-PDMS composite film/indium tin oxide (ITO) electrode/polarized PVDF film/ITO electrode, and which can individually/simultaneously scavenge mechanical and thermal energies using piezoelectric, triboelectric, and pyroelectric effects. As compared with the individual energy harvesting unit, the hybridized nanogenerator has a much better charging performance. This work may push forward a significant step toward multienergy harvesting technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optical damage in reduced Z-cut LiNbO{sub 3} crystals caused by longitudinal photovoltaic and pyroelectric effects

    Energy Technology Data Exchange (ETDEWEB)

    Kostritskii, S. M. [RPC Optolink, Sosnovaya al., d. 6 A, str.2, NPL-3-1, Zelenograd, Moscow, 124489 (Russian Federation); Aillerie, M. [LMOPS, University Paul Verlaine of Metz and Supelec, 2 rue E. Belin, 57070 Metz (France)

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO{sub 3} crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the {+-}Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  16. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  17. Pyroelectric spectrum in Pb(Zr,Sn,Ti)O3 antiferroelectric- ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The pyroelectric effect of phase transition induced with temperature in Nb-modified Pb(Zr,Sn,Ti)O3 antiferroelectric-ferroelectric ceramics is studied. Experimental results reveal that the phase transitions are accompanied with marked pyroelectric peaks, there exists the close relation between the type of phase transition and the shape of pyroelectric peak. Because of the variations of phase transition, various pyroelectric spectra result. The pyroelectric spectrum can display the polarization effect and some inferior phase transitions with temperature variations, such as antiferroelectric AFEA-AFEB or ferroelectric FEL-FEH transition, which are not detected by the conventional dielectric measurement.

  18. Effect of Misfit Strain on Pyroelectric Properties of (111) Oriented Pb(Zr1-x Ti x ) O3 Thin Films

    Science.gov (United States)

    Qiu, Jian-Hua; Chen, Zhi-Hui; Wang, Xiu-Qin; Yuan, Ning-Yi; Ding, Jian-Ning

    2016-10-01

    Based on the Landau-Dovenshire theory, the thermodynamic potential of (111) oriented films is constructed to investigate the pyroelectric properties of Pb(Zr1-xTix) O3 thin films. Due to the presence of nonlinear coupling terms resulted from the (111) epitaxy with substrates, the effects of misfit strain and electric field on the phase transitions at room temperature are more complex than that of (001) and (110) oriented films. Pb(Zr0.5Ti0.5) O3 thin films with the Ti composition around the morphotropic phase boundary (MPB) have the giant dielectric and pyroelectric properties. Moreover, Pb(Zn1-xTix) O3 thin films grown on the tensile substrates which induce the triclinic γ phase have the larger dielectric and pyroelectric properties than that on the compressive substrates. Therefore, the physical properties of (111) oriented Pb(Zr1-xTix) O3 thin films can be adjusted by choosing the suitable substrates. Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the research fund of Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Major Projects of Natural Science Research in Jiangsu Province under Grant Nos. 15KJA43002, 16KJD430006, and also sponsored by Qing Lan Project of Education Department of Jiangsu Province

  19. Pyroelectric energy conversion: optimization principles.

    Science.gov (United States)

    Sebald, Gael; Lefeuvre, Elie; Guyomar, Daniel

    2008-03-01

    In the framework of microgenerators, we present in this paper the key points for energy harvesting from temperature using ferroelectric materials. Thermoelectric devices profit from temperature spatial gradients, whereas ferroelectric materials require temporal fluctuation of temperature, thus leading to different applications targets. Ferroelectric materials may harvest perfectly the available thermal energy whatever the materials properties (limited by Carnot conversion efficiency) whereas thermoelectric material's efficiency is limited by materials properties (ZT figure of merit). However, it is shown that the necessary electric fields for Carnot cycles are far beyond the breakdown limit of bulk ferroelectric materials. Thin films may be an excellent solution for rising up to ultra-high electric fields and outstanding efficiency. Different thermodynamic cycles are presented in the paper: principles, advantages, and drawbacks. Using the Carnot cycle, the harvested energy would be independent of materials properties. However, using more realistic cycles, the energy conversion effectiveness remains dependent on the materials properties as discussed in the paper. A particular coupling factor is defined to quantify and check the effectiveness of pyroelectric energy harvesting. It is defined similarly to an electromechanical coupling factor as k2=p2theta0/(epsilontheta33cE), where p, theta0, epsilontheta33, cE are pyroelectric coefficient, maximum working temperature, dielectric permittivity, and specific heat, respectively. The importance of the electrothermal coupling factor is shown and discussed as an energy harvesting figure of merit. It gives the effectiveness of all techniques of energy harvesting (except the Carnot cycle). It is finally shown that we could reach very high efficiency using 1110.75Pb(Mg1/3Nb2/3)-0.25PbTiO3 single crystals and synchronized switch harvesting on inductor (almost 50% of Carnot efficiency). Finally, practical implementation key

  20. Thermoelastic and Pyroelectric Couplings Effects on Dynamics and Active Control of Smart Piezolaminated Beam Modeled by Finite Element Method

    Directory of Open Access Journals (Sweden)

    M. Sanbi

    2014-01-01

    Full Text Available Smart structures with integrated sensors, actuators, and control electronics are of importance to the next generation high-performance structural systems. In this study, thermopiezoelastic characteristics of piezoelectric beam continua are studied and applications of the theory to active structures in sensing and optimal control are discussed. Using linear thermopiezoelastic theory and Timoshenko assumptions, a generic thermopiezoelastic theory for piezolaminated composite beam is derived. Finite element equations for the thermopiezoelastic media are obtained by using the linear constitutive equations in Hamilton's principle together with the finite element approximations. The structure consists of a modeling of cantilevered piezolaminated Timoshenko beam with integrated thermopiezoelectric elements between two aluminium layers. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG accompanied by the Kalman filter is applied. The effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. We show that the control procedure cannot be perturbed by applying a thermal gradient and the control can be applied at any time during the period of vibration of the beam.

  1. Pyroelectric Quantum Well Energy Harvesters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the investigation of pyroelectric energy harvesters with enhanced efficiencies through quantum wells induced by a multilayer design.  Pyroelectric...

  2. Pyroelectric nanogenerators for harvesting thermoelectric energy.

    Science.gov (United States)

    Yang, Ya; Guo, Wenxi; Pradel, Ken C; Zhu, Guang; Zhou, Yusheng; Zhang, Yan; Hu, Youfan; Lin, Long; Wang, Zhong Lin

    2012-06-13

    Harvesting thermoelectric energy mainly relies on the Seebeck effect that utilizes a temperature difference between two ends of the device for driving the diffusion of charge carriers. However, in an environment that the temperature is spatially uniform without a gradient, the pyroelectric effect has to be the choice, which is based on the spontaneous polarization in certain anisotropic solids due to a time-dependent temperature variation. Using this effect, we experimentally demonstrate the first application of pyroelectric ZnO nanowire arrays for converting heat energy into electricity. The coupling of the pyroelectric and semiconducting properties in ZnO creates a polarization electric field and charge separation along the ZnO nanowire as a result of the time-dependent change in temperature. The fabricated nanogenerator has a good stability, and the characteristic coefficient of heat flow conversion into electricity is estimated to be ∼0.05-0.08 Vm(2)/W. Our study has the potential of using pyroelectric nanowires to convert wasted energy into electricity for powering nanodevices.

  3. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.

    Science.gov (United States)

    Zeqiri, Bajram; Zauhar, Gordana; Hodnett, Mark; Barrie, Jill

    2011-05-01

    Progress in developing a new measurement method for ultrasound output power is described. It is a thermal-based technique with the acoustic power generated by a transducer being absorbed within a specially developed polyurethane rubber material, whose high absorption coefficient ensures energy deposition within a few mm of the ultrasonic wave entering the material. The rate of change of temperature at the absorber surface is monitored using the pyroelectric voltage generated from electrodes disposed either side of a 60 mm diameter, 0.061 mm thick membrane of the piezoelectric polymer polyvinylidene fluoride (pvdf) bonded to the absorber. The change in the pyroelectric output voltage generated by the sensor when the transducer is switched ON and OFF is proportional to the delivered ultrasound power. The sensitivity of the device is defined as the magnitude of these switch voltages to a unit input stimulus of power (watt). Three important aspects of the performance of the pyroelectric sensor have been studied. Firstly, measurements have revealed that the temperature dependent sensitivity increases over the range from approximately 20°C to 30°C at a rate of +1.6% °C(-1). Studies point to the key role that the properties of both the absorbing backing layer and pvdf membrane play in controlling the sensor response. Secondly, the high sensitivity of the technique has been demonstrated using an NPL Pulsed Checksource, a 3.5 MHz focused transducer delivering a nominal acoustic power level of 4 mW. Finally, proof-of-concept of a new type of acoustic sensor responding to time-averaged intensity has been demonstrated, through fabrication of an absorber-backed hydrophone of nominal active element diameter 0.4 mm. A preliminary study using such a device to resolve the spatial distribution of acoustic intensity within plane-piston and focused 3.5 MHz acoustic fields has been completed. Derived beam profiles are compared to conventional techniques that depend on deriving

  4. Study on the Interface Effects Based on Two-Dimensional Green's Functions for the Fluid and Pyroelectric Two-Phase Plane under a Line Heat Source

    Directory of Open Access Journals (Sweden)

    Peng-Fei Hou

    2014-11-01

    Full Text Available Two-dimensional Green's functions for a line heat source applied in the fluid and pyroelectric two-phase plane are presented in this paper. By virtue of the two-dimensional general solutions which are expressed in harmonic functions, six newly introduced harmonic functions with undetermined constants are constructed. Then, all the pyroelectric components in the fluid and pyroelectric two-phase plane can be derived by substituting these harmonic functions into the corresponding general solutions. And the undetermined constants can be obtained by the interface compatibility conditions and the mechanical, electric, and thermal equilibrium conditions. Numerical results are given graphically by contours.

  5. A Meliorated Multi-Frequency Band Pyroelectric Sensor.

    Science.gov (United States)

    Hsiao, Chun-Ching; Liu, Sheng-Yi; Siao, An-Shen

    2015-07-06

    This article proposes a meliorated multi-frequency band pyroelectric sensor for detecting subjects with various velocities, namely extending the sensing frequency under good performance from electrical signals. A tactic, gradually increasing thickness of the ZnO layers, is used for redeeming drawbacks of a thicker pyroelectric layer with a tardy response at a high-frequency band and a thinner pyroelectric layer with low voltage responsivity at a low-frequency band. The proposed sensor is built on a silicon substrate with a thermal isolation layer of a silicon nitride film, consisting of four pyroelectric layers with various thicknesses deposited by a sputtering or aerosol deposition (AD) method and top and bottom electrodes. The thinnest ZnO layer is deposited by sputtering, with a low thermal capacity and a rapid response shoulders a high-frequency sensing task, while the thicker ZnO layers are deposited by AD with a large thermal capacity and a tardy response shoulders a low-frequency sensing task. The fabricated device is effective in the range of 1 KHz~10 KHz with a rapid response and high voltage responsivity, while the ZnO layers with thicknesses of about 0.8 μm, 6 μm, 10 μm and 16 μm are used for fabricating the meliorated multi-frequency band pyroelectric sensor. The proposed sensor is successfully designed, analyzed, and fabricated in the present study, and can indeed extend the sensing range of the multi-frequency band.

  6. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H. B. [Lawrence Berkeley Lab., CA (United States); [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector. Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.

  7. Nano/microscale pyroelectric energy harvesting: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Devashish Lingam

    2013-12-01

    Full Text Available With the ever-growing demand for renewable energy sources, energy harvesting from natural resources has gained much attention. Energy sources such as heat and mechanical motion could be easily harvested based on pyroelectric, thermoelectric, and piezoelectric effects. The energy harvested from otherwise wasted energy in the environment can be utilized in self-powered micro and nano devices, and wearable electronics, which required only µW–mW power. This article reviews pyroelectric energy harvesting with an emphasis on recent developments in pyroelectric energy harvesting and devices at micro/nanoscale. Recent developments are presented and future challenges and opportunities for more efficient materials and devices with higher energy conversion efficiency are also discussed.

  8. MEMS based pyroelectric thermal energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  9. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    Directory of Open Access Journals (Sweden)

    Saber Mohammadi

    2012-01-01

    Full Text Available This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were compared with each other. The material used is the PMN-25 PT single crystal that is a very interesting material in the framework of energy harvesting and sensor applications.

  10. Power maximization for pyroelectric, piezoelectric, and hybrid energy harvesting

    Science.gov (United States)

    Shaheen, Murtadha A.

    The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters. A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance C p and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz. This method demonstrates that for pyroelectric materials the impedance depends on two major factors: average working temperature, and the heating rate. Design and implementation of a hybrid approach using multiple piezoelectric cantilevers is presented. This is done to achieve mechanical and electrical tuning, along with bandwidth widening. In addition, a hybrid tuning technique with an improved adjusting capacitor method was applied. An toroid inductor of 700 mH is shunted in to the load resistance and shunt capacitance. Results show an extended frequency range up to 12 resonance frequencies (300% improvement) with improved power up to 197%. Finally, a hybrid piezoelectric and pyroelectric system is designed and tested. Using a voltage doubler, circuit for rectifying and collecting pyroelectric and piezoelectric voltages individually is proposed. The investigation showed that the hybrid energy is possible using the voltage doubler circuit from two independent sources for pyroelectrictity and piezoelectricity due to marked differences of optimal performance.

  11. Effects of Ca-dopant on the pyroelectric, piezoelectric and dielectric properties of (Sr 0.6Ba 0.4) 4Na 2Nb 10O 30 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-12-01

    Calcium-doped sodium strontium barium niobate (SBNN, (Sr 0.6Ba 0.4) 4-xCa xNa 2Nb 10O 30, 0 ≤ x ≤ 0.5) ceramics were prepared by a conventional solid-state reaction method. SBNN showed \\'filled\\' tetragonal tungsten-bronze structure with fully occupied A-sites. The tetragonal structure, as revealed by X-ray diffraction (XRD) and Raman spectroscopy, was not affected by the Ca-dopant. Effects of Ca-doping concentration on the phase transitions as well as ferroelectric, piezoelectric and pyroelectric properties of the SBNN ceramics were investigated. From the dielectric studies, two anomalies were observed, namely, a sharp normal ferroelectric transition at 260 °C and a broad maximum at round -110 °C. The later was affected by the Ca-doping concentration and its origin was discussed. At x = 0.3, the sample exhibited the highest pyroelectric coefficient of 168 μC/m 2 K and the largest piezoelectric coefficient (d 33) of 63 pC/N at room temperature. On the basis of our results, the pyroelectric properties of the SBNN were improved by Ca-doping. © 2012 Elsevier B.V. All rights reserved.

  12. Investigation on the pyroelectric property of polycrystalline GdMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhao, Y. G., E-mail: ygzhao@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Cui, Y. F.; Ye, L. D.; Zhao, D. Y.; Li, P. S.; Wang, J. W.; Zhu, M. H.; Zhang, H. Y. [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Rao, G. H., E-mail: rgh@guet.edu.cn [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2014-02-10

    Pyroelectric property of orthorhomic GdMnO{sub 3} polycrystalline samples was investigated. Two pyrocurrent peaks were observed with the sharp one near 20 K and the broad one at around 120 K. The dependences of these two peaks on magnetic field, heating rate, and poling voltage were explored systematically. The sharp peak is related to the ferroelectric transition, while the behavior of the broad one corresponds to dipole reorientation. Some key pyroelectric features are proposed to separate the spin-induced ferroelectricity from other effects. This work is helpful for understanding the pyroelectric property of multiferroic materials.

  13. Ferroelectric ceramics in a pyroelectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Belgorod State University, Belgorod 308015 (Russian Federation); Miroshnik, V. S.; Volkov, V. I. [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Oleinik, A. N. [Belgorod State University, Belgorod 308015 (Russian Federation)

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  14. A Meliorated Multi-Frequency Band Pyroelectric Sensor

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available This article proposes a meliorated multi-frequency band pyroelectric sensor for detecting subjects with various velocities, namely extending the sensing frequency under good performance from electrical signals. A tactic, gradually increasing thickness of the ZnO layers, is used for redeeming drawbacks of a thicker pyroelectric layer with a tardy response at a high-frequency band and a thinner pyroelectric layer with low voltage responsivity at a low-frequency band. The proposed sensor is built on a silicon substrate with a thermal isolation layer of a silicon nitride film, consisting of four pyroelectric layers with various thicknesses deposited by a sputtering or aerosol deposition (AD method and top and bottom electrodes. The thinnest ZnO layer is deposited by sputtering, with a low thermal capacity and a rapid response shoulders a high-frequency sensing task, while the thicker ZnO layers are deposited by AD with a large thermal capacity and a tardy response shoulders a low-frequency sensing task. The fabricated device is effective in the range of 1 KHz~10 KHz with a rapid response and high voltage responsivity, while the ZnO layers with thicknesses of about 0.8 μm, 6 μm, 10 μm and 16 μm are used for fabricating the meliorated multi-frequency band pyroelectric sensor. The proposed sensor is successfully designed, analyzed, and fabricated in the present study, and can indeed extend the sensing range of the multi-frequency band.

  15. Pyroelectric Energy Harvesting: Model and Experiments

    Science.gov (United States)

    2016-05-01

    characterization of the pyroelectric sample was performed with a Radiant Precision Premier II Ferroelectric Tester. The Radiant Vision software...enables many electrical measurements including ferroelectric hysteresis loops, leakage, and capacitance tests. The Radiant system uses a current...conversion cycles. 5.1 Static Testing The pyroelectric sample was tested under static temperature conditions using the heater element and a Radiant

  16. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  17. Virtual experiment of pyroelectric fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad Mehdi, E-mail: mnasseri@aeoi.org.ir

    2015-11-01

    The virtual experiment of pyroelectric fusion was conducted by Geant4 simulator. Despite the limitations of the code for simulating the pyroelectric fusion experiment precisely, the following interesting results were obtained. Two crystals were separated by a certain distance. A constant electric field with varying intensities was applied between the crystals. As initial particles, deuterium ions were emitted to deuterated polypropylene (CD{sub 2}). This virtual experiment showed that the number of ions that hit the target, for different distances between the crystals, increases with the increase of the intensity of the electric field; however, further increase of the electric field results in the reduction of the number of hit ions, which attains a constant value of about 57% of the initial number of ions. For a (D, D) fusion reaction to occur, the distance between the two crystals should be <1.5 cm and for a (D, T) fusion reaction to occur, this distance could be up to 2 cm. The energy spectra of ions for low and high electric fields were narrow and long and wide and short, respectively.

  18. Wireless intelligent alarm technology with pyroelectric infrared sensor

    Science.gov (United States)

    Chen, Xiao

    2009-07-01

    Aiming at the defects of monitoring conducted by man in the conventional practice, we study the passive intelligent automatic alarm technology based on the pyroelectric infrared sensor and wireless communication technology. The designed passive infrared wireless alarm is composed of pyroelectric infrared sensors, infrared special chip BISS0001 and their peripheral circuits. When someone enters into the detecting and monitoring range, the alarm will detect the infrared ray of the human radiation by the contactless form and detect the signals of circuit output. Then it translates them into low frequency signals relative with human sports speed, distance and direction, produce corresponding output signals through amplifying by the back state controller, switch on the work power of the wireless transmitting circuit and make it emit the alarm signals. The system enhances the monitoring level and effects and possesses many advantages such as wide detecting range, long detecting distance and high reliability.

  19. Pyroelectric materials as electronic pulse detectors of ultraheavy nuclei

    Science.gov (United States)

    Simpson, J. A.; Tuzzolino, A. J.

    1984-01-01

    The design and testing of ultraheavy-nucleus pulse detectors based on pyroelectric materials are reported, extending the preliminary findings of Tuzzolino (1983) and Simpson and Tuzzolino (1983). Uranium-ion beams of about 240 MeV/u are detected by a 39.5-micron-thick Si detector, degraded to about 175 MeV/u by Al absorbers, and then strike 700-micron-thick polyvinylidene fluoride or 1000-micron-thick LiTaO3 pyroelectric samples. Both detector systems are connected to a coincidence circuit via charge-sensitive preamplifiers, shaping amplifiers with 30-microsec effective time constants, and electronic discriminators. Sample spectra are shown, and the pulse heights measured are found to agree with theoretical calculations to within a factor of about 2. The response of the pyroelectric materials is found to be unaffected by exposure to about 10 Mrad of 2-7-MeV/u heavy ion radiation. With further study and improvement of the detection sensitivity, devices of this type could be applied to large-area space measurements of low ultraheavy-ion fluxes.

  20. Feasibility study of thermal energy harvesting using lead free pyroelectrics

    Science.gov (United States)

    Karim, Hasanul; Sarker, Md Rashedul H.; Shahriar, Shaimum; Arif Ishtiaque Shuvo, Mohammad; Delfin, Diego; Hodges, Deidra; (Bill Tseng, Tzu-Liang; Roberson, David; Love, Norman; Lin, Yirong

    2016-05-01

    Energy harvesting has significant potential for applications in energizing wireless sensors and charging energy storage devices. To date, one of the most widely investigated materials for mechanical and thermal energy harvesting is lead zirconate titanate (PZT). However, lead has detrimental effects on the environment and on health. Hence, alternative materials are required for this purpose. In this paper, a lead free material, lithium niobate (LNB) is investigated as a potential material for pyroelectric energy harvesting. Although its theoretical pyroelectric properties are lower compared to PZT, it has better properties than other lead free alternatives such as ZnO. In addition, LNB has a high Curie temperature of about 1142 °C, which makes it applicable for high temperature energy harvesting, where other pyroelectric ceramics are not suitable. Herein, an energy harvesting and storage system composed of a single crystal LNB and a porous carbon-based super-capacitor was investigated. It is found that with controlled heating and cooling, a single wafer of LNB (75 mm diameter and 0.5 mm thickness) could generate 437.72 nW cm-3 of power and it could be used to charge a super-capacitor with a charging rate of 2.63 mV (h cm3)-1.

  1. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Bikram [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Damodaran, Anoop R. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Cho, Hanna [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Martin, Lane W. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.

  2. Infrared Responsivity of a Pyroelectric Detector with a Single-Wall Carbon Nanotube Coating

    Energy Technology Data Exchange (ETDEWEB)

    Theocharous, E.; Engtrakul, C.; Dillon, A. C.; Lehman, J.

    2008-08-01

    The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 {micro}m wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 {micro}m thick LiTaO{sub 3} crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10{sup -9} A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.

  3. Energy harvesting with piezoelectric and pyroelectric materials

    CERN Document Server

    Muensit, Nantakan

    2011-01-01

    The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technolo

  4. The pyroelectric vidicon - Ten years on

    Science.gov (United States)

    Burgess, D.; Nixon, R.; Ritchie, J.

    1986-01-01

    A technology development status evaluation is presented for British high performance pyroelectric vidicon, IR-sensitive TV cameras, the first tubes and cameras of which were demonstrated over a decade ago. Attention is given to the improvements that had to be instituted in camera design in order to obtain optimum performance from the vidicon tubes. A rotating disk chopper and flicker processing were incorporated into the camera's design. Pyroelectric cameras have been extensively applied in industry and the police and military services for fire detection and in rescue operations.

  5. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Investigation of the durability of a pyroelectric neutron source and secondary electron suppression

    Energy Technology Data Exchange (ETDEWEB)

    Friske, Eduard; Deuter, Gerhard; Jochum, Josef [Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany)

    2015-04-15

    The performance of a pyroelectric neutron source depends on several factors, such as the achieved high voltage, deuterium gas pressure and the tip geometry. Here we present measurements to investigate the dependency of the neutron production on the high voltage specifically and discuss the interdependency with other factors. In addition we present results showing that a biased grid in front of the target, which is a common way to capture secondary electrons, does not have any significant effect on the amount of electrons streaming back to the pyroelectric crystal. This indicates that the bulk of these electrons does not originate from the target but from a different source. (orig.)

  7. Pyroelectric Charge Release in Rhombohedral PZT

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    A new experimental set-up controlled by computer has been made to measure the pyroelectric charge of ferroelectric materials with a relatively high conductivity at slow rates of temperature variation. It allowed us to obtain the polarisation vs. temperature behaviour of PZT with various compositions

  8. Multi-Frequency Band Pyroelectric Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-11-01

    Full Text Available A methodology is proposed for designing a multi-frequency band pyroelectric sensor which can detect subjects with various frequencies or velocities. A structure with dual pyroelectric layers, consisting of a thinner sputtered ZnO layer and a thicker aerosol ZnO layer, proved helpful in the development of the proposed sensor. The thinner sputtered ZnO layer with a small thermal capacity and a rapid response accomplishes a high-frequency sensing task, while the thicker aerosol ZnO layer with a large thermal capacity and a tardy response is responsible for low-frequency sensing tasks. A multi-frequency band pyroelectric sensor is successfully designed, analyzed and fabricated in the present study. The range of the multi-frequency sensing can be estimated by means of the proposed design and analysis to match the thicknesses of the sputtered and the aerosol ZnO layers. The fabricated multi-frequency band pyroelectric sensor with a 1 μm thick sputtered ZnO layer and a 20 μm thick aerosol ZnO layer can sense a frequency band from 4000 to 40,000 Hz without tardy response and low voltage responsivity.

  9. Pyroelectric effect in PbZr0.3Ti0.7O3/PbTiO3 superlattices%PbZr0.3Ti0.7O3/PbTiO3超晶格的热释电性研究

    Institute of Scientific and Technical Information of China (English)

    陈加文; 戴大鹏; 曹海霞

    2011-01-01

    Based on the Landau-Ginzburg- Devonshire theory, the pyroelectric effect of ferroelectric superlattices PbZro.3Ti0.7O3/PbTiO3 has been investigated , in which the misfit strain between the two slabs is taken into account. The impact of interfacial coupling strength, composition concentration proportion of Pb2r0.3Ti0.7O3 slab in one period on the pyroelectric coefficient has been calculated. It is found that the ferroelectric superlattice displays pronounced pyroelectric effect. Essentially, the ferroelectric superlattices provide an effective means to acquire good pyroelectric effect by adjusting the interfacial coupling strength , as well as compositional thickness concentration.%基于朗道-金兹堡格-德文希尔(Landau-Ginzburg-Devonshire)热力学理论,我们研究了由PbZr0.3Ti0.7O3(PZT)与PbTiO3(PT)两种组份组成的超晶格的热释电性,并且考虑了两组份之间的失配应变的影响.我们探讨了界面耦合强度、组分厚度比例以及失配应变等对超晶格的极化强度和热释电性的影响.计算结果表明,这种铁电超晶格材料具有巨大的热释电系数.因此,我们可以通过调节界面耦合强度、组份比例等方法达到调控热释电性的目的,为实验和应用研究提供一个可靠而有效的方法.

  10. A 3x1 integrated pyroelectric sensor based on VDF/TrFE copolymer

    NARCIS (Netherlands)

    Setiadi, D.; Sarro, P.M.; Regtien, P.P.L.

    1996-01-01

    This paper presents an integrated pyroelectric sensor based on a vinylidene fluoride¿trifluoroethylene (VDF/TrFE) copolymer. A silicon substrate that contains field-effect transistor (FET) readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling o

  11. Improvement of Pyroelectric Cells for Thermal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Jing-Chih Ciou

    2012-01-01

    Full Text Available This study proposes trenching piezoelectric (PZT material in a thicker PZT pyroelectric cell to improve the temperature variation rate to enhance the efficiency of thermal energy-harvesting conversion by pyroelectricity. A thicker pyroelectric cell is beneficial in generating electricity pyroelectrically, but it hinders rapid temperature variations. Therefore, the PZT sheet was fabricated to produce deeper trenches to cause lateral temperature gradients induced by the trenched electrode, enhancing the temperature variation rate under homogeneous heat irradiation. When the trenched electrode type with an electrode width of 200 μm and a cutting depth of 150 μm was used to fabricate a PZT pyroelectric cell with a 200 μm thick PZT sheet, the temperature variation rate was improved by about 55%. Therefore, the trenched electrode design did indeed enhance the temperature variation rate and the efficiency of pyroelectric energy converters.

  12. Comparative Performance of PLZT and PVDF Pyroelectric Sensors Used to the Thermal Characterization of Liquid Samples

    Directory of Open Access Journals (Sweden)

    Gemima Lara Hernandez

    2013-01-01

    Full Text Available Among the photothermal methods, the photopyroelectric (PPE technique is a suitable method to determine thermal properties of different kinds of samples ranging from solids to liquids and gases. Polyvinylidene difluoride (PVDF is one of the most frequently used pyroelectric sensors in PPE technique but has the disadvantage that it can be easily deformed by the sample weight. This deformation could add a piezoelectric effect to the thermal parameters assessment; also PVDF has a narrow temperature operation range when compared with ceramic pyroelectric sensors. In order to minimize possible piezoelectric effects due to sensor deformation, a ceramic of lanthanum modified lead zirconate (PLZT was used as pyroelectric sensor in the PPE technique. Then, thermal diffusivity of some liquid samples was measured, by using the PPE configuration that denominated the thermal wave resonator cavity (TWRC, with a PLZT ceramic as pyroelectric detector. The performance obtained with the proposed ceramic in the TWRC configuration was compared with that obtained with PVDF by using the same configuration.

  13. First Principle Based Computation of Pyroelectricity in LiNbO3

    Science.gov (United States)

    Peng, Q.; Cohen, R. E.

    2010-03-01

    Pyroelectricity is of current interest since the discovery of particle acceleration of aqueous ions from changes in temperature at pyroelectric surfaces sufficient to generate hard X-rays[1] as well as neutrons via fusion[2]. We computed the pyroelectric coefficients in LiNbO3 from molecular dynamic simulation with DLPOLY using a shell model potential fitted to Density Functional Theory computations results. The potential was constructed by fitting energies and forces, as well as phonon frequencies and eigenvectors, Born effective charges, and dielectric constants computed from density functional perturbation theory using ABINT. The secondary pyroelectric effect is computed from density functional theory. The spontaneous polarizations were calculated using the Berry phase method. The coefficient of thermal expansivity, elastic moduli, elastic compliances, piezoelectric stress constants and piezoelectric strain constants are computed by linear response and lattice dynamics computations. [1] J. D. Brownridge and S. Raboy, Journal of Applied Physics 86, 640 (1999). [2] B. Naranjo, J. Gimzewski, and S. Putterman, Nature 434, 1115 (2005).

  14. Responsivity Calibration of Pyroelectric Terahertz Detectors

    CERN Document Server

    Berry, Christopher W; Jarrahi, Mona

    2014-01-01

    There has been a significant advancement in terahertz radiation sources in the past decade, making milliwatt terahertz power levels accessible in both continuous-wave and pulsed operation. Such high-power terahertz radiation sources circumvent the need for cryogenic-cooled terahertz detectors such as semiconductor bolometers and necessitate the need for new types of calibrated, room-temperature terahertz detectors. Among various types of room-temperature terahertz detectors, pyroelectric detectors are one of the most widely used detectors, which can offer wide dynamic range, broad detection bandwidth, and high sensitivity levels. In this article, we describe the calibration process of a commercially available pyroelectric detector (Spectrum Detector, Inc, SPI-A-65 THz), which incorporates a 5 mm diameter LiTaO3 detector with an organic terahertz absorber coating.

  15. Radiatively heated high voltage pyroelectric crystal pulser

    Energy Technology Data Exchange (ETDEWEB)

    Antolak, A.J., E-mail: antolak@sandia.gov [Sandia National Laboratories, Livermore, CA 94550 (United States); Chen, A.X. [Sandia National Laboratories, Livermore, CA 94550 (United States); Leung, K.-N. [Sandia National Laboratories, Livermore, CA 94550 (United States); Nuclear Engineering Department, University of California, Berkeley (United States); Morse, D.H.; Raber, T.N. [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2014-01-21

    Thin lithium tantalate pyroelectric crystals in a multi-stage pulser were heated by quartz lamps during their charging phase to generate high voltage pulses. The charging voltage was determined empirically based on the measured breakdown voltage in air and verified by the induced breakdown voltage of an external high voltage power supply. A four-stage pyroelectric crystal device generated pulse discharges of up to 86 kV using both quartz lamps (radiative) and thermoelectric (conductive) heating. Approximately 50 mJ of electrical energy was harvested from the crystals when radiatively heated in air, and up to 720 mJ was produced when the crystals were submerged in a dielectric fluid. It is anticipated that joule-level pulse discharges could be obtained by employing additional stages and optimizing the heating configuration.

  16. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator.

    Science.gov (United States)

    Lee, Ju-Hyuck; Lee, Keun Young; Gupta, Manoj Kumar; Kim, Tae Yun; Lee, Dae-Yeong; Oh, Junho; Ryu, Changkook; Yoo, Won Jong; Kang, Chong-Yun; Yoon, Seok-Jin; Yoo, Ji-Beom; Kim, Sang-Woo

    2014-02-01

    A highly stretchable hybrid nanogenerator has been developed using a micro-patterned piezoelectric polymer P(VDF-TrFE), PDMS-CNT composite, and graphene nanosheets. Mechanical and thermal energies are simultaneously harvested from a single cell of the device. The hybrid nanogenerator exhibits high robustness behavior even after 30% stretching and generates very stable piezoelectric and pyroelectric power outputs due to micro-pattern designing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self Assembly and Pyroelectric Poling for Organics

    Science.gov (United States)

    2015-07-06

    ozone or nitrogen oxides) and energetic species from corona discharge . These problems can strongly inhibit the efficient poling and large-scale...respectively. In this idealized model , a modest temperature change (10 to 50 °C) will lead to a considerably large electrostatic field in a thin film dielectric...measurement); (e) contact poling. 4. Systematically analyze electrostatics models to quantify electric field generation from commonly used pyroelectric

  18. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  19. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

    Science.gov (United States)

    Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris

    2017-03-15

    Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm(3). For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.

  20. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  1. Electronic detection of ultra-heavy nuclei by pyroelectric materials

    Science.gov (United States)

    Simpson, J. A.; Tuzzolino, A. J.

    1983-01-01

    A recent prediction by the authors that pyroelectric materials may be capable of detecting ultra-heavy nuclei has been confirmed. Charge pulse signals from pyroelectric crystals of lithium tantalate exposed to Au ions and a pulsed beam of Ni-58 ions, and from pyroelectric films of polyvinylidene fluoride exposed to a pulsed beam of Ni-58 ions, have been measured using pulse electronics with time constants in the microsecond range. These studies show that pyroelectric materials, in general, are capable of detecting incident nuclei having very high mass and charge. In particular, pyroelectric polymers, such as polyvinylidene fluoride, are readily available as inexpensive flexible films. This new class of charged particle detector could eventually find applications in large-area experiments for detection and trajectory determination of low-energy, ultra-heavy nuclei.

  2. The Electronic Structure and Secondary Pyroelectric Properties of Lithium Tetraborate

    Directory of Open Access Journals (Sweden)

    Peter A. Dowben

    2010-09-01

    Full Text Available We review the pyroelectric properties and electronic structure of Li2B4O7(110 and Li2B4O7(100 surfaces. There is evidence for a pyroelectric current along the [110] direction of stoichiometric Li2B4O7 so that the pyroelectric coefficient is nonzero but roughly 103 smaller than along the [001] direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the [110] direction can be correlated with anomalies in the elastic stiffness  contributing to the concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that surface charging is dependent on crystal orientation and doping, as well as temperature.

  3. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    Science.gov (United States)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  4. Study of pyroelectric activity of PZT/PVDF-HFP composite

    Directory of Open Access Journals (Sweden)

    Luiz Francisco Malmonge

    2003-12-01

    Full Text Available Flexible, free-standing piezo and pyroelectric composite with 0 to 3 connectivity was made up from Lead Zirconate Titanate (PZT powder and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP copolymer. The pyroelectric and the piezoelectric longitudinal (d33 coefficients were measured. A 50/50 vol.% PZT/PVDF-HFP composite resulted in piezo and pyroelectric coefficients of d33 = 25.0 pC/N and p = 4.5 × 10-4 C/m²K at 70 °C, respectively. Analysis of the complex permittivity in a wide range of frequency was carried out indicating lower permittivity of the composite in comparison with a permittivity of the PZT ceramic. The low value of the permittivity gives a high pyroelectric figure of merit indicating that this material can be used to build a temperature sensor in spite of the lower pyroelectric coefficient compared with PZT.

  5. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    Science.gov (United States)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  6. 手性化合物S811的强热释效应及反铁电特性%Large Pyroelectric Effect and Anti-ferroelectric Properties of Chiral Compound S811

    Institute of Scientific and Technical Information of China (English)

    牛小玲; 刘卫国; 刘鹏

    2011-01-01

    用热释电流谱、介电温谱、电滞回线谱、差示扫描量热仪(DSC)、热台偏光显微镜(PLM)对手性化合物S811的电学性能及相变行为进行了研究.热释电流谱、介电温谱显示S811在相变附近具有强热释电电流,其最大热释电系数达到384nC/(cm2·K),介电常数在相变过程也发生了突变.电滞回线谱显示,在冷却过程依次出现了反铁电体-铁电体转变的双电滞回线和单电滞回线,揭示了S811作为热释电探测材料的应用潜力,拓展了其应用范围.%The electrical properties and phase transition behaviors of chiral compound S811 have been investigated by pyroelectric, dielectric, polarization spectroscopy, DSC and PLM at different temperatures. It is found that S811 appeared a large pyroelectric current peak and a sharp growth of dielectric constants near the phase transition temperature The maximum value of the pyroelectric coefficient p obtained is 384nC/(cm2 · K). In the cooling process, the sample presented the transition of anti-ferroelectric to ferroelectric phase. The outstanding pyroelectric performances of S811 make it possible as a novel pyroelectric detectors.

  7. Determination of surface electric charge profile in pyroelectric crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2014-12-08

    Pyroelectric crystals are used to produce high energy self-focused electron beams. Here, an experimental analysis in combination with simulation studies will be reported to investigate possible sources of this effect. In the experiments, the surface of crystal was divided into six separated parts and the rate of surface electric charge production was measured accordingly. A non-steady and spatially non-uniform distribution of the surface charge generation was observed, in which it tends to a uniform distribution in the course of experiment. The obtained surface electric charges from the experiments were used to simulate the electric field and potential around the crystal by COMSOL Multiphysics. It was observed that emitted electrons from the crystal surface were focused, and the non-uniformity in spatial charge is responsible for this phenomenon.

  8. Study of pyroelectric activity of PZT/PVDF-HFP composite

    OpenAIRE

    Luiz Francisco Malmonge; José Antonio Malmonge; Walter Katsumi Sakamoto

    2003-01-01

    Flexible, free-standing piezo and pyroelectric composite with 0 to 3 connectivity was made up from Lead Zirconate Titanate (PZT) powder and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) copolymer. The pyroelectric and the piezoelectric longitudinal (d33) coefficients were measured. A 50/50 vol.% PZT/PVDF-HFP composite resulted in piezo and pyroelectric coefficients of d33 = 25.0 pC/N and p = 4.5 × 10-4 C/m²K at 70 °C, respectively. Analysis of the complex permittivity in a wide ran...

  9. A Novel Compact Pyroelectric X-Ray and Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Yaron Danon

    2007-08-31

    This research was focused on the utilization of pyroelectric crystals for generation of radiation. When in constant temperature pyroelectric crystals are spontaneously polarized. The polarization causes internal charges to accumulate near the crystal faces and masking charges from the environment are attracted to the crystal faces and neutralize the charge. When a pyroelectric crystal is heated or cooled it becomes depolarized and the surface charges become available. If the heating or cooling is done on a crystal in vacuum where no masking charges are available, the crystal becomes a charged capacitor and because of its small capacitance large potential develops across the faces of the crystal.

  10. Therapeutic dose from a pyroelectric electron accelerator.

    Science.gov (United States)

    Fullem, T Z; Fazel, K C; Geuther, J A; Danon, Y

    2009-11-01

    Simple heating of pyroelectric crystals has been used as the basis for compact sources of X rays, electrons, ions and neutrons. We report on the evaluation of the feasibility of using a portable pyroelectric electron accelerator to deliver a therapeutic dose to tissue. Such a device could be mass produced as a handheld, battery-powered instrument. Experiments were conducted with several crystal sizes in which the crystal was heated inside a vacuum chamber and the emitted electrons were allowed to penetrate a thin beryllium window into the surrounding air. A Faraday cup was used to count the number of electrons that exited the window. The energy of these electrons was determined by measuring the energy spectrum of the X rays that resulted from the electron interactions with the Faraday cup. Based on these measurements, the dose that this source could deliver to tissue was calculated using Monte Carlo calculations. It was found that 10(13) electrons with a peak energy of the order of 100 keV were emitted from the beryllium window and could deliver a dose of 1664 Gy to a 2-cm-diameter, 110-microm-deep region of tissue located 1.5 cm from the window with air between the window and the tissue. This dose level is high enough to consider this technology for medical applications in which shallow energy deposition is beneficial.

  11. Pyroelectric generation of 2D spatial soliton sets in a bulk of lithium niobate crystal

    Science.gov (United States)

    Ryabchenok, V.; Shandarov, V.; Perin, A.

    2017-06-01

    The generation of two-dimensional bright spatial soliton sets in lithium niobate sample has been experimentally demonstrated at light wavelength of 532 nm, contribution of pyroelectric effect into nonlinear optical response of the crystal, and spatial modulation of one-dimensional beam along direction normal to the crystal optical axis. Diameters of soliton beams and channel waveguides formed within the crystal bulk by these solitons are near to 20 μm at light polarization corresponding to extraordinary wave of the crystal.

  12. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Geetika; Umarji, A. M. [Materials Research Centre, Indian Institute of Science, Bangalore-560 012 (India); Maglione, Mario [ICMCB, Universite de Bordeaux,-CNRS, 87, Av Dr Schweitzer 33806 Pessac (France)

    2012-12-15

    Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  13. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    Directory of Open Access Journals (Sweden)

    Geetika Srivastava

    2012-12-01

    Full Text Available Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  14. Possible Explanation For Multiple Electron Emission From Pyroelectric Crystals In Dilute Gases

    Science.gov (United States)

    Shafroth, Stephen; Kaleko, David; Brownridge, James

    2009-05-01

    Pyroelectric crystals such as LiNbO3 when cut perpendicular to their z axes and when heated or cooled produce strong electric fields at their surfaces. If a 4 mm dia x 10 mm crystal is immersed in a dilute gas it acts as an accelerator of electrons when the surface is negative and positive ions when the surface is positive. In both cases a focused beam results but in the electron case multiple electron peaks are observed if they are detected through a pin hole with a surface barrier detector(1). In this poster we give evidence for an explanation of this effect. (1) Brownridge, J. D., Shafroth, S. M., Trott, D. W., Stoner, B. R., and Hooke, W. M., Observation of multiple nearly monoenergetic electron production by heated pyroelectric crystals in ambient gas, Appl. Phys. Lett., 78, 1158 (2001)

  15. Invited Review Article: Practical guide for pyroelectric measurementsa)

    Science.gov (United States)

    Lubomirsky, Igor; Stafsudd, Oscar

    2012-05-01

    The characterization of pyroelectric materials is a necessary stage in the design of a large variety of pyroelectric-based devices ranging from intrusion alarms to IR cameras. The sample configurations and measurement techniques currently in use vary widely and require careful attention in order to avoid artifacts. In this review, we provide a practical guide to the measurement of the pyroelectric coefficient, paying particular attention to the new instrumental possibilities (fast sinusoidally modulated light sources, low impedance broad band current meters, and fast averaging oscilloscopes) that have become available during the last decade. Techniques applicable to bulk specimens, substrate-supported films, and self-supported films are described in detail. The most commonly used procedures are classified according to the type of thermal excitation: continuous ramping, heat pulse, and continuous oscillation. In the appendices, we describe the practical realization of these measurement schemes and provide mathematical descriptions for the extraction of the pyroelectric coefficient from the measured data.

