WorldWideScience

Sample records for pyroelectric detectors

  1. Responsivity Calibration of Pyroelectric Terahertz Detectors

    CERN Document Server

    Berry, Christopher W; Jarrahi, Mona

    2014-01-01

    There has been a significant advancement in terahertz radiation sources in the past decade, making milliwatt terahertz power levels accessible in both continuous-wave and pulsed operation. Such high-power terahertz radiation sources circumvent the need for cryogenic-cooled terahertz detectors such as semiconductor bolometers and necessitate the need for new types of calibrated, room-temperature terahertz detectors. Among various types of room-temperature terahertz detectors, pyroelectric detectors are one of the most widely used detectors, which can offer wide dynamic range, broad detection bandwidth, and high sensitivity levels. In this article, we describe the calibration process of a commercially available pyroelectric detector (Spectrum Detector, Inc, SPI-A-65 THz), which incorporates a 5 mm diameter LiTaO3 detector with an organic terahertz absorber coating.

  2. Effect of space exposure on pyroelectric infrared detectors (A0135)

    Science.gov (United States)

    Robertson, J. B.; Clark, I. O.; Crouch, R. K.

    1984-01-01

    The effects of long-duration space exposure and launch environment on the performance of pyroelectric detectors which is important for the prediction of performance degradation, setting exposure limits, or determining shielding requirements was investigated. Air pollution monitoring and thermal mapping of the Earth, which includes the remote sensing of aerosols and limb scanning infrared radiometer projects, requires photodetection in the 6- to 20 micro m region of the spectrum. Pyroelectric detectors can detect radiation in the 1- to 100 micro m region while operating at room temperature. This makes tahe pyroelectric detector a prime candidate to fill the thermal infrared detector requirements.

  3. Evaluation of dome-input geometry for pyroelectric detectors

    Science.gov (United States)

    Zeng, J.; Hanssen, L. M.; Eppeldauer, G. P.

    2013-06-01

    Dome-input pyroelectric radiometers with different black coatings were developed to extend the spectral responsivity scale from near infrared (NIR) to 20 μm. The reflective dome with shiny gold-coating has been known to be an efficient light trap to enhance the detector absorptance and to minimize spectral responsivity variation. The enhancement of spectral responsivity using reflective dome relies on optical characterization of black coating on detector, reflectance of dome reflector, and input aperture dimension, etc. We report a comparison of spectral responsivity of dome-input pyroelectric radiometers measured with/without dome-trap from 2.4 μm to 14 μm using the Infrared Spectral Comparator Facility (IRSCF) at NIST. The results show 4 % to 8 % gain of responsivity for two dome-input pyroelectric detectors, with reduced structure of spectral responsivity. The uncertainty of dome-input pyroelectric radiometer calibrations is approximately 2 % (k = 2).

  4. Pyroelectric materials as electronic pulse detectors of ultraheavy nuclei

    Science.gov (United States)

    Simpson, J. A.; Tuzzolino, A. J.

    1984-01-01

    The design and testing of ultraheavy-nucleus pulse detectors based on pyroelectric materials are reported, extending the preliminary findings of Tuzzolino (1983) and Simpson and Tuzzolino (1983). Uranium-ion beams of about 240 MeV/u are detected by a 39.5-micron-thick Si detector, degraded to about 175 MeV/u by Al absorbers, and then strike 700-micron-thick polyvinylidene fluoride or 1000-micron-thick LiTaO3 pyroelectric samples. Both detector systems are connected to a coincidence circuit via charge-sensitive preamplifiers, shaping amplifiers with 30-microsec effective time constants, and electronic discriminators. Sample spectra are shown, and the pulse heights measured are found to agree with theoretical calculations to within a factor of about 2. The response of the pyroelectric materials is found to be unaffected by exposure to about 10 Mrad of 2-7-MeV/u heavy ion radiation. With further study and improvement of the detection sensitivity, devices of this type could be applied to large-area space measurements of low ultraheavy-ion fluxes.

  5. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H. B. [Lawrence Berkeley Lab., CA (United States); [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector. Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.

  6. Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors.

    Science.gov (United States)

    Zeqiri, Bajram; Baker, Christian; Alosa, Giuseppe; Wells, Peter N T; Liang, Hai-Dong

    2013-08-07

    The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter-detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in

  7. Infrared Responsivity of a Pyroelectric Detector with a Single-Wall Carbon Nanotube Coating

    Energy Technology Data Exchange (ETDEWEB)

    Theocharous, E.; Engtrakul, C.; Dillon, A. C.; Lehman, J.

    2008-08-01

    The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 {micro}m wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 {micro}m thick LiTaO{sub 3} crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10{sup -9} A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.

  8. Development of pyroelectric neutron source for calibration of neutrino and dark matter detectors

    Science.gov (United States)

    Chepurnov, A. S.; Ionidi, V. Y.; Gromov, M. B.; Kirsanov, M. A.; Klyuyev, A. S.; Kubankin, A. S.; Oleinik, A. N.; Shchagin, A. V.; Vokhmyanina, K. A.

    2017-01-01

    The laboratory experimental setup for development of pyroelectric neutron generator for calibration of neutrino and dark matter detectors for direct search of Weakly Interacting Massive Particles (WIMP) has been developed. The setup allows providing and controlling the neutrons generation process realized during d-d nuclear fusion. It is shown that the neutrons with energy 2.45 MeV can be generated starting from a level of electric potential generated by pyroelectric crystal about 30 kV, in contrast to the typical neutron tubes which need the applied outer high voltage level about 100 kV.

  9. True differential pyroelectric infrared detector with improved D* test results with analysis

    Science.gov (United States)

    Doctor, Alan

    2016-10-01

    Pyroelectric infrared detectors are used in many commercial and industrial applications. Typically these devices have been "single ended" and thus any electronic perturbation from a non-detector related noise source such as line frequency interference or microprocessor clock and other sources of electronic noise can be coupled onto the detector's output signal. We have solved this problem by employing a rather unique connection which also provides an increase in the signal to noise of any pyroelectric detector by a factor of the square root of 2 or by about 1.41 times greater than devices not utilizing this connection. Many devices using this connection have been built, fully tested and the data analyzed which provide a true differential or double ended output and the increase in D* as predicted. This scheme will work with any pyroelectric material (LTO, DLATGS, PLZT, PVDF etc.) with current or voltage mode impedance conversion and configurations such as parallel or series with and without temperature fluctuation compensation and of course with standard single elements. This talk will present this data and conclusions regarding the approach.

  10. Bullet Design and Fabrication of Dual Mode Pyroelectric Sensor: High Sensitive Energymeter for Nd: YAG Laser and Detector for Chopped He-Ne Laser

    Directory of Open Access Journals (Sweden)

    S. SATAPATHY

    2008-05-01

    Full Text Available Pyroelectric sensor using TGS has been designed and fabricated which can be operated in laser energy meter mode as well as pyroelectric detector mode. The amplifying circuit configuration has very good signal to noise ratio, very high input impedance and low drift. The pyroelectric sensor has been tested using Q-switched Nd: YAG laser and chopped He-Ne laser. The sensitivity of pyroelectric sensor in energymeter mode is 421.7V/J and the voltage responsivity of the pyroelectric sensor is 3.27 V/W in detector mode.

  11. A selective pyroelectric detector of millimeter-wave radiation with an ultrathin resonant meta-absorber

    Science.gov (United States)

    Paulish, A. G.; Kuznetsov, S. A.

    2016-11-01

    The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.

  12. Characterization of a Polymer-Based MEMS Pyroelectric Infrared Detector

    Science.gov (United States)

    2007-03-01

    engineered protein in hydrogels tailors stimuli-responsive characteristics.” Nature, vol 4, pp 298 – 302, Apr 2005. [8] Brott, Lawrence L...CR Detector Pre- amp Φe (t) 38 three regimes can be seen in Figure 14, which represents the voltage reponsivity...detector needs amplification, using one of the two circuits shown in Figure 19 or 20. In lieu of this circuit, a voltage pre- amp was used

  13. Materials preparation and fabrication of pyroelectric polymer/silicon MOSFET detector arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, P. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering

    1992-03-27

    The authors have delivered several 64-element linear arrays of pyroelectric elements fully integrated on silicon wafers with MOS readout devices. They have delivered detailed drawings of the linear arrays to LANL. They have processed a series of two inch wafers per submitted design. Each two inch wafer contains two 64 element arrays. After spin-coating copolymer onto the arrays, vacuum depositing the top electrodes, and polarizing the copolymer films so as to make them pyroelectrically active, each wafer was split in half. The authors developed a thicker oxide coating separating the extended gate electrode (beneath the polymer detector) from the silicon. This should reduce its parasitic capacitance and hence improve the S/N. They provided LANL three processed 64 element sensor arrays. Each array was affixed to a connector panel and selected solder pads of the common ground, the common source voltage supply connections, the 64 individual drain connections, and the 64 drain connections (for direct pyroelectric sensing response rather than the MOSFET action) were wire bonded to the connector panel solder pads. This entails (64 + 64 + 1 + 1) = 130 possible bond connections per 64 element array. This report now details the processing steps and the progress of the individual wafers as they were carried through from beginning to end.

  14. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Hilary B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 1011 cmHz 1/2W-1 for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 1010 cmHz1/2W-1 . KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. SixNymembranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO3/Pt/Ti/SixNy/Si and SrRuO3/SixNy/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is ~380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom

  15. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  16. Application of single-crystalline PMN-PT and PIN-PMN-PT in high-performance pyroelectric detectors.

    Science.gov (United States)

    Yu, Ping; Ji, Yadong; Neumann, Norbert; Lee, Sang-Goo; Luo, Hasou; Es-Souni, Mohammed

    2012-09-01

    The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate-lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m(2)K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D* of about 1.1 · 10(9) cm·Hz(1/2)/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors.

  17. Testing of InGaAs, microbolometer and pyroelectric detectors in support of the EarthCARE mission

    Science.gov (United States)

    Hopkinson, Gordon; Gomez Rojas, Luis; Skipper, Mark; Meynart, Roland

    2008-10-01

    A test programme for infrared detectors in support of the EarthCARE mission is discussed. Commercially available linear InGaAs arrays from XenICs, Belgium (cut-off wavelengths 1.7, 2.2 and 2.5 μm), 384 x 288 amorphous silicon microbolometer arrays from ULIS, France and un-windowed single element lithium tantalate pyroelectric detectors from Infratec, Germany have been studied in detail to assess their suitability for EarthCARE and to provide performance data to aid in the design of the flight instruments. Tests included radiation resistance (cobalt60 and 60 MeV protons plus a heavy ion latch-up test for the InGaAs and microbolometer arrays), dark signal, noise, output stability, linearity, crosstalk and spectral response. In addition, the pyroelectric detectors were tested for low microphony.

  18. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    Science.gov (United States)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  19. Pyroelectric detectors with integrated operational amplifier for high modulation frequencies; Pyroelektrische Detektoren mit integriertem Operationsverstaerker fuer hohe Modulationsfrequenzen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, N.; Saenze, H.; Heinze, M. [InfraTec GmbH Dresden (Germany)

    2006-02-01

    In order to use the advantages of the current mode operation a pyroelectric detector family with integrated transimpedance amplifier (TIA) was developed particularly for modulation frequencies up to the kHz range with a simplified external circuitry for new application fields, e.g. absorption spectroscopy using quantum-cascade-laser. The essential advantages of the TIA arise from the small electrical time constant {tau}{sub E} and the short-circuiting of the pyroelectric element. A flat amplitude response up to some kHz was aimed at for a sufficiently high response of 7500 V/W, appr., also at high modulation frequencies. This can be achieved through a electrical time constant of 1 ms or less and a wide bandwidth of the op amp. The article describes in detail how these demands were accomplished and which compromises had to be accepted. (orig.)

  20. Design of the Monocular Pyroelectric Infrared Detector%一种热释电红外探测器的单目设计

    Institute of Scientific and Technical Information of China (English)

    崔永俊; 贾磊; 王希鹏; 赵秀梅; 薛志勇; 杜文略

    2016-01-01

    To solve the problems of high false alarm rate, low sensitivity and unable to locate intrusion targets and other issues in ordinary pyroelectric infrared detection technology, the design based on compound eye structure is proposed for pyroelectric infrared detector. Combining the advantages of pyroelectric infrared detection, including good concealment, stable performance, environmental adaptability, large viewing angle of compound eye, small size and high sensitivity, the charge signal on pyroelectric material is converted into voltage signal, and output after filtering and amplifying. Experiments show that the monocular of the designed pyroelectric infrared detector can detect intrusion target within fifteen meters, and output pulse level as an alarm signal.%为解决普通热释电的红外探测技术误报率高、敏感度低且不能对入侵目标进行定位等问题,提出了一种基于热释电红外探测器的复眼结构的设计.结合热释电红外探测隐蔽性好、性能稳定、环境适应能力强、复眼视场角大、体积小且灵敏度高等优势,将热释材料上的电荷信号转换为电压信号,经滤波、放大后输出.通过实验表明,采用该热释电红外探测器的单目可以检测到15 m内的入侵目标,并输出脉冲电平作为报警信号.

  1. 大电流宽频带热释电红外探测器优化设计%Optimization Design of Large current broadband pyroelectric infrared detector

    Institute of Scientific and Technical Information of China (English)

    王芳; 杨桂勇; 宋艳; 颜延志; 马春旺

    2011-01-01

    本文提出了一种大电流宽频带的热释电红外探测器的优化设计方法.在分析热释电输出电压响应的基础上,结合热辐射探测的特点,提出了新的仿真模型,实际电路与仿真数据基本吻合.通过采用双极型结型场效应管(BJFET)和改变热释电时间常数等方法解决了热释电前置放大器输出信号弱和通频带窄的关键问题.%This paper presents a large current broadband pyroelectric infrared detector optimal design method. The analysis of the pyroelectric response of the output voltage based on the combination of the characteristics of thermal radiation detection, put forword a new simulation model, and the actual circuit is basically consistent with simulation data. Through using bipolar JFET (BJFET) and changing the time constant and so on, we will improve the low - output and narrow bands which were the key issues of pyroelectric preamplifier.

  2. High-Quality Continuous-Wave Imaging with a 2.53 THz Optical Pumped Terahertz Laser and a Pyroelectric Detector

    Institute of Scientific and Technical Information of China (English)

    BING Pi-Bin; YAO Jian-Quan; XU De-Gang; XU Xiao-Yan; LI Zhong-Yang

    2010-01-01

    @@ A CW terahertz(THz)transmission imaging system is demonstrated and a high-quality THz image can be obtained using a pyroelectric detector.The factors that affect the imaging quality,such as the THz wavelength,spot size on the sample surface,step length of the motor,and frequency of the chopper,are theoretically and experimentally investigated.The experimental results show that the maximum resolution of the THz image can reach 0.4mm with the THz wavelength of 118.8μm.the spot size of 1.8 mm and the step length of 0.25mm.

  3. 热释电红外探测器PZT晶片粘接质量控制%Quality Control of the PZT Wafer Bonding in Pyroelectric Infrared Detector

    Institute of Scientific and Technical Information of China (English)

    黄江平; 冯江敏; 王羽; 苏玉辉; 信思树; 李玉英

    2013-01-01

    热释电红外探测器芯片研制中,晶片粘接是芯片研制中的关键工艺之一。本文详细论述了粘接胶的选择依据及晶片粘接质量控制。确定了适合器件研制的粘接胶和粘胶工艺流程。对粘接中出现的问题及解决办法进行了讨论。研制出了完全能满足器件工艺要求的热释电探测器PZT晶片。%The wafer bonding is one of the key technologies in pyroelectric infrared detector chip development. This paper discusses the selection basis of bonding glue and quality control of wafer bonding in details, also determines the adhesive glue and the technology suitable for detector development, and analyzes the problems and the resolution method in the course of wafer bonding. The PZT wafer that can fully meet the technology requirements of pyroelectric detector is provided.

  4. 热释电探测器PZT晶片制备工艺研究%Study on Fabrication of Pyroelectric Detector PZT Wafer

    Institute of Scientific and Technical Information of China (English)

    黄江平; 王羽; 袁俊; 王学森; 郭雨航; 余瑞云

    2013-01-01

      This paper introduces the study of pyroelectric detector PZT wafer and the theory basis of choice of lead zirconate titanate(PZT)as sensitive element material. It also describes polishing and grinding theory. Factors affecting the polishing quality are analyzed in detail. The crystal surfaces polished by several different polishing liquid are analyzed by SEM, and SEM photos, surface roughness analysis and crystal surface morphology were gained. The best polishing material was determined. Through the combination of theory and practice, the pyroelectric detector wafer which could meet the technological requirements was got.%  介绍了热释电探测器PZT晶片制备工艺及选择锆钛酸铅(PZT)陶瓷材料制作敏感元的理论依据,阐述了晶片磨抛理论,对磨抛质量影响因素进行了细致分析。对比了几种抛光液对晶片表面的抛光效果,并进行了扫描电镜和表面粗糙度分析,得到了抛光后晶片表面的扫描电子显微镜(SEM)照片和晶片表面形态,确定了最佳抛光材料。通过理论和实践的结合,研制出了完全能满足器件工艺要求的热释电探测器晶片。

  5. Diagnosis of high-repetition-rate pulse laser with pyroelectric detector%基于热释电探测器的重频脉冲激光诊断

    Institute of Scientific and Technical Information of China (English)

    张磊; 邵碧波; 杨鹏翎; 王振宝; 闫燕

    2011-01-01

    Based on the working principles of a pyroelectric detector, the transient response of the detector to the pulse laser is researched. The model of pyroelectric detector is built, and the response in practical application is simulated according to the parameters of materials and structures. Signal process circuits which are suitable for a high-repetition-rate pulse laser are designed. Finally', a number of the repetition frequency laser radiation experiments on the pyroelectric detector are carried out. The experiments on frequency response and pulse width of the detector are completed, and the feasibility of applying the pyroelectric detector to the energy measurement of the high-repetition-rate and narrow pulse laser is verified.%摘以热释电探测器的工作原理为基础,研究了热释电探测器对重频脉冲激光的瞬态响应特性,建立了热释电探测器对单脉冲激光辐照响应的工作模型,分析了影响探测器频率特性的主要因素。根据材料和结构参数模拟计算了实际应用中的响应模型。设计了信号检测电路并对其进行计算仿事。完成了探测器的频率响应、脉宽响应等实验测量,验证了热释电探测器用于高重频、窄脉冲激光能量测量的可行性。

  6. 基于弛豫铁电单晶的红外热释电探测器研究%Pyroelectric infrared detector with relax-based ferroelectric single crystals

    Institute of Scientific and Technical Information of China (English)

    马学亮; 邵秀梅; 于月华; 李言谨

    2012-01-01

    研究了新型热释电材料驰豫铁电单晶(1-x)Pb(Mg1/3Nbz/a)O3-xPbTiO3(PMNT)的低损伤减薄工艺、电极成型和耦合封装等关键技术,研制了基于PMNT的单元热释电探测器。对减薄后约30um晶片材料性能的测试分析表明,部分样品的热释电系数约为9.0×10^-4C/m^2K,无明显衰减。采用低噪声电路提取单元探测器的微弱热释电电流,对所研制的单元探测器性能进行了测试分析。%PMNT single crystal is a novel pyroelectric material with superior pyroelectric performance. The fabrication of pyroelectirc infrared detectors based on PMNT single crystal, including lapping and polishing of the crystal, metallization and assembly,is carried out. The pyroelectric coefficient of PMNT chip with thickness of 30 um is measured and the results indicate that the pyroelectric coefficients of some chips are 9.0 × 10^-4 C/m2K, similar to that of the PMNT single crystal with thickness of 500 um. Weak pyroelectric current is extracted by a low-noise circuit, and the performance of the fabricated detector is tested and analyzed.

  7. Fabrication and Properties of the Multi-layer Pyroelectric Thin Film Infrared Detectors%复合热释电薄膜红外探测器的制备和性能测试

    Institute of Scientific and Technical Information of China (English)

    王三红; 吴小清; 姚熹

    2001-01-01

    为解决热释电薄膜红外探测器中的热损失问题,引入了复合热释电薄膜的概念.它利用多孔二氧化硅具有的低热导率特点,有效地减少了热量从热释电层向衬底的热扩散.利用溶胶-凝胶和金属有机物热分解等工艺制备的复合热释电薄膜红外探测器,在温度为420K、频率为10Hz时,电压响应率约为1400V/W,探测器的星探测率D(420,10,2)为9.3×107cm.Hz1/2/W.%In order to reduce the thermal dissipation from the pyroelectric film to the substrate and meet the needs of integration with silicon, the multi-layer pyroelectric thin film (MPTF) was introduced. It is mainly composed of pyroelectric sensitive layer-lead titanate, thermal isolating layer-porous silicon dioxide film, and the buffer layer-dense silicon dioxide film. A pyroelectric measuring system was built to measure the infrared response of the detector. The voltage response and the specific detectivity of the detector were also given.

  8. Electronic detection of ultra-heavy nuclei by pyroelectric materials

    Science.gov (United States)

    Simpson, J. A.; Tuzzolino, A. J.

    1983-01-01

    A recent prediction by the authors that pyroelectric materials may be capable of detecting ultra-heavy nuclei has been confirmed. Charge pulse signals from pyroelectric crystals of lithium tantalate exposed to Au ions and a pulsed beam of Ni-58 ions, and from pyroelectric films of polyvinylidene fluoride exposed to a pulsed beam of Ni-58 ions, have been measured using pulse electronics with time constants in the microsecond range. These studies show that pyroelectric materials, in general, are capable of detecting incident nuclei having very high mass and charge. In particular, pyroelectric polymers, such as polyvinylidene fluoride, are readily available as inexpensive flexible films. This new class of charged particle detector could eventually find applications in large-area experiments for detection and trajectory determination of low-energy, ultra-heavy nuclei.

  9. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Directory of Open Access Journals (Sweden)

    Gang Bai

    2015-09-01

    Full Text Available A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  10. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun; Guo, Yanyan; Li, Wei [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Yan, Xiaobing [College of Electronic and information Engineering, Hebei University, Baoding 071002 (China)

    2015-09-15

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba{sub 0.67}Sr{sub 0.33}TiO{sub 3} above T{sub c} similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  11. Application of LiTaO3 pyroelectric crystal for pulsed neutron detection

    Science.gov (United States)

    Liang, W. F.; Lu, Y.; Wu, J.; Gao, H.; Li, M.

    2016-08-01

    The feasibility of a LiTaO3 pyroelectric crystal for pulsed neutron detection has been studied. The detector consists of a slice of electroded Z-cut LiTaO3 pyroelectric crystal, and no additional neutron converter is required owing to the Li contained in the crystal. The slight temperature increase caused by neutron radiation will lead to the release of bound charges and will give rise to a pyroelectric signal. The response of it has been studied both theoretically and experimentally. Our preliminary experiment on the CFBR-II reactor suggests that the LiTaO3 pyroelectric detector is promising for high intensity neutron - pulse measurement.

  12. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  13. Pyroelectric Quantum Well Energy Harvesters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the investigation of pyroelectric energy harvesters with enhanced efficiencies through quantum wells induced by a multilayer design.  Pyroelectric...

  14. Pyroelectric sensor arrays for detection and thermal imaging

    Science.gov (United States)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  15. Dynamics of pyroelectric accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  16. An integrated charge amplifier for a pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Armitage, A.; Binnie, T.D.; Regtien, P.P.L.; Sarro, P.M.

    1997-01-01

    This paper presents an integrated charge amplifier that measures a small charge. This charge is generated by a pyroelectric detector. The charge amplifier consists of a single-stage c-annon source configuration with a passive feedback network. The charge amplifier has a bandwidth of 700 kHz and an o

  17. Radiation generation with pyroelectric crystals

    Science.gov (United States)

    Geuther, Jeffrey A.

    2007-12-01

    Pyroelectric crystals heated or cooled in vacuum have been used to produce low-energy x-ray devices since 1992. In the course of this thesis, experiments with lithium tantalate (LiTaO3) and lithium niobate (LiNbO 3) were performed to extend the usefulness of pyroelectric radiation sources. Paired-crystal x-ray generators were shown to double the x-ray energy and yield, and allow the k-shell fluorescence of any metal up to thorium (Z = 90). It was demonstrated that the electron emission from a single pyroelectric crystal could be transmitted through a beryllium window to allow the electron beam to be extracted from the vacuum chamber. The electron emission current and energy were measured, and a mathematical model was developed to predict emission current and energy. Magnetic deflection experiments were used to verify that the electric field produced by the pyroelectric effect in lithium tantalate was sufficient to ionize gas. Finally, a paired-crystal system was used to ionize a deuterium fill gas near a metallic tip mounted to a pyroelectric crystal, and accelerate these ions into a deuterated target mounted to the opposing crystal. This technique was used to produce a compact, low-power fusion neutron source driven by pyroelectric crystals.

  18. Design of Readout Circuit for Pyroelectric Detector Based on Relaxor Ferroelectric Single Crystals%弛豫铁电单晶热释电探测器读出电路的设计

    Institute of Scientific and Technical Information of China (English)

    王将; 景为平

    2011-01-01

    Relaxor-based ferroelectric single crystals, such as (1- x)Pb(Mg1/3Nb2/3 )O3-xPbTiO3 (PMN-xPT, or PMNT) single crystals, exhibit large pyroelectric response, Iow thermal diffusivity and high temperature stability.To fabricate high performance infrared detectors with relaxor-based single crystals, the related readout circuit is investigated to increase signal-to-noise ratio, and 8 × 1 CMOS readout circuit is fabricated to gain very weak current.%以(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-xPT或PMNT)(PMN-xPT,或PMN-PT)为代表的弛豫铁电单晶具有非常高的热释电系数、比较低的热扩散系数、比较稳定的化学性能,是一种综合性能优异的热释电材料.利用弛豫铁电单晶可以制备出高性能的红外光传感器,针对用这种新型热释电材料制成的红外光传感器,研究了相关的读出电路,探索了抑制读出电路噪声的方法,研制出了8通道的微弱电流读取电路.

  19. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    Science.gov (United States)

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  20. Application of LiTaO{sub 3} pyroelectric crystal for pulsed neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Liang, W.F., E-mail: liang_wen_feng@163.com [CAEP Key Laboratory of Neutron Physics, Mianyang 621900 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Lu, Y.; Wu, J.; Gao, H.; Li, M. [CAEP Key Laboratory of Neutron Physics, Mianyang 621900 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-08-11

    The feasibility of a LiTaO{sub 3} pyroelectric crystal for pulsed neutron detection has been studied. The detector consists of a slice of electroded Z-cut LiTaO{sub 3} pyroelectric crystal, and no additional neutron converter is required owing to the Li contained in the crystal. The slight temperature increase caused by neutron radiation will lead to the release of bound charges and will give rise to a pyroelectric signal. The response of it has been studied both theoretically and experimentally. Our preliminary experiment on the CFBR-II reactor suggests that the LiTaO{sub 3} pyroelectric detector is promising for high intensity neutron – pulse measurement. - Highlights: • LiTaO{sub 3} pyroelectric neutron detector can be used with no additional neutron converter. • Relationship between the pulsed neutron field and the voltage signal was obtained. • Experiment was carried out to test the response of LiTaO{sub 3} detector. • Feasibility of LiTaO{sub 3} for intense neutron pulse measurement was confirmed.

  1. MEMS based pyroelectric thermal energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  2. A Strip Cell in Pyroelectric Devices

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2016-03-01

    Full Text Available The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively.

  3. Fusion of Multiple Pyroelectric Characteristics for Human Body Identification

    Directory of Open Access Journals (Sweden)

    Wanchun Zhou

    2014-12-01

    Full Text Available Due to instability and poor identification ability of single pyroelectric infrared (PIR detector for human target identification, this paper proposes a new approach to fuse the information collected from multiple PIR sensors for human identification. Firstly, Fast Fourier Transform (FFT, Short Time Fourier Transform (STFT, Wavelet Transform (WT and Wavelet Packet Transform (WPT are adopted to extract features of the human body, which can be achieved by single PIR sensor. Then, we apply Principal Component Analysis (PCA and Support Vector Machine (SVM to reduce the characteristic dimensions and to classify the human targets, respectively. Finally, Fuzzy Comprehensive Evaluation (FCE is utilized to fuse recognition results from multiple PIR sensors to finalize human identification. The pyroelectric characteristics under scenarios with different people and/or different paths are analyzed by various experiments, and the recognition results with/without fusion procedure are also shown and compared. The experimental results demonstrate our scheme has improved efficiency for human identification.

  4. Ferroelectric ceramics in a pyroelectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Belgorod State University, Belgorod 308015 (Russian Federation); Miroshnik, V. S.; Volkov, V. I. [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Oleinik, A. N. [Belgorod State University, Belgorod 308015 (Russian Federation)

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  5. Study on Pyroelectric Harvesters with Various Geometry

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2015-08-01

    Full Text Available Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance.

  6. Pyroelectric Harvesters for Generating Cyclic Energy

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-04-01

    Full Text Available Pyroelectric energy conversion is a novel energy process which directly transforms waste heat energy from cyclic heating into electricity via the pyroelectric effect. Application of a periodic temperature profile to pyroelectric cells is necessary to achieve temperature variation rates for generating an electrical output. The critical consideration in the periodic temperature profile is the frequency or work cycle which is related to the properties and dimensions of the air layer; radiation power and material properties, as well as the dimensions and structure of the pyroelectric cells. This article aims to optimize pyroelectric harvesters by matching all these requirements. The optimal induced charge per period increases about 157% and the efficient period band decreases about 77%, when the thickness of the PZT cell decreases from 200 μm to 50 μm, about a 75% reduction. Moreover, when using the thinner PZT cell for harvesting the pyroelectric energy it is not easy to focus on a narrow band with the efficient period. However, the optimal output voltage and stored energy per period decrease about 50% and 74%, respectively, because the electrical capacitance of the 50 μm thick pyroelectric cell is about four times greater than that of the 200 μm thick pyroelectric cell. In addition, an experiment is used to verify that the work cycle to be able to critically affect the efficiency of PZT pyroelectric harvesters. Periods in the range between 3.6 s and 12.2 s are useful for harvesting thermal cyclic energy by pyroelectricity. The optimal frequency or work cycle can be applied in the design of a rotating shutter in order to control the heated and unheated periods of the pyroelectric cells to further enhance the amount of stored energy.

  7. Pyroelectric Energy Harvesting: Model and Experiments

    Science.gov (United States)

    2016-05-01

    characterization of the pyroelectric sample was performed with a Radiant Precision Premier II Ferroelectric Tester. The Radiant Vision software...enables many electrical measurements including ferroelectric hysteresis loops, leakage, and capacitance tests. The Radiant system uses a current...conversion cycles. 5.1 Static Testing The pyroelectric sample was tested under static temperature conditions using the heater element and a Radiant

  8. Pyroelectric energy conversion: optimization principles.

    Science.gov (United States)

    Sebald, Gael; Lefeuvre, Elie; Guyomar, Daniel

    2008-03-01

    In the framework of microgenerators, we present in this paper the key points for energy harvesting from temperature using ferroelectric materials. Thermoelectric devices profit from temperature spatial gradients, whereas ferroelectric materials require temporal fluctuation of temperature, thus leading to different applications targets. Ferroelectric materials may harvest perfectly the available thermal energy whatever the materials properties (limited by Carnot conversion efficiency) whereas thermoelectric material's efficiency is limited by materials properties (ZT figure of merit). However, it is shown that the necessary electric fields for Carnot cycles are far beyond the breakdown limit of bulk ferroelectric materials. Thin films may be an excellent solution for rising up to ultra-high electric fields and outstanding efficiency. Different thermodynamic cycles are presented in the paper: principles, advantages, and drawbacks. Using the Carnot cycle, the harvested energy would be independent of materials properties. However, using more realistic cycles, the energy conversion effectiveness remains dependent on the materials properties as discussed in the paper. A particular coupling factor is defined to quantify and check the effectiveness of pyroelectric energy harvesting. It is defined similarly to an electromechanical coupling factor as k2=p2theta0/(epsilontheta33cE), where p, theta0, epsilontheta33, cE are pyroelectric coefficient, maximum working temperature, dielectric permittivity, and specific heat, respectively. The importance of the electrothermal coupling factor is shown and discussed as an energy harvesting figure of merit. It gives the effectiveness of all techniques of energy harvesting (except the Carnot cycle). It is finally shown that we could reach very high efficiency using 1110.75Pb(Mg1/3Nb2/3)-0.25PbTiO3 single crystals and synchronized switch harvesting on inductor (almost 50% of Carnot efficiency). Finally, practical implementation key

  9. The pyroelectric constant and dielectric coefficient measurement of pyroelectric thin films

    CERN Document Server

    Altintas, E

    1998-01-01

    Pyroelectric coefficient measurements were made in various temperature for poled and unpoled form of PVDF which is pyroelectric material. For these experiments the quasi-static techniques was used. PVDF samples were poled in various electric strengths and relation between poling field strength and pyroelectric coefficient was investigated. It was observed that as poling field strength was increased, the pyroelectric coefficient increased as well. The other study was the effect of poling temperature on pyroelectricity. The best result was obtained when PVDF sample was poled at 340 K. This temperature value is about the Curie temperature of PVDF is and given in the literature. For poled and unpoled samples, there was an increase in pyroelectric coefficient with the increase of measurement temperature up to T sub c. The dielectric permittivity and dielectric loss measurement of PVDF which is a semi-crystalline polymer was taken in the 125-375 K temperature and 100-20 khz frequency interval. The measurements show...

  10. Wind-driven pyroelectric energy harvesting device

    Science.gov (United States)

    Xie, Mengying; Zabek, Daniel; Bowen, Chris; Abdelmageed, Mostafa; Arafa, Mustafa

    2016-12-01

    Pyroelectric materials have recently received attention for harvesting waste heat owing to their potential to convert temperature fluctuations into useful electrical energy. One of the main challenges in designing pyroelectric energy harvesters is to provide a means to induce a temporal heat variation in a pyroelectric material autonomously from a steady heat source. To address this issue, we propose a new form of wind-driven pyroelectric energy harvester, in which a propeller is set in rotational motion by an incoming wind stream. The speed of the propeller’s shaft is reduced by a gearbox to drive a slider-crank mechanism, in which a pyroelectric material is placed on the slider. Thermal cycling is obtained as the reciprocating slider moves the pyroelectric material across alternative hot and cold zones created by a stationary heat lamp and ambient temperature, respectively. The open-circuit voltage and closed-circuit current are investigated in the time domain at various wind speeds. The device was experimentally tested under wind speeds ranging from 1.1 to 1.6 m s-1 and charged an external 100 nF capacitor through a signal conditioning circuit to demonstrate its effectiveness for energy harvesting. Unlike conventional wind turbines, the energy harvested by the pyroelectric material is decoupled from the wind flow and no mechanical power is drawn from the transmission; hence the system can operate at low wind speeds (<2 m s-1).

  11. Virtual experiment of pyroelectric fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad Mehdi, E-mail: mnasseri@aeoi.org.ir

    2015-11-01

    The virtual experiment of pyroelectric fusion was conducted by Geant4 simulator. Despite the limitations of the code for simulating the pyroelectric fusion experiment precisely, the following interesting results were obtained. Two crystals were separated by a certain distance. A constant electric field with varying intensities was applied between the crystals. As initial particles, deuterium ions were emitted to deuterated polypropylene (CD{sub 2}). This virtual experiment showed that the number of ions that hit the target, for different distances between the crystals, increases with the increase of the intensity of the electric field; however, further increase of the electric field results in the reduction of the number of hit ions, which attains a constant value of about 57% of the initial number of ions. For a (D, D) fusion reaction to occur, the distance between the two crystals should be <1.5 cm and for a (D, T) fusion reaction to occur, this distance could be up to 2 cm. The energy spectra of ions for low and high electric fields were narrow and long and wide and short, respectively.

  12. Spectral responsivity calibrations of two types of pyroelectric radiometers using three different methods

    Science.gov (United States)

    Zeng, J.; Eppeldauer, G. P.; Hanssen, L. M.; Podobedov, V. B.

    2012-06-01

    Spectral responsivity calibrations of two different types of pyroelectric radiometers have been made in the infrared region up to 14 μm in power mode using three different calibration facilities at NIST. One pyroelectric radiometer is a temperature-controlled low noise-equivalent-power (NEP) single-element pyroelectric radiometer with an active area of 5 mm in diameter. The other radiometer is a prototype using the same type of pyroeletric detector with dome-input optics, which was designed to increase absorptance and to minimize spectral structures to obtain a constant spectral responsivity. Three calibration facilities at NIST were used to conduct direct and indirect responsivity calibrations tied to absolute scales in the infrared spectral regime. We report the calibration results for the single-element pyroelectric radiometer using a new Infrared Spectral Comparator Facility (IRSCF) for direct calibration. Also, a combined method using the Fourier Transform Infrared Spectrophotometry (FTIS) facility and single wavelength laser tie-points are described to calibrated standard detectors with an indirect approach. For the dome-input pyroelectric radiometer, the results obtained from another direct calibration method using a circular variable filter (CVF) spectrometer and the FTIS are also presented. The inter-comparison of different calibration methods enables us to improve the responsivity uncertainty performed by the different facilities. For both radiometers, consistent results of the spectral power responsivity have been obtained applying different methods from 1.5 μm to 14 μm with responsivity uncertainties between 1 % and 2 % (k = 2). Relevant characterization results, such as spatial uniformity, linearity, and angular dependence of responsivity, are shown. Validation of the spectral responsivity calibrations, uncertainty sources, and improvements for each method will also be discussed.

  13. Comparative Performance of PLZT and PVDF Pyroelectric Sensors Used to the Thermal Characterization of Liquid Samples

    Directory of Open Access Journals (Sweden)

    Gemima Lara Hernandez

    2013-01-01

    Full Text Available Among the photothermal methods, the photopyroelectric (PPE technique is a suitable method to determine thermal properties of different kinds of samples ranging from solids to liquids and gases. Polyvinylidene difluoride (PVDF is one of the most frequently used pyroelectric sensors in PPE technique but has the disadvantage that it can be easily deformed by the sample weight. This deformation could add a piezoelectric effect to the thermal parameters assessment; also PVDF has a narrow temperature operation range when compared with ceramic pyroelectric sensors. In order to minimize possible piezoelectric effects due to sensor deformation, a ceramic of lanthanum modified lead zirconate (PLZT was used as pyroelectric sensor in the PPE technique. Then, thermal diffusivity of some liquid samples was measured, by using the PPE configuration that denominated the thermal wave resonator cavity (TWRC, with a PLZT ceramic as pyroelectric detector. The performance obtained with the proposed ceramic in the TWRC configuration was compared with that obtained with PVDF by using the same configuration.

