WorldWideScience

Sample records for pyrochlore

  1. Hydrothermal synthesis of pyrochlores and their characterization

    Science.gov (United States)

    Redkin, Alexander F.; Ionov, Andrey M.; Kotova, Nataliya P.

    2013-10-01

    Pyrochlores, microlites, and U-betafites of pyrochlore group minerals were obtained from mixing experiments of the corresponding oxides and fluorides by hydrothermal synthesis at T = 800 °C and P = 200 MPa in the solution of 1.0 M NaF. The presence of U4+ in pyrochlore does not affect the cell parameter, which for the phases of pyrochlore-microlite series is 10.42 ± 0.01 Å. In a system with an excess of UO2, pyrochlores and microlites, containing uranium up to 0.2-0.3 atoms per formula unit (apfu), are formed. In the uranium-free system of betafites composition, perovskites and Ti-bearing pyrochlores are formed. U-pyrochlores of betafite series, containing 2Ti = Nb + Ta in moles, have cubic cell parameters of 10.26 ± 0.02 Å and U4+ isomorphic capacity of 0.4-0.5 apfu. In the pyrochlore structure, U4+ may substitute for Ca2+ and Na+ cations in the eightfold site. In pyrochlores of pyrochlore-microlite series, Ca2+ is replaced by U4+, while in pyrochlores of betafite series, U4+ replaces Na+. Phases with pyrochlore structure, containing U5+ and U6+ in the sixfold site, usually occupied by Nb5+, Ta5+, and Ti4+, are formed under oxidizing conditions (Cu-Cu2O buffer). They are characterized by low content of Nb5+, Ta5+ (<0.1 apfu), and anomalous behavior of the crystal lattice (compression, instead of expansion). Under natural conditions, the formation of pyrochlores containing a significant amount of U5+ and U6+ is unlikely.

  2. Pyrochlore catalysts for hydrocarbon fuel reforming

    Science.gov (United States)

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  3. Tunable magnon Weyl points in ferromagnetic pyrochlores

    CERN Document Server

    Mook, Alexander; Mertig, Ingrid

    2016-01-01

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction is shown to possess Weyl points, i.\\,e., pairs of topological nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out-of-plane shifts the Weyl points toward the center $\\bar{\\Gamma}$ of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i.\\,e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the $(111)$ surface, identify candidates of established ferromagnetic pyrochlores whic...

  4. Stability regions of compounds with pyrochlore structure

    Energy Technology Data Exchange (ETDEWEB)

    Cherner, Ya.E.; Geguzina, G.A.; Fesenko, E.G. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    1983-02-01

    Half-empirical regularities of pyrochlore type structure formation (Sm/sub 2/Zr/sub 2/O/sub 7/, Sc/sub 2/Hf/sub 2/O/sub 7/, Sm/sub 2/ScNbO/sub 7/, SrHoHfNbO/sub 7/, CdBiNbO/sub 7/ etc.) are determined and regions of its stability in terms of deformations of interatomic bonds are obtained. An analytical method of forecasting a possibility of pyrochlore type structure formation necessary for directed search of new oxides with this structure is developed using them.

  5. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores

    Science.gov (United States)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-01

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ ¯ of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  6. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  7. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  8. Effect of swift heavy ion irradiation in pyrochlores

    Science.gov (United States)

    Patel, M. K.; Vijayakumar, V.; Avasthi, D. K.; Kailas, S.; Pivin, J. C.; Grover, V.; Mandal, B. P.; Tyagi, A. K.

    2008-06-01

    A summary of the results on the radiation stability of pyrochlores (Gd2Zr2O7, Nd2Zr2O7, Gd2Ti2O7) in the electronic stopping regime is given. X-ray diffraction and Raman spectroscopy show a transformation from the ordered pyrochlores (Fd3m) to the anion deficient fluorite (Fm3m) structure in Gd2Zr2O7 or amorphization in Nd2Zr2O7. The track diameter, crystallite size and progression in structural modifications have been monitored. It is found that radiation stability of these pyrochlores depends on the energy to form cation antisites and delocalized anion vacancies. This in turn is correlated to the radius ratio of A-B cations. This criterion for evaluating radiation resistance of pyrochlores has important implications in the field of inert matrix fuels.

  9. Spin dynamics in geometrically frustrated antiferromagnetic pyrochlores

    Science.gov (United States)

    Gardner, J. S.; Ehlers, G.; Bramwell, S. T.; Gaulin, B. D.

    2004-03-01

    We have studied the spin dynamics of several antiferromagnetic pyrochlore oxides. These magnets are geometrically frustrated and only reach their ground states at temperatures much lower than that expected from mean field theory. Here we present data on the magnetic nature, especially the spin dynamics of Tb2Ti2O7, Gd2Ti2O7 and Y2Mo2O7. In these systems the ground states are found to be very different. Y2Mo2O7 freezes completely into a spin glass-like state, Tb2Ti2O7 is a cooperative paramagnetic and remains dynamic down to 15 mK and Gd2Ti2O7 enters a unique partially ordered state at {\\sim }1 K.

  10. Simulation of radiation damage in gadolinium pyrochlores

    Science.gov (United States)

    Todorov, Ilian T.; Purton, John A.; Allan, Neil L.; Dove, Martin T.

    2006-02-01

    We report molecular dynamics simulations of the production of radiation cascades in pyrochlores. We consider the apparently similar systems Gd2Ti2O7, Gd2Zr2O7 and Gd2Pb2O7, the first two of which have been put forward as potential materials for high-level radioactive waste storage. The effects of changing the mass of the 'primary knock-on' atom are also examined and we investigate whether the change in behaviour from Ti to Zr to Pb is largely due to the mass or the size difference between the elements. Problems associated with analysing the cascades and the damage created are discussed. There are clear differences between the three compounds. The simulations see no direct amorphization but rather a transition to the fluorite structure which is more pronounced for the Zr and Pb compounds than the Ti system. Underlying chemical trends are examined.

  11. Capturing dynamic cation hopping in cubic pyrochlores

    Science.gov (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.

    2011-08-01

    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  12. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  13. Defect formation energy in pyrochlore: the effect of crystal size

    Science.gov (United States)

    Wang, Jianwei; Ewing, Rodney C.; Becker, Udo

    2014-09-01

    Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.

  14. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    Directory of Open Access Journals (Sweden)

    C. R. Wiebe

    2015-04-01

    Full Text Available Pyrochlore structures, of chemical formula A2B2O7 (A and B are typically trivalent and tetravalent ions, respectively, have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the RA/RB cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ RA/RB ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure, metastable pyrochlores exist up to RA/RB = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  15. Spin relaxation in geometrically frustrated pyrochlores

    Science.gov (United States)

    Dunsiger, Sarah Ruth

    This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be

  16. Spin dynamics in highly frustrated pyrochlore magnets

    Science.gov (United States)

    Petit, Sylvain; Guitteny, Solène; Robert, Julien; Bonville, Pierre; Decorse, Claudia; Ollivier, Jacques; Mutka, Hannu; Mirebeau, Isabelle

    2015-01-01

    This paper aims at showing the complementarity between time-of-flight and triple-axis neutron scattering experiments, on the basis of two topical examples in the field of geometrical magnetic frustration. Rare earth pyrochlore magnets R2Ti2O7 (R is a rare earth) play a prominent role in this field, as they form model systems showing a rich variety of ground states, depending on the balance between dipolar, exchange interactions and crystal field. We first review the case of the XY antiferromagnet Er2 Ti2 O7. Here a transition towards a Néel state is observed, possibly induced by an order-by-disorder mechanism. Effective exchange parameters can be extracted from S(Q,ω). We then examine the case of the spin liquid Tb2 Ti2 O7. Recent experiments reveal a complex ground state characterized by "pinch points" and supporting a low energy excitation. These studies demonstrate the existence of a coupling between crystal field transitions and a transverse acoustic phonon mode.

  17. Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.X., E-mail: zhangfx@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Lang, M.; Tracy, C.; Ewing, R.C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Gregg, D.J.; Lumpkin, G.R. [Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC 2232, NSW (Australia)

    2014-11-15

    Uranium-doped gadolinium zirconates with pyrochlore structure were studied at ambient and high-pressure conditions up to 40 GPa. The bonding environment of uranium in the structure was determined by x-ray photoelectron and Raman spectroscopies and x-ray diffraction. The uranium valence for samples prepared in air is mainly U{sup 6+}, but U{sup 4+} is present in pyrochlores fabricated in an argon atmosphere. Rietveld refinement of the XRD pattern suggests that uranium ions in pyrochlores are on the 16d site in 6-fold coordination with oxygen. At pressures greater than 22 GPa, the pyrochlore structure transformed to a cotunnite-type phase. The cotunnite high-pressure phase transformed to a defect fluorite structure on the release of pressure. - Graphical abstract: In U-bearing pyrochlore, U ions mainly occupy the 16d site and replace the smaller Zr{sup 4+}, part of the oxygen will occupy the 8b site, which is empty to most pyrochlores. At pressure of 22 GPa, the pyrochlore lattice is not stable and transforms to a cotunnite-type structure. The high-pressure structure is not stable and transform to a fluorite or back to the pyrochlore structure when pressure is released. - Highlights: • We found that U ions mainly occupy the smaller cation site in U-bearing pyrochlore. • Pyrochlore structure is not stable at pressure of more than 20 GPa. • The quenched sample has a pyrochlore or a disordered fluorite structure.

  18. Pressure-induced Phase Transitions in Defect Pyrochlores

    Directory of Open Access Journals (Sweden)

    Claudio A. Perottoni

    2013-12-01

    Full Text Available In this paper the influence of pressure and temperature on four compounds with defect pyrochlore structure (NH4NbWO6, RbNbWO6, CsNbWO6 and p-WO3 is explored by means of X-ray diffraction, vibrational (Raman and infrared absorption spectroscopy and computer simulations. Several structural transitions were observed, including an unusual insertion reaction with volume increase at high pressures. This latter transition is further explored to reveal the influence on the transition pressure of the nature and ionic radius of the cation residing inside the cages formed by the pyrochlore framework.

  19. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  20. Radiation-induced amorphization of rare-earth titanate pyrochlores

    Science.gov (United States)

    Lian, Jie; Chen, Jian; Wang, L. M.; Ewing, Rodney C.; Farmer, J. Matt; Boatner, Lynn A.; Helean, K. B.

    2003-10-01

    Single crystals of the entire series of A2Ti2O7 (A=Sm to Lu, and Y) pyrochlore compounds were irradiated by 1-MeV Kr+ ions at temperatures from 293 to 1073 K, and the microstructure evolution, as a function of increasing radiation fluence, was characterized using in situ transmission electron microscopy (TEM). The critical amorphization temperature, Tc, generally increases from ˜480 to ˜1120 K with increasing A-site cation size (e.g., 0.977 Å for Lu3+ to 1.079 Å for Sm3+). An abnormally high susceptibility to ion beam damage was found for Gd2Ti2O7 (with the highest Tc of ˜1120 K). Factors influencing the response of titanate pyrochlores to ion irradiation-induced amorphization are discussed in terms of cation radius ratio, defect formation, and the tendency to undergo an order-disorder transition to the defect-fluorite structure. The resistance of the pyrochlore structure to ion beam-induced amorphization is not only affected by the relative sizes of the A- and B-site cations, but also the cation electronic configuration and the structural disorder. Pyrochlore compositions that have larger structural deviations from the ideal fluorite structure, as evidenced by the smaller 48f oxygen positional parameter, x, are more sensitive to ion beam-induced amorphization.

  1. 3 d -electron Heisenberg pyrochlore Mn2Sb2O7

    Science.gov (United States)

    Peets, Darren C.; Sim, Hasung; Avdeev, Maxim; Park, Je-Geun

    2016-11-01

    In frustrated magnetic systems, geometric constraints or the competition among interactions introduce extre-mely high degeneracy and prevent the system from readily selecting a low-temperature ground state. The most frustrated known spin arrangement is on the pyrochlore lattice, but nearly all magnetic pyrochlores have unquenched orbital angular momenta, constraining the spin directions through spin-orbit coupling. Pyrochlore Mn2Sb2O7 is an extremely rare Heisenberg pyrochlore system with directionally unconstrained spins and low chemical disorder. We show that it undergoes a spin-glass transition at 5.5 K, which is suppressed by disorder arising from Mn vacancies, indicating this ground state to be a direct consequence of the spins' interactions. The striking similarities to 3 d transition-metal pyrochlores with unquenched angular momenta suggests that the low spin-orbit coupling in the 3 d block makes Heisenberg pyrochlores far more accessible than previously imagined.

  2. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  3. Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders

    Directory of Open Access Journals (Sweden)

    Sonia Maria Zanetti

    2007-09-01

    Full Text Available Bismuth zinc niobate pyrochlores Bi1.5ZnNb1.5O7 (alpha-BZN, and Bi2(Zn1/3Nb2/32O 7 (beta-BZN have been synthesized by chemical method based on the polymeric precursors. The pyrochlore phase was investigated by differential scanning calorimetry, infrared spectroscopy, and X ray diffraction. Powder and sintered pellets morphology was examined by scanning electron microscopy. The study of alpha-BZN phase formation reveals that, at 500 °C, the pyrochlore phase was already present while a single-phased nanopowder was obtained after calcination at 700 °C. The crystallization mechanism of the beta-BZN is quite different, occurring through the crystallization of alpha-BZN and BiNbO4 intermediary phases. Both compositions yielded soft agglomerated powders. alpha-BZN pellets, sintered at 800 °C for 2 hours, presented a relative density of 97.3% while those of beta-BZN, sintered at 900 °C for 2 hours, reached only 91.8%. Dielectric constant and dielectric loss, measured at 1 MHz, were 150 and 4 x/10-4 for a-BZN, and 97 and 8 x 10-4 for beta-BZN.

  4. Properties and recrystallization of radiation damaged pyrochlore and titanite

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter

    2016-11-02

    Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1.10{sup 18} a-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1.10{sup 18} dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (Vandenborre and Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} devided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its

  5. Weyl semimetal from spontaneous inversion symmetry breaking in pyrochlore oxides

    Science.gov (United States)

    Bzdušek, Tomáš; Rüegg, Andreas; Sigrist, Manfred

    2015-04-01

    We study the electronic properties of strongly spin-orbit coupled electrons on the elastic pyrochlore lattice. Akin to the Peierls transition in one-dimensional systems, the coupling of the lattice to the electronic degrees of freedom can stabilize a spontaneous deformation of the crystal. This deformation corresponds to a breathing mode, which breaks the inversion symmetry. We find that for intermediate values of the staggered strain, the inversion-symmetry broken phase realizes a topological Weyl semimetal. In the temperature-elasticity phase diagram, the Weyl semimetal shows a reentrant phase behavior: it can be reached from a symmetric phase realized both at higher and at lower temperatures. The symmetric phase is a Dirac semimetal, which is protected by the nonsymmorphic space group of the pyrochlore lattice. Beyond a critical value of the staggered strain, the symmetry-broken phase is a fully gapped trivial insulator. The surface states of the Weyl semimetal form open Fermi arcs and we observe that their connectivity depends on the termination of the crystal. In particular, for the {111 } films, the semiclassical closed electronic orbits of the surface states in a magnetic field cross the bulk either twice, four, six, or twelve times. We demonstrate how one can tune the number of bulk crossings through a Lifshitz-like transition of the Fermi arcs, which we call Weyl-Lifshitz transition, by applying a surface potential. Our results offer a route to a topological Weyl semimetal in nonmagnetic materials and might be relevant for pyrochlore oxides with heavy transition-metal ions such as alloys of iridates.

  6. Speciation of uranium in La2Zr2O7 pyrochlore by TRPLS

    Science.gov (United States)

    Mohapatra, M.; Rajeswari, B.; Hon, N. S.; Kadam, R. M.; Natarajan, V.

    2015-06-01

    We discuss the speciation of uranium in lanthanum zirconate (La2Zr2O7 =LZO) pyrochlore ceramic prepared via a gel-combustion route. Uranium concentration in the pyrochlore was optimized to 2 mol%. XRD and SEM experiments were carried out to assess the phase and homogeneity of the prepared samples. Time resolved photoluminescence (TRPLS) investigations were carried out for understanding the species stabilized in the pyrochlore host. It was observed that, uranium exists as uranate ion (UO66-) in the zirconate host where it replaces the `Zr' ions at its regular site with surrounding defect centers created for charge compensation.

  7. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    Science.gov (United States)

    Xiao, H. Y.; Weber, W. J.; Zhang, Y.; Zu, X. T.; Li, S.

    2015-01-01

    The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. PMID:25660219

  8. Crystal structure under pressure of geometrically frustrated pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Apetrei, A [Laboratoire Leon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif-sur-Yvette (France); Mirebeau, I [Laboratoire Leon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif-sur-Yvette (France); Goncharenko, I [Laboratoire Leon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif-sur-Yvette (France); Crichton, W A [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2007-09-19

    We have studied by x-ray synchrotron diffraction under high pressure five pyrochlore compounds: Tb{sub 2}Ti{sub 2}O{sub 7} (up to 42 GPa), Tb{sub 2}Sn{sub 2}O{sub 7} and Tb{sub 2}Mo{sub 2}O{sub 7} (up to 35 GPa), Gd{sub 2}Mo{sub 2}O{sub 7} and (Tb{sub 0.8}La{sub 0.2}){sub 2}Mo{sub 2}O{sub 7} (up to 10 GPa). At ambient pressure all compounds crystallize in the cubic Fd3-barm symmetry group. This structure is stable for all compounds in the investigated pressure range. All three compounds having Mo as transition metal are described by the same equation of state, with the same bulk modulus B{sub 0} = 149. The bulk modulus is smaller in the Mo pyrochlores than in the Ti and Sn ones, in contrast with a priori expectations.

  9. Large-scale calculation of ferromagnetic spin systems on the pyrochlore lattice

    Science.gov (United States)

    Soldatov, Konstantin; Nefedev, Konstantin; Komura, Yukihiro; Okabe, Yutaka

    2017-02-01

    We perform the high-performance computation of the ferromagnetic Ising model on the pyrochlore lattice. We determine the critical temperature accurately based on the finite-size scaling of the Binder ratio. Comparing with the data on the simple cubic lattice, we argue the universal finite-size scaling. We also calculate the classical XY model and the classical Heisenberg model on the pyrochlore lattice.

  10. Layer-by-layer epitaxial thin films of the pyrochlore Tb2Ti2O7

    Science.gov (United States)

    Bovo, Laura; Rouleau, Christopher M.; Prabhakaran, Dharmalingam; Bramwell, Steven T.

    2017-02-01

    Layer-by-layer epitaxial growth of the pyrochlore magnet Tb2Ti2O7 on the isostructural substrate Y2Ti2O7 results in high-quality single crystal films of up to 60 nm thickness. Substrate-induced strain is shown to act as a strong and controlled perturbation to the exotic magnetism of Tb2Ti2O7, opening up the general prospect of strain-engineering the diverse magnetic and electrical properties of pyrochlore oxides.

  11. Optimization of pyrochlore catalysts for the dry reforming of methane

    Science.gov (United States)

    Polo Garzon, Felipe

    The conversion of methane into syngas (a mixture of CO and H2), which can be further converted into a variety of chemicals and particularly liquid fuels, is of growing importance given recent increases in methane production world-wide. Furthermore, since using CO2 as the co-feed offers many environmental advantages, dry reforming of methane (DRM, CH4 + CO2 [special character omitted] 2CO + 2H 2) has received renewed attention. In recent years, experimentalists have shown that the Rh-substituted lanthanum zirconate pyrochlore (LRhZ) material is catalytically active for DRM, exhibits long-term thermal stability and resists deactivation; however, previous to this doctoral work, a detailed understanding of the reaction mechanism on pyrochlore catalyst surfaces was still scarce, making it difficult to optimize this material. In this work, initial computational efforts employing density functional theory (DFT) showed the plane (111) of the LRhZ crystal structure as the one catalytically active for DRM. In addition, the primary reaction pathway was identified, along with two rate determining steps (RDSs), the CH2 oxygenation step and the CHO dehydrogenation step, which lie on the CH 4 dehydrogenation/oxygenation path. The mechanistic understanding of DRM over LRhZ was further developed using steady-state isotopic transient kinetic analysis (SSITKA). Reversible adsorption of CO2 on the surface was observed, along with short surface residence times (temperature. Comparisons between isotopic responses supported the DFT-derived reaction mechanism. Furthermore, isotopic transient kinetics confirmed that all metal atoms (Rh, Zr and La) on the surface are involved in the reaction mechanism, as previously pointed by DFT calculations. A DFT-based microkinetic model that predicts the reaction performance at different conditions was built. The model was validated against experimental data, showing remarkable agreement, which further confirmed the reliability of the DFT data

  12. The XPS study of pyrochlore matrixes for the radioactive waste disposal

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available Two pyrochlore ceramic samples were studied in this work. The X-ray diffraction and the scanning electron microscopy showed that the ceramics with the calculated composition CaThSn2O7 was formed by the dominating pyrochlore phase with the traces of thorianite and hematite, while the CaThZr2O7 ceramics - by the dominating pyrochlore phase with the minor admixtures of thorianite and perovskite. The real compositions of pyrochlore phases determined by the scaning electron microscopy are Ca0.88Th0.92Sn2O6.72 and Ca0.84Th0.80Zr2O6.44. On the basis of the X-ray photoelectron spectral parameters of the outer and core electrons in the binding energy range of 0-1250 eV it was found that tin, zirconium and thorium in pyrochlore are at least 93%-94% tetravalent. Sn-O and Zr-O interatomic distances in BO6-octahedrons in the pyrochlore were found to be 0.210 nm and 0.220 nm, respectively, and these octahedrons are possible to be tetragonaly distorted.

  13. Natural occurrence and stability of pyrochlore in carbonatites, related hydrothermal systems, and weathering environments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, G.R. [Australian Nuclear Science and Technology Organisation, Menai, New South Wales (Australia). Materials Div.; Mariano, A.N.

    1996-08-01

    Stoichiometric and non-stoichiometric (defect) pyrochlores crystallize during the magmatic and late magmatic-hydrothermal phases of carbonatite emplacement (T > 450--550 C, P < 2 kb). Defect pyrochlores can also form at low temperatures in laterite horizons during weathering. After crystallization, pyrochlore is subject to alteration by hydrothermal fluids (T {approximately} 550--200 C) and ground water. Alteration occurs primarily by ion exchange of low valence A-site cations together with O, F, and OH ions. The high valence cations Th and U are generally immobile; however, the authors have documented one example of hydrothermal alteration involving loss of U together with cation exchange at the B-site in samples from Mountain Pass, California. During laterite accumulation, the cation exchange rate of pyrochlore greatly exceeds the rate of matrix dissolution. The exceptional durability of pyrochlore in natural environments is related to the stability of the B-site framework cations. In carbonatites, defect pyrochlores may contain significant amounts of Si (up to 7.6 wt% SiO{sub 2}) which is negatively correlated with Nb.

  14. Optimization of dielectric constant temperature coefficient of pyrochlores containing bismuth

    Institute of Scientific and Technical Information of China (English)

    REN Qing-li; LUO Qiang; CHEN Shou-tian

    2005-01-01

    The Bi2O3-ZnO-Nb2O5 (BZN)-based ceramic samples were prepared according to the optimum composition of (Bi3xZn2-3x)(Znx Nb2-x)O7 by solid state reaction. The BZN ceramic structure and the dielectric properties were explored via X-ray diffractometer(XRD), differential thermal analysis(DTA), scanning electron microscope (SEM), and HP4275A impedance analysis. The amphoteric surface active agent with alcohol amine double nature is introduced when the raw materials are mixed and ground. The anatase titania doped BZN-based ceramics was also investigated. Either doping the anatase TiO3 or adding the surface active agent or both of them can widen sintering temperature range which satisfies the zero temperature coefficient (0±30 × 10-6/℃) of the BZN ceramics. And these BZN ceramics with diphasic pyrochlore structure possess excellent dielectric properties.