  16. Evaluation of dome-input geometry for pyroelectric detectors

    Science.gov (United States)

    Zeng, J.; Hanssen, L. M.; Eppeldauer, G. P.

    2013-06-01

    Dome-input pyroelectric radiometers with different black coatings were developed to extend the spectral responsivity scale from near infrared (NIR) to 20 μm. The reflective dome with shiny gold-coating has been known to be an efficient light trap to enhance the detector absorptance and to minimize spectral responsivity variation. The enhancement of spectral responsivity using reflective dome relies on optical characterization of black coating on detector, reflectance of dome reflector, and input aperture dimension, etc. We report a comparison of spectral responsivity of dome-input pyroelectric radiometers measured with/without dome-trap from 2.4 μm to 14 μm using the Infrared Spectral Comparator Facility (IRSCF) at NIST. The results show 4 % to 8 % gain of responsivity for two dome-input pyroelectric detectors, with reduced structure of spectral responsivity. The uncertainty of dome-input pyroelectric radiometer calibrations is approximately 2 % (k = 2).

  17. Pyroelectric crystal D-D and D-T neutron generators

    Science.gov (United States)

    Danon, Y.

    2012-04-01

    Pyroelectric neutron generators are a recent development utilizing the pyroelectric effect to produce an accelerating electric field and thus enabling creation of small electron and ion accelerators without external high voltage power supply. The principle of operation includes a pyroelectric crystal (LiTaO3 for example) placed in vacuum and simple heating (or cooling) of the crystal to cause a change in polarization. The change in polarization creates free charges on the faces of the clyndrical z-cut crystal and due to its small capacitance this creates a high potential between one crystal face to the other which is placed at ground potential. To produce neutrons the crystal is placed in low pressure deuterium gas and when the crystal is heated or cooled it ionizes the gas and accelerates deuterium ions towards a deuterated or tritated target. A configuration with two crystals can double the acceleration potential and thus increase neutron production. When operating such a device x-rays with energy over 200 keV about 105 neutrons per heating cycle can be produced. Research is focused on improving the neutron yield, the emission reproducibility, and shortening the heating cycle. Neutron generators based on this technology can be made small portable and relatively cheap compared to sealed tube technology. Further development is needed in order to increase the neutron yield closer to the theoretical limit for a specific crystals size.

  18. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  19. Design of a VDF/TrFE Copolymer-on-silicon pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Regtien, P.P.L.

    1994-01-01

    This paper presents a design of a VDF/TrFE copolymer-on-silicon pyroelectric sensor. For an optimal design of a VDF/TrFE-on-silicon pyroelectric sensor, the one-dimensional diffusion equation is solved for the pyroelectric multilayer structure. The output current of the sensor is calculated. Improve

  20. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2013-09-01

    Full Text Available Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively.

  1. Development of MEMS based pyroelectric thermal energy harvesters

    Science.gov (United States)

    Hunter, Scott R.; Lavrik, Nickolay V.; Bannuru, Thirumalesh; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2011-06-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  2. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Xiaomu Luo

    2016-06-01

    Full Text Available Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  3. Abnormal Activity Detection Using Pyroelectric Infrared Sensors.

    Science.gov (United States)

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-06-03

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  4. Pyroelectric sensor arrays for detection and thermal imaging

    Science.gov (United States)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  5. Improved Response of ZnO Films for Pyroelectric Devices

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Yu

    2012-12-01

    Full Text Available Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices.

  6. 制备工艺对Fe掺杂PZN-PZT热释电陶瓷性能的影响%The effects of synthesis route on the electricalproperties of Fe-doped PZN-PZT pyroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    韦慧; 陈拥军; 郭栋

    2016-01-01

    采用传统氧化物反应法(一步法)和前驱体法(两步法)合成铁掺杂改性的0.075Pb(Zn1/3 Nb2/3)O3-0.925Pb(Zr0.95 Ti0.05)O3(PZN-PZT)热释电陶瓷,研究制备方法对PZN-PZT热释电陶瓷的微观形貌、相结构及电学性能的影响。XRD结果表明,采用一步法制备的陶瓷不如两步法,前者存在钙钛矿相和少量焦绿石相,后者能有效抑制焦绿石相的生成,陶瓷为纯菱方钙钛矿相。SEM分析进一步证实了两步法能够制备出晶粒分布均匀、晶型饱满的致密陶瓷。结合介电、铁电及热释电性能分析可知,单一钙钛矿结构和均匀紧凑的晶粒结构对陶瓷材料电学性能的增强起着重要的作用。%Fe-doped 0.075 Pb(Zn1/3 Nb2/3 )O3-0.925Pb(Zr0.95 Ti0.05 )O3 (PZN-PZT)pyroelectric ceramics were pre-pared by a conventional oxide-mixed one-step method and precursor two-step method,respectively.The phase structure and electrical properties of the prepared ceramics were systematically investigated.X-ray diffraction results indicated that the ceramics fabricated by the one-step method possess a mixture of perovskite phase and pyrochlore phase,while the ceramics prepared from the two-step method have a single perovskite phase struc-ture.Scanning electron microscopy observation suggests that the ceramics prepared by the two-step method have a dense microstructure with uniform grains.The dielectric,ferroelectric and pyroelectric properties were measured,which revealed that the ceramics with single phase and dense microstructure have enhanced ferroelec-tric and pyroelectric properties.

  7. An integrated charge amplifier for a pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Armitage, A.; Binnie, T.D.; Regtien, P.P.L.; Sarro, P.M.

    1997-01-01

    This paper presents an integrated charge amplifier that measures a small charge. This charge is generated by a pyroelectric detector. The charge amplifier consists of a single-stage c-annon source configuration with a passive feedback network. The charge amplifier has a bandwidth of 700 kHz and an o

  8. A numerical investigation on exergy analyses of a pyroelectric tryglycine sulfate (TGS)-based solar energy harvesting system

    Science.gov (United States)

    Sharma, Manish; Vaish, Rahul; Singh Chauhan, Vishal

    2016-02-01

    This study is based on a numerical demonstration of energy and exergy analyses of a solar energy harvesting system based on the pyroelectric effect. The performance of a tryglycine sulfate (TGS) single crystal was investigated mathematically in the present study. The power output was optimized for different load resistances and load capacitances. The maximum power output was obtained as 0.95 μW across a load resistance of 40 MΩ and a 4.7 μF load capacitor. Further exergy analysis was performed for a pyroelectric energy harvesting system. Maximum values for electrical and thermal exergies obtained are 0.12 μW and 12 mW, respectively. Furthermore the maximum obtained electrical and thermal exergy efficiencies are 0.000 037% and 3.6%, respectively. The average thermal exergy efficiency is 2.15% for a cycle frequency of 0.014 Hz.

  9. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bourim, El Mostafa [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of)]. E-mail: em.bourim@samsung.com; Moon, Chang-Wook [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Lee, Seung-Woon [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Kyeong Yoo, In [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of)

    2006-09-01

    The behaviors of thermally stimulated electron emission from pyroelectric monodomain lithium niobate single crystal (LiNbO{sub 3}) were investigated by utilizing a Si p-n junction photodiode as electron detector and a receptive electron beam resist (E-beam resist) as electron collector. In high vacuum (10{sup -6} Torr), the pyroelectric electron emission (PEE) was found to depend on the exposed emitting polar crystal surface (+Z face or -Z face) and was significantly influenced by the emitter-electron receiver gap distances. Thus, the PEE from +Z face was detected during heating and was activated, in small gaps (<2 mm), by field emission effect on which was superposed an intense field ionization effect that primed intermittent runway ionizations (plasma breakdown into a glow discharge). In large gaps (>2 mm) the emission was simply mastered by field emission effect. Whereas, The PEE from -Z face was detected during cooling and was solely due to the field ionization effect. Therewith, for small gaps (<2 mm) the emission was governed by intermittent runway ionization ignitions resulting from a high ionization degree leading to dense plasma formation, and for large gaps (>2 mm) PEE was governed by field ionization generating a soft and continuous plasma ambient atmosphere. Significant decrease of electron emission current was observed from +Z face after successive thermal cycles. A fast and fully emission recovery was established after a brief exposure of crystal to a poor air vacuum of 10{sup -1} Torr.

  10. Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors.

    Science.gov (United States)

    Zeqiri, Bajram; Baker, Christian; Alosa, Giuseppe; Wells, Peter N T; Liang, Hai-Dong

    2013-08-07

    The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter-detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in

  11. Development of ruthenium dioxide electrodes for pyroelectric devices based on lithium tantalate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nougaret, Laurianne [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: laurianne.nougaret@univ-montp2.fr; Combette, Philippe [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: philippe.combette@univ-montp2.fr; Arinero, Richard [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: richard.arinero@univ-montp2.fr; Podlecki, Jean [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: jean.podlecki@univ-montp2.fr; Pascal-Delannoy, Frederique [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: Frederique.delannoy@univ-montp2.fr

    2007-02-26

    The aim of this paper is the study of ruthenium dioxide (RuO{sub 2}) films, grown on low-stress silicon nitride on silicon (SiN {sub x}/Si), in order to develop thermal micro-sensors based on pyroelectric effect. The active part of these micro-sensors is constituted by a new arrangement : lithium tantalate (LiTaO{sub 3})/RuO{sub 2}/SiN{sub x}/Si. Radio-frequency (RF) sputtering is employed to deposit RuO{sub 2} on SiN {sub x}/Si substrate. Morphology, crystallinity and resistivity of RuO{sub 2} are studied as function of growth parameters. Next, RF magnetron sputtering was used to deposit LiTaO{sub 3} on this electrode. Morphology studies, pyroelectric effect and dielectric parameters obtained, indicate that RuO{sub 2} material is a suitable candidate as back electrode for LiTaO{sub 3} thin films.

  12. Application of LiTaO3 pyroelectric crystal for pulsed neutron detection

    Science.gov (United States)

    Liang, W. F.; Lu, Y.; Wu, J.; Gao, H.; Li, M.

    2016-08-01

    The feasibility of a LiTaO3 pyroelectric crystal for pulsed neutron detection has been studied. The detector consists of a slice of electroded Z-cut LiTaO3 pyroelectric crystal, and no additional neutron converter is required owing to the Li contained in the crystal. The slight temperature increase caused by neutron radiation will lead to the release of bound charges and will give rise to a pyroelectric signal. The response of it has been studied both theoretically and experimentally. Our preliminary experiment on the CFBR-II reactor suggests that the LiTaO3 pyroelectric detector is promising for high intensity neutron - pulse measurement.

  13. Real-time assessment of a linear pyroelectric sensor array for object classication

    Science.gov (United States)

    White, William E., III; Brown, Jeremy B.; Chari, Srikant; Jacobs, Eddie L.

    2010-10-01

    Pyroelectric linear arrays can be used to generate profiles of targets. Simulations have shown that generated profiles can be used to classify human and animal targets. A pyroelectric array system was used to collect data and classify targets as either human or non-human in real time. The pyroelectric array system consists of a 128-element Dias 128LTI pyroelectric linear array, an F/0.86 germanium lens, and an 18F4550 pic microcontroller for A/D conversion and communication. The classifier used for object recognition was trained using data collected in petting zoos and tested using data collected at the US-Mexico border in Arizona.

  14. Fabrication of a ZnO Pyroelectric Sensor

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2008-01-01

    Full Text Available This paper proposes a two-step radio frequency (RF sputtering process to forma ZnO film for pyroelectric sensors. It is shown that the two-step sputtering process with alower power step followed by a higher power step can significantly improve the voltageresponsivity of the ZnO pyroelectric sensor. The improvement is attributed mainly to theformation of ZnO film with a strongly preferred orientation towards the c-axis.Furthermore, a nickel film deposited onto the uncovered parts of the ZnO film caneffectively improve the voltage responsivity at higher modulating frequencies since thenickel film can enhance the incident energy absorption of the ZnO layer.

  15. A virtual experiment on pyroelectric X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad Mehdi, E-mail: mnasseri@aeoi.org.ir

    2015-09-01

    The production of pyroelectric type X-ray generators has a long term background. In case of using X-ray generators containing two pyroelectric crystals, some parameters have not been practically measured yet. This article aims to calculate such parameters by means of Geant4 Mont Carlo codes. The obtained edge energy of initial electrons was 3 keV at a constant pressure of 1mTorr and electric field of 250 kV/cm. The amplification coefficient production of electrons was increased reaching to a constant value of 2.7. The observed mean energy of produced gas ions was approximately 39 eV, equivalent to 5.7% of the emitted electrons. The efficiency of the generated X-ray was about 63% and did not show a considerable change as the energy of initial electrons increased.

  16. Fusion of Multiple Pyroelectric Characteristics for Human Body Identification

    Directory of Open Access Journals (Sweden)

    Wanchun Zhou

    2014-12-01

    Full Text Available Due to instability and poor identification ability of single pyroelectric infrared (PIR detector for human target identification, this paper proposes a new approach to fuse the information collected from multiple PIR sensors for human identification. Firstly, Fast Fourier Transform (FFT, Short Time Fourier Transform (STFT, Wavelet Transform (WT and Wavelet Packet Transform (WPT are adopted to extract features of the human body, which can be achieved by single PIR sensor. Then, we apply Principal Component Analysis (PCA and Support Vector Machine (SVM to reduce the characteristic dimensions and to classify the human targets, respectively. Finally, Fuzzy Comprehensive Evaluation (FCE is utilized to fuse recognition results from multiple PIR sensors to finalize human identification. The pyroelectric characteristics under scenarios with different people and/or different paths are analyzed by various experiments, and the recognition results with/without fusion procedure are also shown and compared. The experimental results demonstrate our scheme has improved efficiency for human identification.

  17. Characterisation and Modelling of Meshed Electrodes on Free Standing Polyvilylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Harvesting.

    Science.gov (United States)

    Zabek, Daniel; Taylor, John; Bowen, Chris

    2016-09-05

    Flexible pyroelectric energy generators provide unique features for harvesting temperature fluctuations which can be effectively enhanced using meshed electrodes that improve thermal conduction, convection and radiation into the pyroelectric. In this paper, thermal radiation energy is continuously harvested with pyroelectric free standing Polyvilylidene Difluoride (PVDF) films over a large number of heat heat cycles using a novel micro-sized symmetrical patterned meshed electrode. It is shown that, for the meshed electrode geometries considered in this work, the polarisation-field (P-E), current-field (I-E) characteristics and device capacitance are unaffected since the fringing fields were generally small; this is verified using numerical simulations and comparison with experimental measurements. The use of meshed electrodes has been shown to significantly improve both the open circuit voltage (16 V to 59 V) and closed-circuit current (9 nA to 32 nA). The pyroelectric alternating current (AC) is rectified for direct current (DC) storage and 30% reduction in capacitor charging time is achieved by using the optimum meshed electrodes. The use of meshed electrodes on ferroelectric materials provides an innovative route to improve their performance in applications such as wearable devices, novel flexible sensors and large scale pyroelectric energy harvesters.hese instructions give you guidelines for preparing papers for IEEE Transactions and Journals. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further at IEEE. Paper titles should be written in uppercase and lowercase letters, not all uppercase. Avoid writing long formulas with subscripts in the title; short formulas that identify the elements are fine (e.g., "Nd-Fe-B"). Do not write "(Invited)" in the title. Full names of authors are preferred in the author field, but are not

  18. Pyroelectric properties of the monoclinic rare earth nitrates A{sub 2}Ln(NO{sub 3}){sub 5}.4H{sub 2}O (A = NH{sub 4}, Rb; Ln = La, Ce)

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Matthias; Andersen, Lionel; Becker, Petra; Bohaty Ladislav [Koeln Univ. (Germany). Inst. fuer Kristallographie

    2015-07-01

    The pyroelectric effect of four isomorphic monoclinic (space group Cc), non-ferroelectric rare earth nitrates A{sub 2}Ln(NO{sub 3}){sub 5}.4H{sub 2}O (A = NH{sub 4}, Rb; Ln = La, Ce) was investigated in the temperature range between 100 K and 300 K, using a home-made continuous-flow cryostat for measurements of pyroelectric currents. The symmetry-allowed temperature-dependent change of orientation of the pyroelectric vector p within the mirror plane is unusually large, showing a rotation of p of 148 , 129 , 36 and 40 for (NH{sub 4}){sub 2}La(NO{sub 3}){sub 5}.4H{sub 2}O, (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 5}.4H{sub 2}O, Rb{sub 2}La(NO{sub 3}){sub 5}.4H{sub 2}O and Rb{sub 2}Ce(NO{sub 3}){sub 5}.4H{sub 2}O, respectively, while changing the temperature from 100 K to 300 K in each case. The pyroelectric coefficients are up to ten times larger than p{sub 3} of tourmaline. In addition, new data of the pyroelectric coefficients of Li{sub 2}SO{sub 4}.H{sub 2}O and BiB{sub 3}O{sub 6} and their temperature dependence are given.

  19. A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments

    NARCIS (Netherlands)

    Setiadi, D.; Regtien, P.P.L.

    1995-01-01

    For an optimal design of a VDF/TrFE (vinylidene fluoride trifluoroethylene) copolymer-on-silicon pyroelectric sensor, the one-dimensional diffusion equation is solved for the pyroelectric multilayer structure. Output current and voltage of the sensor are calculated. Improvement of the sensor can be

  20. FT-infrared and pyroelectric studies on calix[8]arene Langmuir-Blodgett films

    CERN Document Server

    Oliviere, P A R

    2001-01-01

    that the remaining acid groups form either facing dimers with the amine or sideways dimers between themselves. The spectra do not change with temperature. This demonstrates that the films are thermally stable. Additionally, this invariance shows that the pyroelectric activity in these films does not arise from a change in the proton transfer as has been previously postulated. Theoretical calculations undertaken predict that the source of the dipole change required for the level of pyroelectric activity seen is likely to be a change in distance between the acid and amine groups. Further observations, quantitatively examined by curve fitting techniques, show that the greater the number of proton-transferred pairs, the lower the pyroelectric coefficient. Thus, only the temperature-dependent separation of the acid and amine pairs which have not undergone proton transfer is responsible for the pyroelectric activity in these systems. Pyroelectric activity is exhibited by materials which possess a spontaneous temper...

  1. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  2. Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2011-11-01

    Full Text Available This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.

  3. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films

    Science.gov (United States)

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; Henry, M. D.; Brumbach, M. T.; Ihlefeld, J. F.

    2017-02-01

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm-2 K-1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, and 1).

  4. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals

    Directory of Open Access Journals (Sweden)

    Jiaduo Zhao

    2016-01-01

    Full Text Available In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms.

  5. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    Science.gov (United States)

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  6. Note: Portable rare-earth element analyzer using pyroelectric crystal

    Energy Technology Data Exchange (ETDEWEB)

    Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  7. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    2014-04-01

    Full Text Available With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  8. Improper Ferroelectricity in Stuffed Aluminate Sodalites for Pyroelectric Energy Harvesting

    Science.gov (United States)

    Maeda, Yusaku; Wakamatsu, Toru; Konishi, Ayako; Moriwake, Hiroki; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-03-01

    In the present study, we demonstrate ferroelectricity in stuffed aluminate sodalites (Ca1 -xSrx)8[AlO2]12(WO4)2 (x ≤0.2 ) (C1 -xSxAW ). Pyroelectric measurements clarify switchable spontaneous polarization in polycrystalline C1 -xSxAW , whose polarization values are on the order of 10-2 μ C /cm2 at room temperature. A weak anomaly in the dielectric permittivity at temperatures near the ferroelectric transition temperature suggests improper ferroelectricity of C1 -xSxAW for all investigated values of x . A comprehensive study involving synchrotron x-ray powder diffraction measurements, molecular dynamics simulations, and first-principles calculations clarifies that the ferroelectric phase transition of C1 -xSxAW is driven by the freezing of the fluctuations of WO4 tetrahedra in the voids of an [AlO2]12 12 - framework. The voltage response and electromechanical coupling factor of C1 -xSxAW estimated from the present results indicate that this material exhibits excellent performance as a pyroelectric energy harvester, suggesting that aluminate sodalites exhibit great promise as a class of materials for highly efficient energy-harvesting devices.

  9. Piezoelectric and pyroelectric properties of Sr-doped PZT (PSZT) with minor manganese additions

    Science.gov (United States)

    Aleem, M. A.; Nawaz, H.; Shuaib, M.; Qaisar, S.; Akbar, M. S.

    2013-06-01

    A systematic study was performed to see the effect of Manganese addition and temperature gradient on the electrical properties of PSZT. Pb0.96 Sr0.04 (Zr0.52Ti0.48) O3 (PSZT) containing 0.3%, 0.5%, and 1% Mn was prepared by the sol gel method in order to ensure good stoichiometry and enhanced purity. The powders were calcined at 550 °C and sintered at 1200 °C to achieve 98% of the theoretical density. High field ac study was performed by (P-E) hysteresis measurements at different temperatures (RT, 60, 90, 120 and 150 °C) using an electric field up to 3 kV/mm. It was observed that for a lower Mn concentration P-E loops are pinched at the center while this constriction is found to decrease for greater concentrations. The optimized results were obtained for the 1 mol% of Mn content with 4 mol% of Sr. The values of Qm, k, d33 and tanδ were measured as 756, 0.38, 257 and 0.002 respectively. Higher temperatures coupled with a gradual increase of the electric field resulted in a shift of the hysteresis loops along electric field axis, indicating the presence of an internal bias field. Dependence of pyroelectric properties on applied electric field was also investigated. The value of pyroelectric coefficient was found maximum 6.25 × 10-4 (C/m2K) at 3 kV/mm.

  10. The pyroelectric coefficient of free standing GaN grown by HVPE

    Science.gov (United States)

    Jachalke, Sven; Hofmann, Patrick; Leibiger, Gunnar; Habel, Frank S.; Mehner, Erik; Leisegang, Tilmann; Meyer, Dirk C.; Mikolajick, Thomas

    2016-10-01

    The present study reports on the temperature dependent pyroelectric coefficient of free-standing and strain-free gallium nitride (GaN) grown by hydride vapor phase epitaxy (HVPE). The Sharp-Garn method is applied to extract the pyroelectric coefficient from the electrical current response of the crystals subjected to a sinusoidal temperature excitation in a range of 0 °C to 160 °C. To avoid compensation of the pyroelectric response by an internal conductivity, insulating GaN crystals were used by applying C, Mn, and Fe doping during HVPE growth. The different pyroelectric coefficients observed at room temperature due to the doping correlate well with the change of the lattice parameter c. The obtained data are compared to previously published theoretical and experimental values of thin film GaN and discussed in terms of a strained lattice.

  11. Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites

    Science.gov (United States)

    Lam, K. S.; Wong, Y. W.; Tai, L. S.; Poon, Y. M.; Shin, F. G.

    2004-10-01

    0-3 composite ranging between 0 and 3, of ferroelectric ceramic lead zirconate titanate (PZT) and thermoplastic elastomer polyurethane (PU) were fabricated. The pyroelectric and dielectric properties of the hot-pressed thin film samples of various PZT volume fractions were measured. The experimental dielectric permittivities and losses agreed reasonably well with the Bruggeman model. The room temperature pyroelectric coefficients of the composites were found to increase linearly with PZT volume fraction and substantially larger than expected. For example, for a composite with 30% PZT, its pyroelectric coefficient is about 90μC/m2K at room temperature, which is more than tenfold of a PZT/PVDF composite of the same ceramic volume fraction. We propose a model in which the electrical conductivity of the composite system is taken into consideration to explain the linear relationship and the extraordinarily large pyroelectric coefficients obtained.

  12. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong, E-mail: yong.ding@mse.gatech.edu; Liu, Ying; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2014-10-21

    When ZnO nanobelts are exposed to a high-dose electron probe of several nanometers to hundred nanometers in diameter inside a transmission electron microscope, due to the radiolysis effect, part of oxygen atoms will be ejected into the vacuum and leaving a Zn-ion rich surface with a pit appearance at both the electron-entrance and electron-exit surfaces. At the same time, a temperature distribution is created around the electron probe due to local beam heating effect, which generates a unidirectional pyroelectric field. This pyroelectric field is strong enough to drive Zn ions moving along its positive c-axis direction as interstitial ions. In the first case, for the ZnO nanobelts with c-axis lie in their large surfaces, defects due to the aggregation of Zn interstitial ions will be formed at some distances of 30–50 nm approximately along the c-axis direction from the electron beam illuminated area. Alternatively, for the ZnO nanobelts with ±(0001) planes as their large surfaces, the incident electron beam is along its c-axis and the generated pyroelectric field will drive the interstitial Zn-ions to aggregate at the Zn terminated (0001) surface where the local electrical potential is the lowest. Such electron beam induced damage in ZnO nanostructures is suggested as a result of Zn ion diffusion driven by the temperature gradient induced pyroelectric field along c-axis. Our study shows a radiation damage caused by electron beam in transmission electron microscopy, especially when the electron energy is high.

  13. Controlling dielectric and pyroelectric properties of compositionally graded ferroelectric rods by an applied pressure

    Science.gov (United States)

    Zheng, Yue; Woo, C. H.; Wang, Biao

    2007-06-01

    The polarization, charge offset, dielectric, and pyroelectric properties of a compositionally graded ferroelectric rod inside a high-pressure polyethylene tube are studied using a thermodynamic model based on the Landau-Ginzburg-Devonshire formulation. The calculated distribution of the polarization in the rod is nonuniform, and the corresponding charge offset, dielectric, and pyroelectric properties vary according to the applied pressure. This behavior may be used as a convenient means to control these properties for design optimization.

  14. Nanoscale Studies of Pyroelectric and Thermoelectric Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Gruverman, Alexei [Univ. of Nebraska, Lincoln, NE (United States); Ducharme, Stephen [Univ. of Nebraska, Lincoln, NE (United States)

    2014-07-31

    This research project is focused on (1) development of novel scanning probe microscopy techniques for investigation of the thermally and electrically induced changes in the physical properties of organic polymer ferroelectrics; (2) fabrication of ferroelectric nanostructures and investigation of their functional behavior; (3) fabrication and testing of the organic photovoltaic devices with enhanced energy conversion efficiency. Research activities throughout this project resulted in novel effects and exciting physics reported in 10 papers published in high-profile journals, including Nature Materials, Nano Letters, Advanced Materials, Energy and Environmental Science and Applied Physics Letters. These findings have been presented at a number of domestic and international conferences such as MRS Spring and Fall meetings, International Symposium on Integrated Functionalities, International Symposium on Applications of Ferroelectrics (in total 9 presentations). Below we summarize the most important findings of this project.

  15. Pyroelectric characteristics of thin PbTiO3 and la-modified PbTiO3 films on platinum films for infrared sensors

    Science.gov (United States)

    Deb, K. K.; Tamagawa, T.; di, Y.; Gui, G.; Halpern, B. L.; Schmitt, J. J.

    2001-02-01

    In this work, we grew lead titanate (PbTiO3) and La-modified PbTiO3 thin films on platinized silicon (Si(100)) substrates under controlled substrate temperature and ambient by a modified jet-vapor deposition (JVD) process described in this paper. The x-ray diffraction patterns obtained from these films showed a single-phase perovskite structure. We examined locally homogeneity and thickness of these films through the comparative use of laser Raman spectroscopy. We also collected Raman and x-ray data on pure PbTiO3, as well as prepared lead zirconate titanate (PZT) (54/46), and PZT (50/50) films using the JVD process. This paper discusses the temperature variations of the pyroelectric and dielectric properties of three compositions of La-modified PbTiO3 films containing 5.2% to 15% of La, respectively, with a view toward studying the effect of La in place of Pb on these electrical properties. We detected significant pyroelectric currents on all three La-modified PbTiO3 films before performing poling treatments, and observed pyroelectric coefficeints as high as 84 nC/cm2·°C in the poled La-doped PbTiO3 films containing 5.2% La. The pyroelectric coefficient and dielectric constant varied significantly with La content. We compared the calculated figures of merit, which were based on the measured physical properties, with pure PbTiO3 as well as PZT and lead lanthanide zirconate titanate (PLZT) films. These properties just described illustrate that these films would be suitable for IR detectors.

  16. Denoising Using Blind Source Separation for Pyroelectric Sensors

    Directory of Open Access Journals (Sweden)

    Huez Regis

    2001-01-01

    Full Text Available This paper deals with a process of denoising based on a Blind Source Separation (BSS method. This technique is inserted in an experimental device of nondestructive testing. Its excitation is a laser beam and its detectors are pyroelectric sensors. The latter are sensitive to the temperature. As they are also piezoelectric, they are particularly sensitive to the environmental noise. Therefore, it is necessary to denoise them. With this aim in view, a technique of blind source separation is implemented. One source corresponds to the incidental beam and the other sources are various noise. A judicious experimental device was designed in the laboratory. It fits to the requirements of the BSS technique, and it allows indeed a restoration of the incident signal.

  17. Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-Pyroelectric Nanogenerator under Harsh Environments.

    Science.gov (United States)

    Ko, Young Joon; Kim, Dong Yeong; Won, Sung Sik; Ahn, Chang Won; Kim, Ill Won; Kingon, Angus I; Kim, Seung-Hyun; Ko, Jae-Hyeon; Jung, Jong Hoon

    2016-03-01

    In spite of extremely high piezoelectric and pyroelectric coefficients, there are few reports on flexible ferroelectric perovskite film based nanogenerators (NGs). Here, we report the successful growth of a flexible Pb(Zr0.52Ti0.48)O3 (PZT) film and its application to hybrid piezoelectric-pyroelectric NG. A highly flexible Ni-Cr metal foil substrate with a conductive LaNiO3 bottom electrode enables the growth of flexible PZT film having high piezoelectric (140 pC/N) and pyroelectric (50 nC/cm(2)K) coefficients at room temperature. The flexible PZT-based NG effectively scavenges mechanical vibration and thermal fluctuation from sources ranging from the human body to the surroundings such as wind. Furthermore, it stably generates electric current even at elevated temperatures of 100 °C, relative humidity of 70%, and pH of 13 by virtue of its high Curie temperature and strong resistance for water and base. As proof of power generation under harsh environments, we demonstrate the generation of extremely high current at the exhaust pipe of a car, where hot CO and CO2 gases are rapidly expelled to air. This work expands the application of flexible PZT film-based NG for the scavenging mechanical vibration and thermal fluctuation energies even at extreme conditions.

  18. A temperature oscillation instrument to determine pyroelectric properties of materials at low frequencies: Towards elimination of lock-in methods

    NARCIS (Netherlands)

    Khanbareh, H.; Schelen, J.B.J.; Van der Zwaag, S.; Groen, W.A.

    2015-01-01

    Pyroelectric properties of materials can be accurately determined by applying a new digital signal processing method on the discrete sampled data obtained with a temperature oscillation technique. The pyroelectric coefficient is calculated from the component of the generated current 90∘ out of phase

  19. Mechanism of the Pyroelectric Response under Direct-Current Bias in La-Modified Lead Zirconate Titanate Stannate Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Ling; WANG Gen-Shui; CHEN Xue-Feng; CAO Fei; DONG Xian-Lin; GU Yan; HE Hong-Liang; LIU Yu-Sheng

    2011-01-01

    Dielectric and pyroelectric properties ofPbo.97Lao.o2(Zro.42Sno.4oTio.i8)03 ceramics are investigated as functions of temperature and dc bias field. Induced and intrinsic pyroelectric coefficients pind and p0 are calculated and analyzed. It is found that the sign, value and variation of the net pyroelectric coefficient p with increasing dc bias all are dominated by p0 under applied biases. Polarization and depolarization processes under dc biases are analyzed. Besides the contribution of pind, the diffuse and decreased pyroelectric response under dc bias compared with that of an identical Geld poled sample without dc bias is mainly attributed to the depolarization process under dc bias.%@@ Dielectric and pyroelectric properties of Pbo.s7Lao.o2(Zro.42Sno.4OTio.is)O3 ceramics are investigated as functions of temperature and do bias field.Induced and intrinsic pyroelectric coefficients pind and p0 are calculated and analyzed.It is found that the sign,value and variation of the net pyroelectric coefficient p with increasing dc bias all are dominated by p0 under applied biases.Polarization and depolarization processes under do biases are analyzed.Besides the contribution of pind,the diffuse and decreased pyroelectric response under do bias compared with that of an identical field poled sample without do bias is mainly attributed to the depolarization process under do bias.

  20. A temperature oscillation instrument to determine pyroelectric properties of materials at low frequencies: Towards elimination of lock-in methods.

    NARCIS (Netherlands)

    Khanbareh, H.; Schelen, J.B.J.; van der Zwaag, S.; Groen, W.A.

    2015-01-01

    Pyroelectric properties of materials can be accurately determined by applying a new digital signal processing method on the discrete sampled data obtained with a temperature oscillation technique. The pyroelectric coefficient is calculated from the component of the generated current 90(∘) out of pha

  1. Application of LiTaO{sub 3} pyroelectric crystal for pulsed neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Liang, W.F., E-mail: liang_wen_feng@163.com [CAEP Key Laboratory of Neutron Physics, Mianyang 621900 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Lu, Y.; Wu, J.; Gao, H.; Li, M. [CAEP Key Laboratory of Neutron Physics, Mianyang 621900 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-08-11

    The feasibility of a LiTaO{sub 3} pyroelectric crystal for pulsed neutron detection has been studied. The detector consists of a slice of electroded Z-cut LiTaO{sub 3} pyroelectric crystal, and no additional neutron converter is required owing to the Li contained in the crystal. The slight temperature increase caused by neutron radiation will lead to the release of bound charges and will give rise to a pyroelectric signal. The response of it has been studied both theoretically and experimentally. Our preliminary experiment on the CFBR-II reactor suggests that the LiTaO{sub 3} pyroelectric detector is promising for high intensity neutron – pulse measurement. - Highlights: • LiTaO{sub 3} pyroelectric neutron detector can be used with no additional neutron converter. • Relationship between the pulsed neutron field and the voltage signal was obtained. • Experiment was carried out to test the response of LiTaO{sub 3} detector. • Feasibility of LiTaO{sub 3} for intense neutron pulse measurement was confirmed.

  2. An infrared-driven flexible pyroelectric generator for non-contact energy harvester.

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-21

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm(-2) near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.

  3. Pyroelectric composite film for X-ray intensity detection

    Directory of Open Access Journals (Sweden)

    Walter Katsumi Sakamoto

    2012-04-01

    Full Text Available Composite material obtained with modified lead titanate (Pz34 ferroelectric ceramic and polyether-ether-ketone (PEEK polymer matrix was used as sensitive component to measure X-ray intensity in a novel detection system. The sensing element works as a thermal transducer, converting a non-quantified thermal flux into an output measurable quantity of electrical voltage. The samples were obtained up to 60 vol.% of ceramic, by hot pressing the mixture of Pz34 and PEEK powders at 368 °C and applying 12 MPa pressure for 2.0 hours. The sensor response varies from 2.70 to 0.80 V in the energy fluence rate range of 6.30 to 37.20 W.m-2. The absorbed incident energy was analyzed as a function of the ionizing energy. Furthermore, by measuring the pyroelectric activity of the composite film it was observed that there is no degradation of the sensor after the irradiation.

  4. Bullet Design and Fabrication of Dual Mode Pyroelectric Sensor: High Sensitive Energymeter for Nd: YAG Laser and Detector for Chopped He-Ne Laser

    Directory of Open Access Journals (Sweden)

    S. SATAPATHY

    2008-05-01

    Full Text Available Pyroelectric sensor using TGS has been designed and fabricated which can be operated in laser energy meter mode as well as pyroelectric detector mode. The amplifying circuit configuration has very good signal to noise ratio, very high input impedance and low drift. The pyroelectric sensor has been tested using Q-switched Nd: YAG laser and chopped He-Ne laser. The sensitivity of pyroelectric sensor in energymeter mode is 421.7V/J and the voltage responsivity of the pyroelectric sensor is 3.27 V/W in detector mode.

  5. Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers

    Science.gov (United States)

    Espinal, Y.; Kesim, M. T.; Misirlioglu, I. B.; Trolier-McKinstry, S.; Mantese, J. V.; Alpay, S. P.

    2014-12-01

    The dielectric and pyroelectric properties of c-domain ferroelectric films with linear dielectric buffer layers were investigated theoretically. Computations were carried out for multilayers consisting of PbZr0.2Ti0.8O3 with Al2O3, SiO2, Si3N4, HfO2, and TiO2 buffers on metalized Si. It is shown that the dielectric and pyroelectric properties of such multilayers can be increased by the presence of the buffer compared to ferroelectric monolayers. Calculations for PbZr0.2Ti0.8O3 films with 1% Al2O3 interposed between electrodes on Si show that the dielectric and pyroelectric coefficients are 310 and 0.070 μC cm-2 °C-1, respectively. Both values are higher than the intrinsic response of PbZr0.2Ti0.8O3 monolayer on Si.

  6. Layer thickness and period as design parameters to tailor pyroelectric properties in ferroelectric superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Misirlioglu, I. B., E-mail: burc@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla/Orhanli, 34956 Istanbul (Turkey); Kesim, M. T. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-10-27

    We theoretically examine the pyroelectric properties of ferroelectric-paraelectric superlattices as a function of layer thickness and configuration using non-linear thermodynamics coupled with electrostatic and electromechanical interactions between layers. We specifically study PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/SrTiO{sub 3} superlattices. The pyroelectric properties of such constructs consisting of relatively thin repeating units are shown to exceed the pyroelectric response of monolithic PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} films. This is related to periodic internal electric fields generated due to the polarization mismatch between layers that allows tailoring of the shift in the transition temperature. Our results indicate that higher and electric field sensitive pyroresponse can be achieved from layer-by-layer engineered ferroelectric heterostructures.

  7. CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance

    Science.gov (United States)

    Rakita, Yevgeny; Meirzadeh, Elena; Bendikov, Tatyana; Kalchenko, Vyacheslav; Lubomirsky, Igor; Hodes, Gary; Ehre, David; Cahen, David

    2016-05-01

    To experimentally (dis)prove ferroelectric effects on the properties of lead-halide perovskites and of solar cells, based on them, we used second-harmonic-generation spectroscopy and the periodic temperature change (Chynoweth) technique to detect the polar nature of methylammonium lead bromide (MAPbBr3). We find that MAPbBr3 is probably centrosymmetric and definitely non-polar; thus, it cannot be ferroelectric. Whenever pyroelectric-like signals were detected, they could be shown to be due to trapped charges, likely at the interface between the metal electrode and the MAPbBr3 semiconductor. These results indicate that the ferroelectric effects do not affect steady-state performance of MAPbBr3 solar cells.

  8. CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance

    Directory of Open Access Journals (Sweden)

    Yevgeny Rakita

    2016-05-01

    Full Text Available To experimentally (disprove ferroelectric effects on the properties of lead-halide perovskites and of solar cells, based on them, we used second-harmonic-generation spectroscopy and the periodic temperature change (Chynoweth technique to detect the polar nature of methylammonium lead bromide (MAPbBr3. We find that MAPbBr3 is probably centrosymmetric and definitely non-polar; thus, it cannot be ferroelectric. Whenever pyroelectric-like signals were detected, they could be shown to be due to trapped charges, likely at the interface between the metal electrode and the MAPbBr3 semiconductor. These results indicate that the ferroelectric effects do not affect steady-state performance of MAPbBr3 solar cells.

  9. Influence of Surface Transition Layers on Phase Transformation and Pyroelectric Properties of Ferroelectric Thin Film

    Institute of Scientific and Technical Information of China (English)

    SUN Pu-Nan; L(U) Tian-Quan; CHEN Hui; CAO Wen-Wu

    2008-01-01

    Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding bulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.

  10. Reversible Switching of Icing Properties on Pyroelectric Polyvenylidene Fluoride Thin Film Coatings

    Directory of Open Access Journals (Sweden)

    Dirk Spitzner

    2015-10-01

    Full Text Available In this work a new approach for ice repellent coatings is presented. It was shown that the coatings cause a decrease or increase in the freezing temperature of water depending on the alignment of an external electric field. For this coating the commonly used pyroelectric polymer polyvenylidene fluoride was deposited as a thin film on glass. The samples were dip-coated and subsequently thermally-treated at 140 °C for 1 h. All samples were found to cause a reduction of the icing temperature of water on their surface in comparison to uncoated glass. On several samples an external electric field was applied during this thermal treatment. The field application was found to cause a remarkable reduction of the icing temperature where a maximum lowering of the freezing temperature of 3 K compared to uncoated glass could be achieved. The actual achieved reduction of the icing temperature was observed to depend on the polarity of the field applied during the thermal treatment. Furthermore, a repetition of the thermal treatment under oppositely directed electric fields led to a switchable freezing behavior of water according to the direction of the applied field. With an increasing number of cycles of switching of the icing property a slight training effect towards lower freezing temperatures was observed.

  11. Development of pyroelectric neutron source for calibration of neutrino and dark matter detectors

    Science.gov (United States)

    Chepurnov, A. S.; Ionidi, V. Y.; Gromov, M. B.; Kirsanov, M. A.; Klyuyev, A. S.; Kubankin, A. S.; Oleinik, A. N.; Shchagin, A. V.; Vokhmyanina, K. A.

    2017-01-01

    The laboratory experimental setup for development of pyroelectric neutron generator for calibration of neutrino and dark matter detectors for direct search of Weakly Interacting Massive Particles (WIMP) has been developed. The setup allows providing and controlling the neutrons generation process realized during d-d nuclear fusion. It is shown that the neutrons with energy 2.45 MeV can be generated starting from a level of electric potential generated by pyroelectric crystal about 30 kV, in contrast to the typical neutron tubes which need the applied outer high voltage level about 100 kV.

  12. Human Movement Detection and Identification Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Jaeseok Yun

    2014-05-01

    Full Text Available Pyroelectric infrared (PIR sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth, three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor and three speed levels (slow, moderate, fast. We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.

  13. Realization of an integrated VDF/TrFE copolymer-on-silicon pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Regtien, P.P.L.; Sarro, P.M.

    1995-01-01

    An integrated pyroelectric sensor based on a vinylidene fluoride trifluoroethylene (VDF/TrFE) copolymer is presented. A silicon substrate that contains FET readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling of the copolymer has been applied

  14. A 3 x 1 Integrated Pyroelectric Sensor Based on VDF/TrFE Copolymer

    NARCIS (Netherlands)

    Setiadi, D.; Sarro, P.M.; Regtien, P.P.L.

    1995-01-01

    This paper presents an integrated pyroelectric sensor based on a Vinylidene Fluoride TriFluoroEthylene (VDF/TrFE) copolymer. A silicon substrate that contains FET readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling of the copolymer has been a

  15. Piezoelectric and pyroelectric properties of lead titanate-polyethylene oxide composites

    NARCIS (Netherlands)

    Khanbareh, H.; van der Zwaag, S.; Groen, W. A.