  14. Real-time, continuous-wave terahertz imaging by a pyroelectric camera

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Shuangchen Ruan; Min Zhang

    2008-01-01

    Real-time, continuous-wave terahertz (THz) imaging is demonstrated. A 1.89-THz optically-pumped farinfrared laser is used as the illumination source, and a 124 × 124 element room-temperature pyroelectric camera is adopted as the detector. With this setup, THz images through various wrapping materials are shown. The results show that this imaging system has the potential applications in real-time mail and security inspection.

  15. Energy harvesting with piezoelectric and pyroelectric materials

    CERN Document Server

    Muensit, Nantakan

    2011-01-01

    The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technolo

  16. The pyroelectric vidicon - Ten years on

    Science.gov (United States)

    Burgess, D.; Nixon, R.; Ritchie, J.

    1986-01-01

    A technology development status evaluation is presented for British high performance pyroelectric vidicon, IR-sensitive TV cameras, the first tubes and cameras of which were demonstrated over a decade ago. Attention is given to the improvements that had to be instituted in camera design in order to obtain optimum performance from the vidicon tubes. A rotating disk chopper and flicker processing were incorporated into the camera's design. Pyroelectric cameras have been extensively applied in industry and the police and military services for fire detection and in rescue operations.

  17. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Denoising Using Blind Source Separation for Pyroelectric Sensors

    Directory of Open Access Journals (Sweden)

    Huez Regis

    2001-01-01

    Full Text Available This paper deals with a process of denoising based on a Blind Source Separation (BSS method. This technique is inserted in an experimental device of nondestructive testing. Its excitation is a laser beam and its detectors are pyroelectric sensors. The latter are sensitive to the temperature. As they are also piezoelectric, they are particularly sensitive to the environmental noise. Therefore, it is necessary to denoise them. With this aim in view, a technique of blind source separation is implemented. One source corresponds to the incidental beam and the other sources are various noise. A judicious experimental device was designed in the laboratory. It fits to the requirements of the BSS technique, and it allows indeed a restoration of the incident signal.

  19. Pyroelectric Charge Release in Rhombohedral PZT

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    A new experimental set-up controlled by computer has been made to measure the pyroelectric charge of ferroelectric materials with a relatively high conductivity at slow rates of temperature variation. It allowed us to obtain the polarisation vs. temperature behaviour of PZT with various compositions

  20. Multi-Frequency Band Pyroelectric Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-11-01

    Full Text Available A methodology is proposed for designing a multi-frequency band pyroelectric sensor which can detect subjects with various frequencies or velocities. A structure with dual pyroelectric layers, consisting of a thinner sputtered ZnO layer and a thicker aerosol ZnO layer, proved helpful in the development of the proposed sensor. The thinner sputtered ZnO layer with a small thermal capacity and a rapid response accomplishes a high-frequency sensing task, while the thicker aerosol ZnO layer with a large thermal capacity and a tardy response is responsible for low-frequency sensing tasks. A multi-frequency band pyroelectric sensor is successfully designed, analyzed and fabricated in the present study. The range of the multi-frequency sensing can be estimated by means of the proposed design and analysis to match the thicknesses of the sputtered and the aerosol ZnO layers. The fabricated multi-frequency band pyroelectric sensor with a 1 μm thick sputtered ZnO layer and a 20 μm thick aerosol ZnO layer can sense a frequency band from 4000 to 40,000 Hz without tardy response and low voltage responsivity.

  1. Pyroelectric nanogenerators for harvesting thermoelectric energy.

    Science.gov (United States)

    Yang, Ya; Guo, Wenxi; Pradel, Ken C; Zhu, Guang; Zhou, Yusheng; Zhang, Yan; Hu, Youfan; Lin, Long; Wang, Zhong Lin

    2012-06-13

    Harvesting thermoelectric energy mainly relies on the Seebeck effect that utilizes a temperature difference between two ends of the device for driving the diffusion of charge carriers. However, in an environment that the temperature is spatially uniform without a gradient, the pyroelectric effect has to be the choice, which is based on the spontaneous polarization in certain anisotropic solids due to a time-dependent temperature variation. Using this effect, we experimentally demonstrate the first application of pyroelectric ZnO nanowire arrays for converting heat energy into electricity. The coupling of the pyroelectric and semiconducting properties in ZnO creates a polarization electric field and charge separation along the ZnO nanowire as a result of the time-dependent change in temperature. The fabricated nanogenerator has a good stability, and the characteristic coefficient of heat flow conversion into electricity is estimated to be ∼0.05-0.08 Vm(2)/W. Our study has the potential of using pyroelectric nanowires to convert wasted energy into electricity for powering nanodevices.

  2. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  3. Possible Explanation For Multiple Electron Emission From Pyroelectric Crystals In Dilute Gases

    Science.gov (United States)

    Shafroth, Stephen; Kaleko, David; Brownridge, James

    2009-05-01

    Pyroelectric crystals such as LiNbO3 when cut perpendicular to their z axes and when heated or cooled produce strong electric fields at their surfaces. If a 4 mm dia x 10 mm crystal is immersed in a dilute gas it acts as an accelerator of electrons when the surface is negative and positive ions when the surface is positive. In both cases a focused beam results but in the electron case multiple electron peaks are observed if they are detected through a pin hole with a surface barrier detector(1). In this poster we give evidence for an explanation of this effect. (1) Brownridge, J. D., Shafroth, S. M., Trott, D. W., Stoner, B. R., and Hooke, W. M., Observation of multiple nearly monoenergetic electron production by heated pyroelectric crystals in ambient gas, Appl. Phys. Lett., 78, 1158 (2001)

  4. Improvement of Pyroelectric Cells for Thermal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Jing-Chih Ciou

    2012-01-01

    Full Text Available This study proposes trenching piezoelectric (PZT material in a thicker PZT pyroelectric cell to improve the temperature variation rate to enhance the efficiency of thermal energy-harvesting conversion by pyroelectricity. A thicker pyroelectric cell is beneficial in generating electricity pyroelectrically, but it hinders rapid temperature variations. Therefore, the PZT sheet was fabricated to produce deeper trenches to cause lateral temperature gradients induced by the trenched electrode, enhancing the temperature variation rate under homogeneous heat irradiation. When the trenched electrode type with an electrode width of 200 μm and a cutting depth of 150 μm was used to fabricate a PZT pyroelectric cell with a 200 μm thick PZT sheet, the temperature variation rate was improved by about 55%. Therefore, the trenched electrode design did indeed enhance the temperature variation rate and the efficiency of pyroelectric energy converters.

  5. Radiatively heated high voltage pyroelectric crystal pulser

    Energy Technology Data Exchange (ETDEWEB)

    Antolak, A.J., E-mail: antolak@sandia.gov [Sandia National Laboratories, Livermore, CA 94550 (United States); Chen, A.X. [Sandia National Laboratories, Livermore, CA 94550 (United States); Leung, K.-N. [Sandia National Laboratories, Livermore, CA 94550 (United States); Nuclear Engineering Department, University of California, Berkeley (United States); Morse, D.H.; Raber, T.N. [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2014-01-21

    Thin lithium tantalate pyroelectric crystals in a multi-stage pulser were heated by quartz lamps during their charging phase to generate high voltage pulses. The charging voltage was determined empirically based on the measured breakdown voltage in air and verified by the induced breakdown voltage of an external high voltage power supply. A four-stage pyroelectric crystal device generated pulse discharges of up to 86 kV using both quartz lamps (radiative) and thermoelectric (conductive) heating. Approximately 50 mJ of electrical energy was harvested from the crystals when radiatively heated in air, and up to 720 mJ was produced when the crystals were submerged in a dielectric fluid. It is anticipated that joule-level pulse discharges could be obtained by employing additional stages and optimizing the heating configuration.

  6. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator.

    Science.gov (United States)

    Lee, Ju-Hyuck; Lee, Keun Young; Gupta, Manoj Kumar; Kim, Tae Yun; Lee, Dae-Yeong; Oh, Junho; Ryu, Changkook; Yoo, Won Jong; Kang, Chong-Yun; Yoon, Seok-Jin; Yoo, Ji-Beom; Kim, Sang-Woo

    2014-02-01

    A highly stretchable hybrid nanogenerator has been developed using a micro-patterned piezoelectric polymer P(VDF-TrFE), PDMS-CNT composite, and graphene nanosheets. Mechanical and thermal energies are simultaneously harvested from a single cell of the device. The hybrid nanogenerator exhibits high robustness behavior even after 30% stretching and generates very stable piezoelectric and pyroelectric power outputs due to micro-pattern designing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self Assembly and Pyroelectric Poling for Organics

    Science.gov (United States)

    2015-07-06

    ozone or nitrogen oxides) and energetic species from corona discharge . These problems can strongly inhibit the efficient poling and large-scale...respectively. In this idealized model , a modest temperature change (10 to 50 °C) will lead to a considerably large electrostatic field in a thin film dielectric...measurement); (e) contact poling. 4. Systematically analyze electrostatics models to quantify electric field generation from commonly used pyroelectric

  8. Graphene-based, mid-infrared, room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance

    CERN Document Server

    Sassi, U; Nanot, S; Bruna, M; Borini, S; Milana, S; De Fazio, D; Zhuang, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A

    2016-01-01

    Graphene is ideally suited for photonic and optoelectronic applications, with a variety of photodetectors (PDs) in the visible, near-infrared (NIR), and THz reported to date, as well as thermal detectors in the mid-infrared (MIR). Here, we present a room temperature-MIR-PD where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene, leading to a temperature coefficient of resistance up to 900%/K, two orders of magnitude higher than the state of the art, for a device area of 300x300um2. This is achieved by fabricating a floating metallic structure that concentrates the charge generated by the pyroelectric substrate on the top-gate capacitor of the graphene channel. This allows us to resolve temperature variations down to 15umK at 1 Hz, paving the way for a new generation of detectors for MIR imaging and spectroscopy

  9. The Electronic Structure and Secondary Pyroelectric Properties of Lithium Tetraborate

    Directory of Open Access Journals (Sweden)

    Peter A. Dowben

    2010-09-01

    Full Text Available We review the pyroelectric properties and electronic structure of Li2B4O7(110 and Li2B4O7(100 surfaces. There is evidence for a pyroelectric current along the [110] direction of stoichiometric Li2B4O7 so that the pyroelectric coefficient is nonzero but roughly 103 smaller than along the [001] direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the [110] direction can be correlated with anomalies in the elastic stiffness  contributing to the concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that surface charging is dependent on crystal orientation and doping, as well as temperature.

  10. The off-axis pyroelectric effect observed for lithium tetraborate

    Energy Technology Data Exchange (ETDEWEB)

    Ketsman, I. [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Wooten, D. [Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433-7765 (United States); Xiao, Jie [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Losovyj, Ya.B. [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Burak, Ya.V.; Adamiv, V.T. [Institute of Physical Optics, 23 Dragomanov Street, Lviv 79005 (Ukraine); Sokolov, A. [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Petrosky, J.; McClory, J. [Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433-7765 (United States); Dowben, P.A., E-mail: pdowben@unl.ed [Dept. of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States)

    2010-01-25

    We find a pyroelectric current along the <110> direction of stoichiometric Li{sub 2}B{sub 4}O{sub 7} so that the pyroelectric coefficient is nonzero but roughly 10{sup -3} smaller than along the <001> direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the <110> direction can be correlated with anomalies in the elastic stiffness C{sub 33}{sup D} contributing to concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that an inverse piezoelectric effect occurs at the (110) surface but not the (100) surface. Both effects along the <110> direction or at the (110) surface are distinct the conventional as a bulk pyroelectric effect.

  11. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    Science.gov (United States)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  12. Study of pyroelectric activity of PZT/PVDF-HFP composite

    Directory of Open Access Journals (Sweden)

    Luiz Francisco Malmonge

    2003-12-01

    Full Text Available Flexible, free-standing piezo and pyroelectric composite with 0 to 3 connectivity was made up from Lead Zirconate Titanate (PZT powder and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP copolymer. The pyroelectric and the piezoelectric longitudinal (d33 coefficients were measured. A 50/50 vol.% PZT/PVDF-HFP composite resulted in piezo and pyroelectric coefficients of d33 = 25.0 pC/N and p = 4.5 × 10-4 C/m²K at 70 °C, respectively. Analysis of the complex permittivity in a wide range of frequency was carried out indicating lower permittivity of the composite in comparison with a permittivity of the PZT ceramic. The low value of the permittivity gives a high pyroelectric figure of merit indicating that this material can be used to build a temperature sensor in spite of the lower pyroelectric coefficient compared with PZT.

  13. Enhancement of pyroelectric signal by continuous ultraviolet illumination of epitaxial Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Pintilie, L.; Iuga, A. [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 077125 (Romania); Botea, M. [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 077125 (Romania); Faculty of Physics, University of Bucharest, Magurele 077125 (Romania)

    2014-09-29

    The pyroelectric signal generated by an epitaxial Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film can be enhanced by continuous illumination with ultraviolet (UV) light. The measured signal increases more than 2 times at low modulation frequencies of the incident infrared (IR) radiation (∼10 Hz) and at wavelengths where the short-circuit photocurrent presents the maximum value (∼280–300 nm). The tentative explanation is that the changes in polarization induced by the temperature variation under modulated IR illumination are generating a variable internal electric field, able to collect the photogenerated carriers produced under continuous UV illumination leading to an additional signal in phase with the pyroelectric one. This finding could be exploited for designing pyroelectric detectors with enhanced characteristics by combining both UV and IR responses.

  14. Pyroelectric electron emissions and domain inversion of LiNbO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Wook [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of)]. E-mail: Peterkim@ucsd.edu; Bourim, E.M. [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Yoo, In K. [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600, Korea (Korea)

    2004-10-30

    We investigated the electron emissions from a congruent LiNbO{sub 3} single crystal with variation in temperature. When there was a small gap between the crystal and detector (<2 mm), we observed abrupt drops in the emission current and polarization domain inversion of the crystal. The current burst was distributed in tree-like patterns that suggested plasma generation. A sufficient gap and a crystal with a high coercive field appear to be factors that allow reproducible electron emissions from pyroelectric materials.

  15. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    Science.gov (United States)

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  16. Secondary pyroelectric and electrocaloric effects in thin films

    Science.gov (United States)

    Tong, Trong

    The pyroelectric and electrocaloric effect play an important role in many applications such as energy harvesting and solid-state cooling. This dissertation focuses on the characterization of the pyroelectric and electric coefficient in thin film using novel laser-based technique. The implementation of the systems is described in detail, and heat transport models are developed to interpret the experimental data. The temperature oscillation caused by the modulated laser power or the entropy change are calculated over a wide range of the modulation frequency. These techniques are applied to characterize Pb(ZrTi)O3 and Ba(SrTi)O3 films growth by Pulse Laser Deposition (PLD) and sol-gel method. The secondary pyroelectric and electrocaloric contributions caused by clamping substrate effect are discussed. A wide range frequency analysis is applied to extract the secondary pyroelectric coefficient. The secondary pyroelectric effect is found to have the same dependence on applied field as the pyroelectric coefficient and is approximately 15% and 20% of the total response for PbZr 0.2Ti0.8O3 and Ba0.6Sr0.4TiO 3 grown by PLD, respectively. By comparing the pyroelectric and electrocaloric coefficient measured on the same devices, our result shows the secondary contribution to the electrocaloric coefficient has the opposite sign as the primary effect and therefore reduces the overall entropy change of Pb(ZrTi)O3 in an electric field. Finally, the sol-gel method is used to produce Pb(ZrTi)O 3 thin films. The sample fabrication is described in detail along with physical characterization and the pyroelectric measurement. Sol-gel PZT films are perovskite phase with (100) orientation. The pyroelectric coefficient is measured to be 135 microC m-2 K-1.

  17. Study of pyroelectric activity of PZT/PVDF-HFP composite

    OpenAIRE

    Luiz Francisco Malmonge; José Antonio Malmonge; Walter Katsumi Sakamoto

    2003-01-01

    Flexible, free-standing piezo and pyroelectric composite with 0 to 3 connectivity was made up from Lead Zirconate Titanate (PZT) powder and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) copolymer. The pyroelectric and the piezoelectric longitudinal (d33) coefficients were measured. A 50/50 vol.% PZT/PVDF-HFP composite resulted in piezo and pyroelectric coefficients of d33 = 25.0 pC/N and p = 4.5 × 10-4 C/m²K at 70 °C, respectively. Analysis of the complex permittivity in a wide ran...

  18. Piezoelectric and pyroelectric effects of a crystalline polymer

    Science.gov (United States)

    Kundu, Nikhil K.; Kundu, Malay

    1990-01-01

    Polyvinylidene flouride (PVDF) is a crystalline polymer to both piezoelectric and pyroelectric nature. Piezoelectricity produces electrical signals when mechanically deformed, and pyroelectricity is the electrical polarization induced by thermal absorption in crystals. To demonstrate the piezoelectric effect PVDF is subjected to impact loads which produce electrical charges proportional to mechanical stresses. A heat source was used to demonstrate the pyroelectric nature of PVDF. The rise in temperature due to absorbed energy by the polymer produces electrical output. The qualitative test results obtained are graphically reproduced.

  19. A Novel Compact Pyroelectric X-Ray and Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Yaron Danon

    2007-08-31

    This research was focused on the utilization of pyroelectric crystals for generation of radiation. When in constant temperature pyroelectric crystals are spontaneously polarized. The polarization causes internal charges to accumulate near the crystal faces and masking charges from the environment are attracted to the crystal faces and neutralize the charge. When a pyroelectric crystal is heated or cooled it becomes depolarized and the surface charges become available. If the heating or cooling is done on a crystal in vacuum where no masking charges are available, the crystal becomes a charged capacitor and because of its small capacitance large potential develops across the faces of the crystal.

  20. Therapeutic dose from a pyroelectric electron accelerator.

    Science.gov (United States)

    Fullem, T Z; Fazel, K C; Geuther, J A; Danon, Y

    2009-11-01

    Simple heating of pyroelectric crystals has been used as the basis for compact sources of X rays, electrons, ions and neutrons. We report on the evaluation of the feasibility of using a portable pyroelectric electron accelerator to deliver a therapeutic dose to tissue. Such a device could be mass produced as a handheld, battery-powered instrument. Experiments were conducted with several crystal sizes in which the crystal was heated inside a vacuum chamber and the emitted electrons were allowed to penetrate a thin beryllium window into the surrounding air. A Faraday cup was used to count the number of electrons that exited the window. The energy of these electrons was determined by measuring the energy spectrum of the X rays that resulted from the electron interactions with the Faraday cup. Based on these measurements, the dose that this source could deliver to tissue was calculated using Monte Carlo calculations. It was found that 10(13) electrons with a peak energy of the order of 100 keV were emitted from the beryllium window and could deliver a dose of 1664 Gy to a 2-cm-diameter, 110-microm-deep region of tissue located 1.5 cm from the window with air between the window and the tissue. This dose level is high enough to consider this technology for medical applications in which shallow energy deposition is beneficial.

  1. Invited Review Article: Practical guide for pyroelectric measurementsa)

    Science.gov (United States)

    Lubomirsky, Igor; Stafsudd, Oscar

    2012-05-01

    The characterization of pyroelectric materials is a necessary stage in the design of a large variety of pyroelectric-based devices ranging from intrusion alarms to IR cameras. The sample configurations and measurement techniques currently in use vary widely and require careful attention in order to avoid artifacts. In this review, we provide a practical guide to the measurement of the pyroelectric coefficient, paying particular attention to the new instrumental possibilities (fast sinusoidally modulated light sources, low impedance broad band current meters, and fast averaging oscilloscopes) that have become available during the last decade. Techniques applicable to bulk specimens, substrate-supported films, and self-supported films are described in detail. The most commonly used procedures are classified according to the type of thermal excitation: continuous ramping, heat pulse, and continuous oscillation. In the appendices, we describe the practical realization of these measurement schemes and provide mathematical descriptions for the extraction of the pyroelectric coefficient from the measured data.

  2. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals

    Directory of Open Access Journals (Sweden)

    Jiaduo Zhao

    2016-01-01

    Full Text Available In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms.

  3. Design of a VDF/TrFE Copolymer-on-silicon pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Regtien, P.P.L.

    1994-01-01

    This paper presents a design of a VDF/TrFE copolymer-on-silicon pyroelectric sensor. For an optimal design of a VDF/TrFE-on-silicon pyroelectric sensor, the one-dimensional diffusion equation is solved for the pyroelectric multilayer structure. The output current of the sensor is calculated. Improve

  4. Dielectric and Pyroelectric Properties of La- and Pr-Modified Tungsten-Bronze Ferroelectrics

    Science.gov (United States)

    Parida, B. N.; Das, Piyush R.; Padhee, R.; Choudhary, R. N. P.

    2013-08-01

    The polycrystalline materials Li2Pb2R2W2Ti4Nb4O30 (R = La, Pr) of the tungsten-bronze structural family have been synthesized using a high- temperature mixed-oxide method. Room-temperature x-ray diffraction (XRD) analysis confirms the formation of single-phase compounds. Room-temperature scanning electron micrography of the pellet samples shows a uniform distribution of well-defined different sizes of grains on the surface of the samples, confirming the formation of single-phase compounds. Study of the frequency and temperature dependence of the dielectric constant and loss tangent suggests the existence of dielectric dispersion in the materials. The ferroelectric phase transition in the samples has been studied based on the variation of fitting parameters (calculated from a theoretical model) with temperature. Studies of pyroelectric properties [figure of merit (FOM) and coefficient] show that the materials have reasonably high FOM useful for pyroelectric detectors. The variation of alternating-current (AC) and direct-current (DC) conductivity with inverse absolute temperature (obtained from dielectric data) follows a typical Arrhenius relation. The low leakage current and negative temperature coefficient of resistance behavior of the samples have been verified from J- E plots.

  5. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bourim, El Mostafa [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of)]. E-mail: em.bourim@samsung.com; Moon, Chang-Wook [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Lee, Seung-Woon [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of); Kyeong Yoo, In [Samsung Advanced Institute of Technology, U-Team, P.O. Box 111, Suwon, Kyongki 440-600 (Korea, Republic of)

    2006-09-01

    The behaviors of thermally stimulated electron emission from pyroelectric monodomain lithium niobate single crystal (LiNbO{sub 3}) were investigated by utilizing a Si p-n junction photodiode as electron detector and a receptive electron beam resist (E-beam resist) as electron collector. In high vacuum (10{sup -6} Torr), the pyroelectric electron emission (PEE) was found to depend on the exposed emitting polar crystal surface (+Z face or -Z face) and was significantly influenced by the emitter-electron receiver gap distances. Thus, the PEE from +Z face was detected during heating and was activated, in small gaps (<2 mm), by field emission effect on which was superposed an intense field ionization effect that primed intermittent runway ionizations (plasma breakdown into a glow discharge). In large gaps (>2 mm) the emission was simply mastered by field emission effect. Whereas, The PEE from -Z face was detected during cooling and was solely due to the field ionization effect. Therewith, for small gaps (<2 mm) the emission was governed by intermittent runway ionization ignitions resulting from a high ionization degree leading to dense plasma formation, and for large gaps (>2 mm) PEE was governed by field ionization generating a soft and continuous plasma ambient atmosphere. Significant decrease of electron emission current was observed from +Z face after successive thermal cycles. A fast and fully emission recovery was established after a brief exposure of crystal to a poor air vacuum of 10{sup -1} Torr.

  6. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2013-09-01

    Full Text Available Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively.

  7. Development of MEMS based pyroelectric thermal energy harvesters

    Science.gov (United States)

    Hunter, Scott R.; Lavrik, Nickolay V.; Bannuru, Thirumalesh; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2011-06-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  8. A Meliorated Multi-Frequency Band Pyroelectric Sensor.

    Science.gov (United States)

    Hsiao, Chun-Ching; Liu, Sheng-Yi; Siao, An-Shen

    2015-07-06

    This article proposes a meliorated multi-frequency band pyroelectric sensor for detecting subjects with various velocities, namely extending the sensing frequency under good performance from electrical signals. A tactic, gradually increasing thickness of the ZnO layers, is used for redeeming drawbacks of a thicker pyroelectric layer with a tardy response at a high-frequency band and a thinner pyroelectric layer with low voltage responsivity at a low-frequency band. The proposed sensor is built on a silicon substrate with a thermal isolation layer of a silicon nitride film, consisting of four pyroelectric layers with various thicknesses deposited by a sputtering or aerosol deposition (AD) method and top and bottom electrodes. The thinnest ZnO layer is deposited by sputtering, with a low thermal capacity and a rapid response shoulders a high-frequency sensing task, while the thicker ZnO layers are deposited by AD with a large thermal capacity and a tardy response shoulders a low-frequency sensing task. The fabricated device is effective in the range of 1 KHz~10 KHz with a rapid response and high voltage responsivity, while the ZnO layers with thicknesses of about 0.8 μm, 6 μm, 10 μm and 16 μm are used for fabricating the meliorated multi-frequency band pyroelectric sensor. The proposed sensor is successfully designed, analyzed, and fabricated in the present study, and can indeed extend the sensing range of the multi-frequency band.

  9. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Xiaomu Luo

    2016-06-01

    Full Text Available Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  10. Abnormal Activity Detection Using Pyroelectric Infrared Sensors.

    Science.gov (United States)

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-06-03

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  11. Pyroelectric spectrum in Pb(Zr,Sn,Ti)O3 antiferroelectric- ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The pyroelectric effect of phase transition induced with temperature in Nb-modified Pb(Zr,Sn,Ti)O3 antiferroelectric-ferroelectric ceramics is studied. Experimental results reveal that the phase transitions are accompanied with marked pyroelectric peaks, there exists the close relation between the type of phase transition and the shape of pyroelectric peak. Because of the variations of phase transition, various pyroelectric spectra result. The pyroelectric spectrum can display the polarization effect and some inferior phase transitions with temperature variations, such as antiferroelectric AFEA-AFEB or ferroelectric FEL-FEH transition, which are not detected by the conventional dielectric measurement.

  12. Nano/microscale pyroelectric energy harvesting: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Devashish Lingam

    2013-12-01

    Full Text Available With the ever-growing demand for renewable energy sources, energy harvesting from natural resources has gained much attention. Energy sources such as heat and mechanical motion could be easily harvested based on pyroelectric, thermoelectric, and piezoelectric effects. The energy harvested from otherwise wasted energy in the environment can be utilized in self-powered micro and nano devices, and wearable electronics, which required only µW–mW power. This article reviews pyroelectric energy harvesting with an emphasis on recent developments in pyroelectric energy harvesting and devices at micro/nanoscale. Recent developments are presented and future challenges and opportunities for more efficient materials and devices with higher energy conversion efficiency are also discussed.

  13. Power maximization for pyroelectric, piezoelectric, and hybrid energy harvesting

    Science.gov (United States)

    Shaheen, Murtadha A.

    The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters. A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance C p and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz. This method demonstrates that for pyroelectric materials the impedance depends on two major factors: average working temperature, and the heating rate. Design and implementation of a hybrid approach using multiple piezoelectric cantilevers is presented. This is done to achieve mechanical and electrical tuning, along with bandwidth widening. In addition, a hybrid tuning technique with an improved adjusting capacitor method was applied. An toroid inductor of 700 mH is shunted in to the load resistance and shunt capacitance. Results show an extended frequency range up to 12 resonance frequencies (300% improvement) with improved power up to 197%. Finally, a hybrid piezoelectric and pyroelectric system is designed and tested. Using a voltage doubler, circuit for rectifying and collecting pyroelectric and piezoelectric voltages individually is proposed. The investigation showed that the hybrid energy is possible using the voltage doubler circuit from two independent sources for pyroelectrictity and piezoelectricity due to marked differences of optimal performance.

  14. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Katti, Aavishkar; Yadav, R.A., E-mail: rayadav@bhu.ac.in

    2017-01-23

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping. - Highlights: • Effect of pyroelectric field on screening photovoltaic solitons is studied. • Illumination induced pyroelectric field is considered for the first time. • Self trapping depends on external, pyroelectric and photovoltaic space charge field.

  15. Improved Response of ZnO Films for Pyroelectric Devices

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Yu

    2012-12-01

    Full Text Available Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices.

  16. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    Directory of Open Access Journals (Sweden)

    Saber Mohammadi

    2012-01-01

    Full Text Available This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were compared with each other. The material used is the PMN-25 PT single crystal that is a very interesting material in the framework of energy harvesting and sensor applications.

  17. Pyroelectric response of spray-deposited BaTiO3 thin film

    Science.gov (United States)

    Peale, Robert E.; Oladeji, Isaiah O.; Smith, Evan M.; Vasilyev, Vladimir; Alhasan, Sarmad Fawzi Hamza; Abouelkhair, Hussain; Todorovski, Dalibor; Kimani, Martin; Cleary, Justin W.

    2016-09-01

    Pyroelectric photoresponse of aqueous spray deposited thin films containing BaTiO3 nano-crystals is reported. X-ray diffraction data indicate the presence of hexagonal BaTiO3 nano-crystals with 20 nm crystalline domains in a matrix of some as yet unidentified nano-crystalline material. When the film is annealed at 600 C, the X-ray pattern changes significantly and indicates a conversion to one of the non-hexagonal phases of BaTiO3 as well as a complete change in the matrix. With suitable amplifier, the measured photoresponse was 40V/W. Ferroelectric hysteresis on a film with significant presence of hexagonal BaTiO3 shows saturated polarization which is about 5-times smaller than for the bulk tetragonal phase. A potential application is a patternable infrared detector for photonic and plasmonic devices, such as chip-scale spectral sensors.

  18. A Meliorated Multi-Frequency Band Pyroelectric Sensor

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available This article proposes a meliorated multi-frequency band pyroelectric sensor for detecting subjects with various velocities, namely extending the sensing frequency under good performance from electrical signals. A tactic, gradually increasing thickness of the ZnO layers, is used for redeeming drawbacks of a thicker pyroelectric layer with a tardy response at a high-frequency band and a thinner pyroelectric layer with low voltage responsivity at a low-frequency band. The proposed sensor is built on a silicon substrate with a thermal isolation layer of a silicon nitride film, consisting of four pyroelectric layers with various thicknesses deposited by a sputtering or aerosol deposition (AD method and top and bottom electrodes. The thinnest ZnO layer is deposited by sputtering, with a low thermal capacity and a rapid response shoulders a high-frequency sensing task, while the thicker ZnO layers are deposited by AD with a large thermal capacity and a tardy response shoulders a low-frequency sensing task. The fabricated device is effective in the range of 1 KHz~10 KHz with a rapid response and high voltage responsivity, while the ZnO layers with thicknesses of about 0.8 μm, 6 μm, 10 μm and 16 μm are used for fabricating the meliorated multi-frequency band pyroelectric sensor. The proposed sensor is successfully designed, analyzed, and fabricated in the present study, and can indeed extend the sensing range of the multi-frequency band.

  19. Pyroelectric and dielectric properties of lead-free ferroelectric Ba{sub 3}Nb{sub 2}O{sub 8} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Biswajit [Department of Physics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar 751030 (India); Department of Physics, Government Junior College, Bhawanipatna, Kalahandi 766001 (India); Choudhary, R.N.P., E-mail: crnpfl@gmail.com [Department of Physics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar 751030 (India); Das, Piyush R.; Parida, B.N.; Padhee, R. [Department of Physics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar 751030 (India)

    2014-04-01

    Graphical abstract: - Highlights: • Barium orthoniobate (lead-free perovskite) crystallizes as palmierite with structural stability. • The material exhibits ferroelectric phase transition of diffuse-type suitable for devices. • The low values of ε{sub r} and tan δ at high frequencies makes it a potential candidate for microwave applications. • The material has very good pyroelectric properties for detector application. • The material exhibits smaller value of dc activation energy. - Abstract: The present study highlights ferroelectric phase transition, dielectric, pyroelectric properties and conduction mechanism of highly crystallized barium orthoniobate (Ba{sub 3}Nb{sub 2}O{sub 8}) ceramic, prepared by a solid-state reaction technique. X-ray diffraction studies show the formation of a single-phase compound in hexagonal crystal system. Detailed studies of dielectric parameters (ε{sub r} and tan δ) of the compound as a function of temperature and frequency reveal their independence over a wide range of temperature and frequency. An anomaly in ε{sub r} suggests the possible existence of a ferroelectric–paraelectric phase transition of diffuse-type in the material. The low dielectric loss and moderate relative permittivity make this material (with certain modification) a potential candidate for microwave applications. Studies of pyroelectric properties reveal that the materials have reasonably high figure of merit useful for fabrication of pyroelectric detectors. The low-leakage current and negative temperature coefficient of resistance (NTCR) behavior of the sample have been verified from J–E plots. The nature of variation of dc conductivity with temperature confirms the Arrhenius and NTCR behavior of the material.

  20. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Science.gov (United States)

    Katti, Aavishkar; Yadav, R. A.

    2017-01-01

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping.

  1. Real-time assessment of a linear pyroelectric sensor array for object classication

    Science.gov (United States)

    White, William E., III; Brown, Jeremy B.; Chari, Srikant; Jacobs, Eddie L.

    2010-10-01

    Pyroelectric linear arrays can be used to generate profiles of targets. Simulations have shown that generated profiles can be used to classify human and animal targets. A pyroelectric array system was used to collect data and classify targets as either human or non-human in real time. The pyroelectric array system consists of a 128-element Dias 128LTI pyroelectric linear array, an F/0.86 germanium lens, and an 18F4550 pic microcontroller for A/D conversion and communication. The classifier used for object recognition was trained using data collected in petting zoos and tested using data collected at the US-Mexico border in Arizona.

  2. Fabrication of a ZnO Pyroelectric Sensor

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2008-01-01

    Full Text Available This paper proposes a two-step radio frequency (RF sputtering process to forma ZnO film for pyroelectric sensors. It is shown that the two-step sputtering process with alower power step followed by a higher power step can significantly improve the voltageresponsivity of the ZnO pyroelectric sensor. The improvement is attributed mainly to theformation of ZnO film with a strongly preferred orientation towards the c-axis.Furthermore, a nickel film deposited onto the uncovered parts of the ZnO film caneffectively improve the voltage responsivity at higher modulating frequencies since thenickel film can enhance the incident energy absorption of the ZnO layer.

  3. A virtual experiment on pyroelectric X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad Mehdi, E-mail: mnasseri@aeoi.org.ir

    2015-09-01

    The production of pyroelectric type X-ray generators has a long term background. In case of using X-ray generators containing two pyroelectric crystals, some parameters have not been practically measured yet. This article aims to calculate such parameters by means of Geant4 Mont Carlo codes. The obtained edge energy of initial electrons was 3 keV at a constant pressure of 1mTorr and electric field of 250 kV/cm. The amplification coefficient production of electrons was increased reaching to a constant value of 2.7. The observed mean energy of produced gas ions was approximately 39 eV, equivalent to 5.7% of the emitted electrons. The efficiency of the generated X-ray was about 63% and did not show a considerable change as the energy of initial electrons increased.

  4. Wireless intelligent alarm technology with pyroelectric infrared sensor

    Science.gov (United States)

    Chen, Xiao

    2009-07-01

    Aiming at the defects of monitoring conducted by man in the conventional practice, we study the passive intelligent automatic alarm technology based on the pyroelectric infrared sensor and wireless communication technology. The designed passive infrared wireless alarm is composed of pyroelectric infrared sensors, infrared special chip BISS0001 and their peripheral circuits. When someone enters into the detecting and monitoring range, the alarm will detect the infrared ray of the human radiation by the contactless form and detect the signals of circuit output. Then it translates them into low frequency signals relative with human sports speed, distance and direction, produce corresponding output signals through amplifying by the back state controller, switch on the work power of the wireless transmitting circuit and make it emit the alarm signals. The system enhances the monitoring level and effects and possesses many advantages such as wide detecting range, long detecting distance and high reliability.

  5. Using a CO2 laser for PIR-detector spoofing

    NARCIS (Netherlands)

    Schleijpen, R.; Putten, F.J.M. van

    2016-01-01

    This paper presents experimental work on the use of a CO2 laser for triggering of PIR sensors. Pyro-electric InfraRed sensors are often used as motion detectors for detection of moving persons or objects that are warmer than their environment. Apart from uses in the civilian domain, also

  6. Feasibility study of thermal energy harvesting using lead free pyroelectrics

    Science.gov (United States)

    Karim, Hasanul; Sarker, Md Rashedul H.; Shahriar, Shaimum; Arif Ishtiaque Shuvo, Mohammad; Delfin, Diego; Hodges, Deidra; (Bill Tseng, Tzu-Liang; Roberson, David; Love, Norman; Lin, Yirong

    2016-05-01

    Energy harvesting has significant potential for applications in energizing wireless sensors and charging energy storage devices. To date, one of the most widely investigated materials for mechanical and thermal energy harvesting is lead zirconate titanate (PZT). However, lead has detrimental effects on the environment and on health. Hence, alternative materials are required for this purpose. In this paper, a lead free material, lithium niobate (LNB) is investigated as a potential material for pyroelectric energy harvesting. Although its theoretical pyroelectric properties are lower compared to PZT, it has better properties than other lead free alternatives such as ZnO. In addition, LNB has a high Curie temperature of about 1142 °C, which makes it applicable for high temperature energy harvesting, where other pyroelectric ceramics are not suitable. Herein, an energy harvesting and storage system composed of a single crystal LNB and a porous carbon-based super-capacitor was investigated. It is found that with controlled heating and cooling, a single wafer of LNB (75 mm diameter and 0.5 mm thickness) could generate 437.72 nW cm-3 of power and it could be used to charge a super-capacitor with a charging rate of 2.63 mV (h cm3)-1.

  7. Pyroelectric characteristics of thin PbTiO3 and la-modified PbTiO3 films on platinum films for infrared sensors

    Science.gov (United States)

    Deb, K. K.; Tamagawa, T.; di, Y.; Gui, G.; Halpern, B. L.; Schmitt, J. J.