  15. Magnetic Orders and Fluctuations in the Dipolar Pyrochlore Antiferromagnet

    Science.gov (United States)

    Cepas, Olivier; Shastry, B. Sriram

    2005-03-01

    While the classical Heisenberg antiferromagnet on the pyrochlore lattice does not order, we will discuss, from a theoretical standpoint, possible magnetic phases induced by the dipole-dipole interactions. Such interactions play a role in systems such as Gd2Ti2O7 or Gd2Sn2O7 in stabilizing exotic forms of magnetic order, a subject of current debate. We will also argue that the external magnetic field induces multiple transitions, one of which is associated with no obvious broken symmetry, but can be characterized by a disorder parameter. Finally, Monte-Carlo simulations and Landau-Ginzburg expansion show that the dipolar Heisenberg model exhibits a fluctuation-induced first-order transition, thanks to the frustration and a continuous set of soft modes.

  16. Anisotropy-Tuned Magnetic Order in Pyrochlore Iridates

    Science.gov (United States)

    Lefrançois, E.; Simonet, V.; Ballou, R.; Lhotel, E.; Hadj-Azzem, A.; Kodjikian, S.; Lejay, P.; Manuel, P.; Khalyavin, D.; Chapon, L. C.

    2015-06-01

    The magnetic behavior of polycrystalline samples of Er2Ir2O7 and Tb2Ir2O7 pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K, respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb2Ir2O7 , we show that the Ir molecular field leads the Tb magnetic moments to order below 40 K in the all-in-all-out magnetic arrangement. No sign of magnetic long-range order on the Er sublattice is evidenced in Er2Ir2O7 down to 0.6 K where a spin freezing is detected. These contrasting behaviors result from the competition between the Ir molecular field and the different single-ion anisotropy of the rare-earth elements on which it is acting. Additionally, this strongly supports the all-in-all-out iridium magnetic order.

  17. Spin dynamics in perovskites, pyrochlores, and layered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Oseroff, S. B. [San Diego State University, San Diego, California 29182-8062 (United States); Moreno, N. O. [Instituto de Fisica ' ' Gleb Wataghin' ' UNICAMP, Campinas, Sao Paulo 13083-970, (Brazil); Pagliuso, P. G. [Instituto de Fisica ' ' Gleb Wataghin' ' UNICAMP, Campinas, Sao Paulo 13083-970, (Brazil); Rettori, C. [Instituto de Fisica ' ' Gleb Wataghin' ' UNICAMP, Campinas, Sao Paulo 13083-970, (Brazil); Huber, D. L. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Gardner, J. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sarrao, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Thompson, J. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Causa, M. T. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, (Argentina); Alejandro, G. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, (Argentina)] (and others)

    2000-05-01

    High temperature electron spin resonance (ESR) and magnetic susceptibility ({chi}) are analyzed for manganites related with colossal magnetoresistance (CMR). The properties of compounds with different crystalline structures: three-dimensional (3D) perovskites, pyrochlore, and La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}, a two-dimensional layer, are compared. In the paramagnetic regime, and outside the critical regions associated with phase transitions, the temperature dependence of the ESR linewidth presents a universal behavior dominated by the variations of {chi}(T), {delta}H{sub pp}(T)=[C/T{chi}(T)]{delta}H{sub pp}({infinity}). The high temperature limit of the linewidth, {delta}H{sub pp}({infinity}), is related to the parameters of the Hamiltonian describing the interactions of the spin system. The role played by magnetic anisotropy, isotropic superexchange, and double exchange is revealed and discussed in the analysis of the experimental data. In CMR and non-CMR pyrochlores, {delta}H{sub pp}({infinity}){proportional_to}{omega}{sub p}{sup 2}/J where J is proportional to the Curie-Weiss temperature, including the hybridization mechanism producing CMR. Instead, {delta}H{sub pp}({infinity}) of CMR perovskites seems not to be affected by the double-exchange interaction. In contrast with the 3D perovskites, the ESR linewidth and resonance field of La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}, a bilayer compound, although isotropic at high temperatures, becomes anisotropic for T{sub c}=125 K

  18. Investigation into the magnetic properties of pyrochlore-type rare-earth hafnates

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jung Hwan; Kremer, Reinhard K.; Lin, Chengtian [MPI for Solid State Research, Stuttgart (Germany)

    2015-07-01

    Cubic rare-earths transition metal pyrochlores with composition R{sub 2}TM{sub 2}O{sub 7} have attracted broad attention because of their unusual magnetic ground state properties related to geometrical frustration of the pyrochlores lattice. So far, the investigation focused mainly on 3d and 4d transition metal systems. The magnetic properties of rare-earths 5d TM pyrochlores are comparatively less well studied. Here we report on the single-crystal growth and the magnetic properties of some rare-earth hafnates (R =Nd, Gd, Dy; TM = Hf) of composition R{sub 2}Hf{sub 2}O{sub 7}. Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} crystallize with the cubic pyrochlores structure whereas diverging reports on the structure of Dy{sub 2}Hf{sub 2}O{sub 7} are available in literature. Crystals of R{sub 2}Hf{sub 2}O{sub 7} have been grown and their structural and magnetic properties have been investigated. Our investigations confirm Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} to crystallize in the cubic pyrochlores structure. Antiferromagnetic ordering below ∝0.5 K has been observed by magnetic susceptibility and heat capacity measurements for both compounds.

  19. Synthesis, characterization, and catalytic activity of Rh-based lanthanum zirconate pyrochlores for higher alcohol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Abdelsayed, Victor; Shekhawat, Dushyant; Poston, James A.; Spivey, James J.

    2013-05-01

    Two lanthanum zirconate pyrochlores (La{sub 2}Zr{sub 2}O{sub 7}; LZ) were prepared by Pechini method and tested for higher alcohols selectivity. In one, Rh was substituted into the pyrochlore lattice (LRZ, 1.7 wt%) while for the second, Rh was supported on an unsubstituted La{sub 2}Zr{sub 2}O{sub 7} (R/LZ, 1.8 wt%). X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) results show that the surface reducibility depends on whether the Rh is in (or supported on) the LZ pyrochlore. Rhodium in the LRZ is more reducible than rhodium supported on the R/LZ pyrochlore, likely due to the presence of a perovskite phase (LaRhO{sub 3}; identified by XRD), in which rhodium is more reducible. The formation of the perovskite accompanies that of the pyrochlore. CO hydrogenation results show higher ethanol selectivity for R/LZ than LRZ, possibly due to the strong interaction between Rh and LZ on the R/LZ, forming atomically close Rh{sup +}/Rh{sup 0} sites, which have been suggested to favor ethanol production.

  20. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  1. Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets

    Science.gov (United States)

    Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.

    2016-05-01

    Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.

  2. Emergent topological phenomena in thin films of pyrochlore iridates.

    Science.gov (United States)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-20

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  3. Recent neutron scattering results from Gd-based pyrochlore oxides

    Science.gov (United States)

    Gardner, Jason

    2009-03-01

    In my presentation I will present recent results that have determined the spin-spin correlations in the geometrically frustrated magnets Gd2Sn2O7 and Gd2Ti2O7. This will include polarised neutron diffraction, inelastic neutron scattering and neutron spin echo data. One sample of particular interest is Gd2Sn2O7 which is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. Theoretically such a system is expected to enter long range ordered ground state known as the ``Palmer Chalker'' state [1]. We show conclusively, through neutron scattering data, that the system indeed enters an ordered state with the Palmer-Chalker spin configuration below Tc = 1 K [2-3]. Within this state we have also observed long range collective spin dynamics, spin waves. This work has been performed in collaboration with many research groups including G. Ehlers (SNS), R. Stewart (ISIS). [0pt] [1] S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 (2000). [0pt] [2] J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell, and J. S. Gardner, J. Phys.: Condens. Matter 16, L321 (2004). [0pt] [3] J R Stewart, J S Gardner, Y. Qiu and G Ehlers, Phys. Rev. B. 78, 132410 (2008)

  4. Probing disorder in isometric pyrochlore and related complex oxides

    Science.gov (United States)

    Shamblin, Jacob; Feygenson, Mikhail; Neuefeind, Joerg; Tracy, Cameron L.; Zhang, Fuxiang; Finkeldei, Sarah; Bosbach, Dirk; Zhou, Haidong; Ewing, Rodney C.; Lang, Maik

    2016-05-01

    There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization, fast ion conduction, and thermal barrier coatings.

  5. Probing disorder in isometric pyrochlore and related complex oxides.

    Science.gov (United States)

    Shamblin, Jacob; Feygenson, Mikhail; Neuefeind, Joerg; Tracy, Cameron L; Zhang, Fuxiang; Finkeldei, Sarah; Bosbach, Dirk; Zhou, Haidong; Ewing, Rodney C; Lang, Maik

    2016-05-01

    There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization, fast ion conduction, and thermal barrier coatings.

  6. Insights into the Radiation Response of Pyrochlores from Calculations of Threshold Displacement Events

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram; Weber, William J.

    2005-10-15

    We have used molecular dynamics simulations to examine the displacement threshold energy (Ed) surface for cations and anions in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. In both pyrochlores, the Ed surface is highly anisotropic and it requires less energy to displace anions than cations. Both anion and cation Ed values are higher in the titanate compared to the zirconate. Titanium displacement energies are in excess of 170 eV for all directions examined, because cation exchange is less energetically favorable in Gd2Ti2O7 compared to Gd2Zr2O7. These high energy Ti displacements result in the formation of defect clusters that may prevent efficient defect recovery. This provides an explanation for the difference in susceptibility to amorphization between titanate and zirconate pyrochlores.

  7. Insights into the radiation response of pyrochlores from calculations of threshold displacement events

    Science.gov (United States)

    Devanathan, R.; Weber, W. J.

    2005-10-01

    We have used molecular-dynamics simulations to examine the displacement threshold energy (Ed) surface for cations and anions in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. In both pyrochlores, the Ed surface is highly anisotropic and it requires less energy to displace anions than cations. Both anion and cation Ed values are higher in the titanate compared to the zirconate. Titanium displacement energies are in excess of 170 eV for all directions examined, because cation exchange is less energetically favorable in Gd2Ti2O7 compared to Gd2Zr2O7. These high-energy Ti displacements result in the formation of defect clusters that may prevent efficient defect recovery. This provides an explanation for the difference in susceptibility to amorphization between titanate and zirconate pyrochlores.

  8. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates

    KAUST Repository

    Zhang, Yuan

    2013-08-06

    Cubic bismuth pyrochlores in the Bi2O3 Bi 2O3-MgO-Nb2O5 Nb2O 5 system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored Bi 1.5 MgNb 1.5 O 7 Bi1.5MgNb1.5O7 (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be ∼ 120 ∼120 at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and O′ O\\' sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.; Glerup, M.; Holtappels, P.

    2000-01-01

    Mixed ionic-electronic conducting pyrochlore structure oxides, with Pr and Gd on the A site and Zr, Mn, Ce, Sn, In, Mo, and Ti on the B site, were characterised by X-ray powder diffraction and Raman spectroscopy. Mn and In have a solubility around x = 0.1-0.2 in Pr2Zr2-xMnxO7 and Pr2Sn2-xInxO7, r...... for the four equilibrium constants, leading to cases of pure p-type, p- to n-type and pure electrolytic behaviour of doped pyrochlores. (C) 2000 Elsevier Science B.V. All rights reserved....

  10. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  11. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    Science.gov (United States)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  12. Single-ion anisotropy in the gadolinium pyrochlores studied by electron paramagnetic resonance

    Science.gov (United States)

    Glazkov, V. N.; Zhitomirsky, M. E.; Smirnov, A. I.; Krug von Nidda, H.-A.; Loidl, A.; Marin, C.; Sanchez, J.-P.

    2005-07-01

    The electron paramagnetic resonance is used to measure the single-ion anisotropy of Gd3+ ions in the pyrochlore structure of (Y1-xGdx)2Ti2O7 . A rather strong easy-plane-type anisotropy is found. The anisotropy constant D is comparable to the exchange integral J in the prototype Gd2Ti2O7 , D≃0.75J , and exceeds the dipolar energy scale. Physical implications of an easy-plane anisotropy for a pyrochlore antiferromagnet are considered. We calculate the magnetization curves at T=0 and discuss phase transitions in a magnetic field.

  13. LETTER TO THE EDITOR: Magnetic ordering in Gd2Sn2O7: the archetypal Heisenberg pyrochlore antiferromagnet

    Science.gov (United States)

    Wills, A. S.; Zhitomirsky, M. E.; Canals, B.; Sanchez, J. P.; Bonville, P.; Dalmas de Réotier, P.; Yaouanc, A.

    2006-01-01

    Low-temperature powder neutron diffraction measurements are performed in the ordered magnetic state of the pyrochlore antiferromagnet Gd2Sn2O7. Symmetry analysis of the diffraction data indicates that this compound has the ground state predicted theoretically for a Heisenberg pyrochlore antiferromagnet with dipolar interactions. The difference in the magnetic structure of Gd2Sn2O7 andof nominally analogous Gd2Ti2O7 is found to be determined by a specific type of third-neighbour superexchange interaction on the pyrochlore lattice between spins across empty hexagons.

  14. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications

    DEFF Research Database (Denmark)

    Holtappels, P.; Poulsen, F.W.; Mogensen, Mogens Bjerg

    2000-01-01

    Pyrochlores with praseodymium as the A-site cation and zirconium, tin, cerium and manganese cations on the B-site were prepared in air and their electrical conductivities were investigated as a function of oxygen partial pressure and temperature. Pure Pr2Zr2O7+/-delta as well as samples modified...

  15. Molecular dynamics simulation of the structural, elastic, and thermal properties of pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liyuan; Li, Yuhong; Devanathan, Ram; Gao, Fei

    2016-04-28

    We present a comprehensive simulation study of the effect of composition on the structural, elastic and thermal properties of 25 different compounds from the pyrochlore family. We joined a repulsive potential to an existing interatomic potential to enable molecular dynamics simulations of conditions away from equilibrium. We systematically varied the chemistry of the pyrochlore by substituting different cations in the A and B sites of the A2B2O7 formula unit. The A cations varied from Lu3+ to La3+, and the B cations from Ti4+ to Ce4+. The lattice parameter increased steadily with increasing the radius of A or B cations, but the bulk modulus showed a decreasing trend with increasing cation radius. However, the specific heat capacity and thermal expansion coefficient remained almost unchanged with increasing the radii of A and B cations. It is of interest to note that Ce on the B site significantly reduces the specific heat capacity and thermal expansion coefficient, which could have implications for annealing of radiation damage in cerate pyrochlores. The present results are consistent with the experimental measurements, which validates these potentials for simulation of dynamical processes, such as radiation damage, in pyrochlores.

  16. Dimensional evolution of spin correlations in the magnetic pyrochlore Yb2Ti2O7

    DEFF Research Database (Denmark)

    Ross, K.A.; Yaraskavitch, L.R.; Laver, Mark

    2011-01-01

    The pyrochlore material Yb2Ti2O7 displays unexpected quasi-two-dimensional (2D) magnetic correlations within a cubic lattice environment at low temperatures, before entering an exotic disordered ground state below T=265 mK. We report neutron scattering measurements of the thermal evolution of the 2...

  17. Low energy ion-solid interactions and chemistry effects in a series of pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liyuan [School of Nuclear Science and Technology, Lanzhou University, Lanzhou Gansu China; Li, Yuhong [School of Nuclear Science and Technology, Lanzhou University, Lanzhou Gansu China; Devanathan, Ram [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland Washington; Setyawan, Wahyu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland Washington; Gao, Fei [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor Michigan

    2017-04-03

    The effect of chemistry on low energy recoil events was investigated at 10 K for each type of atom in pyrochlores using molecular dynamics simulation. Contour plots of the threshold displacement energy (Ed) in Gd2Zr2O7 have been produced along more than 80 directions for each individual species. The Ed surface for each type of atom in Gd2Zr2O7 is highly anisotropic; Ed of Zr exhibits the largest degree of anisotropy, while that of O8b exhibits the smallest. The recommended values of Ed in Gd2Zr2O7 based on the observed minima are 56, 94 and 25 eV, respectively for Gd, Zr and O. The influence of cation radius on Ed in pyrochlores A2B2O7 (with A-site ranging from Lu3+ to La3+ and B-site ranging from Ti4+ to Ce4+) was also investigated along three directions [100], [110] and [111]. The Ed in pyrochlores strongly depended on the atom type, atom mass, knock-on direction, and lattice position. The defects produced after low energy displacement events included cation antisite defects, cation Frenkel pairs, anion Frenkel pairs, various vacancies and interstitials. Ce doping in pyrochlores may affect the radiation response, because it resulted in drastic changes in cation and anion displacement energies and formation of an unusual type of anti-site defect. This work demonstrates links between Ed and amorphization resistance.

  18. Symmetry considerations on the magnetization process of the Heisenberg model on the pyrochlore lattice

    Energy Technology Data Exchange (ETDEWEB)

    Penc, Karlo [Research Institute for Solid State Physics and Optics, H-1525 Budapest, POB 49 (Hungary); Shannon, Nic [H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Motome, Yukitoshi [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shiba, Hiroyuki [The Institute of Pure and Applied Physics, 2-31-22 Yushima, Bunkyo-ku, Tokyo 113-0034 (Japan)

    2007-04-11

    We present a detailed symmetry analysis of the degeneracy lifting due to higher order spin exchanges in the pyrochlore lattice in applied magnetic field. Under the assumption of the four-sublattice ordering, the criteria for a stable half-magnetization plateau are deduced. The higher order exchange terms may originate from spin-lattice coupling, or can describe quantum and thermal fluctuations.

  19. Titanium pyrochlore magnets: how much can be learned from magnetization measurements?

    Science.gov (United States)

    Petrenko, O. A.; Lees, M. R.; Balakrishnan, G.

    2011-04-01

    We report magnetization data for several titanium pyrochlore systems measured down to 0.5 K. The measurements, performed on single crystal samples in fields of up to 7 kOe, have captured the essential elements of the previously reported phase transitions in these compounds and have also revealed additional important features overlooked previously either because of the insufficiently low temperatures used, or due to limitations imposed by polycrystalline samples. For the spin-ice pyrochlores Dy2Ti2O7 and Ho2Ti2O7, an unusually slow relaxation of the magnetization has been observed in lower fields, while the magnetization process in higher fields is essentially hysteresis-free and does not depend on sample history. For the XY pyrochlore Er2Ti2O7, the magnetic susceptibility shows nearly diverging behaviour on approach to a critical field, HC = 13.5 kOe, above which the magnetization does not saturate but continues to grow at a significant rate. For the Heisenberg pyrochlore Gd2Ti2O7, the magnetic susceptibility shows a pronounced change of slope at both transition temperatures, TN1 = 1.02 K and TN2 = 0.74 K, contrary to the earlier reports.

  20. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the s

  1. Titanium pyrochlore magnets: how much can be learned from magnetization measurements?

    Science.gov (United States)

    Petrenko, O A; Lees, M R; Balakrishnan, G

    2011-04-27

    We report magnetization data for several titanium pyrochlore systems measured down to 0.5 K. The measurements, performed on single crystal samples in fields of up to 7 kOe, have captured the essential elements of the previously reported phase transitions in these compounds and have also revealed additional important features overlooked previously either because of the insufficiently low temperatures used, or due to limitations imposed by polycrystalline samples. For the spin-ice pyrochlores Dy(2)Ti(2)O(7) and Ho(2)Ti(2)O(7), an unusually slow relaxation of the magnetization has been observed in lower fields, while the magnetization process in higher fields is essentially hysteresis-free and does not depend on sample history. For the XY pyrochlore Er(2)Ti(2)O(7), the magnetic susceptibility shows nearly diverging behaviour on approach to a critical field, H(C) = 13.5 kOe, above which the magnetization does not saturate but continues to grow at a significant rate. For the Heisenberg pyrochlore Gd(2)Ti(2)O(7), the magnetic susceptibility shows a pronounced change of slope at both transition temperatures, T(N1) = 1.02 K and T(N2) = 0.74 K, contrary to the earlier reports.

  2. Curium-doped stannate pyrochlore: Durability under radiation and leaching in water

    Science.gov (United States)

    Yudintsev, S. V.; Tomilin, S. V.; Livshits, T. S.; Lizin, A. A.; Goryatchev, I. A.

    2016-07-01

    The radiation resistance of the phase (Gd,Cm)2Sn2O7 with a pyrochlore-type structure containing 3.0 wt % 244Cm was studied. It was established that amorphization occurs at a dose of 1019 α-decay/g (1.52 displacements per atom), which is 2-5 times higher than that needed for amorphization of titanate and titanate-zirconate pyrochlore phases with a similar structure. The heating of the amorphous ceramics restores the structure of the pyrochlore. The restoration process begins in the temperature interval of 600-700°C. This allows us to estimate the critical amorphization temperature as 650°C. On the 14th day, the rate of Cm leaching from the initial sample in water at 90°C is 10-1; Gd, 10-2; and Sn, 10-3 g/(m2 day). After amorphization the leaching rate increases by an order of magnitude (Cm) and two orders of magnitude (Gd), but it does not change for Sn. Compared to the zirconate and titanate-zirconate phases, stannate pyrochlore is markedly less resistant in water and cannot be regarded as a matrix for the immobilization of REE-actinide fraction wastes.

  3. Bismuth pyrochlore-based thin films for dielectric energy storage

    Science.gov (United States)

    Michael, Elizabeth K.

    The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum

  4. Intergrowth Structure in U- and Hf-Bearing Pyrochlore and Zirconolite: TEM Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H; Wang, Y; Zhao, P; Bourcier, W L; Van Konynenburg, R; Shaw, H F

    2002-12-04

    Transmission electron microscopy results from a sintered ceramics with stoichiometry of Ca(U{sub 0.5}Ce{sub 0.25}Hf{sub 0.25})Ti{sub 2}O{sub 7} show the material contains both pyrochlore and zirconolite phases and structural intergrowth of zirconolite lamellae within pyrochlore. (001) plane of zirconolite is parallel to (111) plane of pyrochlore because of their structural similarities. The pyrochlore is relatively rich in U, Ce, and Ca with respect to the coexisting zirconolite. Average compositions for the coexisting pyrochlore and zirconolite produced by sintering at 1350 C are (Ca{sub 1.01}Ce{sub 0.13}{sup 3+}Ce{sub 0.19}{sup 4+}U{sub 0.52}Hf{sub 0.18})(Ti{sub 1.95}Hf{sub 0.05})O{sub 7} (with U/(U+Hf) (in the AB sites) = 0.74) and (Ca{sub 0.91}Ce{sub 0.09})(Ce{sub 0.08}{sup 3+}U{sub 0.26}Hf{sub 0.66}Ti{sub 0.01})Ti{sub 2.00}O{sub 7} (with U/(U+Hf) = 0.28) respectively. A single pyrochlore ((Ca,U,Hf){sub 2}Ti{sub 2}O{sub 7}) phase may be synthesized at 1350 C if the ratio of U/(U+Hf) is greater than 0.72, and a single zirconolite (Ca(Hf,U)Ti{sub 2}O{sub 7}) phase may be synthesized at 1350 C if the ratio of U/(U+Hf) is less than 0.28. An amorphous leached layer that is rich in Ti and Hf forms on the surface after the ceramics has been leached in pH 4 buffered solution. The thickness of the layer ranges from 5 nm to 15 nm. It is suggested that under these conditions, the leached layer functions as a protective layer, and reduces the leaching rate over time.