    2014-01-01

    Polymer-ceramic composites with pyroelectric sensitivity are presented as promising candidates for infrared detection. Selection of the appropriate ceramic filler and the polymer matrix is one of the key parameters in the development of optimized materials for specific applications. In this work lea

  16. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    Science.gov (United States)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  17. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  18. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi{sub 4}Ti{sub 4}O{sub 15} ceramics for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Ramana, E., E-mail: venkataramanaesk@rediffmail.com [I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro 3810 193 (Portugal); Graça, M.P.F.; Valente, M.A. [I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro 3810 193 (Portugal); Bhima Sankaram, T. [Materials Research Laboratory, Department of Physics, Osmania University, Hyderabad 500 007 (India)

    2014-01-15

    Highlights: • Sr{sub 1−x}Pb{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi{sub 4}Ti{sub 4}O{sub 15} ceramics. • Pb-doped SrBi{sub 4}Ti{sub 4}O{sub 15} exhibited improved pyroelectric properties with high T{sub C}. -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr{sub 1−x}Pb{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d{sub 33}) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications.

  19. Spectral responsivity calibrations of two types of pyroelectric radiometers using three different methods

    Science.gov (United States)

    Zeng, J.; Eppeldauer, G. P.; Hanssen, L. M.; Podobedov, V. B.

    2012-06-01

    Spectral responsivity calibrations of two different types of pyroelectric radiometers have been made in the infrared region up to 14 μm in power mode using three different calibration facilities at NIST. One pyroelectric radiometer is a temperature-controlled low noise-equivalent-power (NEP) single-element pyroelectric radiometer with an active area of 5 mm in diameter. The other radiometer is a prototype using the same type of pyroeletric detector with dome-input optics, which was designed to increase absorptance and to minimize spectral structures to obtain a constant spectral responsivity. Three calibration facilities at NIST were used to conduct direct and indirect responsivity calibrations tied to absolute scales in the infrared spectral regime. We report the calibration results for the single-element pyroelectric radiometer using a new Infrared Spectral Comparator Facility (IRSCF) for direct calibration. Also, a combined method using the Fourier Transform Infrared Spectrophotometry (FTIS) facility and single wavelength laser tie-points are described to calibrated standard detectors with an indirect approach. For the dome-input pyroelectric radiometer, the results obtained from another direct calibration method using a circular variable filter (CVF) spectrometer and the FTIS are also presented. The inter-comparison of different calibration methods enables us to improve the responsivity uncertainty performed by the different facilities. For both radiometers, consistent results of the spectral power responsivity have been obtained applying different methods from 1.5 μm to 14 μm with responsivity uncertainties between 1 % and 2 % (k = 2). Relevant characterization results, such as spatial uniformity, linearity, and angular dependence of responsivity, are shown. Validation of the spectral responsivity calibrations, uncertainty sources, and improvements for each method will also be discussed.

  20. Systematic evaluation of a secondary method for measuring diagnostic-level medical ultrasound transducer output power based on a large-area pyroelectric sensor

    Science.gov (United States)

    Zeqiri, B.; Žauhar, G.; Rajagopal, S.; Pounder, A.

    2012-06-01

    A systematic study of the application of a novel pyroelectric technique to the measurement of diagnostic-level medical ultrasound output power is described. The method exploits the pyroelectric properties of a 0.028 mm thick membrane of polyvinylidene fluoride (PVDF), backed by an acoustic absorber whose ultrasonic absorption coefficient approaches 1000 dB cm-1 at 3 MHz. When exposed to an ultrasonic field, absorption of ultrasound adjacent to the PVDF-absorber interface results in heating and the generation of a pyroelectric output voltage across gold electrodes deposited on the membrane. For a sensor large enough to intercept the whole of the acoustic beam, the output voltage can be calibrated for the measurement of acoustic output power. A number of key performance properties of the method have been investigated. The technique is very sensitive, with a power to voltage conversion factor of typically 0.23 V W-1. The frequency response of a particular embodiment of the sensor in which acoustic power reflected at the absorber-PVDF interface is subsequently returned to the pyroelectric membrane to be absorbed, has been evaluated over the frequency range 1.5 MHz to 10 MHz. This has shown the frequency response to be flat to within ±4%, above 2.5 MHz. Below this frequency, the sensitivity falls by 20% at 1.5 MHz. Linearity of the technique has been demonstrated to within ±1.6% for applied acoustic power levels from 1 mW up to 120 mW. A number of other studies targeted at assessing the achievable measurement uncertainties are presented. These involve: the effects of soaking, the influence of the angle of incidence of the acoustic beam, measurement repeatability and sensitivity to transducer positioning. Additionally, over the range 20 °C to 30 °C, the rate of change in sensitivity with ambient temperature has been shown to be +0.5% °C-1. Implications of the work for the development of a sensitive, traceable, portable, secondary method of ultrasound output power

  1. Heavy electrons: Electron droplets generated by photogalvanic and pyroelectric effects

    CERN Document Server

    Krasnoholovets, V; Kukhtareva, T

    2009-01-01

    Electron clusters, X-rays and nanosecond radio-frequency pulses are produced by 100 mW continuous-wave laser illuminating ferroelectric crystal of LiNbO_3. A long-living stable electron droplet with the size of about 100 mcm has freely moved with the velocity 0.5 cm/s in the air near the surface of the crystal experiencing the Earth gravitational field. The microscopic model of cluster stability, which is based on submicroscopic mechanics developed in the real physical space, is suggested. The role of a restraining force plays the inerton field, a substructure of the particles' matter waves, which a solitary one can elastically withstand the Coulomb repulsion of electrons. It is shown that electrons in the droplet are heavy electrons whose mass at least 1 million of times exceeds the rest mass of free electron. Application for X-ray imaging and lithography is discussed.

  2. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing.

    Science.gov (United States)

    Zi, Yunlong; Lin, Long; Wang, Jie; Wang, Sihong; Chen, Jun; Fan, Xing; Yang, Po-Kang; Yi, Fang; Wang, Zhong Lin

    2015-04-08

    A triboelectric-pyroelectric-piezoelectric hybrid cell, consisting of a triboelectric nanogenerator and a pyroelectric-piezoelectric nanogenerator, is developed for highly efficient mechanical energy harvesting through multiple mechanisms. The excellent performance of the hybrid cell enhances the energy-harvesting efficiency significantly (by 26.2% at 1 kΩ load resistance), and enables self-powered sensing, which will lead to a variety of advanced applications.

  3. Optimized Pyroelectric Vidicon Thermal Imager. Volume I. Thermal Imager. Volume 1a. Rain Camera. Volume 1b. Reticulation.

    Science.gov (United States)

    1979-06-01

    the pan mode. Reticulation of the TGS family of pyroelectric targets was demonstrated using standard ion-milling techniques. Reticula - tion of DTGFB...9 A technique for pedestal noise suppression (PNS) is being investigated as part of Contract DAAK70-77-C-0138 (Return Beam/Isocon Pyroelectric...reticulation studies under the basic contract because TGFB and DTGFB were not available in sufficient quantities during the early part of the program. The

  4. Pyroelectricity of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown by sol–gel process on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Moalla, R. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France); Le Rhun, G. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Defay, E. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Luxembourg Institute of Science and Technology (LIST), Materials Research & Technology Department (MRT), 41 Rue du Brill, L-4422 Belvaux (Luxembourg); Baboux, N. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, INSA de Lyon, Bâtiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sebald, G. [Laboratoire de Génie Electrique et Ferroélectricité, LGEF EA 682, INSA de Lyon, Bâtiment Gustave Ferrié, 8 rue de la Physique, 69621 Villeurbanne Cedex (France); Bachelet, R., E-mail: romain.bachelet@ec-lyon.fr [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France)

    2016-02-29

    Pyroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films have been grown by sol–gel process on Si(001). Intrinsic pyroelectric coefficient has been measured through ferroelectric loops recorded at different temperatures and is about − 300 μC/m{sup 2}K. Corresponding converted pyroelectric power density is estimated to be ~ 1 mW/cm{sup 3} for a temperature variation of 10 °C every 6 s. Pyroelectric response of these films has been confirmed by direct measurements of the pyroelectric current with temperature variations at zero electric field. These results are of high interest for integrated thermally-sensitive devices. - Highlights: • Functional oxide films are grown by low-cost sol–gel process and spin-coating. • Pyroelectric Pb(Zr,Ti)O{sub 3} films are integrated in planar capacitor structure on Si. • Bulk intrinsic pyroelectric coefficient is measured: ‐ 300 μC/m{sup 2}K. • Converted pyroelectric energy is estimated: 6 mJ/cm{sup 3} per 10 °C thermal cycle. • Direct measurements of pyroelectricity are done on integrated oxide thin films.

  5. Study on pyroelectric characteristic of piezoelectric ceramic excited by periodic thermal excitation%周期性热激励下压电陶瓷的热释电特性研究

    Institute of Scientific and Technical Information of China (English)

    吴仲武; 董卫; 姚丽; 张庆; 乔正辉

    2012-01-01

    设计了一套研究压电陶瓷热电特性的实验系统,并基于热释电效应研究了压电陶瓷在周期性热激励下的热电特性,拟合出了周期性热激励下压电陶瓷中产生的电压与电流的表达式.模拟和实验结果表明,当采用周期性的聚焦光线照射在压电陶瓷表面时,压电陶瓷表面的温度和正负极之间的电压也会周期性的变化,且变化的频率与调频装置的频率一致.%An experimental system was designed to study the pyroelectric characteristic of the piezoelectric ceramic. Based on pyroelectric effect,the pyroelectric characteristic of the piezoelectric ceramic under a condition of periodic thermal excitation was studied,and the formulas of voltage and current of the piezoelectric ceramic were also concluded. Results of the simulation and experiments show that the voltage of the piezoelectric ceramic changes periodically when the piezoelectric ceramic is illuminated by a periodic focused light. The frequency of the voltage is consistent with the frequency of the frequency converter.

  6. Study on Low Temperature Pyroelectric and Elastic Properties of Li0.06Na0.94NbO3 Ceramics%低温下铌酸锂钠陶瓷的热释电性与弹性研究

    Institute of Scientific and Technical Information of China (English)

    艾树涛; 王春雷; 张沛霖; 赵明磊; 杜爱军

    2001-01-01

    Pyroelectric and elastic properties of Li0.06Na0.94NbO3 ceramics have been investigated in the temperature range from 120~320 K.Its pyroelectric and elastic properties behave anomalously in certain low temperature intervals.This shows there is a low temperature ferroelectric phase transition in Li0.06Na0.94NbO3 ceramics.The inversion of its pyroelectric coefficient in polarized direction to the opposite sign and the change of the polarity of pyroelectric charge with time during phase transtion have been observed.The evolution of elastic properties is connected with the secondary piezoelectric effect.%在120~320 K的温度范围内研究了锂酸锂钠陶瓷的热释电性与弹性。其热释电行为与弹性行为在低温区域内显著反常,表明该陶瓷存在低温铁电-铁电相变。观测到极化方向的热释电系数改变符号及热释电电荷随时间改变极性的现象。弹性变化与次级压电效应是相关的。

  7. The Control Method for Pyroelectric Chopper%热释电斩波器控制

    Institute of Scientific and Technical Information of China (English)

    王敏; 李晶; 朱洪洋; 刘愚; 郭小军; 陈如造; 罗凤旺; 秦伟; 朱光明

    2014-01-01

    斩波器是热释电型热像仪的重要组成部份,其平稳、匀速且按要求相位精确地运转,关系到整机成像质量的好坏。提出了一种对热释电斩波器进行闭环控制的方法,该方法的使用,解决了斩波器的控制问题。%Chopper is the important part of the pyroelectric thermal imager. The stable and uniform operation of chopper is related to the imaging quality. This paper presents a method about the closed-loop control for pyroelectric chopper, which solves the problem of the chopper control.

  8. Piezo- and pyroelectricity of a polymer-foam space-charge electret

    Science.gov (United States)

    Neugschwandtner, Gerhard S.; Schwödiauer, Reinhard; Bauer-Gogonea, Simona; Bauer, Siegfried; Paajanen, Mika; Lekkala, Jukka

    2001-04-01

    Charged closed-cell polypropylene polymer foams are highly sensitive and broadband piezoelectric materials with a quasistatic piezoelectric d33 coefficient about 250 pC/N and a dynamic d33 coefficient of 140 pC/N at 600 kHz. The piezoelectric coefficient is much larger than that of ferroelectric polymers, like polyvinylidene fluoride, and compares favorably with ferroelectric ceramics, such as lead zirconate titanate. The pyroelectric coefficient p3=0.25 μC/m2 K is small in comparison to ferroelectric polymers and ferroelectric ceramics. The low density, small pyroelectric coefficient and high piezoelectric sensitivity make charged polymer foams attractive for a wide range of sensor and transducer applications in acoustics, air-borne ultrasound, medical diagnostics, and nondestructive testing.

  9. Nanotubes, nanorods and nanowires having piezoelectric and/or pyroelectric properties and devices manufactured therefrom

    Science.gov (United States)

    Russell, Thomas P [Amherst, MA; Lutkenhaus, Jodie [Wethersfield, CT

    2012-05-15

    Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or pyroelectric polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.

  10. Real-time, continuous-wave terahertz imaging by a pyroelectric camera

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Shuangchen Ruan; Min Zhang

    2008-01-01

    Real-time, continuous-wave terahertz (THz) imaging is demonstrated. A 1.89-THz optically-pumped farinfrared laser is used as the illumination source, and a 124 × 124 element room-temperature pyroelectric camera is adopted as the detector. With this setup, THz images through various wrapping materials are shown. The results show that this imaging system has the potential applications in real-time mail and security inspection.

  11. Timing A Pulsed Thin Film Pyroelectric Generator For Maximum Power Denisty

    Science.gov (United States)

    Smith, A. N.; Hanrahan, B. M.; Neville, C. J.; Jankowski, N. R.

    2016-11-01

    Pyroelectric thermal-to-electric energy conversion is accomplished by a cyclic process of thermally-inducing polarization changes in the material under an applied electric field. The pyroelectric MEMS device investigated consisted of a thin film PZT capacitor with platinum bottom and iridium oxide top electrodes. Electric fields between 1-20 kV/cm with a 30% duty cycle and frequencies from 0.1 - 100 Hz were tested with a modulated continuous wave IR laser with a duty cycle of 20% creating temperature swings from 0.15 - 26 °C on the pyroelectric receiver. The net output power of the device was highly sensitive to the phase delay between the laser power and the applied electric field. A thermal model was developed to predict and explain the power loss associated with finite charge and discharge times. Excellent agreement was achieved between the theoretical model and the experiment results for the measured power density versus phase delay. Limitations on the charging and discharging rates result in reduced power and lower efficiency due to a reduced net work per cycle.

  12. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  13. Materials preparation and fabrication of pyroelectric polymer/silicon MOSFET detector arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, P. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering

    1992-03-27

    The authors have delivered several 64-element linear arrays of pyroelectric elements fully integrated on silicon wafers with MOS readout devices. They have delivered detailed drawings of the linear arrays to LANL. They have processed a series of two inch wafers per submitted design. Each two inch wafer contains two 64 element arrays. After spin-coating copolymer onto the arrays, vacuum depositing the top electrodes, and polarizing the copolymer films so as to make them pyroelectrically active, each wafer was split in half. The authors developed a thicker oxide coating separating the extended gate electrode (beneath the polymer detector) from the silicon. This should reduce its parasitic capacitance and hence improve the S/N. They provided LANL three processed 64 element sensor arrays. Each array was affixed to a connector panel and selected solder pads of the common ground, the common source voltage supply connections, the 64 individual drain connections, and the 64 drain connections (for direct pyroelectric sensing response rather than the MOSFET action) were wire bonded to the connector panel solder pads. This entails (64 + 64 + 1 + 1) = 130 possible bond connections per 64 element array. This report now details the processing steps and the progress of the individual wafers as they were carried through from beginning to end.

  14. Correlation between intrinsic dipole moment and pyroelectric coefficient of Fe-Mg tourmaline

    Institute of Scientific and Technical Information of China (English)

    Chang-chun Zhao; Li-bing Liao; Jie Xing

    2014-01-01

    Single-crystal X-ray diffraction structural data of four Fe-Mg tourmalines with different Fe contents from Xinjiang, Sichuan, and Yunnan Provinces, China, were collected at room temperature and-100ºC. The intrinsic dipole moments of polyhedra and the total intrinsic dipole moment of the unit cell were calculated. By comparing the intrinsic electric dipole moments of the X, Y, Z, T, and B site polyhedra, it is found that the T site polyhedron makes the greatest contribution to the total intrinsic dipole moment. The pyroelectric coefficients of four Fe-Mg tourmalines were experimentally determined, and the influence of intrinsic dipole moments on their pyroelectric properties was inves-tigated. The experimental results show that, compared with the case at room temperature, the intrinsic dipole moments change with the total Fe content at-100ºC in a completely different way. With the decrease of temperature, the total intrinsic dipole moments of tourmaline de-crease. Over the same temperature interval, the pyroelectric coefficients increase with the increase in intrinsic dipole moment.

  15. True differential pyroelectric infrared detector with improved D* test results with analysis

    Science.gov (United States)

    Doctor, Alan

    2016-10-01

    Pyroelectric infrared detectors are used in many commercial and industrial applications. Typically these devices have been "single ended" and thus any electronic perturbation from a non-detector related noise source such as line frequency interference or microprocessor clock and other sources of electronic noise can be coupled onto the detector's output signal. We have solved this problem by employing a rather unique connection which also provides an increase in the signal to noise of any pyroelectric detector by a factor of the square root of 2 or by about 1.41 times greater than devices not utilizing this connection. Many devices using this connection have been built, fully tested and the data analyzed which provide a true differential or double ended output and the increase in D* as predicted. This scheme will work with any pyroelectric material (LTO, DLATGS, PLZT, PVDF etc.) with current or voltage mode impedance conversion and configurations such as parallel or series with and without temperature fluctuation compensation and of course with standard single elements. This talk will present this data and conclusions regarding the approach.

  16. 热释电红外传感器及其在人员计数系统中的应用%Pyroelectric infrared sensor and its application in people counting system

    Institute of Scientific and Technical Information of China (English)

    易金桥; 黄勇; 廖红华; 谭建军; 姜胜林

    2015-01-01

    People-counting systems for image acquisition are usually complicated and expensive. In this paper, with detailed analysis of the pyroelectric effect and infrared sensor, BISS0001 integrated signal processing chip were chosen to design an amplifier circuit for the RE200B pyroelectric infrared sensor, in order to study its output waveforms under various human movement states. A people-counting system was designed, with double pyroelectric infrared sensors as the signal acquisition unit and a Cortex-M3 microcontroller as the control core, and its main algorithms were researched. The experimental results demonstrate that different body movement states can be accurately characterized using the output waveforms of the RE200B pyroelectric infrared sensor and the movement directions can be precisely distinguished by the people-counting system based on double pyroelectric infrared sensors designed in this paper. Furthermore, the system realizes real-time counting, and can be applied to a wide range of areas including human body detection and counting.%针对图像采集人员计数系统复杂、价格昂贵等缺点,在分析热释电效应以及红外传感的基础上,采用BISS0001型信号处理专用集成芯片设计了基于RE200B热释电红外传感器的放大电路,研究其在不同人体运动状态下的输出波形;设计了以双热释电红外传感器为信号采集单元,以Cortex-M3单片机为控制核心的人员计数系统,并研究其主要算法。实验结果表明,RE200B型热释电红外传感器的输出波形能够准确表征人体的不同运动状态,基于双热释电红外传感器的人员计数系统能准确分辨人体的运动方向,并实时计数,可广泛应用于人体探测和人员计数等领域。

  17. Evaluation of the solid state dipole moment and pyroelectric coefficient of phosphangulene by multipolar modeling of X-ray structure factors

    DEFF Research Database (Denmark)

    Madsen, G.K.H.; Krebs, Frederik C; Lebech, B.;

    2000-01-01

    The electron density distribution of the molecular pyroelectric material phosphangulene has been studied by multipolar modeling of X-ray diffraction data. The "in-crystal" molecular dipole moment has been evaluated to 4.7 D corresponding to a 42% dipole moment enhancement compared with the dipole...... pyroelectric coefficients has been introduced by combining the derived dipole moment with temperature-dependent measurements of the unit cell volume. The derived pyroelectric coefficient of 3.8(7)x 10(-6) Cm-2K-1 is in very good agreement with the measured pyroelectric coefficient of p = 3 +/- 1 x 10(-6) Cm-2...... K-1. This method for obtaining the pyroelectric coefficient uses information from the X-ray diffraction experiment alone and can be applied to much smaller crystals than traditional methods....

  18. Dielectric and Pyroelectric Characteristics of the Infrared Sensitive(Pb_(1-x)Sr_x)TiO_3 Ceramics

    Institute of Scientific and Technical Information of China (English)

    WANG Maoxiang; SHU Qing; MU Zhichun; JIAN Yuliang

    2009-01-01

    PST ferroelectric ceramics were fabricated successfully by a two-step method,i e first,PbTiO_3 and SrTiO_3 were sintered respectively,then mixed and sintered together.The process and characteristics of PST ferroelectric ceramics were introduced and researched.Their dielectric and pyroelectric characteristics are as follows dielectric constant 10~4 order,low dielectric loss(lower than 3.0%in the working frequency range of 1-1 000 kHz),saturation polarization intensity 10~(―1)C/m~2 order,and pyroelectric coefficient 10~(―3)C/m~2·K order.

  19. A selective pyroelectric detector of millimeter-wave radiation with an ultrathin resonant meta-absorber

    Science.gov (United States)

    Paulish, A. G.; Kuznetsov, S. A.

    2016-11-01

    The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.

  20. Pyroelectric electron emissions and domain inversion of LiNbO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Wook [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of)]. E-mail: Peterkim@ucsd.edu; Bourim, E.M. [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Yoo, In K. [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600, Korea (Korea)

    2004-10-30

    We investigated the electron emissions from a congruent LiNbO{sub 3} single crystal with variation in temperature. When there was a small gap between the crystal and detector (<2 mm), we observed abrupt drops in the emission current and polarization domain inversion of the crystal. The current burst was distributed in tree-like patterns that suggested plasma generation. A sufficient gap and a crystal with a high coercive field appear to be factors that allow reproducible electron emissions from pyroelectric materials.

  1. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  2. Dielectric and Pyroelectric Properties of La- and Pr-Modified Tungsten-Bronze Ferroelectrics

    Science.gov (United States)

    Parida, B. N.; Das, Piyush R.; Padhee, R.; Choudhary, R. N. P.

    2013-08-01

    The polycrystalline materials Li2Pb2R2W2Ti4Nb4O30 (R = La, Pr) of the tungsten-bronze structural family have been synthesized using a high- temperature mixed-oxide method. Room-temperature x-ray diffraction (XRD) analysis confirms the formation of single-phase compounds. Room-temperature scanning electron micrography of the pellet samples shows a uniform distribution of well-defined different sizes of grains on the surface of the samples, confirming the formation of single-phase compounds. Study of the frequency and temperature dependence of the dielectric constant and loss tangent suggests the existence of dielectric dispersion in the materials. The ferroelectric phase transition in the samples has been studied based on the variation of fitting parameters (calculated from a theoretical model) with temperature. Studies of pyroelectric properties [figure of merit (FOM) and coefficient] show that the materials have reasonably high FOM useful for pyroelectric detectors. The variation of alternating-current (AC) and direct-current (DC) conductivity with inverse absolute temperature (obtained from dielectric data) follows a typical Arrhenius relation. The low leakage current and negative temperature coefficient of resistance behavior of the samples have been verified from J- E plots.

  3. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee, E-mail: symolloi@uci.edu

    2015-04-11

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm{sup 3} Lithium Niobate (LiNbO{sub 3}) pyroelectric crystal maintained in a 3–12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  4. Flexible Polymer-on-Polymer Architecture for Piezo/Pyroelectric Energy Harvesting.

    Science.gov (United States)

    Talemi, Pejman; Delaigue, Marine; Murphy, Peter; Fabretto, Manrico

    2015-04-29

    An all polymer piezo/pyroelectric device was fabricated using β phase poly(vinylidene fluoride) (PVDF) as the active material and vapor phase polymerized (VPP) poly(3,4-ethylenedioxythiphene) (PEDOT) as the flexible electrode overlay material. Inherent problems usually associated with coating polymeric electrodes onto the low surface energy PVDF were overcome by air plasma treating the film in conjunction with utilizing the VPP technique to simultaneously synthesize and in situ deposit the PEDOT electrode. Strain measurements up to the breaking-strain of PVDF (approximately 35%) indicated that the change in R/Ro was significantly smaller for the PEDOT based electrodes compared to the platinum electrode. Plasma treatment of the PVDF film increased the level of surface oxygenated carbon species that contributed to increased surface energy, as confirmed by confirmed by contact angle measurement. The enhanced adhesion between the two polymers layers contributed to a significant increase in the measured piezoelectric output voltage from 0.2 to 0.5 V for the same strain conditions. Pyroelectric voltage outputs were obtained by placing the film onto and off of a hotplate, for temperatures up to 50 °C above ambient. Finally, as a proof of concept, a simple energy harvesting device (plastic tube with slots for mounting multiple piezo/pyro films) was fabricated. The device was able to generate a usable level of peak output current (>3.5 μA) from human inhalation and exhalation "waste energy".

  5. Application of single-crystalline PMN-PT and PIN-PMN-PT in high-performance pyroelectric detectors.

    Science.gov (United States)

    Yu, Ping; Ji, Yadong; Neumann, Norbert; Lee, Sang-Goo; Luo, Hasou; Es-Souni, Mohammed

    2012-09-01

    The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate-lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m(2)K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D* of about 1.1 · 10(9) cm·Hz(1/2)/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors.

  6. Study on Pyroelectric Property of BST Ceramics with DC Field%BST陶瓷场致热释电性能的研究

    Institute of Scientific and Technical Information of China (English)

    张光祖; 姜胜林; 张洋洋; 张清风; 张先云

    2009-01-01

    采用改进的电子陶瓷工艺,制备了高密度Ba0.6Sr0.4TiO3热释电陶瓷样品.研究发现,在1 340 ℃下烧结的样品,其密度可达到理论密度的98.3%.室温下测得样品的介电损耗为0.2%.外加直流偏场对材料的介电和热释电性能影响显著.样品的场致热释电系数为3.4×10-8 C/cm2·℃,探测率优值为10.0×10-5 Pa-1/2.%The Ba0.6Sr0.4TiO3 ceramics were prepared by improved electronic ceramics preparing process. The sample was obtained under the optimalized sintering temperature 1 340 ℃.The density could reach 98.3% of the theoretical density. At room temperature, the dielectric loss of the sample was 0.2%. The effects of DC field on the material's dielectric and pyroelectric property was obvious. The pyroelectric coefficient of the sample was 3.4×10-8 C/cm2·℃, the figure of merit of the sample was 10.0×10-5 Pa-1/2.

  7. 热释电红外传感器在新型弹药引信中的应用%Application of Pyroelectric Infrared Sensor in New Ammunition Fuze

    Institute of Scientific and Technical Information of China (English)

    平子鹏; 赵洋

    2016-01-01

    The target detection and recognition of the fuze is an important part of the new intelligent ammunition .Com‐bined with the current target detection and recognition technology ,a method of target detection and identification is presented based on the pyroelectric infrared sensor .On the basis of the working principle of pyroelectric infrared sensor ,the infrared characteristics of the human body are analyzed and the experimental simulation is carried out .The results show that the tar‐get detection and recognition based on pyroelectric infrared sensor is feasible ,which has a key role in improving the opera‐tional effectiveness of weapon system ,enhancing the conventional deterrence and combat capability .%引信的目标探测与识别是新型智能弹药系统的重要组成部分,结合当今目标探测识别技术,给出了一种基于热释电红外传感器的引信探测与识别方法。文章在阐述热释电红外传感器工作原理的基础上,分析人体目标的红外特性并进行实验仿真。结果表明,基于热释电红外传感器的引信目标探测与识别是可行的,对提高武器系统作战效能,增强常规威慑和实战能力具有关键作用。

  8. Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting

    Science.gov (United States)

    Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma

    2016-08-01

    Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.

  9. Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting

    Science.gov (United States)

    Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma

    2017-01-01

    Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.

  10. Multi-Object Tracking Scheme with Pyroelectric Infrared Sensor and Video Camera Coordination%融合热释电红外传感器与视频监控器的多目标跟踪算法

    Institute of Scientific and Technical Information of China (English)

    李方敏; 姜娜; 熊迹; 张景源

    2014-01-01

    现有基于热释电红外传感器的多目标跟踪系统在目标之间距离较近或者轨迹相交的情况下存在着误差较大的缺点。针对此缺点,提出了一种新型的基于热释电红外传感器与视频监测器协同工作的多目标跟踪方案。该方案可以充分利用两种传感器的优势,弥补在目标跟踪中的不足。算法采用最小二乘法利用热释电信息进行定位,并通过从图像或热释电传感器信号的幅频特性中提取特征信息来校正联合概率数据关联算法的关联矩阵,有效避免了错误关联。实验表明,该方案在多目标交叉情况下跟踪误差仅为其它算法的八分之一到四分之一。%The error tends to be significant in many existing pyroelectric infrared sensor based multi-object tracking systems when the measured objects get close to each other or their trajectories have intersections .To solve this problem ,we proposed a mul-ti-object tracking scheme by having pyroelectric infrared sensors and video cameras work cooperatively .This scheme takes the ad-vantages of both kinds of sensors ,which help to improve the performance compared to those using any kind of such sensors .In the proposed scheme ,we first achieve coarse positioning using least square method with data collected by pyroelectric infrared sensors , and then we correct the incidence matrix in joint probabilistic data association with features extracted from the images or the fre -quency responses of pyroelectric sensors .The coarse positioning is further filtered by joint probabilistic data association algorithm to obtain the final fine result .Such a method prevents false association effectively .Experimental results show that the tracking error of the proposed scheme in multi-object crossover scenario reduces to a quarter ,even to one eighth of the errors that exist in the com-pared schemes .

  11. 基于热释电传感器的能量采集系统设计%The design of thermal energy harvesting system based on pyroelectric sensor

    Institute of Scientific and Technical Information of China (English)

    王芳; 李焕焕; 韩文超; 彭玉峰

    2012-01-01

    This paper designed an embedded integrated rechargeable battery system which could achieve a variety of energy collection. The battery system can be used in the multiple micro - sensor nodes of monitoring and warning system , which can make use of environment temperature and heating signal to charge directly. The system is made of a pyroelectric element, rectifier circuit, the DC/DC voltage boost circuit and a switch control circuit module. The article analysised the influence of the electrical parameters of the pyroelectric unit in the thermal cycle on the charge of the capacitor charge; besides, gave the key part of the circuit design of the pyroelectric charge battery and made study of design of improved CMOS rectifier circuit, booster circuit and switch control circuit. The study does not only improve the efficiency of the output,but also achieve a high degree of integration. The simulation and experiment results show that making use of the pyroelectricity to collect and store the energy is effective and feasible.%本文设计一种可实现多种能量收集的嵌入式集成微充电电池系统,该电池系统可用在监测预警系统中的多个微传感器节点上,直接利用环境中的温度和热信号进行充电.该系统包含热释电单元、整流电路、DC/DC升压电路等模块.理论分析了热释电单元的电参数在热循环周期内对充电电容上电荷的影响,给出了热释电充电电池的关键部分电路设计,对改进CMOS整流电路、升压电路进行了研究,不仅提高了输出效率,同时实现了高集成度.仿真和实验结果表明利用热释电进行能量收集和储存是有效可行的.

  12. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Hilary B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 1011 cmHz 1/2W-1 for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 1010 cmHz1/2W-1 . KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. SixNymembranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO3/Pt/Ti/SixNy/Si and SrRuO3/SixNy/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is ~380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom

  13. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  14. Pyroelectric response of spray-deposited BaTiO3 thin film

    Science.gov (United States)

    Peale, Robert E.; Oladeji, Isaiah O.; Smith, Evan M.; Vasilyev, Vladimir; Alhasan, Sarmad Fawzi Hamza; Abouelkhair, Hussain; Todorovski, Dalibor; Kimani, Martin; Cleary, Justin W.

    2016-09-01

    Pyroelectric photoresponse of aqueous spray deposited thin films containing BaTiO3 nano-crystals is reported. X-ray diffraction data indicate the presence of hexagonal BaTiO3 nano-crystals with 20 nm crystalline domains in a matrix of some as yet unidentified nano-crystalline material. When the film is annealed at 600 C, the X-ray pattern changes significantly and indicates a conversion to one of the non-hexagonal phases of BaTiO3 as well as a complete change in the matrix. With suitable amplifier, the measured photoresponse was 40V/W. Ferroelectric hysteresis on a film with significant presence of hexagonal BaTiO3 shows saturated polarization which is about 5-times smaller than for the bulk tetragonal phase. A potential application is a patternable infrared detector for photonic and plasmonic devices, such as chip-scale spectral sensors.

  15. Optical properties of D-serine doped TGS crystals for pyroelectric sensors*

    Directory of Open Access Journals (Sweden)

    Kurlyak V.Yu.

    2015-12-01

    Full Text Available Refractive and birefringence indices in the range of transparency of 300 to 700 nm for triglycine sulphate crystals doped with D-serine molecules have been measured in the temperature range of 290 K to 340 K. The obtained optical properties are discussed together with characteristic electrical features of these materials used as pyroelectric sensors for measurement of temperature. The experimental results obtained in this study will be necessary as the reference data for comparison with the calculated refractive indices of TGS + D-serine on the basis of density functional theory. Determination of the proper position of D-serine, will reveal the features of TGS + D-serine crystal structure necessary to achieve stable unipolarity.

  16. Pyroelectric properties and conduction mechanism in solution grown glycine sodium nitrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Sinha, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Department of Electronics, SGTB Khalsa College, University of Delhi, Delhi 7 (India); Yadav, Harsh [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Kumar, Binay, E-mail: b3kumar69@yahoo.co.in [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India)

    2015-04-01

    Nonlinear optical “glycine sodium nitrate” transparent single crystals were grown from aqueous solution by the solvent evaporation technique. The ferroelectric transition temperature was determined by dielectric measurement for GSN crystal. Temperature dependent pyroelectric coefficient and figure of merit were measured. The conduction mechanism of GSN crystal has been discussed. The ln σ−E{sup 1/2} characteristic in the high-field region supports dominating the Poole–Frenkel conduction while in the low field region; there are possibility of both Richardson–Schottky and Poole–Frenkel conduction mechanism. The activation energy of GSN crystal was found to be 0.58 eV. A low value of dielectric constant and good value of the figure of merit suggest the GSN crystal more promising for IR sensing applications. Hardness value shows the stability of GSN crystal.

  17. Scanning thermal microscopy based on a modified atomic force microscope combined with pyroelectric detection

    Science.gov (United States)

    Antoniow, J.-S.; Chirtoc, M.; Trannoy, N.; Raphael, O.; Pelzl, J.

    2005-06-01

    We propose a novel approach in scanning thermal microscopy of layered samples. The thermal probe (ThP) (Wollaston wire) acts as a local a.c. heat source at the front of a sample layer deposited on a pyroelectric (PE) sensor. The PE signal is proportional to the heat wave transmitted through the sample. The ThP and PE signals can be used to generate complementary thermal conductivity maps and with some restrictions, thermal diffusivity maps of the sample. Additionally, the topography map is obtained in the usual way from the atomic force microscope. We give the theoretical background for the interpretation of PE signal obtained at low and at high frequency, and we demonstrate that it carries information on the thermal diffusivity of a test sample (12 μm thick PET polymer sheet). Finally, we discuss the contributions of heat transfer channels between ThP and sample, and the role of contact thermal resistance.

  18. PLZT ferroelectric ceramics on the morphotropic boundary phase. Study as possible pyroelectric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pelaiz Barranco, A.; Perez Martinez, O. [Univ. de La Habana (Cuba). Inst. de Materiales y Reactivos; Calderon Pinar, F. [Univ. de La Habana (Cuba). Inst. de Materiales y Reactivos; Centro de Investigaciones en Ciencia Aplicada y Tecnologia de Avanzada (CICATA), Altamira, Tamps (Mexico)

    2001-08-16

    PLZT compositions near the morphotropic boundary phase (Zr/Ti = 53/47) were studied changing the lanthanum fraction from 0.5 to 14 at%. The grain size and the porosity due to the lanthanum addition showed an important influence on the dielectric properties of the samples. Dielectric and pyroelectric studies show that the ceramics of lower lanthanum concentrations are suitable materials for practical applications. The ceramic's response subjected to light radiation was investigated. The radiation is absorbed near the material surface and its temperature rises leading to a change in the electrical polarization of the bulk material. This phenomenon is analyzed and correlated with the absorbed light on the surface of the material. (orig.)

  19. Graphene-based, mid-infrared, room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance

    CERN Document Server

    Sassi, U; Nanot, S; Bruna, M; Borini, S; Milana, S; De Fazio, D; Zhuang, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A

    2016-01-01

    Graphene is ideally suited for photonic and optoelectronic applications, with a variety of photodetectors (PDs) in the visible, near-infrared (NIR), and THz reported to date, as well as thermal detectors in the mid-infrared (MIR). Here, we present a room temperature-MIR-PD where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene, leading to a temperature coefficient of resistance up to 900%/K, two orders of magnitude higher than the state of the art, for a device area of 300x300um2. This is achieved by fabricating a floating metallic structure that concentrates the charge generated by the pyroelectric substrate on the top-gate capacitor of the graphene channel. This allows us to resolve temperature variations down to 15umK at 1 Hz, paving the way for a new generation of detectors for MIR imaging and spectroscopy

  20. Testing of InGaAs, microbolometer and pyroelectric detectors in support of the EarthCARE mission

    Science.gov (United States)

    Hopkinson, Gordon; Gomez Rojas, Luis; Skipper, Mark; Meynart, Roland

    2008-10-01

    A test programme for infrared detectors in support of the EarthCARE mission is discussed. Commercially available linear InGaAs arrays from XenICs, Belgium (cut-off wavelengths 1.7, 2.2 and 2.5 μm), 384 x 288 amorphous silicon microbolometer arrays from ULIS, France and un-windowed single element lithium tantalate pyroelectric detectors from Infratec, Germany have been studied in detail to assess their suitability for EarthCARE and to provide performance data to aid in the design of the flight instruments. Tests included radiation resistance (cobalt60 and 60 MeV protons plus a heavy ion latch-up test for the InGaAs and microbolometer arrays), dark signal, noise, output stability, linearity, crosstalk and spectral response. In addition, the pyroelectric detectors were tested for low microphony.

  1. Pyroelectric detectors with integrated operational amplifier for high modulation frequencies; Pyroelektrische Detektoren mit integriertem Operationsverstaerker fuer hohe Modulationsfrequenzen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, N.; Saenze, H.; Heinze, M. [InfraTec GmbH Dresden (Germany)

    2006-02-01

    In order to use the advantages of the current mode operation a pyroelectric detector family with integrated transimpedance amplifier (TIA) was developed particularly for modulation frequencies up to the kHz range with a simplified external circuitry for new application fields, e.g. absorption spectroscopy using quantum-cascade-laser. The essential advantages of the TIA arise from the small electrical time constant {tau}{sub E} and the short-circuiting of the pyroelectric element. A flat amplitude response up to some kHz was aimed at for a sufficiently high response of 7500 V/W, appr., also at high modulation frequencies. This can be achieved through a electrical time constant of 1 ms or less and a wide bandwidth of the op amp. The article describes in detail how these demands were accomplished and which compromises had to be accepted. (orig.)

  2. Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Kosobokov, M. S.; Mingaliev, E. A.; Karpov, V. R. [Institute of Natural Sciences, Ural Federal University, Ekaterinburg, 620000 (Russian Federation)

    2015-10-15

    The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation in congruent lithium niobate crystal was studied by in situ optical observation. Several scenarios of domain kinetics represented covering of the irradiated zone by nets of the separated domain chains and rays have been revealed. The time dependence of the total domain length was analyzed in terms of modified Kolmogorov-Avrami theory. The domain structure evolution was attributed to the action of pyroelectric field appeared during cooling. The time dependence of the spatial distribution of the pyroelectric field during pulse laser heating and subsequent cooling was calculated by finite element method. The results of computer simulation allowed us to explain the experimental results and can be used for creation of tailored domain structures thus opening the new abilities of the submicron-scale domain engineering in ferroelectrics.

  3. Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating

    Directory of Open Access Journals (Sweden)

    V. Ya. Shur

    2015-10-01

    Full Text Available The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation in congruent lithium niobate crystal was studied by in situ optical observation. Several scenarios of domain kinetics represented covering of the irradiated zone by nets of the separated domain chains and rays have been revealed. The time dependence of the total domain length was analyzed in terms of modified Kolmogorov-Avrami theory. The domain structure evolution was attributed to the action of pyroelectric field appeared during cooling. The time dependence of the spatial distribution of the pyroelectric field during pulse laser heating and subsequent cooling was calculated by finite element method. The results of computer simulation allowed us to explain the experimental results and can be used for creation of tailored domain structures thus opening the new abilities of the submicron-scale domain engineering in ferroelectrics.

  4. Real-time continuous-wave imaging with a 1.63THz OPTL and a pyroelectric camera

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; RUAN Shuang-chen; ZHANG Min; ZHANG Wei

    2008-01-01

    Real-time continuous-wave terahertz imaging is demonstrated with a 1.63 THz (184.31 μm) optically-pumped terahertz laser (OPTL) and a 124 × 124 element room-temperature pyroelectric camera. Transmission-mode THz imaging is presented for the samples hidden in various wrapping materials. These experimental results reveal the possibility to construct a simple real-time THz imaging system applied to nondestructive inspection.

  5. Ionization Mechanism of the Ambient Pressure Pyroelectric Ion Source (APPIS) and Its Applications to Chemical Nerve Agent Detection

    OpenAIRE

    Neidholdt, Evan L.; Beauchamp, J. L.

    2009-01-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions su...

  6. Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. [Advanced Materials Group, School of Industrial and Manufactory Science, Cranfield University, Beds (United Kingdom)]. E-mail: q.zhang@cranfield.ac.uk; Whatmore, R.W. [Advanced Materials Group, School of Industrial and Manufactory Science, Cranfield University, Beds (United Kingdom)

    2001-08-07

    Thin films of ferroelectric lead zirconate titanate (PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} PZT30/70) and manganese-doped lead zirconate titanate ((Pb(Zr{sub 0.3}Ti{sub 0.7}){sub 1-x}Mn{sub x})O{sub 3}, where x=0.01, PM01ZT30/70; and x=0.03, PM03ZT30/70) have been prepared using sol-gel processing techniques. These materials can be used as the pyroelectric thin films in uncooled infrared detectors. The thin films were prepared via a sol-gel route based on a hybrid solvent of methanol and ethanol with acetic acid, ethanolamine and ethylene glycol as additives. The final solution is non-moisture sensitive and stable. Films deposited on Pt/Ti/SiO{sub 2}/Si substrates and annealed on a hot plate at 500-530{sup 0}C for a few minutes were seen to fully crystallize into the required perovskite phase and showed excellent ferroelectric behaviour, demonstrated by reproducible hysteresis loops (P{sub r}=33-37 {mu}C cm{sup -2}, Ec(+)=70-100 kV cm{sup -1}, Ec(-)=-170 to -140 kV cm{sup -1}). The pyroelectric coefficient (p) was measured using the Byer-Roundy method. At 20 deg. C, p was 2.11x10{sup -4} C m{sup -2} K{sup -1} for PZT30/70, 3.00x10{sup -4} C m{sup -2} K{sup -1} for PM01ZT30/70 and 2.40x10{sup -4} C m{sup -2} K{sup -1} for PM03ZT30/70 thin films. The detectivity figure-of-merit (F{sub D}) was 1.07x10{sup -5} Pa{sup -0.5} for PZT30/70, 3.07x10{sup -5} Pa{sup -0.5} for PM01ZT30/70 and 1.07x10{sup -5} Pa{sup -0.5} for PM03ZT30/70. These figures compare well with values reported previously. (author)

  7. Enhance the Pyroelectricity of Polyvinylidene Fluoride by Graphene-Oxide Doping

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2014-04-01

    Full Text Available The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  8. A travelling photothermal technique employing pyroelectric detection to measure thermal diffusivity of films and coatings

    Science.gov (United States)

    Philip, J.; Manjusha, M. V.; Soumya, H.