    2001-02-01

    In this work, we grew lead titanate (PbTiO3) and La-modified PbTiO3 thin films on platinized silicon (Si(100)) substrates under controlled substrate temperature and ambient by a modified jet-vapor deposition (JVD) process described in this paper. The x-ray diffraction patterns obtained from these films showed a single-phase perovskite structure. We examined locally homogeneity and thickness of these films through the comparative use of laser Raman spectroscopy. We also collected Raman and x-ray data on pure PbTiO3, as well as prepared lead zirconate titanate (PZT) (54/46), and PZT (50/50) films using the JVD process. This paper discusses the temperature variations of the pyroelectric and dielectric properties of three compositions of La-modified PbTiO3 films containing 5.2% to 15% of La, respectively, with a view toward studying the effect of La in place of Pb on these electrical properties. We detected significant pyroelectric currents on all three La-modified PbTiO3 films before performing poling treatments, and observed pyroelectric coefficeints as high as 84 nC/cm2·°C in the poled La-doped PbTiO3 films containing 5.2% La. The pyroelectric coefficient and dielectric constant varied significantly with La content. We compared the calculated figures of merit, which were based on the measured physical properties, with pure PbTiO3 as well as PZT and lead lanthanide zirconate titanate (PLZT) films. These properties just described illustrate that these films would be suitable for IR detectors.

  8. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance

    Science.gov (United States)

    Sassi, U.; Parret, R.; Nanot, S.; Bruna, M.; Borini, S.; De Fazio, D.; Zhao, Z.; Lidorikis, E.; Koppens, F.H.L.; Ferrari, A. C.; Colli, A.

    2017-01-01

    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2–4% K−1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4–11% K−1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K−1, and the ability to resolve temperature variations down to 15 μK. PMID:28139766

  9. A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments

    NARCIS (Netherlands)

    Setiadi, D.; Regtien, P.P.L.

    1995-01-01

    For an optimal design of a VDF/TrFE (vinylidene fluoride trifluoroethylene) copolymer-on-silicon pyroelectric sensor, the one-dimensional diffusion equation is solved for the pyroelectric multilayer structure. Output current and voltage of the sensor are calculated. Improvement of the sensor can be

  10. Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes

    Science.gov (United States)

    Esin, A.; Baturin, I.; Nikitin, T.; Vasilev, S.; Salehli, F.; Shur, V. Ya.; Kholkin, A. L.

    2016-10-01

    The natural ability of peptides and proteins to self-assemble into elongated fibrils is associated with several neurogenerative diseases. Diphenylalanine (FF) tubular structures that have the same structural motif as in Aβ-amyloid peptide (involved in Alzheimer's disease) are shown to possess remarkable physical properties ranging from piezoelectricity to electrochemical activities. In this work, we also discover a significant pyroelectric activity and measure the temperature dependence of the pyroelectric coefficient in the temperature range of 20-100 °C. Pyroelectric activity decreases with temperature contrary to most ferroelectric materials and significant relaxation of pyrocurrent is observed on cooling after heating above 50 °C. This unusual behavior is assigned to the temperature-induced disorder of water molecules inside the nanochannels. Pyroelectric coefficient and current and voltage figures of merit are estimated and future applications of pyroelectric peptide nanostructures in biomedical applications are outlined.

  11. FT-infrared and pyroelectric studies on calix[8]arene Langmuir-Blodgett films

    CERN Document Server

    Oliviere, P A R

    2001-01-01

    that the remaining acid groups form either facing dimers with the amine or sideways dimers between themselves. The spectra do not change with temperature. This demonstrates that the films are thermally stable. Additionally, this invariance shows that the pyroelectric activity in these films does not arise from a change in the proton transfer as has been previously postulated. Theoretical calculations undertaken predict that the source of the dipole change required for the level of pyroelectric activity seen is likely to be a change in distance between the acid and amine groups. Further observations, quantitatively examined by curve fitting techniques, show that the greater the number of proton-transferred pairs, the lower the pyroelectric coefficient. Thus, only the temperature-dependent separation of the acid and amine pairs which have not undergone proton transfer is responsible for the pyroelectric activity in these systems. Pyroelectric activity is exhibited by materials which possess a spontaneous temper...

  12. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  13. Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2011-11-01

    Full Text Available This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.

  14. Long—Range Effects on the Pyroelectric Coefficient of Ferroelectric Superlattice

    Institute of Scientific and Technical Information of China (English)

    DONGWen; WUYin-Zhong; 等

    2002-01-01

    Long-range effects on the pyroelectric coefficient of a ferroelectric superlattice consisting of two different ferroelectric materials are investigated based on the transverse Ising model.The effects of the interfacial coupling and the thickness of one period on the pyroelectric coefficient of the ferroelectric superlattics are studied by taking into account the long-range interaction.It is found that with the increase of the strength of the long-range interaction,the pyroelectric coefficient decreases when the temperature is lower than the phase transition temperature;the mumber of the pyroelectric peaks decreases gradually and the phase transition temperature increases,It is also found that with the decrease of the interfacial coupling and the thickness of one period.the phase transition temperature and the number of the pyroelectric peaks decrease.

  15. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films

    Science.gov (United States)

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; Henry, M. D.; Brumbach, M. T.; Ihlefeld, J. F.

    2017-02-01

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm-2 K-1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, and 1).

  16. 手性化合物S811的强热释效应及反铁电特性%Large Pyroelectric Effect and Anti-ferroelectric Properties of Chiral Compound S811

    Institute of Scientific and Technical Information of China (English)

    牛小玲; 刘卫国; 刘鹏

    2011-01-01

    用热释电流谱、介电温谱、电滞回线谱、差示扫描量热仪(DSC)、热台偏光显微镜(PLM)对手性化合物S811的电学性能及相变行为进行了研究.热释电流谱、介电温谱显示S811在相变附近具有强热释电电流,其最大热释电系数达到384nC/(cm2·K),介电常数在相变过程也发生了突变.电滞回线谱显示,在冷却过程依次出现了反铁电体-铁电体转变的双电滞回线和单电滞回线,揭示了S811作为热释电探测材料的应用潜力,拓展了其应用范围.%The electrical properties and phase transition behaviors of chiral compound S811 have been investigated by pyroelectric, dielectric, polarization spectroscopy, DSC and PLM at different temperatures. It is found that S811 appeared a large pyroelectric current peak and a sharp growth of dielectric constants near the phase transition temperature The maximum value of the pyroelectric coefficient p obtained is 384nC/(cm2 · K). In the cooling process, the sample presented the transition of anti-ferroelectric to ferroelectric phase. The outstanding pyroelectric performances of S811 make it possible as a novel pyroelectric detectors.

  17. Note: Portable rare-earth element analyzer using pyroelectric crystal

    Energy Technology Data Exchange (ETDEWEB)

    Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  18. Research on Spatial Uniformity Calibration of Pyroelectric Laser Energy Meter%热释电型激光能量计空间均匀性校准技术研究

    Institute of Scientific and Technical Information of China (English)

    易瑔; 罗天峰; 杨建昌

    2016-01-01

    热释电探测器由于其灵敏度高、响应速度快、体积小、损伤阈值高等特点,作为激光能量计的传感器在激光能量检测方面使用广泛。由于制作工艺的限制,热释电型激光能量计的热敏面灵敏度系数存在空间非均匀性问题,导致当激光照射到探测器不同位置时,激光能量测量结果不准确。针对这一问题,设计一种热释电型激光能量计空间均匀性校准方法,通过对热释电探头光路的控制,消除空间均匀性对测量结果的影响,并通过实例验证了方法的可行性。%For good features such as high sensitivity, fast response speed, small volume and high damage threshold, the pyroelectric detector as the sensor of the laser energy meter is widely used in laser energy detection. Limited by the manufacture process, the thermal surface sensitivity coefficients of the pyroelectric laser energy me⁃ter has spatial non-uniformity problem. When the laser irradiates the different positions of the detector, the results of the laser energy measurement is different. To solve this problem, a pyroelectric laser energy meter spatial uniformity calibration method is designed. Through controlling the light path of the pyroelectric detector, the influence on mea⁃sured results from spatial uniformity is removed. And the feasibility of the method is verified by the experiments.

  19. Investigation on the pyroelectric property of polycrystalline GdMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhao, Y. G., E-mail: ygzhao@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Cui, Y. F.; Ye, L. D.; Zhao, D. Y.; Li, P. S.; Wang, J. W.; Zhu, M. H.; Zhang, H. Y. [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Rao, G. H., E-mail: rgh@guet.edu.cn [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2014-02-10

    Pyroelectric property of orthorhomic GdMnO{sub 3} polycrystalline samples was investigated. Two pyrocurrent peaks were observed with the sharp one near 20 K and the broad one at around 120 K. The dependences of these two peaks on magnetic field, heating rate, and poling voltage were explored systematically. The sharp peak is related to the ferroelectric transition, while the behavior of the broad one corresponds to dipole reorientation. Some key pyroelectric features are proposed to separate the spin-induced ferroelectricity from other effects. This work is helpful for understanding the pyroelectric property of multiferroic materials.

  20. Improper Ferroelectricity in Stuffed Aluminate Sodalites for Pyroelectric Energy Harvesting

    Science.gov (United States)

    Maeda, Yusaku; Wakamatsu, Toru; Konishi, Ayako; Moriwake, Hiroki; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-03-01

    In the present study, we demonstrate ferroelectricity in stuffed aluminate sodalites (Ca1 -xSrx)8[AlO2]12(WO4)2 (x ≤0.2 ) (C1 -xSxAW ). Pyroelectric measurements clarify switchable spontaneous polarization in polycrystalline C1 -xSxAW , whose polarization values are on the order of 10-2 μ C /cm2 at room temperature. A weak anomaly in the dielectric permittivity at temperatures near the ferroelectric transition temperature suggests improper ferroelectricity of C1 -xSxAW for all investigated values of x . A comprehensive study involving synchrotron x-ray powder diffraction measurements, molecular dynamics simulations, and first-principles calculations clarifies that the ferroelectric phase transition of C1 -xSxAW is driven by the freezing of the fluctuations of WO4 tetrahedra in the voids of an [AlO2]12 12 - framework. The voltage response and electromechanical coupling factor of C1 -xSxAW estimated from the present results indicate that this material exhibits excellent performance as a pyroelectric energy harvester, suggesting that aluminate sodalites exhibit great promise as a class of materials for highly efficient energy-harvesting devices.

  1. Thermal Energy Harvesting Using Pyroelectric and Piezoelectric Effect

    Science.gov (United States)

    Kang, Miwon; Yeatman, Eric M.

    2016-11-01

    This paper presents a prototype of a thermal energy harvesting mechanism using both pyroelectric and piezoelectric effect. Thermal energy is one of abundant energy sources from various processes. Waste heat from a chip on a circuit board of the electronic device involves temperature differences from a few degrees C to over 100 °C. Therefore, 95 °C of a heat reservoir was used in this study. A repetitive time-dependant temperature variation is applied by a linear sliding table. The influence of heat conditions was investigated, by changing velocity and frequency of this linear sliding table. This energy harvesting mechanism employs Lead Zirconate Titanate (PZT-5H), a bimetal beam and two neodymium magnets. The pyroelectric effect is caused by a time-dependent temperature variation, and the piezoelectric effect is caused by stress from deformation of the bimetal. A maximum power output 0.54 μW is obtained at an optimal condition when the load resistance is 610 kΩ.

  2. Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. [Advanced Materials Group, School of Industrial and Manufactory Science, Cranfield University, Beds (United Kingdom)]. E-mail: q.zhang@cranfield.ac.uk; Whatmore, R.W. [Advanced Materials Group, School of Industrial and Manufactory Science, Cranfield University, Beds (United Kingdom)

    2001-08-07

    Thin films of ferroelectric lead zirconate titanate (PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} PZT30/70) and manganese-doped lead zirconate titanate ((Pb(Zr{sub 0.3}Ti{sub 0.7}){sub 1-x}Mn{sub x})O{sub 3}, where x=0.01, PM01ZT30/70; and x=0.03, PM03ZT30/70) have been prepared using sol-gel processing techniques. These materials can be used as the pyroelectric thin films in uncooled infrared detectors. The thin films were prepared via a sol-gel route based on a hybrid solvent of methanol and ethanol with acetic acid, ethanolamine and ethylene glycol as additives. The final solution is non-moisture sensitive and stable. Films deposited on Pt/Ti/SiO{sub 2}/Si substrates and annealed on a hot plate at 500-530{sup 0}C for a few minutes were seen to fully crystallize into the required perovskite phase and showed excellent ferroelectric behaviour, demonstrated by reproducible hysteresis loops (P{sub r}=33-37 {mu}C cm{sup -2}, Ec(+)=70-100 kV cm{sup -1}, Ec(-)=-170 to -140 kV cm{sup -1}). The pyroelectric coefficient (p) was measured using the Byer-Roundy method. At 20 deg. C, p was 2.11x10{sup -4} C m{sup -2} K{sup -1} for PZT30/70, 3.00x10{sup -4} C m{sup -2} K{sup -1} for PM01ZT30/70 and 2.40x10{sup -4} C m{sup -2} K{sup -1} for PM03ZT30/70 thin films. The detectivity figure-of-merit (F{sub D}) was 1.07x10{sup -5} Pa{sup -0.5} for PZT30/70, 3.07x10{sup -5} Pa{sup -0.5} for PM01ZT30/70 and 1.07x10{sup -5} Pa{sup -0.5} for PM03ZT30/70. These figures compare well with values reported previously. (author)

  3. Long-Range Effects on the Pyroelectric Coefficient of Ferroelectric Superlattice

    Institute of Scientific and Technical Information of China (English)

    DONG Wen; YAO Dong-Lai; WU Yin-Zhong; LI Zhen-Ya

    2002-01-01

    Long-range effects on the pyroelectric coefficient of a ferroelectric superlattice consisting of two differentferroelectric materials are investigated based on the transverse Ising model. The effects of the interfacial coupling andthe thickness of one period on the pyroelectric coefficient of the ferroelectric superlattice are studied by taking intoaccount the long-range interaction. It is found that with the increase of the strength of the long-range interaction, thepyroelectric coefficient decreases when the temperature is lower than the phase transition temperature; the number ofthe pyroelectric peaks decreases gradually and the phase transition temperature increases. It is also found that with thedecrease of the interfacial coupling and the thickness of one period, the phase transition temperature and the number ofthe pyroelectric peaks decrease.

  4. The pyroelectric coefficient of free standing GaN grown by HVPE

    Science.gov (United States)

    Jachalke, Sven; Hofmann, Patrick; Leibiger, Gunnar; Habel, Frank S.; Mehner, Erik; Leisegang, Tilmann; Meyer, Dirk C.; Mikolajick, Thomas

    2016-10-01

    The present study reports on the temperature dependent pyroelectric coefficient of free-standing and strain-free gallium nitride (GaN) grown by hydride vapor phase epitaxy (HVPE). The Sharp-Garn method is applied to extract the pyroelectric coefficient from the electrical current response of the crystals subjected to a sinusoidal temperature excitation in a range of 0 °C to 160 °C. To avoid compensation of the pyroelectric response by an internal conductivity, insulating GaN crystals were used by applying C, Mn, and Fe doping during HVPE growth. The different pyroelectric coefficients observed at room temperature due to the doping correlate well with the change of the lattice parameter c. The obtained data are compared to previously published theoretical and experimental values of thin film GaN and discussed in terms of a strained lattice.

  5. Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites

    Science.gov (United States)

    Lam, K. S.; Wong, Y. W.; Tai, L. S.; Poon, Y. M.; Shin, F. G.

    2004-10-01

    0-3 composite ranging between 0 and 3, of ferroelectric ceramic lead zirconate titanate (PZT) and thermoplastic elastomer polyurethane (PU) were fabricated. The pyroelectric and dielectric properties of the hot-pressed thin film samples of various PZT volume fractions were measured. The experimental dielectric permittivities and losses agreed reasonably well with the Bruggeman model. The room temperature pyroelectric coefficients of the composites were found to increase linearly with PZT volume fraction and substantially larger than expected. For example, for a composite with 30% PZT, its pyroelectric coefficient is about 90μC/m2K at room temperature, which is more than tenfold of a PZT/PVDF composite of the same ceramic volume fraction. We propose a model in which the electrical conductivity of the composite system is taken into consideration to explain the linear relationship and the extraordinarily large pyroelectric coefficients obtained.

  6. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  7. Controlling dielectric and pyroelectric properties of compositionally graded ferroelectric rods by an applied pressure

    Science.gov (United States)

    Zheng, Yue; Woo, C. H.; Wang, Biao

    2007-06-01

    The polarization, charge offset, dielectric, and pyroelectric properties of a compositionally graded ferroelectric rod inside a high-pressure polyethylene tube are studied using a thermodynamic model based on the Landau-Ginzburg-Devonshire formulation. The calculated distribution of the polarization in the rod is nonuniform, and the corresponding charge offset, dielectric, and pyroelectric properties vary according to the applied pressure. This behavior may be used as a convenient means to control these properties for design optimization.

  8. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  9. Determination of surface electric charge profile in pyroelectric crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2014-12-08

    Pyroelectric crystals are used to produce high energy self-focused electron beams. Here, an experimental analysis in combination with simulation studies will be reported to investigate possible sources of this effect. In the experiments, the surface of crystal was divided into six separated parts and the rate of surface electric charge production was measured accordingly. A non-steady and spatially non-uniform distribution of the surface charge generation was observed, in which it tends to a uniform distribution in the course of experiment. The obtained surface electric charges from the experiments were used to simulate the electric field and potential around the crystal by COMSOL Multiphysics. It was observed that emitted electrons from the crystal surface were focused, and the non-uniformity in spatial charge is responsible for this phenomenon.

  10. Pyroelectric IRFPA mosaic image acquisition system with multi channels%多通道热释电 IRFPA 图像拼接采集系统

    Institute of Scientific and Technical Information of China (English)

    程瑶

    2014-01-01

    为了实现分辨率高的大规模热释电IRFPA 探测器,设计了多路通道并行输出的读出电路。针对多路输出的热释电IRFPA探测器,依据热释电探测的时序要求,设计了图像拼接采集系统。利用外部驱动信号控制采集卡的触发及采样时钟,由斩波器同步信号判断热释电探测器的亮场及暗场信号。构造PC-DA Q虚拟仪器系统对多通道输出的热释电型IRFPA进行多路并行图像采集,并对每路图像信号进行亮、暗场判断后进行差分处理,通过软件拼接处理成一副完整的图像,最终在软件平台上显示。对实验室研制的160列×120行双通道读出及320列×120行四通道读出的热释电读出电路进行了图像采集实验,对于同样阵列大小的单通道读出探测器,双通道结构读出速度提高了1倍,四通道结构读出速度提高了3倍。通过采集成像实验验证了系统的可行性。%In order to achieve large-scale pyroelectric infrared focal plane array (IRFPA ) detec-tor with high resolution ,the readout circuit with multi-channel parallel output was designed . Based on the pyroelectric IRFPA detector of multiple-output and the pyroelectric detecting tim-ing requirements ,the system of mosaic imaging acquisition was designed .The external driving signals were used to control the trigger and sampling clock of acquisition card ,and a chopper synchronizing signal was used to judge the bright field and dark field signal of the pyroelectric detector .The system was constructed with PC-DAQ virtual instrument system to acquire multi-channel parallel image ,judge the bright and dark field for differential processing on each channel ,and display a whole image after mosaic processing on software platform .The experi-mental image acquisition of the pyroelectric readout circuit with 160 × 120 two-channels read-out and 320 × 120 four-channels readout were taken and the output signal waveform and image were

  11. A temperature oscillation instrument to determine pyroelectric properties of materials at low frequencies: Towards elimination of lock-in methods

    NARCIS (Netherlands)

    Khanbareh, H.; Schelen, J.B.J.; Van der Zwaag, S.; Groen, W.A.

    2015-01-01

    Pyroelectric properties of materials can be accurately determined by applying a new digital signal processing method on the discrete sampled data obtained with a temperature oscillation technique. The pyroelectric coefficient is calculated from the component of the generated current 90∘ out of phase

  12. Mechanism of the Pyroelectric Response under Direct-Current Bias in La-Modified Lead Zirconate Titanate Stannate Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Ling; WANG Gen-Shui; CHEN Xue-Feng; CAO Fei; DONG Xian-Lin; GU Yan; HE Hong-Liang; LIU Yu-Sheng

    2011-01-01

    Dielectric and pyroelectric properties ofPbo.97Lao.o2(Zro.42Sno.4oTio.i8)03 ceramics are investigated as functions of temperature and dc bias field. Induced and intrinsic pyroelectric coefficients pind and p0 are calculated and analyzed. It is found that the sign, value and variation of the net pyroelectric coefficient p with increasing dc bias all are dominated by p0 under applied biases. Polarization and depolarization processes under dc biases are analyzed. Besides the contribution of pind, the diffuse and decreased pyroelectric response under dc bias compared with that of an identical Geld poled sample without dc bias is mainly attributed to the depolarization process under dc bias.%@@ Dielectric and pyroelectric properties of Pbo.s7Lao.o2(Zro.42Sno.4OTio.is)O3 ceramics are investigated as functions of temperature and do bias field.Induced and intrinsic pyroelectric coefficients pind and p0 are calculated and analyzed.It is found that the sign,value and variation of the net pyroelectric coefficient p with increasing dc bias all are dominated by p0 under applied biases.Polarization and depolarization processes under do biases are analyzed.Besides the contribution of pind,the diffuse and decreased pyroelectric response under do bias compared with that of an identical field poled sample without do bias is mainly attributed to the depolarization process under do bias.

  13. A temperature oscillation instrument to determine pyroelectric properties of materials at low frequencies: Towards elimination of lock-in methods.

    NARCIS (Netherlands)

    Khanbareh, H.; Schelen, J.B.J.; van der Zwaag, S.; Groen, W.A.

    2015-01-01

    Pyroelectric properties of materials can be accurately determined by applying a new digital signal processing method on the discrete sampled data obtained with a temperature oscillation technique. The pyroelectric coefficient is calculated from the component of the generated current 90(∘) out of pha

  14. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Bikram [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Damodaran, Anoop R. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Cho, Hanna [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Martin, Lane W. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.

  15. Energy harvesting from pavements via PVDF: hybrid piezo-pyroelectric effects

    Science.gov (United States)

    Tao, Junliang; Hu, Jie; Wu, Guangxi

    2016-04-01

    In the U.S., there are over 4 million miles (6 million km) of roadways and more than 250 million registered vehicles. The energy lost in the pavement system due to traffic-induced vibration and deformation is enormous. If effectively harvested, such energy can serve as an alternative sustainable energy source that can be easily integrated to the transportation system. The potential of PVDF, which is a piezoelectric polymer material, is investigated as a potential energy harvester integrated in pavement systems. The uniqueness of this study lies in that the electrical response of PVDF under coupled mechanical and thermal stimulations are studied. It is well known that most piezoelectric materials are also pyroelectric materials, which convert temperature change into electricity. However, the potential of PVDF as a hybrid piezo-pyroelectric energy harvester has been seldom studied. Through series of well controlled experiments, it is found that there exists interesting coupling phenomenon between piezoelectric and pyroelectric effects of PVDF: the voltage generated by simultaneous mechanical and thermal stimulations is the sum of voltages generated by separate stimulations. In addition, an estimation of power generation through piezoelectric and pyroelectric effect is conducted. Finally, the overall effects of temperature on hybrid piezo-pyroelectric energy harvesting are discussed.

  16. An infrared-driven flexible pyroelectric generator for non-contact energy harvester.

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-21

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm(-2) near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.

  17. Pyroelectric properties and electrocaloric effect in TGS1-xPx single crystals

    Science.gov (United States)

    Sampathkumar, P.; Srinivasan, K.

    2016-10-01

    Triglycine sulfate (TGS) single crystals modified with phosphoric acid (TGS1-xPx) have been grown by slow evaporation technique at room temperature. Lattice parameters were identified by using single crystal x-ray diffractometer. The dielectric, pyroelectric, ferroelectric properties and electrocaloric effect have been investigated. Curie temperature of grown crystals was determined from dielectric constant measurements at various temperatures at a frequency of 1 kHz. The Curie temperature is found decreased for the TGS single crystals with the addition of phosphoric acid. Room temperature P-E hysteresis loops of TGS1-xPx single crystals are presented. The values of coercive field Ec, spontaneous polarization Ps and internal bias field Eb were obtained from the hysteresis loops. Discussion on pyroelectric properties as a function of temperature and applied electric field is presented. Figure of merits (FOMs) were determined to study the pyroelectric performance of the grown crystals. Among all compositions of x, x = 0.2 (i.e., TGS0.8P0.2) single crystals exhibited the largest pyroelectric coefficient and pyroelectric figure of merit at room temperature. From the above investigations the electrocaloric temperature change, ΔT of TGS1-xPx single crystals at selected applied fields and temperatures are obtained by indirect method and discussed.

  18. Characterization of Perovskite Films Grown by a Novel Low-Temperature Process for Uncooled IR Detector Applications

    Science.gov (United States)

    2008-12-01

    and semiconductor thin- films (Schwenzer et al., 2006; Kisailus et al, 2006; Brutchey and Morse, 2006). The resulting pyroelectric, perovskite -based...1 CHARACTERIZATION OF PEROVSKITE FILMS GROWN BY A NOVEL LOW- TEMPERATURE PROCESS FOR UNCOOLED IR DETECTOR APPLICATIONS W.L. Sarney* and J.W...multimetallic perovskite nanoparticle deposition, direct-write digitally-scripted laser phase conversion, and MEMS fabrication and optimization

  19. Pyroelectric composite film for X-ray intensity detection

    Directory of Open Access Journals (Sweden)

    Walter Katsumi Sakamoto

    2012-04-01

    Full Text Available Composite material obtained with modified lead titanate (Pz34 ferroelectric ceramic and polyether-ether-ketone (PEEK polymer matrix was used as sensitive component to measure X-ray intensity in a novel detection system. The sensing element works as a thermal transducer, converting a non-quantified thermal flux into an output measurable quantity of electrical voltage. The samples were obtained up to 60 vol.% of ceramic, by hot pressing the mixture of Pz34 and PEEK powders at 368 °C and applying 12 MPa pressure for 2.0 hours. The sensor response varies from 2.70 to 0.80 V in the energy fluence rate range of 6.30 to 37.20 W.m-2. The absorbed incident energy was analyzed as a function of the ionizing energy. Furthermore, by measuring the pyroelectric activity of the composite film it was observed that there is no degradation of the sensor after the irradiation.

  20. Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers

    Science.gov (United States)

    Espinal, Y.; Kesim, M. T.; Misirlioglu, I. B.; Trolier-McKinstry, S.; Mantese, J. V.; Alpay, S. P.

    2014-12-01

    The dielectric and pyroelectric properties of c-domain ferroelectric films with linear dielectric buffer layers were investigated theoretically. Computations were carried out for multilayers consisting of PbZr0.2Ti0.8O3 with Al2O3, SiO2, Si3N4, HfO2, and TiO2 buffers on metalized Si. It is shown that the dielectric and pyroelectric properties of such multilayers can be increased by the presence of the buffer compared to ferroelectric monolayers. Calculations for PbZr0.2Ti0.8O3 films with 1% Al2O3 interposed between electrodes on Si show that the dielectric and pyroelectric coefficients are 310 and 0.070 μC cm-2 °C-1, respectively. Both values are higher than the intrinsic response of PbZr0.2Ti0.8O3 monolayer on Si.

  1. Layer thickness and period as design parameters to tailor pyroelectric properties in ferroelectric superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Misirlioglu, I. B., E-mail: burc@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla/Orhanli, 34956 Istanbul (Turkey); Kesim, M. T. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-10-27

    We theoretically examine the pyroelectric properties of ferroelectric-paraelectric superlattices as a function of layer thickness and configuration using non-linear thermodynamics coupled with electrostatic and electromechanical interactions between layers. We specifically study PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/SrTiO{sub 3} superlattices. The pyroelectric properties of such constructs consisting of relatively thin repeating units are shown to exceed the pyroelectric response of monolithic PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} films. This is related to periodic internal electric fields generated due to the polarization mismatch between layers that allows tailoring of the shift in the transition temperature. Our results indicate that higher and electric field sensitive pyroresponse can be achieved from layer-by-layer engineered ferroelectric heterostructures.

  2. Effective Pyroelectric Coefficient and Polarization Offset of Compositionally Step-like Graded Ferroelectric Structures

    Institute of Scientific and Technical Information of China (English)

    CAO Hai-Xia; WU Yin-Zhong; LI Zhen-Ya

    2005-01-01

    In this paper, the effective pyroelectric coefficient and polarization offset of the compositionally step-like graded multilayer ferroelectric structures have been studied by use of the first-principles approach. It is exhibited that the dielectric gradient has a nontrivial influence on the effective pyroelectric coefficient, but has a little influence on the polarization offset; and the polarization gradient plays an important role in the abnormal hysteresis loop phenomenon of the co.mpositionally step-like graded ferroelectric structures. Moreover, the origin of the polarization offset is explored,which can be attributed to the polarization gradient in the compositionally step-like graded structure.

  3. Investigation of the durability of a pyroelectric neutron source and secondary electron suppression

    Energy Technology Data Exchange (ETDEWEB)

    Friske, Eduard; Deuter, Gerhard; Jochum, Josef [Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany)

    2015-04-15

    The performance of a pyroelectric neutron source depends on several factors, such as the achieved high voltage, deuterium gas pressure and the tip geometry. Here we present measurements to investigate the dependency of the neutron production on the high voltage specifically and discuss the interdependency with other factors. In addition we present results showing that a biased grid in front of the target, which is a common way to capture secondary electrons, does not have any significant effect on the amount of electrons streaming back to the pyroelectric crystal. This indicates that the bulk of these electrons does not originate from the target but from a different source. (orig.)

  4. Human Movement Detection and Identification Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Jaeseok Yun

    2014-05-01

    Full Text Available Pyroelectric infrared (PIR sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth, three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor and three speed levels (slow, moderate, fast. We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.

  5. Recent developments in materials and detectors for the infrared; Proceedings of the Meeting, Cannes, France, November 25, 26, 1985

    Science.gov (United States)

    Morten, F. D. (Editor); Seeley, John S. (Editor)

    1986-01-01

    The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.

  6. Realization of an integrated VDF/TrFE copolymer-on-silicon pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Regtien, P.P.L.; Sarro, P.M.

    1995-01-01

    An integrated pyroelectric sensor based on a vinylidene fluoride trifluoroethylene (VDF/TrFE) copolymer is presented. A silicon substrate that contains FET readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling of the copolymer has been applied

  7. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites

    NARCIS (Netherlands)

    Khanbareh, H.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Functional granular composites of lead titanate particles in an epoxy matrix prepared by dielectrophoresis show enhanced dielectric, piezoelectric and pyroelectric properties compared to 0-3 composites for different ceramic volume content from 10% to 50%. Two structuring parameters, the interparticl

  8. A 3 x 1 Integrated Pyroelectric Sensor Based on VDF/TrFE Copolymer

    NARCIS (Netherlands)

    Setiadi, D.; Sarro, P.M.; Regtien, P.P.L.

    1995-01-01

    This paper presents an integrated pyroelectric sensor based on a Vinylidene Fluoride TriFluoroEthylene (VDF/TrFE) copolymer. A silicon substrate that contains FET readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling of the copolymer has been a

  9. A 3x1 integrated pyroelectric sensor based on VDF/TrFE copolymer

    NARCIS (Netherlands)

    Setiadi, D.; Sarro, P.M.; Regtien, P.P.L.

    1996-01-01

    This paper presents an integrated pyroelectric sensor based on a vinylidene fluoride¿trifluoroethylene (VDF/TrFE) copolymer. A silicon substrate that contains field-effect transistor (FET) readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling o

  10. The Third Way of Thermal-Electric Conversion beyond Seebeck and Pyroelectric Effects

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-14

    Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, people are aware of only two ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with distinct working conditions and limitations. Here, we report the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, the-third-way converts the time-dependent ambient temperature fluctuation into electricity, similar to the behavior of pyroelectricity. However, the-third-way is also distinct from pyroelectric effect in the sense that it does not require polar materials but applies to general conducting systems. We demonstrate that the-third-way results from the temperature-fluctuation-induced dynamical charge redistribution. It is a consequence of the fundamental nonequilibrium thermodynamics and has a deep connection to the topological phase in quantum mechanics. Our findings expand our knowledge and provide new means of thermal-electric energy harvesting.

  11. Piezoelectric and pyroelectric properties of lead titanate-polyethylene oxide composites

    NARCIS (Netherlands)

    Khanbareh, H.; van der Zwaag, S.; Groen, W. A.

    2014-01-01

    Polymer-ceramic composites with pyroelectric sensitivity are presented as promising candidates for infrared detection. Selection of the appropriate ceramic filler and the polymer matrix is one of the key parameters in the development of optimized materials for specific applications. In this work lea

  12. First Principle Based Computation of Pyroelectricity in LiNbO3

    Science.gov (United States)

    Peng, Q.; Cohen, R. E.

    2010-03-01

    Pyroelectricity is of current interest since the discovery of particle acceleration of aqueous ions from changes in temperature at pyroelectric surfaces sufficient to generate hard X-rays[1] as well as neutrons via fusion[2]. We computed the pyroelectric coefficients in LiNbO3 from molecular dynamic simulation with DLPOLY using a shell model potential fitted to Density Functional Theory computations results. The potential was constructed by fitting energies and forces, as well as phonon frequencies and eigenvectors, Born effective charges, and dielectric constants computed from density functional perturbation theory using ABINT. The secondary pyroelectric effect is computed from density functional theory. The spontaneous polarizations were calculated using the Berry phase method. The coefficient of thermal expansivity, elastic moduli, elastic compliances, piezoelectric stress constants and piezoelectric strain constants are computed by linear response and lattice dynamics computations. [1] J. D. Brownridge and S. Raboy, Journal of Applied Physics 86, 640 (1999). [2] B. Naranjo, J. Gimzewski, and S. Putterman, Nature 434, 1115 (2005).

  13. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    Science.gov (United States)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  14. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  15. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, M. T.; Zhang, J.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Trolier-McKinstry, S. [Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, Pennsylvania 16802 (United States); Mantese, J. V. [United Technologies Research Center, East Hartford, Connecticut 06118 (United States); Whatmore, R. W. [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork City, County Cork (Ireland)

    2013-11-28

    Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm{sup −2} °C{sup −1}, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  16. Pyroelectric Infrared Detectors Designed%热释电红外报警器的设计

    Institute of Scientific and Technical Information of China (English)

    吕璠

    2009-01-01

    以热释电红外元件作为传感器组成的电子防盗系统,正在得到越来越广泛的应用.本文就热释电红外报警器的工作原理、安装要求和应用中存在的优缺点进行了筒述.

  17. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing.

    Science.gov (United States)

    Zi, Yunlong; Lin, Long; Wang, Jie; Wang, Sihong; Chen, Jun; Fan, Xing; Yang, Po-Kang; Yi, Fang; Wang, Zhong Lin

    2015-04-08

    A triboelectric-pyroelectric-piezoelectric hybrid cell, consisting of a triboelectric nanogenerator and a pyroelectric-piezoelectric nanogenerator, is developed for highly efficient mechanical energy harvesting through multiple mechanisms. The excellent performance of the hybrid cell enhances the energy-harvesting efficiency significantly (by 26.2% at 1 kΩ load resistance), and enables self-powered sensing, which will lead to a variety of advanced applications.

  18. Optimized Pyroelectric Vidicon Thermal Imager. Volume I. Thermal Imager. Volume 1a. Rain Camera. Volume 1b. Reticulation.

    Science.gov (United States)

    1979-06-01

    the pan mode. Reticulation of the TGS family of pyroelectric targets was demonstrated using standard ion-milling techniques. Reticula - tion of DTGFB...9 A technique for pedestal noise suppression (PNS) is being investigated as part of Contract DAAK70-77-C-0138 (Return Beam/Isocon Pyroelectric...reticulation studies under the basic contract because TGFB and DTGFB were not available in sufficient quantities during the early part of the program. The

  19. Minimization of pyroelectric effects in relaxor-PbTiO{sub 3} crystals for piezoelectric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanxue, E-mail: yanxuetang@gmail.com [Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234 (China); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Shen, Zongyang [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403 (China); Zhang, Shujun; Jiang, Wenhua [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Luo, Jun [TRS Technologies Inc., 2820 E. College Ave., State College, PA 16801 (United States); Shrout, Thomas R. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-05-01

    To minimize pyroelectric effects while keeping high piezoelectric effects in relaxor-PbTiO{sub 3} single crystals, the crystallographic orientation dependence of the pyroelectric and piezoelectric coefficients were investigated for binary (1 − x)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–xPbTiO{sub 3} (PMN–PT), ternary (1 − x − y)Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}–yPb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–xPbTiO{sub 3} (PIN–PMN–PT) and Mn-doped PIN–PMN–PT single crystals with the “4R” multidomain state. The secondary pyroelectric coefficients were calculated from the thermodynamic inter-relationship between the piezoelectric, elastic, and thermal expansion coefficients, being on the order of (1.16–1.23) × 10{sup −4} C m{sup −2} K{sup −1} for binary crystals and (0.97–2.03) × 10{sup −4} C m{sup −2} K{sup −1} for ternary ones. The primary pyroelectric coefficients were –(6.73–6.84) × 10{sup −4} C m{sup −2} K{sup −1} and −(5.44–6.43) × 10{sup −4} C m{sup −2} K{sup −1} for binary and ternary crystals, respectively. The pyroelectric coefficients could be reduced by matrix rotation, but at the cost of decreasing longitudinal piezoelectric coefficients d{sub 33}. Of particular interest is that the maximum piezoelectric coefficients d{sub 24}{sup ∗} at θ = ±55{sup o} and d{sub 34}{sup ∗} at θ = ±35{sup o} by a counterclockwise rotation of θ about the X axis (θ is the rotation angle about the coordinate axes), or d{sub 15}{sup ∗} at θ = ±55{sup o}, and d{sub 35}{sup ∗} at θ = ±35{sup o} by a counterclockwise rotation the Y axis, were found on the order of 3000 pC N{sup −1}. The corresponding pyroelectric coefficients could be reduced by ∼20%. The reduced pyroelectric coefficients that can contribute to decrease undesirable output signals, together with the high piezoelectric coefficients, enable relaxor-PT crystals as favorable candidates for high

  20. Pyroelectricity of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown by sol–gel process on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Moalla, R. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France); Le Rhun, G. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Defay, E. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Luxembourg Institute of Science and Technology (LIST), Materials Research & Technology Department (MRT), 41 Rue du Brill, L-4422 Belvaux (Luxembourg); Baboux, N. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, INSA de Lyon, Bâtiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sebald, G. [Laboratoire de Génie Electrique et Ferroélectricité, LGEF EA 682, INSA de Lyon, Bâtiment Gustave Ferrié, 8 rue de la Physique, 69621 Villeurbanne Cedex (France); Bachelet, R., E-mail: romain.bachelet@ec-lyon.fr [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France)

    2016-02-29

    Pyroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films have been grown by sol–gel process on Si(001). Intrinsic pyroelectric coefficient has been measured through ferroelectric loops recorded at different temperatures and is about − 300 μC/m{sup 2}K. Corresponding converted pyroelectric power density is estimated to be ~ 1 mW/cm{sup 3} for a temperature variation of 10 °C every 6 s. Pyroelectric response of these films has been confirmed by direct measurements of the pyroelectric current with temperature variations at zero electric field. These results are of high interest for integrated thermally-sensitive devices. - Highlights: • Functional oxide films are grown by low-cost sol–gel process and spin-coating. • Pyroelectric Pb(Zr,Ti)O{sub 3} films are integrated in planar capacitor structure on Si. • Bulk intrinsic pyroelectric coefficient is measured: ‐ 300 μC/m{sup 2}K. • Converted pyroelectric energy is estimated: 6 mJ/cm{sup 3} per 10 °C thermal cycle. • Direct measurements of pyroelectricity are done on integrated oxide thin films.