  5. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  6. First-principles insights into f magnetism: A case study on some magnetic pyrochlores

    Science.gov (United States)

    Deilynazar, Najmeh; Khorasani, Elham; Alaei, Mojtaba; Javad Hashemifar, S.

    2015-11-01

    First-principles calculations are performed to investigate f magnetism in A2Ti2O7 (A=Eu, Gd, Tb, Dy, Ho, Er, Yb) magnetic pyrochlore oxides. The Hubbard U parameter and the relativistic spin orbit correction are applied for a more accurate description of the electronic structure of the systems. It is argued that the main obstacle for the first-principles study of these systems is the multi-minima solutions of their electronic configuration. Among the studied pyrochlores, Gd2Ti2O7 shows the least multi-minima problem. The crystal electric field theory is applied for phenomenological comparison of the calculated spin and orbital moments with the experimental data.

  7. Radiation tolerance of ceramics—Insights from atomistic simulation of damage accumulation in pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Weber, William J.; Gale, Julian D.

    2010-10-01

    We have used molecular dynamics simulations to examine the effects of radiation damage accumulation in two pyrochlore-structured ceramics, namely Gd2Ti2O7 and Gd2Zr2O7. It is well known from experiment that the titanate is susceptible to radiation-induced amorphization, while the zirconate does not go amorphous under prolonged irradiation. Our simulations show that cation Frenkel pair accumulation eventually leads to amorphization of Gd2Ti2O7. Anion disorder occurs with cation disorder. The amorphization is accompanied by a density decrease of about 12.7% and a decrease of about 50% in the elastic modulus. In Gd2Zr2O7, amorphization does not occur, because the residual damage is not sufficiently energetic to drive the material amorphous. Subtle differences in damage accumulation and annealing between the two pyrochlores lead to drastically different radiation response as the damage accumulates.

  8. Chiral Kosterlitz-Thouless transition in the frustrated Heisenberg antiferromagnet on a pyrochlore slab.

    Science.gov (United States)

    Kawamura, Hikaru; Arimori, Takuya

    2002-02-18

    Ordering of the geometrically frustrated two-dimensional Heisenberg antiferromagnet on a pyrochlore slab is studied by Monte Carlo simulations. In contrast to the kagomé Heisenberg antiferromagnet, the model exhibits locally noncoplanar spin structures at low temperatures, bearing nontrivial chiral degrees of freedom. Under certain conditions, the model exhibits a novel Kosterlitz-Thouless-type transition at a finite temperature associated with these chiral degrees of freedom.

  9. Characterization of the heavy metal pyrochlore lattice superconductor CaIr2.

    Science.gov (United States)

    Haldolaarachchige, Neel; Gibson, Quinn; Schoop, Leslie M; Luo, Huixia; Cava, R J

    2015-05-13

    We report the electronic properties of the cubic laves phase superconductor CaIr2(Tc = 5.8 K), in which the Ir atoms have a pyrochlore lattice. The estimated superconducting parameters obtained from magnetization and specific heat measurements indicate that CaIr2 is a weakly coupled BCS superconductor. Electronic band structure calculations show that the Ir d-states are dominant at the Fermi level, creating a complex Fermi surface that is impacted substantially by spin-orbit coupling.

  10. Emergence of magnetic order in ultra-thin pyrochlore iridate films

    Science.gov (United States)

    Cheema, Suraj; Serrao, Claudy; Mundy, Julia; Patankar, Shreyas; Birgeneau, Robert; Orenstein, Joseph; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on thickness-dependent magnetotransport in (111) - oriented Pb2Ir2O7-x (Pb227) epitaxial thin films. For thicknesses greater than 4 nm, the magnetoresistance (MR) of metallic Pb227 is positive, linear and non-saturated up to 14 T. Meanwhile at 4 nm, the conduction turns nonmetallic and the MR becomes negative and asymmetric upon field-cooling; such traits are reminiscent of all-in-all-out (AIAO) magnetic order in the insulating pyrochlore iridates. Hysteretic low-field MR dips and trained-untrained resistivity bifurcations suggest the presence of magnetic conducting domain walls within the chiral AIAO spin structure. Beyond just AIAO order, angular-dependent MR indicates a magnetic phase space hosting 2-in-2-out (2I2O) spin ice order. Such anomalous magnetotransport calls for re-evaluation of the pyrochlore iridate phase diagram, as epitaxially strained Pb227 exhibits traits reminiscent of both the insulating magnetic and metallic spin-liquid members. Furthermore, these results open avenues for realizing topological phase predictions in (111) - oriented pyrochlore slabs of kagome-triangular iridate heterostructures. This work is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

  11. Computational and Experimental Studies of the Radiation Response of Gd2Ti2O7 Pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram; Weber, William J.

    2005-12-16

    The structure and property changes in Gd2Ti2O7 (polycrystalline pyrochlore) were examined following irradiation with 1 MeV Kr+, 0.6 MeV Bi+ and 4 MeV Au2+ ions over the temperature range 30-950 K. Gd2Ti2O7 readily amorphizes with a low temperature (30 K) critical dose for amorphization of {approx} 0.15 displacements per atom (dpa). The critical temperature above which amorphization does not occur is about 1190 K. Nano-indentation studies reveal that the structural changes were accompanied by decreases of 15% in the Young's modulus. 1 MeV Kr+ irradiation of amorphous Gd2Ti2O7 at 1065 K resulted in ion-beam-assisted recrystallization. These experimental studies were complemented with molecular dynamics simulations of low energy recoils in Gd2Ti2O7 and Gd2Zr2O7 using a Buckingham type potential. The displacement threshold energy surface in both pyrochlores is highly anisotropic. Displacement energies are higher for all sublattices in the titanate pyrochlore compared to the zirconate. Ti sublattice displacements require energies in excess of 100 eV, and result in multiple displacements and defect clusters. The formation of these clusters might impede dynamic defect recovery and facilitate amorphization.

  12. Theoretical investigation of structural, energetic and electronic properties of titanate pyrochlores

    Science.gov (United States)

    Xiao, H. Y.; Wang, L. M.; Zu, X. T.; Lian, Jie; Ewing, Rodney C.

    2007-08-01

    Ab initio total energy calculations using the plane-wave pseudopotential method based on density functional theory were carried out to investigate the structural, energetic and electronic properties of A2Ti2O7 (A = La, Gd and Yb) pyrochlores. It turned out that the formation energies of antisite defects are not linearly dependent on the ratio of the cation radii, and, for the three compositions, the cation antisite formation energy is largest for Gd2Ti2O7 pyrochlore. It was indicated that Gd2Ti2O7 compound is the least likely to form defect fluorite structure, which gives rise to the least resistance to radiation-induced amorphization. DOS analysis showed that stronger interaction exists in the Gd2Ti2O7 compound, and its electronic structure is very different from that of La2Ti2O7 and Yb2Ti2O7. Our calculations suggested that the electronic structure of the A cation and bond type should be taken into account when explaining the response behavior of A2Ti2O7 (A = La, Gd, Yb) pyrochlores to ion irradiation-induced amorphization.

  13. Relief of frustration in the Heisenberg pyrochlore antiferromagnet Gd2Pt2O7

    Science.gov (United States)

    Hallas, A. M.; Sharma, A. Z.; Cai, Y.; Munsie, T. J.; Wilson, M. N.; Tachibana, M.; Wiebe, C. R.; Luke, G. M.

    2016-10-01

    The gadolinium pyrochlores Gd2B2O7 are among the best realizations of antiferromagnetically coupled Heisenberg spins on a pyrochlore lattice. We present a magnetic characterization of Gd2Pt2O7 , a unique member of this family. Magnetic susceptibility, heat capacity, and muon spin relaxation measurements show that Gd2Pt2O7 undergoes an antiferromagnetic ordering transition at TN=1.6 K. This transition is strongly first order, as indicated by the sharpness of the heat capacity anomaly, thermal hysteresis in the magnetic susceptibility, and a nondivergent relaxation rate in μ SR . The form of the heat capacity below TN suggests that the ground state is an anisotropic collinear antiferromagnet with an excitation spectrum that is gapped by 0.245(1) meV. The ordering temperature in Gd2Pt2O7,TN=1.6 K, is a substantial 160% increase from other gadolinium pyrochlores, which are all known to order at 1 K or lower. We attribute this enhancement in TN to the B -site cation, platinum. Despite being nonmagnetic, platinum has a filled 5 d t2 g orbital and an empty 5 d eg orbital that can facilitate superexchange. Thus, the magnetic frustration in Gd2Pt2O7 is partially "relieved," thereby promoting magnetic order.

  14. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  15. Pyrochlore free 0.67PMN-0.33PT ceramics prepared by particle-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Ruiqing; Li, Yan [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Gong, Shuwen [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Liu, Yong [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Li, Guorong [The State Key Lab of High Performance Ceramics and Superfinemicrostructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Xu, Zhijun, E-mail: zhjxu@lcu.edu.cn [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer Pyrochlore-free PMN-PT powders were obtained by two-step particle-coating method. Black-Right-Pointing-Pointer Mg-citric acid polymeric complex coatings avoid the formation of pyrochlore phase. Black-Right-Pointing-Pointer Pyrochlore-free PMN-PT powders have been successfully prepared at 800 Degree-Sign C. Black-Right-Pointing-Pointer The PMN-PT ceramics sintered at 1150 Degree-Sign C exhibited excellent electrical properties. - Abstract: In present study, pyrochlore-free 0.67Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.33PbTiO{sub 3} (0.67PMN-0.33PT) powders and ceramics have been successfully prepared. Using oxides as raw materials, pyrochlore-free 0.67PMN-0.33PT powders were obtained by two-step particle-coating method. The XRD and EDS results confirmed that the Mg-citric acid polymeric complex coatings effectively prevent the direct contact between PbO and Nb{sub 2}O{sub 5} and thus avoid the formation of pyrochlore phase. The obtained pyrochlore-free 0.67PMN-0.33PT powders at 800 Degree-Sign C showed uniform and even grain size. The 0.67PMN-0.33PT ceramics sintered at 1150 Degree-Sign C for 2 h exhibited 99% of relative density and a piezoelectric coefficient (d{sub 33}) of 576pC/N, a remnant polarization (P{sub r}) of 28.4 {mu}C/cm{sup 2}, a planar electromechanical coupling factor (k{sub p}) of 0.55 and a mechanical quality factor (Q{sub m}) of 90.

  16. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

    Directory of Open Access Journals (Sweden)

    Desiré M. De los Santos

    2015-03-01

    Full Text Available Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm3+. ICP–AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm3+ was confirmed by X-ray photoelectron spectroscopy and UV–vis spectroscopy: the incorporation of Tm3+ was confirmed by the generation of new absorption bands that could be assigned to Tm3+ transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7 mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.

  17. Ion-Exchange Reaction Of A-Site In A2Ta2O6 Pyrochlore Crystal Structure

    Directory of Open Access Journals (Sweden)

    Matsunami M.

    2015-06-01

    Full Text Available Na+ or K+ ion rechargeable battery is started to garner attention recently in Place of Li+ ion cell. It is important that A+ site ion can move in and out the positive-electrode materials. When K2Ta2O6 powder had a pyrochlore structure was only dipped into NaOH aqueous solution at room temperature, Na2Ta2O6 was obtained. K2Ta2O6 was fabricated from a tantalum sheet by a hydrothermal synthesize with KOH aqueous solution. When Na2Ta2O6 was dipped into KOH aqueous solution, K2Ta2O6 was obtained again. If KTaO3 had a perovskite structure was dipped, Ion-exchange was not observed by XRD. Because a lattice constant of pyrochlore structure of K-Ta-O system is bigger than perovskite, K+ or Na+ ion could shinny through and exchange between Ta5+ and O2− ion site in a pyrochlore structure. K+ or Na+ ion exchange of A2Ta2O6 pyrochlore had reversibility. Therefore, A2Ta2O6 had a pyrochlore structure can be expected such as Na+ ion rechargeable battery element.

  18. X-ray diffraction study of the Y2Ti2O7 pyrochlore disordering sequence under irradiation

    Science.gov (United States)

    Soulié, Aurélien; Menut, Denis; Crocombette, Jean-Paul; Chartier, Alain; Sellami, Neila; Sattonnay, Gaël; Monnet, Isabelle; Béchade, Jean-Luc

    2016-11-01

    The disordering sequence of Y2Ti2O7 pyrochlore, a nano-oxide phase that strengthens ODS steels under irradiation is studied in the experimental and modeling framework. XRD analysis has been performed considering both swift heavy ion and low energy/low mass ion irradiations. The simulation within molecular dynamics of Frenkel pair accumulation proves able to reproduce the variation of the amorphization fluence with temperature. XRD patterns calculated from the simulations reproduce well the patterns observed experimentally in the literature. Both experiments and calculations point to a first transition from pyrochlore to fluorite before an eventual amorphization. For swift heavy ion irradiations with 93 MeV Xe ions, tracks of direct impact amorphization are visible by HRTEM. Advanced refinement shows that one third of the pyrochlore impacted by an ion transforms into fluorite, while two third are directly amorphized.

  19. Field driven phases in the geometrically frustrated dipolar Heisenberg pyrochlore antiferromagnet Gd2Ti2O7

    Science.gov (United States)

    Enjalran, Matthew; Del Maestro, Adrian; Gingras, Michel J. P.

    2008-03-01

    The rare-earth pyrochlore gadolinium titanate, Gd2Ti2O7, represents an excellent experimental realization of a Heisenberg antiferromagnet (AFM) in a frustrated geometry with weak long-range dipole-dipole interactions (approximately 20% of nearest neighbor AFM exchange). Experiments on Gd2Ti2O7 in a magnetic field reveal a complex phase diagram associated with the breaking of spatial symmetries of the pyrochlore lattice as the field is applied along select symmetry directions. We study a model of classical Heisenberg spins (O(3) symmetry) on a pyrochlore lattice with exchange and dipolar interactions within mean-field theory. Using parameters relevant to the material system, we develop phase diagrams in finite magnetic fields. Our results our compared to experiments on Gd2Ti2O7 (and Gd2Sn2O7).

  20. Ion beam Irradiation-induced Amorphization of Nano-sized KxLnyTa2O7-v Tantalate Pyrochlore

    Directory of Open Access Journals (Sweden)

    Fengyuan eLu

    2014-10-01

    Full Text Available Nano-sized (~10-15 nm tantalate pyrochlores KxLnyTa2O7-v (Ln = Gd, Y, and Lu were irradiated with 1 MeV Kr2+ beams at different temperatures and their radiation response behaviors were studied by in-situ TEM observations. All of these nano-sized KxLnyTa2O7-v pyrochlores are sensitive to radiation-induced amorphization with low critical doses (~0.12 dpa at room temperature and high critical amorphization temperatures above 1160 K. The K+ plays a key role in determining the radiation response of tantalate pyrochlores, in which the K+-rich KLuTa2O7 displays greater amorphization susceptibility than K0.8GdTa2O6.9 and K0.8YTa2O6.9 with lower K+ occupancy at the A-site. The reduced amorphization tolerance of the composition with a greater K+ content is consistent with the prominently larger K+/Ta5+ cationic radius ratio, which may result in more structural deviation from the parent fluorite structure and less capability to accommodate radiation induced defects. An empirical correlation between critical amorphization temperature and ionic size was derived, generally describing the dominant effect of ionic sizes in controlling radiation response of a wide range of pyrochlore compounds as potential nuclear waste forms. The results of the tantalate pyrochlore in this work highlight that nanostructured pyrochlores are not intrinsically radiation tolerant and their responses are highly compositional dependent.

  1. From Spin Glass to Spin Liquid Ground States in Pyrochlore Molybdates

    Science.gov (United States)

    Clark, Lucy

    Magnetic pyrochlores continue to generate intense interest due to the wealth of interesting behaviours that they can display as a result of their highly frustrated nature. Here we will present our study of the molybdate pyrochlore Lu2Mo2O7, which contains non-magnetic Lu3+ and an antiferromagnetic network of corner-sharing tetrahedra of Mo4+ 4d2 S = 1 ions. Magnetic susceptibility data show that Lu2Mo2O7 enters an unconventional spin glass state at Tf ~ 16 K that displays a quadratic dependence of the low temperature magnetic heat capacity, akin to that observed for its well-studied sister compound Y2Mo2O7. This spin glass transition is also clearly marked in our inelastic (CNCS, SNS) and diffuse elastic magnetic (D7, ILL) neutron scattering data. Furthermore, we will show that it is possible to topochemically substitute the oxide, O2-, ions within Lu2Mo2O7 for nitride, N3-, to produce an oxynitride molybdate pyrochlore of composition Lu2Mo2O5N2. Magnetic susceptibility measurements confirm that strong antiferromagnetic correlations persist within the oxynitride, which contains Mo5+ 4d1 S =1/2 ions and is thus a prime candidate to host exotic quantum spin liquid behavior. We will discuss how the enhanced quantum spin fluctuations in Lu2Mo2O5N2 appear to suppress the spin freezing transition observed in its parent oxide and instead support the formation of a gapless spin liquid phase that displays a linear dependence of the low temperature magnetic heat capacity.

  2. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice

    Science.gov (United States)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-01

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  3. Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7

    DEFF Research Database (Denmark)

    Gaulin, B.D.; Reimers, J.N.; Mason, T.E.

    1992-01-01

    The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...

  4. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice.

    Science.gov (United States)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-24

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2,1/2,1/2) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  5. Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets

    CERN Document Server

    Mook, Alexander; Mertig, Ingrid

    2016-01-01

    We introduce a new type of topological magnon matter: the magnonic pendant to electronic nodal-line semimetals. Magnon spectra of anisotropic pyrochlore ferromagnets feature twofold degeneracies of magnon bands along a closed loop in reciprocal space. These magnon nodal lines are topologically protected by the coexistence of inversion and time-reversal symmetry; they require the absence of spin-orbit interaction (no Dzyaloshinskii-Moriya interaction). We calculate the topological invariants of the nodal lines and show that details of the associated magnon drumhead surface states depend strongly on the termination of the surface. Magnon nodal-line semimetals complete the family of topological magnons in three-dimensional ferromagnetic materials.

  6. Single-ion anisotropy and transverse magnetization in the frustrated gadolinium pyrochlores

    Science.gov (United States)

    Glazkov, V. N.; Zhitomirsky, M.; Smirnov, A. I.; Marin, C.; Sanchez, J.-P.; Forget, A.; Colson, D.; Bonville, P.

    2007-04-01

    A single-ion anisotropy of the planar type is found in the pyrochlore antiferromagnet oxides Gd2M2O7 (M = Ti,Sn); its strength is comparable with the strength of the exchange coupling. Models considering the effects of the planar anisotropy predict the appearance of a transverse magnetization in an applied magnetic field. A detailed experimental study of Gd2Ti2O7 single crystals reveals that a transverse magnetization is really present at low temperatures. The magnetic phase diagram of Gd2Ti2O7 is refined.

  7. Macroscopic anisotropy and symmetry breaking in the pyrochlore antiferromagnet Gd2Ti2O7

    Science.gov (United States)

    Hassan, A. K.; Lévy, L. P.; Darie, C.; Strobel, P.

    2003-06-01

    In the Heisenberg antiferromagnet Gd2Ti2O7, the exchange interactions are geometrically frustrated by the pyrochlore lattice structure. This ESR study reveals a strong temperature dependent anisotropy with respect to a [111] body diagonal below a temperature TA=80 K, despite the spin only nature of the Gd3+ ion. Anisotropy and symmetry breaking can nevertheless appear through the superexchange interaction. In the presence of anisotropic exchanges, short range planar correlations restricted to specific Kagomé planes are sufficient to explain the two ESR modes studied in this work.

  8. Low-frequency spin dynamics of the frustrated pyrochlore magnet Gd2Ti2O7

    Science.gov (United States)

    Smirnov, A. I.; Sosin, S. S.; Glazkov, V. N.; Petrenko, O. A.; Balakrishnan, G.; Zhitomirsky, M. E.

    2009-03-01

    The adiabatic T(H) curves measured in a Heisenberg pyrochlore Gd2Ti2O7 prove the existence of a macroscopic number of local soft modes in this compound. A spin gap of 25 GHz, developing in Gd2Ti2O7 on cooling down to 1.3 K (in the collective paramagneti phase), was observed by ESR spectroscopy. ESR of diamagnetically diluted crystals revealed the single-ion anisotropy energy to be about a quarter of Curie-Weiss temperature. This might be responsible for the observed energy gap. Below 1 K, in the magneticaly ordered phase, the pin excitations have a threebranch spectum with two enegy gaps

  9. High-Field Magnetization of the Pyrochlore Compound Gd2Ti2O7

    Science.gov (United States)

    Narumi, Yasuo; Kikkawa, Akiko; Katsumata, Koichi; Honda, Zentaro; Hagiwara, Masayuki; Kindo, Koichi

    2006-09-01

    High-field magnetization measurements have been preformed on a single crystal sample of the pyrochlore compound Gd2Ti2O7 using a pulse magnet in conjunction with a dilution refrigerator. The magnetization curve at 0.3 K reveals two magnetic phase transitions when the magnetic field is applied along b [111]. At temperatures slightly above TN, a magnetization plateau appears around 5 T and the magnetization increases again from about 15 T with a convex curvature. It is considered that this crossover is due to a competition among thermal fluctuations, short-range antiferromagnetic ordering and geometrical frustration.

  10. Field-driven transitions in the dipolar pyrochlore antiferromagnet Gd2Ti2O7

    Science.gov (United States)

    Cépas, Olivier; Shastry, B. Sriram

    2004-05-01

    We present a mean-field theory for magnetic-field-driven transitions in dipolar coupled gadolinium titanate Gd2Ti2O7 pyrochlore system. Low-temperature neutron scattering yields a phase that can be regarded as a eight sublattice antiferromagnet, in which long-ranged ordered moments and fluctuating moments coexist. Our theory gives parameter regions where such a phase is realized, and predicts several other phases, with transitions amongst them driven by magnetic field as well as temperature. We find several instances of local disorder parameters describing the transitions.

  11. Magnetic resonance in the pyrochlore antiferromagnet Gd2Ti2O7

    Science.gov (United States)

    Sosin, S. S.; Smirnov, A. I.; Prozorova, L. A.; Balakrishnan, G.; Zhitomirsky, M. E.

    2006-06-01

    An electron spin resonance study of frustrated pyrochlore Gd2Ti2O7 is performed in a wide frequency band for a temperature range 0.4 30K , which covers paramagnetic and magnetically ordered phases. The paramagnetic resonance reveals a spectroscopic g factor of about 2.0 and a temperature-dependent linewidth. In ordered phases magnetic resonance spectra are distinctive for a nonplanar cubic (or tetrahedral) antiferromagnet with an isotropic susceptibility. In the high-field-saturated phase, weakly dispersive soft modes are observed and their field evolution is traced.