    2011-10-01

    A travelling thermal wave technique employing optical excitation and pyroelectric detection of thermal waves propagating along a material film/coating on a substrate is described. The method enables direct measurement of thermal diffusivity. The technique involves measurement of the phase lag undergone by an optically excited thermal wave as it propagates along the coating. The set up has been automated for convenient and fast data acquisition and analysis. The technique has been adapted to measurement of thermal diffusivity of a commercial paint sample coated on glass and copper substrates. It is found that thermal diffusivity of the coating is independent of the thermal conductivity of the substrate. Dependence of thermal diffusivity on coating thickness shows exponential increase, with value reaching a constant at a characteristic high thickness. Measurements have been carried out on a few other samples with wide variations in thermal diffusivity, and the results compared with available reports or results obtained following other techniques. Analyses of the results show that the technique allows measurement of thermal diffusivity of coatings and films with uncertainties better than ±2.5%.

  9. Enhancement of pyroelectric signal by continuous ultraviolet illumination of epitaxial Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Pintilie, L.; Iuga, A. [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 077125 (Romania); Botea, M. [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 077125 (Romania); Faculty of Physics, University of Bucharest, Magurele 077125 (Romania)

    2014-09-29

    The pyroelectric signal generated by an epitaxial Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film can be enhanced by continuous illumination with ultraviolet (UV) light. The measured signal increases more than 2 times at low modulation frequencies of the incident infrared (IR) radiation (∼10 Hz) and at wavelengths where the short-circuit photocurrent presents the maximum value (∼280–300 nm). The tentative explanation is that the changes in polarization induced by the temperature variation under modulated IR illumination are generating a variable internal electric field, able to collect the photogenerated carriers produced under continuous UV illumination leading to an additional signal in phase with the pyroelectric one. This finding could be exploited for designing pyroelectric detectors with enhanced characteristics by combining both UV and IR responses.

  10. Pyroelectric property of novel LiTa3O8 thin film prepared by sol-gel methods

    Science.gov (United States)

    Zhang, De-Yin

    2009-05-01

    A novel sol-gel derived LiTa3O8 film sample was prepared on the Pt/Ti/SiO2/Si(100) substrate using the lithium ethoxide and tantalum ethoxide as starting materials. The 0.2mol/L sol of LiTa3O8 was prepared by reacting lithium ethoxide with tantalum ethoxide in 2-methoxyethanol and acetic acid in argon atmosphere to prevent humidity. The sol of LiTa3O8 was firstly diluted to 0.1mol/L and then covered on the Pt/Ti/SiO2/Si(100) substrate to form wet film with the condition of the spin-coating speed of 3000~7000 r.p.m. for 30~60 second. Pyrolysis of the prepared wet film was carried out in oxygen atmosphere at temperature of 420~450ºC for 2~5 min to remove the residual organics. Annealing of the prepared film was performed at temperature of 750~900ºC for 2~4 min in the rapid thermal process furnace to crystallize the prepared film layer. More layers of LiTa3O8 film can be added by repeating the spin-coating and pyrolysis steps prior to the final firing. It was found that up to 18 layers of LiTa3O8 film sample can be deposited before the films begin to exhibit signs of cracking. The performance parameters such as orientation, surface morphology, grain size and thickness of the prepared LiTa3O8 film sample were studied by XRD and SEM. The structure of the LiTa3O8 film is similar to orthorhombic, different from LiTaO3 film based on XRD pattern. The SEM micrograph reveals that the prepared LiTa3O8 film sample is uniform, smooth and crack-free on the surface with a thickness of 1 µm after crystallized at 750ºC. The pyroelectric property of the LiTa3O8 film sample was measured by the home-made water-bath heating pyroelectric coefficient measurement system. The measurement result shows that the novel LiTa3O8 film sample has pyroelectric property and its pyroelectric coefficient is 14.07μC/m2K after the sample is subjected to the DC poling of 6V, 15min. The experimental results verify the pyroelectric coefficient of the novel LiTa3O8 film is smaller than that of

  11. Design of Pyroelectric Infrared Alarm System%热释电红外报警系统设计

    Institute of Scientific and Technical Information of China (English)

    尚小燕; 姜旭; 武继安

    2012-01-01

    Based on the working principle of pyroelectric infrared sensor,the passive pyroelectric infrared alarm system is designed for safety of residence house to detect whether outsiders enter or not.This system was made of pyroelectric infrared sensor,Fresnel lens and monitoring circuits.Infrared signal processor BISS0001 was chosen,amplifying and filtering circuits and infrared signal processing circuit were designed on basis of the concealment of infrared,then the voice chip was utilized to simulate alarm voice for warning thieves and burglars.After many experiments,it represented that the system has sensitive response,high anti-interference ability and safe and reliable performance.%基于热释电红外传感器的工作原理,设计了一种被动式热释电红外报警器。主要用于家居安全,探测有无外人闯入。该系统由热释电红外传感器、菲涅尔透镜和监控电路组成。系统把红外线的隐蔽性很好地应用于电路中,选用了新一代红外信号处理器BISS0001,设计了放大滤波电路,红外信号处理电路,并加入语音芯片,模拟警笛声音,达到防盗目的。经多次实验,该系统反应灵敏,抗干扰能力强,安全可靠。

  12. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-01

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z0.5-T0.5)) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  13. Ferroelectric, piezoelectric, pyroelectric studies on BaTi{sub 0.95}(Ni{sub 1/3}Nb{sub 2/3}){sub 0.05}O{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Boujelben, F; Bouzid, H; Bahri, F; Maalej, A; Khemakhem, H; Simon, A; Maglione, M, E-mail: faizaboujelben@yahoo.fr

    2010-11-15

    The main objective of this paper is to study dielectric, ferroelectric, pyroelectric and piezoelectric proprieties of BaTi{sub 0.95}(Ni{sub 1/3}Nb{sub 2/3}){sub 0.05}O{sub 3}. From dielectric experiments, a single ferroelectric transition temperature of about 300K was found. The ferroelectric hysteresis loops were recorded versus temperature evidencing a saturation polarisation of about 4{mu}C/cm{sup 2} and a coercive field of 0.97kV/cm at the lowest temperature. The most promising result for BaTi{sub 0.95}(Ni{sub 1/3}Nb{sub 2/3}){sub 0.05}O{sub 3} is its effective piezoelectric coefficient d{sub 31}which reaches 55pCN{sup -1} at room temperature.

  14. Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Nidhi [Department of Electronics, SGTB Khalsa College, University of Delhi, Delhi-110007 (India); Goel, Neeti; Singh, B.K.; Gupta, M.K. [Crystal Lab, Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Kumar, Binay, E-mail: bkumar@physics.du.ac.in [Crystal Lab, Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2012-06-15

    Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (T{sub c}) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications. - Graphical abstract: Dye doping in TGS crystal resulted in hourglass morphology, increased hyper-luminescence intensity, improved T{sub c} and figure of merit. Highlights: Black-Right-Pointing-Pointer Amaranth dye doping in TGS crystals resulted in hourglass morphology. Black-Right-Pointing-Pointer Doping resulted in enhancement of Curie temperature from 49 to 53 Degree-Sign C. Black-Right-Pointing-Pointer Low cut off (230 nm) and wider transmittance window observed. Black-Right-Pointing-Pointer Strong hyper-luminescent emission bands at 350 and 375 nm were observed. Black-Right-Pointing-Pointer High and uniform figure of merit in ferroelectric phase was obtained.

  15. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance

    Science.gov (United States)

    Sassi, U.; Parret, R.; Nanot, S.; Bruna, M.; Borini, S.; De Fazio, D.; Zhao, Z.; Lidorikis, E.; Koppens, F.H.L.; Ferrari, A. C.; Colli, A.

    2017-01-01

    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2–4% K−1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4–11% K−1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K−1, and the ability to resolve temperature variations down to 15 μK. PMID:28139766

  16. Light-Triggered Pyroelectric Nanogenerator Based on a pn-Junction for Self-Powered Near-Infrared Photosensing.

    Science.gov (United States)

    Wang, Xingfu; Dai, Yejing; Liu, Ruiyuan; He, Xu; Li, Shuti; Wang, Zhong Lin

    2017-08-22

    A nanogenerator, as a self-powered system, can operate without an external power supply for energy harvesting, signal processing, and active sensing. Here, near-infrared (NIR) photothermal triggered pyroelectric nanogenerators based on pn-junctions are demonstrated in a p-Si/n-ZnO nanowire (NW) heterostructure for self-powered NIR photosensing. The pyroelectric-polarization potential (pyro-potential) induced within wurtzite ZnO NWs couples with the built-in electric field of the pn-junction. At the moment of turning on or off the NIR illumination, external current flow is induced by the time-varying internal electric field of the pn-heterostructure, which enables a bias-free operation of the photodetectors (PDs). The NIR PD exhibits a high on/off photocurrent ratio up to 10(7) and a fast photoresponse component with a rise time of 15 μs and a fall time of 21 μs. This work provides an unconventional strategy to achieve active NIR sensing, which may find promising applications in biological imaging, optoelectronic communications, and optothermal detections.

  17. Dielectric and Pyroelectric Properties of (Pb0.50Sr0.50)TiO3 Ceramics

    Institute of Scientific and Technical Information of China (English)

    JIANG Yan-Ping; TANG Xin-Gui; LIU Qiu-Xiang; ZHOU Yi-Chun; CHANWONG Lai-Wa

    2008-01-01

    @@ Lead strontium titanate (Pb0.50Sr0.50)TiO3 (PST) ceramics are prepared by the traditional ceramic processing. The dielectric constants and dielectric loss have been investigated in a temperature range from 25℃ to 300℃. The maximum dielectric constants for unpoled and poled samples are 9924 and 9683, respectively. The temperatures of phase transition for unpoled and poled samples are observed at 153℃ and 157℃, respectively. The phase-transition temperatures for unpoled and poled samples are not equal, which results from the polarization state of the domains. The remnant polarization and the coercive electric field are 18 μC/cm2 and 6 k V/cm, respectively, from polarization-electric field (P- E) hysteresis loop. The temperature dependence of pyroelectric coefficients of the PST ceramics is measured by a dynamic technique. The dielectric constant and loss tan 5 of the poled PST ceramics are 813 and 0.010, respectively. The pyroelectric coefficients and figure of merit are 294 μC/cm2 K and 13.6 × 10-6 Pa-0.5, respectively, at room temperature 25℃ and frequency 100 Hz.

  18. Design of the Monocular Pyroelectric Infrared Detector%一种热释电红外探测器的单目设计

    Institute of Scientific and Technical Information of China (English)

    崔永俊; 贾磊; 王希鹏; 赵秀梅; 薛志勇; 杜文略

    2016-01-01

    To solve the problems of high false alarm rate, low sensitivity and unable to locate intrusion targets and other issues in ordinary pyroelectric infrared detection technology, the design based on compound eye structure is proposed for pyroelectric infrared detector. Combining the advantages of pyroelectric infrared detection, including good concealment, stable performance, environmental adaptability, large viewing angle of compound eye, small size and high sensitivity, the charge signal on pyroelectric material is converted into voltage signal, and output after filtering and amplifying. Experiments show that the monocular of the designed pyroelectric infrared detector can detect intrusion target within fifteen meters, and output pulse level as an alarm signal.%为解决普通热释电的红外探测技术误报率高、敏感度低且不能对入侵目标进行定位等问题,提出了一种基于热释电红外探测器的复眼结构的设计.结合热释电红外探测隐蔽性好、性能稳定、环境适应能力强、复眼视场角大、体积小且灵敏度高等优势,将热释材料上的电荷信号转换为电压信号,经滤波、放大后输出.通过实验表明,采用该热释电红外探测器的单目可以检测到15 m内的入侵目标,并输出脉冲电平作为报警信号.

  19. 固相法制备钇掺杂的钛酸钡锶钙陶瓷的介电和热释电性能%Dielectric and Pyroelectric Properties of Y-doped Ba0.6Sr0.3Ca0.1TiO3 Ceramics by Solid-state Reaction Technique

    Institute of Scientific and Technical Information of China (English)

    曹盛; 毛朝梁; 姚春华; 曹菲; 王根水; 董显林

    2013-01-01

    (Ba0.6Sr0.3Ca0.1)1-xYxTi0.999Mn0.001O3(0≤x≤0.007) ceramics were prepared by the solid-state reaction technique.The effects of Y doping on the microstructure,dielectric properties and pyroelectric properties were investigated.The average grain size decreases with the increase of Y concentration.The dielectric and pyroelectric properties measurement results show that the dielectric constant,dielectric loss,Tc and pyroelectric coefficient all initially increase and then decrease with Y concentration.And the pyroelectric figure of merit Fd can be improved by the Y doping.The specimen doped with 0.7mol%Y shows a higher maximum Fd value of 8.22×10-5 Pa-1/2 under 700 V/mm near 30℃ with the smallest average grain size of 3.1 μm,indicating its promising application in infrared thermal imaging arrays devices.%采用固相反应法制备了Y掺杂(Ba0.6Sr0.3Ca0.1) 1-xYxTi0.999Mn0.001O3(0≤x≤0.007)陶瓷,重点研究了Y含量对BSCT基陶瓷的显微结构、介电性能和热释电性能的影响.结果表明:随着Y含量的增加,BSCYxTM陶瓷的平均晶粒尺寸逐渐减小,介电常数、介电损耗、居里温度和热释电系数均呈现先增加后减小的趋势.当Y掺杂量为0.7mol%时,BSCYxTM陶瓷的平均晶粒尺寸最小为3.1 μm,且探测优值Fd较大,最大值可达8.22×10-5 pa-1/2(700 V/mm,30℃),高于采用溶胶-凝胶法制备的同组分陶瓷的探测优值5.91×10-5 pa-1/2.

  20. The simulation curves of TSG and GTGS pyroelectric crystals by thermodynamics model%TGS和GTGS热释电晶体的热力学模型模拟曲线

    Institute of Scientific and Technical Information of China (English)

    胡文成; 杨传仁; 张万里; 廖希异

    2005-01-01

    Based on the thermodynamics theory of Devonshire, the polarization equation of pyroelectric crystal with the temperature was established under zero electric field. The equation of the pyroelectric coefficient with the temperature was established by the definition of pyroelectric coefficient and the derivation of polarization equation. The trend lines of spontaneous polarization and pyroelectric coefficient with the temperature and other coefficient are described. The simulation shows that our model and expression formula for pyroelectric crystals are in accordance with the experiment results of triglycine sulphate (TGS) and glycocyamine doped TGS (GTGS) pyroelectric crystals.%通过热力学推导,建立了零电场下热释电晶体的极化与温度的方程.由热释电系数的定义,对热释电晶体的极化方程对温度求导,得出由热力学模型建立的热释电方程.并对热释电晶体硫酸三甘氨酸(TGS)和掺胍TGS(GLTGS)的实验曲线进行了模拟,该理论基本符合.

  1. Large pyroelectric and thermal expansion coefficients in the [(CH3)2NH2]Mn (HCOO)3 metal-organic framework

    Science.gov (United States)

    Ma, Yinina; Cong, Junzhuang; Chai, Yisheng; Yan, Liqin; Shang, Dashan; Sun, Young

    2017-07-01

    The [(CH3)2NH2]Mn(HCOO)3 perovskite metal-organic framework exhibits a first-order ferroelectric phase transition with a high polarization at Tc ˜ 192 K, induced by the order-disorder transition of hydrogen bonds. Accompanying this sharp phase transition, a huge pyroelectric coefficient with a peak value of 5.16 × 10-2 C/m2 K is detected. In addition, there is a large lattice expansion along the [012] direction at Tc, resulting in a giant linear thermal expansion coefficient as high as 35 000 ppm/K. These striking results indicate that ferroelectric metal-organic frameworks combing both merits of inorganic and organic compounds hold a great potential in generating superior pyroelectric and thermal expansion properties.

  2. Pyroelectric and dielectric properties of lead-free ferroelectric Ba{sub 3}Nb{sub 2}O{sub 8} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Biswajit [Department of Physics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar 751030 (India); Department of Physics, Government Junior College, Bhawanipatna, Kalahandi 766001 (India); Choudhary, R.N.P., E-mail: crnpfl@gmail.com [Department of Physics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar 751030 (India); Das, Piyush R.; Parida, B.N.; Padhee, R. [Department of Physics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar 751030 (India)

    2014-04-01

    Graphical abstract: - Highlights: • Barium orthoniobate (lead-free perovskite) crystallizes as palmierite with structural stability. • The material exhibits ferroelectric phase transition of diffuse-type suitable for devices. • The low values of ε{sub r} and tan δ at high frequencies makes it a potential candidate for microwave applications. • The material has very good pyroelectric properties for detector application. • The material exhibits smaller value of dc activation energy. - Abstract: The present study highlights ferroelectric phase transition, dielectric, pyroelectric properties and conduction mechanism of highly crystallized barium orthoniobate (Ba{sub 3}Nb{sub 2}O{sub 8}) ceramic, prepared by a solid-state reaction technique. X-ray diffraction studies show the formation of a single-phase compound in hexagonal crystal system. Detailed studies of dielectric parameters (ε{sub r} and tan δ) of the compound as a function of temperature and frequency reveal their independence over a wide range of temperature and frequency. An anomaly in ε{sub r} suggests the possible existence of a ferroelectric–paraelectric phase transition of diffuse-type in the material. The low dielectric loss and moderate relative permittivity make this material (with certain modification) a potential candidate for microwave applications. Studies of pyroelectric properties reveal that the materials have reasonably high figure of merit useful for fabrication of pyroelectric detectors. The low-leakage current and negative temperature coefficient of resistance (NTCR) behavior of the sample have been verified from J–E plots. The nature of variation of dc conductivity with temperature confirms the Arrhenius and NTCR behavior of the material.

  3. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Science.gov (United States)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  4. Investigation on crystalline perfection, optical transmittance, birefringence, temperature-dependent refractive index, laser damage threshold and pyroelectric characteristics of inversely soluble lithium sulfate monohydrate single crystals

    Science.gov (United States)

    Silambarasan, A.; Rajesh, P.; Bhatt, Rajeev; Bhaumik, Indranil; Karnal, A. K.; Ramasamy, P.; Gupta, P. K.

    2016-08-01

    Bulk prismatic lithium sulfate monohydrate (LSMH) single crystals were grown by seed rotation with slow heating method from aqueous solution. Small FWHM obtained from high-resolution X-ray diffraction spectrum shows that the crystals grown by this method have less defects and absence of low-angle grain boundaries. The high transmittance and low reflectance nature of the grown crystal was observed using UV-Vis-NIR spectrometer. The principal refractive indices of a LSMH crystal have been measured by a prism coupling method for the wavelengths of 0.407, 0.532, 0.828, 1.064 and 1.551 µm at room temperature, and Sellmeier equations are determined from the fitting of the data point. The refractive index data confirm that LSMH crystal is negative biaxial and the optic axis lies in YZ plane with an angle (2 V y ) of 51.74° with respect to y axis at 532 nm wavelength. The thermo-optic coefficients were determined from the temperature-dependent refractive indices measured in the range of 30-125 °C for the wavelengths of 532 and 1064 nm. The surface laser damage threshold studies reveal the higher optical radiation stability against 532-nm laser. The pyroelectric coefficients and pyroelectric figure of merit were determined from the pyroelectric current measurement by the Byer and Roundy method.

  5. 大电流宽频带热释电红外探测器优化设计%Optimization Design of Large current broadband pyroelectric infrared detector

    Institute of Scientific and Technical Information of China (English)

    王芳; 杨桂勇; 宋艳; 颜延志; 马春旺

    2011-01-01

    本文提出了一种大电流宽频带的热释电红外探测器的优化设计方法.在分析热释电输出电压响应的基础上,结合热辐射探测的特点,提出了新的仿真模型,实际电路与仿真数据基本吻合.通过采用双极型结型场效应管(BJFET)和改变热释电时间常数等方法解决了热释电前置放大器输出信号弱和通频带窄的关键问题.%This paper presents a large current broadband pyroelectric infrared detector optimal design method. The analysis of the pyroelectric response of the output voltage based on the combination of the characteristics of thermal radiation detection, put forword a new simulation model, and the actual circuit is basically consistent with simulation data. Through using bipolar JFET (BJFET) and changing the time constant and so on, we will improve the low - output and narrow bands which were the key issues of pyroelectric preamplifier.

  6. Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect.

    Science.gov (United States)

    Zhang, Kewei; Wang, Zhong Lin; Yang, Ya

    2016-11-22

    The pyro-phototronic effect is based on the coupling among photoexcitation, pyroelectricity, and semiconductor charge transport in pyroelectric materials, which can be utilized to modulate photoexcited carriers to enhance the output performance of solar cells. Herein, we have demonstrated the largely enhanced output performance of a P3HT/ZnO nanowire array photovoltaic cell (PVC) by using the pyro-phototronic effect under weak light illuminations. By applying an external cooling temperature variation, the output current and voltage of the PVC can be dramatically enhanced by 18% and 152% under indoor light illumination, respectively. This study realizes the performance enhancement of pyroelectric semiconductor materials-based solar cells via a temperature-variation-induced pyro-phototronic effect, which may have potential applications in solar energy scavenging and self-powered sensor systems.

  7. 宽温区热释电陶瓷的复合烧结法与性能研究%The Study on Mixed Sintering Method and Properties of Pyroelectric Ceramics with Wide Temperature Range

    Institute of Scientific and Technical Information of China (English)

    赵强; 曾亦可; 姜胜林; 张光祖; 张洋洋

    2012-01-01

    There is a famous Frl-Frh phase transition giving high pyroelectric coefficient with very little change in the dielectric constant and loss occurred near room temperature in Zr-rich PZT ceramics. However,the temperature range of this phase transition is very narrow and the transition temperature could be changed by the variation of the Zr/Ti ratio. In this paper, two kinds of Mn-doped starting materials, those Zr/Ti ratio were 95/5 and 93, 5/6. 5 respectively, were mixed sintered in order to broaden the phase transition temperature. It was found that, the temperature range was successfully extended when the two starting materials were pre-treated at 1100 C before mixed by the mass ratio of 1 : 1. The pyroelectric coefficient p was higher than 6. 3×10-8 C/(cm2·℃ and the figured merit FD was higher than 7. 7× 1013 Pa-1/2 in the temperature range 19 ℃ to 43 ℃. The effects of mixed sintering on their pyroelectric,dielectric and ferroelectric properties have been comprehensively studied, and it was found that the dielectric and ferroelectric properties were also improved.%富锆型PZT陶瓷在室温附近发生低温铁电三方相到高温铁电三方相的相变(FRL-FRH)相变并产生很大的热释电系数,相变过程中介电常数和损耗变化很小,相变温区很窄,相变温度随锆钛比的不同而不同.该文选取锆钛比为95/5和93.5/6.5的Mn掺杂PZT材料进行复合烧结,以期展宽相变温区.实验结果表明,两种初始原料1 100℃预处理后按照质量比1∶1进行复合烧结,相变温区得到了有效的展宽,在19~43℃内热释电系数p大于6.3×10-8 C/(cm2·C),探测率优值FD大于7.7×10-5 Pa1/2.通过对热释电、介电和铁电性能的综合研究,发现复合烧结在优化PZT陶瓷热释电性能的同时优化了其介电和铁电性能.

  8. Electrical and Pyroelectric Properties of Sol-Gel Derived (Pb, Ca)TiO3 Thin Films with Various Orientations

    Institute of Scientific and Technical Information of China (English)

    唐新桂; 丁爱丽; 王丽华

    2003-01-01

    (Pb0.76Ca0.24)TiO3(PCT)thin films with various orientations were grown on Pt/Ti/SiO2/Si substrates by using a sol-gel process and by controlling the temperature of heat-treatment.The PCT thin films with(100)and random orientation showed well-saturated hysteresis loops at an applied field of 800kV/cm,with remanent polarization and coercive electric field of 23.6 μC/cm2 and 225 k V/cm,17.8 μC/cm2 and 195 k V/cm,respectively.For highly(100)-and random-oriented PCT films,the dielectric constant and dielectric loss values of these films are 121 and 0.016,121 and 0.024 at 1 kHz,respectively.The pyroelectric coefficients p of the PCT thin films are measured by a dynamic technique.At room temperature,the p values and figures of merits of the highly(100)-and random-oriented PCT films are 185μC/m2K and 1.79 × 10-5Pa-0.5,176μC/m2K and 1.39 × 10-5Pa-0.5,respectively.

  9. Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Sergeeva, O. N.; Kiselev, D. A.; Bogomolov, A. A.; Solnyshkin, A. V.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-05-01

    This paper presents the results of pyroelectric and piezoelectric studies of AlN films formed by chloride-hydride epitaxy (CHE) and molecular beam epitaxy (MBE) on epitaxial SiC nanolayers grown on Si by the atom substitution method. The surface topography and piezoelectric and pyroelecrtric responses of AlN films have been analyzed. The results of the study have shown that the vertical component of the piezoresponse in CHE-grown AlN films is more homogeneous over the film area than that in MBE-grown AlN films. However, the signal from the MBE-synthesized AlN films proved to be stronger. The inversion of the polar axis (polarization vector) on passage from MBE-grown AlN films to CHE-grown AlN films has been found experimentally. It has been shown that the polar axis in MBE-grown films is directed from the free surface of the film toward the Si substrate while, in CHE-grown films, the polarization vector is directed toward the free surface.

  10. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range.

  11. Studies on the pyroelectric properties of ferroelectric bilayer film%铁电薄膜热释电性质的研究

    Institute of Scientific and Technical Information of China (English)

    张芹; 董亚男; 陈红

    2013-01-01

    Using Ginzburg-Landau-Devonshire theory, a ferroelectric bilayer film consisting of two different ferroelectric constituent films with the transition layer within each constituent film is considered. Introduced a parameter,which described the differences of physical properties between two constituent films, to investigate the temperature dependence of the pyroelectric coefficient of the bilayer film. It is shown that one or two peaks can be obtained in the pyroelectric curve by the adjustment of parameter Q. The modification of ferroelectric interfacial coupling cofficient,parameter a and surficial transition layer parameter leads to the peaks of the pyroelectric curve shifting to the higher or lower temperature region.%利用Ginzburg-Landau-Devonshire (GLD)热力学唯象理论,对由2种不同铁电材料构成的含有表面过渡层的铁电双层膜体系进行了探讨.通过引入一个描述2种铁电材料物理性能差异大小的物理参量α,并考虑2种铁电材料物理性能的差异,研究了铁电双层膜的热释电性质.结果表明:通过控制参量α的大小,热释电曲线上会呈现1个或2个峰;改变铁电界面耦合系数、参量α以及表面过渡层参量的大小,热释电曲线的峰位向高温区或低温区移动.

  12. PMNT热释电陶瓷材料的制备及性能研究%Preparation and Properties Study of PMNT Pyroelectric Ceramic Materaials

    Institute of Scientific and Technical Information of China (English)

    王实现; 张约品; 王冲; 章践立

    2011-01-01

    The PMNT ceramics with complex perovskite structure were prepared by the soft chemistry method. X-ray diffraction was used to detect the perovskite phase evolution and the presence of the pyrochlore phase in PMNT ceramics. The grain morphology was observed by scanning electron microscopy (SEM). The pyroelectric and piezoelectric properties of the ceramics were studied. The results show that the PMNT ceramics posses high densities and good pyroelectric properties. The pyroelectric coefficient of 0.67PMN-0.33PT ceramics is 5.5×10^-4C·m^-2.K^-1, Fd is 3.9× 10^-5 Pa^-1/2.%用软化学法合成了驰豫型复合钙钛矿结构铁电PMNT粉体,并将制备好的粉体压制成圆片状后放入硅碳棒炉中,于1150℃下烧结成致密热释电陶瓷材料.然后用x射线粉末衍射对合成材料进行物相分析,并用扫描电镜观察了晶粒形貌特征.结果表明:烧结后的陶瓷具有很好的致密性和热释电性,其中,0.67PMN.0.33PT组分热释电陶瓷的热释电系数为4.5×10^-4C·m^-2.K^-1,探测优值Fd为3.9×10^-5Pa^-1/2。

  13. Pyroelectric Arrays with Relax-based Ferroelectric Single Crystals%基于弛豫铁电单晶的热释电焦平面研究

    Institute of Scientific and Technical Information of China (English)

    邵秀梅; 马学亮; 于月华; 方家熊

    2011-01-01

    PMN-PT是一种综合性能优异的新型热释电材料.本文以PMN-PT单晶作为热释电探测器材料,开展了8×1线列探测器的芯片结构设计及器件关键工艺研究,获得了8元热释电探测器芯片,电压响应率约280N/W.同时,实现了8元热释电光敏芯片与8元读出电路的耦合互连,得到了8元热释电焦平面原型器件,并进行了性能测试.由于读出电路对可见光存在响应,影响了焦平面模块的热释电信号提取,电路设计有待改进.本丈的研究为基于新型弛豫铁电单晶的大规模非制冷焦平面的研制奠定了一定的基础.%PMN-PT single crystal is a novel pyroelectric material with superior performances. An 8x I linear array was designed, and research on the key processes of device fabrication was carried out based on PMN-PT crystal. The responsivity of the 8xl chip was about 280 V/W. At the same time, the 8xl pyroelectric chip was coupled with an 8xl read-out circuit. The performance of the 8× 1 FPA was studied. The pyroelectric signal of the FPA device can't be measured because the read-out circuits respond to visible light. The design of read-out circuits needs to be improved. The results of the paper lay a foundation for the development of large-scale uncooled pyroelectric FPA based on novel ferroeleetric single crystals.

  14. High-Quality Continuous-Wave Imaging with a 2.53 THz Optical Pumped Terahertz Laser and a Pyroelectric Detector

    Institute of Scientific and Technical Information of China (English)

    BING Pi-Bin; YAO Jian-Quan; XU De-Gang; XU Xiao-Yan; LI Zhong-Yang

    2010-01-01

    @@ A CW terahertz(THz)transmission imaging system is demonstrated and a high-quality THz image can be obtained using a pyroelectric detector.The factors that affect the imaging quality,such as the THz wavelength,spot size on the sample surface,step length of the motor,and frequency of the chopper,are theoretically and experimentally investigated.The experimental results show that the maximum resolution of the THz image can reach 0.4mm with the THz wavelength of 118.8μm.the spot size of 1.8 mm and the step length of 0.25mm.

  15. 热释电红外探测器PZT晶片粘接质量控制%Quality Control of the PZT Wafer Bonding in Pyroelectric Infrared Detector

    Institute of Scientific and Technical Information of China (English)

    黄江平; 冯江敏; 王羽; 苏玉辉; 信思树; 李玉英

    2013-01-01

    热释电红外探测器芯片研制中,晶片粘接是芯片研制中的关键工艺之一。本文详细论述了粘接胶的选择依据及晶片粘接质量控制。确定了适合器件研制的粘接胶和粘胶工艺流程。对粘接中出现的问题及解决办法进行了讨论。研制出了完全能满足器件工艺要求的热释电探测器PZT晶片。%The wafer bonding is one of the key technologies in pyroelectric infrared detector chip development. This paper discusses the selection basis of bonding glue and quality control of wafer bonding in details, also determines the adhesive glue and the technology suitable for detector development, and analyzes the problems and the resolution method in the course of wafer bonding. The PZT wafer that can fully meet the technology requirements of pyroelectric detector is provided.

  16. Pyroelectric Study on Dipolar Alignment in 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; SHEN Ming-Rong; CAO Wen-Wu

    2012-01-01

    Pyroelectric measurements are conducted during zero-Geld heating in [001], [110] and [111] poled 0.69Pb(Mg1/3 Nb2/3)O3-0.31PbTiO3 single crystals. Compared to the room-temperature-poled samples, the crystals poled by using the Rield cooling method show broad but well recognizable pyroelectric current peaks near 190℃, which is much higher than the Curie point (126℃) of the crystal. We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.%Pyroelectric measurements are conducted during zero-field heating in [001],[110] and [111] poled 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 single crystals.Compared to the room-temperature-poled samples,the crystals poled by using the field cooling method show broad but well recognizable pyroelectric current peaks near 190℃,which is much higher than the Curie point (126℃) of the crystal.We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.

  17. Pyroelectric IRFPA mosaic image acquisition system with multi channels%多通道热释电 IRFPA 图像拼接采集系统

    Institute of Scientific and Technical Information of China (English)

    程瑶

    2014-01-01

    为了实现分辨率高的大规模热释电IRFPA 探测器,设计了多路通道并行输出的读出电路。针对多路输出的热释电IRFPA探测器,依据热释电探测的时序要求,设计了图像拼接采集系统。利用外部驱动信号控制采集卡的触发及采样时钟,由斩波器同步信号判断热释电探测器的亮场及暗场信号。构造PC-DA Q虚拟仪器系统对多通道输出的热释电型IRFPA进行多路并行图像采集,并对每路图像信号进行亮、暗场判断后进行差分处理,通过软件拼接处理成一副完整的图像,最终在软件平台上显示。对实验室研制的160列×120行双通道读出及320列×120行四通道读出的热释电读出电路进行了图像采集实验,对于同样阵列大小的单通道读出探测器,双通道结构读出速度提高了1倍,四通道结构读出速度提高了3倍。通过采集成像实验验证了系统的可行性。%In order to achieve large-scale pyroelectric infrared focal plane array (IRFPA ) detec-tor with high resolution ,the readout circuit with multi-channel parallel output was designed . Based on the pyroelectric IRFPA detector of multiple-output and the pyroelectric detecting tim-ing requirements ,the system of mosaic imaging acquisition was designed .The external driving signals were used to control the trigger and sampling clock of acquisition card ,and a chopper synchronizing signal was used to judge the bright field and dark field signal of the pyroelectric detector .The system was constructed with PC-DAQ virtual instrument system to acquire multi-channel parallel image ,judge the bright and dark field for differential processing on each channel ,and display a whole image after mosaic processing on software platform .The experi-mental image acquisition of the pyroelectric readout circuit with 160 × 120 two-channels read-out and 320 × 120 four-channels readout were taken and the output signal waveform and image were

  18. 基于弛豫铁电单晶的红外热释电探测器研究%Pyroelectric infrared detector with relax-based ferroelectric single crystals

    Institute of Scientific and Technical Information of China (English)

    马学亮; 邵秀梅; 于月华; 李言谨

    2012-01-01

    研究了新型热释电材料驰豫铁电单晶(1-x)Pb(Mg1/3Nbz/a)O3-xPbTiO3(PMNT)的低损伤减薄工艺、电极成型和耦合封装等关键技术,研制了基于PMNT的单元热释电探测器。对减薄后约30um晶片材料性能的测试分析表明,部分样品的热释电系数约为9.0×10^-4C/m^2K,无明显衰减。采用低噪声电路提取单元探测器的微弱热释电电流,对所研制的单元探测器性能进行了测试分析。%PMNT single crystal is a novel pyroelectric material with superior pyroelectric performance. The fabrication of pyroelectirc infrared detectors based on PMNT single crystal, including lapping and polishing of the crystal, metallization and assembly,is carried out. The pyroelectric coefficient of PMNT chip with thickness of 30 um is measured and the results indicate that the pyroelectric coefficients of some chips are 9.0 × 10^-4 C/m2K, similar to that of the PMNT single crystal with thickness of 500 um. Weak pyroelectric current is extracted by a low-noise circuit, and the performance of the fabricated detector is tested and analyzed.

  19. Dielectric, piezoelectric, and pyroelectric anisotropy in KCL- modified grain-oriented bismuth vanadate ceramics

    OpenAIRE

    Shantha, K; Varma, KBR

    1999-01-01

    The effect of the additive KCl, on the structural, microstructural, and polar properties of bismuth vanadate (BiV) ceramics is investigated. The scanning electron microscopic (SEM) studies reveal a remarkable modification in the microstructure and the occurrence of high grain-orientation (75%) on KCl addition. The energy dispersive x ray (EDX) analyses indicate the presence of chemically inhomogeneous distribution of KCl, with core-shell-like grain structure. The KCl-modified BiV samples exhi...

  20. 热释电探测器PZT晶片制备工艺研究%Study on Fabrication of Pyroelectric Detector PZT Wafer

    Institute of Scientific and Technical Information of China (English)

    黄江平; 王羽; 袁俊; 王学森; 郭雨航; 余瑞云

    2013-01-01

      This paper introduces the study of pyroelectric detector PZT wafer and the theory basis of choice of lead zirconate titanate(PZT)as sensitive element material. It also describes polishing and grinding theory. Factors affecting the polishing quality are analyzed in detail. The crystal surfaces polished by several different polishing liquid are analyzed by SEM, and SEM photos, surface roughness analysis and crystal surface morphology were gained. The best polishing material was determined. Through the combination of theory and practice, the pyroelectric detector wafer which could meet the technological requirements was got.%  介绍了热释电探测器PZT晶片制备工艺及选择锆钛酸铅(PZT)陶瓷材料制作敏感元的理论依据,阐述了晶片磨抛理论,对磨抛质量影响因素进行了细致分析。对比了几种抛光液对晶片表面的抛光效果,并进行了扫描电镜和表面粗糙度分析,得到了抛光后晶片表面的扫描电子显微镜(SEM)照片和晶片表面形态,确定了最佳抛光材料。通过理论和实践的结合,研制出了完全能满足器件工艺要求的热释电探测器晶片。

  1. Research on Spatial Uniformity Calibration of Pyroelectric Laser Energy Meter%热释电型激光能量计空间均匀性校准技术研究

    Institute of Scientific and Technical Information of China (English)

    易瑔; 罗天峰; 杨建昌

    2016-01-01

    热释电探测器由于其灵敏度高、响应速度快、体积小、损伤阈值高等特点,作为激光能量计的传感器在激光能量检测方面使用广泛。由于制作工艺的限制,热释电型激光能量计的热敏面灵敏度系数存在空间非均匀性问题,导致当激光照射到探测器不同位置时,激光能量测量结果不准确。针对这一问题,设计一种热释电型激光能量计空间均匀性校准方法,通过对热释电探头光路的控制,消除空间均匀性对测量结果的影响,并通过实例验证了方法的可行性。%For good features such as high sensitivity, fast response speed, small volume and high damage threshold, the pyroelectric detector as the sensor of the laser energy meter is widely used in laser energy detection. Limited by the manufacture process, the thermal surface sensitivity coefficients of the pyroelectric laser energy me⁃ter has spatial non-uniformity problem. When the laser irradiates the different positions of the detector, the results of the laser energy measurement is different. To solve this problem, a pyroelectric laser energy meter spatial uniformity calibration method is designed. Through controlling the light path of the pyroelectric detector, the influence on mea⁃sured results from spatial uniformity is removed. And the feasibility of the method is verified by the experiments.

  2. Pyroelectric Coefficient Testing System with Single Serial Port of Computer Feedback Control%计算机反馈控制型单串口热释电系数测试系统

    Institute of Scientific and Technical Information of China (English)

    杨俊; 曾亦可; 陈朝晖; 罗旖旎

    2011-01-01

    An improvement of pyroelectric coefficient testing system was studied. A single serial-port replaced the multi-serial port,which reduced complexity of the system and increased stability. A computer feedhack conLrol heatingrate was designed for the heater constniction,which eliminated the measurementerror caused by the temperature lag of the heater construction. It improved the linearity of line heating curve , and the linearity reached 0. 37% . Therehy it enhanced the accuracy of the measurement system.Several kind of pyroelectric materials were used to prove the superiority of the new system, and theexperimental results showed that the pyroelectric coefficient of pyroelectric materials measured by the new system were in accord with the theoretical values. Therefore,this system can accurately measure the pyroelecrric coefficient of the materials.%对热释电系数测试系统进行了研究,用单串口取代多串口,降低了系统连线的复杂度,提高了系统运行的稳定性;加入计算机控温机制,实现了计算机反馈控制加热炉升温速率,极大地提高了升温曲线的线性度,其线性度达到0.37%,从而消除了加热炉升温滞后性带来的测量误差,提高了测量的准确性.用几种热释电材料对现有系统进行了验证,实验表明新热释电系数测试系统的测试结果与理论数据相符,该系统已经可以较准确测量热释电材料的热释电系数.

  3. Fabrication and Properties of the Multi-layer Pyroelectric Thin Film Infrared Detectors%复合热释电薄膜红外探测器的制备和性能测试

    Institute of Scientific and Technical Information of China (English)

    王三红; 吴小清; 姚熹

    2001-01-01

    为解决热释电薄膜红外探测器中的热损失问题,引入了复合热释电薄膜的概念.它利用多孔二氧化硅具有的低热导率特点,有效地减少了热量从热释电层向衬底的热扩散.利用溶胶-凝胶和金属有机物热分解等工艺制备的复合热释电薄膜红外探测器,在温度为420K、频率为10Hz时,电压响应率约为1400V/W,探测器的星探测率D(420,10,2)为9.3×107cm.Hz1/2/W.%In order to reduce the thermal dissipation from the pyroelectric film to the substrate and meet the needs of integration with silicon, the multi-layer pyroelectric thin film (MPTF) was introduced. It is mainly composed of pyroelectric sensitive layer-lead titanate, thermal isolating layer-porous silicon dioxide film, and the buffer layer-dense silicon dioxide film. A pyroelectric measuring system was built to measure the infrared response of the detector. The voltage response and the specific detectivity of the detector were also given.