  1. The Control Method for Pyroelectric Chopper%热释电斩波器控制

    Institute of Scientific and Technical Information of China (English)

    王敏; 李晶; 朱洪洋; 刘愚; 郭小军; 陈如造; 罗凤旺; 秦伟; 朱光明

    2014-01-01

    斩波器是热释电型热像仪的重要组成部份,其平稳、匀速且按要求相位精确地运转,关系到整机成像质量的好坏。提出了一种对热释电斩波器进行闭环控制的方法,该方法的使用,解决了斩波器的控制问题。%Chopper is the important part of the pyroelectric thermal imager. The stable and uniform operation of chopper is related to the imaging quality. This paper presents a method about the closed-loop control for pyroelectric chopper, which solves the problem of the chopper control.

  2. Piezo- and pyroelectricity of a polymer-foam space-charge electret

    Science.gov (United States)

    Neugschwandtner, Gerhard S.; Schwödiauer, Reinhard; Bauer-Gogonea, Simona; Bauer, Siegfried; Paajanen, Mika; Lekkala, Jukka

    2001-04-01

    Charged closed-cell polypropylene polymer foams are highly sensitive and broadband piezoelectric materials with a quasistatic piezoelectric d33 coefficient about 250 pC/N and a dynamic d33 coefficient of 140 pC/N at 600 kHz. The piezoelectric coefficient is much larger than that of ferroelectric polymers, like polyvinylidene fluoride, and compares favorably with ferroelectric ceramics, such as lead zirconate titanate. The pyroelectric coefficient p3=0.25 μC/m2 K is small in comparison to ferroelectric polymers and ferroelectric ceramics. The low density, small pyroelectric coefficient and high piezoelectric sensitivity make charged polymer foams attractive for a wide range of sensor and transducer applications in acoustics, air-borne ultrasound, medical diagnostics, and nondestructive testing.

  3. Nanotubes, nanorods and nanowires having piezoelectric and/or pyroelectric properties and devices manufactured therefrom

    Science.gov (United States)

    Russell, Thomas P [Amherst, MA; Lutkenhaus, Jodie [Wethersfield, CT

    2012-05-15

    Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or pyroelectric polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.

  4. Pyroelectric generation of 2D spatial soliton sets in a bulk of lithium niobate crystal

    Science.gov (United States)

    Ryabchenok, V.; Shandarov, V.; Perin, A.

    2017-06-01

    The generation of two-dimensional bright spatial soliton sets in lithium niobate sample has been experimentally demonstrated at light wavelength of 532 nm, contribution of pyroelectric effect into nonlinear optical response of the crystal, and spatial modulation of one-dimensional beam along direction normal to the crystal optical axis. Diameters of soliton beams and channel waveguides formed within the crystal bulk by these solitons are near to 20 μm at light polarization corresponding to extraordinary wave of the crystal.

  5. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Geetika; Umarji, A. M. [Materials Research Centre, Indian Institute of Science, Bangalore-560 012 (India); Maglione, Mario [ICMCB, Universite de Bordeaux,-CNRS, 87, Av Dr Schweitzer 33806 Pessac (France)

    2012-12-15

    Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  6. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    Directory of Open Access Journals (Sweden)

    Geetika Srivastava

    2012-12-01

    Full Text Available Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  7. Timing A Pulsed Thin Film Pyroelectric Generator For Maximum Power Denisty

    Science.gov (United States)

    Smith, A. N.; Hanrahan, B. M.; Neville, C. J.; Jankowski, N. R.

    2016-11-01

    Pyroelectric thermal-to-electric energy conversion is accomplished by a cyclic process of thermally-inducing polarization changes in the material under an applied electric field. The pyroelectric MEMS device investigated consisted of a thin film PZT capacitor with platinum bottom and iridium oxide top electrodes. Electric fields between 1-20 kV/cm with a 30% duty cycle and frequencies from 0.1 - 100 Hz were tested with a modulated continuous wave IR laser with a duty cycle of 20% creating temperature swings from 0.15 - 26 °C on the pyroelectric receiver. The net output power of the device was highly sensitive to the phase delay between the laser power and the applied electric field. A thermal model was developed to predict and explain the power loss associated with finite charge and discharge times. Excellent agreement was achieved between the theoretical model and the experiment results for the measured power density versus phase delay. Limitations on the charging and discharging rates result in reduced power and lower efficiency due to a reduced net work per cycle.

  8. Pyroelectric crystal D-D and D-T neutron generators

    Science.gov (United States)

    Danon, Y.

    2012-04-01

    Pyroelectric neutron generators are a recent development utilizing the pyroelectric effect to produce an accelerating electric field and thus enabling creation of small electron and ion accelerators without external high voltage power supply. The principle of operation includes a pyroelectric crystal (LiTaO3 for example) placed in vacuum and simple heating (or cooling) of the crystal to cause a change in polarization. The change in polarization creates free charges on the faces of the clyndrical z-cut crystal and due to its small capacitance this creates a high potential between one crystal face to the other which is placed at ground potential. To produce neutrons the crystal is placed in low pressure deuterium gas and when the crystal is heated or cooled it ionizes the gas and accelerates deuterium ions towards a deuterated or tritated target. A configuration with two crystals can double the acceleration potential and thus increase neutron production. When operating such a device x-rays with energy over 200 keV about 105 neutrons per heating cycle can be produced. Research is focused on improving the neutron yield, the emission reproducibility, and shortening the heating cycle. Neutron generators based on this technology can be made small portable and relatively cheap compared to sealed tube technology. Further development is needed in order to increase the neutron yield closer to the theoretical limit for a specific crystals size.

  9. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  10. Correlation between intrinsic dipole moment and pyroelectric coefficient of Fe-Mg tourmaline

    Institute of Scientific and Technical Information of China (English)

    Chang-chun Zhao; Li-bing Liao; Jie Xing

    2014-01-01

    Single-crystal X-ray diffraction structural data of four Fe-Mg tourmalines with different Fe contents from Xinjiang, Sichuan, and Yunnan Provinces, China, were collected at room temperature and-100ºC. The intrinsic dipole moments of polyhedra and the total intrinsic dipole moment of the unit cell were calculated. By comparing the intrinsic electric dipole moments of the X, Y, Z, T, and B site polyhedra, it is found that the T site polyhedron makes the greatest contribution to the total intrinsic dipole moment. The pyroelectric coefficients of four Fe-Mg tourmalines were experimentally determined, and the influence of intrinsic dipole moments on their pyroelectric properties was inves-tigated. The experimental results show that, compared with the case at room temperature, the intrinsic dipole moments change with the total Fe content at-100ºC in a completely different way. With the decrease of temperature, the total intrinsic dipole moments of tourmaline de-crease. Over the same temperature interval, the pyroelectric coefficients increase with the increase in intrinsic dipole moment.

  11. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  12. Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary single crystal

    Science.gov (United States)

    Yu, Ping; Wang, Feifei; Zhou, Dan; Ge, Wenwei; Zhao, Xiangyong; Luo, Haosu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2008-06-01

    To enhance the service temperature of relaxor-PbTiO3 pyroelectric single crystals, high quality ternary perovskite single crystal was grown by a modified Bridgman technique. Analyzed by x-ray fluorescence, the as-grown crystal is 0.41Pb(In1/2Nb1/2)O3-0.17Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 [PIMNT(41/17/42)], which appears to be a tetragonal ferroelectric phase with relatively high Curie temperature of 253°C. It exhibits the relative permittivity of 487 and low dielectric loss of 0.3% at 50Hz and room temperature. The pyroelectric properties with a pyroelectric coefficient of 5.7×10-4C /m2K and a detectivity of 6.34×10-5Pa-1/2 would satisfy the needs of operation as a high Curie temperature material. The results show that PIMNT crystal with better temperature stability, compared with the pure PMNT single crystals, is a good candidate as an infrared detector material.

  13. 动态下红外热释电传感器的目标定位方法%New target location method based on dynamic pyroelectric infrared sensor

    Institute of Scientific and Technical Information of China (English)

    孙乔; 杨卫; 于海洋; 刘俊

    2012-01-01

    In order to improve detection sensitivity of the pyroelectric sensor and broaden the scope of traditional use of the sensor, a new applied method based on dynamic pyroelectric infrared sensor was presented in this paper, which can find the body target and coordinates. This method greatly expanded the detection range of pyroelectric infrared sensor, which could accurately determine the direction of the target according to the waveform, deduce the distance from experience. A pyroelectric infrared sensor was used as a detector in this system, innovatively use of infrared lens to replace the traditional Fresnel lenses. MCU recorded the original infrared waveform of the measurement area(if the environment keeped changeless in a long time the waveform would have a certain basic rules); once the body target walked into the measurement area, it would lead to changes of the original law, and the microcontroller would obtain direction, distance and other results according to the use of inter-frame difference method. With the traditional use of pyroelectric sensor, the method had some new feathures such as fast response, detection sensitivity, wide detection range, direction measure and distance measure. It significantly broadens the use scope of the pyroelectric sensor, and further strengthens its application in security and smart home system.%为了提高热释电传感器的探测灵敏度,拓宽其传统使用范围,提出了一种动态下热释电传感器发现人体目标并测向测距的新型使用方法.该方法大大扩展了热释电传感器的探测范围,根据波形能准确判定目标的方向,利用经验值推断出人体的目标距离.该系统采用热释电红外传感器作为探测器,创新运用红外透镜代替传统用法中的菲涅耳透镜,在步进电机的匀速带动下,单片机记录测量区域的原始红外波形(在环境基本不变且没有目标进入的情况下,波形具有一定规律且基本保持不变);目标进入测

  14. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

    Science.gov (United States)

    Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris

    2017-03-15

    Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm(3). For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.

  15. Evaluation of the solid state dipole moment and pyroelectric coefficient of phosphangulene by multipolar modeling of X-ray structure factors

    DEFF Research Database (Denmark)

    Madsen, G.K.H.; Krebs, Frederik C; Lebech, B.;

    2000-01-01

    The electron density distribution of the molecular pyroelectric material phosphangulene has been studied by multipolar modeling of X-ray diffraction data. The "in-crystal" molecular dipole moment has been evaluated to 4.7 D corresponding to a 42% dipole moment enhancement compared with the dipole...... pyroelectric coefficients has been introduced by combining the derived dipole moment with temperature-dependent measurements of the unit cell volume. The derived pyroelectric coefficient of 3.8(7)x 10(-6) Cm-2K-1 is in very good agreement with the measured pyroelectric coefficient of p = 3 +/- 1 x 10(-6) Cm-2...... K-1. This method for obtaining the pyroelectric coefficient uses information from the X-ray diffraction experiment alone and can be applied to much smaller crystals than traditional methods....

  16. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    Science.gov (United States)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  17. Dielectric and Pyroelectric Characteristics of the Infrared Sensitive(Pb_(1-x)Sr_x)TiO_3 Ceramics

    Institute of Scientific and Technical Information of China (English)

    WANG Maoxiang; SHU Qing; MU Zhichun; JIAN Yuliang

    2009-01-01

    PST ferroelectric ceramics were fabricated successfully by a two-step method,i e first,PbTiO_3 and SrTiO_3 were sintered respectively,then mixed and sintered together.The process and characteristics of PST ferroelectric ceramics were introduced and researched.Their dielectric and pyroelectric characteristics are as follows dielectric constant 10~4 order,low dielectric loss(lower than 3.0%in the working frequency range of 1-1 000 kHz),saturation polarization intensity 10~(―1)C/m~2 order,and pyroelectric coefficient 10~(―3)C/m~2·K order.

  18. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  19. Study on the pyroelectric properties of lithium niobate wafer prepared by wafer bonding and thinning%铌酸锂晶片的键合减薄及热释电性能研究

    Institute of Scientific and Technical Information of China (English)

    杨绪军; 陈箫; 刘岗; 牛坤旺; 张文栋

    2011-01-01

    铌酸锂(LN)作为一种热释电材料,可以被用于制作光电探测器敏感单元的敏感层,但通常LN晶片厚度为0.5 mm,远大于光电敏感单元厚度的要求,所以需要用键合减薄及抛光技术对LN晶片进行加工处理.本研究所用键合减薄技术主要包含:RZJ-304光刻胶键合、铣磨、抛光、剥离液剥离和丙酮清洗RZJ-304胶.利用该技术加工得到了面积为10 mm×10 mm,厚度为50 μm,表面比较光滑,表面粗糙度为1.63 nm的LN晶片.LN晶片的热释电信号峰峰值在减薄抛光后为176 mV,是未经处理时的4倍,满足了热释电探测器敏感层的要求.%Pyroelectric material lithium niobate (LN) can be used for the preparation of sensitive layer in the sensitive element of photoelectric detector. However, as the thickness of normal LN wafer, which is 0.5 mm, is much larger than the thickness of sensitive element, LN wafer need to be processed using the thinning and polishing techniques. A novel wafer bonding and thinning technique was introduced in this study, and it mainly included: wafer bonding with RZJ-304 photoresist, grinding, polishing, separating wafers with stripper and removing photoresist with acetone. LN wafer (10mm in square) with a thickness of 50 um is prepared using this technique, and the surface of prepared LN wafer is very smooth with the surface roughness being 1.63 nm. The peak value of the pyroelectric signal of the processed LN wafer is 176 mV, which is four times that of the unprocessed wafer, fulfilling the requirements of the sensitive layer of pyroelectric detector.

  20. Study on the Interface Effects Based on Two-Dimensional Green's Functions for the Fluid and Pyroelectric Two-Phase Plane under a Line Heat Source

    Directory of Open Access Journals (Sweden)

    Peng-Fei Hou

    2014-11-01

    Full Text Available Two-dimensional Green's functions for a line heat source applied in the fluid and pyroelectric two-phase plane are presented in this paper. By virtue of the two-dimensional general solutions which are expressed in harmonic functions, six newly introduced harmonic functions with undetermined constants are constructed. Then, all the pyroelectric components in the fluid and pyroelectric two-phase plane can be derived by substituting these harmonic functions into the corresponding general solutions. And the undetermined constants can be obtained by the interface compatibility conditions and the mechanical, electric, and thermal equilibrium conditions. Numerical results are given graphically by contours.

  1. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee, E-mail: symolloi@uci.edu

    2015-04-11

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm{sup 3} Lithium Niobate (LiNbO{sub 3}) pyroelectric crystal maintained in a 3–12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  2. Development of ruthenium dioxide electrodes for pyroelectric devices based on lithium tantalate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nougaret, Laurianne [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: laurianne.nougaret@univ-montp2.fr; Combette, Philippe [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: philippe.combette@univ-montp2.fr; Arinero, Richard [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: richard.arinero@univ-montp2.fr; Podlecki, Jean [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: jean.podlecki@univ-montp2.fr; Pascal-Delannoy, Frederique [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS no 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 05 (France)]. E-mail: Frederique.delannoy@univ-montp2.fr

    2007-02-26

    The aim of this paper is the study of ruthenium dioxide (RuO{sub 2}) films, grown on low-stress silicon nitride on silicon (SiN {sub x}/Si), in order to develop thermal micro-sensors based on pyroelectric effect. The active part of these micro-sensors is constituted by a new arrangement : lithium tantalate (LiTaO{sub 3})/RuO{sub 2}/SiN{sub x}/Si. Radio-frequency (RF) sputtering is employed to deposit RuO{sub 2} on SiN {sub x}/Si substrate. Morphology, crystallinity and resistivity of RuO{sub 2} are studied as function of growth parameters. Next, RF magnetron sputtering was used to deposit LiTaO{sub 3} on this electrode. Morphology studies, pyroelectric effect and dielectric parameters obtained, indicate that RuO{sub 2} material is a suitable candidate as back electrode for LiTaO{sub 3} thin films.

  3. Flexible Polymer-on-Polymer Architecture for Piezo/Pyroelectric Energy Harvesting.

    Science.gov (United States)

    Talemi, Pejman; Delaigue, Marine; Murphy, Peter; Fabretto, Manrico

    2015-04-29

    An all polymer piezo/pyroelectric device was fabricated using β phase poly(vinylidene fluoride) (PVDF) as the active material and vapor phase polymerized (VPP) poly(3,4-ethylenedioxythiphene) (PEDOT) as the flexible electrode overlay material. Inherent problems usually associated with coating polymeric electrodes onto the low surface energy PVDF were overcome by air plasma treating the film in conjunction with utilizing the VPP technique to simultaneously synthesize and in situ deposit the PEDOT electrode. Strain measurements up to the breaking-strain of PVDF (approximately 35%) indicated that the change in R/Ro was significantly smaller for the PEDOT based electrodes compared to the platinum electrode. Plasma treatment of the PVDF film increased the level of surface oxygenated carbon species that contributed to increased surface energy, as confirmed by confirmed by contact angle measurement. The enhanced adhesion between the two polymers layers contributed to a significant increase in the measured piezoelectric output voltage from 0.2 to 0.5 V for the same strain conditions. Pyroelectric voltage outputs were obtained by placing the film onto and off of a hotplate, for temperatures up to 50 °C above ambient. Finally, as a proof of concept, a simple energy harvesting device (plastic tube with slots for mounting multiple piezo/pyro films) was fabricated. The device was able to generate a usable level of peak output current (>3.5 μA) from human inhalation and exhalation "waste energy".

  4. Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting

    Science.gov (United States)

    Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma

    2016-08-01

    Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.

  5. Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting

    Science.gov (United States)

    Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma

    2017-01-01

    Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.

  6. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  7. Optical properties of D-serine doped TGS crystals for pyroelectric sensors*

    Directory of Open Access Journals (Sweden)

    Kurlyak V.Yu.

    2015-12-01

    Full Text Available Refractive and birefringence indices in the range of transparency of 300 to 700 nm for triglycine sulphate crystals doped with D-serine molecules have been measured in the temperature range of 290 K to 340 K. The obtained optical properties are discussed together with characteristic electrical features of these materials used as pyroelectric sensors for measurement of temperature. The experimental results obtained in this study will be necessary as the reference data for comparison with the calculated refractive indices of TGS + D-serine on the basis of density functional theory. Determination of the proper position of D-serine, will reveal the features of TGS + D-serine crystal structure necessary to achieve stable unipolarity.

  8. Pyroelectric properties and conduction mechanism in solution grown glycine sodium nitrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Sinha, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Department of Electronics, SGTB Khalsa College, University of Delhi, Delhi 7 (India); Yadav, Harsh [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Kumar, Binay, E-mail: b3kumar69@yahoo.co.in [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India)

    2015-04-01

    Nonlinear optical “glycine sodium nitrate” transparent single crystals were grown from aqueous solution by the solvent evaporation technique. The ferroelectric transition temperature was determined by dielectric measurement for GSN crystal. Temperature dependent pyroelectric coefficient and figure of merit were measured. The conduction mechanism of GSN crystal has been discussed. The ln σ−E{sup 1/2} characteristic in the high-field region supports dominating the Poole–Frenkel conduction while in the low field region; there are possibility of both Richardson–Schottky and Poole–Frenkel conduction mechanism. The activation energy of GSN crystal was found to be 0.58 eV. A low value of dielectric constant and good value of the figure of merit suggest the GSN crystal more promising for IR sensing applications. Hardness value shows the stability of GSN crystal.

  9. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    2014-04-01

    Full Text Available With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  10. Scanning thermal microscopy based on a modified atomic force microscope combined with pyroelectric detection

    Science.gov (United States)

    Antoniow, J.-S.; Chirtoc, M.; Trannoy, N.; Raphael, O.; Pelzl, J.

    2005-06-01

    We propose a novel approach in scanning thermal microscopy of layered samples. The thermal probe (ThP) (Wollaston wire) acts as a local a.c. heat source at the front of a sample layer deposited on a pyroelectric (PE) sensor. The PE signal is proportional to the heat wave transmitted through the sample. The ThP and PE signals can be used to generate complementary thermal conductivity maps and with some restrictions, thermal diffusivity maps of the sample. Additionally, the topography map is obtained in the usual way from the atomic force microscope. We give the theoretical background for the interpretation of PE signal obtained at low and at high frequency, and we demonstrate that it carries information on the thermal diffusivity of a test sample (12 μm thick PET polymer sheet). Finally, we discuss the contributions of heat transfer channels between ThP and sample, and the role of contact thermal resistance.

  11. PLZT ferroelectric ceramics on the morphotropic boundary phase. Study as possible pyroelectric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pelaiz Barranco, A.; Perez Martinez, O. [Univ. de La Habana (Cuba). Inst. de Materiales y Reactivos; Calderon Pinar, F. [Univ. de La Habana (Cuba). Inst. de Materiales y Reactivos; Centro de Investigaciones en Ciencia Aplicada y Tecnologia de Avanzada (CICATA), Altamira, Tamps (Mexico)

    2001-08-16

    PLZT compositions near the morphotropic boundary phase (Zr/Ti = 53/47) were studied changing the lanthanum fraction from 0.5 to 14 at%. The grain size and the porosity due to the lanthanum addition showed an important influence on the dielectric properties of the samples. Dielectric and pyroelectric studies show that the ceramics of lower lanthanum concentrations are suitable materials for practical applications. The ceramic's response subjected to light radiation was investigated. The radiation is absorbed near the material surface and its temperature rises leading to a change in the electrical polarization of the bulk material. This phenomenon is analyzed and correlated with the absorbed light on the surface of the material. (orig.)

  12. Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: ueoewj@gmail.com; Gou, Jun; Li, Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-02-15

    Research on room temperature terahertz (THz) detector is essential for promoting the application of THz science and technology. Both lithium tantalate crystal (LiTaO{sub 3}) and lithium tantalate thin film were used to fabricate the THz detector in this paper. Polishing process were used to reduce the thickness of LiTaO{sub 3} crystal slice by chemical mechanical polishing techniques and an improved sol-gel process was used to obtain high concentration LiTaO{sub 3} precursor solution to fabricate LiTaO{sub 3} thin film. Three dimension models of two THz detectors were set up and the temperature increasing map of two devices were simulated using finite element method. The lowest noise equivalent power value for terahertz detector using pyroelectric material reaches 6.8 × 10{sup −9} W at 30 Hz operating frequency, which is suitable for THz imaging application.

  13. Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-02-01

    Full Text Available Research on room temperature terahertz (THz detector is essential for promoting the application of THz science and technology. Both lithium tantalate crystal (LiTaO3 and lithium tantalate thin film were used to fabricate the THz detector in this paper. Polishing process were used to reduce the thickness of LiTaO3 crystal slice by chemical mechanical polishing techniques and an improved sol-gel process was used to obtain high concentration LiTaO3 precursor solution to fabricate LiTaO3 thin film. Three dimension models of two THz detectors were set up and the temperature increasing map of two devices were simulated using finite element method. The lowest noise equivalent power value for terahertz detector using pyroelectric material reaches 6.8 × 10−9 W at 30 Hz operating frequency, which is suitable for THz imaging application.

  14. Piezoelectric and pyroelectric properties of Sr-doped PZT (PSZT) with minor manganese additions

    Science.gov (United States)

    Aleem, M. A.; Nawaz, H.; Shuaib, M.; Qaisar, S.; Akbar, M. S.

    2013-06-01

    A systematic study was performed to see the effect of Manganese addition and temperature gradient on the electrical properties of PSZT. Pb0.96 Sr0.04 (Zr0.52Ti0.48) O3 (PSZT) containing 0.3%, 0.5%, and 1% Mn was prepared by the sol gel method in order to ensure good stoichiometry and enhanced purity. The powders were calcined at 550 °C and sintered at 1200 °C to achieve 98% of the theoretical density. High field ac study was performed by (P-E) hysteresis measurements at different temperatures (RT, 60, 90, 120 and 150 °C) using an electric field up to 3 kV/mm. It was observed that for a lower Mn concentration P-E loops are pinched at the center while this constriction is found to decrease for greater concentrations. The optimized results were obtained for the 1 mol% of Mn content with 4 mol% of Sr. The values of Qm, k, d33 and tanδ were measured as 756, 0.38, 257 and 0.002 respectively. Higher temperatures coupled with a gradual increase of the electric field resulted in a shift of the hysteresis loops along electric field axis, indicating the presence of an internal bias field. Dependence of pyroelectric properties on applied electric field was also investigated. The value of pyroelectric coefficient was found maximum 6.25 × 10-4 (C/m2K) at 3 kV/mm.

  15. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  16. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  17. Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Kosobokov, M. S.; Mingaliev, E. A.; Karpov, V. R. [Institute of Natural Sciences, Ural Federal University, Ekaterinburg, 620000 (Russian Federation)

    2015-10-15

    The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation in congruent lithium niobate crystal was studied by in situ optical observation. Several scenarios of domain kinetics represented covering of the irradiated zone by nets of the separated domain chains and rays have been revealed. The time dependence of the total domain length was analyzed in terms of modified Kolmogorov-Avrami theory. The domain structure evolution was attributed to the action of pyroelectric field appeared during cooling. The time dependence of the spatial distribution of the pyroelectric field during pulse laser heating and subsequent cooling was calculated by finite element method. The results of computer simulation allowed us to explain the experimental results and can be used for creation of tailored domain structures thus opening the new abilities of the submicron-scale domain engineering in ferroelectrics.

  18. Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating

    Directory of Open Access Journals (Sweden)

    V. Ya. Shur

    2015-10-01

    Full Text Available The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation in congruent lithium niobate crystal was studied by in situ optical observation. Several scenarios of domain kinetics represented covering of the irradiated zone by nets of the separated domain chains and rays have been revealed. The time dependence of the total domain length was analyzed in terms of modified Kolmogorov-Avrami theory. The domain structure evolution was attributed to the action of pyroelectric field appeared during cooling. The time dependence of the spatial distribution of the pyroelectric field during pulse laser heating and subsequent cooling was calculated by finite element method. The results of computer simulation allowed us to explain the experimental results and can be used for creation of tailored domain structures thus opening the new abilities of the submicron-scale domain engineering in ferroelectrics.

  19. A numerical investigation on exergy analyses of a pyroelectric tryglycine sulfate (TGS)-based solar energy harvesting system

    Science.gov (United States)

    Sharma, Manish; Vaish, Rahul; Singh Chauhan, Vishal

    2016-02-01

    This study is based on a numerical demonstration of energy and exergy analyses of a solar energy harvesting system based on the pyroelectric effect. The performance of a tryglycine sulfate (TGS) single crystal was investigated mathematically in the present study. The power output was optimized for different load resistances and load capacitances. The maximum power output was obtained as 0.95 μW across a load resistance of 40 MΩ and a 4.7 μF load capacitor. Further exergy analysis was performed for a pyroelectric energy harvesting system. Maximum values for electrical and thermal exergies obtained are 0.12 μW and 12 mW, respectively. Furthermore the maximum obtained electrical and thermal exergy efficiencies are 0.000 037% and 3.6%, respectively. The average thermal exergy efficiency is 2.15% for a cycle frequency of 0.014 Hz.

  20. Real-time continuous-wave imaging with a 1.63THz OPTL and a pyroelectric camera

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; RUAN Shuang-chen; ZHANG Min; ZHANG Wei

    2008-01-01

    Real-time continuous-wave terahertz imaging is demonstrated with a 1.63 THz (184.31 μm) optically-pumped terahertz laser (OPTL) and a 124 × 124 element room-temperature pyroelectric camera. Transmission-mode THz imaging is presented for the samples hidden in various wrapping materials. These experimental results reveal the possibility to construct a simple real-time THz imaging system applied to nondestructive inspection.

  1. Pyroelectric and electrocaloric effect of <1 1 1>-oriented 0.9PMN-0.1PT single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Luo Laihui, E-mail: llhsic@126.com [Department of Physics, Ningbo University, Ningbo 315211 (China); Chen Hongbing [Institute of Materials Science and Engineering, Ningbo University, Ningbo 315211 (China); Zhu Yuejin; Li Weiping [Department of Physics, Ningbo University, Ningbo 315211 (China); Luo Haosu [Shanghai Institute of ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang Yuepin [Department of Physics, Ningbo University, Ningbo 315211 (China)

    2011-08-11

    Highlights: > Here, we use indirect method to measure pyroelectric and electrocaloric effect. > The largest temperature change achieves {approx}1 deg. C with a small field change. > The mechanism of electrocaloric effect of PMN-PT is explained. > The largest ({partial_derivative}P/{partial_derivative}T){sub E} value achieves -0.5 {mu}C/cm{sup 2} K. > PMN-PT has excellent pyroelectric effect. - Abstract: In this paper, the polarization vs. electric field hysteresis loops of <1 1 1>-oriented 0.9PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}-0.1PbTiO{sub 3} (0.9PMN-0.1PT) single crystal at different temperatures (20-110 deg. C) were measured. The adiabatic temperature change {Delta}T of <1 1 1>-oriented 0.9PMN-0.1PT single crystal due to the application or withdraw of electric field were calculated through the thermodynamic relation. The largest temperature change {Delta}T achieves {approx}1 K with only a change of 40 kV/cm electric field, the mechanism of the electrocaloric effect (ECE) is discussed for 0.9PMN-0.1PT crystal. The pyroelectric coefficient of 0.9PMN-0.1PT under bias field was calculated according to the data of hysteresis loop. The result shows that 0.9PMN-0.1PT have large pyroelectric coefficient under bias field, the largest ({partial_derivative}P/{partial_derivative}T){sub E} value achieves -0.5 {mu}C/cm{sup 2} K.

  2. Ionization Mechanism of the Ambient Pressure Pyroelectric Ion Source (APPIS) and Its Applications to Chemical Nerve Agent Detection

    OpenAIRE

    Neidholdt, Evan L.; Beauchamp, J. L.

    2009-01-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions su...

  3. Investigation of the effect of noise on the operation of the charge sensitive amplifier with compensated pyroelectric interference

    Directory of Open Access Journals (Sweden)

    Starcev V. I.

    2015-08-01

    Full Text Available The authors consider the problems that arise during the operation of the charge sensitive amplifier (CSA in critical conditions. Simplified schemes and mathematical models of the CSA are presented in order to study the effect of noise of operational amplifier and high-resistance resistor of negative feedback loop. The dependence of the CSA noise level on the pyroelectric interference compensation value is studied. Mathematical analysis data is confirmed by computer circuit simulation.

  4. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  5. Characterisation and Modelling of Meshed Electrodes on Free Standing Polyvilylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Harvesting.

    Science.gov (United States)

    Zabek, Daniel; Taylor, John; Bowen, Chris

    2016-09-05

    Flexible pyroelectric energy generators provide unique features for harvesting temperature fluctuations which can be effectively enhanced using meshed electrodes that improve thermal conduction, convection and radiation into the pyroelectric. In this paper, thermal radiation energy is continuously harvested with pyroelectric free standing Polyvilylidene Difluoride (PVDF) films over a large number of heat heat cycles using a novel micro-sized symmetrical patterned meshed electrode. It is shown that, for the meshed electrode geometries considered in this work, the polarisation-field (P-E), current-field (I-E) characteristics and device capacitance are unaffected since the fringing fields were generally small; this is verified using numerical simulations and comparison with experimental measurements. The use of meshed electrodes has been shown to significantly improve both the open circuit voltage (16 V to 59 V) and closed-circuit current (9 nA to 32 nA). The pyroelectric alternating current (AC) is rectified for direct current (DC) storage and 30% reduction in capacitor charging time is achieved by using the optimum meshed electrodes. The use of meshed electrodes on ferroelectric materials provides an innovative route to improve their performance in applications such as wearable devices, novel flexible sensors and large scale pyroelectric energy harvesters.hese instructions give you guidelines for preparing papers for IEEE Transactions and Journals. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further at IEEE. Paper titles should be written in uppercase and lowercase letters, not all uppercase. Avoid writing long formulas with subscripts in the title; short formulas that identify the elements are fine (e.g., "Nd-Fe-B"). Do not write "(Invited)" in the title. Full names of authors are preferred in the author field, but are not

  6. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  7. Enhance the Pyroelectricity of Polyvinylidene Fluoride by Graphene-Oxide Doping

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2014-04-01

    Full Text Available The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  8. A travelling photothermal technique employing pyroelectric detection to measure thermal diffusivity of films and coatings

    Science.gov (United States)

    Philip, J.; Manjusha, M. V.; Soumya, H.

    2011-10-01

    A travelling thermal wave technique employing optical excitation and pyroelectric detection of thermal waves propagating along a material film/coating on a substrate is described. The method enables direct measurement of thermal diffusivity. The technique involves measurement of the phase lag undergone by an optically excited thermal wave as it propagates along the coating. The set up has been automated for convenient and fast data acquisition and analysis. The technique has been adapted to measurement of thermal diffusivity of a commercial paint sample coated on glass and copper substrates. It is found that thermal diffusivity of the coating is independent of the thermal conductivity of the substrate. Dependence of thermal diffusivity on coating thickness shows exponential increase, with value reaching a constant at a characteristic high thickness. Measurements have been carried out on a few other samples with wide variations in thermal diffusivity, and the results compared with available reports or results obtained following other techniques. Analyses of the results show that the technique allows measurement of thermal diffusivity of coatings and films with uncertainties better than ±2.5%.

  9. Influence of Surface Transition Layers on Phase Transformation and Pyroelectric Properties of Ferroelectric Thin Film

    Institute of Scientific and Technical Information of China (English)

    SUN Pu-Nan; L(U) Tian-Quan; CHEN Hui; CAO Wen-Wu

    2008-01-01

    Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding bulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.

  10. Reversible Switching of Icing Properties on Pyroelectric Polyvenylidene Fluoride Thin Film Coatings

    Directory of Open Access Journals (Sweden)

    Dirk Spitzner

    2015-10-01

    Full Text Available In this work a new approach for ice repellent coatings is presented. It was shown that the coatings cause a decrease or increase in the freezing temperature of water depending on the alignment of an external electric field. For this coating the commonly used pyroelectric polymer polyvenylidene fluoride was deposited as a thin film on glass. The samples were dip-coated and subsequently thermally-treated at 140 °C for 1 h. All samples were found to cause a reduction of the icing temperature of water on their surface in comparison to uncoated glass. On several samples an external electric field was applied during this thermal treatment. The field application was found to cause a remarkable reduction of the icing temperature where a maximum lowering of the freezing temperature of 3 K compared to uncoated glass could be achieved. The actual achieved reduction of the icing temperature was observed to depend on the polarity of the field applied during the thermal treatment. Furthermore, a repetition of the thermal treatment under oppositely directed electric fields led to a switchable freezing behavior of water according to the direction of the applied field. With an increasing number of cycles of switching of the icing property a slight training effect towards lower freezing temperatures was observed.

  11. Metal Detectors.

    Science.gov (United States)

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  12. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  13. Optical damage in reduced Z-cut LiNbO{sub 3} crystals caused by longitudinal photovoltaic and pyroelectric effects

    Energy Technology Data Exchange (ETDEWEB)

    Kostritskii, S. M. [RPC Optolink, Sosnovaya al., d. 6 A, str.2, NPL-3-1, Zelenograd, Moscow, 124489 (Russian Federation); Aillerie, M. [LMOPS, University Paul Verlaine of Metz and Supelec, 2 rue E. Belin, 57070 Metz (France)

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO{sub 3} crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the {+-}Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  14. Pyroelectric property of novel LiTa3O8 thin film prepared by sol-gel methods

    Science.gov (United States)

    Zhang, De-Yin

    2009-05-01

    A novel sol-gel derived LiTa3O8 film sample was prepared on the Pt/Ti/SiO2/Si(100) substrate using the lithium ethoxide and tantalum ethoxide as starting materials. The 0.2mol/L sol of LiTa3O8 was prepared by reacting lithium ethoxide with tantalum ethoxide in 2-methoxyethanol and acetic acid in argon atmosphere to prevent humidity. The sol of LiTa3O8 was firstly diluted to 0.1mol/L and then covered on the Pt/Ti/SiO2/Si(100) substrate to form wet film with the condition of the spin-coating speed of 3000~7000 r.p.m. for 30~60 second. Pyrolysis of the prepared wet film was carried out in oxygen atmosphere at temperature of 420~450ºC for 2~5 min to remove the residual organics. Annealing of the prepared film was performed at temperature of 750~900ºC for 2~4 min in the rapid thermal process furnace to crystallize the prepared film layer. More layers of LiTa3O8 film can be added by repeating the spin-coating and pyrolysis steps prior to the final firing. It was found that up to 18 layers of LiTa3O8 film sample can be deposited before the films begin to exhibit signs of cracking. The performance parameters such as orientation, surface morphology, grain size and thickness of the prepared LiTa3O8 film sample were studied by XRD and SEM. The structure of the LiTa3O8 film is similar to orthorhombic, different from LiTaO3 film based on XRD pattern. The SEM micrograph reveals that the prepared LiTa3O8 film sample is uniform, smooth and crack-free on the surface with a thickness of 1 µm after crystallized at 750ºC. The pyroelectric property of the LiTa3O8 film sample was measured by the home-made water-bath heating pyroelectric coefficient measurement system. The measurement result shows that the novel LiTa3O8 film sample has pyroelectric property and its pyroelectric coefficient is 14.07μC/m2K after the sample is subjected to the DC poling of 6V, 15min. The experimental results verify the pyroelectric coefficient of the novel LiTa3O8 film is smaller than that of

  15. Design of Pyroelectric Infrared Alarm System%热释电红外报警系统设计

    Institute of Scientific and Technical Information of China (English)

    尚小燕; 姜旭; 武继安

    2012-01-01

    Based on the working principle of pyroelectric infrared sensor,the passive pyroelectric infrared alarm system is designed for safety of residence house to detect whether outsiders enter or not.This system was made of pyroelectric infrared sensor,Fresnel lens and monitoring circuits.Infrared signal processor BISS0001 was chosen,amplifying and filtering circuits and infrared signal processing circuit were designed on basis of the concealment of infrared,then the voice chip was utilized to simulate alarm voice for warning thieves and burglars.After many experiments,it represented that the system has sensitive response,high anti-interference ability and safe and reliable performance.%基于热释电红外传感器的工作原理,设计了一种被动式热释电红外报警器。主要用于家居安全,探测有无外人闯入。该系统由热释电红外传感器、菲涅尔透镜和监控电路组成。系统把红外线的隐蔽性很好地应用于电路中,选用了新一代红外信号处理器BISS0001,设计了放大滤波电路,红外信号处理电路,并加入语音芯片,模拟警笛声音,达到防盗目的。经多次实验,该系统反应灵敏,抗干扰能力强,安全可靠。

  16. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-01

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z0.5-T0.5)) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  17. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects.