  12. Zirconate Pyrochlore Frustrated Magnets: Crystal Growth by the Floating Zone Technique

    Directory of Open Access Journals (Sweden)

    Monica Ciomaga Hatnean

    2016-07-01

    Full Text Available This article reviews recent achievements on the crystal growth of a new series of pyrochlore oxides—lanthanide zirconates, which are frustrated magnets with exotic magnetic properties. Oxides of the type A 2 B 2 O 7 (where A = Rare Earth, B = Ti, Mo have been successfully synthesised in single crystal form using the floating zone method. The main difficulty of employing this technique for the growth of rare earth zirconium oxides A 2 Zr 2 O 7 arises from the high melting point of these materials. This drawback has been recently overcome by the use of a high power Xenon arc lamp furnace for the growth of single crystals of Pr 2 Zr 2 O 7 . Subsequently, large, high quality single crystals of several members of the zirconate family of pyrochlore oxides A 2 Zr 2 O 7 (with A = La → Gd have been grown by the floating zone technique. In this work, the authors give an overview of the crystal growth of lanthanide zirconates. The optimum conditions used for the floating zone growth of A 2 Zr 2 O 7 crystals are reported. The characterisation of the crystal boules and their crystal quality is also presented.

  13. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    Science.gov (United States)

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  14. New synthesis route and magnetic structure of Tm2Mn2O7 pyrochlore.

    Science.gov (United States)

    Pomjakushina, Ekaterina; Pomjakushin, Vladimir; Rolfs, Katharina; Karpinski, Janusz; Conder, Kazimierz

    2015-09-21

    In this work, we present a new chemical route to synthesize Tm2Mn2O7 pyrochlore, which a compound that is thermodynamically unstable at ambient pressure. Differently from the reported in the past high-pressure synthesis of the same compound applying oxides as starting materials, we have obtained a pure Tm2Mn2O7 phase by a converting TmMnO3 at 1100 °C and an oxygen pressure of 1300 bar. The studies of Tm2Mn2O7 performed by a high-resolution neutron powder diffraction have shown that a pure pyrochlore cubic phase Tm2Mn2O7 (space group Fd3¯m) have been obtained. Upon cooling below 25 K, there is a transition to a ferromagnetically (FM) ordered phase observed with an additional antiferromagnetic (AFM) canting, suggesting a lowering of the initial cubic crystal symmetry. The magnetic transition is accompanied by a small but very visible magnetostriction effect. Using symmetry analysis, we have found a solution for the AFM structure in the maximal Shubnikov subgroup I41/am'd'.

  15. Direct Hydrothermal Precipitation of Pyrochlore-Type Tungsten Trioxide Hemihydrate from Alkaline Sodium Tungstate Solution

    Science.gov (United States)

    Li, Xiaobin; Li, Jianpu; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui

    2012-04-01

    Pyrochlore-type tungsten trioxide hemihydrate (WO3·0.5H2O) powder with the average particle size of 0.5 μm was prepared successfully from the weak alkaline sodium tungstate solution by using organic substances of sucrose or cisbutenedioic acid as the acidification agent. The influences of solution pH and acidification agents on the precipitation process were investigated. The results showed that organic acidification agents such as sucrose and cisbutenedioic acid could improve the precipitation of pyrochlore WO3·0.5H2O greatly from sodium tungstate solution compared with the traditional acidification agent of hydrochloric acid. In addition, the pH value of the hydrothermal system played a critical role in the precipitation process of WO3·0.5H2O, and WO3·0.5H2O precipitation mainly occured in the pH range of 7.0 to 8.5. The precipitation rate of tungsten species in the sodium tungstate solution could reach up to 98 pct under the optimized hydrothermal conditions. This article proposed also the hydrothermal precipitation mechanism of WO3·0.5H2O from the weak alkaline sodium tungstate solution. The novel method reported in this study has a great potential to improve the efficiency of advanced tungsten trioxide-based functional material preparation, as well as for the pollution-reducing and energy-saving tungsten extractive metallurgy.

  16. Symmetry enriched U(1) topological orders for dipole-octupole doublets on a pyrochlore lattice

    Science.gov (United States)

    Li, Yao-Dong; Chen, Gang

    2017-01-01

    Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of the newly discovered pyrochlore QSL candidate Ce2Sn2O7 , is a dipole-octupole doublet. The generic model for these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.

  17. Sol-Gel Derived Eu3+-Doped Gd2Ti2O7 Pyrochlore Nanopowders

    Directory of Open Access Journals (Sweden)

    Sanja Ćulubrk

    2015-01-01

    Full Text Available Herein we presented hydrolytic sol-gel synthesis and photoluminescent properties of Eu3+-doped Gd2Ti2O7 pyrochlore nanopowders. According to Gd2Ti2O7 precursor gel thermal analysis a temperature of 840°C is identified for the formation of the crystalline pyrochlore phase. Obtained samples were systematically characterized by powder X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The powders consist of well-crystalline cubic nanocrystallites of approximately 20 nm in size as evidenced from X-ray diffraction. The scanning and transmission electron microscopy shows that investigated Eu3+-doped Gd2Ti2O7 nanopowders consist of compact, dense aggregates composed entirely of nanoparticles with variable both shape and dimension. The influence of Eu3+ ions concentration on the optical properties, namely, photoluminescence emission and decay time, is measured and discussed. Emission intensity as a function of Eu3+ ions concentration shows that Gd2Ti2O7 host can accept Eu3+ ions in concentrations up to 10 at.%. On the other hand, lifetime values are similar up to 3 at.% (~2.7 ms and experience decrease at higher concentrations (2.4 ms for 10 at.% Eu3+. Moreover, photoluminescent spectra and lifetime values clearly revealed presence of structural defects in sol-gel derived materials proposing photoluminescent spectroscopy as a sensitive tool for monitoring structural changes in both steady state and lifetime domains.

  18. Heavy-ion irradiation of pyrochlore oxides: Comparison between low and high energy regimes

    Science.gov (United States)

    Sattonnay, G.; Moll, S.; Thomé, L.; Legros, C.; Herbst-Ghysel, M.; Garrido, F.; Costantini, J.-M.; Trautmann, C.

    2008-06-01

    Pyrochlore pellets with Gd2(Ti2-xZrx)O7 stoichiometry were irradiated with heavy ions at energies ranging from a few MeV to a few GeV in order to compare the effects of nuclear collisions and electronic excitations. The damage created by irradiation was characterized as a function of the ion fluence by X-ray diffraction. The structural modifications induced by irradiation were shown to depend on both the sample composition and the type of irradiation. At low energy (4 MeV Au ions), the susceptibility to radiation-induced amorphization exhibits a systematic decrease with increasing Zr content. At high energy (1.5 GeV Xe or 2.6 GeV U ions), similar structural changes are observed at much lower fluences. The lattice parameter increases for low energy irradiation, particularly in the case of amorphizable pyrochlores (Gd2Ti2O7 and Gd2TiZrO7), whereas it decreases for high energy irradiation.

  19. Real-space renormalization group method for quantum 1/2 spins on the pyrochlore lattice.

    Science.gov (United States)

    Garcia-Adeva, Angel J

    2014-04-02

    A simple phenomenological real-space renormalization group method for quantum Heisenberg spins with nearest and next nearest neighbour interactions on a pyrochlore lattice is presented. Assuming a scaling law for the order parameter of two clusters of different sizes, a set of coupled equations that gives the fixed points of the renormalization group transformation and, thus, the critical temperatures and ordered phases of the system is found. The particular case of spins 1/2 is studied in detail. Furthermore, to simplify the mathematical details, from all the possible phases arising from the renormalization group transformation, only those phases in which the magnetic lattice is commensurate with a subdivision of the crystal lattice into four interlocked face-centred cubic sublattices are considered. These correspond to a quantum spin liquid, ferromagnetic order, or non-collinear order in which the total magnetic moment of a tetrahedral unit is zero. The corresponding phase diagram is constructed and the differences with respect to the classical model are analysed. It is found that this method reproduces fairly well the phase diagram of the pyrochlore lattice under the aforementioned constraints.

  20. Unraveling dielectric and electrical properties of ultralow-loss lead magnesium niobate titanate pyrochlore dielectric thin films for capacitive applications

    Science.gov (United States)

    Zhu, X. H.; Defaÿ, E.; Suhm, A.; Fribourg-Blanc, E.; Aïd, M.; Zhu, J. L.; Xiao, D. Q.; Zhu, J. G.

    2010-05-01

    PbO-MgO-Nb2O5-TiO2 (PMNT) pyrochlore thin films were prepared on Pt-coated silicon substrates by radio-frequency magnetron sputtering and postdeposition annealing method. Very interestingly, these pyrochlore-structured PMNT thin films exhibited ultralow dielectric losses, with a typical loss tangent as low as 0.001, and relatively high dielectric constants, typically ɛr˜170. It was found that the relative permittivity slightly but continuously increased upon cooling without any signature of a structural phase transition, displaying a quantum paraelectriclike behavior; meanwhile, the PMNT pyrochlore thin films did not show any noticeable dielectric dispersion in the real part of permittivity over a wide temperature range (77-400 K). Their dielectric responses could, however, be efficiently tuned by applying a dc electric field. A maximum applied bias field of 1 MV/cm resulted in a ˜20% tunability of the dielectric permittivity, giving rise to a fairly large coefficient of the dielectric nonlinearity, ˜2.5×109 J C-4 m-5. Moreover, the PMNT pyrochlore films exhibited superior electrical insulation properties with a relatively high breakdown field (Ebreakdown˜1.5 MV/cm) and a very low leakage current density of about 8.2×10-7 A/cm2 obtained at an electric field intensity as high as 500 kV/cm.

  1. Investigation of pyrochlore-based U-bearing ceramic nuclear waste: uranium leaching test and TEM observation.

    Science.gov (United States)

    Xu, Huifang; Wang, Yifeng; Zhao, Pihong; Bourcier, William L; Van Konynenburg, Richard; Shaw, Henry F

    2004-03-01

    A durable titanate ceramic waste form (Synroc) with pyrochlore (Ca(U,Pu)Ti2O7) and zirconolite (CaZrTi2O7) as major crystalline phases has been considered to be a candidate for immobilizing various high-level wastes containing fissile elements (239Pu and 235U). Transmission electron microscopy study of a sintered ceramic with stoichiometry of Ca(U(0.5)Ce(0.25)Hf(0.25))Ti2O7 shows the material contains both pyrochlore and zirconolite phases and structural intergrowth of zirconolite lamellae within pyrochlore. The (001) plane of zirconolite is parallel to the (111) plane of pyrochlore because of their structural similarities. The pyrochlore is relatively rich in U, Ce, and Ca with respect to the coexisting zirconolite. Average compositions for the coexisting pyrochlore and zirconolite at 1350 degrees C are Ca(1.01)(Ce3+(0.13)Ce4+(0.19)U(0.52)Hf(0.18))(Ti(1.95)Hf(0.05))O7 (with U/(U + Hf) = 0.72) and (Ca(0.91)Ce(0.09))(Ce3+(0.08)U(0.26)Hf(0.66)Ti(0.01))Ti(2.00)O7 (with U/(U + Hf) = 0.28), respectively. A single pyrochlore (Ca(U,Hf)Ti2O7) phase may be synthesized at 1350 degrees C if the ratio of U/(U + Hf) is greater than 0.72, and a single zirconolite (Ca(Hf,U)Ti2O7) phase may be synthesized at 1350 degrees C if the ratio of U/(U + Hf) is less than 0.28. The synthesized products were used for dissolution tests. The single-pass flow-through dissolution tests show that the dissolution of the U-bearing pyrochlore is incongruent. All the elements are released at differing rates. The dissolution data also show a decrease in rate with run time. The results indicate that a diffusion-controlled process may play a key role during the release of U. TEM observation of the leached pyrochlore directly proves that an amorphous leached layer that is rich in Ti and Hf formed on the surface after the ceramic was leached in pH 4 buffered solution for 835 days. The thickness of the layer ranges from 6 to 10 nm. A nanocrystalline TiO2 phase also forms in the leached layer. The U

  2. Systematic Structural Change in Selected Rare Earth Oxide Pyrochlores as Determined by Wide-Angle CBED and a Comparison with the Results of Atomistic Computer Simulation

    Science.gov (United States)

    Tabira, Yasunori; Withers, Ray L.; Minervini, Licia; Grimes, Robin W.

    2000-08-01

    An unknown oxygen atom fractional co-ordinate characteristic of the pyrochlore structure type has been determined for selected rare earth zirconate and titanate pyrochlores via a systematic row wide-angle CBED technique and shown to vary systematically with rare earth ion size. In the case of the titanate pyrochlore Gd2Ti2O7, the obtained results contrast with previously published X-ray results. Atomistic computer simulation is used to predict the value of the same parameter for a wide range of oxide pyrochlores. Comparison of calculated values with experimentally determined values shows that the general trends are correctly predicted although there appears to be systematic underestimation of both the observed values (by approximately 0.007) as well as their rate of change with rare earth ion size. Cation anti-site disorder is proposed as the origin of these discrepancies.

  3. Preparation of Y2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinides: The effects of processing conditions

    Science.gov (United States)

    Kong, Linggen; Zhang, Yingjie; Karatchevtseva, Inna

    2017-10-01

    Glass-Y2Ti2O7 pyrochlore was fabricated by sintering the mixture of glass precursor powder and (YTi)-composite which was prepared by a soft chemistry route. X-ray diffraction and Raman spectroscopy confirmed that the phase pure pyrochlore was crystallized in-situ in amorphous glass matrix at 1200 °C with dwelling time over 1 h. Pyrochlore was formed in glass matrix with cooling rate ∼0.1-40 °C/min, and independent of addition of alkali/alkaline earth fluorides. Glass matrix was able to accommodate/dissolve small amounts of impurities and the mean pyrochlore particle size was between 1 and 2 μm in glass observed by scanning electron microscopy.

  4. The many faces of order-by-disorder in rare-earth pyrochlore magnets

    Science.gov (United States)

    Gingras, Michel J. P.

    Order-by-disorder (ObD) is a concept of central importance in the field of frustrated magnetism. Saddled with large accidental degeneracies, a subset of states, those that support the largest quantum and/or thermal fluctuations, may be selected to form true long-range order. More formally, one often begins describing a system in terms of some order parameter m with the low-energy description framed in terms of an effective action Γ (m) . In each ObD scenario, one starts from an artificial limit where there is an accidental degeneracy; that is the effective action at this point, Γ0 (m) , has an accidental symmetry. One may then view ObD phenomena as cases where the corrections to Γ0 (m) arise through some form of fluctuation corrections, may they be thermal, quantum or virtual, towards an enlarged higher energy Hilbert space. In the rare-earth pyrochlore oxides, of formula R2M2O7, the trivalent magnetic rare-earth ions R3+ (e.g R = Gd, Er, Yb; M = Ti, Sn is non-magnetic) reside on a three-dimensional pyrochlore lattice of corner-sharing tetrahedra. This architecture is prone to a high degree of magnetic frustration, with the R2M2 O7 pyrochlore materials having been found over the past twenty years to display a gamut of exotic phenomena. In this talk, I will discuss three such phenomena: (i) the intermediate partially-ordered multiple- k state between 0 . 7 K and 1K in the Gd2Ti2O7 Heisenberg antiferromagnet, (ii) the ordered ψ2 state selection in the XY Er2Ti2O7 antiferromagnet and (iii) the puzzling high sample sensitivity of the Yb2Ti2O7 ``quantum spin ice'' candidate. I will argue that in all three cases, some form of fluctuation corrections to their simplest Γ0 (m) description play a significant role in the state selection and experimentally observed behaviors.

  5. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice

    Science.gov (United States)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-01

    We study the low-temperature physics of the SU(2)-symmetric spin-1 /2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T /J =1 /6 . The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T /J =1 /6 . The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points.

  6. Low-temperature Spin-Ice State of Quantum Heisenberg Magnets on Pyrochlore Lattice

    Science.gov (United States)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    We establish that the isotropic spin-1/2 Heisenberg antiferromagnet on pyrochlore lattice enters a spin-ice state at low, but finite, temperature. Our conclusions are based on results of the bold diagrammatic Monte Carlo simulations that demonstrate good convergence of the skeleton series down to temperature T = J/6. The ``smoking gun'' identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for static spin-spin correlation function between the quantum Heisenberg and classical Heisenberg/Ising models at all accessible temperatures. In particular, at T/J = 1/6, the momentum dependence shows a characteristic bow-tie pattern with pinch points. By numerical analytical continuation method, we also obtain the dynamic structure factor at real frequencies, showing a diffusive spinon dynamics at pinch points and spin wave continuum along the nodal lines.?

  7. Site occupancy and magnetic properties of pyrochlore-structured AgOs2O6

    Science.gov (United States)

    Shu, G. J.; Hsu, S. L.; Chu, M.-W.; Lee, C. C.; Chou, F. C.

    2012-09-01

    AgOs2O6 prepared from ion-exchanged superconducting β-pyrochlore KOs2O6 has been shown to be non-superconducting. Synchrotron x-ray structure refinement suggests that AgOs2O6 has the Ag ion mostly occupying the low-symmetry 32e site in the F d\\bar {3}m space group of proper occupancy, which is different from the original major occupancy at the high-symmetry 8b site for KOs2O6, and similar to non-superconducting Na1.4Os2O6ṡH2O. Magnetic susceptibility measurements found no magnetic ordering down to ˜1.7 K. The trace amount of isolated spins suggests that the Ag could be neutral and lead to a pure Os6+ valence state of zero spin in the newly prepared AgOs2O6.

  8. Ferroelectric studies of excessive Sm3+ containing perovskite PZT and pyrochlore biphase ceramics

    Science.gov (United States)

    Babu, T. Anil; Ramesh, K. V.; Reddy, V. Raghavendra; Sastry, D. L.

    2014-04-01

    Polycrystalline samples of Sm3+ modified Pb1-x Sm2x/3 (Zr0.6Ti0.4) O3 (PSZT) ceramics (where x = 0.1, 0.2, 0.3, 0.4) have been prepared by a high energy ball milling technique, followed by calcination at 950°C and sintering at 1150°C. As x is increased more than 0.1 mole%, considerable secondary phase has been formed. This phase has been identified as pyrochlore Sm2Ti2O7 from its X-ray diffraction (XRD) peaks. The XRD studies also indicate that the perovskte phases of the present systems undergo a dopant induced phase transformation from rhombohedral to tetragonal strucure. All the samples exhibit diffuse but non-relaxor type ferroelectric phase transition. The results of dielectric and hysteresis studies of these materials are presented.

  9. Magnetic properties of R2Mn207 pyrochlore rare-earth solid solutions

    OpenAIRE

    Imamura, N.; Karppinen, Maarit; Yamauchi, H.; Goodenough, J. B.

    2010-01-01

    Three (R,R′)2Mn2O7 ferromagnetic pyrochlore systems were studied to investigate the role of the R3+ ionic size versus 4f moment on the magnetic properties of the Mn2O7 sublattice. The Curie temperature TC=18±1 K for R=Y and Lu remained nearly constant for (Y1−xLux)2Mn2O7 but the magnetization data show characteristics of spin-glass behavior in low magnetic fields, and at 5 T, the magnetization fails to reach the expected 3 μB/Mn4+ found by 0.5 T in Tl2Mn2O7 and In2Mn2O7. A frustrated, minor a...

  10. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice.

    Science.gov (United States)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-29

    We study the low-temperature physics of the SU(2)-symmetric spin-1/2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T/J=1/6. The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T/J=1/6. The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points.

  11. Radiation effects of pyrochlore-rich synroc by heavy-ion irradiation

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Wen; XU Yong-Jun; ZHU Sheng-Yun; LUO Shang-Geng

    2005-01-01

    Heavy-ion irradiation is commonly used to study radiation damage of high level radioactive waste (HLW)forms, but S ion was never used before. In this investigation, 100 MeV 32S ions produced by tandem accelerator was used to study radiation effects on pyrochlore-rich synroc which contained simulated actinides. The amorphization and amorphous doses were determined by X-ray diffractometer (XRD) and transmission electron microscopy/select area electron diffraction (TEM/SAED). The vacancy defects induced by heavy-ion irradiation were characterized by using positron annihilation technique (PAT). The experimental results show that the amorphous dose is 0.5 dpa, the defects produced by heavy-ion irradiation are mainly voids, and irradiation could continue to intensify the vacancy defects even after the amorphous dose was reached.

  12. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    2015-01-01

    Full Text Available Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200–500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  13. NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2

    Science.gov (United States)

    Nishiyama, Masahide; Oyamada, Akira; Itou, Tetsuaki; Maegawa, Satoru; Okabe, Hirotaka; Akimitsu, Jun

    2011-09-01

    The melanothallite Cu2OCl2 is a new example of pyrochlore-like antiferromagnet, which is composed of 3d transition metal electrons. We performed Cu- and Cl-NMR experiments on powder samples of Cu2OCl2 below transition temperature TN = 70 K and we observed six resonant peaks of Cu nuclei, which are composed of three symmetric peaks corresponding to 63Cu and three corresponding to 65Cu. The Cu nuclei feel the strong hyperfine fields because of ordered magnetic moments and the electric field gradients. We determined the spin structure by analyzing the Cu-NMR spectra. The melanothallite has an all-in-all-out spin structure. The spin lattice relaxation rates T1-1 of Cu- and Cl-NMR in the ordered phase are proportional to the temperature; This suggests that although long-range ordering occurs at rather high temperature, the large spin fluctuations caused by the geometrical frustration still remain.

  14. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7

    Science.gov (United States)

    Champion, J. D. M.; Wills, A. S.; Fennell, T.; Bramwell, S. T.; Gardner, J. S.; Green, M. A.

    2001-10-01

    The rare-earth pyrochlore material Gd2Ti2O7 is considered to be an ideal model frustrated Heisenberg antiferromagnet with additional dipolar interactions. For this system there are several untested theoretical predictions of the ground state ordering pattern. Here we establish the magnetic structure of isotopically enriched 160Gd2Ti2O7, using powder neutron diffraction at a temperature of 50 mK. The magnetic structure at this temperature is a partially ordered, noncollinear antiferromagnetic structure, with propagation vector k=121212. It can be described as a set of ``q=0'' ordered kagomé planes separated by zero interstitial moments. This magnetic structure agrees with theory only in part, leaving an interesting problem for future research.

  15. Magnetic phase diagram of the antiferromagnetic pyrochlore Gd2 Ti2 O7

    Science.gov (United States)

    Petrenko, O. A.; Lees, M. R.; Balakrishnan, G.; Paul, D. Mck

    2004-07-01

    Gd2Ti2O7 is a highly frustrated antiferromagnet on a pyrochlore lattice, where apart from the Heisenberg exchange the spins also interact via dipole-dipole forces. We report on low-temperature specific heat measurements performed on single crystals of Gd2Ti2O7 for three different directions of an applied magnetic field. The measurements reveal the strongly anisotropic behavior of Gd2Ti2O7 in a magnetic field despite the apparent absence of a significant single-ion anisotropy for Gd3+ . The H-T phase diagrams are constructed for H∥[111] , H∥[110] , and H∥[112] . The results indicate that further theoretical work beyond a simple mean-field model is required.

  16. The oxygen positional parameter in pyrochlores and its dependence on disorder

    Science.gov (United States)

    Minervini, Licia; Grimes, Robin W.; Tabira, Yasunori; Withers, Ray L.; Sickafus, Kurt E.

    2002-01-01

    Atomistic simulation calculations based on energy minimization techniques have been used to predict the O positional parameter of a wide range of A2B2O7 pyrochlore oxides. Cations studied range from Lu3+ to La3+ on the A site and Ti4+ to Pb4+ on the B site. In all cases the model included a specific predicted degree of disorder without which it was not possible to reproduce experimental values accurately. However, the extent of disorder invoked was dependent on the specific A and B cations involved, with Gd2Ti2O7 exhibiting the lowest and Gd2Pb2O7 the highest degree of disorder.