  4. Diagnosis of high-repetition-rate pulse laser with pyroelectric detector%基于热释电探测器的重频脉冲激光诊断

    Institute of Scientific and Technical Information of China (English)

    张磊; 邵碧波; 杨鹏翎; 王振宝; 闫燕

    2011-01-01

    Based on the working principles of a pyroelectric detector, the transient response of the detector to the pulse laser is researched. The model of pyroelectric detector is built, and the response in practical application is simulated according to the parameters of materials and structures. Signal process circuits which are suitable for a high-repetition-rate pulse laser are designed. Finally', a number of the repetition frequency laser radiation experiments on the pyroelectric detector are carried out. The experiments on frequency response and pulse width of the detector are completed, and the feasibility of applying the pyroelectric detector to the energy measurement of the high-repetition-rate and narrow pulse laser is verified.%摘以热释电探测器的工作原理为基础,研究了热释电探测器对重频脉冲激光的瞬态响应特性,建立了热释电探测器对单脉冲激光辐照响应的工作模型,分析了影响探测器频率特性的主要因素。根据材料和结构参数模拟计算了实际应用中的响应模型。设计了信号检测电路并对其进行计算仿事。完成了探测器的频率响应、脉宽响应等实验测量,验证了热释电探测器用于高重频、窄脉冲激光能量测量的可行性。

  5. Composition and temperature dependence of ferroelectric and pyroelectric properties of (1 − x)[PMN–PT(65/35)]–xPZ (0 ≤ x ≤ 0.10) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tong; Li, Qiang [Department of Chemistry, Tsinghua University, Beijing 10084 (China); Yan, Qingfeng, E-mail: yanqf@mail.tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 10084 (China); Luo, Nengneng [Department of Chemistry, Tsinghua University, Beijing 10084 (China); Zhang, Yiling; Chu, Xiangcheng [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2014-11-15

    Highlights: • PMN–PT–PZ ceramics with PZ content smaller than 0.10 mol% were synthesized. • T{sub rt} of the PMN–PT–PZ ceramics increased linearly with the increase of PZ constant. • A mutation of the ferroelectric and pyroelectric properties was observed near T{sub rt}. - Abstract: (1 − x)[Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (65/35)]–xPbZrO{sub 3} (PMN–PT–PZ) ceramics near morphotropic phase boundary with 0 ≤ x ≤ 0.10 were synthesized via the conventional solid-state reaction method. X-ray diffraction and variable temperature dielectric property characterization indicated that the rhombohedral to tetragonal phase transition temperature (T{sub rt}) increased linearly with the increase of PZ constant. The composition and temperature dependence of their ferroelectric and pyroelectric properties were also investigated. The results showed that there appeared mutation for remnant polarization, coercive field, as well as pyroelectric coefficient at the temperate range near T{sub rt}, which was ascribed to the reorientation of dipoles caused by the rhombohedral–tetragonal phase transition.

  6. Ferroelectric, piezoelectric, pyroelectric and Raman spectroscopy studies on BaTi{sub 0.9}(Fe{sub 1/2}Nb{sub 1/2}){sub 0.1}O{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkafi, Z.; Abdelmoula, N. [Laboratoire des Materiaux Ferroelectriques, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Simon, A.; Maglione, M. [ICMCB CNRS-Universite Bordeaux 1, Pessac (France); Khemakhem, H.

    2008-12-15

    The hysteresis, piezoelectric and pyroelectric properties were measured in the temperature range near the ferroelectric-paraelectric phase transition. The BaTi{sub 0.9}(Fe{sub 1/2}Nb{sub 1/2}){sub 0.1}O{sub 3} ceramic exhibits typical ferroelectric P -E hysteresis behavior with a remanant polarization, P{sub r}, of about 7.52 {mu}C/cm{sup 2} detected at 155 K. The electromechanical properties of this composition were measured using the resonance method. The ceramic provides high piezoelectric performance at the temperature of transition (T{sub max}=216 K): the piezoelectric constant is d{sub 31}=140 pC/N and the electromechanical coupling factor was k{sub P}=22%. The pyroelectric study confirms the dielectric and ferroelectric measurements. The pyroelectric coefficient is about 125 nC/cm{sup 2} K at T{sub max}. Raman spectra of BaTi{sub 0.9}(Fe{sub 1/2}Nb{sub 1/2}){sub 0.1}O{sub 3} ceramic were taken at various temperatures and measured over the wave number range from 150 to 1300 cm{sup -1}. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. 人工复合铁电多层膜热释电性质的理论研究%Theoretical Investigation on Pyroelectric Properties of Artificial Composite Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    陈辉; 成泰民; 陈思群

    2011-01-01

    A theoretical model of ferroelectric thin film composite by three ferroelectric materials with different phase-transition temperatures has been built, in which the three components composite perpendicular to the polarization. Using ginzburg-landau-devonshire(GLD) theory, a local distribution function has been introduced to describe the properties of the transition layers, and the pyroelectric properties of the composite ferroelectric thin films have been mainly investigated. Polarization distributions, transition temperatures and pyroelectric coefficients were calculated with different composite methods. It was shown that the composite methods had importance influence on polarization and pyroelectric properties; two pyroelectric peaks appeared with the change of the film temperature. The composite ferroelectric thin film under new model presented many new properties, especially provide a reference on the improvement of pyroelectric devices. This composite film may be a new choice of multi-layer films in applications.%建立3种具有不同相变温度的铁电材料垂直于极化方向复合而成的铁电薄膜的理论模型,在ginzburg-landau-devonshire (GLD)唯象理论的框架下展开研究,同时引入局域分布函数来描述不同材料间过渡层的性质,主要研究了复合铁电薄膜的热释电性质.通过改变3种不同铁电材料的复合方式,计算了铁电多层膜内部的极化强度分布、相变温度及热释电系数.研究表明,具有不同相变温度的铁电材料间的复合方式对铁电薄膜的极化和热释电性质有着重要的影响,3种不同材料复合而成的铁电薄膜随着温度的变化出现了2个热释电峰.新模型下的复合铁电薄膜表现很多新的特性,尤其对于铁电热释电器件性能的改良提出了一种参考,该种复合薄膜也许能够成为通常使用的多层膜的一种选择.

  8. Study on Inter-Diffusion Barrier Layer between PZT Pyroelectric Thick Film and Si Substrate%PZT厚膜与Si衬底互扩散阻挡层研究

    Institute of Scientific and Technical Information of China (English)

    陈冲; 吴传贵; 彭强祥; 罗文博; 张万里; 王书安

    2013-01-01

    在Pt/Ti/SiO2/Si基片上,利用电泳沉积制备PZT热释电厚膜材料.为防止Pb和Si互扩散,在Pt底电极与SiO2/Si衬底间通过直流磁控溅射制备了TiOx薄膜阻挡层.对具有0、300 nm和500 nm TiOx阻挡层的PZT厚膜材料用SEM和能量色散谱仪(EDS)表征了Pb和Si互扩散情况,用动态热释电系数测量仪测试了热释电系数.结果表明,当TiOx阻挡层为500 nm时,可阻挡Pb和Si互扩散,热释电性能最好.热释电系数p=1.5×10-8 C·cm-2·K-1,相对介电常数εr=170,损耗角正切tanδ=0.02,探测度优值因子Fd=1.05×10-5pa-0.5.%PZT thick film as pyroelectric material has been prepared on the Pt/Ti/SiCK/Si substrate by using the electrophoresis deposition (EPD) method. In order to prevent the inter-diffusion between Pb and Si,a TiOx film barrier layer between Pt bottom electrode and SiO2/Si substrate has been prepared by using the DC magnetron sputtering method. The inter-diffusion between Pb and Si in PZT thick film material with TiO, barrier layer thickness of 0, 300 nm and 500 nm respectively have been characterized by SEM and EDS. The pyroelectric coefficient has been measured by the dynamic pyroelectric coefficient instrument. The results show that the inter-diffusion between Pb and Si can be blocked when the thickness of TiOx barrier layer is 500 nm and have the best pyroelectric properties. The pyroelectric coefficient, relative dielectric constant,dielectric loss and detectivity figure of merit are p=1. 5 × 10-8C · cm-2k-1 ,εr = 170,tan 8=0. 02 and Fd = 1. 05 × 10-5 Pa-0.5 respectively.

  9. Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ceramic by internal clamping

    Directory of Open Access Journals (Sweden)

    Satyanarayan Patel

    2015-08-01

    Full Text Available This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi0.5Na0.5TiO3−0.065BaTiO3−0.22SrTiO3 (BNT-BT-ST bulk ferroelectric ceramic was selected for the course of investigation. 3BaO − 3TiO2 − B2O3 (BTBO glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight. Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density ∼174 kJ/m3 to ∼203 kJ/m3 and pyroelectric coefficient 5.7x10−4 Cm−2K−1 to 6.8x10−4 Cm−2K−1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs for high voltage responsivity (Fv high detectivity (Fd and energy harvesting (Fe from 0.018 to 0.037 m2C−1, 5.89 to 8.85 μPa−1/2 and 28.71 to 61.55 Jm−3K−2, respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements.

  10. Contactless Temperature Measurement System Based on Pyroelectric Sensor%热释电传感器的非接触式测控系统设计

    Institute of Scientific and Technical Information of China (English)

    叶健成

    2013-01-01

    Basic principles of using pyroelectric infrared sensor for non-contact measurement,infrared temperature measurement system structure and composition of signal processing circuit are introduced in this paper.On this basis,the paper designs and implements a set of non-contact infrared temperature measurement device,it uses the device to measure movement target surface temperature.When it simulates the application of actual scene,it can realize the accurate measurement of the distant pedestrian body temperature,also it increases the high temperature alarm circuit and bluetooth wireless communication module,and expands the using function.%介绍了利用热释电红外传感器进行非接触式测温的基本原理、红外测温系统结构和信号处理电路的组成.以此为基础,设计了一套非接触式红外测温装置,用该装置测定了移动目标表面温度.在模拟实际场景应用时,实现了对较远距离的运动行人体温的准确测量;装置还增加了高温报警电路和蓝牙无线通信模块,丰富了使用功能.

  11. 动态下红外热释电传感器的目标定位方法%New target location method based on dynamic pyroelectric infrared sensor

    Institute of Scientific and Technical Information of China (English)

    孙乔; 杨卫; 于海洋; 刘俊

    2012-01-01

    In order to improve detection sensitivity of the pyroelectric sensor and broaden the scope of traditional use of the sensor, a new applied method based on dynamic pyroelectric infrared sensor was presented in this paper, which can find the body target and coordinates. This method greatly expanded the detection range of pyroelectric infrared sensor, which could accurately determine the direction of the target according to the waveform, deduce the distance from experience. A pyroelectric infrared sensor was used as a detector in this system, innovatively use of infrared lens to replace the traditional Fresnel lenses. MCU recorded the original infrared waveform of the measurement area(if the environment keeped changeless in a long time the waveform would have a certain basic rules); once the body target walked into the measurement area, it would lead to changes of the original law, and the microcontroller would obtain direction, distance and other results according to the use of inter-frame difference method. With the traditional use of pyroelectric sensor, the method had some new feathures such as fast response, detection sensitivity, wide detection range, direction measure and distance measure. It significantly broadens the use scope of the pyroelectric sensor, and further strengthens its application in security and smart home system.%为了提高热释电传感器的探测灵敏度,拓宽其传统使用范围,提出了一种动态下热释电传感器发现人体目标并测向测距的新型使用方法.该方法大大扩展了热释电传感器的探测范围,根据波形能准确判定目标的方向,利用经验值推断出人体的目标距离.该系统采用热释电红外传感器作为探测器,创新运用红外透镜代替传统用法中的菲涅耳透镜,在步进电机的匀速带动下,单片机记录测量区域的原始红外波形(在环境基本不变且没有目标进入的情况下,波形具有一定规律且基本保持不变);目标进入测

  12. Design and Research on Amplifier Circuit for Pyroelectric Infrared Sensor%热释电红外传感器前置放大电路设计与研究

    Institute of Scientific and Technical Information of China (English)

    滕飞扬; 陈连坤

    2012-01-01

    介绍热释电红外传感器的工作原理和性能,分析热释电红外传感器的信号输出特性,设计基于此类传感器的前置滤波放大电路.并使用单片机进行经过电路放大后的脉冲信号的分析,完成对人体运动的检测。使用Alfium Designer6.9对前置滤波放大电路进行软件仿真,以验证该放大电路的有效性和可靠性。%Introduces the working principle and performance of pyroelectric infrared sensor, and analyses the characteristics of pyroelectric infrared sensor signal output, then designs an preamplifier based on this type of sensor, and uses the microcontroller for analysis of the amplified signal to finish the detection of human motion. Uses Ahium Designer 6.9 to simulate the preamplifier, verifies the validities and reliability of the preamplifier.

  13. Pyroelectricity and Spontaneous Polarization in [111] Oriented 0.955 Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    SHEN Ming-Rong; YAO Dong-Lai; CAO Wen-Wu

    2005-01-01

    @@ We report that the measurements of the pyroelectric current of the pre-poled [111]-oriented 0. 955 Pb(Zn1/3Nb2/3)O3-0.045 PbTiO3 (PZN-4.5%PT) single crystals can shed some light on the phase transition and spontaneous polarization characters of this material in a similar way to measures of remanent polarization and dielectric properties. The pyroelectric current is measured and the corresponding spontaneous polarization is calculated as a function of temperature with various poling fields added during cooling the sample from 200℃ to room temperature. Critical electric field of 0.061 k V/cm is found to be essential to induce the intermediate ferroelectric orthorhombic phase between the ferroelectric rhombohedral and tetragonal phases. Below the critical field, the polarization increases almost linearly with the increase of poling field. At the critical field, the polarization at 30℃ increases abruptly from 14μC/cm2 for a poling field of 0.06kV/cm to 29.5μC/cm2 for a poling field of 0.061 kV/cm, and afterwards, increases slowly and saturates to 31 μC/cm2 for poling fields beyond 0.55 kV/cm.

  14. Study on the pyroelectric properties of lithium niobate wafer prepared by wafer bonding and thinning%铌酸锂晶片的键合减薄及热释电性能研究

    Institute of Scientific and Technical Information of China (English)

    杨绪军; 陈箫; 刘岗; 牛坤旺; 张文栋

    2011-01-01

    铌酸锂(LN)作为一种热释电材料,可以被用于制作光电探测器敏感单元的敏感层,但通常LN晶片厚度为0.5 mm,远大于光电敏感单元厚度的要求,所以需要用键合减薄及抛光技术对LN晶片进行加工处理.本研究所用键合减薄技术主要包含:RZJ-304光刻胶键合、铣磨、抛光、剥离液剥离和丙酮清洗RZJ-304胶.利用该技术加工得到了面积为10 mm×10 mm,厚度为50 μm,表面比较光滑,表面粗糙度为1.63 nm的LN晶片.LN晶片的热释电信号峰峰值在减薄抛光后为176 mV,是未经处理时的4倍,满足了热释电探测器敏感层的要求.%Pyroelectric material lithium niobate (LN) can be used for the preparation of sensitive layer in the sensitive element of photoelectric detector. However, as the thickness of normal LN wafer, which is 0.5 mm, is much larger than the thickness of sensitive element, LN wafer need to be processed using the thinning and polishing techniques. A novel wafer bonding and thinning technique was introduced in this study, and it mainly included: wafer bonding with RZJ-304 photoresist, grinding, polishing, separating wafers with stripper and removing photoresist with acetone. LN wafer (10mm in square) with a thickness of 50 um is prepared using this technique, and the surface of prepared LN wafer is very smooth with the surface roughness being 1.63 nm. The peak value of the pyroelectric signal of the processed LN wafer is 176 mV, which is four times that of the unprocessed wafer, fulfilling the requirements of the sensitive layer of pyroelectric detector.

  15. LHI878热释电红外传感器的体温检测系统设计%Design of temperature detection system base on LH878 pyroelectric infrared sensor

    Institute of Scientific and Technical Information of China (English)

    赵春华; 许云涛; 宁春玉

    2013-01-01

      设计一种以ATmage32单片机为核心的热释电红外体温测量系统.利用热释电红外传感器,设计一个非接触式的语音播报体温测量系统.采用热释电红外传感器来提取人体温度信号,同时由DS18B20测量环境温度信号,进行温度补偿减少测量误差.将提取的温度信号经过模拟处理后由AVR单片机控制实现对人体温度值的转换及处理,将得到的温度值送入LCD显示及语音播报.同时还加入了时钟功能和超温报警功能,使设计更具实用性.该体温测量系统测量范围为35~42益,测量时间小于1 s.该温度检测系统具有使用方便、灵活性好、可靠性高等优点,具有一定的推广应用价值.%A kind of pyroelectric infrared temperature measurement system was designed, which core was the ATmage32 SCM. It was a non-contact and voice prompt temperature measurement system by using pyroelectric infrared sensor. It used the pyroelectric infrared sensor to extrat the temperature of the human body and the DS18B20 to measure the environmental temperature, which could achieve the temperature compensation to reduce the measurement error. It could be controlled to realize the temperature convertion and processing, and sent the temperature value to the LCD to display and the voice prompt by the AVR SCM. Simultaneously, it was added the clock function and overtemperature alarm function to make the design more practical. The temperature measurement range was from 35-42℃. The measurement time was less than 1s. The temperature measurement system had the advantages of handy use, good flexibility, high reliability, and had a promotional value.

  16. Influence of Boundary Conditions on Pyroelectric Properties of Temperature-graded Ferroelectric Films%边界条件对温度梯度铁电薄膜热释电性质的影响

    Institute of Scientific and Technical Information of China (English)

    陈辉; 冮铁臣; 成泰民; 陈思群; 李青云

    2013-01-01

    In the framework of the mean field approximation, a transverse Ising model was adopted to investigate the influence of different boundary conditions (clamped boundary condition and free boundary condition) on the pyroelectric properties of temperature-graded ferroelectric thin films. A function was introduced to characterize the distribution of the interaction couplings between two pseudo-spins under different boundary conditions. It is shown that the distribution of temperature gradient and boundary conditions have great influence on polarization distribution and pyroelectric coefficients. There are two pyroelectric peaks in curves for temperature-graded ferroelectric thin films. The second peak under free boundary condition is much higher than the peaks of non-graded film and peaks under clamped boundary condition.%在平均场近似的理论框架下,采用横场伊辛模型研究了不同边界条件(固定边界条件和自由边界条件)对温度梯度铁电薄膜热释电性质的影响.引入一个分布函数来描述不同边界条件下赝自旋相互作用系数的变化.研究表明,薄膜内部的温度梯度分布和薄膜所处的边界条件对其极化分布和热释电系数都有很大的影响.温度梯度铁电薄膜的热释电曲线中出现了2个热释电峰,其中自由边界条件下的薄膜所对应的第2个热释电峰比无温度梯度的铁电薄膜和固定边界条件下的温度梯度铁电薄膜的热释电峰都要高出许多.

  17. 基于单片机热释电红外安防报警器的设计%Design of Pyroelectric Infrared Security Alarm Based Single-Chip Microcomputer

    Institute of Scientific and Technical Information of China (English)

    赵巧妮

    2016-01-01

    热释电红外防盗报警器是利用红外传感器技术来自动探测发生在布防监测区域内的异常人员的入侵行为,并及时产生声光报警信号,提示主人及时处理异常情况,避免危险情况发生,维护社会和家庭人员、财产的安全。%Pyroelectric infrared burglar alarm, by using infrared sensor technology, can automatically detect abnormalities by armed persons in the event of intrusion monitoring area, and timely produce sound and light alarms to notify the owner to respond to avoid theft, snatches, or sabotage, in order to maintain security of social and family members, and of property.

  18. Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate

    Science.gov (United States)

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-01

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.

  19. Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary single crystal

    Science.gov (United States)

    Yu, Ping; Wang, Feifei; Zhou, Dan; Ge, Wenwei; Zhao, Xiangyong; Luo, Haosu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2008-06-01

    To enhance the service temperature of relaxor-PbTiO3 pyroelectric single crystals, high quality ternary perovskite single crystal was grown by a modified Bridgman technique. Analyzed by x-ray fluorescence, the as-grown crystal is 0.41Pb(In1/2Nb1/2)O3-0.17Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 [PIMNT(41/17/42)], which appears to be a tetragonal ferroelectric phase with relatively high Curie temperature of 253°C. It exhibits the relative permittivity of 487 and low dielectric loss of 0.3% at 50Hz and room temperature. The pyroelectric properties with a pyroelectric coefficient of 5.7×10-4C /m2K and a detectivity of 6.34×10-5Pa-1/2 would satisfy the needs of operation as a high Curie temperature material. The results show that PIMNT crystal with better temperature stability, compared with the pure PMNT single crystals, is a good candidate as an infrared detector material.

  20. 新型热释电材料及其在红外探测器中的应用%Novel pyroelectric materials and their applications in high performance infrared devices

    Institute of Scientific and Technical Information of China (English)

    刘林华; 罗豪甦; 吴啸; 赵祥永; 方家熊; 李言瑾; 邵秀梅; 景为平

    2011-01-01

    以(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3{PMNT[(1-x)/x}为代表的大尺寸、高质量弛豫铁电单晶具有非常高的热释电系数、探测优值和较低的热扩散系数,其综合热释电性能远优于传统的热释电材料.概述了PMNT[(1-x)/x]单晶、掺锰PMNT(74/26)单晶和0.42Pb(In1/2Nb1/2)O3-0.3Pb(Mg1/3NB2/3)O3-0.28PbTiO3[PIMNT(42/30/28)]单晶的介电性能、铁电性能和热释电性能.掺杂后PMNT(74/26)单晶的介电损耗降低到0.0005,探测优值提高到40.2×10-5Pa-1/2,是目前所有三方四方相变温度(TRT)高于90℃的本征热释电材料中最高的.高居里温度PIMNT(42/30/28)单晶的TRT达到152℃,且具有较高的探测优值(10.2×10-5Pa-1/2),将在更宽温度范围内得到广泛的应用.制作了基于掺锰PMNT(74/26)单晶的单元探头,其比探测率D*达到1.07×109cmHz1/2W-1,是目前商用LiTaO3探测器的两倍,器件性能满足实用要求.%The large-size, high-quality relaxor-based ferroelectric single crystals represented by(1-x)Pb (Mg1/3Nb2/3) O3-xPbTiO3 {PMNT [(1-x)/x] } perform very high pyroelectric coefficient, detectivity figures of merit and relatively low thermal diffusivity, which makes its comprehensive pyroelectric properties far superior to the traditional pyroelectric materials. The dielectric, ferroelectric and pyroelectric properties of the PMNT [(1-x)/x], Mn-doped PMNT (74/26) and 0.42Pb(In1/2Nb1/2)O3-0.3Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 [PIMNT(42/30/28)] single crystals were overviewed. The dielectric loss of Mn-doped PMNT(74/26) crystals was declined to 0.0005, and the detectivity figures of merit was enhanced to 40.2×10-5 Pa-1/2, which was the highest value so far reported among intrinsic pyroelectric materials with TRr higher than 90 ℃. HighCurie-temperature PIMNT (42/30/28) crystals with TRT of 152 ℃, employed relatively high detectivity figures of merit (10.2×l0-5 Pa-1/2), would be widely used in a wider temperature range. The specific detectivity of infrared detector based

  1. Effect of the out-of-plane stress on the properties of epitaxial SrTiO{sub 3} films with nano-pillar array on Si-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, Dongmei [School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China)

    2015-08-21

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO{sub 3} films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO{sub 3} films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO{sub 3} films similar to PZT and other lead-based ferroelectrics can be expected.

  2. 辽西北票二道沟金矿的成矿特点和黄铁矿热电性特征%Ore-forming Characteristics and Pyroelectricity of Pyrite of the Erdaogou Gold Deposit, Beipiao, Western Liaoning

    Institute of Scientific and Technical Information of China (English)

    王鹏; 董国臣; 李志国; 聂飞; 陈友长; 孙凡; 王霞; 董美玲

    2013-01-01

    通过对辽西北票二道沟金矿Ⅲ号脉的不同中段的矿石组构、金的分布特点和主要载金矿物立方体、五角十二面体及它形黄铁矿的热电性研究,讨论了成矿特征,计算了成矿温度和矿体剥蚀率并对深部找矿远景进行了预测.研究表明:二道沟金矿金的分布特点存在不均匀性;黄铁矿热电性以P型为主且变化范围宽,只有少量的N型,表明矿体的剥蚀率较低.二道沟金矿可能存在多期次的热液活动,且每一期次相互叠加改造;成矿热液来自南东方向,成矿热液早期温度较高,金属元素大量沉淀温度为150 ~300℃,属中低温,且不同中段的成矿温度有一定的变化规律.不同晶形的黄铁矿热电性研究表明,不同晶形载金能力不同,黄铁矿热电性P型频率不同,形成的温度不同,但计算的矿体剥蚀率相差不大.%According to the ore texture, gold occurrence, shape and pyroelectricity of pyrites of vein Ⅲ in the Erdaogou gold deposit in Western Liaoning, the authors discussed the ore-forming temperatures, denudation rates and evaluated the ore deep prospects. The studies prove that the gold occurrence in the ores was unhomo-geneous. The pyrite was mainly P-type and varied widely, with a few N-type, in terms of pyroelectricity, which indicated that a few part of the orebody was removed by uplift and erosion. Possibly, there were several hydro-thermal activities superposed each other in the Erdaogou gold deposit. The metallogenic hydrothermal solution came from southeast direction. Though the initial hydrothermal temperature was high, most metal minerals precipitated when the temperature ranged from 150 to 300 ℃ , indicating that the Erdaogou gold deposit belonged low-medium hydrothermal type. The pyroelectricity measurements of pyrite indicated that denudation rate was similar, even though the pyrites were different in frequency of P-type, forming temperature and gold content.

  3. Synthesis of 0.64Pb(Mg1/3Nb2/3O3–0.36PbTiO3 ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2016-09-01

    Full Text Available A near MPB composition of 0.64PMN–0.36PT ceramic has been synthesized by solid-state reaction technique using columbite precursor. Sintering at 1030 °C resulted in a single perovskite phase with tetragonal structure having uniform and dense microstructure as revealed by powder XRD, Raman spectroscopy and FESEM analyses. An excellent dielectric response was obtained with room temperature dielectric permittivity value of 142 and high-phase transition temperature (Tm of 210 °C at 1 kHz. A huge value of piezoelectric charge coefficient (490 pC/N was obtained, which shows potential of PMN–PT for piezoelectric device applications. Well-shaped and fatigue-free P–E hysteresis loops over a wide temperature range of 30–230 °C were traced. A very large value of pyroelectric coefficient (p ∼ 2739.2 μC m−2 °C−1 was obtained.

  4. Unattended safety control system based on pyroelectric infrared sensor%基于热释红外传感器无人值守的安全控制系统

    Institute of Scientific and Technical Information of China (English)

    王良升; 郭杰荣; 黄民; 肖利平; 王瑞成

    2015-01-01

    This system scanning the workplace environment uses the pyroelectric infrared module to determine whether there are persons in the presence. And then send information to the CPU through the plurality of wireless modules nRF24L01, and the central processor executes corresponding control through the corresponding electric appliances or control switch. The system adopts the wireless receiving and sending, the infrared sensor technology, wireless communication technology, combined with single-chip microcomputer technology and computer application technology, work closely with each other to achieve the unattended environment management, which has good market application value.%采用热释电人体红外感应模块对工作场所环境扫描检测以判断有无人员在场,然后通过多个无线模块nRF24L01发送信息给中央处理器,中央处理器再对相应的用电器或者开关等进行相应的控制。系统采用无线接收与发送来实现匹配,并且将红外传感技术、无线通信技术、单片机技术与计算机应用技术结合实现对无人值守环境的管理,具有较好的市场应用价值。

  5. Design of Readout Circuit for Pyroelectric Detector Based on Relaxor Ferroelectric Single Crystals%弛豫铁电单晶热释电探测器读出电路的设计

    Institute of Scientific and Technical Information of China (English)

    王将; 景为平

    2011-01-01

    Relaxor-based ferroelectric single crystals, such as (1- x)Pb(Mg1/3Nb2/3 )O3-xPbTiO3 (PMN-xPT, or PMNT) single crystals, exhibit large pyroelectric response, Iow thermal diffusivity and high temperature stability.To fabricate high performance infrared detectors with relaxor-based single crystals, the related readout circuit is investigated to increase signal-to-noise ratio, and 8 × 1 CMOS readout circuit is fabricated to gain very weak current.%以(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-xPT或PMNT)(PMN-xPT,或PMN-PT)为代表的弛豫铁电单晶具有非常高的热释电系数、比较低的热扩散系数、比较稳定的化学性能,是一种综合性能优异的热释电材料.利用弛豫铁电单晶可以制备出高性能的红外光传感器,针对用这种新型热释电材料制成的红外光传感器,研究了相关的读出电路,探索了抑制读出电路噪声的方法,研制出了8通道的微弱电流读取电路.

  6. 热释电红外传感器在生物特征识别领域中的研究进展%Pyroelectric infrared(PIR) sensor in the field of biometric identification applications

    Institute of Scientific and Technical Information of China (English)

    冯莉; 明东; 徐瑞; 邱爽; 许敏鹏; 綦宏志; 万柏坤; 王威杰

    2011-01-01

    Biometrics makes use of the physiological or behavioral characteristics of people to validate their identities. Gait recognition is an emerging field of biometrics technologies, whose aim is to identify the individuals based on their walking style. Therefore, this technique has a bright prospect and gains more and more attention from the field of biomedical information detection. When a human walks, the motion of various components of the body produce a characteristic signature, and can be detected by PIR sensor. The features of human motion can be extracted by analyzing the output signals of PIR sensor, then the recognition of different persons or different motion styles can be realized. In this paper, the improvements of this topic in the last several years are discussed in detail from three parts: the sensor detection principle, the applications in the field of gait recognition, and the feature extraction and classification methods of the pyroelectric information. At the end of the survey, some vital problems of this research are presented and analyzed.%步态识别作为生物特征识别技术的一个新兴子领域,旨在根据人的行走姿势实现对个体身份的识别.人行走过程中身体各部分的红外热辐射信号具有某种个体特征,该特征信息能够被热释电红外传感器有效检测.通过分析传感器的输出信号,就可以提取出人体运动的特征性数据,实现对不同人、不同运动状态的识别.本文对热释电红外传感器应用于生物特征识别领域的研究进展进行论述,从传感器的探测原理、在步态识别中的应用以及热释电信息的特征提取与分类算法进行总结,并对当前该研究方向上亟待解决的问题作简要的分析.

  7. Pyroelectric infrared alarm system based on human gait recognition%基于人体步态识别的热释电红外传感报警系统

    Institute of Scientific and Technical Information of China (English)

    张涛; 钟舜聪

    2011-01-01

    In order to solve the problem of difficult detecting the motionless human body using pyroelectric infrared (PIR) sensor, a passive PIR alarm system based on human gait recognition was investigated to enhance the intelligence of the system and to reduce the false alarm rate. As the detector, PIR sensor was employed in the system for non-contact monitoring the human body within a certain distance. The PIR signal was filtered, amplified, and then converted to a digital signal by an analog-to-digital converter. Consequently, the digital signal was sent to a microcomputer ( MCU ) for processing. The human body movement characteristics were analyzed to achieve accurate security alarm purpose. The experimental results demonstrate the stable performance, high sensitivity and low false alarm rate of the developed PIR alarm system, therefore, it can be recommended for the applications in security system of home, shopping center, and warehouse.%针对热释电红外传感器对运动后静止的人体无法感应的缺点,设计了一种基于人体步态识别的热释电红外报警系统,大大提高了系统感知智能度,减少了报警的误报率.该系统利用热释电红外传感器(PIR)作为探头,将感测到人体的红外信息转换成电压信号,通过滤波、放大等信号调理以及经过数据采集后,将信号传递给单片机处理,结合人体运动特征进行步态识别,从而实现智能报警,达到安全防护的目的.研究结果表明,基于人体步态识别的热释电红外报警系统具有性能稳定、灵敏度高、误报率低等优点,适合各种安全报警的场合,具有广泛的应用前景.

  8. PbTiO3微晶玻璃陶瓷的结构和热释电性能研究%Structure and Pyroelectric Properties of PbTiO3 Glass-Ceramics by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    翟继卫; 姚熹; 张良莹

    2001-01-01

    采用溶胶-凝胶方法在Pb-Ti-B-Si-O凝胶玻璃体系中,析出了PbTiO3微晶. DTA和X-ray衍射分析表明,随玻璃含量的增加,析晶温度升高. 热释电测试结果说明,随着玻璃含量的增加,热释电系数增大;随烧结温度的升高,PbTiO3微晶玻璃陶瓷的热释电系数也随之增大. 介电温谱的测量则显示,PbTiO3陶瓷与PbTiO3微晶玻璃陶瓷具有明显的差异.%PbTiO3-SiO2-B2O3 glass-ceramics were prepared by the sol-gel process. DTA and X-ray diffraction analysis show that the crystallization temperature of PbTiO3 glass-ceramics is higher than that of PbTiO3 ceramics. As the glass content increasing, their pyroelectric coefficients are increased, and the pyroelectric coefficients are increased with the increase of sintering temperatures. The temperature dependence of the dielectric constant of PbTiO3 ceramics and PbTiO3 glass-ceramics is different obviously.

  9. Medical Thermography with a Pyroelectric Vidicon Camera.

    Science.gov (United States)

    1981-03-01

    thermal picture. The scab at the centre of the ulcer has no blood flow to it and is cooler than its surroundings. The good sign of the positive...temperature gradient towards the ulcer is evident. Again however, a better medical judgement may be made from more quantified data. The contouring unit was...were again set to 0.50, From the numbers below the pictures the temgerature difference between the scene edges and the edge of the ulcer is 4 C. This

  10. Evidence of large magneto-dielectric effect coupled to a metamagnetic transition in Yb{sub 2}CoMnO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Blasco, J., E-mail: jbc@unizar.es; García, J.; Stankiewicz, J.; Subías, G. [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); García-Muñoz, J. L. [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Univ. de Bellaterra, E-08193 Bellaterra (Spain); Ritter, C. [Institute Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Rodríguez-Velamazán, J. A. [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Institute Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France)

    2015-07-06

    The double perovskite Yb{sub 2}CoMnO{sub 6} has been synthesized with an almost perfect checkerboard arrangement of Co{sup 2+} and Mn{sup 4+} cations in the B-sublattice of the perovskite cell. It presents an anomaly in the electric capacitance and a strong magneto-dielectric effect at about 40 K whose interplay with the microscopic magnetic behavior has been investigated by means of neutron diffraction, magnetization, pyroelectric, and relative dielectric permittivity measurements. We show that the onset of an E-type antiferromagnetic ordering of Co{sup 2+} and Mn{sup 4+} moments monitored by neutron diffraction provokes the noticeable jump of the relative dielectric permittivity (∼9%) at about 40 K. It is also shown that this jump can be totally suppressed by application of a magnetic field of μ{sub 0}H = 5 T. Neutron experiments and magnetic measurements confirm that such a suppression leading to a significant magneto-dielectric effect is driven by a metamagnetic phase transition from the peculiar E-type ordering of 3d moments into a collinear ferromagnetic order. Pyroelectric current measurements do not show any spontaneous electric polarization, so the large dielectric anomaly at zero field cannot be ascribed to a ferroelectric ordering.

  11. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    Science.gov (United States)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  12. Systematic Study of Pyroelectricity. Generalized Molecular Field Theory of Ferroelectricity and Pyroelectricity

    Science.gov (United States)

    1975-10-01

    8217. AUTHOR’aJ Vih . kell «A Pl4./^accah I 9. PERFORMING ORGANIZATION NApTE AND ADDRESS Yeshiva University, ’BeIfer Graduate School of Science...approximation, the results are rather peculiar and unphysical. It can be shown with the aid of Eq. (20) that for t. < 0 and t2 = 0, we have p - -5/3t, as t...values of N^. Finally, it is interesting to note that the scale factor in Eq. (ho) can be writt.en, with the aid of Eq, (6), as T Thus the

  13. Thermal effect on E/M impedance spectroscopy of piezoelectric wafer active sensors

    Science.gov (United States)

    Kamas, Tuncay; Frankforter, Erik; Yu, Lingyu Lucy; Lin, Bin; Giurgiutiu, Victor

    2015-03-01

    This paper presents theoretical predictive modeling and experimental evaluation of the structural health monitoring capability of piezoelectric wafer active sensors (PWAS) at elevated temperatures. Electromechanical impedance spectroscopy (EMIS) method is first qualified using circular PWAS resonators under traction-free boundary condition and in an ambience with increasing temperature. The theoretical study is conducted regarding temperature dependence of the electrical parameters, the capacitance C0, d31 and g31; and the elastic parameters, the in-plane compliance s11 and Young's modulus c11, of piezoelectric materials. The Curie transition temperature must be well above the operating temperature; otherwise, the piezoelectric material may depolarize under combined temperature and pressure conditions. The material degradation is investigated by introducing the temperature effects on the material parameters that are obtained from experimental observations as well as from related work in literature. The preliminary results from the analytical 2-D circular PWAS-EMIS simulations are presented and validated by the experimental PWAS-EMIS measurements at elevated temperatures. Temperature variation may produce pyro-electric charges, which may interfere with the piezoelectric effect. Therefore, analytical simulations are carried out to simulate the pyro-electric response from the temperature effects on a free circular PWAS-EMIS in in-plane mode. For the experimental validation, PWAS transducers are placed in a fixture that provides the traction-free boundary condition. The fixture is then located in an oven integrated with PID temperature controller. The EMIS measurement is conducted during the temperature increase and the first resonance frequency peak in admittance and impedance spectra was acquired.

  14. Electrodynamic phenomena induced by a dark fluid: Analogs of pyromagnetic, piezoelectric, and striction effects

    CERN Document Server

    Balakin, Alexander B

    2014-01-01

    We establish a new model of coupling between a cosmic dark fluid and electrodynamic systems, based on an analogy with effects of electric and magnetic striction, piezo-electricity and piezo-magnetism, pyro-electricity and pyro-magnetism, which appear in classical electrodynamics of continuous media. Extended master equations for electromagnetic and gravitational fields are derived using Lagrange formalism. A cosmological application of the model is considered, and it is shown that a striction-type interaction between the dark energy (the main constituent of the dark fluid) and electrodynamic system provides the universe history to include the so-called unlighted epochs, during which electromagnetic waves can not propagate and thus can not scan the universe interior.

  15. Charge-sensitive amplifier

    Directory of Open Access Journals (Sweden)

    Startsev V. I.

    2008-02-01

    Full Text Available The authors consider design and circuit design techniques of reduction of the influence of the pyroelectric effect on operation of the charge sensitive amplifiers. The presented experimental results confirm the validity of the measures taken to reduce the impact of pyroelectric currents. Pyroelectric currents are caused by the influence of the temperature gradient on the piezoelectric sensor and on the output voltage of charge sensitive amplifiers.

  16. Characterization of a Polymer-Based MEMS Pyroelectric Infrared Detector

    Science.gov (United States)

    2007-03-01

    engineered protein in hydrogels tailors stimuli-responsive characteristics.” Nature, vol 4, pp 298 – 302, Apr 2005. [8] Brott, Lawrence L...CR Detector Pre- amp Φe (t) 38 three regimes can be seen in Figure 14, which represents the voltage reponsivity...detector needs amplification, using one of the two circuits shown in Figure 19 or 20. In lieu of this circuit, a voltage pre- amp was used

  17. Demonstration of a Pyroelectric Conversion Power Cycle with a Polymer.

    Science.gov (United States)

    1985-03-01

    OLSEN CHRONOS RESEARCH LABORATORIES, INC. AD-A158 964 3025 VIA DE CABALLO OLIVENHAIN, CALIFORNIA 92024 MARCH 1985 FINAL REPORT FOR PERIOD OCTOBER 1983...City. State and ZIP Code) 30 ’ Via De Caballo , Olivenhai,i, CA 92024 Wright-Patterson AFB, OH 45433 Sa. NAME OF FUNDING/SPONSORING Ib. OFFICE SYMBOL 9...Rahilly R.B. Olsen AFWAL/POOC-2 Chronos Research Laboratories, Bldg. 18 Rm A201 Inc. " Wright-Patterson AFB, 3025 Via De Caballo * Ohio 45433 Olivenhain

  18. Infrared light gated MoS₂ field effect transistor.

    Science.gov (United States)

    Fang, Huajing; Lin, Ziyuan; Wang, Xinsheng; Tang, Chun-Yin; Chen, Yan; Zhang, Fan; Chai, Yang; Li, Qiang; Yan, Qingfeng; Chan, H L W; Dai, Ji-Yan

    2015-12-14

    Molybdenum disulfide (MoS₂) as a promising 2D material has attracted extensive attentions due to its unique physical, optical and electrical properties. In this work, we demonstrate an infrared (IR) light gated MoS₂ transistor through a device composed of MoS₂ monolayer and a ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O₃-PbTiO₃ (PMN-PT). With a monolayer MoS₂ onto the top surface of (111) PMN-PT crystal, the drain current of MoS₂ channel can be modulated with infrared illumination and this modulation process is reversible. Thus, the transistor can work as a new kind of IR photodetector with a high IR responsivity of 114%/Wcm⁻². The IR response of MoS₂ transistor is attributed to the polarization change of PMN-PT single crystal induced by the pyroelectric effect which results in a field effect. Our result promises the application of MoS₂ 2D material in infrared optoelectronic devices. Combining with the intrinsic photocurrent feature of MoS₂ in the visible range, the MoS₂ on ferroelectric single crystal may be sensitive to a broadband wavelength of light.

  19. Thermal energy conversion by coupled shape memory and piezoelectric effects

    Science.gov (United States)

    Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander

    2012-09-01

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.

  20. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    Science.gov (United States)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  1. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    Directory of Open Access Journals (Sweden)

    M. Sanbi

    2015-01-01

    Full Text Available Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element equations for the thermopiezoelastic medium are obtained by using the linear constitutive equations in Hamilton’s principle together with the finite element approximations. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG-Kalman filter is applied. By using this model, the study first gives the influences of the actuator/sensor pair placement and size on the response of the smart plate. Second, the effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. It is shown that the effectiveness of the control is not affected by the applied thermal gradient and can be applied with or without this gradient at any time of plate vibrations.

  2. Understanding order in compositionally graded ferroelectrics: Flexoelectricity, gradient, and depolarization field effects

    Science.gov (United States)

    Zhang, J.; Xu, R.; Damodaran, A. R.; Chen, Z.-H.; Martin, L. W.

    2014-06-01

    A nonlinear thermodynamic formalism based on Ginzburg-Landau-Devonshire theory is developed to describe the total free energy density in (001)-oriented, compositionally graded, and monodomain ferroelectric films including the relative contributions and importance of flexoelectric, gradient, and depolarization energy terms. The effects of these energies on the evolution of the spontaneous polarization, dielectric permittivity, and the pyroelectric coefficient as a function of position throughout the film thickness, temperature, and epitaxial strain state are explored. In general, the presence of a compositional gradient and the three energy terms tend to stabilize a polar, ferroelectric state even in compositions that should be paraelectric in the bulk. Flexoelectric effects produce large built-in fields which diminish the temperature dependence of the polarization and susceptibilities. Gradient energy terms, here used to describe short-scale correlation between dipoles, have minimal impact on the polarization and susceptibilities. Finally, depolarization energy significantly impacts the temperature and strain dependence, as well as the magnitude, of the susceptibilities. This approach provides guidance on how to more accurately model compositionally graded films and presents experimental approaches that could enable differentiation and determination of the constitutive coefficients of interest.