    Science.gov (United States)

    Wang, Shuhua; Wang, Zhong Lin; Yang, Ya

    2016-04-20

    A hybridized nanogenerator is demonstrated, which has the structure of PVDF nanowires-PDMS composite film/indium tin oxide (ITO) electrode/polarized PVDF film/ITO electrode, and which can individually/simultaneously scavenge mechanical and thermal energies using piezoelectric, triboelectric, and pyroelectric effects. As compared with the individual energy harvesting unit, the hybridized nanogenerator has a much better charging performance. This work may push forward a significant step toward multienergy harvesting technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 新型热释电材料及其在红外探测器中的应用%Novel pyroelectric materials and their applications in high performance infrared devices

    Institute of Scientific and Technical Information of China (English)

    刘林华; 罗豪甦; 吴啸; 赵祥永; 方家熊; 李言瑾; 邵秀梅; 景为平

    2011-01-01

    以(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3{PMNT[(1-x)/x}为代表的大尺寸、高质量弛豫铁电单晶具有非常高的热释电系数、探测优值和较低的热扩散系数,其综合热释电性能远优于传统的热释电材料.概述了PMNT[(1-x)/x]单晶、掺锰PMNT(74/26)单晶和0.42Pb(In1/2Nb1/2)O3-0.3Pb(Mg1/3NB2/3)O3-0.28PbTiO3[PIMNT(42/30/28)]单晶的介电性能、铁电性能和热释电性能.掺杂后PMNT(74/26)单晶的介电损耗降低到0.0005,探测优值提高到40.2×10-5Pa-1/2,是目前所有三方四方相变温度(TRT)高于90℃的本征热释电材料中最高的.高居里温度PIMNT(42/30/28)单晶的TRT达到152℃,且具有较高的探测优值(10.2×10-5Pa-1/2),将在更宽温度范围内得到广泛的应用.制作了基于掺锰PMNT(74/26)单晶的单元探头,其比探测率D*达到1.07×109cmHz1/2W-1,是目前商用LiTaO3探测器的两倍,器件性能满足实用要求.%The large-size, high-quality relaxor-based ferroelectric single crystals represented by(1-x)Pb (Mg1/3Nb2/3) O3-xPbTiO3 {PMNT [(1-x)/x] } perform very high pyroelectric coefficient, detectivity figures of merit and relatively low thermal diffusivity, which makes its comprehensive pyroelectric properties far superior to the traditional pyroelectric materials. The dielectric, ferroelectric and pyroelectric properties of the PMNT [(1-x)/x], Mn-doped PMNT (74/26) and 0.42Pb(In1/2Nb1/2)O3-0.3Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 [PIMNT(42/30/28)] single crystals were overviewed. The dielectric loss of Mn-doped PMNT(74/26) crystals was declined to 0.0005, and the detectivity figures of merit was enhanced to 40.2×10-5 Pa-1/2, which was the highest value so far reported among intrinsic pyroelectric materials with TRr higher than 90 ℃. HighCurie-temperature PIMNT (42/30/28) crystals with TRT of 152 ℃, employed relatively high detectivity figures of merit (10.2×l0-5 Pa-1/2), would be widely used in a wider temperature range. The specific detectivity of infrared detector based

  19. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  20. Tunable liquid microlens array driven by pyroelectric effect: full interferometric characterization

    Science.gov (United States)

    Miccio, Lisa; Grilli, Simonetta; Vespini, Veronica; Ferraro, Pietro

    2008-09-01

    Liquid lenses with adjustable focal length are of great interest in the field of microfluidic devices. They are, usually, realized by electrowetting effect after electrodes patterning on a hydrofobic substrate. Applications are possible in many fields ranging from commercial products such as digital cameras to biological cell sorting. We realized an open array of liquid lenses with adjustable focal length without electrode patterning. We used a z-cut Lithium Niobate crystal (LN) as substrate and few microliters of an oily substance to obtain the droplets array. The spontaneous polarization of LN crystals is reversed by the electric field poling process, thus enabling the realization of periodically poled LN (PPLN) crystals. The substrate consists of a two-dimensional square array of reversed domains with a period around 200 μm. Each domain presents an hexagonal geometry due to the crystal structure. PPLN is first covered by a thin and homogeneous layer of the above mentioned liquid and therefore its temperature is changed by means of a digitally controlled hot plate. During heating and cooling process there is a rearrangement of the liquid layer until it reaches the final topography. Lenses formation is due to the superficial tension changing at the liquid-solid interface by means of the pyroelectric effect. Such effect allows to create a two-dimensional lens pattern of tunable focal length without electrodes. The temporal evolution of both shape and focal length lenses are quantitatively measured by Digital Holographic Microscopy. Array imaging properties and quantitative analysis of the lenses features and aberrations are presented.

  1. Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Nidhi [Department of Electronics, SGTB Khalsa College, University of Delhi, Delhi-110007 (India); Goel, Neeti; Singh, B.K.; Gupta, M.K. [Crystal Lab, Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Kumar, Binay, E-mail: bkumar@physics.du.ac.in [Crystal Lab, Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2012-06-15

    Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (T{sub c}) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications. - Graphical abstract: Dye doping in TGS crystal resulted in hourglass morphology, increased hyper-luminescence intensity, improved T{sub c} and figure of merit. Highlights: Black-Right-Pointing-Pointer Amaranth dye doping in TGS crystals resulted in hourglass morphology. Black-Right-Pointing-Pointer Doping resulted in enhancement of Curie temperature from 49 to 53 Degree-Sign C. Black-Right-Pointing-Pointer Low cut off (230 nm) and wider transmittance window observed. Black-Right-Pointing-Pointer Strong hyper-luminescent emission bands at 350 and 375 nm were observed. Black-Right-Pointing-Pointer High and uniform figure of merit in ferroelectric phase was obtained.

  2. Light-Triggered Pyroelectric Nanogenerator Based on a pn-Junction for Self-Powered Near-Infrared Photosensing.

    Science.gov (United States)

    Wang, Xingfu; Dai, Yejing; Liu, Ruiyuan; He, Xu; Li, Shuti; Wang, Zhong Lin

    2017-08-22

    A nanogenerator, as a self-powered system, can operate without an external power supply for energy harvesting, signal processing, and active sensing. Here, near-infrared (NIR) photothermal triggered pyroelectric nanogenerators based on pn-junctions are demonstrated in a p-Si/n-ZnO nanowire (NW) heterostructure for self-powered NIR photosensing. The pyroelectric-polarization potential (pyro-potential) induced within wurtzite ZnO NWs couples with the built-in electric field of the pn-junction. At the moment of turning on or off the NIR illumination, external current flow is induced by the time-varying internal electric field of the pn-heterostructure, which enables a bias-free operation of the photodetectors (PDs). The NIR PD exhibits a high on/off photocurrent ratio up to 10(7) and a fast photoresponse component with a rise time of 15 μs and a fall time of 21 μs. This work provides an unconventional strategy to achieve active NIR sensing, which may find promising applications in biological imaging, optoelectronic communications, and optothermal detections.

  3. Dielectric and Pyroelectric Properties of (Pb0.50Sr0.50)TiO3 Ceramics

    Institute of Scientific and Technical Information of China (English)

    JIANG Yan-Ping; TANG Xin-Gui; LIU Qiu-Xiang; ZHOU Yi-Chun; CHANWONG Lai-Wa

    2008-01-01

    @@ Lead strontium titanate (Pb0.50Sr0.50)TiO3 (PST) ceramics are prepared by the traditional ceramic processing. The dielectric constants and dielectric loss have been investigated in a temperature range from 25℃ to 300℃. The maximum dielectric constants for unpoled and poled samples are 9924 and 9683, respectively. The temperatures of phase transition for unpoled and poled samples are observed at 153℃ and 157℃, respectively. The phase-transition temperatures for unpoled and poled samples are not equal, which results from the polarization state of the domains. The remnant polarization and the coercive electric field are 18 μC/cm2 and 6 k V/cm, respectively, from polarization-electric field (P- E) hysteresis loop. The temperature dependence of pyroelectric coefficients of the PST ceramics is measured by a dynamic technique. The dielectric constant and loss tan 5 of the poled PST ceramics are 813 and 0.010, respectively. The pyroelectric coefficients and figure of merit are 294 μC/cm2 K and 13.6 × 10-6 Pa-0.5, respectively, at room temperature 25℃ and frequency 100 Hz.

  4. Research on Spectral Response of an Infrared Detector%红外探测器光谱响应测量研究

    Institute of Scientific and Technical Information of China (English)

    陈亚卓; 秦玉伟

    2013-01-01

    A spectral response system for infrared detector is designed.The principle of the system is also analyzed.The spectral response experiment of the pyroelectricity detector is performed with different temperature and frequency The experiment result shows that the response of the pyroelectricity detector to infrared radiation is different,but the change trend curve of the voltage is similar.The theory of the infrared detector is thereby verified.The system has high measurement accuracy and stability,which can suppress the disturbance signal effectively and improve the signal-to-noise ratio of the system.%设计了一个红外探测器的光谱响应测试系统,并对系统原理进行了分析.对不同温度和频率情况下的热释电探测器进行光谱响应实验.实验结果表明,热释电探测器对红外辐射信号的响应不同,但电压变化曲线的趋势基本一致,从而验证了红外探测器光谱响应理论.该设计能有效抑制系统的干扰信号,提高信噪比,具有测量精度高、稳定性好的优点.

  5. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  6. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  7. XMASS detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Nishiie, H; Ogawa, H; Oka, N; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Nishitani, Y; Masuda, K; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2013-01-01

    The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  8. XMASS detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-11

    The XMASS project aims to detect dark matter, pp and {sup 7}Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  9. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.

    Science.gov (United States)

    Zeqiri, Bajram; Zauhar, Gordana; Hodnett, Mark; Barrie, Jill

    2011-05-01

    Progress in developing a new measurement method for ultrasound output power is described. It is a thermal-based technique with the acoustic power generated by a transducer being absorbed within a specially developed polyurethane rubber material, whose high absorption coefficient ensures energy deposition within a few mm of the ultrasonic wave entering the material. The rate of change of temperature at the absorber surface is monitored using the pyroelectric voltage generated from electrodes disposed either side of a 60 mm diameter, 0.061 mm thick membrane of the piezoelectric polymer polyvinylidene fluoride (pvdf) bonded to the absorber. The change in the pyroelectric output voltage generated by the sensor when the transducer is switched ON and OFF is proportional to the delivered ultrasound power. The sensitivity of the device is defined as the magnitude of these switch voltages to a unit input stimulus of power (watt). Three important aspects of the performance of the pyroelectric sensor have been studied. Firstly, measurements have revealed that the temperature dependent sensitivity increases over the range from approximately 20°C to 30°C at a rate of +1.6% °C(-1). Studies point to the key role that the properties of both the absorbing backing layer and pvdf membrane play in controlling the sensor response. Secondly, the high sensitivity of the technique has been demonstrated using an NPL Pulsed Checksource, a 3.5 MHz focused transducer delivering a nominal acoustic power level of 4 mW. Finally, proof-of-concept of a new type of acoustic sensor responding to time-averaged intensity has been demonstrated, through fabrication of an absorber-backed hydrophone of nominal active element diameter 0.4 mm. A preliminary study using such a device to resolve the spatial distribution of acoustic intensity within plane-piston and focused 3.5 MHz acoustic fields has been completed. Derived beam profiles are compared to conventional techniques that depend on deriving

  10. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  11. The simulation curves of TSG and GTGS pyroelectric crystals by thermodynamics model%TGS和GTGS热释电晶体的热力学模型模拟曲线

    Institute of Scientific and Technical Information of China (English)

    胡文成; 杨传仁; 张万里; 廖希异

    2005-01-01

    Based on the thermodynamics theory of Devonshire, the polarization equation of pyroelectric crystal with the temperature was established under zero electric field. The equation of the pyroelectric coefficient with the temperature was established by the definition of pyroelectric coefficient and the derivation of polarization equation. The trend lines of spontaneous polarization and pyroelectric coefficient with the temperature and other coefficient are described. The simulation shows that our model and expression formula for pyroelectric crystals are in accordance with the experiment results of triglycine sulphate (TGS) and glycocyamine doped TGS (GTGS) pyroelectric crystals.%通过热力学推导,建立了零电场下热释电晶体的极化与温度的方程.由热释电系数的定义,对热释电晶体的极化方程对温度求导,得出由热力学模型建立的热释电方程.并对热释电晶体硫酸三甘氨酸(TGS)和掺胍TGS(GLTGS)的实验曲线进行了模拟,该理论基本符合.

  12. Growth and characterization of crystals for room temperature I.R. detectors and second harmonic generation devices

    Science.gov (United States)

    Lal, R. B.

    1995-01-01

    One of the major objectives of this program was to modify the triglycine sulfate (TGS) crystals with suitable dopants and variants to achieve better pyroelectric properties and improved infrared detectivities (D(sup *)), and higher Curie transition temperature compared to undoped TGS crystals. Towards these objectives, many promising dopants, both inorganic and organic, were investigated in the last few years. These dopants gave significant improvement in the D(sup *) value of the infrared detectors fabricated from the grown crystals with no significant increase in the Curie temperature (49 C). The IR detectors were fabricated at EDO/Barnes Engineering Division, Shelton, CT. In the last one year many TGS crystals doped with urea were grown using the low temperature solution crystal growth facility. It is found that doping with urea, the normalized growth yield increased significantly compared to pure TGS crystals and there is an improvement in the pyroelectric and dielectric constant values of doped crystals. This gave a significant increase in the materials figure of merits. The Vicker's hardness of 10 wt percent urea doped crystals is found to be about three times higher in the (010) direction compared to undoped crystals. This report describes in detail the results of urea doped TGS crystals.

  13. CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance

    Science.gov (United States)

    Rakita, Yevgeny; Meirzadeh, Elena; Bendikov, Tatyana; Kalchenko, Vyacheslav; Lubomirsky, Igor; Hodes, Gary; Ehre, David; Cahen, David

    2016-05-01

    To experimentally (dis)prove ferroelectric effects on the properties of lead-halide perovskites and of solar cells, based on them, we used second-harmonic-generation spectroscopy and the periodic temperature change (Chynoweth) technique to detect the polar nature of methylammonium lead bromide (MAPbBr3). We find that MAPbBr3 is probably centrosymmetric and definitely non-polar; thus, it cannot be ferroelectric. Whenever pyroelectric-like signals were detected, they could be shown to be due to trapped charges, likely at the interface between the metal electrode and the MAPbBr3 semiconductor. These results indicate that the ferroelectric effects do not affect steady-state performance of MAPbBr3 solar cells.

  14. CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance

    Directory of Open Access Journals (Sweden)

    Yevgeny Rakita

    2016-05-01

    Full Text Available To experimentally (disprove ferroelectric effects on the properties of lead-halide perovskites and of solar cells, based on them, we used second-harmonic-generation spectroscopy and the periodic temperature change (Chynoweth technique to detect the polar nature of methylammonium lead bromide (MAPbBr3. We find that MAPbBr3 is probably centrosymmetric and definitely non-polar; thus, it cannot be ferroelectric. Whenever pyroelectric-like signals were detected, they could be shown to be due to trapped charges, likely at the interface between the metal electrode and the MAPbBr3 semiconductor. These results indicate that the ferroelectric effects do not affect steady-state performance of MAPbBr3 solar cells.

  15. Large pyroelectric and thermal expansion coefficients in the [(CH3)2NH2]Mn (HCOO)3 metal-organic framework

    Science.gov (United States)

    Ma, Yinina; Cong, Junzhuang; Chai, Yisheng; Yan, Liqin; Shang, Dashan; Sun, Young

    2017-07-01

    The [(CH3)2NH2]Mn(HCOO)3 perovskite metal-organic framework exhibits a first-order ferroelectric phase transition with a high polarization at Tc ˜ 192 K, induced by the order-disorder transition of hydrogen bonds. Accompanying this sharp phase transition, a huge pyroelectric coefficient with a peak value of 5.16 × 10-2 C/m2 K is detected. In addition, there is a large lattice expansion along the [012] direction at Tc, resulting in a giant linear thermal expansion coefficient as high as 35 000 ppm/K. These striking results indicate that ferroelectric metal-organic frameworks combing both merits of inorganic and organic compounds hold a great potential in generating superior pyroelectric and thermal expansion properties.

  16. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong, E-mail: yong.ding@mse.gatech.edu; Liu, Ying; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2014-10-21

    When ZnO nanobelts are exposed to a high-dose electron probe of several nanometers to hundred nanometers in diameter inside a transmission electron microscope, due to the radiolysis effect, part of oxygen atoms will be ejected into the vacuum and leaving a Zn-ion rich surface with a pit appearance at both the electron-entrance and electron-exit surfaces. At the same time, a temperature distribution is created around the electron probe due to local beam heating effect, which generates a unidirectional pyroelectric field. This pyroelectric field is strong enough to drive Zn ions moving along its positive c-axis direction as interstitial ions. In the first case, for the ZnO nanobelts with c-axis lie in their large surfaces, defects due to the aggregation of Zn interstitial ions will be formed at some distances of 30–50 nm approximately along the c-axis direction from the electron beam illuminated area. Alternatively, for the ZnO nanobelts with ±(0001) planes as their large surfaces, the incident electron beam is along its c-axis and the generated pyroelectric field will drive the interstitial Zn-ions to aggregate at the Zn terminated (0001) surface where the local electrical potential is the lowest. Such electron beam induced damage in ZnO nanostructures is suggested as a result of Zn ion diffusion driven by the temperature gradient induced pyroelectric field along c-axis. Our study shows a radiation damage caused by electron beam in transmission electron microscopy, especially when the electron energy is high.

  17. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Science.gov (United States)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  18. Investigation on crystalline perfection, optical transmittance, birefringence, temperature-dependent refractive index, laser damage threshold and pyroelectric characteristics of inversely soluble lithium sulfate monohydrate single crystals

    Science.gov (United States)

    Silambarasan, A.; Rajesh, P.; Bhatt, Rajeev; Bhaumik, Indranil; Karnal, A. K.; Ramasamy, P.; Gupta, P. K.

    2016-08-01

    Bulk prismatic lithium sulfate monohydrate (LSMH) single crystals were grown by seed rotation with slow heating method from aqueous solution. Small FWHM obtained from high-resolution X-ray diffraction spectrum shows that the crystals grown by this method have less defects and absence of low-angle grain boundaries. The high transmittance and low reflectance nature of the grown crystal was observed using UV-Vis-NIR spectrometer. The principal refractive indices of a LSMH crystal have been measured by a prism coupling method for the wavelengths of 0.407, 0.532, 0.828, 1.064 and 1.551 µm at room temperature, and Sellmeier equations are determined from the fitting of the data point. The refractive index data confirm that LSMH crystal is negative biaxial and the optic axis lies in YZ plane with an angle (2 V y ) of 51.74° with respect to y axis at 532 nm wavelength. The thermo-optic coefficients were determined from the temperature-dependent refractive indices measured in the range of 30-125 °C for the wavelengths of 532 and 1064 nm. The surface laser damage threshold studies reveal the higher optical radiation stability against 532-nm laser. The pyroelectric coefficients and pyroelectric figure of merit were determined from the pyroelectric current measurement by the Byer and Roundy method.

  19. Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-Pyroelectric Nanogenerator under Harsh Environments.

    Science.gov (United States)

    Ko, Young Joon; Kim, Dong Yeong; Won, Sung Sik; Ahn, Chang Won; Kim, Ill Won; Kingon, Angus I; Kim, Seung-Hyun; Ko, Jae-Hyeon; Jung, Jong Hoon

    2016-03-01

    In spite of extremely high piezoelectric and pyroelectric coefficients, there are few reports on flexible ferroelectric perovskite film based nanogenerators (NGs). Here, we report the successful growth of a flexible Pb(Zr0.52Ti0.48)O3 (PZT) film and its application to hybrid piezoelectric-pyroelectric NG. A highly flexible Ni-Cr metal foil substrate with a conductive LaNiO3 bottom electrode enables the growth of flexible PZT film having high piezoelectric (140 pC/N) and pyroelectric (50 nC/cm(2)K) coefficients at room temperature. The flexible PZT-based NG effectively scavenges mechanical vibration and thermal fluctuation from sources ranging from the human body to the surroundings such as wind. Furthermore, it stably generates electric current even at elevated temperatures of 100 °C, relative humidity of 70%, and pH of 13 by virtue of its high Curie temperature and strong resistance for water and base. As proof of power generation under harsh environments, we demonstrate the generation of extremely high current at the exhaust pipe of a car, where hot CO and CO2 gases are rapidly expelled to air. This work expands the application of flexible PZT film-based NG for the scavenging mechanical vibration and thermal fluctuation energies even at extreme conditions.

  20. Effect of Misfit Strain on Pyroelectric Properties of (111) Oriented Pb(Zr1-x Ti x ) O3 Thin Films

    Science.gov (United States)

    Qiu, Jian-Hua; Chen, Zhi-Hui; Wang, Xiu-Qin; Yuan, Ning-Yi; Ding, Jian-Ning

    2016-10-01

    Based on the Landau-Dovenshire theory, the thermodynamic potential of (111) oriented films is constructed to investigate the pyroelectric properties of Pb(Zr1-xTix) O3 thin films. Due to the presence of nonlinear coupling terms resulted from the (111) epitaxy with substrates, the effects of misfit strain and electric field on the phase transitions at room temperature are more complex than that of (001) and (110) oriented films. Pb(Zr0.5Ti0.5) O3 thin films with the Ti composition around the morphotropic phase boundary (MPB) have the giant dielectric and pyroelectric properties. Moreover, Pb(Zn1-xTix) O3 thin films grown on the tensile substrates which induce the triclinic γ phase have the larger dielectric and pyroelectric properties than that on the compressive substrates. Therefore, the physical properties of (111) oriented Pb(Zr1-xTix) O3 thin films can be adjusted by choosing the suitable substrates. Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the research fund of Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Major Projects of Natural Science Research in Jiangsu Province under Grant Nos. 15KJA43002, 16KJD430006, and also sponsored by Qing Lan Project of Education Department of Jiangsu Province

  1. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  2. Pyroelectric properties of the monoclinic rare earth nitrates A{sub 2}Ln(NO{sub 3}){sub 5}.4H{sub 2}O (A = NH{sub 4}, Rb; Ln = La, Ce)

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Matthias; Andersen, Lionel; Becker, Petra; Bohaty Ladislav [Koeln Univ. (Germany). Inst. fuer Kristallographie

    2015-07-01

    The pyroelectric effect of four isomorphic monoclinic (space group Cc), non-ferroelectric rare earth nitrates A{sub 2}Ln(NO{sub 3}){sub 5}.4H{sub 2}O (A = NH{sub 4}, Rb; Ln = La, Ce) was investigated in the temperature range between 100 K and 300 K, using a home-made continuous-flow cryostat for measurements of pyroelectric currents. The symmetry-allowed temperature-dependent change of orientation of the pyroelectric vector p within the mirror plane is unusually large, showing a rotation of p of 148 , 129 , 36 and 40 for (NH{sub 4}){sub 2}La(NO{sub 3}){sub 5}.4H{sub 2}O, (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 5}.4H{sub 2}O, Rb{sub 2}La(NO{sub 3}){sub 5}.4H{sub 2}O and Rb{sub 2}Ce(NO{sub 3}){sub 5}.4H{sub 2}O, respectively, while changing the temperature from 100 K to 300 K in each case. The pyroelectric coefficients are up to ten times larger than p{sub 3} of tourmaline. In addition, new data of the pyroelectric coefficients of Li{sub 2}SO{sub 4}.H{sub 2}O and BiB{sub 3}O{sub 6} and their temperature dependence are given.

  3. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  4. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  5. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  6. The Design of Outdoor Passive Infrared Detector%户外被动红外探测器的设计

    Institute of Scientific and Technical Information of China (English)

    谢白玉

    2013-01-01

    This paper introduced the structure theory and application circuit of a passive-type pyroelectric infrared detector. This circuit possesses certain practical application value. The core part of this type control circuit is pyroelectric infrared sensor,which mainly uses its infrared radiation and infrared detection characteristic. This circuit uses the hidden nature of infrared to the warning systems. Thus,it realizes the function of burglar alarm and achieves the purpose of security protection.%本文主要介绍了一种被动式红外探测器的结构原理及其应用电路,此电路具有一定的实际应用价值。该类型控制电路的核心器件为热释电红外传感器,并且主要利用了它的红外辐射和红外探测的特性。这种电路把红外线的隐蔽性很好地应用于报警系统之中,从而实现了防盗报警功能,达到了安全防护之目的。

  7. Electrical and Pyroelectric Properties of Sol-Gel Derived (Pb, Ca)TiO3 Thin Films with Various Orientations

    Institute of Scientific and Technical Information of China (English)

    唐新桂; 丁爱丽; 王丽华

    2003-01-01

    (Pb0.76Ca0.24)TiO3(PCT)thin films with various orientations were grown on Pt/Ti/SiO2/Si substrates by using a sol-gel process and by controlling the temperature of heat-treatment.The PCT thin films with(100)and random orientation showed well-saturated hysteresis loops at an applied field of 800kV/cm,with remanent polarization and coercive electric field of 23.6 μC/cm2 and 225 k V/cm,17.8 μC/cm2 and 195 k V/cm,respectively.For highly(100)-and random-oriented PCT films,the dielectric constant and dielectric loss values of these films are 121 and 0.016,121 and 0.024 at 1 kHz,respectively.The pyroelectric coefficients p of the PCT thin films are measured by a dynamic technique.At room temperature,the p values and figures of merits of the highly(100)-and random-oriented PCT films are 185μC/m2K and 1.79 × 10-5Pa-0.5,176μC/m2K and 1.39 × 10-5Pa-0.5,respectively.

  8. Thermoelastic and Pyroelectric Couplings Effects on Dynamics and Active Control of Smart Piezolaminated Beam Modeled by Finite Element Method

    Directory of Open Access Journals (Sweden)

    M. Sanbi

    2014-01-01

    Full Text Available Smart structures with integrated sensors, actuators, and control electronics are of importance to the next generation high-performance structural systems. In this study, thermopiezoelastic characteristics of piezoelectric beam continua are studied and applications of the theory to active structures in sensing and optimal control are discussed. Using linear thermopiezoelastic theory and Timoshenko assumptions, a generic thermopiezoelastic theory for piezolaminated composite beam is derived. Finite element equations for the thermopiezoelastic media are obtained by using the linear constitutive equations in Hamilton's principle together with the finite element approximations. The structure consists of a modeling of cantilevered piezolaminated Timoshenko beam with integrated thermopiezoelectric elements between two aluminium layers. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG accompanied by the Kalman filter is applied. The effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. We show that the control procedure cannot be perturbed by applying a thermal gradient and the control can be applied at any time during the period of vibration of the beam.

  9. Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Sergeeva, O. N.; Kiselev, D. A.; Bogomolov, A. A.; Solnyshkin, A. V.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-05-01

    This paper presents the results of pyroelectric and piezoelectric studies of AlN films formed by chloride-hydride epitaxy (CHE) and molecular beam epitaxy (MBE) on epitaxial SiC nanolayers grown on Si by the atom substitution method. The surface topography and piezoelectric and pyroelecrtric responses of AlN films have been analyzed. The results of the study have shown that the vertical component of the piezoresponse in CHE-grown AlN films is more homogeneous over the film area than that in MBE-grown AlN films. However, the signal from the MBE-synthesized AlN films proved to be stronger. The inversion of the polar axis (polarization vector) on passage from MBE-grown AlN films to CHE-grown AlN films has been found experimentally. It has been shown that the polar axis in MBE-grown films is directed from the free surface of the film toward the Si substrate while, in CHE-grown films, the polarization vector is directed toward the free surface.

  10. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range.

  11. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    Science.gov (United States)

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  12. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    Directory of Open Access Journals (Sweden)

    Erwin Hack

    2016-02-01

    Full Text Available In terahertz (THz materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i vanadium oxide; (ii amorphous silicon; (iii a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  13. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi{sub 4}Ti{sub 4}O{sub 15} ceramics for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Ramana, E., E-mail: venkataramanaesk@rediffmail.com [I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro 3810 193 (Portugal); Graça, M.P.F.; Valente, M.A. [I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro 3810 193 (Portugal); Bhima Sankaram, T. [Materials Research Laboratory, Department of Physics, Osmania University, Hyderabad 500 007 (India)

    2014-01-15

    Highlights: • Sr{sub 1−x}Pb{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi{sub 4}Ti{sub 4}O{sub 15} ceramics. • Pb-doped SrBi{sub 4}Ti{sub 4}O{sub 15} exhibited improved pyroelectric properties with high T{sub C}. -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr{sub 1−x}Pb{sub x}Bi{sub 4}Ti{sub 4}O{sub 15} (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d{sub 33}) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications.

  14. Studies on the pyroelectric properties of ferroelectric bilayer film%铁电薄膜热释电性质的研究

    Institute of Scientific and Technical Information of China (English)

    张芹; 董亚男; 陈红

    2013-01-01

    Using Ginzburg-Landau-Devonshire theory, a ferroelectric bilayer film consisting of two different ferroelectric constituent films with the transition layer within each constituent film is considered. Introduced a parameter,which described the differences of physical properties between two constituent films, to investigate the temperature dependence of the pyroelectric coefficient of the bilayer film. It is shown that one or two peaks can be obtained in the pyroelectric curve by the adjustment of parameter Q. The modification of ferroelectric interfacial coupling cofficient,parameter a and surficial transition layer parameter leads to the peaks of the pyroelectric curve shifting to the higher or lower temperature region.%利用Ginzburg-Landau-Devonshire (GLD)热力学唯象理论,对由2种不同铁电材料构成的含有表面过渡层的铁电双层膜体系进行了探讨.通过引入一个描述2种铁电材料物理性能差异大小的物理参量α,并考虑2种铁电材料物理性能的差异,研究了铁电双层膜的热释电性质.结果表明:通过控制参量α的大小,热释电曲线上会呈现1个或2个峰;改变铁电界面耦合系数、参量α以及表面过渡层参量的大小,热释电曲线的峰位向高温区或低温区移动.

  15. PMNT热释电陶瓷材料的制备及性能研究%Preparation and Properties Study of PMNT Pyroelectric Ceramic Materaials

    Institute of Scientific and Technical Information of China (English)

    王实现; 张约品; 王冲; 章践立

    2011-01-01

    The PMNT ceramics with complex perovskite structure were prepared by the soft chemistry method. X-ray diffraction was used to detect the perovskite phase evolution and the presence of the pyrochlore phase in PMNT ceramics. The grain morphology was observed by scanning electron microscopy (SEM). The pyroelectric and piezoelectric properties of the ceramics were studied. The results show that the PMNT ceramics posses high densities and good pyroelectric properties. The pyroelectric coefficient of 0.67PMN-0.33PT ceramics is 5.5×10^-4C·m^-2.K^-1, Fd is 3.9× 10^-5 Pa^-1/2.%用软化学法合成了驰豫型复合钙钛矿结构铁电PMNT粉体,并将制备好的粉体压制成圆片状后放入硅碳棒炉中,于1150℃下烧结成致密热释电陶瓷材料.然后用x射线粉末衍射对合成材料进行物相分析,并用扫描电镜观察了晶粒形貌特征.结果表明:烧结后的陶瓷具有很好的致密性和热释电性,其中,0.67PMN.0.33PT组分热释电陶瓷的热释电系数为4.5×10^-4C·m^-2.K^-1,探测优值Fd为3.9×10^-5Pa^-1/2。

  16. Pyroelectric Arrays with Relax-based Ferroelectric Single Crystals%基于弛豫铁电单晶的热释电焦平面研究

    Institute of Scientific and Technical Information of China (English)

    邵秀梅; 马学亮; 于月华; 方家熊

    2011-01-01

    PMN-PT是一种综合性能优异的新型热释电材料.本文以PMN-PT单晶作为热释电探测器材料,开展了8×1线列探测器的芯片结构设计及器件关键工艺研究,获得了8元热释电探测器芯片,电压响应率约280N/W.同时,实现了8元热释电光敏芯片与8元读出电路的耦合互连,得到了8元热释电焦平面原型器件,并进行了性能测试.由于读出电路对可见光存在响应,影响了焦平面模块的热释电信号提取,电路设计有待改进.本丈的研究为基于新型弛豫铁电单晶的大规模非制冷焦平面的研制奠定了一定的基础.%PMN-PT single crystal is a novel pyroelectric material with superior performances. An 8x I linear array was designed, and research on the key processes of device fabrication was carried out based on PMN-PT crystal. The responsivity of the 8xl chip was about 280 V/W. At the same time, the 8xl pyroelectric chip was coupled with an 8xl read-out circuit. The performance of the 8× 1 FPA was studied. The pyroelectric signal of the FPA device can't be measured because the read-out circuits respond to visible light. The design of read-out circuits needs to be improved. The results of the paper lay a foundation for the development of large-scale uncooled pyroelectric FPA based on novel ferroeleetric single crystals.

  17. Systematic evaluation of a secondary method for measuring diagnostic-level medical ultrasound transducer output power based on a large-area pyroelectric sensor

    Science.gov (United States)

    Zeqiri, B.; Žauhar, G.; Rajagopal, S.; Pounder, A.

    2012-06-01

    A systematic study of the application of a novel pyroelectric technique to the measurement of diagnostic-level medical ultrasound output power is described. The method exploits the pyroelectric properties of a 0.028 mm thick membrane of polyvinylidene fluoride (PVDF), backed by an acoustic absorber whose ultrasonic absorption coefficient approaches 1000 dB cm-1 at 3 MHz. When exposed to an ultrasonic field, absorption of ultrasound adjacent to the PVDF-absorber interface results in heating and the generation of a pyroelectric output voltage across gold electrodes deposited on the membrane. For a sensor large enough to intercept the whole of the acoustic beam, the output voltage can be calibrated for the measurement of acoustic output power. A number of key performance properties of the method have been investigated. The technique is very sensitive, with a power to voltage conversion factor of typically 0.23 V W-1. The frequency response of a particular embodiment of the sensor in which acoustic power reflected at the absorber-PVDF interface is subsequently returned to the pyroelectric membrane to be absorbed, has been evaluated over the frequency range 1.5 MHz to 10 MHz. This has shown the frequency response to be flat to within ±4%, above 2.5 MHz. Below this frequency, the sensitivity falls by 20% at 1.5 MHz. Linearity of the technique has been demonstrated to within ±1.6% for applied acoustic power levels from 1 mW up to 120 mW. A number of other studies targeted at assessing the achievable measurement uncertainties are presented. These involve: the effects of soaking, the influence of the angle of incidence of the acoustic beam, measurement repeatability and sensitivity to transducer positioning. Additionally, over the range 20 °C to 30 °C, the rate of change in sensitivity with ambient temperature has been shown to be +0.5% °C-1. Implications of the work for the development of a sensitive, traceable, portable, secondary method of ultrasound output power

  18. The MINOS Detectors

    CERN Document Server

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  19. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  20. The TALE Tower Detector

    Science.gov (United States)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  1. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  2. Thermal kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  3. Forward tracking detectors

    Indian Academy of Sciences (India)

    Klaus Mönig

    2007-11-01

    Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  4. Pyroelectric Study on Dipolar Alignment in 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; SHEN Ming-Rong; CAO Wen-Wu

    2012-01-01

    Pyroelectric measurements are conducted during zero-Geld heating in [001], [110] and [111] poled 0.69Pb(Mg1/3 Nb2/3)O3-0.31PbTiO3 single crystals. Compared to the room-temperature-poled samples, the crystals poled by using the Rield cooling method show broad but well recognizable pyroelectric current peaks near 190℃, which is much higher than the Curie point (126℃) of the crystal. We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.%Pyroelectric measurements are conducted during zero-field heating in [001],[110] and [111] poled 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 single crystals.Compared to the room-temperature-poled samples,the crystals poled by using the field cooling method show broad but well recognizable pyroelectric current peaks near 190℃,which is much higher than the Curie point (126℃) of the crystal.We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.

  5. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  6. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  7. Pyroelectric infrared alarm system based on human gait recognition%基于人体步态识别的热释电红外传感报警系统

    Institute of Scientific and Technical Information of China (English)

    张涛; 钟舜聪

    2011-01-01

    In order to solve the problem of difficult detecting the motionless human body using pyroelectric infrared (PIR) sensor, a passive PIR alarm system based on human gait recognition was investigated to enhance the intelligence of the system and to reduce the false alarm rate. As the detector, PIR sensor was employed in the system for non-contact monitoring the human body within a certain distance. The PIR signal was filtered, amplified, and then converted to a digital signal by an analog-to-digital converter. Consequently, the digital signal was sent to a microcomputer ( MCU ) for processing. The human body movement characteristics were analyzed to achieve accurate security alarm purpose. The experimental results demonstrate the stable performance, high sensitivity and low false alarm rate of the developed PIR alarm system, therefore, it can be recommended for the applications in security system of home, shopping center, and warehouse.%针对热释电红外传感器对运动后静止的人体无法感应的缺点,设计了一种基于人体步态识别的热释电红外报警系统,大大提高了系统感知智能度,减少了报警的误报率.该系统利用热释电红外传感器(PIR)作为探头,将感测到人体的红外信息转换成电压信号,通过滤波、放大等信号调理以及经过数据采集后,将信号传递给单片机处理,结合人体运动特征进行步态识别,从而实现智能报警,达到安全防护的目的.研究结果表明,基于人体步态识别的热释电红外报警系统具有性能稳定、灵敏度高、误报率低等优点,适合各种安全报警的场合,具有广泛的应用前景.