  17. Adiabatic demagnetization of a pyrochlore antiferromagnet Gd 2Ti 2O 7

    Science.gov (United States)

    Sosin, S. S.; Prozorova, L. A.; Smirnov, A. I.; Golov, A. I.; Berkutov, I. B.; Petrenko, O. A.; Balakrishnan, G.; Zhitomirsky, M. E.

    2005-04-01

    An adiabatic demagnetization process is studied in the pyrochlore antiferromagnet Gd2Ti2O7. A strong cooling of the sample is observed by decreasing magnetic field in the range 120-60 kOe corresponding to a crossover between saturated and spin-liquid phases. This phenomenon indicates that a considerable part of the magnetic entropy associated with a macroscopic number of local soft modes survives in the strongly correlated paramagnetic state. Monte Carlo simulations demonstrate good agreement with the experiment. The cooling power of the process is experimentally estimated with a view to possible technical applications. The results on Gd2Ti2O7 are compared to those for Gd3Ga5O12, a related material for low-temperature magnetic cooling.

  18. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  19. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Xuhui; Lu, Peng; Wang, Liguo; Zhang, Zhaoliang; Wang, Xiuju; Wang, Zhongpeng

    2015-01-01

    Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200-500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  20. Structural and crystal chemical properties of rare-earth titanate pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, James Matthew [ORNL; Boatner, Lynn A [ORNL; Chakoumakos, Bryan C [ORNL; Du, Mao-Hua [ORNL; Lance, Michael J [ORNL; Rawn, Claudia J. [Oak Ridge National Laboratory (ORNL); Bryan, Jeff C. [University of Wisconsin

    2014-01-01

    Rare-earth titanates, RE2Ti2O7 (where RE = a rare-earth) with the pyrochlore structure continue to be investigated for use as potential stable host materials for nuclear and actinide-rich wastes. Accordingly, the present work is directed towards the elucidation of the fundamental structural, physical, and thermochemical properties of this class of compounds. Single-crystals of the rare earth pyrochlores were synthesized using a high-temperature flux technique and were subsequently characterized using single-crystal X-ray diffraction. The cubic lattice parameters display an approximately linear correlation with the RE-site cation radius. Theoretical calculations of the lattice constants and bond lengths of the subject materials were carried out using density functional theory, and the results are compared to the experimental values. The Sm and Eu titanates exhibit a covalency increase between the REO8 and TiO6 polyhedra resulting in a deviation from the increasing linear lattice parameter through the transition series. Gd2Ti2O7 with the 4f7 half-filled f-orbital Gd3+ sub-shell exhibits the lowest 48f oxygen positional parameter. The coefficient of thermal expansion for the rare-earth titanate series is approximately linear, and it has a range of 10.1 11.2 x 10-6 C-1. Raman spectroscopy indicated that the ~530 cm-1 peak associated with the Ti-O stretching mode follows a general trend of decreasing frequency with increasing RE reduced mass.

  1. Spin-glass transition in bond-disordered Heisenberg antiferromagnets coupled with local lattice distortions on a pyrochlore lattice.

    Science.gov (United States)

    Shinaoka, Hiroshi; Tomita, Yusuke; Motome, Yukitoshi

    2011-07-22

    Motivated by puzzling characteristics of spin-glass transitions widely observed in pyrochlore-based frustrated materials, we investigate the effects of coupling to local lattice distortions in a bond-disordered antiferromagnet on the pyrochlore lattice by extensive Monte Carlo simulations. We show that the spin-glass transition temperature T(f) is largely enhanced by the spin-lattice coupling and, furthermore, becomes almost independent of Δ in a wide range of the disorder strength Δ. The critical property of the spin-glass transition is indistinguishable from that of the canonical Heisenberg spin glass in the entire range of Δ. These peculiar behaviors are ascribed to a modification of the degenerate manifold from a continuous to semidiscrete one by spin-lattice coupling.

  2. Ion-beam implantation and cross-sectional TEM characterization of Gd 2Ti 2O 7 pyrochlore

    Science.gov (United States)

    Lian, Jie; Wang, L. M.; Ewing, R. C.; Boatner, L. A.

    2006-01-01

    Radiation effects in a wide range of pyrochlore compositions have been extensively investigated due to the potential application of pyrochlores as host matrices for the immobilization of actinides - particularly Pu. In this study, we have performed 1.0 MeV Kr2+ ion implantations in bulk samples of single crystal Gd2Ti2O7 at room temperature at different ion fluences of 1.875, 3.125 and 5 × 1014 ions/cm2. The microstructural evolution upon ion-beam implantation was examined by cross-sectional transmission electron microscopy (TEM). The critical amorphization dose at room temperature for 1 MeV Kr2+ implanted Gd2Ti2O7 was determined to be ∼0.143 dpa, which is significantly lower than the dose obtained by ion-irradiation under in situ TEM observation.

  3. Monte Carlo study of half-magnetization plateau and magnetic phase diagram in pyrochlore antiferromagnetic Heisenberg model

    OpenAIRE

    Motome, Yukitoshi; Penc, Karlo; Shannon, Nic

    2005-01-01

    The antiferromagnetic Heisenberg model on a pyrochlore lattice under external magnetic field is studied by classical Monte Carlo simulation. The model includes bilinear and biquadratic interactions; the latter effectively describes the coupling to lattice distortions. The magnetization process shows a half-magnetization plateau at low temperatures, accompanied with strong suppression of the magnetic susceptibility. Temperature dependence of the plateau behavior is clarified. Finite-temperatur...

  4. Saturation of impurity-rich phases in a cerium-substituted pyrochlore-rich titanate ceramic: part 1 experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F J; Ebbinghaus, B; Kirkorian, O; VanKonynenburg, R

    2000-05-25

    The saturation of impurity-rich accessory phases in a Ce-analog baseline ceramic formulation for the immobilization of excess plutonium has been tested by synthesizing an impurity-rich baseline compositions at 1300 C, 1350 C, and 1400 C in air. Impurity oxides are added at the 10 wt% level. The resulting phases assemblages are typically rich in pyrochlore, Hf-zirconolite (hafnolite), brannerite and rutile, but in many instances also contain an accessory mineral enriched in the impurity oxide. The concentration of that oxide in coexisting pyrochlore sets the saturation limit for solid solution of the component in question. In most cases, the accessory phase does not contain significant amounts of Ce, Gd or U. Exceptions are the stabilization of a Ca-lanthanide phosphate and a phosphate glass when P{sub 2}O{sub 5} is added to the formulation. P{sub 2}O{sub 5} addition is also very effective in reducing the modal amount of pyrochlore in the form relative to brannerite. Addition of the sodium-aluminosilicate, NaAlSiO{sub 4}, also results in the formation of a grain boundary melt at run conditions, but the fate of this phase on cooling is not well determined. At temperatures above 1300 C, addition of 10 wt% Fe{sub 2}O{sub 3} also leads to melting. Substitution of cations of different valences can also be associated with model-dependent changes in the oxidation state of uranium via charge transfer reactions. A set of simple components is suggested for the description of pyrochlores in both impurity-free and impurity-rich formulations.

  5. Radiation damage effects in pyrochlore and zirconolite ceramic matrices for the immobilization of actinide-rich wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, G.R.; Begg, B.D.; Smith, K.L. [Materials Div., Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)

    2000-07-01

    Actinide-doping experiments using short-lived {sup 238}Pu and {sup 244}Cm have demonstrated that pyrochlore and zirconolite become fully amorphous at a dose of 0.2-0.5 x 10{sup 16} {alpha}/mg at ambient temperature and exhibit bulk swelling of 5-7%. Detailed studies of natural samples have included determination of the critical amorphization dose, long-term annealing rate, microstructural changes as a function of dose, and the thermal histories of the host rocks. Together, the laboratory based work and studies of natural samples indicate that the critical amorphization dose will increase by about a factor of 2-4 for samples stored at temperatures of 100-200 deg. C for up to 10 million years. These studies of alpha-decay damage have been complemented by heavy ion irradiation studies over the last ten years. Most of the irradiation work has concerned the critical amorphization dose as a function of temperature in thin films; however, some work has been carried out on bulk samples. The irradiation work indicates that most pyrochlore and zirconolite compositions will have similar critical amorphization doses at low temperatures (e.g., below 300-400 deg. C). Pyrochlore with Zr as the major B-site cation transform to a defect fluorite structure with increasing ion irradiation dose, but do not become amorphous. (authors)

  6. Predictions of thermal expansion coefficients of rare-earth zirconate pyrochlores: A quasi-harmonic approximation based on stable phonon modes

    Science.gov (United States)

    Lan, Guoqiang; Ouyang, Bin; Xu, Yushuai; Song, Jun; Jiang, Yong

    2016-06-01

    Rare-earth (RE) pyrochlores are considered as promising candidate materials for the thermal barrier coating. In this study, we performed first-principles calculations, augmented by quasi-harmonic phonon calculations, to investigate the thermal expansion behaviors of several RE2Zr2O7 (RE = La, Nd, Sm, Gd) pyrochlores. Our findings show that RE2Zr2O7 pyrochlores exhibit low-lying optical phonon frequencies that correspond to RE-cation rattling vibrational modes. These frequencies become imaginary upon volume expansion, preventing correct determination of the free energy versus volume relation and thereby quantification of thermal expansion using QH phonon calculations. To address this challenge, we proposed a QH approximation approach based on stable phonon modes where the RE-cation rattling modes were systematically eliminated. This approach is shown to provide accurate predictions of the coefficients of thermal expansion (CTEs) of RE2Zr2O7 pyrochlores, in good agreement with experimental measurements and data from first-principles molecular dynamics simulations. In addition, we showed that the QH Debye model considerably overestimates the magnitudes and wrongly predicts the trend for the CTEs of RE2Zr2O7 pyrochlores.

  7. A spin-liquid with pinch-line singularities on the pyrochlore lattice

    Science.gov (United States)

    Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic

    2016-01-01

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400

  8. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal

    2015-10-27

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin-film material synthesis revealed that a non-stoichiometric Bi2−xTi2O7−1.5x structure with an x value of ∼0.25 is the primary product, consistent with the thermodynamic stability of the defect-containing structure computed using density functional theory (DFT). The approach of density functional perturbation theory (DFPT) was used along with the standard GGA PBE functional and the screened Coulomb hybrid HSE06 functional, including spin–orbit coupling, to investigate the electronic structure, the effective electron and hole masses, the dielectric constant, and the absorption coefficient. The calculated values for these properties are in excellent agreement with the measured values, corroborating the overall analysis. This study indicates potential applications of bismuth titanate as a wide-bandgap material, e.g., as a substitute for TiO2 in dye-sensitized solar cells and UV-light-driven photocatalysis.

  9. Evaluation of pulmonary function and respiratory symptoms in pyrochlore mine workers

    Science.gov (United States)

    Borges, Ritta de Cássia Canedo Oliveira; Barros, José Cerqueira; Oliveira, Fabrício Borges; Brunherotti, Marisa Andrade; Quemelo, Paulo Roberto Veiga

    2016-01-01

    ABSTRACT Objective: To identify respiratory symptoms and evaluate lung function in mine workers. Methods: This was a cross-sectional observational study involving production sector workers of a pyrochlore mining company. The subjects completed the British Medical Research Council questionnaire, which is designed to evaluate respiratory symptoms, occupational exposure factors, and smoking status. In addition, they underwent pulmonary function tests with a portable spirometer. Results: The study involved 147 workers (all male). The mean age was 41.37 ± 8.71 years, and the mean duration of occupational exposure was 12.26 ± 7.09 years. We found that 33 (22.44%) of the workers had respiratory symptoms and that 26 (17.69%) showed abnormalities in the spirometry results. However, we found that the spirometry results did not correlate significantly with the presence of respiratory symptoms or with the duration of occupational exposure. Conclusions: The frequencies of respiratory symptoms and spirometric changes were low when compared with those reported in other studies involving occupational exposure to dust. No significant associations were observed between respiratory symptoms and spirometry results. PMID:27832236

  10. Synthesis and characterization of pyrochlore-type yttrium titanate nanoparticles by modified sol–gel method

    Indian Academy of Sciences (India)

    Z S Chen; W P Gong; T F Chen; S L Li

    2011-06-01

    Pyrochlore-type yttrium titanate (Y2Ti2O7) nanoparticles were successfully synthesized by a simple soft-chemistry technique viz. citric acid sol–gel method (CAM). The preparation process was monitored by X-ray diffraction, thermogravimetric–differential thermal analysis and Fourier transform–infrared experiments and the microstructures and average size of as-prepared products were characterized by transmission electron microscopy and high resolution transmission electron microscopy images. It was found that compared with traditional solid state reaction (SSR), Y2Ti2O7 nanopowders were synthesized at a relatively low temperature (750°C) for shortened reaction time. Detailed analysis showed that the as-prepared Y2Ti2O7 with good dispersibility and narrow size distribution were quasi-spherical; the average size was about 20–30 nm, also, the obtained products had higher BET surface area (50 m2/g). These properties are very helpful for a photocatalyst to achieve excellent activity and may result in better behaviour in hydrogen storage.

  11. Ferroelectric studies of excessive Sm{sup 3+} containing perovskite PZT and pyrochlore biphase ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Babu, T. Anil; Sastry, D. L., E-mail: dl-sastry@yahoo.com [Physics Department, Andhra University, Visakhapatnam - 530 003, AP (India); Ramesh, K. V. [Department of Engineering Physics, GITAM University, Visakhapatnam - 530 045, AP (India); Reddy, V. Raghavendra [UGC-DAE Consortium for Scientific Research, University Campus, Indore-452017, MP (India)

    2014-04-24

    Polycrystalline samples of Sm{sup 3+} modified Pb{sub 1−x} Sm{sub 2x/3} (Zr{sub 0.6}Ti{sub 0.4}) O{sub 3} (PSZT) ceramics (where x = 0.1, 0.2, 0.3, 0.4) have been prepared by a high energy ball milling technique, followed by calcination at 950°C and sintering at 1150°C. As x is increased more than 0.1 mole%, considerable secondary phase has been formed. This phase has been identified as pyrochlore Sm{sub 2}Ti{sub 2}O{sub 7} from its X-ray diffraction (XRD) peaks. The XRD studies also indicate that the perovskte phases of the present systems undergo a dopant induced phase transformation from rhombohedral to tetragonal strucure. All the samples exhibit diffuse but non-relaxor type ferroelectric phase transition. The results of dielectric and hysteresis studies of these materials are presented.

  12. Potassium Disorder in the Defect Pyrochlore KSbTeO6: A Neutron Diffraction Study

    Directory of Open Access Journals (Sweden)

    José Antonio Alonso

    2017-01-01

    Full Text Available KSbTeO6 defect pyrochlore has been prepared from K2C2O4, Sb2O3, and 15% excess TeO2 by solid-state reaction at 850 °C. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD and neutron powder diffraction (NPD data, which unveiled additional structural features. KSbTeO6 is cubic, a = 10.1226(7 Å, space group F d 3 ¯ m , Z = 8 and it is made of a mainly covalent framework of corner-sharing (Sb,TeO6 octahedra, with weakly bonded K+ ions located within large cages. The large K-O distances, 3.05(3–3.07(3 Å, and quite large anisotropic atomic displacement parameters account for the easiness of K+ exchange for other cations of technological importance.

  13. Magnetocaloric effect in pyrochlore antiferromagnet Gd2 Ti2 O7

    Science.gov (United States)

    Sosin, S. S.; Prozorova, L. A.; Smirnov, A. I.; Golov, A. I.; Berkutov, I. B.; Petrenko, O. A.; Balakrishnan, G.; Zhitomirsky, M. E.

    2005-03-01

    An adiabatic demagnetization process is studied in Gd2Ti2O7 , a geometrically frustrated antiferromagnet on a pyrochlore lattice. In contrast to conventional paramagnetic salts, this compound can exhibit a temperature decrease by a factor of 10 in the temperature range below the Curie-Weiss constant. The most efficient cooling is observed in the field interval between 120 and 60kOe corresponding to a crossover between saturated and spin-liquid phases. This phenomenon indicates that a considerable part of the magnetic entropy survives in the strongly correlated state. According to the theoretical model, this entropy is associated with a macroscopic number of local modes remaining gapless until the saturation field. Monte Carlo simulations on a classical spin model demonstrate good agreement with the experiment. The cooling power of the process is experimentally estimated with a view to possible technical applications. The results for Gd2Ti2O7 are compared to those for Gd3Ga5O12 , a well-known material for low temperature magnetic refrigeration.

  14. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets.

    Science.gov (United States)

    Gingras, M J P; McClarty, P A

    2014-05-01

    The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.

  15. Spin-liquid behavior and weak static magnetism in pyrochlore Pr2Ir2O7

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, R H [Los Alamos National Laboratory; Maclaughlin, D E [NON LANL; Nakatsuji, S [NON LANL; Machida, Y [NON LANL

    2008-01-01

    Muon spin relaxation experiments have been performed in powder samples of the pyrochlore iridate Pr{sub 2}Ir{sub 2}O{sub 7} for temperatures in the range 0.02-250 K. Two-component muon spin relaxation functions are observed up to {approx}> 150 K, indicating static magnetism with a freezing temperature T{sub f} of this value or higher. The static muon spin relaxation rate {Delta}. suggests weak-moment freezing ({approx} 10{sup -1} {micro}{sub B} at T = 0), probably due to Ir{sup 4+} spin ordering as in isostructural Y{sub 2}Ir{sub 2}O{sub 7}. The temperature dependence of {Delta} is highly unusual, decreasing smoothly by orders of magnitude but remaining nonzero for T < T{sub f}. The smoothness of {Delta}(T) suggests that Pr{sup 3+} moments do not order down to 0.025 K. The dynamic relaxation rate {Lambda} increases markedly below {approx}20 K, indicating a shift of spin fluctuation noise power to low frequencies in the spin-liquid state. At low temperatures {Lambda} is strong and temperature-independent, indicative of numerous low-lying spin excitations as is common in frustrated antiferromagnets.

  16. Quadrupole order in the frustrated pyrochlore magnet Tb2Ti2O7

    Science.gov (United States)

    Takatsu, H.; Taniguchi, T.; Kittaka, S.; Sakakibara, T.; Kadowaki, H.

    2016-02-01

    We have studied the hidden long-range order (LRO) of the frustrated pyrochlore magnet Tb2Ti2O7 by means of specific-heat experiments and Monte-Carlo (MC) simulations, which has been discussed as the LRO of quadrupole moments inherent to the non-Kramers ion of Tb3+. We have found that the sharp specific-heat peak is collapsed into a broad hump by magnetic fields above 0.3 T for H//[001]. This result, qualitatively reproduced by MC simulations, suggests that a field-induced magnetic state overcomes the quadrupolar LRO state, as a similar case of a classical spin ice. The present results support the interpretation that Tb2+xTi2-xO7+y is a unique material in the boundary between the quadrupolar (x ⩾ xc = - 0.0025) and spin-liquid (x ⩽ xc) states, where the magnetic field along the [001] axis is a tuning parameter which induces the magnetic ordered state.

  17. Phase Stability and Pressure Dependence of Defect Formation in Gd2Ti2O7 and Gd2Zr2O7 Pyrochlores

    Science.gov (United States)

    Zhang, F. X.; Wang, J. W.; Lian, J.; Lang, M. K.; Becker, U.; Ewing, R. C.

    2008-02-01

    We report dramatically different behaviors between isostructural Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at pressures up to 44 GPa, in which the substitution of Ti for Zr significantly increases structural stability. Upon release of pressure, the Gd2Ti2O7 becomes amorphous. In contrast, the high-pressure phase of Gd2Zr2O7 transforms to a disordered defect-fluorite structure. First-principle calculations for both compositions revealed that the response of pyrochlore to high pressure is controlled by the intrinsic energetics of defect formation.

  18. Phase Stability and Pressure Dependence of Defect Formation in Gd2Ti2O7 and Gd2Zr2O7 Pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,F.; Wang, J.; Lian, J.; Lang, M.; Becker, U.; Ewing, R.

    2008-01-01

    We report dramatically different behaviors between isostructural Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at pressures up to 44 GPa, in which the substitution of Ti for Zr significantly increases structural stability. Upon release of pressure, the Gd2Ti2O7 becomes amorphous. In contrast, the high-pressure phase of Gd2Zr2O7 transforms to a disordered defect-fluorite structure. First-principle calculations for both compositions revealed that the response of pyrochlore to high pressure is controlled by the intrinsic energetics of defect formation.

  19. Electron spin resonance study of the single-ion anisotropy in the pyrochlore antiferromagnet Gd2Sn2O7

    Science.gov (United States)

    Glazkov, V. N.; Smirnov, A. I.; Sanchez, J. P.; Forget, A.; Colson, D.; Bonville, P.

    2006-02-01

    Single-ion anisotropy is of importance for the magnetic ordering of the frustrated pyrochlore antiferromagnets Gd2Ti2O7 and Gd2Sn2O7. The anisotropy parameters for Gd2Sn2O7 were measured using the electron spin resonance technique. The anisotropy was found to be of the easy plane type, with the main constant D = 140 mK. This value is 35% smaller than the value of the corresponding anisotropy constant of the related compound Gd2Ti2O7.

  20. Thermochemical investigations of zirconolite, pyrochlore and brannerite: Three materials relevant to issues of plutonium immobilization

    Science.gov (United States)

    Helean, Katheryn Bridget

    For the purpose of immobilizing plutonium, a crystalline ceramic waste form is being developed that can be described as a pseudo-quaternary system consisting of CaHfTi2O7- CaPuTi2O7- CaUTi2O7- GdTi2O7. High-temperature oxide melt solution calorimetry offers an effective methodology for the determination of enthalpies of formation of rare earth-bearing and other refractory oxides relevant to the proposed waste form. Calorimetric investigations of the waste form end-member phases (using Ce as a Pu analogue) plus brannerite, the major waste form impurity, were conducted using 3Na2O•4MoO3 solvent at 975 K. Standard enthalpies of formation, DeltaH°f (kJ/mol), were derived for three pyrochlore phases: Ca0.93Ce1.00Ti 2.035O7.00 (-3656.0 +/- 5.6), Ca1.46U 4+0.23U6+0.46Ti1.85O 7.00 (-3610.6 +/- 4.1) and Gd2Ti2O 7 (-3822.5 +/- 4.9). Enthalpies of formation with respect to an oxide phase assemblage, DeltaH°f-ox: CaO+MO2+2TiO2=CaMTi2O7 or Gd 2O3+2TiO2=Gd2Ti2O7 , and an oxide/perovskite phase assemblage, DeltaH° f-pv+ox: CaTiO3+MO2+TiO2=CaMTi 2O7, M = Ce, U were also calculated. DeltaH° f-ox (kJ/mol): Gd2Ti2O7 (-113.4 +/- 2.8); Ca1.46U4+0.23U 6+0.46Ti1.85O7.00 (-123.1 +/- 3.4); Ca0.93Ce1.00Ti2.035O7.00 (-54.1 +/- 5.2). DeltaH°f-pv+ox (kJ/mol): Ca1.46U4+0.23U6+ 0.46Ti1.85O7.00 (-5.1 +/- 4.0); Ca 0.93Ce1.00Ti2.035O7.00 (+21.0 +/- 5.5). A significant metastability field was defined with respect to an oxide/perovskite phase assemblage. DeltaH°f (kJ/mol) were derived for two zirconolite phases: CaZr1.03Ti1.97O7 (-3719.4 +/- 3.9) and CaHf1.02Ti1.98O 7 (-3720.5 +/- 3.9). DeltaH° f-ox (kJ/mol): CaZr1.03Ti1.97O7 (-89.6 +/- 2.8); CaHf1.02Ti1.98O7 (-74.8 +/- 3.1). CaZr1.03Ti1.97O7 was stable with respect to a perovskite plus oxides assemblage (DeltaH° f-pv+ox = -8.8 +/- 3.3 kJ/mol). CaHf1.02Ti 1.98O7 was marginally metastable in enthalpy (Delta H°f-pv+ox = +6.0 +/- 3.5 kJ/mol). DeltaH°f (kJ/mol) were derived for three brannerites: CeTi2O6 (-2948.8 +/- 4.3); U0.97Ti2.03O6

  1. Structural study and electrical properties of Zr-doped Nd2Sn2O7 pyrochlore compounds

    Indian Academy of Sciences (India)

    Y D Kolekar; S B Kulkarni; Keka Chakraborty; A Das; S K Paranjpe; P B Joshi

    2004-08-01

    Nd2Sn2O7 pyrochlores with the substitution of Zr4+ were prepared by conventional ceramic double sintering technique. The single-phase formation was confirmed by X-ray diffraction and neutron diffraction techniques. Relative intensity calculations for X-ray diffraction analysis were performed for oxygen positional parameters = 0.331 and 0.375, while Rietveld refinements were employed for neutron diffraction data. The neutron diffraction study revealed that there are only two anion sites with 48f and 8b positions. This indicates that the 8a site, i.e. O(3) sublattice, is completely vacant and the structure is a perfect cubic pyrochlore with space group Fd3m (O$_{h}^{7}$). From the conductivity measurements, it is observed that the electronic conductivity dominates from room temperature up to about 525 K and for T > 525 K, the oxygen ion conduction dominates the charge transport in these compositions. Complex impedance spectroscopy indicates the existence of grain and grain boundary as two separate elements.