  3. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cótica, Luiz F., E-mail: lfcotica@dfi.uem.br [Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas 78249 (United States); Department of Physics, State University of Maringá, Maringá – PR 87020-900 (Brazil); Santos, Guilherme M.; Santos, Ivair A. [Department of Physics, State University of Maringá, Maringá – PR 87020-900 (Brazil); Freitas, Valdirlei F. [Department of Physics, Universidade Estadual do Centro-Oeste, Guarapuava – PR 85040-080 (Brazil); Coelho, Adelino A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas – SP 13083-859 (Brazil); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S. [Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas 78249 (United States); Garcia, Ducinei; Eiras, José A. [Department of Physics, Federal University of São Carlos, São Carlos – SP 13565-905 (Brazil)

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at. % Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (∼200 K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  4. Observation of magnetoelectric effects in a S = 1 2 frustrated spin chain magnet SrCuTe2O6

    Directory of Open Access Journals (Sweden)

    B. Koteswararao

    2016-03-01

    Full Text Available The magnetoelectric effects are investigated in a cubic compound SrCuTe2O6, in which uniform Cu2+ (S = 1/2 spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at TN ≈ 5.5 K. Pyroelectric Jp(T and magnetoelectric current JME(H measurements in the presence of a bias electric field are used to reveal that SrCuTe2O6 shows clear variations of Jp(T across TN at constant magnetic fields. Furthermore, isothermal measurements of JME(H also develop clear peaks at finite magnetic fields, of which traces are consistent with the spin-flop transitions observed in the magnetization studies. As a result, the anomalies observed in Jp(T and JME(H curves match well with the field-temperature phase diagram constructed from magnetization and dielectric constant measurements, demonstrating that SrCuTe2O6 is a new magnetoelectric compound with S = 1/2 spin chains.

  5. A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring

    Science.gov (United States)

    Kim, Do-Il; Quang Trung, Tran; Hwang, Byeong-Ung; Kim, Jin-Su; Jeon, Sanghun; Bae, Jihyun; Park, Jong-Jin; Lee, Nae-Eung

    2015-07-01

    Mechanically adaptive electronic skins (e-skins) emulate tactition and thermoception by cutaneous mechanoreceptors and thermoreceptors in human skin, respectively. When exposed to multiple stimuli including mechanical and thermal stimuli, discerning and quantifying precise sensing signals from sensors embedded in e-skins are critical. In addition, different detection modes for mechanical stimuli, rapidly adapting (RA) and slowly adapting (SA) mechanoreceptors in human skin are simultaneously required. Herein, we demonstrate the fabrication of a highly sensitive, pressure-responsive organic field-effect transistor (OFET) array enabling both RA- and SA- mode detection by adopting easily deformable, mechano-electrically coupled, microstructured ferroelectric gate dielectrics and an organic semiconductor channel. We also demonstrate that the OFET array can separate out thermal stimuli for thermoreception during quantification of SA-type static pressure, by decoupling the input signals of pressure and temperature. Specifically, we adopt piezoelectric-pyroelectric coupling of highly crystalline, microstructured poly(vinylidene fluoride-trifluoroethylene) gate dielectric in OFETs with stimuli to allow monitoring of RA- and SA-mode responses to dynamic and static forcing conditions, respectively. This approach enables us to apply the sensor array to e-skins for bio-monitoring of humans and robotics.

  6. Gate-Induced Thermally Stimulated Current on the Ferroelectric-like Dielectric Properties of (BEDT-TTF(TCNQ Crystalline Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Kazuhiro Kudo

    2012-06-01

    Full Text Available A gate-induced thermally stimulated current (TSC on β′-(BEDT-TTF(TCNQ crystalline FET were conducted to elucidate the previously observed ferroelectric-like behaviors. TSC which is symmetric for the polarization of an applied VPG and has a peak at around 285 K was assigned as a pyroelectric current. By integrating the pyroelectric current, temperature dependence of the remnant polarization charge was obtained and the existence of the ferroelectric phase transition at 285 K was clearly demonstrated. We have tentatively concluded that the phase transition between dimer Mott insulator and charge ordered phase occurred at around the interface of organic crystal and substrate.

  7. Effect

    OpenAIRE

    M.F. Sabry; M.R. Hamed; El Sayed, M.E.

    2014-01-01

    Stress alters psychological diseases such as anxiety and depression. Protein malnutrition (PM) contributes to psychological disorders. The present study aimed to investigate the effect of biphenyl dimethyl dicarboxylate (DDB) on anxiety of psychologically stressed protein malnourished mice as compared to its effect in normally-fed mice. Fluoxetine (FLX) was used as reference standard. Animals were randomly divided into two major groups, normally-fed group provided with 20% casein diet and a p...

  8. 溶剂对溶胶-凝胶法制备钛酸铅陶瓷纤维的影响%Effects of Solvent on PbTiO3 Ceramic Fibers prepared by sol-gel process

    Institute of Scientific and Technical Information of China (English)

    胡亚伟; 李琰; 张彦; 焦其帅; 孙娜; 谢英

    2013-01-01

    Lead titanate ceramic fibers are excellent piezoelectric and pyroelectric materials,In order to synthesize the ceramic fibers with high-performance,the preparation of the stable sol is very imporant step.The effects of different solvents of the tetrabutyl titanate-lead acetate trihydrate-solvent-catalyst systems on the stability of sol,the annealing temperature and the morphology of ceramic fibers have been investigated by the measurement of TGA-DTA、XRD、SEM method.Comprehensive consideration,The most suitable solvent for the optimized systems is selected out.%钛酸铅陶瓷纤维是一种非常优异的电子陶瓷材料,合成透明稳定的溶胶是制备性能优良的钛酸铅陶瓷纤维非常重要的一步.本文采用溶胶-凝胶法制备钛酸铅陶瓷纤维,并通过TGA-DTA、XRD、SEM方法研究了钛酸四丁酯-醋酸铅-催化剂-溶剂体系中,溶剂的种类对溶胶的稳定性、产品的结晶温度及纤维形貌的影响,综合考虑选择出了最适合所选体系的溶剂.

  9. Effect

    OpenAIRE

    Amin Abdou Seleem; Fakhr El-Din M. Lashein

    2016-01-01

    Verapamil is a calcium channel blocker that belongs to the phenylalkylamine group. It has been clinically used for various diseases such as combating hypertension, ischemic heart diseases, supraventricular antiarrhythmic and tycolysis. The study was conducted to investigate the effect of verapamil on selected pro- and apoptotic factors during prenatal retinal differentiation of mice at E14 and E17 of gestation. The pregnant females were classified into two groups, the first is the control and...

  10. Stress effects in ferroelectric perovskite thin-films

    Science.gov (United States)

    Zednik, Ricardo Johann

    The exciting class of ferroelectric materials presents the engineer with an array of unique properties that offer promise in a variety of applications; these applications include infra-red detectors ("night-vision imaging", pyroelectricity), micro-electro-mechanical-systems (MEMS, piezoelectricity), and non-volatile memory (NVM, ferroelectricity). Realizing these modern devices often requires perovskite-based ferroelectric films thinner than 100 nm. Two such technologically important material systems are (Ba,Sr)TiO3 (BST), for tunable dielectric devices employed in wireless communications, and Pb(Zr,Ti)O3 (PZT), for ferroelectric non-volatile memory (FeRAM). In general, the material behavior is strongly influenced by the mechanical boundary conditions imposed by the substrate and surrounding layers and may vary considerably from the known bulk behavior. A better mechanistic understanding of these effects is essential for harnessing the full potential of ferroelectric thin-films and further optimizing existing devices. Both materials share a common crystal structure and similar properties, but face unique challenges due to the design parameters of these different applications. Tunable devices often require very low dielectric loss as well as large dielectric tunability. Present results show that the dielectric response of BST thin-films can either resemble a dipole-relaxor or follow the accepted empirical Universal Relaxation Law (Curie-von Schweidler), depending on temperature. These behaviors in a single ferroelectric thin-film system are often thought to be mutually exclusive. In state-of-the-art high density FeRAM, the ferroelectric polarization is at least as important as the dielectric response. It was found that these properties are significantly affected by moderate biaxial tensile and compressive stresses which reversibly alter the ferroelastic domain populations of PZT at room temperature. The 90-degree domain wall motion observed by high resolution

  11. Photothermal method using a pyroelectric sensor for thermophysical characterization of agricultural and biological samples

    Science.gov (United States)

    Frandas, A.; Dadarlat, Dorin; Chirtoc, Mihai; Jalink, Henk; Bicanic, Dane D.; Paris, D.; Antoniow, Jean S.; Egee, Michel; Ungureanu, Costica

    1998-07-01

    The photopyroelectric method in different experimental configurations was used for thermophysical characterization of agricultural and biological samples. The study appears important due to the relation of thermal parameters to the quality of foodstuffs (connected to their preservation, storage and adulteration), migration profiles in biodegradable packages, and the mechanism of desiccation tolerance of seeds. Results are presented on the thermal parameters measurement and their dependence on temperature and water content for samples such as: honey, starch, seeds.

  12. Pyroelectric Infrared Detectors Designed%热释电红外报警器的设计

    Institute of Scientific and Technical Information of China (English)

    吕璠

    2009-01-01

    以热释电红外元件作为传感器组成的电子防盗系统,正在得到越来越广泛的应用.本文就热释电红外报警器的工作原理、安装要求和应用中存在的优缺点进行了筒述.

  13. Pyroelectric Adaptive Nanodispenser (PYRANA) microrobot for liquid delivery on a target.

    Science.gov (United States)

    Vespini, Veronica; Coppola, Sara; Grilli, Simonetta; Paturzo, Melania; Ferraro, Pietro

    2011-09-21

    Manipulation of micro-sized objects in lab-on-a-chip and microfluidic environments is essential for different experiments and procedures ranging from chemical to biological applications and for experimental biotechnologies. For example polymeric particles, useful as targets for encapsulating or for being covered by drug vaccines, can be manipulated and controlled with the aim of releasing them to specific sites. Here we show a novel ElectroHydroDynamic tool able to control and manipulate dielectric micro-targets by a touch-less approach. This approach allows one to manipulate liquids and nano-particles simultaneously for specific delivery applications (i.e. decoration and coating). Thus a sort of EHD micro-robot is proposed. This flexible tool provides a new and powerful way to operate various tasks as demonstrated by the experiments reported here. This journal is © The Royal Society of Chemistry 2011

  14. Effects of oxygen ion irradiation on PMN-PT ferroelectric materials for space applications

    Science.gov (United States)

    Guggilla, Padmaja; Batra, A. K.; Powell, Rachel

    2016-09-01

    Lead magnesium niobate-lead titanate (PMN-PT) is an important and high performance piezoelectric and pyroelectric relaxor material having wide range of applications in infrared sensor devices. Present work studies the fabrication and dielectric characteristics of PMN-PT in the bulk form. The PMN-PT bulk material was prepared in sol-gel method and subsequently irradiated with heavy ion oxygen. The materials were analyzed and determined that the relaxorferroelectric material indicated changes in its dielectric constant and pyroelectric coefficient after irradiation. Due to the radiation fluent of 1×1016 ions/cm2, the dielectric constant of the material increased uniformly, while its pyroelectric coefficient showed a sharp increased to the value of 5×10-9 μC/cm2 °C with increase in temperature. Its dielectric constants showed increase in values of 527 μC/cm2 °C at 50°C, 635 μC/cm2 °C at 60°C and 748 μC/cm2 °C at 70°C. Properties such as the material impedance, admittance and modulus were investigated for changes in properties which became evident after irradiation.

  15. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co3TeO6

    Science.gov (United States)

    Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sharma, G.; Saha, J.; Patnaik, S.

    2016-01-01

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co3TeO6, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ˜17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable to single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.

  16. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co{sub 3}TeO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath [Homi Bhabha National Institute, Raja Ramanna Center for Advanced Technology, Indore 452013 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013 (India); Chandrasekhar Rao, T. V. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sharma, G.; Saha, J.; Patnaik, S. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-01-28

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable to single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.

  17. FRL–FRH phase transition behavior in the stacked Pb(Zr1-xTix)O3 perovskite ceramics

    NARCIS (Netherlands)

    Duan, Ning; Sun, Dazi; Dong, Xianlin; Lin, Shenwei; Wang, Yongling

    1999-01-01

    Zirconium rich Pb(Zr1-xTix)O3 (PZT in abbreviation) reveals a pronounced nonlinear pyroelectric effect at the temperature induced FRL–FRH phase transition. This characteristic makes it a competitive candidate for the applications of the direct thermal-electric energy conversion and infrared detectin

  18. COMPARATIVE ANALYSIS OF THE TECHNOLOGY OF ROLLS CASTING LS-57 EXECUTION

    Directory of Open Access Journals (Sweden)

    J. S. Maymur

    2013-01-01

    Full Text Available It is shown that the use of complex modifier is not accompanied by gas evolution and the pyroelectric effect, which increases the sustainability of the process. When using modifier simplifies complex technology of the modified roller melt and reduced the duration of melting due to lower discharge temperature of the melt from the melting unit.

  19. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Chitharanjan, E-mail: raichitharanjan@gmail.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India); Kalpataru First Grade Science College, Tiptur 572 202 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dharmaprakash, S.M., E-mail: smdharma@yahoo.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India)

    2009-11-15

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T{sub c}=51 deg. C (for pure TGS, T{sub c}=48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  20. Self-Powered Ultrabroadband Photodetector Monolithically Integrated on a PMN-PT Ferroelectric Single Crystal.

    Science.gov (United States)

    Fang, Huajing; Xu, Chao; Ding, Jie; Li, Qiang; Sun, Jia-Lin; Dai, Ji-Yan; Ren, Tian-Ling; Yan, Qingfeng

    2016-12-07

    Photodetectors capable of detecting two or more bands simultaneously with a single system have attracted extensive attentions because of their critical applications in image sensing, communication, and so on. Here, we demonstrate a self-powered ultrabroadband photodetector monolithically integrated on a 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-28PT) single crystal. By combining the optothermal and pyroelectric effect, the multifunctional PMN-28PT single crystal can response to a wide wavelength range from UV to terahertz (THz). At room temperature, the photodetector could generate a pyroelectric current under the intermittent illumination of incident light in absence of external bias. A systematic study of the photoresponse was investigated. The pyroelectric current shows an almost linear relationship to illumination intensity. Benefiting from the excellent pyroelectric property of PMN-28PT single crystal and the optimized device architecture, the device exhibited a dramatic improvement in operation frequency up to 3 kHz without any obvious degradation in sensitivity. Such a self-powered photodetector with ultrabroadband response may open a window for the novel application of ferroelectric materials in optoelectronics.

  1. A Study of the Nature and Origins of Pyroelectricity and Piezoelectricity in Polyvinylidenefluoride and Its Co-Polymers.

    Science.gov (United States)

    1980-01-01

    IDb, UCIHL, bangor). A micromesh control in PV72 are enhanced by polin & with high electric gric. was introduced between the sample and the corora...This 0 2 4 0 has the advantage that a satisfactory polin may be Original d31 (PC/N completed in PVFi bN corona charging at ambient temperaturt in a veo...electric coefficient was obtained from the data provided by ferent temperatures. the third cyclic operation for each polin ; temperature. In Fig. 6, curve

  2. Investigation of the Character of the Phase Transitions in Nb Doped Zr-rich PZT by Pyroelectric and Dielectric Measurements

    NARCIS (Netherlands)

    Cereceda, N.; Noheda, B.; Gonzalo, J.A.

    1999-01-01

    We present a study of the character of the phase transitions of the solid solution PbZr1-xTixO3. Using the spontaneous polarization curves we determined the mean-field parameters. These parameters show the first order character of the phase transitions for the richer Zr content and its evolution wit

  3. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  4. Milking liquid nano-droplets by an IR laser: a new modality for the visualization of electric field lines

    Science.gov (United States)

    Vespini, Veronica; Coppola, Sara; Grilli, Simonetta; Paturzo, Melania; Ferraro, Pietro

    2013-04-01

    Liquid handling at micron- and nano-scale is of paramount importance in many fields of application such as biotechnology and biochemistry. In fact, the microfluidics technologies play an important role in lab-on-a-chip devices and, in particular, the dispensing of liquid droplets is a required functionality. Different approaches have been developed for manipulating, dispensing and controlling nano-droplets under a wide variety of configurations. Here we demonstrate that nano-droplets can be drawn from liquid drop or film reservoirs through a sort of milking effect achieved by the absorption of IR laser radiation into a pyroelectric crystal. The generation of the pyroelectric field induced by the IR laser is calculated numerically and a specific experiment has been designed to visualize the electric field stream lines that are responsible for the liquid milking effect. The experiments performed are expected to open a new route for the visualization, measure and characterization procedures in the case of electrohydrodynamic applications.

  5. 机械偶合

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DYNAMICS OF MECHANICALLY AND ELECTROSTATICALLY COUPLED MICROCANTILEVERS;Effect of adiabatic heating in some processes of plastic deformation;Evaluation of kerfless linear arrays; MECHANICALLY CORNER-COUPLED SQUARE MICRORESONATOR ARRAY FOR REDUCED SERIES MOTIONAL RESISTANCE;Finite element modeling of the thermo-electro-mechanical coupling in pyroelectric infrared sensor arrays; Medical ultrasonic transducer using composite materials for acoustic matching layers-computer simulations of transducer arrays;

  6. Electric field dependence of crystallinity in poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, R.G.; Anderson, R.A.; Lagasse, R.R.

    1982-05-03

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  7. Electric Field Dependence of Crystallinity in Poly(Vinylidene Fluoride)

    Science.gov (United States)

    Kepler, R. G.; Anderson, R. A.; Lagasse, R. R.

    1982-05-01

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  8. Thermoelectric studies of charge density wave dynamics.

    Science.gov (United States)

    McDonald, Ross; Harrison, Neil; Singleton, John

    2008-03-01

    The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For charge density wave systems, this metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system towards thermal equilibrium, via a phason avalanche orthogonal to the sample surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B > 30 T) of the organic charge transfer salt α-(BEDT-TTF)2KHg(SCN)4, thus provides a measure of the phason thermopower.

  9. Optimisation and thermal control of a multi-layered structure for space electronic devices and thermal shielding of re-entry vehicles

    Science.gov (United States)

    Monti, Riccardo; Barboni, Renato; Gasbarri, Paolo; Chiwiacowsky, Leonardo D.

    2012-06-01

    All electronic devices, due to Joule effect, present heat dissipation, when they are electrically fed. The heat overstocking produces efficiency and performances reduction. On account of this the thermal control is mandatory. On small electronic equipments, the difficulty or impossibility of using a cooling fluid for the free or forced convection heat dissipation imposes the presence of cooling systems based on another kind of functioning principle such as the conduction. In this paper the thermal control, via pyroelectric materials, is presented. Furthermore, an optimisation of geometric, thermal and mechanical parameters, influencing the thermal dissipation, is studied and presented. Pyroelectric materials are able to convert heat into electrical charge spontaneously and, due to this capability, such materials could represent a suitable choice to increase the heat dissipation. The obtained electric charge or voltage could be used to charge a battery or to feed other equipments. In particular, a sequence of different materials such as Kovar®, molybdenum or copper-tungsten, used in a multi-layer pyroelectric wafer, together with their thicknesses, are design features to be optimised in order to have the optimal thermal dissipation. The optimisation process is performed by a hybrid approach where a genetic algorithm (GA) is used coupled with a local search procedure, in order to provide an appropriate balance between exploration and exploitation of the search space, which helps in the search for the optimal or quasi-optimal solution. Since the design variables used in the optimisation procedure are defined in different domains, discrete (e.g. the number of layers in the pyroelectric wafer) and continuous (e.g. the layers thickness) domains, the genetic representation for the solution should take it into account. The chromosome used in the genetic algorithm will mix both integer and real values, what will also be reflected in the genetic operators used in the

  10. Phase transitions and electrical characterizations of (K 0.5Na 0.5) 2x(Sr 0.6Ba 0.4) 5-xNb 10O 30 (KNSBN) ceramics with 'unfilled' and 'filled' tetragonal tungsten-bronze (TTB) crystal structure

    KAUST Repository

    Yao, Yingbang

    2012-12-01

    Alkali-doped strontium barium niobate (K 0.5Na 0.5) 2x(Sr 0.6Ba 0.4) 5-xNb 10O 30 (KNSBN) ceramics has been prepared by a conventional solid-state reaction method. The alkali-dopant concentration x has been varied from 0.24 to 1.15 so that the crystal structure was transformed from \\'unfilled\\' to \\'filled\\' tetragonal tungsten-bronze (TTB) structure. Apart from the change in the structural properties, the effects of the alkali-dopants on the phase transition as well as ferroelectric, piezoelectric and pyroelectric properties have also been investigated. Phase transitions have been studied in the temperature range of -200°C to 350°C. The origins of these phase transitions are discussed. The addition of the alkali-dopants enhances the ferroelectric, piezoelectric and pyroelectric properties of the KNSBN ceramics. Alkali-doping also favors abnormal grain growth and thus results in a porous microstructure, which might contribute to the enhancement of the pyroelectric performance. © 2012 Elsevier Ltd.

  11. Synthesis, Structure and Properties of Various Molecules Based on the 4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene System With an Evaluation of the Effect Differing Molecular Substitution Patterns Has on the Space Group Symmetry

    DEFF Research Database (Denmark)

    Faldt, André; Krebs, Frederik C; Thorup, Niels

    1997-01-01

    determined, The crystal structure of4,8,12-trioxa-12c-oxophospha-4,8,12,12c-tetrahydrodibenzo[cd,mn] pyrene (13) has also been determined for comparison, Compounds 3 and 11 crystallise in non-centrosymmetric space groups, Compound 12 also crystallises in a centrosymmetric :space group but molecules...... of opposite chirality are present within the unit cell, Finally compound 13 crystallises in a centrosymmetric space group. The room temperature pyroelectric coefficient of 3 has been determined, The spatial extent of the trioxatriangulene ground system has been perturbed by chemical substitution...

  12. PZ-PT-PMN热释电陶瓷的制备研究%Preparation of PZ-PT-PMN Pyroelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    鄢国强; 来旭春; 顾箐; 周海丽

    2001-01-01

    用经典的电子陶瓷工艺过程制得了PZ-PT-PMN热释电陶瓷.通过分析晶体构型、原子半径等,设计了几个典型的配方,并制得了相应的陶瓷材料,实验还对影响陶瓷热释电及机械性能的烧结温度、烧结时间、模压压力等工艺参数进行了优化.本制备方法简单,工艺成熟,制得的陶瓷适合应用于红外探测领域.

  13. Effect of Ba addition on the structural, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Suchanicz J.

    2015-06-01

    Full Text Available Lead-free (Na0.5Bi0.51-xBaxTiO3 (x = 0, 0.04 and 0.06 ceramics were fabricated by conventional solid phase sintering process. X-ray diffraction analysis shows that obtained specimens possess the perovskite structure. The microstructure study shows a dense structure, in good agreement with the relative density determined by the Archimedes method (above 95 %. Electric permittivity anomaly is shifted to low temperature after Ba doping of NBT. The pyroelectric and hysteresis loops measurements show that polarization and coercive field increases and decreases, respectively, after Ba doping of NBT. The obtained results are discussed in terms of ions/lattice imperfections, which create local electromechanical fields. The investigated ceramics are considered to be promising candidates for lead-free electronic materials.

  14. Placebo Effect

    Science.gov (United States)

    ... C. Spencer, MD Steven Karceski, MD The placebo effect Joseph H. Friedman, MD Richard Dubinsky, MD WHAT ... placebo: a “dummy” medication that should have no effect on the condition. Placebos are not only drugs. ...

  15. PbSc0.5Ta0.5O3 pyroelectric materials and their application in pyroelectric detector arrays%PbSc0.5Ta0.5O3热释电材料及其红外探测器列阵

    Institute of Scientific and Technical Information of China (English)

    于光龙; 肖定全; 朱建国; 余萍; 袁小武

    2003-01-01

    热释电红外探测器具有探测波长范围广、室温工作、无需致冷等优点.近年来,工作于介电方式下的PbSc0.5Ta0.5O3 (PST)热释电材料由于具有热释电系数大,热释电探测优值高等特点,成为热释电应用研究的热点之一.本文综述了目前PST热释电陶瓷材料的介电,热释电性能及其探测器列阵的发展.由于小型化的要求,PST薄膜亦倍受关注,因此本文还对目前PST热释电薄膜的制备方法,薄膜的热释电、介电性能及薄膜型探测器结构和发展进行了概述.

  16. Voltage generation of piezoelectric cantilevers by laser heating.

    Science.gov (United States)

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-15

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity.

  17. Systems effectiveness

    CERN Document Server

    Habayeb, A R

    1987-01-01

    Highlights three principal applications of system effectiveness: hardware system evaluation, organizational development and evaluation, and conflict analysis. The text emphasizes the commonality of the system effectiveness discipline. The first part of the work presents a framework for system effectiveness, partitioning and hierarchy of hardware systems. The second part covers the structure, hierarchy, states, functions and activities of organizations. Contains an extended Appendix on mathematical concepts and also several project suggestions.

  18. Квазистатическая задача термоупругости для анизотропного слоя с учетом пьезо-и пироэлектрических эффектов Quasi-static problem of thermoelasticity for anisotropic layer with piezo- and pyroelectric effects

    Directory of Open Access Journals (Sweden)

    Космодамианский А. С.

    1975-12-01

    Full Text Available В настоящей работе дается решение квазистатической задачи термоупругости для анизотропного слоя с учетом пьезо- и пироэлектрических эффектов.

  19. "Further Effects"

    Science.gov (United States)

    Kinigstein, Steven Michael

    In writing Further Effects, I intended to illustrate the benefits that are to be had from the use of effects - processing, when applied at the compositional level, rather than as a post-compositional afterthought. When effects are used creatively in the compositional stage, they will influence the very nature of a piece. They are capable of expressing rhythmic and metric ideas. They can alter the natural timbre of an instrument. This can be done on levels of abstraction ranging from discreet subtlety to disguise beyond recognition. There is one effect (known as "pitch shift.") that allows an instrument to play pitches that are well outside of its range. In Further Effects, I direct the performers to use a volume pedal (which I view as a tool, rather than an effect) for the broadened creative use of dynamics that it so efficiently grants. The use of an effects processor and volume pedal creates a need for ancillary equipment. An amplifier, cables, and an electric hook-up (a microphone or a pickup) will be required for each instrument. While an amplifier serves to project the processed sound, there must also be a device or method to suppress unprocessed sound. A great deal of thought and work goes into the use of effects; yet I feel it is wasteful to use this musical resource merely as post-compositional decoration.

  20. Spin-driven multiferroics in BaYFeO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jun-Zhuang; Shen, Shi-Peng; Chai, Yi-Sheng; Yan, Li-Qin; Shang, Da-Shan; Wang, Shou-Guo; Sun, Young, E-mail: youngsun@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-05-07

    We report on the spin-driven multiferroic property and magnetoelectric effect in the lately synthesized compound BaYFeO{sub 4}. Due to its peculiar crystal structure, the system exhibits complex magnetic phases with multiple transitions. The dielectric and pyroelectric measurements evidence a spin-driven multiferroic state raised by the cycloidal spin structure below T{sub 1} = 36 K. Strong magnetoelectric effect has also been observed in the multiferroic state. The origin of noncollinear cycloidal spin structure in BaYFeO{sub 4} is believed to arise from the interactions between low-dimensional magnetic columns.

  1. Physical properties of ferroelectric superlattice A3/B3 system in electric field

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Lo Veng-Cheong; Bai Bao-Dong

    2005-01-01

    Based on the differential operator technique, a transverse Ising model (TIM) in the effective-field theory is developed to study the physical properties of a ferroelectric superlattice A3/B3 system. The effects of an external electric field on the polarization, susceptibility and pyroelectric coefficient of the ferroelectric superlattice A3/B3 system are discussed in detail. The susceptibility of the ferroelectric superlattice A3/B3 system decreases with the increase of the electric field, implying that the polarization is weak.

  2. A thermal insulation method for a piezoelectric transducer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study deals with the sources of signal distortion of a piezoelectric transducer heated by measured gas flow. These signal distortions originate from both unloading of preload on a piezocrystal because of expansion of a diaphragm in the test apparatus and the pyroelectric effect of a heated piezoelectric crystal. A plastic film on the diaphragm of the transducer can effectively insulate the diaphragm and the piezocrystal within transducer from heating by gas flow, eliminating the sources of distortion. A method for evaluating the thickness of the film is proposed.

  3. Health Effects

    Science.gov (United States)

    ... CDC Policy Partners Climate Effects on Health Air Pollution Allergens Wildfires Temperature Extremes Precipitation Extremes Diseases Carried by Vectors Food and Waterborne Diarrheal Disease Food Security Mental Health and Stress-Related Disorders Climate-Ready States and ...

  4. Effects of

    OpenAIRE

    Gowthaman, S.; A. P. Sathiyagnanam

    2016-01-01

    This work investigates the effect of both inlet air temperature and fuel injection pressure on performance and emission behaviour of homogeneous charge compression ignition engine (HCCI) fuelled with diesel fuel. In this investigation, HCCI engine operates with different inlet air temperature and fuel injection pressure, and analysis the effect of these variables on HCCI engine performance and emissions. The inlet air temperatures are varied between 40 °C and 70 °C and the injection pressure ...

  5. Facebook Effect

    OpenAIRE

    STOICA, Anamaria

    2011-01-01

    This research paper is intended to understand the effects that Facebook, the social networking site has upon us, whether it influences our lives in a good or in a bad way. In order to understand the Facebook Effect we are trying to see how it impacts our lives at economic level,social level, political level, terminology level , psychological level and cultural level . Starting from the question : What does Facebook want? we found several answers consisting in pros and cons of this phenomenon ...

  6. Effective Programming

    DEFF Research Database (Denmark)

    Frost, Jacob

    To investigate the use of VTLoE as a basis for formal derivation of functional programs with effects. As a part of the process, a number of issues central to effective formal programming are considered. In particular it is considered how to develop a proof system suitable for pratical reasoning......, how to implement this system in the generic proof assistant Isabelle and finally how to apply the logic and the implementation to programming....

  7. Treatment Effects

    DEFF Research Database (Denmark)

    Heckman, James J.; Lopes, Hedibert F.; Piatek, Rémi

    2014-01-01

    This paper contributes to the emerging Bayesian literature on treatment effects. It derives treatment parameters in the framework of a potential outcomes model with a treatment choice equation, where the correlation between the unobservable components of the model is driven by a low...... to observe the same person in both the treated and untreated states, but it also turns out to be straightforward to implement. Formulae are provided to compute mean treatment effects as well as their distributional versions. A Monte Carlo simulation study is carried out to illustrate how the methodology can...

  8. Monday effect

    OpenAIRE

    Vicent Almela, Vicente

    2014-01-01

    Treball final de Grau en Economia. Codi: EC1049. Curs acadèmic 2013-2014 Monday effect consists of fuel price falling between Monday and Sunday, followed by price increases during the following days. It is coincidentally on Monday when the European Commission collects fuel prices data to be able to elaborate statistics. In this essay we have firstly studied which has been the recent evolution of the Monday effect in our country. After that we have analysed the magnitude and the...

  9. Treatment Effects

    DEFF Research Database (Denmark)

    Heckman, James J.; Lopes, Hedibert F.; Piatek, Rémi

    2014-01-01

    This paper contributes to the emerging Bayesian literature on treatment effects. It derives treatment parameters in the framework of a potential outcomes model with a treatment choice equation, where the correlation between the unobservable components of the model is driven by a low...... to observe the same person in both the treated and untreated states, but it also turns out to be straightforward to implement. Formulae are provided to compute mean treatment effects as well as their distributional versions. A Monte Carlo simulation study is carried out to illustrate how the methodology can...

  10. One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, S.; Coppola, S.; Vespini, V.; Pagliarulo, V.; Ferraro, P. [Istituto Nazionale di Ottica (CNR) Via Campi Flegrei, 34 Pozzuoli, Napoli (Italy); Nasti, G. [Department of Chemical Materials and Production Engineering, University of Naples Federico II, PiazzaleTecchio 80 (Naples) (Italy); Institute for Polymers Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei 34, 80078 Pozzuoli (Italy); Carfagna, C. [Department of Chemical Materials and Production Engineering, University of Naples Federico II, PiazzaleTecchio 80 (Naples) (Italy)

    2014-10-13

    Here, we report on a single step approach for fabricating free-standing polymer membranes reinforced with arrayed self-assembled carbon nanotubes (CNTs). The CNTs are self-assembled spontaneously by electrode-free DC dielectrophoresis based on surface charge templates. The electrical charge template is generated through the pyroelectric effect onto periodically poled lithium niobate ferroelectric crystals. A thermal stimulus enables simultaneously the self-assembly of the CNTs and the cross-linking of the host polymer. Examples of thin polydimethylsiloxane membranes reinforced with CNT patterns are shown.

  11. Multiferroic and magnetoelectric nature of GaFeO3, AlFeO3 and related oxides

    OpenAIRE

    Saha, Rana; Shireen, Ajmala; Shirodkar, Sharmila N.; Waghmare, Umesh V.; Sundaresan, A.; Rao, C. N. R.

    2011-01-01

    GaFeO3, AlFeO3 and related oxides are ferrimagnetic exhibiting magnetodielectric effect. There has been no evidence to date for ferroelectricity and hence multiferroicity in these oxides. We have investigated these oxides as well as oxides of the composition Al1-x-yGaxFe1+yO3 (x = 0.2, y = 0.2) for possible ferroelectricity by carrying out pyroelectric measurements. These measurements establish the occurrence of ferroelectricity at low temperatures below the N\\`eel temperature in these oxides...

  12. A poling study of lead zirconate titanate/polyurethane 0-3 composites

    Science.gov (United States)

    Lau, S. T.; Kwok, K. W.; Shin, F. G.; Kopf, S.

    2007-08-01

    0-3 composites of lead zirconate titanate particles dispersed in a thermoplastic elastomer polyurethane matrix were fabricated. The dielectric permittivity and loss of the composite film were measured and compared to the theoretical values. The composites were polarized by the ac fields at different frequencies. With the application of the Sawyer-Tower circuit, the D-E hysteresis loops of the composites can be measured during the poling process. By decreasing the poling frequency, the composite sample shows a larger "remanent" polarization at the same poling field. To evaluate the poling effectiveness, the pyroelectric coefficients of the poled composite samples were measured by a dynamic method.

  13. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.;

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy...

  14. and Effects

    African Journals Online (AJOL)

    Causes and Effects. Viljoen 1/W, PhD, Panzer/l, MBChB, PhD. Department of Physiology, School of Medicine, Faculty .... transducer, while a type II IL-1 receptor ... and indirectly cause all symptoms of .... e.g. the fear motivational state may take.

  15. Thermoelectric studies of the non-thermal equilibrium dynamics in chiral metals

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.D. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS-E536, Los Alamos, NM 87545 (United States)], E-mail: rmcd@lanl.gov; Harrison, N.; Singleton, J. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS-E536, Los Alamos, NM 87545 (United States)

    2008-04-01

    The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For example, orbitally quantized field-induced spin- or charge density wave systems, in which the competition between the elastic forces of the density wave and pinning leads to a critical state analogous to the vortex phase of type II superconductors. This metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. This results in the establishment of a three-dimensional chiral metal that can extend deep into the bulk of the crystal. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system toward thermal equilibrium, which can only be achieved by current flow orthogonal to the surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B>30 T) of the organic charge transfer salt {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} is conclusive proof of the existence of a three-dimensional chiral metal.

  16. Thermoelectric studies of the non-thermal equilibrium dynamics in chiral metals

    Science.gov (United States)

    McDonald, R. D.; Harrison, N.; Singleton, J.

    2008-04-01

    The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For example, orbitally quantized field-induced spin- or charge density wave systems, in which the competition between the elastic forces of the density wave and pinning leads to a critical state analogous to the vortex phase of type II superconductors. This metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. This results in the establishment of a three-dimensional chiral metal that can extend deep into the bulk of the crystal. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system toward thermal equilibrium, which can only be achieved by current flow orthogonal to the surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B>30 T) of the organic charge transfer salt α- (BEDT-TTF)2KHg(SCN)4 is conclusive proof of the existence of a three-dimensional chiral metal.

  17. Stark effect of interfering electronic states: Localization of the nπ* excitations in toluquinone

    Science.gov (United States)

    Galaup, J. P.; Trommsdorff, H. P.

    1984-04-01

    High-precision Stark measurements on oriented single crystals of toluquinone at low temperatures have been performed and lead to an assessment of the electronic parenthood of the levels giving rise to the complex spectral region of interference between the two nearby nπ* excited states. The origin bands of the lowest excited singlet and triplet states are characterized by a measure of their factor-group splittings and an evaluation of the change in dipole moment and in polarizability upon excitation. The value of the change in dipole moment is shown to vary strongly between different vibrational levels of the lower state and an evaluation of the degree of localization of the electronic excitation on one CO group is made. The previous assignment of the second nπ* state is confirmed by the sign of the corresponding Stark shift. From measurements on crystals having been oriented in an electric field the absolute orientation of the polar crystal as well as the sign of the pyroelectric coefficient are proposed.

  18. Generation of hard X-ray radiation using the triboelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, Maximilian; Gutmann, Emanuel; Mehner, Erik; Stoecker, Hartmut [Nachwuchsgruppe Nanostrukturphysik, Institut fuer Strukturphysik, TU Dresden (Germany); Meyer, Dirk C. [Institut fuer Experimentelle Physik, TU Bergakademie Freiberg (Germany)

    2010-07-01

    To meet the demands of upcoming imaging for medical demands and scientific methods for structure investigation, generation of X-rays using miniaturized radiation sources is an interesting field of research. Beside approaches based on the ionizing and electron accelerating properties of high electric fields around pyroelectric crystals also the use of a tribomicroplasma generated in the vicinity of the peeling point of two different polymers is promising. We report on the generation of hard X-ray radiation by crawling various peeling tapes in a medium vacuum. Beside vacuum housing and pumps as instrumentation only an electric motor, two rolls and a metal foil as target material are necessary. The spectral distribution of thus generated X-rays was analyzed using an energy dispersive Si(Li) detector. In dependence of peeling speed, pressure and choice of polymer material electrons with energies high enough to excite characteristic X-ray emission in the hard X-ray region are produced. The results are discussed in terms of theory of triboelectricity.

  19. Tectonomagnetic effects

    Science.gov (United States)

    Johnston, M.

    1978-01-01

    Measurements of the actual stress within the Earth and its changes with time are very difficult. It is much easier to monitor the direct effects of this stress, such as ground strain, or the indirect effects, such as changes in resistivity, strain, changes in seismic velocity or changes in magnetic field, and so forth. The latter technique is one of the more promising methods for monitoring substantial volumes of the Earth's crust near active faults with only a few instruments. It derives from the piezomagnetic properties of rocks (that is, the change in rock magnetization and, therefore, local magnetic field due to a change in applied stress). AS stress and strain fields along active faults vary, these variations should be reflected in changing local magnetic fields. In particular, rapidly changing fields might be expected to occur just before a large earthquake.

  20. Health effects

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, L

    1998-07-01

    The main objectives of research in the field of health effects at the Belgian Nuclear Research Centre SCK-CEN are: (1) to study cancer mortality and morbidity in nuclear workers in Belgium; (2) to document the feasibility of retrospective cohort studies in Belgium; (3) to participate in the IARC study; (4) to elucidate the mechanisms of the effects of ionizing radiation on the mammalian embryo during the early phases of its development; (5) to assess the genetic risks of material exposure to ionizing radiation; (6) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (7) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas for 1997 are reported.

  1. Ventilation effectiveness

    CERN Document Server

    Mathisen, Hans Martin; Nielsen, Peter V; Moser, Alfred

    2004-01-01

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-understand descriptions of the indices used to mesure the performance of a ventilation system and which indices to use in different cases.

  2. AFTER EFFECTS

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    创建物体动画最快速的方法是使用运动捕捉,这是一种以真实世界物体为动画而提供的运动。现在打开光盘After Effects Shortcut文件夹中的文件,依照我们循序渐进的技巧教程来学习如何使用这种方法。

  3. Effects of

    Directory of Open Access Journals (Sweden)

    S. Gowthaman

    2016-03-01

    Full Text Available This work investigates the effect of both inlet air temperature and fuel injection pressure on performance and emission behaviour of homogeneous charge compression ignition engine (HCCI fuelled with diesel fuel. In this investigation, HCCI engine operates with different inlet air temperature and fuel injection pressure, and analysis the effect of these variables on HCCI engine performance and emissions. The inlet air temperatures are varied between 40 °C and 70 °C and the injection pressure in the port fuel injector is varied from 3 bar to 5 bar respectively. From the results, the optimum inlet air temperature and fuel injection pressure for efficient HCCI engine operation are identified. The result shows that, brake thermal efficiency of HCCI is nearer to the value of conventional diesel engine, and can be obtained if HCCI engine operates with 5 bar injection pressure and 60 °C air temperature and a simultaneous reduction in oxides of nitrogen (NOx and smoke emissions compared to conventional diesel engine. However, when inlet air is heated for improvement of vaporisation of diesel fuel, the higher inlet air temperature limits the operation range of HCCI engine, due to high knocking intensity, high NOx emissions and misfire of charge. The fuel injection pressure is also limited due to high level of HC and NOx emissions.

  4. Effective Area

    Directory of Open Access Journals (Sweden)

    Ehud Keinan

    2015-07-01

    Full Text Available This article defines a new term, Effective Area, K, of a given territory as a function of four independent parameters: its nominal acreage, A, the intellectual competence of its inhabitants, B, their social competence, C, and their global influence, D, using a simple formalism: K = A x B x C x D. This analysis demonstrates that in our current world any consideration of the physical area of a given territory is meaningless if the quality of its population is ignored. K is a much more useful parameter than A, certainly for political and economical considerations, explaining why claims for territorial expansion are placed low on the national ladder of priorities in the developed countries. In many respects, large geographical areas may become a burden rather than an advantage. Thus, the importance of armed conflicts over geographical territories, which have taken a dominant part of the entire human history, is fading away. Furthermore, although the global acreage is constant, the total effective area of planet Earth keeps growing, providing sufficient room for the growing human population.

  5. Effective Teachers

    Directory of Open Access Journals (Sweden)

    Beverly A. King Miller

    2015-09-01

    Full Text Available This article focuses on the educational strategies that can be used to support female students of African descent in their persistence in science, technology, engineering, and mathematics (STEM education and careers. STEM careers have historically been White male and White female dominated, which has yielded an underrepresentation of those of African descent. Drawing from a grounded qualitative case study, the data used for this article share the responses of Afro-Caribbean females in STEM who have immigrated to the United States from the country of Panama. As Latinas, they are representative of the changing face in the American educational system—bilingual, multicultural, and of African descent. The strategies offered reflect their own teaching practices, their former teachers, or experiences with their children’s teachers. What emerged were descriptions of four strategies and behaviors of effective teachers that align with Ladson-Billings’s culturally relevant pedagogy and Gay’s culturally responsive teaching. Included in the findings are the high standards and expectations embodied by effective teachers that serve to positively inspire their students. Culturally responsive teachers create an atmosphere of learning that supports academic success, conveying their belief in their students’ ability based upon their own reflectivity. As the U.S. educational system continues to become multilingual and multicultural, there is need for strategies for the successful inclusion and progression of students in STEM educational pathways and careers. This will occur as teachers challenge themselves to be the agents of change in the lives of their students.

  6. DYNAMIC BIMORPH THERMO-PIEZOELECTRIC BENDERS WITH ARBITRARY SUPPORT LOCATION. PART I: APPLICATION TO ENERGY HARVESTING-ANALYTICAL DERIVATIONS

    Directory of Open Access Journals (Sweden)

    Bagdasaryan G. Y.