  8. The Design of Outdoor Passive Infrared Detector Alarm%户外被动红外探测器的设计

    Institute of Scientific and Technical Information of China (English)

    谢白玉

    2013-01-01

    This paper introduced the structure theory and application circuit of a passive-type pyroelectric infrared de-tector. This circuit has certain practical application value. The core part of this type control circuit is pyroelectric infrared sensor,which mainly uses its infrared radiation and infrared detection characteristic. This circuit applicants the hidden nature of infrared to the warning systems. Thus,it realizes the function of burglar alarm and achieves the purpose of se-curity protection.%本文主要介绍了一种被动式红外探测器的结构原理及其应用电路,此电路具有一定的实际应用价值。该类型控制电路的核心器件为热释电红外传感器,并且主要利用了它的红外辐射和红外探测的特性。这种电路把红外线的隐蔽性很好地应用于报警系统之中,从而实现了防盗报警功能,达到了安全防护之目的。

  9. Equalized near maximum likelihood detector

    OpenAIRE

    2012-01-01

    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  10. Initial testing of a Si:As blocked-impurity-band (BIB) trap detector

    Science.gov (United States)

    Woods, Solomon I.; Kaplan, Simon G.; Jung, Timothy M.; Carter, Adriaan C.; Proctor, James E.

    2012-06-01

    We discuss the design, construction, and initial test results of a Si:As blocked-impurity-band (BIB) trap detector. The trap consists of two rectangular BIB devices configured in a v-shaped geometry. This trapping geometry is designed to ideally yield a minimum of 7 bounces before exit for incident light within an f/4 cone with 3 mm clear aperture. The individual BIB devices consist of 70 μm thick active layers with As doping near 1.7×1018 cm-3, and have dark currents of approximately 100 nA at an operating temperature of 9 K. A simple ray-tracing model of the trap, along with data on the quantum yield of typical BIB detector elements, indicates that it is possible to achieve an external quantum efficiency of > 0.99 over the 4 μm to 28 μm spectral range and significant suppression of the etalon fringes present in the spectral responsivity of a single element. We have made initial responsivity measurements of the trap compared to a calibrated 5 mm diameter pyroelectric detector over the 3 μm to 17 μm spectral range using the fiber-coupled output of a Fourier-transform spectrometer. We also discuss the results of comparison measurements between the trap detector and an absolute cryogenic radiometer viewing the output of a calibrated blackbody source at discrete filter bands from 5 μm to 11 μ. In initial testing the performance of the trap is limited by the poor performance of the individual BIB detectors, but the advantages of boosted quantum efficiency and suppressed etalon are realized by the trap.

  11. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  12. The DØ detector

    Science.gov (United States)

    Abachi, S.; Abolins, M.; Acharya, B. S.; Adam, I.; Ahn, S.; Aihara, H.; Alvarez, G.; Alves, G. A.; Amos, N.; Anderson, W.; Antipov, Yu.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balderston, J.; Baldin, B.; Bantly, J.; Barasch, E.; Bartlett, J. F.; Bazizi, K.; Behnke, T.; Bezzubov, V.; Bhat, P. C.; Blazey, G.; Blessing, S.; Boehnlein, A.; Borcherding, F.; Borders, J.; Bozko, N.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoy, V.; Butler, J. M.; Callot, O.; Chakraborty, D.; Chekulaev, S.; Chen, J.; Chen, L.-P.; Chen, W.; Choudhary, B. C.; Christenson, J. H.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.; Cutts, D.; Dahl, O. I.; Daniels, B.; De, K.; Demarteau, M.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; Dixon, R.; Draper, P.; Ducros, Y.; Durston-Johnson, S.; Eartly, D.; Eberhard, P. H.; Edmunds, D.; Efimov, A.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eroshin, O.; Evdokimov, V.; Fahey, S.; Fanourakis, G.; Fatyga, M.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finley, D.; Finocchiaro, G.; Fisk, H. E.; Flattum, E.; Forden, G. E.; Fortner, M.; Franzini, P.; Fuess, S.; Gallas, E.; Gao, C. S.; Geld, T. L.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glicenstein, J. F.; Gobbi, B.; Goforth, M.; Good, M. L.; Goozen, F.; Gordon, H.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grossman, N.; Grudberg, P.; Guida, J. A.; Guida, J. M.; Guryn, W.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Hansen, S.; Hauptman, J.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hodel, K.; Hoftun, J. S.; Hubbard, J. R.; Huehn, T.; Huson, R.; Igarashi, S.; Ito, A. S.; James, E.; Jiang, J.; Johns, K.; Johnson, C. R.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jung, C. K.; Kahn, S.; Kanekal, S.; Kernan, A.; Kerth, L.; Kirunin, A.; Klatchko, A.; Klima, B.; Klochkov, B.; Klopfenstein, C.; Klyukhin, V.; Kochetkov, V.; Kohli, J. M.; Kononenko, W.; Kotcher, J.; Kotov, I.; Kourlas, J.; Kozelov, A.; Kozlovsky, E.; Krafczyk, G.; Krempetz, K.; Krishnaswamy, M. R.; Kroon, P.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lanou, R. E.; Laurens, P.; Lee-Franzini, J.; Li, J.; Li, R.; Li-Demarteau, Q. Z.; Lima, J. G. R.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y.-C.; Lloyd-Owen, D.; Lobkowicz, F.; Loken, S. C.; Lokos, S.; Lueking, L.; Maciel, A. K. A.; Madaras, R. J.; Madden, R.; Malamud, E.; Mangeot, Ph.; Manning, I.; Mansoulié, B.; Manzella, V.; Mao, H.-S.; Marcin, M.; Markosky, L.; Marshall, T.; Martin, H. J.; Martin, M. I.; Martin, P. S.; Marx, M.; May, B.; Mayorov, A.; McCarthy, R.; McKinley, J.; Mendoza, D.; Meng, X.-C.; Merritt, K. W.; Milder, A.; Mincer, A.; Mondal, N. K.; Montag, M.; Mooney, P.; Mudan, M.; Mulholland, G. T.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Nemethy, P.; Nešić, D.; Ng, K. K.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Pang, M.; Para, A.; Park, C. H.; Partridge, R.; Paterno, M.; Peryshkin, A.; Peters, M.; Pi, B.; Piekarz, H.; Pischalnikov, Yu.; Pizzuto, D.; Pluquet, A.; Podstavkov, V.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Que, Y.-K.; Quintas, P. Z.; Rahal-Callot, G.; Raja, R.; Rajagopalan, S.; Rao, M. V. S.; Rasmussen, L.; Read, A. L.; Regan, T.; Repond, S.; Riadovikov, V.; Rijssenbeek, M.; Roe, N. A.; Rubinov, P.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Sculli, J.; Selove, W.; Shea, M.; Shkurenkov, A.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, D.; Smith, R. P.; Snow, G. R.; Snyder, S.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stampke, S.; Stephens, R.; Stevenson, M. L.; Stewart, D.; Stocker, F.; Stoyanova, D.; Stredde, H.; Streets, K.; Strovink, M.; Suhanov, A.; Taketani, A.; Tartaglia, M.; Taylor, J. D.; Teiger, J.; Theodosiou, G.; Thompson, J.; Tisserant, S.; Trippe, T. G.; Tuts, P. M.; Van Berg, R.; Vaz, M.; Vishwanath, P. R.; Volkov, A.; Vorobiev, A.; Wahl, H. D.; Wang, D.-C.; Wang, L.-Z.; Weerts, H.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J.; Willis, S.; Wimpenny, S. J.; Wolf, Z.; Womersley, J.; Wood, D. R.; Xia, Y.; Xiao, D.; Xie, P.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yang, M.-J.; Yoshikawa, C.; Youssef, S.; Yu, J.; Zeller, R.; Zhang, S.; Zhou, Y. H.; Zhu, Q.; Zhu, Y.-S.; Zieminska, D.; Zieminski, A.; Zinchenko, A.; Zylberstejn, A.; DØ Collaboration

    1994-01-01

    The DØ detector is a large general purpose detector for the study of short-distance phenomena in high energy antiproton-proton collisions, now in operation at the Fermilab Tevatron collider. The detector focusses upon the detection of electrons, muons, jets and missing transverse momentum. We describe the design and performance of the major elements of the detector, including the tracking chambers, transition radiation detector, liquid argon calorimetry and muon detection. The associated electronics, triggering systems and data acquisition systems are presented. The global mechanical, high voltage, and experiment monitoring and control systems which support the detector are described. We also discuss the design and implementation of software and software support systems that are specific to DØ.

  13. APPROACH TO SYNTHESIS OF PASSIVE INFRARED DETECTORS BASED ON QUASI-POINT MODEL OF QUALIFIED INTRUDER

    Directory of Open Access Journals (Sweden)

    I. V. Bilizhenko

    2017-01-01

    Full Text Available Subject of Research. The paper deals with synthesis of passive infra red (PIR detectors with enhanced detection capability of qualified intruder who uses different types of detection countermeasures: the choice of specific movement direction and disguise in infrared band. Methods. We propose an approach based on quasi-point model of qualified intruder. It includes: separation of model priority parameters, formation of partial detection patterns adapted to those parameters and multi channel signal processing. Main Results. Quasi-pointmodel of qualified intruder consisting of different fragments was suggested. Power density difference was used for model parameters estimation. Criteria were formulated for detection pattern parameters choice on the basis of model parameters. Pyroelectric sensor with nine sensitive elements was applied for increasing the signal information content. Multi-channel processing with multiple partial detection patterns was proposed optimized for detection of intruder's specific movement direction. Practical Relevance. Developed functional device diagram can be realized both by hardware and software and is applicable as one of detection channels for dual technology passive infrared and microwave detectors.

  14. Far infrared thermal detectors for laser radiometry using a carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, John H.; Lee, Bob; Grossman, Erich N.

    2011-07-20

    We present a description of a 1.5 mm long, vertically aligned carbon nanotube array (VANTA) on a thermopile and separately on a pyroelectric detector. Three VANTA samples, having average lengths of 40 {mu}m, 150 {mu}m, and 1.5 mm were evaluated with respect to reflectance at a laser wavelength of 394 {mu}m(760 GHz), and we found that the reflectance decreases substantially with increasing tube length, ranging from 0.38 to 0.23 to 0.01, respectively. The responsivity of the thermopile by electrical heating (98.4 mA/W) was equal to that by optical heating (98.0 mA/W) within the uncertainty of the measurement. We analyzed the frequency response and temporal response and found a thermal decay period of 500 ms, which is consistent with the specific heat of comparable VANTAs in the literature. The extremely low (0.01) reflectance of the 1.5 mm VANTAs and the fact that the array is readily transferable to the detector's surface is, to our knowledge, unprecedented.

  15. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  16. ATLAS inner detector performance

    CERN Document Server

    Gadomski, S

    2001-01-01

    The ATLAS Inner Detector consists of three subsystems using different tracking detector technologies: silicon pixels, silicon strips and straw tubes. The combination gives ATLAS a robust, hermetic and efficient tracking system, able to reconstruct tracks at the highest foreseen LHC luminosities. The inner detector provides vertex and momentum measurements, electron identification and some $K/\\pi$ separation. Since last year the beam pipe of ATLAS was changed, causing a redesign of the first tracking layer and a deterioration of the impact parameter resolutions.

  17. LHCb Detector Performance

    CERN Document Server

    AUTHOR|(CDS)2075808; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  18. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  19. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  20. Photocapacitive MIS infrared detectors

    Science.gov (United States)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  1. Study on Pyroelectric Property of BST Ceramics with DC Field%BST陶瓷场致热释电性能的研究

    Institute of Scientific and Technical Information of China (English)

    张光祖; 姜胜林; 张洋洋; 张清风; 张先云

    2009-01-01

    采用改进的电子陶瓷工艺,制备了高密度Ba0.6Sr0.4TiO3热释电陶瓷样品.研究发现,在1 340 ℃下烧结的样品,其密度可达到理论密度的98.3%.室温下测得样品的介电损耗为0.2%.外加直流偏场对材料的介电和热释电性能影响显著.样品的场致热释电系数为3.4×10-8 C/cm2·℃,探测率优值为10.0×10-5 Pa-1/2.%The Ba0.6Sr0.4TiO3 ceramics were prepared by improved electronic ceramics preparing process. The sample was obtained under the optimalized sintering temperature 1 340 ℃.The density could reach 98.3% of the theoretical density. At room temperature, the dielectric loss of the sample was 0.2%. The effects of DC field on the material's dielectric and pyroelectric property was obvious. The pyroelectric coefficient of the sample was 3.4×10-8 C/cm2·℃, the figure of merit of the sample was 10.0×10-5 Pa-1/2.

  2. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  3. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  4. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  5. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  6. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  7. The LDC detector concept

    Indian Academy of Sciences (India)

    Ties Behnke; LDC Concept Group

    2007-11-01

    In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force behind the LDC is the particle flow concept.

  8. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  9. Nanomechanical resonance detector

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  10. The PERDaix detector

    Energy Technology Data Exchange (ETDEWEB)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany); Kirn, Thomas, E-mail: kirn@physik.rwth-aachen.de [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany); Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhoever, Jens [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany)

    2012-12-11

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246 Multiplication-Sign 400 Multiplication-Sign 859 mm{sup 3}, a geometrical acceptance of 32 cm{sup 2}sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  11. The PERDaix detector

    Science.gov (United States)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman; Kirn, Thomas; Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhöver, Jens

    2012-12-01

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246×400×859 mm3, a geometrical acceptance of 32 cm2sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  12. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  13. Pyroelectric Coefficient Testing System with Single Serial Port of Computer Feedback Control%计算机反馈控制型单串口热释电系数测试系统

    Institute of Scientific and Technical Information of China (English)

    杨俊; 曾亦可; 陈朝晖; 罗旖旎

    2011-01-01

    An improvement of pyroelectric coefficient testing system was studied. A single serial-port replaced the multi-serial port,which reduced complexity of the system and increased stability. A computer feedhack conLrol heatingrate was designed for the heater constniction,which eliminated the measurementerror caused by the temperature lag of the heater construction. It improved the linearity of line heating curve , and the linearity reached 0. 37% . Therehy it enhanced the accuracy of the measurement system.Several kind of pyroelectric materials were used to prove the superiority of the new system, and theexperimental results showed that the pyroelectric coefficient of pyroelectric materials measured by the new system were in accord with the theoretical values. Therefore,this system can accurately measure the pyroelecrric coefficient of the materials.%对热释电系数测试系统进行了研究,用单串口取代多串口,降低了系统连线的复杂度,提高了系统运行的稳定性;加入计算机控温机制,实现了计算机反馈控制加热炉升温速率,极大地提高了升温曲线的线性度,其线性度达到0.37%,从而消除了加热炉升温滞后性带来的测量误差,提高了测量的准确性.用几种热释电材料对现有系统进行了验证,实验表明新热释电系数测试系统的测试结果与理论数据相符,该系统已经可以较准确测量热释电材料的热释电系数.

  14. Study on pyroelectric characteristic of piezoelectric ceramic excited by periodic thermal excitation%周期性热激励下压电陶瓷的热释电特性研究

    Institute of Scientific and Technical Information of China (English)

    吴仲武; 董卫; 姚丽; 张庆; 乔正辉

    2012-01-01

    设计了一套研究压电陶瓷热电特性的实验系统,并基于热释电效应研究了压电陶瓷在周期性热激励下的热电特性,拟合出了周期性热激励下压电陶瓷中产生的电压与电流的表达式.模拟和实验结果表明,当采用周期性的聚焦光线照射在压电陶瓷表面时,压电陶瓷表面的温度和正负极之间的电压也会周期性的变化,且变化的频率与调频装置的频率一致.%An experimental system was designed to study the pyroelectric characteristic of the piezoelectric ceramic. Based on pyroelectric effect,the pyroelectric characteristic of the piezoelectric ceramic under a condition of periodic thermal excitation was studied,and the formulas of voltage and current of the piezoelectric ceramic were also concluded. Results of the simulation and experiments show that the voltage of the piezoelectric ceramic changes periodically when the piezoelectric ceramic is illuminated by a periodic focused light. The frequency of the voltage is consistent with the frequency of the frequency converter.

  15. Composition and temperature dependence of ferroelectric and pyroelectric properties of (1 − x)[PMN–PT(65/35)]–xPZ (0 ≤ x ≤ 0.10) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tong; Li, Qiang [Department of Chemistry, Tsinghua University, Beijing 10084 (China); Yan, Qingfeng, E-mail: yanqf@mail.tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 10084 (China); Luo, Nengneng [Department of Chemistry, Tsinghua University, Beijing 10084 (China); Zhang, Yiling; Chu, Xiangcheng [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2014-11-15

    Highlights: • PMN–PT–PZ ceramics with PZ content smaller than 0.10 mol% were synthesized. • T{sub rt} of the PMN–PT–PZ ceramics increased linearly with the increase of PZ constant. • A mutation of the ferroelectric and pyroelectric properties was observed near T{sub rt}. - Abstract: (1 − x)[Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (65/35)]–xPbZrO{sub 3} (PMN–PT–PZ) ceramics near morphotropic phase boundary with 0 ≤ x ≤ 0.10 were synthesized via the conventional solid-state reaction method. X-ray diffraction and variable temperature dielectric property characterization indicated that the rhombohedral to tetragonal phase transition temperature (T{sub rt}) increased linearly with the increase of PZ constant. The composition and temperature dependence of their ferroelectric and pyroelectric properties were also investigated. The results showed that there appeared mutation for remnant polarization, coercive field, as well as pyroelectric coefficient at the temperate range near T{sub rt}, which was ascribed to the reorientation of dipoles caused by the rhombohedral–tetragonal phase transition.

  16. Ferroelectric, piezoelectric, pyroelectric and Raman spectroscopy studies on BaTi{sub 0.9}(Fe{sub 1/2}Nb{sub 1/2}){sub 0.1}O{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkafi, Z.; Abdelmoula, N. [Laboratoire des Materiaux Ferroelectriques, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Simon, A.; Maglione, M. [ICMCB CNRS-Universite Bordeaux 1, Pessac (France); Khemakhem, H.

    2008-12-15

    The hysteresis, piezoelectric and pyroelectric properties were measured in the temperature range near the ferroelectric-paraelectric phase transition. The BaTi{sub 0.9}(Fe{sub 1/2}Nb{sub 1/2}){sub 0.1}O{sub 3} ceramic exhibits typical ferroelectric P -E hysteresis behavior with a remanant polarization, P{sub r}, of about 7.52 {mu}C/cm{sup 2} detected at 155 K. The electromechanical properties of this composition were measured using the resonance method. The ceramic provides high piezoelectric performance at the temperature of transition (T{sub max}=216 K): the piezoelectric constant is d{sub 31}=140 pC/N and the electromechanical coupling factor was k{sub P}=22%. The pyroelectric study confirms the dielectric and ferroelectric measurements. The pyroelectric coefficient is about 125 nC/cm{sup 2} K at T{sub max}. Raman spectra of BaTi{sub 0.9}(Fe{sub 1/2}Nb{sub 1/2}){sub 0.1}O{sub 3} ceramic were taken at various temperatures and measured over the wave number range from 150 to 1300 cm{sup -1}. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effects of Ca-dopant on the pyroelectric, piezoelectric and dielectric properties of (Sr 0.6Ba 0.4) 4Na 2Nb 10O 30 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-12-01

    Calcium-doped sodium strontium barium niobate (SBNN, (Sr 0.6Ba 0.4) 4-xCa xNa 2Nb 10O 30, 0 ≤ x ≤ 0.5) ceramics were prepared by a conventional solid-state reaction method. SBNN showed \\'filled\\' tetragonal tungsten-bronze structure with fully occupied A-sites. The tetragonal structure, as revealed by X-ray diffraction (XRD) and Raman spectroscopy, was not affected by the Ca-dopant. Effects of Ca-doping concentration on the phase transitions as well as ferroelectric, piezoelectric and pyroelectric properties of the SBNN ceramics were investigated. From the dielectric studies, two anomalies were observed, namely, a sharp normal ferroelectric transition at 260 °C and a broad maximum at round -110 °C. The later was affected by the Ca-doping concentration and its origin was discussed. At x = 0.3, the sample exhibited the highest pyroelectric coefficient of 168 μC/m 2 K and the largest piezoelectric coefficient (d 33) of 63 pC/N at room temperature. On the basis of our results, the pyroelectric properties of the SBNN were improved by Ca-doping. © 2012 Elsevier B.V. All rights reserved.

  18. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  19. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  20. The Belle II Detector

    Science.gov (United States)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II detector is now under construction at the KEK laboratory in Japan. This project represents a substantial upgrade of the Belle detector (and the KEKB accelerator). The Belle II experiment will record 50 ab-1 of data, a factor of 50 more than that recorded by Belle. This large data set, combined with the low backgrounds and high trigger efficiencies characteristic of an e+e- experiment, should provide unprecedented sensitivity to new physics signatures in B and D meson decays, and in τ lepton decays. The detector comprises many forefront subsystems. The vertex detector consists of two inner layers of silicon DEPFET pixels and four outer layers of double-sided silicon strips. These layers surround a beryllium beam pipe having a radius of only 10 mm. Outside of the vertex detector is a large-radius, small-cell drift chamber, an ``imaging time-of-propagation'' detector based on Cerenkov radiation for particle identification, and scintillating fibers and resistive plate chambers used to identify muons. The detector will begin commissioning in 2017.

  1. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  2. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  3. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  4. Performance of GLD detector

    Indian Academy of Sciences (India)

    T Yoshioka

    2007-12-01

    Most of the important physics processes to be studied in the international linear collider (ILC) experiment have multi-jets in the final state. In order to achieve better jet energy resolution, the so-called particle flow algorithm (PFA) will be employed and there is a general consensus that PFA derives overall ILC detector design. Four detector concepts for the ILC experiment have been proposed so far in the world; the GLD detector that has a large inner calorimeter radius, which is considered to have an advantage for a PFA, is one of them. In this paper, general scheme and performance of the GLD-PFA will be presented.

  5. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  6. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  7. ATLAS Inner Detector Alignment

    CERN Document Server

    Bocci, A

    2008-01-01

    The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle collisions produced by the Large Hadron Collider at CERN. In order to achieve its physics goals, the ATLAS tracking requires that the positions of the silicon detector elements have to be known to a precision better than 10 μm. Several track-based alignment algorithms have been developed for the Inner Detector. An extensive validation has been performed with simulated events and real data coming from the ATLAS. Results from such validation are reported in this paper.

  8. Directional radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  9. Novel Photo-Detectors and Photo-Detector Systems

    OpenAIRE

    Danilov, M.

    2008-01-01

    Recent developments in photo-detectors and photo-detector systems are reviewed. The main emphasis is made on Silicon Photo-Multipliers (SiPM) - novel and very attractive photo-detectors. Their main features are described. Properties of detectors manufactured by different producers are compared. Different applications are discussed including calorimeters, muon detection, tracking, Cherenkov light detection, and time of flight measurements.

  10. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  11. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  12. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  13. The LUX Prototype Detector

    CERN Document Server

    Akerib, D S; Bedikian, S; Bernstein, A; Bolozdynya, A; Bradley, A; Cahn, S; Carr, D; Chapman, J J; Clark, K; Classen, T; Curioni, A; Dahl, C E; Dazeley, S; deViveiros, L; Dragowsky, M; Druszkiewicz, E; Fiorucci, S; Gaitskell, R J; Hall, C; Faham, C; Holbrook, B; Kastens, L; Kazkaz, K; Kwong, J; Lander, R; Leonard, D; Malling, D; Mannino, R; McKinsey, D N; Mei, D; Mock, J; Morii, M; Nikkel, J; Phelps, P; Shutt, T; Skulski, W; Sorensen, P; Spaans, J; Steigler, T; Svoboda, R; Sweany, M; Thomson, J; Tripathi, M; Walsh, N; Webb, R; White, J; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    The LUX (Large Underground Xenon) detector is a two-phase xenon Time Projection Chamber (TPC) designed to search for WIMP-nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large ($>$1ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. In this paper we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 meter to be achieved in approximately two days and sustained for the duration of the testing period.

  14. The CLIC Detector Concept

    CERN Document Server

    Pitters, Florian Michael

    2016-01-01

    CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.

  15. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  16. GRAVITY detector systems

    Science.gov (United States)

    Mehrgan, Leander H.; Finger, Gert; Eisenhauer, Frank; Panduro, Johana

    2016-08-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the K-band. It will combine the AO corrected beams of the four VLT telescopes. In total, the GRAVITY instrument uses five eAPD detectors four for the infrared wavefront sensors of each telescope and one for the fringe tracker. In addition two Hawaii2RG arrays are installed, one for the acquisition camera and one for the spectrometer. The SAPHIRA eAPD array is a newly developed near-infrared detector with sub-electron noise performance at frame rates > 1Kfps. For all seven detectors the ESO common controller, NGC, is used. This paper presents an overview and comparison of GRAVITY detector systems and their final performances at the telescope

  17. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  18. Europe plans megaton detector

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    A group of French and Italian particle physicists hopes to carry on the long tradition of building large underground detectors by constructing a device deep under the Alps containing a million tonnes of extremely pure water.

  19. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  20. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  1. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  2. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg, E.; Deyoung, T.; Edsjo, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; LOwder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-03-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B with an expected effective area for TeV neutrinos of {approx} 10{sup 4} m{sup 2}, has been taking data since 1997. Progress with calibration, investigation of ice properties, as well as muon and neutrino data analysis are described. The next stage 20-string detector AMANDA-II with {approx}800 PMTs will be completed in spring 2000.

  3. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  4. Phi factory detector requirements

    Energy Technology Data Exchange (ETDEWEB)

    Arisaka, K.; Atac, M.; Berg, R.; Buchanan, C.; Calvette, M.; Khazin, B.; Kinoshita, K.; Muller, T.; Ohshima, T.; Olsen, S.; Park, J.; Santoni, C.; Shirai, J.; Solodov, E.; Thompson, J.; Triggiani, G.; Ueno, K.; Yamamoto, H.; Detector and Simulation Working Group

    1991-08-01

    We identify the experimental problems and the conditions required for successful phi-factory operation, and show the range of detector parameters which, in conjunction with different machine designs, may meet these conditions. We started by considering, comparing and criticizing the Italian and Novosibirsk designs. With this discussion as a background, we defined the apparent experimental problems and detector constraints. In this article we summarize our understanding. (orig./HSI).

  5. 热释电红外传感器及其在人员计数系统中的应用%Pyroelectric infrared sensor and its application in people counting system

    Institute of Scientific and Technical Information of China (English)

    易金桥; 黄勇; 廖红华; 谭建军; 姜胜林

    2015-01-01

    People-counting systems for image acquisition are usually complicated and expensive. In this paper, with detailed analysis of the pyroelectric effect and infrared sensor, BISS0001 integrated signal processing chip were chosen to design an amplifier circuit for the RE200B pyroelectric infrared sensor, in order to study its output waveforms under various human movement states. A people-counting system was designed, with double pyroelectric infrared sensors as the signal acquisition unit and a Cortex-M3 microcontroller as the control core, and its main algorithms were researched. The experimental results demonstrate that different body movement states can be accurately characterized using the output waveforms of the RE200B pyroelectric infrared sensor and the movement directions can be precisely distinguished by the people-counting system based on double pyroelectric infrared sensors designed in this paper. Furthermore, the system realizes real-time counting, and can be applied to a wide range of areas including human body detection and counting.%针对图像采集人员计数系统复杂、价格昂贵等缺点,在分析热释电效应以及红外传感的基础上,采用BISS0001型信号处理专用集成芯片设计了基于RE200B热释电红外传感器的放大电路,研究其在不同人体运动状态下的输出波形;设计了以双热释电红外传感器为信号采集单元,以Cortex-M3单片机为控制核心的人员计数系统,并研究其主要算法。实验结果表明,RE200B型热释电红外传感器的输出波形能够准确表征人体的不同运动状态,基于双热释电红外传感器的人员计数系统能准确分辨人体的运动方向,并实时计数,可广泛应用于人体探测和人员计数等领域。

  6. 人工复合铁电多层膜热释电性质的理论研究%Theoretical Investigation on Pyroelectric Properties of Artificial Composite Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    陈辉; 成泰民; 陈思群

    2011-01-01

    A theoretical model of ferroelectric thin film composite by three ferroelectric materials with different phase-transition temperatures has been built, in which the three components composite perpendicular to the polarization. Using ginzburg-landau-devonshire(GLD) theory, a local distribution function has been introduced to describe the properties of the transition layers, and the pyroelectric properties of the composite ferroelectric thin films have been mainly investigated. Polarization distributions, transition temperatures and pyroelectric coefficients were calculated with different composite methods. It was shown that the composite methods had importance influence on polarization and pyroelectric properties; two pyroelectric peaks appeared with the change of the film temperature. The composite ferroelectric thin film under new model presented many new properties, especially provide a reference on the improvement of pyroelectric devices. This composite film may be a new choice of multi-layer films in applications.%建立3种具有不同相变温度的铁电材料垂直于极化方向复合而成的铁电薄膜的理论模型,在ginzburg-landau-devonshire (GLD)唯象理论的框架下展开研究,同时引入局域分布函数来描述不同材料间过渡层的性质,主要研究了复合铁电薄膜的热释电性质.通过改变3种不同铁电材料的复合方式,计算了铁电多层膜内部的极化强度分布、相变温度及热释电系数.研究表明,具有不同相变温度的铁电材料间的复合方式对铁电薄膜的极化和热释电性质有着重要的影响,3种不同材料复合而成的铁电薄膜随着温度的变化出现了2个热释电峰.新模型下的复合铁电薄膜表现很多新的特性,尤其对于铁电热释电器件性能的改良提出了一种参考,该种复合薄膜也许能够成为通常使用的多层膜的一种选择.

  7. Study on Inter-Diffusion Barrier Layer between PZT Pyroelectric Thick Film and Si Substrate%PZT厚膜与Si衬底互扩散阻挡层研究

    Institute of Scientific and Technical Information of China (English)

    陈冲; 吴传贵; 彭强祥; 罗文博; 张万里; 王书安

    2013-01-01

    在Pt/Ti/SiO2/Si基片上,利用电泳沉积制备PZT热释电厚膜材料.为防止Pb和Si互扩散,在Pt底电极与SiO2/Si衬底间通过直流磁控溅射制备了TiOx薄膜阻挡层.对具有0、300 nm和500 nm TiOx阻挡层的PZT厚膜材料用SEM和能量色散谱仪(EDS)表征了Pb和Si互扩散情况,用动态热释电系数测量仪测试了热释电系数.结果表明,当TiOx阻挡层为500 nm时,可阻挡Pb和Si互扩散,热释电性能最好.热释电系数p=1.5×10-8 C·cm-2·K-1,相对介电常数εr=170,损耗角正切tanδ=0.02,探测度优值因子Fd=1.05×10-5pa-0.5.%PZT thick film as pyroelectric material has been prepared on the Pt/Ti/SiCK/Si substrate by using the electrophoresis deposition (EPD) method. In order to prevent the inter-diffusion between Pb and Si,a TiOx film barrier layer between Pt bottom electrode and SiO2/Si substrate has been prepared by using the DC magnetron sputtering method. The inter-diffusion between Pb and Si in PZT thick film material with TiO, barrier layer thickness of 0, 300 nm and 500 nm respectively have been characterized by SEM and EDS. The pyroelectric coefficient has been measured by the dynamic pyroelectric coefficient instrument. The results show that the inter-diffusion between Pb and Si can be blocked when the thickness of TiOx barrier layer is 500 nm and have the best pyroelectric properties. The pyroelectric coefficient, relative dielectric constant,dielectric loss and detectivity figure of merit are p=1. 5 × 10-8C · cm-2k-1 ,εr = 170,tan 8=0. 02 and Fd = 1. 05 × 10-5 Pa-0.5 respectively.

  8. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  9. Gamma ray detector modules

    Science.gov (United States)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  10. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  11. Detectors on the drawing board

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  12. Theoretical description of the photopyroelectric technique in the slanted detector configuration for thermal diffusivity measurements in fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Trigos, J.B., E-mail: rjosebruno@yahoo.com.mx [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaría 694, Colonia Irrigación, C.P. 11500 México D. F. (Mexico); Marín, E. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaría 694, Colonia Irrigación, C.P. 11500 México D. F. (Mexico); Mansanares, A.M. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, SP (Brazil); Cedeño, E.; Juárez-Gracia, G.; Calderón, A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaría 694, Colonia Irrigación, C.P. 11500 México D. F. (Mexico)

    2014-04-01

    Highlights: • A model for photopyroelectric thermal characterization of fluids is presented. • A slanted detector configuration is considered with a finite measurement cell. • The mean temperature distribution in the photopyroelectric detector, as function of the beam spot position, is calculated. • The influence of the excitation beam spot size, the thermal diffusion length and size of the sample is discussed. • The high lateral resolution of the method observed in experiments is explain. - Abstract: This work presents an extended description about the theoretical aspects related to the generation of the photopyroelectric signal in a recently proposed wedge-like heat transmission detection configuration, which recreates the well-known Angstrom method (widely used for solid samples) for accurate thermal diffusivity measurement in gases and liquids. The presented model allows for the calculation of the temperature profile detected by the pyroelectric sensor as a function of the excitation beam position, and the study of the influence on it of several parameters, such as spot size, thermal properties of the absorber layer, and geometrical parameters of the measurement cell. Through computer simulations, it has been demonstrated that a narrow temperature distribution is created at the sensor surface, independently of the lateral diffusion of heat taking place at the sample's surface.

  13. The ZEUS microvertex detector

    CERN Document Server

    Garfagnini, A

    1999-01-01

    A new vertex detector for the ZEUS experiment at HERA will be installed during the 1999-2000 shutdown, for the high-luminosity runs of HERA. It will allow to reconstruct secondary vertex tracks, coming from the decay of long-lived particles with a lifetime of about 10 sup - sup 1 sup 2 s, and improve the global momentum resolution of the tracking system. The interaction region will be surrounded with single-sided silicon strip detectors, with capacitive charge division: three double layers in the central region (600 detectors), and 4 'wheels' in the forward region (112 silicon planes). Due to the high number of readout channels, 512 readout strips per silicon plane in the barrel region and 480 in the forward part, and the large coverage of the vertex detector (almost 1 m long), the front-end electronics has to be placed on top of the detectors and has to be radiation tolerant since doses up to 2 kGy are expected near the interaction region. The HELIX chip has been chosen as analog chip with a low-noise, charg...

  14. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  15. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  16. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  17. Detector de IR de lámina ferroeléctrica de (Pb,CaTiO3

    Directory of Open Access Journals (Sweden)

    González, A.

    2002-02-01

    Full Text Available A sol-gel (Pb0.76Ca0.24TiO3 solution was deposited onto Pt/MgO(100 substrates. Previous thermal treatment of the substrate and the high rate of crystallization heating promote an important preferred orientation along the polar axis, and therefore selfpolarization , very convenient for the use of IR pyroelectric detectors. By depositing circular electrodes, 7.10-3 cm2 of area, an array of small capacitors are developed which are characterized as detectors in standard conditions: radiation from a black-body at 500 K, modulated between 1-20 Hz, a lock-in amplifier and an electronic circuit to sense and treat the electrical response. Three main factors affecting the detector performances are analyzed: a Figures of merit of the pyroelectric material; b assembly of the whole parts of detector (substrate, electrodes, leads, frame, etc and c electronic circuitry to sense and amplify signals. Thermal isolation is concluding as the most important fact to improve responsivity.Se han obtenido depósitos multicapa de titanato de plomo modificado con calcio, (Pb0.76Ca0.24TiO3, mediante un método de sol-gel, sobre substratos de Pt/MgO(100. El tratamiento térmico del substrato y la cristalización de las multicapas mediante tasas de calentamiento rápidas causan el desarrollo de una importante orientación preferente según el eje polar, perpendicular al mismo, lo que supone una autopolarización muy rentable para su empleo en detectores piroeléctricos de radiación infrarroja. Mediante una configuración de electrodos discretos se fabrican minicondensadores de 7.10-3 cm2 de área con los que se caracteriza ópticamente el detector para condiciones estándar: cuerpo negro a 500 K, modulación mecánica de la radiación entre 1-20 Hz, una electrónica de acondicionamiento de la señal de respuesta y un amplificador sintonizado para medir la respuesta en voltaje. Se analiza el efecto de los tres factores que intervienen en la fabricación del detector: a

  18. Contactless Temperature Measurement System Based on Pyroelectric Sensor%热释电传感器的非接触式测控系统设计

    Institute of Scientific and Technical Information of China (English)

    叶健成

    2013-01-01

    Basic principles of using pyroelectric infrared sensor for non-contact measurement,infrared temperature measurement system structure and composition of signal processing circuit are introduced in this paper.On this basis,the paper designs and implements a set of non-contact infrared temperature measurement device,it uses the device to measure movement target surface temperature.When it simulates the application of actual scene,it can realize the accurate measurement of the distant pedestrian body temperature,also it increases the high temperature alarm circuit and bluetooth wireless communication module,and expands the using function.%介绍了利用热释电红外传感器进行非接触式测温的基本原理、红外测温系统结构和信号处理电路的组成.以此为基础,设计了一套非接触式红外测温装置,用该装置测定了移动目标表面温度.在模拟实际场景应用时,实现了对较远距离的运动行人体温的准确测量;装置还增加了高温报警电路和蓝牙无线通信模块,丰富了使用功能.

  19. OPERA: Electronic Detector

    CERN Document Server

    Jollet, C

    2010-01-01

    OPERA is an hybrid detector for the ni-tau appearance search in a direct way, and the Electronic Detectors (ED) have the crucial role of triggerring for the neutrino events and of localizing such an interaction inside the target. Another very important task of the ED is to identify the muon since only a correct matching of such a track with a track in the emulsion connected to the vertex of the event allows to reduce the charm background to the desired level. The ED, fully working since 2006, consist of a target tracker (scintillator strips) and a spectrometer (RPC and drift tubes). The different sub-detectors are de- scribed in the poster, as well as their performance both on Monte Carlo (MC) and real data.

  20. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  1. The LHCb Detector Upgrade

    CERN Document Server

    Schindler, H

    2013-01-01

    The LHCb collaboration presented a Letter of Intent (LOI) to the LHCC in March 2011 for a major upgrading of the detector during Long Shutdown 2 (2018) and intends to collect a data sample of 50/fb in the LHC and High-Luminosity-LHC eras. The aim is to operate the experiment at an instantaneous luminosity 2.5 times above the present operational luminosity, which has already been pushed to twice the design value. Reading out the detector at 40MHz allows to increase the trigger efficiencies especially for the hadronic decay modes. The physics case and the strategy for the upgrade have been endorsed by the LHCC. This paper presents briefly the physics motivations for the LHCb upgrade and the proposed changes to the detector and trigger.