  2. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    Science.gov (United States)

    Alam, J.; Jana, Y. M.; Biswas, A. Ali

    2016-10-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr2Zr2O7 are simulated and analyzed using appropriate D3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3H4 multiplet of the Pr3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr3+ ion in Pr2Zr2O7 is a well-isolated doublet, with significant admixtures of terms coming from |MJ=±4> and |MJ=±1>, and the Pr-spins are effectively Ising-like along the local axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet.

  3. Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln=La, Nd and Sm).

    Science.gov (United States)

    Wang, Zhongpeng; Zhu, Hongjian; Ai, Lijie; Liu, Xuhui; Lv, Min; Wang, Liguo; Ma, Zhenmin; Zhang, Zhaoliang

    2016-09-15

    Catalytic combustion is one of the most promising methods for diesel soot removal. Ln2Sn2O7 pyrochlores substituted with different rare-earth (RE) elements (Ln=La, Nd and Sm) were prepared through co-precipitation method for catalytic combustion of soot particulates. The structural, textural and redox properties, together with the oxygen vacancy of the catalysts were investigated systematically. Their catalytic activities were evaluated by both temperature-programmed oxidation and isothermal reaction techniques. With the increasing in RE ionic radius (r), the SnO bond strength in Ln2Sn2O7 pyrochlores evaluated from the stretching IR band was decreased, resulting in the improved reducibility and enhanced oxygen vacancies of catalysts. The increase of oxygen vacancy concentration was further confirmed by photoluminescence (PL) investigations wherein upon excitation with UV radiation, the pyrochlores nanoparticles exhibited strong and sharp transition at 408nm attributed to oxygen vacancies. Catalytic combustion and isothermal reactions revealed that the ignition activity (ignition temperature, T5) and the intrinsic activity (turnover frequency, TOF) were shown to depend correlatedly on redox properties and oxygen vacancy concentrations, both of which were influenced by the substitution of different RE elements. Among the pyrochlore oxides, the as-synthesized La2Sn2O7 sample displayed relatively the highest ignition activity and the largest intrinsic activity with TOF of 2.33×10(-3)s(-1).

  4. Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores

    Science.gov (United States)

    Applegate, Ryan

    This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC

  5. Competing orders and topology in the global phase diagram of pyrochlore iridates

    Science.gov (United States)

    Goswami, Pallab; Roy, Bitan; Das Sarma, Sankar

    2017-02-01

    Strong electronic interactions and spin-orbit coupling can be conducive for realizing novel broken symmetry phases supporting quasiparticles with nontrivial band topology. 227 pyrochlore iridates provide a suitable material platform for studying such emergent phenomena where both topology and competing orders play important roles. In contrast to the most members of this material class, which are thought to display "all-in-all-out" (AIAO) type magnetically ordered low-temperature insulating ground states, Pr2Ir2O7 remains metallic while exhibiting "spin-ice" (SI) correlations at low temperatures. Additionally, this is the only 227 iridate compound, which exhibits a large anomalous Hall effect (AHE) along the [1,1,1] direction below 1.5 K, without possessing any measurable magnetic moment. By focusing on the normal state of 227 iridates, described by a parabolic semimetal with quadratic band touching, we use renormalization group analysis, mean-field theory, and phenomenological Landau theory as three complementary methods to construct a global phase diagram in the presence of generic local interactions among itinerant electrons of Ir ions. While the global phase diagram supports several competing multipolar orders, motivated by the phenomenology of 227 iridates we particularly emphasize the competition between AIAO and SI orders and how it can cause a mixed phase with "three-in-one-out" (3I1O) spin configurations. In terms of topological properties of Weyl quasiparticles of the 3I1O state, we provide an explanation for the magnitude and the direction of the observed AHE in Pr2Ir2O7 . We propose a strain-induced enhancement of the onset temperature for AHE in thin films of Pr2Ir2O7 and additional experiments for studying competing orders in the vicinity of the metal-insulator transition. In addition to providing a theory for competing orders and magnetic properties of Pr2Ir2O7 , the theoretical framework developed in this work should also be useful for a better

  6. Effect of excess Mg and Excess Nb incorporation into the B-site of pyrochlore in the Pb-Mg-Nb-O system

    Directory of Open Access Journals (Sweden)

    Mergen, A.

    2002-12-01

    Full Text Available In the Pb-Mg-Nb-O system, excess Mg and excess Nb incorporation into the B-site of PMN pyrochlore were investigated along the compositons of Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x where x=0.1, 0.2, 0.3, 0.4, 0.522 and Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x where x=0.1, 0.2, 0.29 respectively. Excess Mg incorporation led to the formation of perovskite and excess Nb resulted in formation of Pb2Nb2O7 monoclinic pyrochlore. The densities of the PMN pyrochlore-PMN perovskite mixtures decreased with an increase in Mg concentration. The relative permittivity of the mixtures increased with decreasing pyrochlore content. The effect of pyrochlore on the permittivity follows the Weiner’s mixture rule up to a pyrochlore content of 50 vol%.

    Se investigó la incorporación en lugares B de pirocloro PMN de un exceso de Mg y un exceso de Nb. En el sistema Pb-Mg-Nb-O2 las composiciones analizadas fueron Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x donde x=0.1, 0.2, 0.3, 0.4, 0.522 y en Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x donde x= 0.1, 0.2,0.29. El exceso de Mg condujo a la formación de perovskita y el exceso de Nb resultó en la formación del pirocloro monolínico, Pb2Nb2O7. La densidad de la mezcla de PMN pirocloro-perovskita dismunuye con el aumento de la concentración de Mg. La permitividad dieléctrica de las mezclas aumenta con la disminución del contenido de pirocloro. El efecto del pirocloro sobre la permitividad sigue la regla de mezclas de Weiner hasta conenidos de pirocloro del 50%.

  7. Anomalous pressure dependence of the superconducting transition temperature of beta-pyrochlore AOs2O6 oxides.

    Science.gov (United States)

    Muramatsu, T; Takeshita, N; Terakura, C; Takagi, H; Tokura, Y; Yonezawa, S; Muraoka, Y; Hiroi, Z

    2005-10-14

    High-pressure effects on the superconducting transitions of beta-pyrochlore oxide superconductors AOs(2)O(6) (A = Cs,Rb,K) are studied by measuring resistivity under high pressures up to 10 GPa. The superconducting transition temperature T(c) first increases with increasing pressure in every compound and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa), and 10 K (0.6 GPa) for A = Cs, Rb, and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 GPa and 6 GPa for A = Rb and K and probably above 10 GPa for A = Cs. Characteristic changes in the coefficient A of the T(2) term in resistivity and residual resistivity are observed, both of which are synchronized with the corresponding change in T(c).

  8. Color ice states, weathervane modes, and order by disorder in the bilinear-biquadratic pyrochlore Heisenberg antiferromagnet

    Science.gov (United States)

    Wan, Yuan; Gingras, Michel J. P.

    2016-11-01

    We study the pyrochlore Heisenberg antiferromagnet with additional positive biquadratic interaction in the semiclassical limit. The classical ground-state manifold of the model contains an extensively large family of noncoplanar spin states known as "color ice states." Starting from a color ice state, a subset of spins may rotate collectively at no energy cost. Such excitation may be viewed in this three-dimensional system as a "membranelike" analog of the well-known weathervane modes in the classical kagome Heisenberg antiferromagnet. We investigate the weathervane modes in detail and elucidate their physical properties. Furthermore, we study the order by disorder phenomenon in this model, focusing on the role of harmonic fluctuations. Our computationally limited phase space search suggests that quantum fluctuations select three different states as the magnitude of the biquadratic interaction increases relative to the bilinear interaction, implying a sequence of phase transitions solely driven by fluctuations.

  9. Chemical pressure effect in magnetic frustrated pyrochlore Nd2Pb2O7: A crystal-field analysis

    Science.gov (United States)

    Swarnakar, Debasish; Jana, Yatramohan; Alam, Jahangir; Nandi, Saikat

    2017-09-01

    Variation of chemical pressure at R-site due to substitution of nonmagnetic cation of varying size at the M-site makes a fine tuning between the crystal-field and molecular field to adopt exotic ground states in the frustrated magnetic R2M2O7 pyrochlore structures. Presence of larger cation at M-site increases the lattice parameter or nearest-neighbor bond distance between magnetic R-spins, and causes subtle changes to the local oxygen environment surrounding each R-ion, thereby reduces the chemical pressure at R-sites which leads to a dramatic change in the crystal-field and molecular field at R-site. To explore the effect of chemical pressure, the experimental results of powder magnetic susceptibility and isothermal magnetization of a geometrically frustrated compound, Nd2Pb2O7 containing largest cation, e.g. lead (Pb), at M4+-sites are simulated and analyzed employing a D3d crystal-field (CF) and anisotropic molecular field at R-sites in the self-consistent mean-field approach. The second-ordered axial parameter B20 and total CF splitting of the ground multiplet 4I9/2 of Nd3+-ions became the lowest among the isomorphic Nd-pyrochlore compounds, implying reduced effect of the crystal-field at Nd sites. Nd2Pb2O7 has strong [111] Ising anisotropy. Relative strength and values of the exchange tensor among nearest-neighbor Nd3+-spins in Nd2Pb2O7 and Nd2Zr2O7 result in a very close competition of anti-ferromagnetic and ferromagnetic interactions.

  10. Dissolution Kinetics of Titanium Pyrochlore Ceramics at 90?C by Single-Pass Flow-Through Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Icenhower, Jonathan P.; McGrail, B. Peter; Schaef, Herbert T.; Cordova, Elsa A.

    2000-12-01

    Corrosion resistances of titanium-based ceramics are quantified using single-pass flow-through (SPFT) experiments. The materials tested include simple pyrochlore group (B2Ti2O7, where B=Lu^3+ or Gd^3+) and complex multiphase materials that are either pyrochlore- (PY12) or zirconolite-dominated (BSL3). Experiments are conducted at 90?C over a range of pH-buffered conditions with typical duration of experiments in excess of 120 days. Apparent steady-state dissolution rates at pH=2 determined on the Gd2Ti2O7 and Lu2Ti2O7 samples indicate congruent dissolution, with rates of the former (1.3x10^-3 to 4.3x10^-3) slightly faster than the latter (4.4x10^-4 to 7.0x10^-4 g m^-2 d^-1). Rates for PY12 materials into pH=2 solutions are 5.9x10^-5 to 8.6x10^-5 g m^-2 d^-1. In contrast, experiments with BSL3 material do not reach steady-state conditions, and appear to undergo rapid physical and chemical corrosion into solution. At faster flow-through rates, dissolution rates display a shallow amphoteric behavior, with a minimum (4.6x10^-5 to 5.8x10^-5 g m^-2 d^-1) near pH values of 7. Dissolution rates display a measurable increase (~10X) with increasing flow-through rate indicating the strong influence that chemical affinity asserts on the system. These results step towards an evaluation of the corrosion mechanism and an evaluation of the long-term performance of Pu-bearing titanite engineered materials in the subsurface.

  11. Experimental Determination of Dissolution Kinetics of Zr-Substituted Gd-Ti Pyrochlore Ceramics: Influence of Chemistry on Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Icenhower, Jonathan P.; Weber, William J.; Hess, Nancy J.; Thevuthasan, Suntharampillai; Begg, Bruce D.; McGrail, B. Peter; Cordova, Elsa A.; Steele, Jackie L.; Geiszler, Keith N.

    2003-08-20

    The corrosion resistance of a series of zirconium-substituted gadolinium pyrochlore, Gd2(Ti1-x, Zrx)2O7, where x = 0.0, 0.25, 0.50, 0.75, and 1.00, were evaluated using single-pass flow-through (SPFT) apparatus at 90ºC and pH = 2. The zirconate end-member, Gd2Zr2O7, has a defect fluorite structure, which distinguishes it from the face-centered cubic structure of the true pyrochlore specimens. In addition to the chemical variation, the samples include annealed, un-annealed, and ion-bombarded monoliths. In the case of the titanate end-member, Gd2Ti2O7, the annealed specimen exhibited the least reactivity, followed by the un-annealed and ion-bombarded samples (2.39x10-3, 1.57x10-2, and 1.12x10-1 g m-2 d-1, respectively). With increasing zirconium content, the samples displayed less sensitivity to processing or surface modification with the zirconate end-member exhibiting no difference in reactivity between annealed, un-annealed, and ion-bombarded specimens (rate = 4.0x10-3 g m-2 d-1). In all cases, the dissolution rate decreased with increasing zirconium content to the Gd2(Ti0.25Zr0.75)2O7 composition (1.33x10-4 g m-2 d-1), but the zirconate end-member yielded rates nearly equal to that of the titanate end-member. These results demonstrate that to achieve the greatest radiation and corrosion resistance in this series, the Gd2(Ti0.25Zr0.75)2O7 composition should be considered.

  12. Processing-thermal conductivity relationships in MGO-pyrochlore composite inert matrix materials

    Science.gov (United States)

    Yates, Samantha J.

    2009-12-01

    Inert matrix (IM) materials are proposed to act as non-fertile matrices to burn excess plutonium and minor actinides in nuclear reactors. MgO is a good IM candidate because of its high thermal conductivity, good radiation resistance, and high temperature stability, but its hot water corrosion resistance is poor limiting its use in light water reactors. A composite approach has been suggested to improve the hydration resistance of the MgO by adding a pyrochlore phase to act as a hydration barrier while maximizing the effective thermal conductivity of the composite. In this work, MgO-Nd 2Zr2O7 composites are fabricated using four different processing methods to deliberately vary the microstructure thus enabling the investigation of processing-microstructure-thermal conductivity relationships in the composites. The first processing-microstructure-property relationship that is developed is the effect of the composite processing method on the sample-to-sample variation in the thermal diffusivity. The processing method affects the formation of agglomerates in the mixed composite powders, and these agglomerates are the source of MgO and Nd2Zr2O7 heterogeneities in the sintered composites. Differential sintering occurs in some of the agglomerates, resulting in the formation of circumferential cracks between the heterogeneity and the matrix. The presence of the circumferential cracks cause sample-to-sample variations of up to +/- 2 Wm-1K-1 in the thermal conductivity between composites fabricated from the same batch of mixed composite powder. This variation makes it more difficult to accurately and reliably predict the thermal conductivity of the composites. The second processing-microstructure-property relationship developed describes the effect of the contiguity of the MgO on the average thermal conductivity of the composites. The processing method is found to affect the contiguity of the MgO in the composites. Lower MgO contiguity values cause the average thermal

  13. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, P.

    2017-04-15

    on Ir nucleus have been determined for these compounds. In order to broaden the perspectives of NRS with the 73 keV resonance the first room temperature NRS on iridium metal is carried out. The results demonstrate NRS as a powerful research tool for the studies of iridium physics due to the high energy of the resonant photons and the high natural abundance of the {sup 193}Ir isotope under study, paving the way for studies of magnetism and electronic properties under extreme conditions. The second part of this work is dedicated to vibrational spectroscopy with Nuclear Inelastic Scattering (NIS). A sapphire backscattering monochromator was designed, installed and tested at the beamline. It provides high energy resolution due to the sub-mK temperature control, though the resolution is limited from theoretically proposed sub-meV to meV by the quality of currently available sapphire crystals. With this device the energy resolution of 1.3(1) meV at 23.88 keV and of 3.2(4) meV at 37.13 keV was achieved. Following this development, the vibrational spectra of antimony in defect pyrochlore Ag-Sb-O compounds have been measured by means of NIS at 37.13 keV. Density of phonon states for the Sb(III) and for the Sb(V) site has been unambiguously revealed. The difference in site-specific antimony modes illustrates the importance of lattice dynamics for the engineering of these compounds.

  14. First-principles study of energetic and electronic properties of A2Ti2O7 (A=Sm, Gd, Er) pyrochlore

    Science.gov (United States)

    Xiao, H. Y.; Zu, X. T.; Gao, Fei; Weber, W. J.

    2008-10-01

    First-principles calculations have been carried out to study the electronic properties of A2Ti2O7 (A =Sm, Gd, Er) pyrochlores. It was found that f electrons have negligible effect on the structural and energetic properties, but have significant effect on the electronic properties. Density of state analysis shows that A-site 4f electrons do take part in the chemical bonding. Also, we found that ⟨Gd-O48f⟩ bond is less covalent than ⟨Sm-O48f⟩ and ⟨Er-O48f⟩ bonds, while ⟨Ti-O48f⟩ bond in Gd2Ti2O7 is more covalent. It was proposed that for A2Ti2O7 (A =Sm, Gd, Er) pyrochlores, ⟨Ti-O48f⟩ bonds may play more significant role in determining their radiation resistance to amorphization.

  15. First-principles study of energetic and electronic properties of A2Ti2O7 (A=Sm, Gd, Er) pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H. Y.; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2008-10-01

    First-principles calculations have been carried out to study the electronic properties of A2Ti2O7 (A=Sm, Gd, Er) pyrochlores. It was found that f electrons have negligible effect on the structural and energetic properties, but have significant effect on the electronic properties. Density of state analysis shows that A-site 4f electrons do take part in the chemical bonding. Also, we found that bond is less covalent than and bonds, while bond in Gd2Ti2O7 is more covalent. It was proposed that for A2Ti2O7 (A = Sm, Gd, Er) pyrochlores, bonds may play more significant role in determining their radiation resistance to amorphization.

  16. High-pressure Raman and x-ray study of the spin-frustrated pyrochlore Gd2Ti2O7

    Science.gov (United States)

    Saha, Surajit; Muthu, D. V. S.; Pascanut, C.; Dragoe, N.; Suryanarayanan, R.; Dhalenne, G.; Revcolevschi, A.; Karmakar, Sukanta; Sharma, Surinder M.; Sood, A. K.

    2006-08-01

    Pressure-dependent Raman and x-ray diffraction studies of spin-frustrated pyrochlore Gd2Ti2O7 have been carried out at room temperature up to ˜25GPa and 34GPa , respectively. A subtle distortion of the lattice at about 9GPa is evidenced by Raman spectroscopy. X-ray results corroborate the distortion of the pyrochlore lattice at about the same pressure. Shell model lattice dynamical calculations were carried out in order to establish and understand the pressure dependence of Raman phonon frequencies. Our data may be relevant to the recent findings by Mirebeau [Nature 420, 54 (2002)] who observed magnetic correlations under high pressure in Tb2Ti2O7 , a frustrated spin-liquid system.

  17. NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7: novel single crystal pyrochlore antiferromagnets

    Science.gov (United States)

    Sanders, M. B.; Krizan, J. W.; Plumb, K. W.; McQueen, T. M.; Cava, R. J.

    2017-02-01

    The crystal structures and magnetic properties of three previously unreported A2B2F7 pyrochlore materials, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7 are presented. In these compounds, either S  =  2Fe2+ or S  =  5/2Mn2+ is on the B site, while nonmagnetic Na and Ca (Na and Sr) are disordered on the A site. The materials, which were grown as crystals via the floating zone method, display high effective magnetic moments and large Curie-Weiss thetas. Despite these characteristics, no ordering transition is detected. However, freezing of the magnetic spins, characterized by peaks in the susceptibility or specific heat, is observed at very low temperatures. The empirical frustration index, f  =  -θ CW/T f, for the materials are 36 (NaSrMn2F7), 27 (NaSrFe2F7), and 19 (NaCaFe2F7). AC susceptibility, DC susceptibility, and heat capacity measurements are used to characterize the observed spin glass behavior. The results suggest that the compounds are frustrated pyrochlore antiferromagnets with weak bond disorder. The magnetic phenomena that these fluoride pyrochlores exhibit, in addition to their availability as relatively large single crystals, make them promising candidates for the study of geometric magnetic frustration.

  18. Epitaxial crystals of Bi2Pt2O7 pyrochlore through the transformation of δ–Bi2O3 fluorite

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez–Llorente

    2015-03-01

    Full Text Available Bi2Pt2O7 pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of Bi2Pt2O7 has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt4+. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial δ–Bi2O3 and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of Bi2Pt2O7. We also visualized the pyrochlore structure by scanning transmission electron microscopy, and observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the δ–Bi2O3 and Bi2Pt2O7 structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial Bi2Pt2O7.

  19. Tetramer spin singlet instability in the fluorine-substituted pyrochlore superconducting system Cd2Re2O7-x F x.

    Science.gov (United States)

    Haraguchi, Yuya; Michioka, Chishiro; Ueda, Hiroaki; Yoshimura, Kazuyoshi

    2016-09-01

    We synthesized polycrystalline samples of the fluorine-substituted pyrochlore rhenates Cd2Re2O7-x F x , and investigated their magnetic, transport and structural properties. The transition temperature T s1, where each Re4 tetrahedron in the Re pyrochlore network alternately expands and contracts, decreases with increasing x from 200 K at x  =  0 to 100 K at x  =  0.5. The strong x dependence of the magnetic and transport properties at the low-temperature phase indicates that the driving force of structural phase transition is fluctuations of the tetramer spin singlet formation in order to release the spin frustration in the pyrochlore lattice. Furthermore, we found unconventional superconducting properties in Cd2Re2O7-x F x . It was found that the superconducting phase transition temperature T c markedly decreases with increasing x, suggesting that the addition of imperfection suppresses a condensation of Cooper-pair. In addition, the estimated upper critical field at zero temperature exceeds the Pauli paramagnetic limit and increases with increasing x in spite of the reduction of T c. Hence, Cd2Re2O7-x F x is suggested to be an exotic superconductor realized in the itinerant electron systems on a spin frustrated lattice.

  20. Magnetism of a rhombohedral-type pyrochlore-derived Kagome series, Mn2R3Sb3O14 (R = Rare-earths)

    Science.gov (United States)

    Chandragiri, Venkatesh; Iyer, Kartik K.; Maiti, K.; Sampathkumaran, E. V.