    2016-03-01

    Full Text Available A comprehensive theoretical analysis of a dynamic thermo-ferro-electric pre-stressed bimorph energy harvester is performed. The analysis also takes into account pyroelectric and thermal expansion effects. The most general analytical expression for the energy conversation coefficients are presented for bi-layer. These coefficients we derive for more general situation when mechanical, electrical, thermal fields are present. We derive coefficients (transformation coefficients for sensing, actuating, and energy harvesting. As a particular case, we derive an analytical expression for the energy harvesting coefficient due to pyroelectric and thermal expansion effects in a rater general situation. This is a function of material properties, location of boundary conditions, vibration frequency, and in plane compressive/tensile follower force. Numerical simulations of the analytical results are presented. Effects of volume fraction, material properties, applied mechanical loads, and boundary conditions on the harvesting coefficients are introduced in the figures. The results for a cantilever and a simply-supported plate-layer are obtained as particular cases. The result for a low frequency (static system is obtained as a particular case by approaching the vibration frequency to zero. It is shown that volume fraction, material properties, plain compressive/tensile follower force, the location of the boundary conditions, and the vibrational frequency of the bimorph strongly influence the strain distribution, and this in effect influences the charge coefficient and the generation of energy. The proposed model can be extended to thermal energy harvesters of piezoelectric-shape memory alloy (SMA composites.

  7. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal

    Science.gov (United States)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-02-01

    Ferroelectrics form an important class of materials and are employed for a variety of applications. However, specific applications dictate the need of tailored ferroelectric response. This creates a requirement to obtain ferroelectric materials with tunable properties. Generally, chemical modifications or domain engineering are employed to this effect. This study attempts to shed light on the use of compressive pre-stresses for tuning and enhancing the ferroelectric properties. For the purpose, polarization versus electric field hysteresis data for 68Pb(Mn1/3Nb2/3)O3-32PbTiO3 (PMN-PT) single crystals were obtained as a function of uniaxial compressive stresses and operating temperatures. These data were utilized to investigate the effects of mechanical confinement for four individual case studies of electrocaloric effect, electrical energy storage, pyroelectric, and piezoelectric effect. A significant improvement was obtained for all case studies. The adiabatic temperature change was improved by ≈80% (28 MPa, 353 K); energy storage density increased by a factor of five (28 MPa, 353 K); pyroelectric figure of merits improved by an order of magnitude (21 MPa) and the piezoelectric coefficient was tailored (variable stress). The results offer promising insight into the use of directional confinement for improving application specific ferroelectric properties in PMN-PT single crystal.

  8. DYNAMIC BIMORPH THERMO-PIEZOELECTRIC BENDERS WITH ARBITRARY SUPPORT LOCATION. PART II: APPLICATION TO ENERGY HARVESTING-NUMERICAL RESULTS AND DISCUSSIONS

    Directory of Open Access Journals (Sweden)

    Bagdasaryan, Gevorg Y.

    2016-06-01

    Full Text Available A comprehensive theoretical analysis of a dynamic thermo-ferro-electric pre-stressed bimorph energy harvester is performed. The analysis also takes into account pyroelectric and thermal expansion effects. The most general analytical expression for the energy conversation coefficients are presented for bi-layer. These coefficients we derive for more general situation when mechanical, electrical, thermal fields are present. We derive coefficients (transformation coefficients for sensing, actuating, and energy harvesting. As a particular case, we derive an analytical expression for the energy harvesting coefficient due to pyroelectric and thermal expansion effects in a rater general situation. This is a function of material properties, location of boundary conditions, vibration frequency, and in plane compressive/tensile follower force. Numerical simulations of the analytical results are presented. Effects of volume fraction, material properties, applied mechanical loads, and boundary conditions on the harvesting coefficients are introduced in the figures. The results for a cantilever and a simply-supported plate-layer are obtained as particular cases. The result for a low frequency (static system is obtained as a particular case by approaching the vibration frequency to zero. It is shown that volume fraction, material properties, plain compressive/tensile follower force, the location of the boundary conditions, and the vibrational frequency of the bimorph strongly influence the strain distribution, and this in effect influences the charge coefficient and the generation of energy. The proposed model can be extended to thermal energy harvesters of piezoelectric-shape memory alloy (SMA composites.

  9. A novel device for determining ultrasonic power

    Science.gov (United States)

    Zeqiri, B.; Shaw, A.; Gélat, P. N.; Bell, D.; Sutton, Y. C.

    2004-01-01

    A novel concept for an ultrasonic power meter is presented which utilises the pyro-electric effect of a thin membrane of the piezo-electric polymer, pvdf. One side of the membrane is in intimate contact with a polyurethane-based acoustical absorber. The attenuation coefficient of this material is very high, ensuring that the majority of the ultrasonic energy passing through the pvdf membrane is absorbed within a thin layer of the interface, resulting in a rapid increase in temperature. Through the pyro-electric effect, this temperature increase results in a voltage across the electrodes of the membrane. Under specific conditions, the generated voltage is proportional to the rate of temperature rise and, immediately after switch on of ultrasound, the rate of temperature rise is proportional to the delivered ultrasonic power. This paper describes details of the concept, and includes theoretical calculations of the expected behaviour. Proof-of-concept is demonstrated through careful studies of several low-megahertz NPL reference therapy-level transducers, covering an applied power range of 250 mW to 8 W. Results are encouraging, suggesting that this novel solid-state power meter concept holds considerable promise for a rapid, simple, relatively low cost, power measurement method, appropriate for use at the physiotherapist level.

  10. Influence of ionic radius of rare-earths on the structural and electrical properties of Ba5RTi3Nb7O30 (R=rare-earth) ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    Prasun Ganguly

    2015-01-01

    In the present report, Ba5RTi3Nb7O30 (R=La, Nd, Sm, Eu, Dy) compounds were synthesized by solid-state reaction method in order to know the effect of ionic radius of rare-earths on their structural, dielectric, ferroelectric, pyroelectric, piezoelectric and con-ductive properties. X-ray diffraction analysis revealed the formation of the compounds having orthorhombic structure. Scanning elec-tron micrographs showed the formation of fine granular microstructure in all the compounds with a decrease in the average grain size with increasing ionic radius of the substituted rare-earths. Detailed dielectric studies showed that the dielectric constant (ε'r) increased while Curie temperature (Tc) decreased as the ionic radius of the rare-earths increased. With the decrease in the ionic radius of the rare-earths, remanent polarization (2Pr), piezoelectric (d33) and pyroelectric coefficients were observed to increase in Ba5RTi3Nb7O30 compounds. The temperature variation of dc conductivity suggested that the compounds had negative temperature coefficient of re-sistance (NTCR) behaviour.

  11. Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE Film with an Improved Crystalline Structure for Sensors and Actuators

    Directory of Open Access Journals (Sweden)

    Rahman Ismael Mahdi

    2014-10-01

    Full Text Available Ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE thin films are measured as a function of different annealing temperatures (80 to 140 °C. It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  12. STUDIES ON STRESS STATE OF SOLIDS MADE OF FUNCTIONAL STRUCTURALLY INHOMOGENEOUS MATERIALS: A REVIEW OF PUBLICATIONS TILL 2010

    Directory of Open Access Journals (Sweden)

    Pasternak Ia.M.

    2015-12-01

    Full Text Available The paper presents a review on the recent advances in the theoretical and experimental studies of functional (smart materials and structures. Particular attention is paid to piezoelectric and magnetoelectroelastic materials, which internally couple mechanical, electric and magnetic fields and can operate as sensors or actuators. Modern smart magnetoelectroelastic materials consisting of piezoelectric and piezomagnetic phases are widely used due to the effect of electromagnetic coupling, which is hundred or even thousand times larger than that of a single crystal magnetoelectroelastic materials. The highest electromagnetic coupling due to the regular arrangement of phases is possessed by ferrite-piezoelectric nanostructures, in particular self-assembled nanocomposite thin films. Ferroelectric materials are widely used in modern technologies, especially precise devices, due to the highest values of electro-mechanical coupling among other piezoelectric materials. In turn, all ferroelectric materials are pyroelectric ones, thus, polarize when heated or cooled. The presence of different defects (e.g. cracks or inclusions can additionally cause high stress and electric displacement intensity under the applied thermal load, especially, when the pyroelectric material is not homogeneous, or consists of homogeneous parts bonded together. The paper presents a comprehensive review on the methods, especially numeric and analytic ones, used to study the influence of different fields on stress concentration at defects and fibers. The questions on fracture of defective solids with thin inclusions are also examined.

  13. Research on Spectral Response of an Infrared Detector%红外探测器光谱响应测量研究

    Institute of Scientific and Technical Information of China (English)

    陈亚卓; 秦玉伟

    2013-01-01

    A spectral response system for infrared detector is designed.The principle of the system is also analyzed.The spectral response experiment of the pyroelectricity detector is performed with different temperature and frequency The experiment result shows that the response of the pyroelectricity detector to infrared radiation is different,but the change trend curve of the voltage is similar.The theory of the infrared detector is thereby verified.The system has high measurement accuracy and stability,which can suppress the disturbance signal effectively and improve the signal-to-noise ratio of the system.%设计了一个红外探测器的光谱响应测试系统,并对系统原理进行了分析.对不同温度和频率情况下的热释电探测器进行光谱响应实验.实验结果表明,热释电探测器对红外辐射信号的响应不同,但电压变化曲线的趋势基本一致,从而验证了红外探测器光谱响应理论.该设计能有效抑制系统的干扰信号,提高信噪比,具有测量精度高、稳定性好的优点.

  14. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  15. Large electric polarization in high pressure synthesized orthorhombic manganites RMnO3 (R=Ho,Tm,Yb and Lu) by using the double-wave PE loop measurements

    Science.gov (United States)

    Chai, Y. S.; Oh, Y. S.; Manivannan, N.; Yang, Y. S.; Kim, Kee Hoon; Feng, S. M.; Wang, L. J.; Jin, C. Q.

    2009-03-01

    The magnitude of electric polarization via the conventional pyroelectric current and/or PE loop measurements often is ambiguous due to resistive components of the sample. To avoid this, a new technique called the double-wave method has been recently developed [1], in which only hysteretic PE components can be measured. Using this technique, we have measured the ferroelectric polarization of the orthorhombic RMnO3 (R=Ho, Tm, Yb, and Lu) synthesized under high pressure. Large remnant polarization Pr up to 920 μC/m^2 is observed at 10 K for LuMnO3. Furthermore, the Pr vs. temperature data from the PE loop has shown consistency with that measured through the pyroelectric current measurements, supporting a theoretical prediction of large polarization in the E-type spin structure in this system [2]. We also discuss the influence of thermal histories on the ferroelectric domain dynamics and possible internal bias field effects originating from oxygen vacancies in RMnO3. [1] M. Fukunaga, et al. J. Phys. Soc. Jpn. 77, 064706 (2008). [2] I. A. Sergienko, et al. Phys. Rev. Lett., 97, 227204 (2006)

  16. 热释电传感器在井下人员安全监护系统中的应用%Application of Pyroelectric Sensor in Underground Staff Safety Monitoring System

    Institute of Scientific and Technical Information of China (English)

    吴天祥

    2010-01-01

    @@ 本系统是为井下恶劣工作环境所设汁的安全保护系统,目的是杜绝或减少井下生产过程所存在的大型机械(破碎机、装载机等)伤人事故,是一种人员安全探测系统.

  17. Physiological effects in aromatherapy

    OpenAIRE

    2004-01-01

    The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow pot...

  18. Physiological effects in aromatherapy

    Directory of Open Access Journals (Sweden)

    Tapanee Hongratanaworakit

    2004-01-01

    Full Text Available The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow potential brain waves (contingent negativevariation, and eye blink rate or pupil functions, are used as indices for the measurement of the aroma effects

  19. Novel solar-blind photodetector using AlGaN in combination with a PVDF film%结合AlGaN和 PVDF的新型日盲紫外探测器的研究

    Institute of Scientific and Technical Information of China (English)

    刘秀娟; 李超; 王建禄; 张燕; 孙璟兰; 李向阳

    2013-01-01

    制作了一种新型的结合了AlGaN材料结构和Poly(vinylidene fluoride)(PVDF)热释电材料的日盲紫外探测器。当紫外光从AlGaN一侧背照射至器件上时,测量PVDF两端的热释电响应光谱,测得峰值响应在入射光波长为260 nm处,响应电压高达129.6 mV(此时辐射功率为39.8 nW)。器件响应机理为:紫外光被i-Al0.35Ga0.65层吸收,产生光生载流子并复合生热,热量通过AlGaN材料传导给PVDF结构的电极,温度升高,PVDF对温度变化产生响应。为了进一步验证,制作了对比器件,即在AlGaN结构和PVDF结构之间加了一层多孔SiO2隔热层,测得的响应光谱中有两个峰值,一个在260 nm,另外一个在300 nm。与参考器件相比,在260 nm处的响应电压大大减小,说明了利用热效应探测的可行性。另外,测量了不同频率下的器件响应并对其进行理论拟合,深入研究300 nm处的响应机理。%A novel solar-blind detector which combined a AlGaN-based structure and a Poly (vinylidene fluoride) (PVDF) -based pyroelectric detector structure in one chip was fabricated. The pyroelectric response spectra of the PVDF-based pyroelectric structure was measured when the UV light illuminated from the side of the AlGaN-based structure. The peak response voltage was measured as high as 129.6 mV when the light’s wavelength was 260 nm and the radiation power was 39.8 nW. The response mechanism was assumed as followed: the light at 260 nm was absorbed by i-Al0.35Ga0.65N layer and the heat energy was generated through the direct recombination of photoexcited-carriers, then the heat transferred to the PVDF layer and a response voltage was got through the pyroelectric effect of the PVDF. To confirm this assumption, another sample which added a porous SiO2 layer between the AlGaN-based structure and the PVDF-based structure was fabricated. Its response spectra showed two peaks, one was at 260 nm and the other was at 300 nm

  20. On Effect Size

    Science.gov (United States)

    Kelley, Ken; Preacher, Kristopher J.

    2012-01-01

    The call for researchers to report and interpret effect sizes and their corresponding confidence intervals has never been stronger. However, there is confusion in the literature on the definition of effect size, and consequently the term is used inconsistently. We propose a definition for effect size, discuss 3 facets of effect size (dimension,…

  1. On Effect Size

    Science.gov (United States)

    Kelley, Ken; Preacher, Kristopher J.

    2012-01-01

    The call for researchers to report and interpret effect sizes and their corresponding confidence intervals has never been stronger. However, there is confusion in the literature on the definition of effect size, and consequently the term is used inconsistently. We propose a definition for effect size, discuss 3 facets of effect size (dimension,…

  2. Decomposable Effectivity Functions

    NARCIS (Netherlands)

    Otten, G.J.M.

    1995-01-01

    Decomposable effectivity functions are introduced as an extension of additive effectivity functions. Whereas additive effectivity functions are determined by pairs of additive TU-games, decomposable effectivity functions are generated by pairs of TU-games that need not be additive. It turns out that

  3. Hall effect accompanying a static skin effect

    Energy Technology Data Exchange (ETDEWEB)

    Volkenshtein, N.V.; Marchenkov, V.V.; Startsev, V.E.; Cherepanov, A.N.; Glin' skii, M.

    1985-05-10

    The Hall effect and the magnetoresistance of tungsten single crystals with rho/sub 293K//rho/sub 4.2K/ = 80 000 have been measured at 4.2 K in magnetic fields up to 150 kOe. The results reveal that a static skin effect gives rise to an anomalously pronounced increase in the Hall coefficient.

  4. Experiences with effects specifications

    DEFF Research Database (Denmark)

    2011-01-01

    We describe the effects-specification process from a project that was conducted during the fall 2010 and spring of 2011 in this chapter. The project configured and implemented an electronic patient record system at a maternity ward at a hospital located in a European region. The process comprised...... for measuring effects were designed. The project is analyzed and lessons learned are discussed....... workshops with effects specification with management and end-users and an agile development process including prototypes configured from the effects specifications. We describe the project and the effects-specification process through which effects were related to the system design and instruments...

  5. DAFX Digital Audio Effects

    CERN Document Server

    2011-01-01

    The rapid development in various fields of Digital Audio Effects, or DAFX, has led to new algorithms and this second edition of the popular book, DAFX: Digital Audio Effects has been updated throughout to reflect progress in the field. It maintains a unique approach to DAFX with a lecture-style introduction into the basics of effect processing. Each effect description begins with the presentation of the physical and acoustical phenomena, an explanation of the signal processing techniques to achieve the effect, followed by a discussion of musical applications and the control of effect parameter

  6. TREATMENT EFFECTS 101

    Directory of Open Access Journals (Sweden)

    Thelma J. Mielenz

    2015-10-01

    Full Text Available Physical therapy researchers are interested in how beneficial an intervention is or the “treatment effect.” There are many measures of treatment effect that are applicable for understanding the efficacy and effectiveness of health interventions. Given that each treatment effect has its own set of advantages and disadvantages, understanding these characteristics can help guide which measure is most appropriate for a specific study. This article presents the more common treatment effects for both dichotomous and continues outcomes. The overall aim is to serve as a guide to newer physical therapy researchers on using and interpreting treatment effects.

  7. [Placebo and placebo effect].

    Science.gov (United States)

    Aulas, J-J

    2005-11-01

    The word placebo appeared for the first time in an English medical dictionary in 1785. In French, it appeared much latter in 1958. This word defines an experimental tool used for rigourous evaluation of a specific effect of pharmacological treatment and the non specific effect of any therapy. The placebo effect is the strictly psychological or psychophysiological effect of a placebo. The two principal components of placebo effect as a pain killer, which has been extensively studied in this field, are positive expectancies of both the patient and the physician. Although the mechanisms of action of placebo effect are not well understood, results of several recent works are particularly interesting.

  8. Effective Business Communication requires effective practices

    Institute of Scientific and Technical Information of China (English)

    杨福明

    2011-01-01

    @@ The topic of this essay is that effective businees communication requires effective practices.This essay will focus on communication practices that can assist an organi- zation in reaching its strategic goals and objectives.This article will present this topic by analyzing the communication theory, writing process and business writing style, team building and interpersonal communication, negotiation and persuasion tech- niques and intercultural communication.

  9. Memory effects in turbulence

    Science.gov (United States)

    Hinze, J. O.

    1979-01-01

    Experimental investigations of the wake flow of a hemisphere and cylinder show that such memory effects can be substantial and have a significant influence on momentum transport. Memory effects are described in terms of suitable memory functions.

  10. Characteristics of Effective Argumentation.

    Science.gov (United States)

    Frana, Adrian W.

    1989-01-01

    Examines how the 1988 Presidential Debates provide a resource for effective instruction in public argument. Provides several examples of effective (and ineffective) argumentative speaking taken from the debates. (MM)

  11. Side Effects (Management)

    Science.gov (United States)

    ... cancer care is relieving side effects, called symptom management, palliative care, or supportive care. It is important ... treat them. To learn about the symptoms and management of the long-term side effects of cancer ...

  12. Gravitomagnetic Effect in Magnetars

    CERN Document Server

    Chatterjee, Debarati; Bandyopadhyay, Debades

    2016-01-01

    Rotating bodies in General Relativity produce frame dragging (or Lense-Thirring effect), also known as the {\\it Gravitomagnetic effect} in analogy with Classical Electromagnetism. In this work, we study the effect of strong magnetic fields in neutron stars on the Gravitomagnetic effect, which is produced as a result of its rotation. We show that the magnetic field has a non-negligible impact on frame dragging. The maximum effect of the magnetic field appears along the polar direction, where the Lense-Thirring frequency decreases with increase in magnetic field, and along the equatorial direction, where its magnitude increases. For intermediate angles, the effect of the magnetic field decreases, and goes through a minimum for a particular angular value at which magnetic field has no effect on Gravitomagnetism. Beyond that particular angle Gravitomagnetic effect increases with increasing magnetic field. We try to identify this "Null Region" for the case of magnetars, both inside and outside, as a function of th...

  13. Multipollutant health effect simulations

    Data.gov (United States)

    U.S. Environmental Protection Agency — Resulting betas (health effects) from a variety of copollutant epidemiologic models used to analyze the impact of exposure measurement error on health effect...

  14. Prooxidant effects of nitrofurantoin.

    Science.gov (United States)

    Novikov, O O; Pokrovskii, M V; Konovalenko, A B

    2002-08-01

    We studied the possibility of using prooxidant effects of nitrofurantoin (furadonin) for stimulation of the natural antioxidant systems for preventing myocardial damage after coronary occlusion. A pronounced cardioprotective effect of the drug was observed.

  15. The Hydrophobic Effect.

    Science.gov (United States)

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  16. Effects of teacher training

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Larsen, Lea Lund

    2010-01-01

    The article gives a short overview over existing knowledge concerning the effect of teacher training in relation to adult learning. It presents a research design for measuring the effect of teacher traning.......The article gives a short overview over existing knowledge concerning the effect of teacher training in relation to adult learning. It presents a research design for measuring the effect of teacher traning....

  17. Effective graph resistance

    NARCIS (Netherlands)

    Ellens, W.; Spieksma, F.M.; Mieghem, P. van; Jamakovic, A.; Kooij, R.E.

    2011-01-01

    This paper studies an interesting graph measure that we call the effective graph resistance. The notion of effective graph resistance is derived from the field of electric circuit analysis where it is defined as the accumulated effective resistance between all pairs of vertices. The objective of the

  18. Photon thermal Hall effect

    CERN Document Server

    Ben-Abdallah, Philippe

    2015-01-01

    A near-field thermal Hall effect (i.e.Righi-Leduc effect) in lattices of magneto-optical particles placed in a constant magnetic field is predicted. This effect is related to a symetry breaking in the system induced by the magnetic field which gives rise to preferential channels for the heat-transport by photon tunneling thanks to the particles anisotropy tuning.

  19. Magnetic effects in electrochemistry

    Directory of Open Access Journals (Sweden)

    NEBOJSA D. NIKOLIC

    2005-05-01

    Full Text Available The effect of imposed magnetic fields onto the electrodeposition of magnetic (nickel and non – magnetic (copper metals was analysed. Also, magnetic properties of electrochemically obtained nanocontacts were examined. An effort to establish a possible correlation between the morphologies of the nanocontacts and the effect of the very large ballistic magnetoresistance (BMR effect was made.

  20. Coupled improvement between thermoelectric and piezoelectric materials

    Science.gov (United States)

    Montgomery, David; Hewitt, Corey; Dun, Chaochao; Carroll, David

    A novel coupling effect in a thermoelectric and piezoelectric meta-structure is discussed. Thermo-piezoelectric generators (TPEGs) exhibit a synergistic effect that amplifies output voltage, and has been observed to increase piezoelectric voltages over 500% of initial values a time dependent thermoelectric/pyroelectric effect. The resulting improvement in voltage has been observed in carbon nanotubes as well as inorganics such as two-dimensional Bismuth Selenide platelets and Telluride nanorods thin-film thermoelectrics. TPEGs are built by integrating insulating layers of polyvinylidene fluoride (PVDF) piezoelectric films between flexible thin film p-type and n-type thermoelectrics. The physical phenomena arising in the interaction between thermoelectric and piezoelectrics is discussed and a model is presented to quantify the expected coupling voltage as a function of stress, thermal gradient, and different thermoelectric materials. TPEG are ideal to capture waste heat and vibrational energy while creating larger voltages and minimizing space when compared with similar thermoelectric or piezoelectric generators.

  1. An improved sensor for electrochemical microcalorimetry, based on lithiumtantalate

    Science.gov (United States)

    Frittmann, Stefan; Halka, Vadym; Jaramillo, Carlos; Schuster, Rolf

    2015-06-01

    We have developed a pyroelectric sensor for electrochemical microcalorimetry, based on LiTaO3, which provides unprecedented sensitivity for the detection of electrochemically induced heat effects. Deterioration of the heat signal by electrostriction effects on the electrode surface is suppressed by a multilayered construction, where an intermediate sapphire sheet dampens mechanical deformations. Thus, well textured thin metal films become viable candidates as electrodes. We demonstrate the sensor performance for Cu underpotential deposition on (111)-textured Au films on sapphire. The sensor signal compares well with a purely thermal signal induced by heating with laser pulses. The high sensitivity of the sensor is demonstrated by measuring heat effects upon double layer charging in perchloric acid, i.e., in the absence of electrochemical charge- or ion-transfer reactions.

  2. Electrodynamics of a Cosmic Dark Fluid

    CERN Document Server

    Balakin, Alexander B

    2016-01-01

    Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium - type representation of the Dark Fluid allows us to involve into analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of ten models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extende...

  3. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...... effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  4. Enhanced magnetocaloric effect material

    Science.gov (United States)

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  5. EFFECTIVE DISCHARGE CALCULATION GUIDE

    Institute of Scientific and Technical Information of China (English)

    D.S.BIEDENHARN; C.R.THORNE; P.J.SOAR; R.D.HEY; C.C.WATSON

    2001-01-01

    This paper presents a procedure for calculating the effective discharge for rivers with alluvial channels.An alluvial river adjusts the bankfull shape and dimensions of its channel to the wide range of flows that mobilize the boundary sediments. It has been shown that time-averaged river morphology is adjusted to the flow that, over a prolonged period, transports most sediment. This is termed the effective discharge.The effective discharge may be calculated provided that the necessary data are available or can be synthesized. The procedure for effective discharge calculation presented here is designed to have general applicability, have the capability to be applied consistently, and represent the effects of physical processes responsible for determining the channel, dimensions. An example of the calculations necessary and applications of the effective discharge concept are presented.

  6. The Hubble effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, T.M.; Miao, S.P.; Prokopec, T. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Woodard, R.P., E-mail: T.M.Janssen@uu.nl, E-mail: S.Miao@uu.nl, E-mail: T.Prokopec@uu.nl, E-mail: woodard@phys.ufl.edu [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2009-05-15

    We generalize the effective potential to scalar field configurations which are proportional to the Hubble parameter of a homogeneous and isotropic background geometry. This may be useful in situations for which curvature effects are significant. We evaluate the one loop contribution to the Hubble Effective Potential for a massless scalar with arbitrary conformal and quartic couplings, on a background for which the deceleration parameter is constant. Among other things, we find that inflationary particle production leads to symmetry restoration at late times.

  7. Effective School Counseling Teams

    OpenAIRE

    Lilley, Stacey Custer

    2007-01-01

    Despite much attention given to effective teams in the workplace, school counseling teams have been neglected in the research. The primary purpose of this mixed methods study was to learn what characteristics secondary counselors perceive contribute to an effective school counseling team. The first research phase conducted six team interviews; themes emerging from the interviews yielded the development of the Effective School Counseling Team Questionnaire (ESCTQ). The following research quest...

  8. Educational effectiveness: Key findings

    Directory of Open Access Journals (Sweden)

    Teodorović Jelena

    2009-01-01

    Full Text Available This paper reviews recent and advanced studies on educational effectiveness. Section on integrated school effectiveness research is followed by a section on conceptually integrated models. The subsequent two sections focus on more methodological limitations of past research: the failure to accommodate the hierarchical nature of schooling and the inability to capture teacher effects. Finally, the last section sums up all relevant facts and research strands.

  9. Atomic lighthouse effect.

    Science.gov (United States)

    Máximo, C E; Kaiser, R; Courteille, Ph W; Bachelard, R

    2014-11-01

    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease in magnetic field efficiency.

  10. The Atomic Lighthouse Effect

    CERN Document Server

    Máximo, C E; Courteille, Ph W; Bachelard, R

    2014-01-01

    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease of the magnetic field efficiency.

  11. On the butterfly effect

    CERN Document Server

    Shnirelman, Alexander

    2016-01-01

    The term "butterfly effect" means an extreme sensitivity of a dynamical system to small perturbations: "The beating of a butterfly wing in South America can result in the considerable change of positions and force of a tropical cyclon in Atlantic 2 weeks later". Numerical simulations of R.Robert show the absence of the butterfly effect in some simple flows of 2-d ideal incompressible fluid which is a model of the atmosphere. In this work a more complicated flow is considered. Numerical simulation demonstrates the butterfly effect in the strongest form. The effect is robust, and the experiment is 100% reproducible.

  12. Multicaloric effect: An outlook

    Science.gov (United States)

    Vopson, Melvin M.

    2017-05-01

    In 2017 the scientific community celebrates 100 years since Weiss and Piccard made the first observation of a caloric effect in magnetic materials, when studying temperature changes in Nickel subjected to applied magnetic fields near the Curie transition temperature [1]. The effect was called the magneto-caloric effect. A thermodynamic formulation of the adiabatic magneto-caloric refrigeration was given independently by Debye [2] and Giauque [3] in 1920s, followed by the first experimental confirmation of adiabatic refrigeration in 1933 [4]. Since then, the research field has expanded considerably and other interesting caloric effects have been discovered in materials displaying different forms of ferroic order.

  13. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  14. Effective lecture presentation skills.

    Science.gov (United States)

    Gelula, M H

    1997-02-01

    Lectures are the most popular form of teaching in medical education. As much as preparation and organization are key to the lecture's success, the actual presentation also depends upon the presenter's ability to reach the audience. Teaching is a lively activity. It calls for more than just offering ideas and data to an audience. It calls for direct contact with the audience, effective use of language, capability to use limited time effectively, and the ability to be entertaining. This article offers a structure to effective lecturing by highlighting the importance of voice clarity and speaking speed, approaches to using audiovisual aids, effectively using the audience to the lecture, and ways to be entertaining.

  15. Novel multiferroic state and ME enhancement by breaking the AFM frustration in LuMn1-xO3.

    Science.gov (United States)

    Figueiras, F G; Karpinsky, D; Tavares, P B; Gonçalves, J N; Yañez-Vilar, S; Moreira Dos Santos, A F; Franz, A; Tovar, M; Agostinho Moreira, J; Amaral, V S

    2017-01-04

    This study provides a comprehensive insight into the effects of controlled off-stoichiometry on the structural and multiferroic properties of the hexagonal manganite LuMn1-xO3+δ (x = 0.02; δ ∼ 0), supported by neutron powder diffraction measurements confirming single phase P63cm symmetry and evidencing a relevant ferromagnetic component, below TN ∼ 90 K, which breaks the archetypal geometrically frustrated antiferromagnetic state typically ascribed to LuMnO3. The perturbations in the triangular disposition of spins prompt an additional electric polarization contribution and a clear enhancement of the magnetoelectric coupling which are in good agreement with the results of first principles calculations. In addition, Raman spectroscopy, dielectric permittivity, pyroelectric current and magnetic measurements as a function of temperature point out the precursor effects of the magnetic phase transitions involving a strong coupling between spins, lattice and electric order, even above the Néel temperature.

  16. Photostrictive actuators for photonic control of shallow spherical shells

    Science.gov (United States)

    Shih, Hui-Ru; Tzou, Horn-Sen

    2007-10-01

    Photostrictive materials, exhibiting light-induced strain, are of interest for the future generation of wireless remote control photo-actuators. Photostrictive actuators are expected to be used as the driving component in optically controlled flexible structures. In this paper, the photonic control of flexible spherical shells using discrete photostrictive actuators is investigated. This paper presents a coupled opto-piezothermoelastic shell theory that incorporates photovoltaic, pyroelectric and piezoelectric effects, and has the capability to predict the response of a spherical shell driven by the photostrictive actuators. In this study, the effects of actuator location as well as membrane and bending components on the control action have been analyzed. The results obtained indicate that the control forces are mode and location dependent. Analysis also shows that the membrane control action is much more significant than the bending control action.

  17. PyzoFlex: a printed piezoelectric pressure sensing foil for human machine interfaces

    Science.gov (United States)

    Zirkl, M.; Scheipl, G.; Stadlober, B.; Rendl, C.; Greindl, P.; Haller, M.; Hartmann, P.

    2013-09-01

    Ferroelectric material supports both pyro- and piezoelectric effects that can be used for sensing pressures on large, bended surfaces. We present PyzoFlex, a pressure-sensing input device that is based on a ferroelectric material (PVDF:TrFE). It is constructed by a sandwich structure of four layers that can easily be printed on any substrate. The PyzoFlex foil is sensitive to pressure- and temperature changes, bendable, energy-efficient, and it can easily be produced by a screen-printing routine. Even a hovering input-mode is feasible due to its pyroelectric effect. In this paper, we introduce this novel, fully printed input technology and discuss its benefits and limitations.

  18. Nanogenerators: An emerging technology towards nanoenergy

    Science.gov (United States)

    Zi, Yunlong; Wang, Zhong Lin

    2017-07-01

    Nanoenergy is a field of studying the small-scale, highly efficient energy harvesting, storage, and applications by using nanomaterials and nanodevices. Nanogenerators are developed to harvest these small-scale energies in the ambient environment, which were first invented in our group in 2006. In the past decade, we have developed nanogenerators based on piezoelectric and triboelectric effects for mechanical energy harvesting, and those based on pyroelectric and thermoelectric effects for thermal energy harvesting. We also explored other novel nanogenerators such as that based on ion streams. The proposed nanogenerators will facilitate the development of self-powered systems, which enables efficient energy utilization and sustainable operations of mobile devices for "smart" wearable technology, health monitoring, biomedical sensing, environmental protection, and even security.

  19. PLZT Microfibers Technology Optimization

    Directory of Open Access Journals (Sweden)

    Kozielski L.

    2016-09-01

    Full Text Available Electrocaloric (EC structures for a new generation of cooling or heating elements utilize the temperature dependence of spontaneous polarization in some ferroelectric materials to convert waste heat into electricity and vice versa. A (Pb0.93La0.07 (Zr0.65Ti0.35O3 material, have the largest recorded pyroelectric coefficient. An effective predicted form for such applications is fiber, due to small heat capacitance and quick response time, even for nano second laser excitation. Consequently, the presented work provides a description of the optimization of structural, ferroelectric and piezoelectric properties of obtained fibers, finally concluding on necessity of sintering temperature reduction in 100°C in contrast to bulk form to effectively prevent its destruction.

  20. CCTV Effectiveness Study

    NARCIS (Netherlands)

    Voorthuijsen, G.P. van; Hoof, H.A.J.M. van; Klima, M.; Roubik, K.; Bernas, M.; Pata, P.

    2006-01-01

    The field of CCTV surveillance is topical and widely used in many different applications. The fundamental part of the CCTV system is a reliable image evaluation by a human observer, whose effectiveness is influenced by many variables. Optimization of the effectiveness is a multidimensional problem r

  1. Relative Effects at Work

    NARCIS (Netherlands)

    Braeken, Johan; Mulder, Joris; Wood, Stephen

    2015-01-01

    Assessing the relative importance of predictors has been of historical importance in a variety of disciplines including management, medicine, economics, and psychology. When approaching hypotheses on the relative ordering of the magnitude of predicted effects (e.g., the effects of discrimination

  2. The Chelate Effect Redefined.

    Science.gov (United States)

    da Silva, J. J. R. Frausto

    1983-01-01

    Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)

  3. Defining Effective Teaching

    Science.gov (United States)

    Layne, L.

    2012-01-01

    The author looks at the meaning of specific terminology commonly used in student surveys: "effective teaching." The research seeks to determine if there is a difference in how "effective teaching" is defined by those taking student surveys and those interpreting the results. To investigate this difference, a sample group of professors and students…

  4. PLEYOTROPIC EFFECTS OF METFORMIN

    Directory of Open Access Journals (Sweden)

    L. Ju. Morgunov

    2014-01-01

    Full Text Available Metformin, traditionally used for the therapy of diabetes mellitus, possesses a number of diverse pleyotropic effects. The drug, in addition to the glucose-lowering actions, has a beneficial effect on components of the metabolic syndrome, significantly reduces body weight.

  5. School Effectiveness and Leadership.

    Science.gov (United States)

    Dow, I. I.; Oakley, W. F.

    1992-01-01

    Fiedler's contingency theory relates school effectiveness to a combination of principals' leadership style and situational favorability for the principal. Data from teacher questionnaires on school climate and effectiveness and measures of principal's leadership in 176 Canadian elementary schools did not support Fiedler's model. Contains 54…

  6. School Effectiveness and Leadership.

    Science.gov (United States)

    Dow, I. I.; Oakley, W. F.

    1992-01-01

    Fiedler's contingency theory relates school effectiveness to a combination of principals' leadership style and situational favorability for the principal. Data from teacher questionnaires on school climate and effectiveness and measures of principal's leadership in 176 Canadian elementary schools did not support Fiedler's model. Contains 54…

  7. Network effects in railways

    DEFF Research Database (Denmark)

    Landex, Alex

    2012-01-01

    Railway operation is often affected by network effects as a change in one part of the network can influence other parts of the network. Network effects occur because the train runs may be quite long and since the railway system has a high degree of interdependencies as trains cannot cross...

  8. The Aid Effectiveness Literature

    DEFF Research Database (Denmark)

    Doucouliagos, Hristos; Paldam, Martin

    The AEL consists of empirical macro studies of the effects of development aid. At the end of 2004 it had reached 97 studies of three families, which we have summarized in one study each using meta-analysis. Studies of the effect on investments show that they rise by 1/3 of the aid – the rest is c...

  9. School effectiveness research

    NARCIS (Netherlands)

    Scheerens, J.; Wright, James D.

    2015-01-01

    School effectiveness research is described as the scientific approach to determine the causal influence of malleable conditions of schooling. The article describes how different strands of school effectiveness have developed and are now increasingly combined into more integrative approaches. The kno

  10. Occlusion effects, Part II

    DEFF Research Database (Denmark)

    Hansen, Mie Østergaard

    The present report studies the mechanism of the occlusion effect by means of literature studies, experiments and model estimates. A mathematical model of the occlusion effect is developed. The model includes the mechanical properties of the earmould and the airborne sound as well as the body...

  11. Nonlocal Anomalous Hall Effect.

    Science.gov (United States)

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  12. The Aid Effectiveness Literature

    DEFF Research Database (Denmark)

    Doucouliagos, Hristos; Paldam, Martin

    The AEL consists of empirical macro studies of the effects of development aid. At the end of 2004 it had reached 97 studies of three families, which we have summarized in one study each using meta-analysis. Studies of the effect on investments show that they rise by 1/3 of the aid – the rest is c...

  13. Correlational effect size benchmarks.

    Science.gov (United States)

    Bosco, Frank A; Aguinis, Herman; Singh, Kulraj; Field, James G; Pierce, Charles A

    2015-03-01

    Effect size information is essential for the scientific enterprise and plays an increasingly central role in the scientific process. We extracted 147,328 correlations and developed a hierarchical taxonomy of variables reported in Journal of Applied Psychology and Personnel Psychology from 1980 to 2010 to produce empirical effect size benchmarks at the omnibus level, for 20 common research domains, and for an even finer grained level of generality. Results indicate that the usual interpretation and classification of effect sizes as small, medium, and large bear almost no resemblance to findings in the field, because distributions of effect sizes exhibit tertile partitions at values approximately one-half to one-third those intuited by Cohen (1988). Our results offer information that can be used for research planning and design purposes, such as producing better informed non-nil hypotheses and estimating statistical power and planning sample size accordingly. We also offer information useful for understanding the relative importance of the effect sizes found in a particular study in relationship to others and which research domains have advanced more or less, given that larger effect sizes indicate a better understanding of a phenomenon. Also, our study offers information about research domains for which the investigation of moderating effects may be more fruitful and provide information that is likely to facilitate the implementation of Bayesian analysis. Finally, our study offers information that practitioners can use to evaluate the relative effectiveness of various types of interventions. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  14. Presenting Food Science Effectively

    Science.gov (United States)

    Winter, Carl K.

    2016-01-01

    While the need to present food science information effectively is viewed as a critical competency for food scientists by the Institute of Food Technologists, most food scientists may not receive adequate training in this area. Effective presentations combine both scientific content and delivery mechanisms that demonstrate presenter enthusiasm for…

  15. [Psychoanalysis and Side Effect].

    Science.gov (United States)

    Shirahase, Joichiro

    2015-01-01

    A study of psychoanalysis from the perspective of side effects reveals that its history was a succession of measures to deal with its own side effects. This, however, does not merely suggest that, as a treatment method, psychoanalysis is incomplete and weak: rather, its history is a record of the growth and development of psychoanalysis that discovered therapeutic significance from phenomena that were initially regarded as side effects, made use of these discoveries, and elaborated them as a treatment method. The approach of research seen during the course of these developments is linked to the basic therapeutic approach of psychoanalysis. A therapist therefore does not draw conclusions about a patient's words and behaviors from a single aspect, but continues to make efforts to actively discover a variety of meanings and values from them, and to make the patient's life richer and more productive. This therapeutic approach is undoubtedly one of the unique aspects of psychoanalysis. I discuss the issue of psychoanalysis and side effects with the aim of clarifying this unique characteristic of psychoanalysis. The phenomenon called resistance inevitably emerges during the process of psychoanalytic treatment. Resistance can not only obstruct the progress of therapy; it also carries the risk of causing a variety of disadvantages to the patient. It can therefore be seen as an adverse effect. However, if we re-examine this phenomenon from the perspective of transference, we find that resistance is in fact a crucial tool in psychoanalysis, and included in its main effect, rather than a side effect. From the perspective of minimizing the character of resistance as a side effect and maximizing its character as a main effect, I have reviewed logical organization, dynamic evaluation, the structuring of treatment, the therapist's attitudes, and the training of therapists. I conclude by stating that psychoanalysis has aspects that do not match the perspective known as a side

  16. Nocebo effect in dermatology

    Directory of Open Access Journals (Sweden)

    Sidharth Sonthalia

    2015-01-01

    Full Text Available Nocebo effect, originally denoting the negative counterpart of the placebo phenomenon, is now better defined as the occurrence of adverse effects to a therapeutic intervention because the patient expects them to develop. More commonly encountered in patients with a past negative experience, this effect stems from highly active processes in the central nervous system, mediated by specific neurotransmitters and modulated by psychological mechanisms such as expectation and conditioning. The magnitude of nocebo effect in clinical medicine is being increasingly appreciated and its relevance encompasses clinical trials as well as clinical practice. Although there is hardly any reference to the term nocebo in dermatology articles, the phenomenon is encountered routinely by dermatologists. Dermatology patients are more susceptible to nocebo responses owing to the psychological concern from visibility of skin lesions and the chronicity, unpredictable course, lack of ′permanent cure′ and frequent relapses of skin disorders. While finasteride remains the prototypical drug that displays a prominent nocebo effect in dermatologic therapeutics, other drugs such as isotretinoin are also likely inducers. This peculiar phenomenon has recently been appreciated in the modulation of itch perception and in controlled drug provocation tests in patients with a history of adverse drug reactions. Considering the conflict between patients′ right to information about treatment related adverse effects and the likelihood of nocebo effect stemming from information disclosure, the prospect of ethically minimizing nocebo effect remains daunting. In this article, we review the concept of nocebo effect, its postulated mechanism, relevance in clinical dermatology and techniques to prevent it from becoming a barrier to effective patient management.