  2. JSATS Detector Field Manual

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eric Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flory, Adam E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamarche, Brian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  3. JSATS Detector Field Manual

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eric Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flory, Adam E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamarche, Brian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  4. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  5. The AFP Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  6. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  7. Edgeless silicon pad detectors

    Science.gov (United States)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  8. Edgeless silicon pad detectors

    Energy Technology Data Exchange (ETDEWEB)

    Perea Solano, B. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: blanca.perea.solano@cern.ch; Abreu, M.C. [LIP and University of Algarve, 8000 Faro (Portugal); Avati, V. [CERN, CH-1211 Geneva 23 (Switzerland); Boccali, T. [INFN Sez. di Pisa and Scuola Normale Superiore, Pisa (Italy); Boccone, V. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Bozzo, M. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Capra, R. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Casagrande, L. [INFN Sez. di Roma 2 and Universita di Roma 2, Rome (Italy); Chen, W. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Eggert, K. [CERN, CH-1211 Geneva 23 (Switzerland); Heijne, E. [CERN, CH-1211 Geneva 23 (Switzerland); Klauke, S. [CERN, CH-1211 Geneva 23 (Switzerland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Maeki, T. [Helsinki Institute of Physics, Helsinki (Finland); Mirabito, L. [CERN, CH-1211 Geneva 23 (Switzerland); Morelli, A. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Niinikoski, T.O. [CERN, CH-1211 Geneva 23 (Switzerland); Oljemark, F. [Helsinki Institute of Physics, Helsinki (Finland); Palmieri, V.G. [Helsinki Institute of Physics, Helsinki (Finland); Rato Mendes, P. [LIP and University of Algarve, 8000 Faro (Portugal); Rodrigues, S. [LIP and University of Algarve, 8000 Faro (Portugal); Siegrist, P. [CERN, CH-1211 Geneva 23 (Switzerland); Silvestris, L. [INFN Sez. Di Bari, Bari (Italy); Sousa, P. [LIP and University of Algarve, 8000 Faro (Portugal); Tapprogge, S. [Helsinki Institute of Physics, Helsinki (Finland); Trocme, B. [Institut de Physique Nucleaire, Villeurbanne (France)

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in 'edgeless' planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5{+-}8{sub stat.}.{+-}6{sub syst.}) {mu}m.

  9. Radiation Detectors and Art

    Science.gov (United States)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  10. The Upgraded D0 Detector

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahmed, S N; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, J T; Anderson, S; Andrieu, B; Angstadt, R; Anosov, V; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Badaud, F; Baden, A; Baffioni, S; Bagby, L; Baldin, B; Balm, P W; Banerjee, P; Banerjee, S; Barberis, E; Bardon, O; Barg, W; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bhattacharjee, M; Baturitsky, M A; Bauer, D; Bean, A; Baumbaugh, B; Beauceron, S; Begalli, M; Beaudette, F; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Beutel, D; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Bishoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Bockenthein, E; Bodyagin, V; Böhnlein, A; Boeriu, O; Bolton, T A; Bonamy, P; Bonifas, D; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Bowden, M; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, D; Butler, J M; Cammin, J; Caron, S; Bystrický, J; Canal, L; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Chi, E; Chiche, R; Cho, D K; Choate, R; Choi, S; Choudhary, B; Chopra, S; Christenson, J H; Christiansen, T; Christofek, L; Churin, I; Cisko, G; Claes, D; Clark, A R; Clement, B; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Das, M; Davies, B; Davies, G; Davis, G A; Davis, W; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; de La Taille, C; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Delsart, P A; Del Signore, K; De Maat, R; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doets, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dvornikov, O; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fagan, J; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferapontov, A V; Ferbel, T; Ferreira, M J; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fitzpatrick, T; Flattum, E; Fleuret, F; Flores, R; Foglesong, J; Fortner, M; Fox, H; Franklin, C; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Gillberg, D; Geurkov, G; Ginther, G; Gobbi, B; Goldmann, K; Golling, T; Gollub, N; Golovtsov, V L; Gómez, B; Gómez, G; Gómez, R; Goodwin, R W; Gornushkin, Y; Gounder, K; Goussiou, A; Graham, D; Graham, G; Grannis, P D; Gray, K; Greder, S; Green, D R; Green, J; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gu, W; Guglielmo, J; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggard, E; Haggerty, H; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hance, R; Hanagaki, K; Hanlet, P; Hansen, S; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hazen, E; Hebbeker, T; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Houben, P; Hu, Y; Huang, J; Huang, Y; Hynek, V; Huffman, D; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jacquier, Y; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jayanti, R; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Jouravlev, N I; Juárez, M; Juste, A; Kaan, A P; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Kalmani, S D; Karmanov, D; Kasper, J; Katsanos, I; Kau, D; Kaur, R; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Kim, K H; Kim, T J; Kirsch, N; Klima, B; Klute, M; Kohli, J M; Konrath, J P; Komissarov, E V; Kopal, M; Korablev, V M; Kostritskii, A V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Kuznetsov, O; Krane, J; Kravchuk, N; Krempetz, K; Krider, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kubinski, R; Kuchinsky, N; Kuleshov, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Kuznetsov, V E; Kwarciany, R; Lager, S; Lahrichi, N; Landsberg, G L; Larwill, M; Laurens, P; Lavigne, B; Lazoflores, J; Le Bihan, A C; Le Meur, G; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leitner, R; Leonidopoulos, C; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Lindenmeyer, C; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Litmaath, M; Lizarazo, J; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lü, J; Lubatti, H J; Lucotte, A; Lueking, L; Luo, C; Lynker, M; Lyon, A L; Machado, E; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Maity, M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Manakov, V; Mao, H S; Maravin, Y; Markley, D; Markus, M; Marshall, T; Martens, M; Martin, M; Martin-Chassard, G; Mattingly, S E K; Matulik, M; Mayorov, A A; McCarthy, R; McCroskey, R; McKenna, M; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A S; Mendes, A; Mendoza, D; Mendoza, L; Meng, X; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miao, C; Miettinen, H; Mihalcea, D; Mikhailov, V; Miller, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Moulik, T; Muanza, G S; Mostafa, M; Moua, S; Mulders, M; Mundim, L; Mutaf, Y D; Nagaraj, P; Nagy, E; Naimuddin, M; Nang, F; Narain, M; Narasimhan, V S; Narayanan, A; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neuenschwander, R T; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nozdrin, A; Nunnemann, T; Nurczyk, A; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Olis, D; Oliveira, N; Olivier, B; Olsen, J; Oshima, N; Oshinowo, B O; Oteroy-Garzon, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Pérez, E; Peters, O; Petroff, P; Petteni, M; Phaf, L; Piegaia, R; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompos, A; Polosov, P; Pope, B G; Popkov, E; Porokhovoy, S; Prado da Silva, W L; Pritchard, W; Prokhorov, I; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Ramberg, E; Ramirez-Gomez, R; Rani, K J; Ranjan, K; Rao, M V S; Rapidis, P A; Rapisarda, S; Raskowski, J; Ratoff, P N; Ray, R E; Reay, N W; Rechenmacher, R; Reddy, L V; Regan, T; Renardy, J F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Roco, M T; Rotolo, C; Royon, C; Rubinov, P; Ruchti, R; Rucinski, R; Rud, V I; Rusakovich, N; Russo, P; Sabirov, B; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Satyanarayana, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shankar, H C; Shary, V; Shchukin, A A; Sheahan, P; Shephard, W D; Shivpuri, R K; Shishkin, A A; Shpakov, D; Shupe, M; Sidwell, R A; Simák, V; Sirotenko, V I; Skow, D; Skubic, P L; Slattery, P F; Smith, D E; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Souza, M; Spartana, N; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stefanik, A; Steinberg, J L; Steinbruck, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tentindo-Repond, S; Tamburello, P; Taylor, W; Telford, P; Temple, J; Terentyev, N K; Teterin, V; Thomas, E; Thompson, J; Thooris, B; Titov, M; Toback, D; Tokmenin, V V; Tolian, C; Tomoto, M; Tompkins, D; Toole, T; Torborg, J; Touze, F; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Utes, M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van den Berg, P J; Van Gemmeren, P; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Vaz, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vigneault, M; Villeneuve-Séguier, F; Vishwanath, P R; Vlimant, J R; Von Törne, E; Vorobyov, A; Vreeswijk, M; Vu-Anh, T; Vysotsky, V S; Wahl, H D; Walker, R; Wallace, N; Wang, L; Wang, Z M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; Wetstein, M; White, A; White, V; Whiteson, D; Wicke, D; Wijnen, T A M; Wijngaarden, D A; Wilcer, N; Willutzki, H; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Wu, Z; Xie, Y; Xu, Q; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yarema, R J; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Yoffe, F; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zanabria, M; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zmuda, T; Zutshi, V; Zviagintsev, S; Zverev, E G; Zylberstejn, A

    2005-01-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  11. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  12. Status of the KEDR detector

    CERN Document Server

    Anashin, V V; Baibusinov, B O; Balashov, V; Baldin, E M; Barkov, L M; Barladyan, A K; Barnyakov, M Y; Baru, S E; Bedny, I; Beilin, D M; Blinov, A E; Blinov, V E; Bondarev, D V; Bondar, A E; Buzykaev, A R; Cantoni, P; Chilingarov, A G; Dneprovsky, L V; Eidelman, S I; Epifanov, D A; Frabetti, P L; Gaidarev, P B; Groshev, V R; Karpov, S V; Kiselev, V A; Klimenko, S G; Kolachev, G M; Kononov, S A; Kozlov, V N; Kravchenko, E A; Kulikov, V F; Kurdadze, L M; Kuzmin, A S; Kuznecov, S A; Lanni, F; Lelchuk, M Y; Leontiev, L A; Levichev, E B; Malyshev, V M; Manfredi, P F; Maslennikov, A L; Minakov, G D; Nagaslaev, V P; Naumenkov, A I; Nikitin, S A; Nomerotski, A; Onuchin, A P; Oreshkin, S B; Ovechkin, R; Palombo, F; Peleganchuk, S V; Petrosyan, S S; Pivovarov, S V; Poluektov, A O; Pospelov, G E; Protopopov, I Ya; Re, V; Romanov, L V; Root, N I; Ruban, A A; Savinov, G A; Shamov, A G; Shatilov, D; Shubin, M A; Shusharo, A I; Shwartz, B A; Sidorov, V A; Skovpen, Y I; Smakhtin, V P; Snopkov, R G; Sokolov, A V; Soukharev, A M; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Y; Usov, Y V; Vorobyev, A I; Yushkov, A N; Zatcepin, A V; Zhilich, V N

    2002-01-01

    KEDR is a general-purpose detector for experiments at the VEPP-4M e sup + e sup - -collider in the energy range 2E=2.0-12 GeV. All detector subsystems (except the aerogel Cherenkov counters) have been installed into the detector at VEPP-4M. Some preliminary data have been taken in the energy region of the J/PSI meson. The tuning of the detector and the VEPP-4M collider is in progress. Preliminary results on the detector performance are presented. The future experimental program for the KEDR detector is discussed.

  13. Status of the KEDR detector

    Energy Technology Data Exchange (ETDEWEB)

    Anashin, V.V.; Aulchenko, V.M.; Baibusinov, B.O.; Balashov, V.; Baldin, E.M.; Barkov, L.M.; Barladyan, A.K.; Barnyakov, M.Yu.; Baru, S.E.; Bedny, I.V.; Beilin, D.M.; Blinov, A.E.; Blinov, V.E.; Bondarev, D.V.; Bondar, A.E.; Buzykaev, A.R.; Cantoni, P.; Chilingarov, A.G.; Dneprovsky, L.V.; Eidelman, S.I.; Epifanov, D.A.; Frabetti, P.L.; Gaidarev, P.B.; Groshev, V.R.; Karpov, S.V.; Kiselev, V.A.; Klimenko, S.G.; Kolachev, G.M.; Kononov, S.A.; Kozlov, V.N.; Kravchenko, E.A.; Kulikov, V.F.; Kurdadze, L.M.; Kuzmin, A.S.; Kuznecov, S.A.; Lanni, F.; Lelchuk, M.Yu.; Leontiev, L.A.; Levichev, E.B.; Malyshev, V.M.; Manfredi, P.F.; Maslennikov, A.L.; Minakov, G.D.; Nagaslaev, V.P.; Naumenkov, A.; Nikitin, S.A.; Nomerotsky, A.; Onuchin, A.P.; Oreshkin, S.B.; Ovechkin, R.; Palombo, F.; Peleganchuk, S.V.; Petrosyan, S.S.; Pivovarov, S.V.; Poluektov, A.O.; Pospelov, G.E.; Protopopov, I.Ya.; Re, V.; Romanov, L.V.; Root, N.I.; Ruban, A.A.; Savinov, G.A.; Shamov, A.G.; Shatilov, D.; Shubin, M.A.; Shusharo, A.I.; Shwartz, B.A.; Sidorov, V.A.; Skovpen, Yu.I.; Smakhtin, V.P.; Snopkov, R.G.; Sokolov, A.V.; Soukharev, A.M.; Talyshev, A.A.; Tayursky, V.A.; Telnov, V.I.; Tikhonov, Yu.A. E-mail: tikhonov@cppm.in2p3.fr; Todyshev, K.Yu.; Usov, Yu.V.; Vorobyev, A.I.; Yushkov, A.N.; Zatcepin, A.V.; Zhilich, V.N

    2002-02-01

    KEDR is a general-purpose detector for experiments at the VEPP-4M e{sup +}e{sup -}-collider in the energy range 2E=2.0-12 GeV. All detector subsystems (except the aerogel Cherenkov counters) have been installed into the detector at VEPP-4M. Some preliminary data have been taken in the energy region of the J/{psi} meson. The tuning of the detector and the VEPP-4M collider is in progress. Preliminary results on the detector performance are presented. The future experimental program for the KEDR detector is discussed.

  14. Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, Willy; /SLAC

    2005-07-06

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

  15. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  16. Sensitive hydrogen leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  17. B-factory detectors

    CERN Document Server

    Marlow, D R

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B sup 0->J/PSI K sub S decays and related modes.

  18. The BABAR Detector

    CERN Document Server

    CERN. Geneva

    2002-01-01

    BABAR, the detector for the SLAC PEP-II asymmetric e+e- B Factory operating at the upsilon 4S resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  19. CALIBRATION OF PHOSWICH DETECTORS

    NARCIS (Netherlands)

    LEEGTE, HKW; KOLDENHOF, EE; BOONSTRA, AL; WILSCHUT, HW

    1992-01-01

    Two important aspects for the calibration of phoswich detector arrays have been investigated. It is shown that common gate ADCs can be used: The loss in particle identification due to fluctuations in the gate timing in multi-hit events can be corrected for by a simple procedure using the measured ti

  20. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  1. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  2. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  3. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  4. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  5. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and fluoresc

  6. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  7. High-resolution ionization detector and array of such detectors

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  8. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  9. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  10. 热释电红外传感器在新型弹药引信中的应用%Application of Pyroelectric Infrared Sensor in New Ammunition Fuze

    Institute of Scientific and Technical Information of China (English)

    平子鹏; 赵洋

    2016-01-01

    The target detection and recognition of the fuze is an important part of the new intelligent ammunition .Com‐bined with the current target detection and recognition technology ,a method of target detection and identification is presented based on the pyroelectric infrared sensor .On the basis of the working principle of pyroelectric infrared sensor ,the infrared characteristics of the human body are analyzed and the experimental simulation is carried out .The results show that the tar‐get detection and recognition based on pyroelectric infrared sensor is feasible ,which has a key role in improving the opera‐tional effectiveness of weapon system ,enhancing the conventional deterrence and combat capability .%引信的目标探测与识别是新型智能弹药系统的重要组成部分,结合当今目标探测识别技术,给出了一种基于热释电红外传感器的引信探测与识别方法。文章在阐述热释电红外传感器工作原理的基础上,分析人体目标的红外特性并进行实验仿真。结果表明,基于热释电红外传感器的引信目标探测与识别是可行的,对提高武器系统作战效能,增强常规威慑和实战能力具有关键作用。

  11. Position sensitive solid state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schnatterly, S.E.; Husk, D.

    1986-05-15

    Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.

  12. Multi-Object Tracking Scheme with Pyroelectric Infrared Sensor and Video Camera Coordination%融合热释电红外传感器与视频监控器的多目标跟踪算法

    Institute of Scientific and Technical Information of China (English)

    李方敏; 姜娜; 熊迹; 张景源

    2014-01-01

    现有基于热释电红外传感器的多目标跟踪系统在目标之间距离较近或者轨迹相交的情况下存在着误差较大的缺点。针对此缺点,提出了一种新型的基于热释电红外传感器与视频监测器协同工作的多目标跟踪方案。该方案可以充分利用两种传感器的优势,弥补在目标跟踪中的不足。算法采用最小二乘法利用热释电信息进行定位,并通过从图像或热释电传感器信号的幅频特性中提取特征信息来校正联合概率数据关联算法的关联矩阵,有效避免了错误关联。实验表明,该方案在多目标交叉情况下跟踪误差仅为其它算法的八分之一到四分之一。%The error tends to be significant in many existing pyroelectric infrared sensor based multi-object tracking systems when the measured objects get close to each other or their trajectories have intersections .To solve this problem ,we proposed a mul-ti-object tracking scheme by having pyroelectric infrared sensors and video cameras work cooperatively .This scheme takes the ad-vantages of both kinds of sensors ,which help to improve the performance compared to those using any kind of such sensors .In the proposed scheme ,we first achieve coarse positioning using least square method with data collected by pyroelectric infrared sensors , and then we correct the incidence matrix in joint probabilistic data association with features extracted from the images or the fre -quency responses of pyroelectric sensors .The coarse positioning is further filtered by joint probabilistic data association algorithm to obtain the final fine result .Such a method prevents false association effectively .Experimental results show that the tracking error of the proposed scheme in multi-object crossover scenario reduces to a quarter ,even to one eighth of the errors that exist in the com-pared schemes .

  13. 基于热释电传感器的能量采集系统设计%The design of thermal energy harvesting system based on pyroelectric sensor

    Institute of Scientific and Technical Information of China (English)

    王芳; 李焕焕; 韩文超; 彭玉峰

    2012-01-01

    This paper designed an embedded integrated rechargeable battery system which could achieve a variety of energy collection. The battery system can be used in the multiple micro - sensor nodes of monitoring and warning system , which can make use of environment temperature and heating signal to charge directly. The system is made of a pyroelectric element, rectifier circuit, the DC/DC voltage boost circuit and a switch control circuit module. The article analysised the influence of the electrical parameters of the pyroelectric unit in the thermal cycle on the charge of the capacitor charge; besides, gave the key part of the circuit design of the pyroelectric charge battery and made study of design of improved CMOS rectifier circuit, booster circuit and switch control circuit. The study does not only improve the efficiency of the output,but also achieve a high degree of integration. The simulation and experiment results show that making use of the pyroelectricity to collect and store the energy is effective and feasible.%本文设计一种可实现多种能量收集的嵌入式集成微充电电池系统,该电池系统可用在监测预警系统中的多个微传感器节点上,直接利用环境中的温度和热信号进行充电.该系统包含热释电单元、整流电路、DC/DC升压电路等模块.理论分析了热释电单元的电参数在热循环周期内对充电电容上电荷的影响,给出了热释电充电电池的关键部分电路设计,对改进CMOS整流电路、升压电路进行了研究,不仅提高了输出效率,同时实现了高集成度.仿真和实验结果表明利用热释电进行能量收集和储存是有效可行的.

  14. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  15. ATLAS Detector : Performance and Upgrades

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2016-01-01

    Describe the ATLAS detector and summarize most relevant and recent information about the detector performance in 2016 with LHC colliding bunches at sqrt(s)=13 TeV with luminosity above the nominal value. Describe the different upgrade phases previewed for the detector and main activities already ongoing.

  16. Characterizations of GEM detector prototype

    CERN Document Server

    INSPIRE-00522505; Rudra, Sharmili; Bhattacharya, P.; Sahoo, Sumanya Sekhar; Biswas, S.; Mohanty, B.; Nayak, T.K.; Sahu, P.K.; Sahu, S.

    2016-01-01

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  17. Characterisations of GEM detector prototype

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Rajendra Nath [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, West Bengal (India); Nanda, Amit [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Rudra, Sharmili [Department of Applied Physics, CU, 92, APC Road, Kolkata 700009, West Bengal (India); Bhattacharya, P.; Sahoo, Sumanya Sekhar [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Biswas, S., E-mail: saikat.ino@gmail.com [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Mohanty, B. [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Nayak, T.K. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, West Bengal (India); Sahu, P.K.; Sahu, S. [Institute of Physics, Sachivalaya Marg, P.O.: Sainik School, Bhubaneswar 751005, Odisha (India)

    2016-07-11

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  18. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  19. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  20. Future liquid Argon detectors

    CERN Document Server

    Rubbia, A

    2013-01-01

    The Liquid Argon Time Projection Chamber offers an innovative technology for a new class of massive detectors for rare-event detection. It is a precise tracking device that allows three-dimensional spatial reconstruction with mm-scale precision of the morphology of ionizing tracks with the imaging quality of a "bubble chamber", provides $dE/dx$ information with high sampling rate, and acts as high-resolution calorimeter for contained events. First proposed in 1977 and after a long maturing process, its holds today the potentialities of opening new physics opportunities by providing excellent tracking and calorimetry performance at the relevant multi-kton mass scales, outperforming other techniques. In this paper, we review future liquid argon detectors presently being discussed by the neutrino physics community.

  1. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  3. The LUCID detector

    CERN Document Server

    Lasagni Manghi, Federico; The ATLAS collaboration

    2015-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  4. UA1 central detector

    CERN Multimedia

    The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6125 sense wires allowed a spectacular 3-D interactive display of reconstructed physics events to be produced.

  5. Metrology with Unknown Detectors.

    Science.gov (United States)

    Altorio, Matteo; Genoni, Marco G; Somma, Fabrizia; Barbieri, Marco

    2016-03-11

    The best possible precision is one of the key figures in metrology, but this is established by the exact response of the detection apparatus, which is often unknown. There exist techniques for detector characterization that have been introduced in the context of quantum technologies but apply as well for ordinary classical coherence; these techniques, though, rely on intense data processing. Here, we show that one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the Cramér-Rao bound allowed by an unknown detector, and we present applications in polarimetry. Further, we show how this formalism provides a useful calculation tool in an estimation problem involving a continuous-variable quantum state, i.e., a quantum harmonic oscillator.

  6. Aerogel for FARICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R.; Gulevich, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Kuyanov, I.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Lopatin, S.A. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Ovtin, I.V.; Podgornov, N.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Porosev, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Predein, A.Yu.; Protsenko, R.S. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation)

    2014-12-01

    We present our current experience in preparation of focusing aerogels for the Focusing Aerogel RICH detector. Multilayer focusing aerogel tiles have been produced in Novosibirsk by a collaboration of the Budker Institute of Nuclear Physics and Boreskov Institute of Catalysis since 2004. We have obtained 2–3–4-layer blocks with the thickness of 30–45 mm. In 2012, the first samples of focusing blocks with continuous density (refractive index) gradient along thickness were produced. This technology can significantly reduce the contribution from the geometric factor of the radiator thickness to the resolution of the measured Cherenkov angle in the FARICH detector. The special installation was used for automatic control of reagents ratio during the synthesis process. The first samples were tested using the digital radiography method and on the electron beam with the FARICH prototype.

  7. Metrology with Unknown Detectors

    CERN Document Server

    Altorio, Matteo; Somma, Fabrizia; Barbieri, Marco

    2015-01-01

    The best possible precision is one of the key figures in metrology, but this is established by the exact response of the detection apparatus, which is often unknown. There exist techniques for detector characterisation, that have been introduced in the context of quantum technologies, but apply as well for ordinary classical coherence; these techniques, though, rely on intense data processing. Here we show that one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the Cram\\'er-Rao bound allowed by an unknown detector, and present applications in polarimetry. Further, we show how this formalism provide a useful calculation tool in an estimation problem involving a continuous-variable quantum state, i.e. a quantum harmonic oscillator.

  8. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  9. Detectors for the space telescope

    Science.gov (United States)

    Kelsall, T.

    1978-01-01

    This review of Space Telescope (ST) detectors is divided into two parts. The first part gives short summaries of detector programs carried out during the final planning stage (Phase B) of the ST and discusses such detectors as Photicon, the MAMA detectors, the CODACON, the University of Maryland ICCD, the Goddard Space Flight Center ICCD, and the 70 mm SEC TV sensor. The second part describes the detectors selected for the first ST flight, including the wide field/planetary camera, the faint object and high resolution spectrographs, and the high speed photometer.

  10. Biological detector and method

    Energy Technology Data Exchange (ETDEWEB)

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  11. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  12. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstrom, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg,E.; Deyoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren,A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark,S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold,M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; de, los, Heros, CP.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering,C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    1999-08-23

    The first stage of the AMANDA High Energy Neutrino Detectorat the South Pole, the 302 PMT array AMANDA-B with an expected effectivearea for TeV neutrinos of similar to 10(4) m(2), has been taking datasince 1997. Progress with calibration, investigation of ice properties,as well as muon and neutrino data analysis are described. The next stage20-string detector AMANDA-II with similar to 800 PMTs will be completedin spring 2000.

  13. The ALEPH detector

    CERN Document Server

    1988-01-01

    For detecting the direction and momenta of charged particles with extreme accuracy, the ALEPH detector had at its core a time projection chamber, for years the world's largest. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons from 1989 to 2000.

  14. LHCb velo detector

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 01 : L. to r.: D. Malinon, Summer Student, J. Libby, Fellow, J. Harvey, Head of CERN LHCb group, D. Schlatter, Head of the EP Division in front of the LHCb velo detector test beam (on the right). Photo 02 : L. to r.: J. Harvey, D. Schlatter, W. Riegler (staff), H.J. Hilke, LHCb Technical Coordinator in front of the muon chamber test beam

  15. Development of Portable Detectors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the “Contractor”) and Sense Holdings, Inc. (the “Participant”) was for the development of hand-held detectors with high sensitivity and selectivity for the detection of explosives, toxic industrial chemicals and materials, and other materials of interest for security applications. The two parties built a series of demonstration and prototype handheld sensors based upon micoelectromechanical systems (MEMS) with electronic readout.

  16. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  17. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  18. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  19. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  20. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6125 sense wires allowed a spectacular 3-D interactive display of reconstructed physics events to be produced.

  1. The STAR PXL detector

    Science.gov (United States)

    Contin, G.

    2016-12-01

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Designed to extend the STAR measurement capabilities in the heavy flavor domain, it took data in Au+Au collisions, p+p and p+Au collisions at 0√sNN=20 GeV at RHIC, during the period 2014-2016. The PXL detector is based on 50 μm-thin MAPS sensors with a pitch of 20.7 μm. Each sensor includes an array of nearly 1 million pixels, read out in rolling shutter mode in 185.6 μs. The 170 mW/cm2 power dissipation allows for air cooling and contributes to reduce the global material budget to 0.4% radiation length on the innermost layer. Experience and lessons learned from construction and operations will be presented in this paper. Detector performance and results from 2014 Au+Au data analysis, demonstrating the STAR capabilities of charm reconstruction, will be shown.

  2. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    RPC detector calibration, HV scan Thanks to the high LHC luminosity and to the corresponding high number of muons created in the first part of the 2011 the RPC community had, for the first time, the possibility to calibrate every single detector element (roll).The RPC steering committee provided the guidelines for both data-taking and data analysis and a dedicated task force worked from March to April on this specific issue. The main goal of the RPC calibration was to study the detector efficiency as a function of high-voltage working points, fit the obtained “plateau curve” with a sigmoid function and determine the “best” high-voltage working point of every single roll. On 18th and 19th March, we had eight runs at different voltages. On 27th March, the full analysis was completed, showing that 60% of the rolls had already a very good fit with an average efficiency greater than 93% in the plateau region. To improve the fit we decided to take three more runs (15th April...

  3. Commissioning the SNO+ detector

    Science.gov (United States)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  4. The STAR Vertex Position Detector

    CERN Document Server

    Llope, W J; Nussbaum, T; Hoffmann, G W; Asselta, K; Brandenburg, J D; Butterworth, J; Camarda, T; Christie, W; Crawford, H J; Dong, X; Engelage, J; Eppley, G; Geurts, F; Hammond, J; Judd, E; McDonald, D L; Perkins, C; Ruan, L; Scheblein, J; Schambach, J J; Soja, R; Xin, K; Yang, C

    2014-01-01

    The 2x3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2x19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event "start time" needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ~100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ~1 cm.

  5. Determinación del coeficiente piroeléctrico del sistema ferroeléctrico cerámico de Pb0.88Ln0.08Ti0.98Mn0.02O3 (Ln=La, Sm, Eu y su aplicación en detectores de infrarrojo

    Directory of Open Access Journals (Sweden)

    Suaste-Gómez, E.

    2004-12-01

    Full Text Available In this work the dielectric and pyroelectric characteristics of the ferroelectric ceramic system of Pb0.88(Ln0.08Ti0.98Mn0.02O3 (Ln = La, Sm, Eu are studied in order to determine its usefulness as infrared dectectors. Dielectric constant and pyroelectric coefficient of the ceramics were determined. This material with perovskite structure presented a phase transition from tetragonal to cubic on the heating process, besides of presenting high values of dielectric constant. Values of figure of merit for infrared detection Rv=pi/εr were calculated. The results were compared with other materials used as infrared detectors.En este trabajo se estudian las características dieléctricas y piroeléctricas del sistema ferroléctrico cerámico de Pb0.88(Ln0.08Ti0.98 Mn0.02O3 (Ln = La, Sm, Eu para determinar su utilidad como detectores de infrarrojo. Se determinó la constante dieléctrica y el coeficiente piroeléctrico de las cerámicas. Este material con estructura de perovskita presentó una transición de fase tetragonal a cúbica en el proceso de calentamiento, además de presentar altos valores de la constante dieléctrica. Se obtuvieron valores de la figura de mérito para detección infrarroja Rv=pi/εr Los resultados se compararon con otros materiales usados como detectores de infrarrojo.

  6. Design and Research on Amplifier Circuit for Pyroelectric Infrared Sensor%热释电红外传感器前置放大电路设计与研究

    Institute of Scientific and Technical Information of China (English)

    滕飞扬; 陈连坤

    2012-01-01

    介绍热释电红外传感器的工作原理和性能,分析热释电红外传感器的信号输出特性,设计基于此类传感器的前置滤波放大电路.并使用单片机进行经过电路放大后的脉冲信号的分析,完成对人体运动的检测。使用Alfium Designer6.9对前置滤波放大电路进行软件仿真,以验证该放大电路的有效性和可靠性。%Introduces the working principle and performance of pyroelectric infrared sensor, and analyses the characteristics of pyroelectric infrared sensor signal output, then designs an preamplifier based on this type of sensor, and uses the microcontroller for analysis of the amplified signal to finish the detection of human motion. Uses Ahium Designer 6.9 to simulate the preamplifier, verifies the validities and reliability of the preamplifier.

  7. Pyroelectricity and Spontaneous Polarization in [111] Oriented 0.955 Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    SHEN Ming-Rong; YAO Dong-Lai; CAO Wen-Wu

    2005-01-01

    @@ We report that the measurements of the pyroelectric current of the pre-poled [111]-oriented 0. 955 Pb(Zn1/3Nb2/3)O3-0.045 PbTiO3 (PZN-4.5%PT) single crystals can shed some light on the phase transition and spontaneous polarization characters of this material in a similar way to measures of remanent polarization and dielectric properties. The pyroelectric current is measured and the corresponding spontaneous polarization is calculated as a function of temperature with various poling fields added during cooling the sample from 200℃ to room temperature. Critical electric field of 0.061 k V/cm is found to be essential to induce the intermediate ferroelectric orthorhombic phase between the ferroelectric rhombohedral and tetragonal phases. Below the critical field, the polarization increases almost linearly with the increase of poling field. At the critical field, the polarization at 30℃ increases abruptly from 14μC/cm2 for a poling field of 0.06kV/cm to 29.5μC/cm2 for a poling field of 0.061 kV/cm, and afterwards, increases slowly and saturates to 31 μC/cm2 for poling fields beyond 0.55 kV/cm.

  8. Study on Low Temperature Pyroelectric and Elastic Properties of Li0.06Na0.94NbO3 Ceramics%低温下铌酸锂钠陶瓷的热释电性与弹性研究

    Institute of Scientific and Technical Information of China (English)

    艾树涛; 王春雷; 张沛霖; 赵明磊; 杜爱军

    2001-01-01

    Pyroelectric and elastic properties of Li0.06Na0.94NbO3 ceramics have been investigated in the temperature range from 120~320 K.Its pyroelectric and elastic properties behave anomalously in certain low temperature intervals.This shows there is a low temperature ferroelectric phase transition in Li0.06Na0.94NbO3 ceramics.The inversion of its pyroelectric coefficient in polarized direction to the opposite sign and the change of the polarity of pyroelectric charge with time during phase transtion have been observed.The evolution of elastic properties is connected with the secondary piezoelectric effect.%在120~320 K的温度范围内研究了锂酸锂钠陶瓷的热释电性与弹性。其热释电行为与弹性行为在低温区域内显著反常,表明该陶瓷存在低温铁电-铁电相变。观测到极化方向的热释电系数改变符号及热释电电荷随时间改变极性的现象。弹性变化与次级压电效应是相关的。

  9. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  10. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  11. The ATLAS Detector Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J. [University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom)

    2011-06-15

    We present the simulation software for the ATLAS experiment [G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008), S08003] at the Large Hadron Collider [L. Evans and P. Bryant, LHC Machine, JINST 3 (2008), S08001]. The overall infrastructure and some selected features are discussed. In particular, the detector description, the interface to Geant4, event generator support, magnetic field integration improvements, pile-up and digitisation of overlapping events and fast simulation. Also described are performance studies, large scale production and the validation of the simulated output against recent data.

  12. The WELL Detector

    CERN Document Server

    Bellazzini, R; Brez, A; Gariano, G; Latronico, L; Lumb, N; Papanestis, A; Spandre, G; Massai, M M; Raffo, R; Spezziga, M A

    1999-01-01

    We introduce the WELL detector, a new type of position-sensitive gas proportional counter produced using advanced printed circuit board (PCB) technology. The WELL is based on a thin kapton foil, copp erclad on both sides. Charge amplifying micro-wells are etched into the first metal and kapton layers. These end on a micro-strip pattern which is defined on the second metal plane. The array of micr o-strips is used for read-out to obtain 1-D positional information. First results from our systematic assessment of this device are reported.

  13. Flexible composite radiation detector

    Science.gov (United States)

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  14. Microstructured silicon radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.

    2017-03-14

    A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.

  15. PHENIX inner detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.; Bennett, M.J.; Bobrek, M.; Boissevain, J.B.; Boose, S.; Bosze, E.; Britton, C.; Chang, J.; Chi, C.Y.; Chiu, M.; Conway, R.; Cunningham, R.; Denisov, A.; Deshpande, A.; Emery, M.S.; Enokizono, A.; Ericson, N.; Fox, B.; Fung, S.-Y.; Giannotti, P.; Hachiya, T.; Hansen, A.G.; Homma, K.; Jacak, B.V.; Jaffe, D.; Kang, J.H.; Kapustinsky, J.; Kim, S.Y.; Kim, Y.G.; Kohama, T.; Kroon, P.J.; Lenz, W.; Longbotham, N.; Musrock, M.; Nakamura, T.; Ohnishi, H.; Ryu, S.S.; Sakaguchi, A.; Seto, R.; Shiina, T.; Simpson, M.; Simon-Gillo, J.; Sondheim, W.E.; Sugitate, T.; Sullivan, J.P. E-mail: sullivan@lanl.gov; Hecke, H.W. van; Walker, J.W.; White, S.N.; Willis, P.; Xu, N

    2003-03-01

    The timing, location and particle multiplicity of a PHENIX collision are determined by the Beam-Beam Counters (BBC), the Multiplicity/Vertex Detector (MVD) and the Zero-Degree Calorimeters (ZDC). The BBCs provide both the time of interaction and position of a collision from the flight time of prompt particles. The MVD provides a measure of event particle multiplicity, collision vertex position and fluctuations in charged particle distributions. The ZDCs provide information on the most grazing collisions. A Normalization Trigger Counter (NTC) is used to obtain absolute cross-section measurements for p-p collisions. The BBC, MVD and NTC are described below.

  16. Infrared detectors for space applications

    Science.gov (United States)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  17. Scalar top study: Detector optimization

    Indian Academy of Sciences (India)

    C Milsténe; A Sopczak

    2007-11-01

    A vertex detector concept of the linear collider flavour identification (LCFI) collaboration, which studies pixel detectors for heavy quark flavour identification, has been implemented in simulations for -quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two -quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the international linear collider (ILC).

  18. Digital detectors for electron microscopy

    CERN Document Server

    Faruqi, A R

    2002-01-01

    Film has traditionally been used for recording images in transmission electron microscopes but there is an essential need for computer-interfaced electronic detectors. Cooled-CCD detectors, developed over the past few years, though not ideal, are increasingly used as the preferred detection system in a number of applications. We describe briefly the design of CCD-based detectors, along with their main properties, which have been used in electron crystallography. A newer detector design with a much bigger sensitive area, incorporating a 2x2 tiled array of CCDs with tapered fibre optics will overcome some of the limitations of existing CCD detectors. We also describe some preliminary results for 8 keV imaging, from (direct detection) silicon hybrid pixel detectors, which offer advantages over CCDs in terms of better spatial resolution, faster readout with minimal noise.

  19. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  20. The FastGas detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Dalgliesh, R.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.u [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Holt, S.A.; McPhail, D.J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M.; Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2010-04-21

    The development and testing of the FastGas neutron detector is described. Based on a Gas Microstrip Chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing {sup 3}He tubes for specular reflectometry, currently in use on the ISIS reflectometer instruments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  1. The 4th concept detector

    Indian Academy of Sciences (India)

    John Hauptman

    2007-12-01

    The 4th concept detector consists of four detector subsystems, a small-pixel vertex detector, a high-resolution TPC, a new multiple-readout fiber calorimeter and a new dual-solenoid iron-free muon system. We discuss the design of a comprehensive facility that measures and identifies all partons of the standard model, including hadronic → and → decays, with high precision and high e±ciency. We emphasis here the calorimeter and muon systems.