    2016-06-01

    The results of magnetic investigations on a new series of compounds, Mn2R3Sb3O14, containing 2-dimensional Kagome lattice of R ions and belonging to pyrochlore family, are presented. Crystallographic features of light R members (R = La, Pr, and Nd) of this family, as established in the recent literature, have been reported to be novel in many aspects, in particular, the rhombohedral nature of the structure which is rare among pyrochlores. It was also reported that, as the R becomes heavier, beyond R = Sm, the fraction of well-known cubic pyrochlore phase tends to gradually dominate. Here, we report that we are able to form the Gd member in the rhombohedral form without noticeable admixture from the cubic phase. With respect to magnetic behavior, our magnetization measurements on the La member reveal that Mn exists in divalent state without any evidence for long range magnetic ordering down to 2 K, a behavior (that is, suppressed magnetism) which is not so common for Mn based oxides, though antiferromagnetism below 2 K is not ruled out. Nd and Gd members are, however, found to show distinct features above 2 K in magnetic susceptibility and heat-capacity, attributable to long-range magnetic ordering from respective rare-earth sublattice. The experimental results with respect to magnetism are found to be consistent with the results from ab initio band structure calculations performed for the La case. The calculations imply that electron correlation is important to describe insulating behavior.

  1. Phase transformations induced by high electronic excitation in ion-irradiated Gd2(ZrxTi1-x)2O7 pyrochlores

    Science.gov (United States)

    Sattonnay, G.; Moll, S.; Thomé, L.; Decorse, C.; Legros, C.; Simon, P.; Jagielski, J.; Jozwik, I.; Monnet, I.

    2010-11-01

    The pyrochlore oxides (A2B2O7) exhibit a remarkable range of structural, physical, and magnetic properties related to their various chemical compositions. This article reports the phase transformations induced by high electronic excitation in pyrochlores of the Gd2(ZrxTi1-x)2O7 family irradiated with swift ions. The structural changes, investigated by using several analytical techniques (x-ray diffraction, Raman spectroscopy, and transmission electron microscopy), strongly depend on the chemical composition. The high electronic excitation along the ion trajectory results in the amorphization of ion tracks for Gd2Ti2O7 and Gd2TiZrO7, whereas a defective fluorite structure is formed in Gd2Zr2O7. Moreover, the results underline the existence of an electronic stopping power threshold of 6 keV/nm for amorphizable compounds and 10 keV/nm for Gd2Zr2O7, below which phase transformations do not occur. Finally, the study of the thermal recovery of irradiated pyrochlores provides the recrystallization temperature for amorphized samples and reveals differences in the recovery process which are related to the chemical composition.

  2. Tetramer spin singlet instability in the fluorine-substituted pyrochlore superconducting system Cd2Re2O7-x F x

    Science.gov (United States)

    Haraguchi, Yuya; Michioka, Chishiro; Ueda, Hiroaki; Yoshimura, Kazuyoshi

    2016-09-01

    We synthesized polycrystalline samples of the fluorine-substituted pyrochlore rhenates Cd2Re2O7-x F x , and investigated their magnetic, transport and structural properties. The transition temperature T s1, where each Re4 tetrahedron in the Re pyrochlore network alternately expands and contracts, decreases with increasing x from 200 K at x  =  0 to 100 K at x  =  0.5. The strong x dependence of the magnetic and transport properties at the low-temperature phase indicates that the driving force of structural phase transition is fluctuations of the tetramer spin singlet formation in order to release the spin frustration in the pyrochlore lattice. Furthermore, we found unconventional superconducting properties in Cd2Re2O7-x F x . It was found that the superconducting phase transition temperature T c markedly decreases with increasing x, suggesting that the addition of imperfection suppresses a condensation of Cooper-pair. In addition, the estimated upper critical field at zero temperature exceeds the Pauli paramagnetic limit and increases with increasing x in spite of the reduction of T c. Hence, Cd2Re2O7-x F x is suggested to be an exotic superconductor realized in the itinerant electron systems on a spin frustrated lattice.

  3. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  4. Spin freezing in the pyrochlore antiferromagnet Pr{sub 2}Zr{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhira, K; Takagi, S [Department of Electronics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Sekine, C [Muroran Institute of Technology, Muroran 050-8585 (Japan); Paulsen, C [Institute Neel C.N.R.S - Universite Joseph Fourier, BP 166, 38042, Grenoble (France); Wakeshima, M; Hinatsu, Y [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kitazawa, T; Kiuchi, Y; Hiroi, Z, E-mail: matuhira@elcs.kyutech.ac.j [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan)

    2009-01-01

    We report on the low temperature magnetism of pyrochlore oxide Pr{sub 2}Zr{sub 2}O{sub 7}. The crystal electric field ground state in Pr{sup 3+} (4f{sup 2}, J = 4) ions has non-Kramers doublet with local <111> Ising magnetic anisotropy. The negative Curie-Weiss temperature below 10 K (-0.55 K) indicates an antiferromagnetic coupling between the spins. The AC magnetic susceptibility does not exhibit any long range ordering at least down to 76 mK. Instead, a frequency dependence of AC magnetic susceptibility is observed below 0.3 K, indicating a spin freezing behavior. Furthermore, recently we have succeeded for the first time in growing a single crystal of Pr{sub 2}Zr{sub 2}O{sub 7} by the floating-zone method using an infrared furnace equipped with four Xe lamps. We will also comment on the crystal growth of Pr{sub 2}Zr{sub 2}O{sub 7}.

  5. Neutron scattering studies of pyrochlore compound Nd sub 2 Mo sub 2 O sub 7 in magnetic field

    CERN Document Server

    Yasui, Y; Harashina, H; Kageyama, T; Ito, M; Sato, M; Kakurai, K

    2003-01-01

    Neutron diffraction studies have been carried out in the applied magnetic field H(parallel [0 1-bar 1]) on a single crystal of pyrochlore ferromagnet Nd sub 2 Mo sub 2 O sub 7 , whose Hall resistivity (rho sub H) has been reported to have quite unusual magnetic field (H)- and temperature (T)-dependences. The intensities of the observed magnetic reflections have been reproduced at 1.6 K as a function of H, by considering the change of the magnetic structure with H, where effects of the exchange fields at the Mo and Nd sites induced by the Mo-Mo and Mo-Nd exchange interactions and the single ion anisotropies of Mo- and Nd-moments are considered. From the H-dependent magnetic structure, the H-dependence of rho sub H has been calculated by using the chiral order mechanism. By comparing the result with the H-dependence of the observed rho sub H , it is found that the chiral order mechanism does not work well in the present system. (author)

  6. Magnetic order in the double pyrochlore Tb{sub 2}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L J [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Prager, M; Persson, J [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany); Walter, J; Jansen, E [Mineralogisch-Petrologisches Institut, Universitaet Bonn, Aussenstelle im Forschungszentrum Juelich, MIN/ZFR, 52425 Juelich (Germany); Chen, Y Y [Institute of Physics, Academia Sinica, Nankang Taipei 115, Taiwan (China); Gardner, J S, E-mail: ljchang@mx.nthu.edu.t [Department of Physics, Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408 (United States)

    2010-02-24

    Polycrystalline Tb{sub 2}Ru{sub 2}O{sub 7} has been studied using dc susceptibility, specific heat and neutron scattering techniques. The high temperature paramagnetic state is dominated by the single ion character of Tb{sup 3+} and very similar to that of the well-studied spin liquid Tb{sub 2}Ti{sub 2}O{sub 7}. However, both the Ru{sup 4+} and Tb{sup 3+} sublattices order, at about 110 K and 3.5 K, respectively. Although the Tb sublattice does not fully order until 3.5 K, it is polarized in the presence of the internal field generated by the Ru{sup 4+} sublattice and possesses a significant moment at 7 K. Magnetic entropy measurements suggest that four levels exist in the first 30 K and inelastic neutron scattering investigations revealed two more levels at 10 and 14 meV. As the magnetic sublattices order, the excitations are perturbed from that measured in the paramagnetic state. These data are compared to data for other terbium based and double pyrochlores.

  7. All-in-all-out magnetic domain size in pyrochlore iridate thin films as probed by local magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T. C.; Uchida, M., E-mail: uchida@ap.t.u-tokyo.ac.jp; Kozuka, Y.; Ogawa, S. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Arima, T. [Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2016-01-11

    Pyrochlore iridates have attracted growing attention because of a theoretical prediction of a possible topological semimetal phase originating from all-in-all-out spin ordering. Related to the topological band structure, recent findings of the magnetic domain wall conduction have stimulated investigations of magnetic domain distribution in this system. Here, we investigate the size of magnetic domains in Eu{sub 2}Ir{sub 2}O{sub 7} single crystalline thin films by magnetoresistance (MR) using microscale Hall bars. Two distinct magnetic domains of the all-in-all-out spin structure are known to exhibit linear MR but with opposite signs, which enables us to estimate the ratio of the two domains in the patterned channel. The linear MR for 80 × 60 μm{sup 2} channel is nearly zero after zero-field cooling, suggesting random distribution of domains smaller than the channel size. In contrast, the wide distribution of the value of the linear MR is detected in 2 × 2 μm{sup 2} channel, reflecting the detectable domain size depending on each cooling-cycle. Compared to simulation results, we estimate the average size of a single all-in-all-out magnetic domain as 1–2 μm.

  8. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2 Ti2 O7 in a Magnetic Field

    Science.gov (United States)

    Thompson, J. D.; McClarty, P. A.; Prabhakaran, D.; Cabrera, I.; Guidi, T.; Coldea, R.

    2017-08-01

    The frustrated pyrochlore magnet Yb2 Ti2 O7 has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  9. Determination of the spin Hamiltonian in the pyrochlore Lu{sub 2}V{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Riedl, Kira; Jeschke, Harald O.; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany); Gingras, Michel J.P. [Department of Physics and Astronomy, University of Waterloo, ON (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Toronto, ON (Canada)

    2016-07-01

    In the pyrochlore Lu{sub 2}V{sub 2}O{sub 7} the vanadium ions form corner-sharing spin 1/2 tetrahedra. In order to find the corresponding spin Hamiltonian which captures the essential physics of the investigated compound we performed a tight-binding fit on the vanadium d orbitals using density functional theory. Since there is evidence that the Dzyaloshinskii-Moriya interaction (DMI) is important in this system, we considered spin-orbit coupling effects within our calculations. A fitting procedure to the relativistic band structure enabled us to determine the strength of the spin-orbit coupling. In a second step, we calculated the energy parameters in the spin Hamiltonian with the method of exact diagonalization and projection on low energy states. We were therefore able to evaluate the Heisenberg exchange, the DMI, and the symmetric tensor, only using ab initio information and reasonable values for the Hubbard interaction as well as for the Hund's coupling. Comparison with recent experimental results will be discussed.

  10. Atomic scale simulations of pyrochlore oxides with a tight-binding variable-charge model: implications for radiation tolerance.

    Science.gov (United States)

    Sattonnay, G; Tétot, R

    2014-02-05

    Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd2Ti2O7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd2Zr2O7. Therefore, the defect stability in A2B2O7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd2Ti2O7 amorphization induced by irradiation.

  11. Experimental approach and atomistic simulations to investigate the radiation tolerance of complex oxides: Application to the amorphization of pyrochlores

    Science.gov (United States)

    Sattonnay, G.; Thomé, L.; Sellami, N.; Monnet, I.; Grygiel, C.; Legros, C.; Tetot, R.

    2014-05-01

    Both experimental approach and atomistic simulations are performed in order to investigate the influence of the composition of pyrochlores on their radiation tolerance. Therefore, Gd2Ti2O7 and Gd2Zr2O7 were irradiated with 4 MeV Au and 92 MeV Xe ions in order to study the structural changes induced by low and high-energy irradiations. XRD results show that, for both irradiations, the structural modifications are strongly dependent on the sample composition: Gd2Ti2O7 is readily amorphized, whereas Gd2Zr2O7 is transformed into a radiation-resistant anion-deficient fluorite structure. Using atomistic simulations with new interatomic potentials derived from the SMTB-Q model, the lattice properties and the defect formation energies were calculated in Gd2Ti2O7 and Gd2Zr2O7. Calculations show that titanates have a more covalent character than zirconates. Moreover, in Gd2Ti2O7 the formation of cation antisite defects leads to strong local distortions around Ti-defects and to a decrease of the Ti coordination number, which are not observed in Gd2Zr2O7. Thus, the radiation resistance is related to the defect stability: the accumulation of structural distortions around Ti-defects could drive the Gd2Ti2O7 amorphization induced by irradiation.

  12. Flucutation driven selection at crticality: the case of multi-k partial order on the pyrochlore lattice

    Science.gov (United States)

    Hao, Zhihao; Javanparast, Behnam; Enjalran, Matthew; Gingras, Michel

    2014-03-01

    We study the problem of partially ordered phases with periodically arranged disordered sites on the pyrochlore lattice. The periodicity of the phases is characterized by one or more wave vectors k = {1/21/21/2 } . Starting from a general microscopic Hamiltonian including anisotropic nearest-neighbor exchange, long-range dipolar interactions and second- and third-nearest neighbor exchange, we identify using standard mean-field theory (s-MFT) an extended range of interaction parameters that support partially ordered phases. We demonstrate that thermal fluctuations beyond s-MFT are responsible for the selection of one particular partially ordered phase, e.g. the ``4- k'' phase over the ``1- k'' phase. We suggest that the transition into the 4- k phase is continuous with its critical properties controlled by the cubic fixed point of a Ginzburg-Landau theory with a 4-component vector order-parameter. By combining an extension of the Thouless-Anderson-Palmer method originally used to study fluctuations in spin glasses with parallel-tempering Monte-Carlo simulations, we establish the phase diagram for different types of partially ordered phases. Our result reveals the origin of 4- k phase observed bellow 1K in Gd2Ti2O7. Funded by NSERC of Canada. M. G. acknowledge funding from Canadian Research Chair program (Tier 1).

  13. Magnetic dilution and domain selection in the X Y pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Gaudet, J.; Hallas, A. M.; Maharaj, D. D.; Buhariwalla, C. R. C.; Kermarrec, E.; Butch, N. P.; Munsie, T. J. S.; Dabkowska, H. A.; Luke, G. M.; Gaulin, B. D.

    2016-08-01

    Below TN=1.1 K, the X Y pyrochlore Er2Ti2O7 orders into a k =0 noncollinear, antiferromagnetic structure referred to as the ψ2 state. The magnetic order in Er2Ti2O7 is known to obey conventional three-dimensional (3D) percolation in the presence of magnetic dilution, and in that sense is robust to disorder. Recently, however, two theoretical studies have predicted that the ψ2 structure should be unstable to the formation of a related ψ3 magnetic structure in the presence of magnetic vacancies. To investigate these theories, we have carried out systematic elastic and inelastic neutron scattering studies of three single crystals of Er2 -xYxTi2O7 with x =0 (pure), 0.2 (10 %Y ) and 0.4 (20 % Y ), where magnetic Er3 + is substituted by nonmagnetic Y3 +. We find that the ψ2 ground state of pure Er2Ti2O7 is significantly affected by magnetic dilution. The characteristic domain selection associated with the ψ2 state, and the corresponding energy gap separating ψ2 from ψ3, vanish for Y3 + substitutions between 10 % Y and 20 % Y , far removed from the three-dimensional percolation threshold of ˜60 % Y . The resulting ground state for Er2Ti2O7 with magnetic dilutions from 20 % Y up to the percolation threshold is naturally interpreted as a frozen mosaic of ψ2 and ψ3 domains.

  14. LETTER TO THE EDITOR: Observation of a transverse magnetization in the ordered phases of the pyrochlore magnet Gd2Ti2O7

    Science.gov (United States)

    Glazkov, V. N.; Marin, C.; Sanchez, J.-P.

    2006-08-01

    We have performed a detailed transverse magnetization study of the pyrochlore antiferromagnet Gd2Ti2O7. A transverse magnetization of about 10-3Msat is observed in the low-temperature ordered phases. These measurements result in the refinement of the Gd2Ti2O7 phase diagrams. Observation of a transverse magnetization indicates loss of the cubic symmetry in some of the magnetic phases and provides new information for a better understanding of the complicated magnetic ordering of Gd2Ti2O7.

  15. Synthesis and electrical properties of the pyrochlore-type Gd2-yLayZr2O7 solid solution

    Directory of Open Access Journals (Sweden)

    León, C.

    2008-06-01

    Full Text Available Different compositions in the pyrochlore-type Gd2-yLayZr2O7 solid solution (0 ≤ y ≤ 1 were prepared at room-temperature by mechanically milling stoichiometric mixtures of the corresponding oxides. Irrespective of their lanthanum content, as-prepared powder samples consist of single-phase anion deficient fluorite materials, although long-range ordering of cations and anion vacancies characteristic of pyrochlores was observed in all cases after firing the samples at 1500°C. Interestingly, activation energy for oxygen migration in the series decreases as La-content increases, from 1.13 eV for Gd2Zr2O7 to 0.81 eV for GdLaZr2O7, whereas ionic conductivity was found to be almost La-content independent, at least for y ≤ 0.8 at T = 500°C and y ≤ 0.4 at T = 800°C. These results are explained in terms of weaker ion-ion interactions in better ordered structures (i.e., as La-content increases and highlight the importance of structural ordering/disordering in determining the dynamics of mobile oxygen ions.Partiendo de mezclas estequiométricas de los óxidos correspondientes, se prepararon por molienda mecánica y a temperatura ambiente diferentes composiciones en la solución sólida Gd2-yLayZr2O7 (0 ≤ y ≤ 1 con estructura de tipo pirocloro y conductora de iones oxígeno. Independientemente del contenido de lantano, los polvos extraídos del molino presentaron difractogramas similares al de una fluorita no estequiométrica aunque en todos los casos, el tratamiento térmico a 1500°C indujo la aparición del ordenamiento de largo alcance de cationes y vacancias aniónicas característico de pirocloros. La energía de activación para el proceso de migración de iones oxígeno en la serie disminuye a medida que se incrementa el contenido de lantano, desde 1.13 eV de Gd2Zr2O7 hasta 0.81 eV de GdLaZr2O7, mientras que la conductividad resultó ser prácticamente independiente del mismo hasta y ≤ 0.8 para T = 500°C e y ≤ 0.4 para T = 800

  16. Hydrothermal Synthesis and Characterization of Pyrochlore Titanate R2 Ti2O7(R=Gd3+, Tb3+, Dy3+)

    Institute of Scientific and Technical Information of China (English)

    PENG Wen; HU Bin; CHEN Yan; HU Wei-wei; GUO Li; YUAN Hong-ming; FENG Shou-hua

    2011-01-01

    Pyrochlore titanate oxides, R2Ti2O7(R=Gd3+, Tb3+, Dy3+), were synthesized under mild hydrothermal conditions. The crystal growth of pyrochlore titanate oxides and taking place of chemical reaction in the hydrothermal processing were sensitive to the alkalinity, temperature, reaction time, the nature of the rare earth ion and the composition of initial reaction mixture. The as-prepared samples were characterized by powder X-ray diffraction, scanning electron microscopy, Raman spectrum and variable temperature dc magnetic susceptibility(Superconductivity quantum interference device, SQUIDS). The magnetic studies gave 7.29× 10-23 A·m2/Gd3+ and -8.28 K, 8.75 × 10-23 A·m2/ Tb3+ and -19.7 K, and 8.85×10-23 A·m2/Dy3+ and 0.84 K effective moments and Weiss constants for Gd2Ti2O7,Tb2Ti2O7 and Dy2Ti2O7, respectively.

  17. Une nouvelle famille de pyrochlores: les oxynitrures Ln2Ta 2O 5N 2. Préparation et étude cristallochimique

    Science.gov (United States)

    Pors, F.; Marchand, R.; Laurent, Y.

    1993-11-01

    Par action de l'ammoniac à 900-950°C sur les tantalates de terres rares LnTaO 4, on a mis en évidence une nouvelle famille d'oxynitrures dont la structure est de type pyrochlore. Ces composés Ln2Ta 2O 5N 2 ont été obtenus pour les lanthanides de rayon inférieur ou égal à celui du néodyme, ainsi que pour l'yttrium. La maille cristalline est de symétrie cubique (10,2 Å < a < 10,6 Å). La stoechiométrie anionique impose un désordre oxygène-azote au moins partiel entre les deux sites cristallographiques correspondants. New oxynitrides Ln2 Ta 2O 5N 2 ( Ln = Nd → Yb, Y), belonging to the pyrochlore type structure, have been prepared by heating at 900-950°C the LnTaO 4 corresponding tantalates. The a parameter of the cubic unit cell is comprised between 10.2 and 10.6 Å. Because of the anionic stoichiometry, oxygen and nitrogen atoms are disordered, at least partially.

  18. Magnetotransport properties of Gd sub 2 (Mo sub 1 sub - sub x V sub x) sub 2 O sub 7 with pyrochlore structure

    CERN Document Server

    Troyanchuk, I O; Khalyavin, D D; Szymczak, H; Nabialek, A

    1998-01-01

    Magnetization and magnetoresistance (MR) measurements were performed on pyrochlores Gd sub 2 Mo sub 2 O sub 7 and Gd sub 2 (Mo sub 0 sub . sub 6 V sub 0 sub . sub 4) sub 2 O sub 7. It was shown that both compounds are ferromagnets below T sub C =80 K with the same alignment of magnetic moments of 4f and 4d ions. The substitution of Mo ions by V leads to the increase of the resistivity without changes in the magnetic state. Gd sub 2 Mo sub 2 O sub 7 exhibits a large negative magnetoresistance ratio, especially in the low-magnetic-field regime, which increases strongly with decreasing temperature. In Gd sub 2 (Mo sub 0 sub . sub 6 V sub 0 sub . sub 4) sub 2 O sub 7 below T sub C the magnetoresistance ratio changes from negative to positive with decreasing temperature. These data indicate that the mechanism of the magnetoresistance effect in the molybdates differs markedly from that for manganites studied in detail with perovskite and pyrochlore structures. (author)

  19. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    Science.gov (United States)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  20. Fluctuation-Driven Selection at Criticality in a Frustrated Magnetic System: The Case of Multiple-k Partial Order on the Pyrochlore Lattice

    Science.gov (United States)

    Javanparast, Behnam; Hao, Zhihao; Enjalran, Matthew; Gingras, Michel J. P.

    2015-04-01

    We study the problem of partially ordered phases with periodically arranged disordered (paramagnetic) sites on the pyrochlore lattice, a network of corner-sharing tetrahedra. The periodicity of these phases is characterized by one or more wave vectors k ={1/2 1/2 1/2 } . Starting from a general microscopic Hamiltonian including anisotropic nearest-neighbor exchange, long-range dipolar interactions, and second- and third-nearest neighbor exchange, we use standard mean-field theory (SMFT) to identify an extended range of interaction parameters that support partially ordered phases. We demonstrate that thermal fluctuations ignored in SMFT are responsible for the selection of one particular partially ordered phase, e.g., the "4 -k " phase over the "1 -k " phase. We suggest that the transition into the 4 -k phase is continuous with its critical properties controlled by the cubic fixed point of a Ginzburg-Landau theory with a four-component vector order parameter. By combining an extension of the Thouless-Anderson-Palmer method originally used to study fluctuations in spin glasses with parallel-tempering Monte Carlo simulations, we establish the phase diagram for different types of partially ordered phases. Our results elucidate the long-standing puzzle concerning the origin of the 4 -k partially ordered phase observed in the Gd2Ti2O7 dipolar pyrochlore antiferromagnet below its paramagnetic phase transition temperature.