  17. Polar hexagonal tungsten bronze-type oxides: KNbW2O9, RbNbW2O9, and KTaW2O9.

    Science.gov (United States)

    Chang, H Y; Sivakumar, T; Ok, K M; Halasyamani, P Shiv

    2008-10-06

    The synthesis, crystal structures, second-harmonic generation (SHG), piezoelectric, pyroelectric, and ferroelectric properties of three polar noncentrosymmetric (NCS) hexagonal tungsten bronze-type oxides are reported. The materials KNbW 2O 9, RbNbW 2O 9, and KTaW 2O 9 were synthesized by standard solid-state techniques and structurally characterized by laboratory powder X-ray diffraction. The compounds are isostructural, crystallizing in the polar NCS space group Cmm2. The materials exhibit a corner-shared MO 6 (M = Nb (5+)/W (6+) or Ta (5+)/W (6+)) octahedral framework, with K (+) or Rb (+) occupying the "hexagonal" tunnels. The d (0) transition metals, Nb (5+), Ta (5+), and W (6+), are displaced from the center of their oxide octahedra attributable to second-order Jahn-Teller effects. SHG measurements using 1064 nm radiation revealed frequency-doubling efficiencies ranging from 180 to 220 x alpha-SiO 2. Converse piezoelectric measurements resulted in d 33 values ranging from 10 to 41 pm V (-1). The total pyroelectric coefficient, p, at 50 degrees C ranged from -6.5 to -34.5 muC K (-1) m (-2). The reported materials are also ferroelectric, as demonstrated by hysteresis loops (polarization vs electric field). Spontaneous polarization values, P s, ranging from 2.1 to 8.4 muC cm (-2) were measured. The magnitudes of the SHG efficiency, piezoelectric response, pyroelectric coefficient, and ferroelectric polarization are strongly dependent on the out-of-center distortion of the d (0) transition metals. Structure-property relationships are discussed and explored. Crystal data: KNbW 2O 9, orthorhombic, space group Cmm2 (No. 35), a = 21.9554(2) A, b = 12.60725(15) A, c = 3.87748(3) A, V = 1073.273(13) A (3), and Z = 6; RbNbW 2O 9, orthorhombic, space group Cmm2 (No. 35), a = 22.00985(12) A, b = 12.66916(7) A, c = 3.8989(2) A, V = 1086.182(10) A (3), and Z = 6; KTaW 2O 9, orthorhombic, space group Cmm2 (No. 35), a = 22.0025(2) A, b = 12.68532(14) A, c = 3.84456(4) A, V

  18. Laser-induced breakdown and damage generation by nonlinear frequency conversion in ferroelectric crystals: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hatano, Hideki; Kitamura, Kenji [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2013-11-28

    Using our experimental data for ns pulsed second harmonic generation (SHG) by periodically poled stoichiometric LiTaO{sub 3} (PPSLT) crystals, we consider in detail the mechanism underlying laser-induced damage in ferroelectric crystals. This mechanism involves generation and heating of free electrons, providing an effective kinetic pathway for electric breakdown and crystal damage in ns pulsed operation via combined two-photon absorption (TPA) and induced pyroelectric field. In particular, a temperature increase in the lattice of ≈1 K induced initially by ns SHG and TPA at the rear of operating PPSLT crystal is found to induce a gradient of spontaneous polarization generating a pyroelectric field of ≈10 kV/cm, accelerating free electrons generated by TPA to an energy of ≈10 eV, followed by impact ionization and crystal damage. Under the damage threshold for ns operation, the impact ionization does not lead to the avalanche-like increase of free electron density, in contrast to the case of shorter ps and fs pulses. However, the total number of collisions by free electrons, ≈10{sup 18} cm{sup −3} (generated during the pulse and accelerated to the energy of ≈10 eV), can produce widespread structural defects, which by entrapping electrons dramatically increase linear absorption for both harmonics in subsequent pulses, creating a positive feedback for crystal lattice heating, pyroelectric field and crystal damage. Under pulse repetition, defect generation starting from the rear of the crystal can propagate towards its center and front side producing damage tracks along the laser beam and stopping SHG. Theoretical analysis leads to numerical estimates and analytical approximation for the threshold laser fluence for onset of this damage mechanism, which agree well with our (i) experiments for the input 1064 nm radiation in 6.8 kHz pulsed SHG by PPSLT crystal, (ii) pulsed low frequency 532 nm radiation transmission experiments, and also (iii) with the data

  19. Nonlocal Anomalous Hall Effect

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  20. Bystander effects and radiotherapy.

    Science.gov (United States)

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  1. Occlusion effects, Part I

    DEFF Research Database (Denmark)

    Hansen, Mie Østergaard

    in a questionnaire based on their daily experience with their personal hearing aid. It turned out that 73% of these persons experienced a change in own voice, but both occlusion effects of acoustic, mechanical and biological origin were experienced. The same persons came into Oticon's clinic, where their hearing aid...... fitting and occlusion effect were evaluated. Occlusion effect was measured as the difference in real ear sound pressure level with and without hearing aid while the person was speaking. It was done both with the hearing aid turned off and with the hearing aid turned on. Relations between their experienced...

  2. Creating more effective graphs

    CERN Document Server

    Robbins, Naomi B

    2012-01-01

    A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr

  3. Seebeck effect in electrolytes.

    Science.gov (United States)

    Chikina, I; Shikin, V; Varlamov, A A

    2012-07-01

    We study Seebeck effect in liquid electrolytes, starting from its simple neutral analog--thermodiffusion (so-called Ludwig-Soret or Soret effect). It is observed that when two or more subsystems of mobile particles are subjected to the temperature gradient, various types of them respond to it differently. In the case when these fractions, with different mobility parameters (Soret coefficients), are oppositely charged (a case typical for electrolytes), the nonhomogeneous internal electric field is generated. The latter field prevents these fractions from space separation and determines the intensity of the appearing Seebeck effect.

  4. Cohomology of Effect Algebras

    Directory of Open Access Journals (Sweden)

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  5. Complex Effective Action and Schwinger Effect

    CERN Document Server

    Kim, Sang Pyo

    2016-01-01

    Spontaneous pair production from background fields or spacetimes is one of the most prominent phenomena predicted by quantum field theory. The Schwinger mechanism of production of charged pairs by a strong electric field and the Hawking radiation of all species of particles from a black hole are the consequence of nonperturbative quantum effects. In this review article, the vacuum structure and pair production is reviewed in the in-out formalism, which provides a consistent framework for quantum field theory in the sense that the complex action explains not only the vacuum persistence but also pair production. The current technology of intense lasers is still lower by a few order than the Schwinger limit for electron-positron pair production, while magnetic fields of magnetars on the surface are higher than the Schwinger limit and even higher at the core. On the other hand, the zero effective mass of electron and hole in graphene and Dirac or Weyl semimetals will open a window for experimental test of quantum...

  6. Vaccine herd effect.

    Science.gov (United States)

    Kim, Tae Hyong; Johnstone, Jennie; Loeb, Mark

    2011-09-01

    Vaccination ideally protects susceptible populations at high risk for complications of the infection. However, vaccines for these subgroups do not always provide sufficient effectiveness. The herd effect or herd immunity is an attractive way to extend vaccine benefits beyond the directly targeted population. It refers to the indirect protection of unvaccinated persons, whereby an increase in the prevalence of immunity by the vaccine prevents circulation of infectious agents in susceptible populations. The herd effect has had a major impact in the eradication of smallpox, has reduced transmission of pertussis, and protects against influenza and pneumococcal disease. A high uptake of vaccines is generally needed for success. In this paper we aim to provide an update review on the herd effect, focusing on the clinical benefit, by reviewing data for specific vaccines.

  7. Conditions for Effectiveness.

    Science.gov (United States)

    Wright, Jeannette T.

    1988-01-01

    The most effective college presidents are those whose leadership styles are dominant, decisive, and when appropriate, autocratic. The president has to believe profoundly in the intrinsic value of the college. (Author/MSE)

  8. Developing Effective Performance Measures

    Science.gov (United States)

    2014-10-14

    University When Performance Measurement Goes Bad Laziness Vanity Narcissism Too Many Pettiness Inanity 52 Developing Effective...Kasunic, October 14, 2014 © 2014 Carnegie Mellon University Narcissism Measuring performance from the organization’s point of view, rather than from

  9. The Effective Volunteer Teacher

    OpenAIRE

    2013-01-01

    This publication provides information for volunteer teachers of adults and older youth on how to conduct an effective presentation. Topics include focus of presentation, characteristics of the learners, teaching methods, visual aides and evaluations.

  10. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  11. Developing Effective Working Relationships.

    Science.gov (United States)

    Bennett, Roger, Ed.; And Others

    1990-01-01

    Two workshops are described in detail. One explores ways to increase the effectiveness of work groups and includes the workshop leader's personal observations. The second involves training transformational leaders, whose characteristics include idealized influence, individualized consideration, intellectual stimulation, and inspirational…

  12. Stretching Safely and Effectively

    Science.gov (United States)

    ... it safely and effectively. By Mayo Clinic Staff Stretching may take a back seat to your exercise routine. The main concern is exercising, not stretching, right? Not so fast. Stretching may help you: ...

  13. Vascular Effects of Histamine

    African Journals Online (AJOL)

    olayemitoyin

    effects of histamine are mediated via H1 and H2 receptors and the actions are modulated by H3 receptor subtype ... Keywords: Histamine, Vascular smooth muscle, Endothelium .... responses to histamine, but not those to acetylcholine, were.

  14. Side Effects of Chemotherapy

    Science.gov (United States)

    ... Jacket Fashion Show Contact Us Side Effects of Chemotherapy Each of the chemotherapy drugs available today works in a slightly different ... few rules of thumb when it comes to chemotherapy that should always be kept in mind. Ignore ...

  15. Effects of New Technologies.

    Science.gov (United States)

    Social and Labour Bulletin, 1980

    1980-01-01

    Transnational implications of technological change and innovation in telecommunications are discussed, including impact on jobs and industrial relations, computer security, access to information, and effects of technological innovation on international economic systems. (SK)

  16. Dynamic Treatment Effects.

    Science.gov (United States)

    Heckman, James J; Humphries, John Eric; Veramendi, Gregory

    2016-02-01

    This paper develops robust models for estimating and interpreting treatment effects arising from both ordered and unordered multistage decision problems. Identification is secured through instrumental variables and/or conditional independence (matching) assumptions. We decompose treatment effects into direct effects and continuation values associated with moving to the next stage of a decision problem. Using our framework, we decompose the IV estimator, showing that IV generally does not estimate economically interpretable or policy relevant parameters in prototypical dynamic discrete choice models, unless policy variables are instruments. Continuation values are an empirically important component of estimated total treatment effects of education. We use our analysis to estimate the components of what LATE estimates in a dynamic discrete choice model.

  17. the effects of Garlic

    African Journals Online (AJOL)

    appetite and food selection. ... It is therefore recommended that garlic intake should be regulated to avoid some possible adverse effects ..... particularly reproductive hormones, on the peripheral ... the taste modulatory mechanism of raw garlic.

  18. Ototoxic Medications (Medication Effects)

    Science.gov (United States)

    ... Information for the Public / Hearing and Balance Ototoxic Medications (Medication Effects) By Barbara Cone, Patricia Dorn, Dawn Konrad- ... Audiology Information Series [PDF]. What Is Ototoxicity? Certain medications can damage the ear, resulting in hearing loss, ...

  19. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditions The Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for...

  20. Strategies for Effective Outsourcing.

    Science.gov (United States)

    Moneta, Larry; Dillon, William L.

    2001-01-01

    Emphasizes strategies that can be employed for effective outsourcing in higher education settings. Several models of outsourcing are identified and described, and examples of institutions using each model are provided. (GCP)

  1. The Effects: Economy

    Science.gov (United States)

    Nutrient pollution has diverse and far-reaching effects on the U.S. economy, impacting tourism, property values, commercial fishing, recreational businesses and many other sectors that depend on clean water.

  2. The Cosmological Memory Effect

    OpenAIRE

    Tolish, Alexander; Wald, Robert M.

    2016-01-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to m...

  3. Performance effect of Lean

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Israelsen, Poul

    2016-01-01

    relevant to Denmark, but the approach is empirically more generalizable. We show that the effect of Lean standardized flow production practices on performance is mediated by analytical continuous improvement empowerment practices and by delegation of decision rights practices. Thus, standardized flow...... practices do not have direct effects on performance. Instead, standardized flow provided that foundation for companies to implement continuous improvement, which, in turn, directly affect performance positively. Another cause, in addition to flow practices, of continuous improvement was the delegation...

  4. Pharmacological Effects of Mangiferin

    Institute of Scientific and Technical Information of China (English)

    WEI Zhi-quan; DENG Jia-gang; YAN Li

    2011-01-01

    Mango leaves have been widely used in the clinical practice for thousands of years in traditional Chinese medicine.Mangiferin,an effective constituent in the mango leaves,has multiple pharmacological actions involved in some basic pathological processes,such as inflammation,oxidative injury,tumor growth,micro-organism infections,metabolic regulations,and immunological regulations.The pharmacological effects of mangiferin from some published data are reviewed in this article.

  5. Radiative transfer dynamo effect

    Science.gov (United States)

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  6. Monetary Policy Proving Effective

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Hu Xiaolian,Vice Governor of the People's Bank of China,the country's central bank,published an article concerning China's managed floating exchange rate regime and the effectiveness of the monetary policy on the bank's website on July 26.She pointed out monetary policy,as an important instrument of China's macroeconomic control,has faced many challenges in recent years.A more flexible exchange rate regime will help improve the effectiveness of the policy.

  7. Advertising Effectiveness In Events

    OpenAIRE

    Jain, Sushilkumar

    2012-01-01

    Confronted with decreasing effectiveness of the classic marketing communications, events have become an increasingly popular alternative for marketers. Events constitute one of the most exciting and fastest growing forms of leisure and business. With time, the decreasing effectiveness of classical marketing communications boosted the use of events for marketing and making brand awareness. Event marketing is seen as the unique opportunity to integrate the firm’s communication activities like p...

  8. Extracardiac Effects of Statins

    Directory of Open Access Journals (Sweden)

    Suleyman Ercan

    2013-01-01

    Full Text Available Statins are one of the most commonly used drugs in the world. Although it plays a valuable role in primary and secondary prevention of cardiovascular diseases, it has some extracardiac effects which are frequently ignored by physicians during routine practice. In this review we would like to summarise the potential beneficial or harmful extracardiac effects of statins which comprise a wide spectrum of systems and organs.

  9. Application of mobile computers in a measuring system supporting examination of posture diseases

    Science.gov (United States)

    Piekarski, Jacek; Klimiec, Ewa; Zaraska, Wiesław

    2013-07-01

    Measuring system designed and manufactured by the authors and based on mobile computers (smartphones and tablets) working as data recorders has been invented to support diagnosis of orthopedic, especially feet, diseases. The basic idea is to examine a patient in his natural environment, during the usual activities (such as walking or running). The paper describes the proposed system with sensors manufactured from piezoelectric film (PVDF film) and placed in the shoe insole. The mechanical reliability of PVDF film is excellent, though elimination of the pyroelectric effect is required. A possible solution of the problem and the test results are presented in the paper. Data recording is based on wireless transmission to a mobile device used as a data logger.

  10. Diffusion theory of slow responses

    Institute of Scientific and Technical Information of China (English)

    李景德; 陈敏; 郑凤; 周镇宏

    1997-01-01

    When an action is applied to a macroscopic substance, there is a particular sort of slow response he sides the well-known fast response. Using diffusion theory, the characteristics of slow response in dielectric, elastic, piezoelectric, and pyroelectric relaxation may he explained A time domain spectroscopy method suitable for slow and fast responses in linear and nonlinear effects is given. Every relaxation mechanism contributes a peak in differential spectroscopy, and its position, height, and line shape show the dynamical properties of the mechanism The method of frequency domain spectroscopy is suitable only for linear fast response. Time domain spectroscopy is another nonequiv-alent powerful method. The theory is confirmed by a lot of experimental data

  11. Orbital Hybridization of the Ferroelectric Rb2Cd2 (SO4)3: Origin of Domain Walls

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Feng; YI Lin

    2005-01-01

    @@ We perform first-principle calculations for the study of the orthorhombic Rb2Cd2 (SO4)3 structure. Electronic energy bands, total and partial densities of states are reported and analysed. It is found that oxygen atomic 2p electrons strongly hybridize with Rb/or Cd 4d and S 2p states, resulting in two-type ionic groups with weak couplings. It is shown that macroscopic domain walls originate from such weak-coupling ionic groups, arising at the cell boundaries. The asymmetric cation bonds (Rb-O and Cd-O) and the subsequent rotations of the SO4tetrahedra can lead to the driving force of the ferroelectric behaviour. The predicted pyroelectric current effects are observed experimentally in the ferroelectric phase.

  12. Gravity and the cells of gravity receptors in mammals

    Science.gov (United States)

    Ross, M. D.

    1983-01-01

    A model of the mammalian gravity receptor system is presented, with attention given to the effects of weightlessness. Two receptors are on each side of the head, with end organs in the saccule and utricle of the vestibular membranous labyrinth of the inner ear, embedded in the temporal bone. Each end organ has a macula, containing hair cells and supporting cells, and an otoconial complex, an otoconial membrane and mineral masses called otoconia. X ray powder diffraction examinations have revealed that the otoconia can behave like crystals, i.e., with piezoelectric properties, due to the mineral deposits. Bending of the hair cells because of acceleration can put pressure on the otoconial mineral, producing an electrical signal in the absence of a gravitational field. The possibility that pyroelectricity, as well as piezoelectricity, is present in the otoconial complexes, is discussed.

  13. Design and implementation of green intelligent lights based on the ZigBee

    Science.gov (United States)

    Gan, Yong; Jia, Chunli; Zou, Dongyao; Yang, Jiajia; Guo, Qianqian

    2013-03-01

    By analysis of the low degree of intelligence of the traditional lighting control methods, the paper uses the singlechip microcomputer for the control core, and uses a pyroelectric infrared technology to detect the existence of the human body, light sensors to sense the light intensity; the interface uses infrared sensor module, photosensitive sensor module, relay module to transmit the signal, which based on ZigBee wireless network. The main function of the design is to realize that the lighting can intelligently adjust the brightness according to the indoor light intensity when people in door, and it can turn off the light when people left. The circuit and program design of this system is flexible, and the system achieves the effect of intelligent energy saving control.

  14. Resting heart rate estimation using PIR sensors

    Science.gov (United States)

    Kapu, Hemanth; Saraswat, Kavisha; Ozturk, Yusuf; Cetin, A. Enis

    2017-09-01

    In this paper, we describe a non-invasive and non-contact system of estimating resting heart rate (RHR) using a pyroelectric infrared (PIR) sensor. This infrared system monitors and records the chest motion of a subject using the analog output signal of the PIR sensor. The analog output signal represents the composite motion due to inhale-exhale process with magnitude much larger than the minute vibrations of heartbeat. Since the acceleration of the heart activity is much faster than breathing the second derivative of the PIR sensor signal monitoring the chest of the subject is used to estimate the resting heart rate. Experimental results indicate that this ambient sensor can measure resting heart rate with a chi-square significance level of α = 0.05 compared to an industry standard PPG sensor. This new system provides a low cost and an effective way to estimate the resting heart rate, which is an important biological marker.

  15. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Science.gov (United States)

    Hernández-Rosales, E.; Cedeño, E.; Hernandez-Wong, J.; Rojas-Trigos, J. B.; Marin, E.; Gandra, F. C. G.; Mansanares, A. M.

    2016-07-01

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  16. Correct Implementation of Polarization Constants in Wurtzite Materials and Impact on III-Nitrides

    Science.gov (United States)

    Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; Vanderbilt, David

    2016-04-01

    Accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference based on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.

  17. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rosales, E.; Cedeño, E. [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil); Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Hernandez-Wong, J. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); CONACYT, México, DF, México (Mexico); Rojas-Trigos, J. B.; Marin, E. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF (Mexico); Gandra, F. C. G.; Mansanares, A. M., E-mail: manoel@ifi.unicamp.br [Gleb Wataghin Physics Institute, University of Campinas - Unicamp, 13083-859 Campinas, SP (Brazil)

    2016-07-25

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam is focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.

  18. Generation of efficient THz radiation by optical rectification in DAST crystal using tunable femtosecond laser pulses

    Science.gov (United States)

    Venkatesh, Mottamchetty; Thirupugalmani, K.; Rao, K. S.; Brahadeeswaran, S.; Chaudhary, A. K.

    2017-03-01

    We report the efficient THz generation by optical rectification from an indigenously grown organic DAST crystal using the 140 fs oscillator laser pulses tunable in between 780 and 850 nm. The generated THz pulse profile and powers have been measured using the photoconductive (PC) antennas and pyroelectric detector, respectively. The highest THz peak amplitude and power is obtained at 825 nm central wavelength. We have theoretically explained the enhancement of THz radiation based on the matching of average optical group refractive index and average THz refractive index of the DAST crystal at 825 nm. In addition, the dependence of THz peak amplitude and THz power on laser power have been carried out. The measured quantum conversion efficiency (QCE) of 0.5 and 1.5 THz bands are of the order 3.7 × 10-3, 1.4 × 10-3, respectively. Finally, an attempt has been made to study the effect of polarizations on generated THz signal.

  19. Review of ferroelectric hydroxyapatite and its application to biomedicine

    Science.gov (United States)

    Lang, Sidney B.

    2016-08-01

    Hydroxyapatite (HA) is a major component of bone in humans and animals. Until about 10 years ago, it was considered to have a centrosymmetric crystal structure and could not contribute to the well-known piezoelectric effect in bone. This review describes the theoretical and experimental studies that showed that HA does have a non-centrosymmetric structure. Recent experiments have shown that HA exhibits piezoelectricity, pyroelectricity, and ferroelectricity. It has been made in the form of thick films and as space-charge electrets. It has an important biomedical application as an implant for bone cell attachment and growth. This paper is contributed in honor of the 80th birthday of my long-time friend and colleague, Bozena Hilczer.

  20. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  1. Pleiotropic effects of statins

    Directory of Open Access Journals (Sweden)

    Narasaraju Kavalipati

    2015-01-01

    Full Text Available Statins or 3-hydroxy-methylglutaryl coenzyme A (HMG CoA reductase inhibitors not only prevents the synthesis of cholesterol biosynthesis but also inhibits the synthesis of essential isoprenoid intermediates such as farnesyl pyrophosphate, geranylgeranyl pyrophosphate, isopentanyl adenosine, dolichols and polyisoprenoid side chains of ubiquinone, heme A, and nuclear lamins. These isoprenoid intermediates are required for activation of various intracellular/signaling proteins- small guanosine triphosphate bound protein Ras and Ras-like proteins like Rho, Rab, Rac, Ral, or Rap which plays an indispensible role in multiple cellular processes. Reduction of circulating isoprenoids intermediates as a result of HMG CoA reductase inhibition by statins prevents activation of these signalling proteins. Hence, the multiple effects of statins such as antiinflammatory effects, antioxidant effects, antiproliferative and immunomodulatory effects, plaque stability, normalization of sympathetic outflow, and prevention of platelet aggregation are due to reduction of circulating isoprenoids and hence inactivation of signalling proteins. These multiple lipid-independent effects of statins termed as statin pleiotropy would potentially open floodgates for research in multiple treatment domains catching attentions of researchers and clinician across the globe.

  2. The Vampire Effect

    DEFF Research Database (Denmark)

    Erfgen, Carsten; Zenker, Sebastian; Sattler, Henrik

    2015-01-01

    Although many brand managers favor the use of celebrities in advertisements, others worry that celebrities overshadow the brand and thus impair brand recall. Practitioners refer to this overshadowing as the vampire effect, defined as a decrease in brand recall for an advertising stimulus that fea......Although many brand managers favor the use of celebrities in advertisements, others worry that celebrities overshadow the brand and thus impair brand recall. Practitioners refer to this overshadowing as the vampire effect, defined as a decrease in brand recall for an advertising stimulus...... that features a celebrity endorser versus the same stimulus with an unknown but equally attractive endorser. Because there is no agreement about whether this overshadowing really exists, this research analyzes the existence of the vampire effect and its moderators in a series of experiments with a total of 4......,970 respondents. The results provide important insights into how to avoid the vampire effect by creating appropriate conditions, such as high endorser–brand congruence or a strong cognitive link between the celebrity and the brand. Surprisingly, brand familiarity does not significantly moderate the effect....

  3. Knowledge of contraceptive effectiveness.

    Science.gov (United States)

    Eisenberg, David L; Secura, Gina M; Madden, Tessa E; Allsworth, Jenifer E; Zhao, Qiuhong; Peipert, Jeffrey F

    2012-06-01

    The purpose of this study was to determine women's knowledge of contraceptive effectiveness. We performed a cross-sectional analysis of a contraceptive knowledge questionnaire that had been completed by 4144 women who were enrolled in the Contraceptive CHOICE Project before they received comprehensive contraceptive counseling and chose their method. For each contraceptive method, women were asked "what percentage would get pregnant in a year: 10%, don't know." Overall, 86% of subjects knew that the annual risk of pregnancy is >10% if no contraception is used. More than 45% of women overestimate the effectiveness of depo-medroxyprogesterone acetate, pills, the patch, the ring, and condoms. After adjustment for age, education, and contraceptive history, the data showed that women who chose the intrauterine device (adjusted relative risk, 6.9; 95% confidence interval, 5.6-8.5) or implant (adjusted relative risk, 5.9; 95% confidence interval, 4.7-7.3) were significantly more likely to identify the effectiveness of their method accurately compared with women who chose either the pill, patch, or ring. This cohort demonstrated significant knowledge gaps regarding contraceptive effectiveness and over-estimated the effectiveness of pills, the patch, the ring, depo-medroxyprogesterone acetate, and condoms. Copyright © 2012 Mosby, Inc. All rights reserved.

  4. Paramagnetic Spin Seebeck Effect

    Science.gov (United States)

    Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand

    2015-05-01

    We report the observation of the longitudinal spin Seebeck effect in paramagnetic insulators. By using a microscale on-chip local heater, we generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. Using this technique at low temperatures (<20 K ), we resolve the paramagnetic spin Seebeck effect in the insulating paramagnets Gd3Ga5O12 (gadolinium gallium garnet) and DyScO3 (DSO), using either W or Pt as the spin detector layer. By taking advantage of the strong magnetocrystalline anisotropy of DSO, we eliminate contributions from the Nernst effect in W or Pt, which produces a phenomenologically similar signal.

  5. The Mozart Effect.

    Science.gov (United States)

    Hughes, John R.

    2001-10-01

    This review deals with the Mozart Effect, an improvement of performance while listening to Mozart music. Previous studies have shown improved spatial temporal reasoning and improved IQ test results and neurophysiological changes, mainly increased coherence among different groups of subjects. This review emphasizes the effect on epileptiform patterns, both generalized and focal; provides an example of a chronic effect over a period of 1-2 days; addresses the distinctive aspects of the music to account for this phenomenon and shows that long-term periodicity in the power of the music is a special quality; and deals with the melodic line and shows that Mozart repeats the melodic line much more frequently than other well-known composers. It is likely that the superorganization of the cerebral cortex resonates with great organization found in Mozart music.

  6. The quantum sweeper effect

    Science.gov (United States)

    Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.

    2015-07-01

    We show that during stochastic beam attenuation in double slit experiments, there appear unexpected new effects for transmission factors below a ≤ 10-4, which can eventually be observed with the aid of weak measurement techniques. These are denoted as quantum sweeper effects, which are characterized by the bunching together of low counting rate particles within very narrow spatial domains. We employ a “superclassical” modeling procedure which we have previously shown to produce predictions identical with those of standard quantum theory. Thus it is demonstrated that in reaching down to ever weaker channel intensities, the nonlinear nature of the probability density currents becomes ever more important. We finally show that the resulting unexpected effects nevertheless implicitly also exist in standard quantum mechanics.

  7. Cosmological memory effect

    Science.gov (United States)

    Tolish, Alexander; Wald, Robert M.

    2016-08-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).

  8. The Cosmological Memory Effect

    CERN Document Server

    Tolish, Alexander

    2016-01-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of $(1 + z)$.

  9. Quantum Hamlet Effect

    CERN Document Server

    Panković, Vladan

    2009-01-01

    In this work, by use of a formalism similar to formalism of the quantum Zeno effect (decrease of the decay probability of an unstable quantum system by frequent measurements) and quantum anti-Zeno effect (increase of the decay probability of an unstable quantum system by frequent measurements), we introduce so-called quantum Hamlet effect. It represents a complete destruction of the quantum predictions on the decay probability of an unstable quantum system by frequent measurement. Precisely, by means of some especial, correctly defined, frequent measurements, decay probability of an unstable quantum system can behave as a divergent series without any definite value. In this way there is quantum mechanically completely unsolvable ``Hamlet dilemma'', to decay or not to decay.

  10. Effective Nutritional Supplement Combinations

    Science.gov (United States)

    Cooke, Matt; Cribb, Paul J.

    Few supplement combinations that are marketed to athletes are supported by scientific evidence of their effectiveness. Quite often, under the rigor of scientific investigation, the patented combination fails to provide any greater benefit than a group given the active (generic) ingredient. The focus of this chapter is supplement combinations and dosing strategies that are effective at promoting an acute physiological response that may improve/enhance exercise performance or influence chronic adaptations desired from training. In recent years, there has been a particular focus on two nutritional ergogenic aids—creatine monohydrate and protein/amino acids—in combination with specific nutrients in an effort to augment or add to their already established independent ergogenic effects. These combinations and others are discussed in this chapter.

  11. Security effectiveness review (SER)

    Energy Technology Data Exchange (ETDEWEB)

    Kouprianova, I. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation); Ek, D.; Showalter, R. [Sandia National Labs., Albuquerque, NM (United States); Bergman, M. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    As part of the on-going DOE/Russian MPC and A activities at the Institute of Physics and Power Engineering (IPPE) and in order to provide a basis for planning MPC and A enhancements, an expedient method to review the effectiveness of the MPC and A system has been adopted. These reviews involve the identification of appropriate and cost-effective enhancements of facilities at IPPE. This effort requires a process that is thorough but far less intensive than a traditional vulnerability assessment. The SER results in a quick assessment of current and needed enhancements. The process requires preparation and coordination between US and Russian analysts before, during, and after information gathering at the facilities in order that the analysis is accurate, effective, and mutually agreeable. The goal of this paper is to discuss the SER process, including the objectives, time scale, and lessons learned at IPPE.

  12. Conditional Aid Effectiveness

    DEFF Research Database (Denmark)

    Doucouliagos, Hristos; Paldam, Martin

    The AEL (aid effectiveness literature) studies the effect of development aid using econometrics on macro data. It contains about 100 papers of which a third analyzes conditional models where aid effectiveness depends upon z, so that aid only works for a certain range of the variable. The key term...... in this family of AEL models is thus an interaction term of z times aid. The leading candidates for z are a good policy index and aid itself. In this paper, meta-analysis techniques are used (i) to determine whether the AEL has established the said interaction terms, and (ii) to identify some of the determinants...... of the differences in results between studies. Taking all available studies in consideration, we find no support for conditionality with respect to policy, while conditionality regarding aid itself is dubious. However, the results differ depending on the authors’ institutional affiliation....

  13. Quantum Spin Hall Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  14. Picosecond Spin Seebeck Effect

    Science.gov (United States)

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2017-02-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal /Y3Fe5 O12 bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time evolution of spin accumulation induced by laser excitation indicates transfer of angular momentum across normal metal /Y3Fe5 O12 interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in an yttrium iron garnet. The product of spin-mixing conductance and the interfacial spin Seebeck coefficient determined is of the order of 108 A m-2 K-1 .

  15. Picosecond spin Seebeck effect

    OpenAIRE

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2016-01-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is...

  16. Casimir edge effects

    CERN Document Server

    Gies, H; Gies, Holger; Klingmuller, Klaus

    2006-01-01

    We compute Casimir forces in open geometries with edges, involving parallel as well as perpendicular semi-infinite plates. We focus on Casimir configurations which are governed by a unique dimensional scaling law with a universal coefficient. With the aid of worldline numerics, we determine this coefficient for various geometries for the case of scalar-field fluctuations with Dirichlet boundary conditions. Our results facilitate an estimate of the systematic error induced by the edges of finite plates, for instance, in a standard parallel-plate experiment. The Casimir edge effects for this case can be reformulated as an increase of the effective area of the configuration.

  17. Nuclear medium effects in $\

    CERN Document Server

    Haider, H; Athar, M Sajjad; Vacas, M J Vicente

    2011-01-01

    We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.

  18. Magnetic Nernst effect

    Science.gov (United States)

    Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2015-09-01

    The thermodynamics of irreversible processes in continuous media predicts the existence of a magnetic Nernst effect that results from a magnetic analog to the Seebeck effect in a ferromagnet and magnetophoresis occurring in a paramagnetic electrode in contact with the ferromagnet. Thus, a voltage that has DC and AC components is expected across a Pt electrode as a response to the inhomogeneous magnetic induction field generated by magnetostatic waves of an adjacent YIG slab subject to a temperature gradient. The voltage frequency and dependence on the orientation of the applied magnetic induction field are quite distinct from that of spin pumping.

  19. Erythropoietin and Nonhematopoietic Effects.

    Science.gov (United States)

    Nekoui, Alireza; Blaise, Gilbert

    2017-01-01

    Erythropoietin (EPO) is the main regulator of red blood cell production. Since the 1990s, EPO has been used for the treatment of anemia associated with end-stage renal failure and chemotherapy. The erythropoietin receptors were found on other organs such as the brain, spinal cord, heart and skin. In addition, it has been shown that many tissues produce and locally release EPO in response to hypoxic, biochemical and physical stress. In cellular, animal and clinical studies, EPO protects tissues from ischemia and reperfusion injury, has antiapoptotic effects and improves regeneration after injury. In this article, we mainly review the nonhematopoietic effects and new possible clinical indications for EPO.

  20. The effect of Ad

    Institute of Scientific and Technical Information of China (English)

    李小艳

    2010-01-01

    There is the trend that now people appreciate those who are slim and regard slim even thin people beautiful. The thinner a person is, the more beautiful. Women, born to pursuit beauty, try various means to follow the trend. We all watch TV, and find a lot of advertisements on diet. The effect of them is tremendous. We all know the fact that it is not at all the better mouse trap will catch mouse. The sales methods are more important. If an advertisement is very interesting and seemingly effective, people will be lured by the ad and then try some of the products.

  1. The Lazarus effect

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    Members of the RD39 collaboration stage a demonstration of the Lazarus effect in the CERN cryolab. At the LHC experiments, the front-line inner detectors - trackers - will be traversed by a mammoth thousand million million passing particles per square centimetre over the lifetimes of the experiments. After long exposure to passing particles, defects appear in the silicon and the signal is destroyed. A group of physicists at Bern University have found that at temperatures below 100 K, dead detectors apparently come back to life. They're calling their discovery the Lazarus effect after the Biblical character raised from the dead by Jesus after he had been entombed for four days.

  2. Level Width Broaden Effect

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Shang

    2004-01-01

    In fitting the double-differential measurements thelevelwidth broadening effect should be taken into account properly due to Heisenberg uncertainty.Besides level width broadening effect the energy resolution in the measurements is also needed in this procedure.In general,the traditional normal Gaussian expansion is employed.However,the research indicates that to do so in this way the energy balance could not hold.For this reason,the deformed Gaussian expansion functions with exponential form for both the single energy point and continuous spectrum are introduced,with which the normalization and energy balance conditions could hold exactly in the analytical form.

  3. Monetary Policy Proving Effective

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hu Xiaolian,Vice Governor of the People’s Bank of China,the country’s central bank, published an article concerning China’s managed floating exchange rate regime and the effectiveness of the monetary policy on the bank’s website on July 26.She pointed out monetary policy,as an important instrument of China’s macroeconomic control,has faced many challenges in recent years.A more flexible exchange rate regime will help improve the effectiveness of the policy.Edited excerpts follow

  4. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  5. Skeletal Effects of Smoking.

    Science.gov (United States)

    Cusano, Natalie E

    2015-10-01

    Smoking is a leading cause of preventable death and disability. Smoking has long been identified as a risk factor for osteoporosis, with data showing that older smokers have decreased bone mineral density and increased fracture risk compared to nonsmokers, particularly at the hip. The increase in fracture risk in smokers is out of proportion to the effects on bone density, indicating deficits in bone quality. Advanced imaging techniques have demonstrated microarchitectural deterioration in smokers, particularly in the trabecular compartment. The mechanisms by which smoking affects skeletal health remain unclear, although multiple pathways have been proposed. Smoking cessation may at least partially reverse the adverse effects of smoking on the skeleton.

  6. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    Energy Technology Data Exchange (ETDEWEB)

    Eydam, Agnes, E-mail: Agnes.Eydam@tu-dresden.de; Suchaneck, Gunnar, E-mail: Agnes.Eydam@tu-dresden.de; Gerlach, Gerald [Technische Universität Dresden, Solid State Electronics Laboratory, Helmholtzstraße 18, 01062 Dresden (Germany); Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter [Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstraße 28, 01277 Dresden (Germany)

    2014-11-05

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes.

  7. Imagineering the butterfly effect

    NARCIS (Netherlands)

    Nijs, Diane Elza Lea Winie

    2014-01-01

    Het is een ‘inconvenient truth’ zowel in de wetenschap als in de praktijk dat conventioneel verandermanagement dat gericht is op gedragsverandering slechts beperkt effectief is. Slechts 1 op de 3 verander-inspanningen zou enig positief effect hebben. Mensen laten zich namelijk niet veranderen. Als m

  8. What Effective Schools Do

    Science.gov (United States)

    West, Martin R.; Gabrieli, Christopher F. O.; Finn, Amy S.; Kraft, Matthew A.; Gabrieli, John D. E.

    2014-01-01

    Research has been showing that the most important development in K-12 education over the past decade has been the emergence of a growing number of urban schools that have been convincingly shown to have dramatic positive effects on the achievement of disadvantaged students. Those with the strongest evidence of success are oversubscribed charter…

  9. Damping Effect of Humans

    DEFF Research Database (Denmark)

    Pedersen, Lars

    system and change its dynamic behavior and its dynamic characteristics. When predicting structural vibrations it is not common to account for the passive crowd, but the paper will illustrate effects of the presence of a passive croud on structural behavior. Numerical and experimental results...

  10. Matthew Effects for Whom?

    Science.gov (United States)

    Morgan, Paul L.; Farkas, George; Hibel, Jacob

    2008-01-01

    Which children are most at risk of experiencing a Matthew effect in reading? We investigated this question using population-based methodology. First, we identified children entering kindergarten on socio-demographic factors (i.e., gender, race/ethnicity, and socioeconomic status) known to index the relative risks and resources available to them as…

  11. Effectively Communicating Qualitative Research

    Science.gov (United States)

    Ponterotto, Joseph G.; Grieger, Ingrid

    2007-01-01

    This article is a guide for counseling researchers wishing to communicate the methods and results of their qualitative research to varied audiences. The authors posit that the first step in effectively communicating qualitative research is the development of strong qualitative research skills. To this end, the authors review a process model for…

  12. Marijuana: respiratory tract effects.

    Science.gov (United States)

    Owen, Kelly P; Sutter, Mark E; Albertson, Timothy E

    2014-02-01

    Marijuana is the most commonly used drug of abuse in the USA. It is commonly abused through inhalation and therefore has effects on the lung that are similar to tobacco smoke, including increased cough, sputum production, hyperinflation, and upper lobe emphysematous changes. However, at this time, it does not appear that marijuana smoke contributes to the development of chronic obstructive pulmonary disease. Marijuana can have multiple physiologic effects such as tachycardia, peripheral vasodilatation, behavioral and emotional changes, and possible prolonged cognitive impairment. The carcinogenic effects of marijuana are unclear at this time. Studies are mixed on the ability of marijuana smoke to increase the risk for head and neck squamous cell carcinoma, lung cancer, prostate cancer, and cervical cancer. Some studies show that marijuana is protective for development of malignancy. Marijuana smoke has been shown to have an inhibitory effect on the immune system. Components of cannabis are under investigation as treatment for autoimmune diseases and malignancy. As marijuana becomes legalized in many states for medical and recreational use, other forms of tetrahydrocannabinol (THC) have been developed, such as food products and beverages. As most research on marijuana at this time has been on whole marijuana smoke, rather than THC, it is difficult to determine if the currently available data is applicable to these newer products.

  13. The Last Line Effect

    NARCIS (Netherlands)

    Beller, M.; Zaidman, A.E.; Karpov, A.

    2015-01-01

    Micro-clones are tiny duplicated pieces of code; they typically comprise only a few statements or lines. In this paper, we expose the “last line effect,” the phenomenon that the last line or statement in a micro-clone is much more likely to contain an error than the previous lines or statements. We

  14. EFFECTIVE TEACHING PRACTICES

    NARCIS (Netherlands)

    Tomic, W.

    2008-01-01

    Before the cognitive shift in educational psychology research on teaching practices that bring about the desired learning outcomes on the part of the students was dominated by the process-product research program. The findings of this confirmative research approach show that an effective lesson may

  15. Cost-Effective Clustering

    CERN Document Server

    Gottlieb, S

    2001-01-01

    Small Beowulf clusters can effectively serve as personal or group supercomputers. In such an environment, a cluster can be optimally designed for a specific problem (or a small set of codes). We discuss how theoretical analysis of the code and benchmarking on similar hardware lead to optimal systems.

  16. Heavy quarkonium effective theory

    CERN Document Server

    Mannel, T

    1995-01-01

    We formulate a QCD-based effective theory approach to heavy quarkonia-like systems as \\bar{c} c and \\bar{b} b resonances and B_c states. We apply the method to inclusive decays, working out a few examples in detail.

  17. Pleiotropic effects of incretins

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2012-01-01

    Full Text Available Drugs that augment the incretin system [glucagon like peptide (GLP agonists and dipeptidyl peptidase-4 (DPP-4 inhibitors] represent a novel class of anti-hyperglycemic agents that have shown to improve the health and survival of beta-cells (improvement in postprandial hyperglycemia and suppress glucagon (improvement in fasting hyperglycemia. The incretins represent a large family of molecules referred to as the "glucagon superfamily of peptide hormones" of which more than 90% of the physiological effects of incretins are accomplished by GLP-1 7-37 and GLP1 7-36 amide and gastric insulinotropic peptide (GIP. GLP-1 mediates its effects via the GLP-1 receptor, which has a wide tissue distribution [pancreas, lung, heart, vascular smooth muscle cells, endothelial cells, macrophages and monocytes, kidney, gastrointestinal tract (stomach and intestine, central nervous system (neoortex, cerebellum, hypothalamus, hippocampus, brainstem nucleus tractus solitarius and peripheral nervous system]. This would imply that the incretin system has effects outside the pancreas. Over time data has accumulated to suggest that therapies that augment the incretin system has beneficial pleiotrophic effects. The incretins have shown to possess a cardiac-friendly profile, preserve neuronal cells and safeguard from neuronal degeneration, improve hepatic inflammation and hepatosteatosis, improve insulin resistance, promote weight loss and induce satiety. There is growing evidence that they may also be renoprotective promoting wound healing and bone health.

  18. Camp's "Disneyland" Effect.

    Science.gov (United States)

    Renville, Gary

    1999-01-01

    Describes the positive mental, physical, and social growth impacts that the camping experience had on the author, and urges camp program evaluation to plan and implement such changes. Sidebar lists steps of effective evaluation: program goals and objectives, goals of evaluation, implementation of evaluation, data analysis, and findings and…

  19. Challenges to effective protection

    Directory of Open Access Journals (Sweden)

    Rose Kimotho

    2007-01-01

    Full Text Available With sexual violence now recognised as a weapon of war and a punishable violation of human rights, it is incumbent upon the international community, national governments and humanitarian organisations to provide more effective protection of women and girls.

  20. Educator Effectiveness Administrative Manual

    Science.gov (United States)

    Pennsylvania Department of Education, 2014

    2014-01-01

    The goal of this manual is to provide guidance in the evaluation of educators, highlight critical components of effectiveness training, and offer opportunities for professional growth. The term "educator" includes teachers, all professional and temporary professional employees, education specialists, and school administrators/principals.…