  2. First detectors at the ISR

    CERN Multimedia

    1971-01-01

    Some of the first detectors at the ISR. A CERN/Rome team was looking at proton scattering at very small angles to the beam direction. A detector known as a "Roman pot" is in the foreground on the left. An Aachen/CERN/Genoa/Harvard/Turin team was looking at wider angles with the detectors seen branching off from the rings on the right.

  3. Decoherence of the Unruh detector

    CERN Document Server

    Demers, G

    1995-01-01

    As it is well known, the Minkowski vacuum appears thermally populated to a quantum mechanical detector on a uniformly accelerating course. We investigate how this thermal radiation may contribute to the classical nature of the detector's trajectory through the criteria of decoherence. An uncertainty-type relation is obtained for the detector involving the fluctuation in temperature, the time of flight and the coupling to the bath.

  4. The CMS detector before closure

    CERN Multimedia

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  5. MUON DETECTORS: CSC

    CERN Multimedia

    Richard Breedon

    Following the opening of the CMS detector, commissioning of the cathode strip chamber (CSC) system resumed in earnest. Some on-chamber electronics problems could be fixed on the positive endcap when each station became briefly accessible as the steel yokes were peeled off. There was no opportunity to work on the negative endcap chambers during opening; this had to wait instead until the yokes were again separated and the stations accessible during closing. In March, regular detector-operating shifts were resumed every weekday evening during which Local Runs were taken using cosmic rays to monitor and validate repairs and improvements that had taken place during the day. Since April, the CSC system has been collecting cosmic data under shift supervision 24 hours a day on weekdays, and 24/7 operation began in early June. The CSC system arranged shifts for continuous running in the entire first half of 2009. One reward of this effort is that every chamber of the CSC system is alive and recording events. There...

  6. ATLAS Detector Upgrade Prospects

    Science.gov (United States)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  7. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The earliest collision data in 2011 already show that the CSC detector performance is very similar to that seen in 2010. That is discussed in the DPG write-up elsewhere in this Bulletin. This report focuses on a few operational developments, the ME1/1 electronics replacement project, and the preparations at CERN for building the fourth station of CSC chambers ME4/2. During the 2010 LHC run, the CSC detector ran smoothly for the most part and yielded muon triggers and data of excellent quality. Moreover, no major operational problems were found that needed to be fixed during the Extended Technical Stop. Several improvements to software and configuration were however made. One such improvement is the automation of recovery from chamber high-voltage trips. The algorithm, defined by chamber experts, uses the so-called "Expert System" to analyse the trip signals sent from DCS and, based on the frequency and the timing of the signals, respond appropriately. This will make the central DCS shifters...

  8. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    During the last 3 months the RPC group has made impressive improvements in the refinement of the operation tools and understanding of the detector. The full barrel and part of the plus end cap participated systematically to global runs producing millions of trigger on cosmics. The main monitoring tools were robust and efficient in controlling the detector and in diagnosis of problems. After the refinement of the synchronization procedure, detailed studies of the chamber performances, as a function of high voltage and front-end threshold, were pursued. In parallel, new tools for the prompt analysis were developed which have enabled a fast check of the data at the CMS Centre. This effort has been very valuable since it has helped in discovering many minor bugs in the reconstruction software and database which are now being fixed. Unfortunately, a large part of the RE2 station has developed increasing operational current. Some preliminary investigation leads to the conclusion that the serial gas circulation e...

  9. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2013-01-01

    The DT group is undertaking substantial work both for detector maintenance and for detec-tor upgrade. Maintenance interventions on chambers and minicrates require close collaboration between DT, RPC and HO, and are difficult because they depend on the removal of thermal shields and cables on the front and rear of the chambers in order to gain access. The tasks are particularly critical on the central wheel due to the presence of fixed services. Several interventions on the chambers require extraction of the DT+RPC package: a delicate operation due to the very limited space for handling the big chambers, and the most dangerous part of the DT maintenance campaign. The interventions started in July 2013 and will go on until spring 2014. So far out of the 16 chambers with HV problems, 13 have been already repaired, with a global yield of 217 recovered channels. Most of the observed problems were due to displacement of impurities inside the gaseous volume. For the minicrates and FE, repairs occurred on 22 chambe...

  10. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli.

    Substantial progress has been made on the RPC system resulting in a high standard of operation. Impressive improvements have been made in the online software and DCS PVSS protocols that ensure robustness of the configuration phase and reliability of the detector monitoring tasks. In parallel, an important upgrade of CCU ring connectivity was pursued to avoid noise pick-up and consequent  data transmission errors during operation with magnetic field. While the barrel part is already well synchronized thanks to the long cosmics runs, some refinements are still required on the forward part. The "beam splashes" have been useful to cross check  the existing delay constants, but further efforts will be made as soon as a substantial sample of beam-halo events is available. Progress has been made on early detector performance studies. The RPC DQM tool is being extensively used and minor bugs have been found. More plots have been added and more people have been tr...

  11. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  12. Advanced Radiation Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  13. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya and M. Dallavalle

    2010-01-01

    The DT system operation since the 2010 LHC start up is remarkably smooth.
 All parts of the system have behaved very satisfactorily in the last two months of operation with LHC pp collisions. Disconnected HV channels remain at the level of 0.1%, and the loss in detector acceptance because of failures in the readout and Trigger electronics is about 0.4%. The DT DCS-LHC handshake mechanism, which was strengthened after the short 2009 LHC run, operates without major problems. A problem arose with the opto-receivers of the trigger links connecting the detector to USC; the receivers would unlock from transmission for specific frequencies of the LHC lock, in particular during the LHC ramp. For relocking the TX and RX a “re-synch” command had to be issued. The source of the problem has been isolated and cured in the Opto-RX boards and now the system is stable. The Theta trigger chain also has been commissioned and put in operation. Several interventions on the system have been made, pro...

  14. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    The RPC muon detector and trigger are working very well, contributing positively to the high quality of CMS data. Most of 2011 has been used to improve the stability of our system and the monitoring tools used online and offline by the shifters and experts. The high-voltage working point is corrected, chamber-by-chamber, for pressure variation since July 2011. Corrections are applied at PVSS level during the stand-by mode (no collision) and are not changed until the next fill. The single detector calibration, HV scan, of February and the P-correction described before were very important steps towards fine-tuning the stability of the RPC performances. A very detailed analysis of the RPC performances is now ongoing and from preliminary results we observe an important improvements of the cluster size stability in time. The maximum oscillation of the cluster size run by run is now about 1%. At the same time we are not observing the same stability in the detection efficiency that shows an oscillation of about ...

  15. MUON DETECTORS: DT

    CERN Document Server

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  16. The TALE Fluorescence Detectors

    Science.gov (United States)

    Jui, Charles

    2009-05-01

    The TALE fluorescence detectors are designed to extend the threshold for fluorescence observation by TA down to 3x10^16 eV. It will comprise two main components. The first is a set of 24 telescopes working in stereo, with an existing TA FD station at ˜6 km separation. These will cover between 3-31 degrees in elevation and have azimuthal coverage maximizing the stereo aperture in the 10^18-10^19 eV energy range. The second component consists of 15 telescopes equipped with 4m diameter mirrors and covering the sky between 31 and 73 degrees in elevation. The larger mirror size pushes the physics threshold down to 3x10^16 eV, and provides view of the shower maximum for the lower energy events. The Tower detector will cover one quadrant in azimuth and operate in hybrid mode with the TALE infill array to provide redundant composition measurements from both shower maximum information and muon-to-electron ratio.

  17. VNR CMS Pixel detector replacement

    CERN Document Server

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  18. Tomography of Spatial Mode Detectors

    CERN Document Server

    Bobrov, Ivan; Markov, Anton; Straupe, Stanislav; Kulik, Sergey

    2014-01-01

    Transformation and detection of photons in higher-order spatial modes usually requires complicated holographic techniques. Detectors based on spatial holograms suffer from non-idealities and should be carefully calibrated. We report a novel method for analyzing the quality of projective measurements in spatial mode basis inspired by quantum detector tomography. It allows us to calibrate the detector response using only gaussian beams. We experimentally investigate the inherent inaccuracy of the existing methods of mode transformation and provide a full statistical reconstruction of the POVM (positive operator valued measure) elements for holographic spatial mode detectors.

  19. Position-sensitive superconductor detectors

    Science.gov (United States)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  20. PbSc0.5Ta0.5O3 pyroelectric materials and their application in pyroelectric detector arrays%PbSc0.5Ta0.5O3热释电材料及其红外探测器列阵

    Institute of Scientific and Technical Information of China (English)

    于光龙; 肖定全; 朱建国; 余萍; 袁小武

    2003-01-01

    热释电红外探测器具有探测波长范围广、室温工作、无需致冷等优点.近年来,工作于介电方式下的PbSc0.5Ta0.5O3 (PST)热释电材料由于具有热释电系数大,热释电探测优值高等特点,成为热释电应用研究的热点之一.本文综述了目前PST热释电陶瓷材料的介电,热释电性能及其探测器列阵的发展.由于小型化的要求,PST薄膜亦倍受关注,因此本文还对目前PST热释电薄膜的制备方法,薄膜的热释电、介电性能及薄膜型探测器结构和发展进行了概述.

  1. PET detector modules based on novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, W.W.; Derenzo, S.E.; Budinger, T.F.

    1994-05-01

    A successful PET detector module must identify 511 keV photons with: high efficiency (>85%), high spatial resolution (<5 mm fwhm), low cost (<$600 / in{sup 2}), low dead time (<4 {mu}s in{sup 2}), good timing resolution (<5 ns fwhm for conventional PET, <200 ps fwhm for time of flight), and good energy resolution (<100 keV fwhm), where these requirements are listed in decreasing order of importance. The ``high efficiency`` requirement also implies that the detector modules must pack together without inactive gaps. Several novel and emerging radiation detector technologies could improve the performance of PET detectors. Avalanche photodiodes, PIN photodiodes, metal channel dynode photomultiplier tubes, and new scintillators all have the potential to improve PET detectors significantly.

  2. Neutron detector and fabrication method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  3. Particle detector spatial resolution

    Science.gov (United States)

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  4. Radiation detector with spodumene

    Energy Technology Data Exchange (ETDEWEB)

    D' Amorim, Raquel Aline P.O.; Lima, Hestia Raissa B.R.; Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Sasaki, Jose M., E-mail: sasaki@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work, {beta}-spodumene potentiality as a radiation detector was evaluated by making use of thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) techniques. The pellets were obtained from the {beta}-spodumene powder mixed with Teflon followed by a sintering process of thermal treatments of 300 deg/30 min and 400 deg/1.5 h. The samples were irradiated in standard gamma radiation beams with doses between 5 Gy and 10 kGy. The TL emission curve showed a prominent peak at 160 deg and in the case of TSEE a prominent peak at 145 Celsius approximately. Initial results show that the material is promising for high-dose dosimetry. (author)

  5. Direction sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  6. Pixelated gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  7. Subnanosecond Scintillation Detector

    Science.gov (United States)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  9. Chemical aerosol Raman detector

    Science.gov (United States)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  11. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  12. The SPICE Detector at ISAC

    Directory of Open Access Journals (Sweden)

    Garnsworthy A.B.

    2013-12-01

    Full Text Available A new ancillary detector system for the TIGRESS HPGe array called SPectrometer for Internal Conversion Electrons (SPICE is currently under development. SPICE consists of a segmented electron detector, photon shield and a permanent magnetic lens. SPICE will enable in-beam electron spectroscopy and, in coupling to the TIGRESS HPGe array, coincident gamma-electron spectroscopy with stable and radioactive beams.

  13. Micro-channel plate detector

    Science.gov (United States)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  14. Micromegas detector developments for MIMAC

    CERN Document Server

    Ferrer-Ribas, E; Calvet, D; Colas, P; Druillole, F; Giomataris, Y; Iguaz, F J; Mols, J P; Pancin, J; Papaevangelou, T; Billard, J; Bosson, G; Bouly, J L; Bourrion, O; Fourel, Ch; Grignon, C; Guillaudin, O; Mayet, F; Richer, J P; Santos, D; Golabek, C; Lebreton, L

    2011-01-01

    The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 $\\times$ 10 cm$^2$ with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.

  15. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  16. R& D for Future Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Brau, J.

    2004-12-13

    Research and development of detector technology are critical to the future particle physics program. The goals of the International Linear Collider, in particular, require advances that are challenging, despite the progress driven in recent years by the needs of the Large Hadron Collider. The ILC detector goals and challenges are described and the program to address them is summarized.

  17. Fast Timing for Collider Detectors

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  18. Space-based detectors

    Science.gov (United States)

    Sesana, A.; Weber, W. J.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Ward, H.; Fitzsimons, E. D.; Bryant, J.; Cruise, A. M.; Dixon, G.; Hoyland, D.; Smith, D.; Bogenstahl, J.; McNamara, P. W.; Gerndt, R.; Flatscher, R.; Hechenblaikner, G.; Hewitson, M.; Gerberding, O.; Barke, S.; Brause, N.; Bykov, I.; Danzmann, K.; Enggaard, A.; Gianolio, A.; Vendt Hansen, T.; Heinzel, G.; Hornstrup, A.; Jennrich, O.; Kullmann, J.; Møller-Pedersen, S.; Rasmussen, T.; Reiche, J.; Sodnik, Z.; Suess, M.; Armano, M.; Sumner, T.; Bender, P. L.; Akutsu, T.; Sathyaprakash, B. S.

    2014-12-01

    The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload "LISA Technology Package" will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

  19. 制备工艺对Fe掺杂PZN-PZT热释电陶瓷性能的影响%The effects of synthesis route on the electricalproperties of Fe-doped PZN-PZT pyroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    韦慧; 陈拥军; 郭栋

    2016-01-01

    采用传统氧化物反应法(一步法)和前驱体法(两步法)合成铁掺杂改性的0.075Pb(Zn1/3 Nb2/3)O3-0.925Pb(Zr0.95 Ti0.05)O3(PZN-PZT)热释电陶瓷,研究制备方法对PZN-PZT热释电陶瓷的微观形貌、相结构及电学性能的影响。XRD结果表明,采用一步法制备的陶瓷不如两步法,前者存在钙钛矿相和少量焦绿石相,后者能有效抑制焦绿石相的生成,陶瓷为纯菱方钙钛矿相。SEM分析进一步证实了两步法能够制备出晶粒分布均匀、晶型饱满的致密陶瓷。结合介电、铁电及热释电性能分析可知,单一钙钛矿结构和均匀紧凑的晶粒结构对陶瓷材料电学性能的增强起着重要的作用。%Fe-doped 0.075 Pb(Zn1/3 Nb2/3 )O3-0.925Pb(Zr0.95 Ti0.05 )O3 (PZN-PZT)pyroelectric ceramics were pre-pared by a conventional oxide-mixed one-step method and precursor two-step method,respectively.The phase structure and electrical properties of the prepared ceramics were systematically investigated.X-ray diffraction results indicated that the ceramics fabricated by the one-step method possess a mixture of perovskite phase and pyrochlore phase,while the ceramics prepared from the two-step method have a single perovskite phase struc-ture.Scanning electron microscopy observation suggests that the ceramics prepared by the two-step method have a dense microstructure with uniform grains.The dielectric,ferroelectric and pyroelectric properties were measured,which revealed that the ceramics with single phase and dense microstructure have enhanced ferroelec-tric and pyroelectric properties.

  20. LHI878热释电红外传感器的体温检测系统设计%Design of temperature detection system base on LH878 pyroelectric infrared sensor

    Institute of Scientific and Technical Information of China (English)

    赵春华; 许云涛; 宁春玉

    2013-01-01

      设计一种以ATmage32单片机为核心的热释电红外体温测量系统.利用热释电红外传感器,设计一个非接触式的语音播报体温测量系统.采用热释电红外传感器来提取人体温度信号,同时由DS18B20测量环境温度信号,进行温度补偿减少测量误差.将提取的温度信号经过模拟处理后由AVR单片机控制实现对人体温度值的转换及处理,将得到的温度值送入LCD显示及语音播报.同时还加入了时钟功能和超温报警功能,使设计更具实用性.该体温测量系统测量范围为35~42益,测量时间小于1 s.该温度检测系统具有使用方便、灵活性好、可靠性高等优点,具有一定的推广应用价值.%A kind of pyroelectric infrared temperature measurement system was designed, which core was the ATmage32 SCM. It was a non-contact and voice prompt temperature measurement system by using pyroelectric infrared sensor. It used the pyroelectric infrared sensor to extrat the temperature of the human body and the DS18B20 to measure the environmental temperature, which could achieve the temperature compensation to reduce the measurement error. It could be controlled to realize the temperature convertion and processing, and sent the temperature value to the LCD to display and the voice prompt by the AVR SCM. Simultaneously, it was added the clock function and overtemperature alarm function to make the design more practical. The temperature measurement range was from 35-42℃. The measurement time was less than 1s. The temperature measurement system had the advantages of handy use, good flexibility, high reliability, and had a promotional value.

  1. Influence of Boundary Conditions on Pyroelectric Properties of Temperature-graded Ferroelectric Films%边界条件对温度梯度铁电薄膜热释电性质的影响

    Institute of Scientific and Technical Information of China (English)

    陈辉; 冮铁臣; 成泰民; 陈思群; 李青云

    2013-01-01

    In the framework of the mean field approximation, a transverse Ising model was adopted to investigate the influence of different boundary conditions (clamped boundary condition and free boundary condition) on the pyroelectric properties of temperature-graded ferroelectric thin films. A function was introduced to characterize the distribution of the interaction couplings between two pseudo-spins under different boundary conditions. It is shown that the distribution of temperature gradient and boundary conditions have great influence on polarization distribution and pyroelectric coefficients. There are two pyroelectric peaks in curves for temperature-graded ferroelectric thin films. The second peak under free boundary condition is much higher than the peaks of non-graded film and peaks under clamped boundary condition.%在平均场近似的理论框架下,采用横场伊辛模型研究了不同边界条件(固定边界条件和自由边界条件)对温度梯度铁电薄膜热释电性质的影响.引入一个分布函数来描述不同边界条件下赝自旋相互作用系数的变化.研究表明,薄膜内部的温度梯度分布和薄膜所处的边界条件对其极化分布和热释电系数都有很大的影响.温度梯度铁电薄膜的热释电曲线中出现了2个热释电峰,其中自由边界条件下的薄膜所对应的第2个热释电峰比无温度梯度的铁电薄膜和固定边界条件下的温度梯度铁电薄膜的热释电峰都要高出许多.

  2. ENSTAR detector for -mesic studies

    Indian Academy of Sciences (India)

    A Chatterjee; B J Roy; V Jha; P Shukla; H Machnder; GEM Collaboration

    2006-05-01

    We have initiated a search for a new type of nuclear matter, the -mesic nucleus, using beams from the multi-GeV hadron facility, COSY at Juelich, Germany. A large acceptance scintillator detector, ENSTAR has been designed and built at BARC, Mumbai and fully assembled and tested at COSY. A test run for calibration and evaluation has been completed. In this contribution we present the design and technical details of the ENSTAR detector and how it will be used to detect protons and pions (the decay products of -mesic bound state). The detector is made of plastic scintillators arranged in three concentric cylindrical layers. The readout of the detectors is by means of optical fibres. The layers are used to generate - spectra for particle identification and total energy information of stopped particles. The granularity of the detector allows for position ( and ) determination making the event reconstruction kinematically complete.

  3. Recent detector developments at SINTEF (industrial presentation)

    Science.gov (United States)

    Sundby Avset, Berit; Evensen, Lars; Uri Jensen, Geir; Mo, Sjur; Kari Schjølberg-Henriksen; Westgaard, Trond

    1998-02-01

    Results from SINTEF's research on radiation hardness of silicon detectors, thin silicon detectors, silicon drift devices, reach-through avalanche photodiodes, and detectors with thin dead layers are presented.

  4. The 150 ns detector project: Progress with small detectors

    Science.gov (United States)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1 × 256 1D and 8 × 8 2D detectors, 256 × 256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1 × 256 1D and 8 × 8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results.

  5. Acquisition System and Detector Interface for Power Pulsed Detectors

    Science.gov (United States)

    Cornat, Rémi; CALICE Colaboration

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  6. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  7. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  8. 基于单片机热释电红外安防报警器的设计%Design of Pyroelectric Infrared Security Alarm Based Single-Chip Microcomputer

    Institute of Scientific and Technical Information of China (English)

    赵巧妮

    2016-01-01

    热释电红外防盗报警器是利用红外传感器技术来自动探测发生在布防监测区域内的异常人员的入侵行为,并及时产生声光报警信号,提示主人及时处理异常情况,避免危险情况发生,维护社会和家庭人员、财产的安全。%Pyroelectric infrared burglar alarm, by using infrared sensor technology, can automatically detect abnormalities by armed persons in the event of intrusion monitoring area, and timely produce sound and light alarms to notify the owner to respond to avoid theft, snatches, or sabotage, in order to maintain security of social and family members, and of property.

  9. Ferroelectric, piezoelectric, pyroelectric studies on BaTi{sub 0.95}(Ni{sub 1/3}Nb{sub 2/3}){sub 0.05}O{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Boujelben, F; Bouzid, H; Bahri, F; Maalej, A; Khemakhem, H; Simon, A; Maglione, M, E-mail: faizaboujelben@yahoo.fr

    2010-11-15

    The main objective of this paper is to study dielectric, ferroelectric, pyroelectric and piezoelectric proprieties of BaTi{sub 0.95}(Ni{sub 1/3}Nb{sub 2/3}){sub 0.05}O{sub 3}. From dielectric experiments, a single ferroelectric transition temperature of about 300K was found. The ferroelectric hysteresis loops were recorded versus temperature evidencing a saturation polarisation of about 4{mu}C/cm{sup 2} and a coercive field of 0.97kV/cm at the lowest temperature. The most promising result for BaTi{sub 0.95}(Ni{sub 1/3}Nb{sub 2/3}){sub 0.05}O{sub 3} is its effective piezoelectric coefficient d{sub 31}which reaches 55pCN{sup -1} at room temperature.

  10. Plastic neutron detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  11. ATLAS Forward Detectors and Physics

    CERN Document Server

    Soni, N

    2010-01-01

    In this communication I describe the ATLAS forward physics program and the detectors, LUCID, ZDC and ALFA that have been designed to meet this experimental challenge. In addition to their primary role in the determination of ATLAS luminosity these detectors - in conjunction with the main ATLAS detector - will be used to study soft QCD and diffractive physics in the initial low luminosity phase of ATLAS running. Finally, I will briefly describe the ATLAS Forward Proton (AFP) project that currently represents the future of the ATLAS forward physics program.

  12. Detector for a linear collider

    CERN Document Server

    Mnich, J

    2003-01-01

    The proposals under discussion for a new e^{+}e^{-} linear collider with centre-of-mass energies around 1 TeV include designs for large detectors with unprecedented performances in energy, momentum and position resolution. These very stringent requirements are dictated by the precision measurements aimed at this collider to complement the exploratory experiments at the Large Hadron Collider. Here a status report on detector R&D projects for the liner collider is given focused on the technologies under study for the vertex detector, the large tracking chamber and the calorimeters.

  13. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  14. CLIC Detector and Physics Status

    CERN Document Server

    AUTHOR|(SzGeCERN)627941

    2017-01-01

    This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage is optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.

  15. A computerized track detector reader

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, S.W. (Centralne Lab. Ochrony Radiologicznej, Warsaw (Poland))

    1993-01-01

    The structure and basic operation function of a computerized facility named Track Detection Reader is described. This facility is used for recording, counting and evaluation of defects made by [alpha]-particles in a solid state detector. It consists of a microscope equipped with the movable stage, a TV screen and PC-AT computer. The microscope stage is being controlled by a stepper motor. The TV screen enables surface visualization of the detector analyzed while the PC-AT computer is being used for digital analysis of the detector surface, according to the functions of the program. (author). 4 refs, 3 figs.

  16. The CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, S.; Carter, H.; Flaugher, B. [and others

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  17. Thermoluminescent Detectors in Mixed Fields

    CERN Document Server

    Mala, P; Biskup, B; Roeed, K

    2012-01-01

    This note reports on using of thermoluminescent detectors for radiation monitoring in the LHC tunnel and in the shielded areas around the tunnel. The accumulated annual doses in these areas vary a lot so a dosimeter used there should cover a large dose range. TL detectors can measure dose from 0.1 mGy to few kGy (with a recently proposed new technique which needs more studies up to 1 MGy). This report presents studies of these detectors in mixed fields similar to radiation field in the LHC and the possible usage of their results for calculation of high energy hadron and thermal neutron fluence.

  18. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    In the past months, the DT electronics has run in a stable and reliable way, demonstrated again through the CRAFT exercise. Operation when the CMS magnetic field was on has been satisfactory. The detector safety control and monitoring is improving constantly as the DT group accumulates running experience. The DT DAQ and DCS systems proved very stable during the intensive CRAFT period. The few issues that were identified by the DCS and on-line monitoring did not prevent the run to continue, so that the record of the DT in the data taking efficiency was very good. The long running period was also used to continue the transition from a system run by experts to one run by shifters, which was in the large part successful. Improvements, mostly in consolidation of error reporting, were identified and will be addressed in the coming shut-down. During the CRAFT data taking, DT triggered about 300 million cosmics with the magnet at 3.8T and the silicon strip tracker in the readout. Although a dedicated configuratio...

  19. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The CSC detector continued to operate well during the March-June 2011 period. As the luminosity has climbed three orders of magnitude, the currents drawn in the CSC high-voltage system have risen correspondingly, and the current trip thresholds have been increased from 1 μA to 5 μA (and 20 in ME1/1 chambers). A possible concern is that a long-lasting and undesirable corona is capable of drawing about 1 μA, and thus may not be detected by causing current trips; on the other hand it is easily dealt with by cycling HV when detected. To better handle coronas, software is being developed to better detect them, although a stumbling block is the instability of current measurements in some of the channels of the CAEN supplies used in ME1/1. A survey of other issues faced by the CSC Operations team was discussed at the 8th June 2011 CSC Operations/DPG meeting (Rakness). The most important issues, i.e. those that have caused a modest amount of downtime, are all being actively addressed. These are:...

  20. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC is ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred f b −1 expected for LHC running to 3000 f b −1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of ext...

  1. MUON DETECTORS: RPC

    CERN Multimedia

    Pierluigi Paolucci

    2013-01-01

    In the second part of 2013 the two main activities of the RPC project are the reparation and maintenance of the present system and the construction and installation of the RE4 system. Since the opening of the barrel, repair activities on the gas, high-voltage and electronic systems are being done in parallel, in agreement with the CMS schedule. In YB0, the maintenance of the RPC detector was in the shadow of other interventions, nevertheless the scaffolding turned out to be a good solution for our gas leaks searches. Here we found eight leaking channels for about 100 l/h in total. 10 RPC/DT modules were partially extracted –– 90 cm –– in YB0, YB–1 and YB–2 to allow for the replacement of FE and LV distribution boards. Intervention was conducted on an additional two chambers on the positive endcap to solve LV and threshold control problems. Until now we were able to recover 0.67% of the total number of RPC electronic channels (1.5% of the channels...

  2. MUON DETECTORS: DT

    CERN Multimedia

    I. Redondo Fernandez

    2011-01-01

    The DT system has operated successfully during the entire 2011 data-taking: the fraction of good channels was always >99.4 % and the downtime caused to CMS amounts to a few inverse picobarns. This excellent performance does not come without a price: the DT group requested more than 30 short accesses to the underground experimental cavern (UXC).  A large fraction of interventions was for dealing with overheated LV Anderson connectors, whose failure can affect larger sections of the detector (a whole chamber, or half a wheel of the CMS barrel, etc.). A crash programme for reworking those connections will take place during the Year-End Technical Stop. The system of six vd chambers (VDC) that were installed on the DT exhaust gas line have operated successfully. The VDCs are small drift chambers the size of a shoebox that measure the drift velocity every 10 minutes. Possible deviations from the nominal value could be caused by a contamination of the gas mixture or changes in pressure or temperat...

  3. MUON DETECTORS: DT

    CERN Multimedia

    R.Carlin

    2010-01-01

    DT operation during 2010 LHC collisions, both in proton-proton and heavy ions, has been outstanding. The DT downtime has been below 0.1% throughout the whole year, mainly caused by the manual Resync commands that took around a minute for being processed. An automatic resynchronisation procedure has been enabled by August 27 and since then the downtime has been negligible (though constantly monitored). The need for these Resync commands is related to sporadic noise events that occasionally fill the RO buffers or unlock the readout links. Their rate is low, in the order of a few per week. Besides that, only one pp collisions run (1 hour 30 minutes run) has been marked as bad for DT, because of an incident with a temperature sensor that triggered a false alarm and powered off one wheel. Nevertheless, quite a large number of interventions (>30) have been made in the cavern during the year, in order to keep such a large fraction of the detector operational. Most of those are due to the overheating of the ...

  4. MUON DETECTORS: DT

    CERN Multimedia

    I. Redondo

    2011-01-01

    During the second quarter of 2011, the DT system has continued to operate successfully with a high fraction of good channels (>99 %) and causing extremely little downtime to CMS. The high fraction of operated channels did not come for free: DT requested 18 short UXC accesses in the 3 months from March to May 2011. The dominant causes for these interventions were HV related interventions (7), which typically affect a small fraction of a chamber, and interventions for dealing with overheated LV Anderson connectors (7), whose failure could affect larger fractions of the detector (a whole chamber, half a wheel). With respect to the CMS downtime, a successful effort with colleagues from the DT Track Finder of the Level-1 Trigger system allowed to overcome a relatively relevant source of downtime from DTTF FED Out-Of-Sync errors, which would appear randomly during data-taking. The DT group developed a system configuration that would make it possible to reproduce the error without beam, thereby sparing lumin...

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  6. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    The RPC group has invested a large effort in the study of trigger spikes observed during CRAFT data taking. The chambers are susceptible to noise generated by the flickering of fluorescent and projector lamps in the cavern (with magnetic field on). Soon after the end of CRAFT, it was possible to reproduce the phenomena using a waveform generator and to study possible modifications to be implemented in the grounding schema. Hardware actions have been already taken in order to reduce the detector sensitivity: star washers on the chamber front panels and additional shielding have been added where possible. During the shutdown maintenance activity many different problems were tackled on the barrel part. A few faulty high voltage connector/cable problems were fixed; now only two RPC chambers are left with single-gap mode operation. One chamber in YB+2 was replaced due to gas leakage. All the front-end electronic boards were replaced in 3 chambers (stations MB2 and MB3 in YB-2), that had been damaged after the coo...

  7. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  8. MUON DETECTORS: CSC

    CERN Multimedia

    R. Breedon

    Figure 2: Five ME4/2 chambers mounted on the +endcap. At the end of June, five large, outer cathode strip chambers (CSC) that were produced as spares during the original production were mounted on part of the disk space reserved for ME4/2 on the positive endcap (Fig. 2). The chambers were cabled, attached to services, and fully integrated and commissioned into the CSC DAQ and trigger systems. Comprising almost a full trigger sector, CMS will be able to test the significant improvement the trigger efficiency of the EMU system that the presence of the full ME4/2 ring is expected to bring. The return of beam in November was observed as “splash” events in the CSCs in which the detectors were showered with a huge number of particles at the same time. Although the CSCs were operating at a lower standby voltage the multiple hits on a strips could not be individually distinguished.&am...

  9. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

      2011 data-taking was very satisfactory for both the RPC detector and trigger. The RPC system ran very smoothly in 2011, showing an excellent stability and very high data-tacking efficiency. Data loss for RPC was about 0.37%, corresponding to 19 pb−1. Most of the performance studies, based on 2011 data, are now completed and the results have been already approved by CMS to be presented at the RPC 2012 conference (February 2012 at LNF). During 2011, the number of disconnected chambers increased from six to eight corresponding to 0.8% of the full system, while the single-gap-mode chambers increased from 28 to 31. Most of the problematic chambers are due to bad high-voltage connection and electronic failures that can be solved only during the 2013-2014 Long Shutdown. 98.4% of the electronic channels were operational. The average detection efficiency in 2011 was about 95%, which was the same value measured during the HV scan done at the beginning of the 2011 data-taking. Efficiency has be...

  10. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    The DT collaboration is undertaking substantial work both for detector maintenance – after three years since the last access to the chambers and their front-end electronics – and upgrade. The most critical maintenance interventions are chambers and Minicrate repairs, which have not begun yet, because they need proper access to each wheel of the CMS barrel, meaning space for handling the big chambers in the few cases where they have to be extracted, and, more in general, free access from cables and thermal shields in the front and back side of the chambers. These interventions are planned for between the coming Autumn until next spring. Meanwhile, many other activities are happening, like the “pigtail” intervention on the CAEN AC/DC converters which has just taken place. The upgrade activities continue to evolve in good accordance with the schedule, both for the theta Trigger Board (TTRB) replacement and for the Sector Collector (SC) relocation from the UXC to the US...

  11. Commissioning a Hodoscope Detector

    Science.gov (United States)

    Lulis, Andrew; Merhi, Abdul; Frank, Nathan; Bazin, Daniel; Smith, Jenna; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    Experiments on neutron-rich nuclei are interesting since they test the limits of current nuclear theory. One method to populate neutron-rich nuclei is to utilize the (d,p) reaction in which the beam nucleus picks up a neutron from the target. This heavier nucleus immediately emits a neutron resulting in the same nucleus as the beam but with lower energy. One challenge is to discriminate decay products from unreacted beam particles by their difference in energy. A hodoscope was recently installed at the National Superconducting Cyclotron Laboratory (NSCL) as part of the MoNA-LISA-Sweeper setup to make experiments using a (d,p) reaction possible. The hodoscope is a 5 × 5 scintillator array consisting of CsI(Na) crystals with a resolution of better than 1%. This presentation will describe the recently commissioned detector and the results of the first data analysis using this device. Work supported by Augustana College and the National Science Foundation grant #0969173.

  12. MUON DETECTORS: RPC

    CERN Multimedia

    G. Pugliese

    2010-01-01

    In the second half of 2010 run, the overall behavior of the RPC system has been very satisfactory, both in terms of detector and trigger performance. This result was achieved through interventions by skilled personnel and fine-tuned analysis procedures. The hardware was quite stable: both gas and power systems did not present significant problems during the data-taking period, confirming the high reliability achieved. Only few interventions on some HV or LV channels were necessary during the periodical technical accesses. The overall result is given by the stable percentage of active channels at about 98.5%. The single exception was at beginning of the ion collisions, when it dipped to 97.4% because of the failure of one LV module, although this was recovered after a few days. The control and monitoring software is now more robust and efficient, providing prompt diagnostics on the status of the entire system. Significant efforts were made in collaboration with the CMS cooling team to secure proper working ...

  13. Transmission diamond imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, John, E-mail: smedley@bnl.gov; Pinelli, Don; Gaoweia, Mengjia [Brookhaven National Laboratory, Upton, NY (United States); Muller, Erik; Ding, Wenxiang; Zhou, Tianyi [Stony Brook University, Stony Brook, NY (United States); Bohon, Jen [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States)

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  14. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    2010-01-01

    During the technical stop, the RPC team was part of the CMS task force team working on bushing replacements in the Endcap cooling system, also validating the repairs in terms of connectivity (HV, LV and signal cables), and gas leak, on RE chambers. In parallel, the RPC team profited from the opportunity to cure several known problems: six chambers with HV problems (1 off + 5 single gaps) were recovered on both gaps; four known HV problems were localized at chamber level; additional temperature sensors were installed on cooling pipes on negative REs; one broken LV module in RE-1 was replaced. During the last month, the RPC group has made big improvements in the operations tools. New trigger supervisor software has substantially reduced the configuration time. Monitoring is now more robust and more efficient in providing prompt diagnostics. The detector has been under central DCS control for two weeks. Improvements have been made to both functionality and documentation and no major problems were found. Beam s...

  15. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedova and M. Dallavalle

    2010-01-01

    After successful operation during the 2009 LHC run, a number of fixes and improvements were carried out on the DT system the winter shutdown. The main concern was related with the impact of the extensive water leak that happened in October in YE+1. Opening of CMS end-caps allowed the DT crew to check if any Minicrates (containing the first level of readout and trigger electronics) in YB+2 and YB-2 were flooded with water. The affected region from top sectors in YB+2 reaches down to the bottom sectors in YB-2 following the water path in the barrel from end to end. No evidence of water penetration was observed, though the passage of water left oxidation and white streaks on the iron and components. In particular, large signs of oxidation have been seen on the YB-2 MB1 top and bottom stations. Review of the impact in YB+1 remains for future openings of CMS wheels, and at present, effort is focused on setting up the water leak detection system in the detector. Another important issue during this shutd...

  16. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2013-01-01

    During LS1, the Resistive Plate Chamber (RPC) collaboration is focusing its efforts on installation and commissioning of the fourth endcap station (RE4) and on the reparation and maintenance of the present system (1100 detectors). The 600 bakelite gaps, needed to build 200 double-gap RE4 chambers are being produced in Korea. Chamber construction and testing sites are located at CERN, in Ghent University, and at BARC (India). At present, 42 chambers have been assembled, 32 chambers have been successfully tested with cosmic rays runs and 7 Super Modules, made by two chambers, have been built at CERN by a Bulgarian/Georgian/Italian team and are now ready to be installed in the positive endcap. The 36 Super Modules needed to complete the positive endcap will be ready in September and installation is scheduled for October 2013. The Link-Board system for RE4 is under construction in Naples. Half of the system has been delivered at CERN in June. Six crates (Link-Board Boxes) and 75 boards, needed to instrument t...

  17. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya

    2012-01-01

      The major activity of the DT group during this Year-End Technical Stop has been the reworking of LV modules. It has been a large campaign, carefully planned, to try to solve, once and for all, the long-standing problem of Anderson Power connectors overheating. The solution involved removing the 140 CAEN modules from the detector (6.5 kg each), soldering of “pigtails” in a temporary workshop in USC, and thorough testing of all the modules in a local system installed in USC. The operation has been satisfactorily smooth, taking into account the magnitude of the intervention. The system is now back in good shape and ready for commissioning. In addition, HV boards have been cleaned up, HV USC racks have been equipped with water detection cables, and the gas and HV have been switched back on smoothly. Other significant activities have also taken place during this YETS, such as the installation of a new and faster board for the Minicrates secondary link and the migration to Scienti...

  18. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  19. A Rapid Coliform Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC, in collaboration with Lucigen, proposes a rapid genetic detector for spaceflight water systems to enable real-time detection of E-coli with minimal...

  20. Detector Fundamentals for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-03

    This presentation is a part of the DHS LSS spectroscopy course and provides an overview of the following concepts: detector system components, intrinsic and absolute efficiency, resolution and linearity, and operational issues and limits.