  1. Synthesis and properties of Tl{sub 2}Mn{sub 2-x}Ti{sub x}O{sub 7} pyrochlores with colossal magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, P.; Alonso, J.A.; Martinez-Lope, M.J.; Casais, M.T.; Martinez, J.L. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid (Spain); Fernandez-Diaz, M.T. [Institut Laue-Langevin, BP 156, Grenoble (France)

    2001-12-03

    A new series of Ti-substituted derivatives of Tl{sub 2}Mn{sub 2}O{sub 7} pyrochlore have been prepared under moderate pressures (P=2 GPa). Materials of nominal stoichiometry Tl{sub 2}Mn{sub 2-T}i{sub O7} with 0{<=}x{<=}0.4, have been characterized by neutron powder diffraction (NPD), magnetic, magnetotransport, and Hall measurements. The Ti-substituted materials are ferromagnetic, with Curie temperatures slightly reduced with respect to that of Tl{sub 2}Mn{sub 2}O{sub 7}, as a result of the introduction of a non-magnetic cation into the Mn sublattice, without nominal change of valence upon doping. Unlike the undoped (x = 0) compound, which shows a significant thallium and oxygen deficiency in the O' sublattice of the pyrochlore structure, the Ti-doped materials are fully stoichiometric, as deduced from NPD data. This result is consistent with the net increase observed in the number of carriers (electrons), which explains the reduction in resistivity and magnetoresistance. (author)

  2. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi{sub 2}O{sub 3}-ZnO-(Nb, Ta){sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.edu.m [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Engineering, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Lee, C.K. [Academic Science Malaysia, 902-4 Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Zainal, Z. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Miles, G.C. [Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-10-22

    Research highlights: {yields} Combined XRD and ND Rietveld structural refinement of pyrochlores. {yields} Structures and solid solution mechanisms of Bi-pyrochlores. {yields} Bi and Zn displaced off-centre to different 96g A-site positions. {yields} Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi{sub 1.5} ZnTa{sub 1.5}O{sub 7} and non-stoichiometric Bi{sub 1.56}Zn{sub 0.92}Nb{sub 1.44}O{sub 6.86}. In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  3. Pyrochlore-rich titanate ceramics for the immobilization of plutonium: redox effects on phase equilibria in cerium- and thorium- substituted analogs

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F J; Ebbinghaus, B

    2000-05-25

    Three compositions representing plutonium-free analogs of a proposed Ca-Ti-Gd-Hf-U-PU oxide ceramic for the immobilization of plutonium were equilibrated at 1 atm, 1350 C over a range of oxygen fugacities between air and that equivalent to the iron-wuestite buffer. The cerium analog replaces Pu on a mole-per-mole basic with Ce; the thorium analog replaces Pu with Th. A third material has 10 wt% Al{sub 2}O{sub 3} added to the cerium analog to encourage the formation of a Hf-analog of, CaHfTi{sub 2}O{sub 7}, zirconolite, which is referred to as hafnolite. The predominant phase produced in each formulation under all conditions is pyrochlore, A{sub 2}T{sub 2}O{sub 7}, where the T site is filled by Ti, and Ca, the lanthanides, Hf, U and Pu are accommodated on the A-site. Other lanthanide and uranium-bearing phases encountered include brannerite (UTi{sub 2}O{sub 6}), hafnolite (CaHfTi{sub 2}O{sub 7}), perovskite (CaTiO{sub 3}) and a calcium-lanthanide aluminotitanate with nominal stoichiometry (Ca,Ln)Ti{sub 2}Al{sub 9}O{sub 19}, where Ln is a lanthanide. The phase compositions show progressive shifts with decreasing oxygen fugacity. All of the phases observed have previously been identified in titanate-based high-level radioactive waste ceramics and demonstrate the flexibility of these ceramics to variations in processing parameters. The main variation is an increase in the uranium concentrations of pyrochlore and brannerite which must be accommodated by variations in modal abundance. Pyrochlore compositions are consistent with existing spectroscopic data suggesting that uranium is predominantly pentavalent in samples synthesized in air. A simple model based on ideal stoichiometry suggests the U{sup +4}/{Sigma}U varies linearly with log fO{sub 2} and that all of the uranium is quadravalent at the iron-wuestite buffer.

  4. Magnetic ordering in the XY pyrochlore antiferromagnet Er{sub 2}Ti{sub 2}O{sub 7}: a spherical neutron polarimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Poole, A [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Wills, A S [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Lelievre-Berna, E [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)

    2007-11-14

    Er{sub 2}Ti{sub 2}O{sub 7} has been proposed as a realization of the XY<111> pyrochlore antiferromagnet with dipolar interactions, where the spins of Er{sup 3+} lie perpendicular to the <111> local axes. Below a Neel temperature of T{sub N} = 1.173 K magnetic order with the propagation vector k-vector=(000) occurs. Previous powder neutron diffraction studies were not able to determine details of the magnetic ordering beyond its symmetry due to powder averaging. In an attempt to resolve the questions as regards the ordering in this model magnet we performed a spherical neutron polarimetry experiment using CRYOPAD. The analysis of these data and a proposed magnetic order are presented. (fast track communication)

  5. Near-edge X-ray absorption fine structure study of disordering in Gd2(Ti1-yZry)2O7 pyrochlores.

    Science.gov (United States)

    Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Adams, Evan M; Weber, William J; Begg, Bruce D; Mun, Bongjin S; Shuh, David K; Lindle, Dennis W; Gullikson, Eric M; Perera, Rupert C C

    2005-02-01

    Disorder in Gd2(Ti(1-y)Zry)2O7 pyrochlores, for y = 0.0-1.0, is investigated by Ti 2p and O 1s near-edge X-ray absorption fine structure spectroscopy. Ti(4+) ions are found to occupy octahedral sites in Gd2Ti2O7 with a tetragonal distortion induced by vacant oxygen sites. As Zr substitutes for Ti, the tetragonal distortion decreases, and Zr coordination increases from 6 to 8. The migration of oxygen ions from 48f or 8b sites to vacant 8a sites compensate for the increased Zr coordination, thereby reducing the number of vacant 8a sites, which further reduces the tetragonal distortion and introduces more disorder around Ti. This is evidence for simultaneous cation disorder with anion migration.

  6. Modifications of structural and physical properties induced by swift heavy ions in Gd2Ti2O7 and Y2Ti2O7 pyrochlores

    Science.gov (United States)

    Sellami, N.; Sattonnay, G.; Grygiel, C.; Monnet, I.; Debelle, A.; Legros, C.; Menut, D.; Miro, S.; Simon, P.; Bechade, J. L.; Thomé, L.

    2015-12-01

    The structural transformations induced by ionization processes in Gd2Ti2O7 and Y2Ti2O7 pyrochlores irradiated with swift heavy ions have been studied using XRD and Raman experiments. Results show that irradiation induces amorphization and that the phase transformation build-up can be accounted for in the framework of a model involving a single-impact mechanism. The radiation induced amorphization build-up is faster in Gd2Ti2O7 than in Y2Ti2O7. Moreover, a decrease of the thermal conductivity (measured by the laser flash method) is induced by irradiation both in Gd2Ti2O7 and Y2Ti2O7.

  7. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Yan, Jinyuan; Ewing, Rodney C.; Mao, Wendy L.

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionic radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu2Zr2O7 as compared with the initially defect-fluorite structured Dy2Zr2O7.

  8. Synthesis and luminescent properties of rare earth (Sm3+ and Eu3+) Doped Gd2Ti2O7 pyrochlore nanopowders

    Science.gov (United States)

    Ćulubrk, Sanja; Antić, Željka; Marinović-Cincović, Milena; Ahrenkiel, Phillip S.; Dramićanin, Miroslav D.

    2014-11-01

    This work describes the synthesis and photoluminescent properties of rare earth (Sm3+ and Eu3+) doped Gd2Ti2O7 pyrochlore nanopowders. Pure-phase rare earth-doped Gd2Ti2O7 nanoparticles of approximately 20-50 nm in diameter, as evidenced from X-ray diffraction and electron microscopy analysis, are produced via the mixed metal-citric acid complex method. A temperature of 880 °C is identified for the formation of the crystalline pyrochlore phase, based on a differential thermal analysis of Gd2Ti2O7 precursor gels. From photoluminescence excitation and emission spectra, measured at 10 K and room temperature, the energy levels of Sm3+ and Eu3+ ions in Gd2Ti2O7 nanoparticles are obtained. The dependence of luminescence emission intensity and emission decays on rare earth concentration are measured and discussed. The strongest Sm3+ orange-reddish emission is observed for samples containing 2.5 at.% of Sm3+ ions, while in the case of Eu3+, the most intense emission is found for 15 at.% Eu3+ doping. The 4G5/2 level lifetime decreases with an increase in Sm3+ concentration, from about 5 ms (for 0.1-0.2 at.% of Sm3+) to 2.4 ms (for 2.5 at.% of Sm3+). With an increase in Eu3+ concentration in the Gd2Ti2O7 nanoparticles, the Eu3+5D0 level lifetime decreases from ∼5.9 ms (for 0.5 at.% of Sm3+) to 3.1 ms (for 15 at.% of Sm3+).

  9. Structural and crystal chemical properties of rare-earth double phosphates and rare-earth titanate pyrochlores

    Science.gov (United States)

    Farmer, J. Matt

    Alkali rare-earth double phosphates have been studied for use as long-wavelength scintillators for gamma-ray detection using Si photodiodes. These compounds exhibit layered crystal structures, built from roughly hexagonal atomic layers in the sequence lanthanide, phosphate-alkali, alkali, alkali-phosphate. Details of the crystal symmetry depend on the relative sizes of the rare-earth and alkali metal ions. Single-crystal X-ray diffraction (SXRD) has been used to study these structures at room temperature for K3RE(PO4) 2 (where RE = Lu-Ce, Y, and Sc). The compound K3Lu(PO 4)2 crystallizes with a hexagonal unit cell, space group P-3. The Lu ion is six-coordinated to the oxygen atoms of the phosphate groups. Two lower-temperature phases of K3Lu(PO4) 2 were observed and characterized. The lower-temperature transition results in an increase in coordination of the Lu ion to seven fold. This new structure is isostructural with the room-temperature form of K3Yb(PO 4)2. High-temperature powder neutron diffraction and high-temperature powder XRD have revealed a large thermal expansion anisotropy for K3Lu(PO4)2. The K3RE(PO 4)2 formation enthalpies were determined using high-temperature oxide-melt solution calorimetry. The formation enthalpy from oxides becomes more exothermic with increasing rare-earth radius. Rare-earth titanates, RE2Ti2O7 (where RE = a rare-earth), with the pyrochlore structure are currently being studied for use as potential nuclear, actinide-rich waste forms. Single-crystals were synthesized using a high-temperature flux technique and characterized using single-crystal X-ray diffraction. The cubic lattice parameters display an approximately linear correlation with the RE-site cation radius. The Sm and Eu titanates exhibit a covalency increase between the REO8 and TiO6 polyhedra resulting in a deviation from the increasing linear lattice parameter through the series. Gd2Ti2O7 exhibits the lowest 48f oxygen positional parameter, an effect that can be

  10. Synthesis, magnetic properties and Moessbauer spectroscopy for the pyrochlore family Bi{sub 2}BB Prime O{sub 7} with B=Cr and Fe and B Prime =Nb, Ta and Sb

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria C. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Franco, Diego G. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Jalit, Yamile; Pannunzio Miner, Elisa V. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Berndt, Graciele; Paesano, Andrea [Departamento de Fisica, Universidade Estadual de Maringa, Parana (Brazil); Nieva, Gladys [Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Carbonio, Raul E., E-mail: carbonio@mail.fcq.unc.edu.ar [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina)

    2012-08-15

    The samples Bi{sub 2}BB Prime O{sub 7}, with B=Cr and Fe and B Prime =Nb, Ta and Sb were prepared by solid state method. The crystallographic structure was investigated on the basis of X-ray powder diffraction data. Rietveld refinements show that the crystal structure is cubic, space group Fd-3m. The Bi{sup 3+} cation on the eight-coordinate pyrochlore A-site shows displacive disorder, as a consequence of its lone pair electron configuration. There is also a considerable A-site disorder shown by Rietveld Analysis and confirmed in the case of the iron containing samples with Moessbauer spectroscopy. The magnetic measurements show paramagnetic behavior at all temperatures for the Cr oxides. The Fe pyrochlores show antiferromagnetic order around 10 K.

  11. Subsolidus phase equilibria and magnetic characterization of the pyrochlore in the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub x} system

    Energy Technology Data Exchange (ETDEWEB)

    Egorysheva, A.V., E-mail: anna_egorysheva@rambler.ru [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Ellert, O.G. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Maksimov, Yu.V. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119991 (Russian Federation); Volodin, V.D.; Efimov, N.N.; Novotortsev, V.M. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation)

    2013-12-05

    Highlights: •We have constructed the isothermal section of the system Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub x}. •Ternary compound formation is limited to pyrochlore, which forms a solid solution region. •The phase diagram points out that 7–25% of Bi-positions are occupied with Fe{sup 3+}. •The Mossbauer data confirmed that Fe{sup 3+} ions enter the Bi-positions. •Magnetic measurements revealed spin-glass magnetic transition at 9 K. -- Abstract: The subsolidus phase equilibria of the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub x} system have been investigated by X-ray powder diffraction. The isothermal section of the system at 775–800 °C has been constructed. It can be represented by 9 phase assemblage triangles. Ternary compound formation is limited to pyrochlore which forms a substantial solid solution region of Bi-deficient compositions relative to Bi{sub 2}FeSbO{sub 7}. As follows from the phase diagram, approximately 7–25% of Bi positions in pyrochlore may be occupied with Fe{sup 3+} ions that was confirmed by Mossbauer data. Magnetic measurements were carried out on the pyrochlore specimen of quasi-chemical formula (Bi{sub 1.8}Fe{sub 0.2})(FeSb)O{sub 7}. The existence of the strong short-range antiferromagnetic superexchange interactions and spin-glass magnetic transition at around 9 K were revealed.

  12. Theoretical and experimental investigation of defect formation / migration in Gd2Ti2O7: General rule of oxide-ion migration in A2B2O7 pyrochlore

    Directory of Open Access Journals (Sweden)

    Kaoru Nakamura

    2016-11-01

    Full Text Available We investigated the intrinsic defect formation energy and oxide-ion migration mechanism in Gd2Ti2O7 pyrochlore. It was found that the vacancy formation energy of Gd is lower than that of Ti. For the oxygen vacancy, O(48f was found to show lower vacancy formation energy than O(8b. The formation energy of the vacancy complex showed that the Gd vacancy is accompanied with the O(48f vacancy, which is consistent with our experiment. The migration energy of O(48f along the direction, which is dominant migration path for ionic conduction, was calculated to be 0.43 eV. On the other hand, we found that Gd vacancy increases O(48f migration energy. For example, the migration energy of O(48f along the direction was increased to be 1.36 eV by the local compressive strain around Gd vacancy. This finding could explain our previous experimental result of decreasing conductivity with increasing Gd deficiency. Along with the oxide-ion migration mechanism in Gd2Ti2O7, O(48f migration energies along both and directions for various A2B2O7 pyrochlore structures were investigated. As a general trend of oxide-ion migration in the pyrochlore structure, we propose that O(48f migration along the direction is governed by the strength of B–O bonding. On the other hand, the ratio of ionic radius B/A is proposed to determine O(48f migration along the direction in A2B2O7 pyrochlore.

  13. Investigation of structural and electrical properties of vanadium substituted disordered pyrochlore-type Ho{sub 2−x}V{sub x}Zr{sub 2}O{sub 7} nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, Nazia, E-mail: naziakaramatgoraya@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Najam-ul-Haq, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Ali, Irshad; Iqbal, M. Asif; Irfan, Muhammad [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan); Abbas, Yasir; Athar, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan)

    2014-04-01

    Graphical abstract: - Highlights: • Normal microemulsion method has been used for the synthesis of zirconates nanomaterials. • Structure shifted towards highly disordered pyrochlore state with substitution. • The electrical resistivity increase with the vanadium content. • The dielectric constant show resonance behavior. • The synthesized materials are suitable for microwave devices. - Abstract: Disordered pyrochlore system with composition Ho{sub 2−x}V{sub x}Zr{sub 2}O{sub 7} (where x = 0, 0.25, 0.50, 0.75 and 1) has been synthesized by the normal microemulsion route to examine the effect of vanadium substitution on structural and electrical properties. The prepared compounds are characterized by several techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray fluorescence (ED-XRF), energy dispersive spectra (EDS), scanning electron microscopy (SEM), temperature dependent electrical and frequency dependent dielectric measurements. The XRD analysis confirms the formation of disordered pyrochlore phase with crystallite size 7–30 nm while a second phase is also observed in the highly substituted materials. The increase in resistivity is attributed to the removal of low energy pathway due to cation disordering. The dielectric constant decreases due to lowering of dipole moment with substitution and its resonance behavior shifted toward higher frequencies. The electrical and dielectric measurements suggest that materials are suitable for high frequency electronic devices, such as oscillators, resonators and frequency filters.

  14. Synthesis by two methods and crystal structure determination of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martinez, Leticia M., E-mail: lettorresg@yahoo.com [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Ruiz-Gomez, Miguel A. [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Figueroa-Torres, M.Z.; Juarez-Ramirez, Isaias [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Moctezuma, Edgar [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); and others

    2012-04-16

    Graphical abstract: The monoclinic (space group C2/c) structure of a new compound, Sm{sub 2}FeTaO{sub 7} shows an alternating Sm-O and Fe/Ta-O layers. In the Fe/Ta-O layer, Fe/Ta1 and Fe/Ta3 cations are coordinated by six oxygen atoms, forming irregular octahedral interconnected into a hexagonal tungsten bronze (HTB) type network. The HTB layer is a fundamental framework in the pyrohlore-related structure. Highlights: Black-Right-Pointing-Pointer Pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} prepared by solid state reaction and sol-gel. Black-Right-Pointing-Pointer Sm{sub 2}FeTaO{sub 7} crystallizes with a monoclinic crystal structure and space group C2/c. Black-Right-Pointing-Pointer The compound is synthesized by sol-gel at lower temperature and time than solid state. Black-Right-Pointing-Pointer Surface area of sol-gel Sm{sub 2}FeTaO{sub 7} is 10 times higher than that prepared by solid state. - Abstract: This paper reports on the synthesis of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} by both solid state reaction and sol-gel synthesis routes. Structural features were determined by X-ray powder diffraction and Rietveld refinement and were corroborated using Transmission Electron Microscopy (TEM). The results revealed that Sm{sub 2}FeTaO{sub 7} crystallized in the monoclinic system with space group C2/c and the following cell parameters: a = 13.1307(5) Angstrom-Sign , b = 7.5854(3) Angstrom-Sign , c = 11.6425(4) Angstrom-Sign and {beta} = 100.971(2) Degree-Sign . The monoclinic structure of Sm{sub 2}FeTaO{sub 7} showed an arrangement of alternating Sm-O and Fe/Ta-O layers and two types of irregular octahedra of Fe/Ta-O, which are interconnected into a hexagonal tungsten bronze (HTB)-type network. On the other hand, Sm{sub 2}FeTaO{sub 7} prepared by sol-gel was obtained with lower particle sizes than the solid state produced compound. The difference in particle size causes a difference of one order of magnitude in the specific surface area. In

  15. Low-temperature specific heat and possible gap to magnetic excitations in the Heisenberg pyrochlore antiferromagnet Gd2Sn2O7

    Science.gov (United States)

    Del Maestro, Adrian; Gingras, Michel J. P.

    2007-08-01

    The Gd2Sn2O7 pyrochlore Heisenberg antiferromagnet displays a phase transition to a four sublattice Néel ordered state at a critical temperature Tc˜1K . The low-temperature state found via neutron scattering corresponds to that predicted by a classical model that considers nearest-neighbor antiferromagnetic exchange and long-range dipolar interactions. Despite the seemingly conventional nature of the ordered state, the specific heat Cv has been found to be described in the temperature range 350mK⩽T⩽800mK by an anomalous power law Cv˜T2 . A similar temperature dependence of Cv has also been reported for Gd2Ti2O7 , another pyrochlore Heisenberg material. Such behavior is to be contrasted with the typical T3 behavior expected for a three-dimensional antiferromagnet with conventional long-range order which is then generally accompanied by an exp(-Δ/T) behavior at lower temperature where anisotropy effects induce a gap Δ to collective spin excitations. Such anomalous T2 behavior in Cv has been argued to be correlated to an unusual energy dependence of the density of states which also seemingly manifests itself in low-temperature spin fluctuations found in muon spin relaxation experiments. In this paper, we report calculations of Cv that consider spin-wave-like excitations out of the Néel order observed in Gd2Sn2O7 via neutron scattering. We argue that the parametric Cv∝T2 does not reflect the true low-energy excitations of Gd2Sn2O7 . Rather, we find that the low-energy excitations of this material are antiferromagnetic magnons gapped by single-ion and dipolar anisotropy effects, and that the lowest temperature of 350mK considered in previous specific heat measurements accidentally happens to coincide with a crossover temperature below which magnons become thermally activated and Cv takes an exponential form. We argue that further specific heat measurements that extend down to at least 100mK are required in order to ascribe an unconventional description of

  16. On the electrical properties of the Bi2-ySryIr2O7 pyrochlore solid solution: Quantum ab initio and classic calculations

    Science.gov (United States)

    de la Mora, Pablo; Cosio-Castañeda, Carlos; Martinez-Anaya, Oliver; Morales, Francisco; Tavizon, Gustavo

    2016-09-01

    In this work, a theoretical study of the electrical properties of the Bi2-ySryIr2O7 (Bi2-ySryIr2O16O2) α-pyrochlore-type solid solution is presented. Quantum ab initio DFT(WIEN2k) calculations were performed in order to understand the electrical resistivity changes associated to the Bi substitution by Sr in this system. The main crystallographic modification associated to this substitution is the x position of the 48f oxygen (x, 1/8 , 1/8 ) (O1); this substitution substantially modifies the Bi/Sr-O1 and Ir-O1 atomic distances, increasing the former and diminishing the latter. Experimentally, the Bi2-ySryIr2O7 samples are metallic and the electrical resistivity increases with the Sr content. Electronic structure calculations for Bi2Ir2O7 and BiSrIr2O7 show that, regardless of structural changes, there is only a small change of electrical conductivity with the Sr substitution, and the experimentally observed increase of the resistivity can be explained in terms of a larger impact on the electronic structure of both; the Sr 'impurities' as well as of the thermal Sr oscillations.

  17. Key role of the short-range order on the response of the titanate pyrochlore Y2T i2O7 to irradiation

    Science.gov (United States)

    Sattonnay, G.; Cammelli, S.; Menut, D.; Sellami, N.; Grygiel, C.; Monnet, I.; Béchade, J. L.; Crocombette, J. P.; Chartier, A.; Soulié, A.; Tétot, R.; Legros, C.; Simon, P.; Miro, S.; Thomé, L.

    2016-12-01

    Ordering and disordering processes in complex oxides strongly influence their physicochemical properties when they are submitted to severe conditions, such as high temperature, high pressure, or irradiation. This paper examines the role played by the local atomic order on the structural stability of Y2T i2O7 pyrochlore submitted to ion irradiation by combining experimental and atomistic computation studies. X-ray absorption spectroscopy at the Ti K edge, molecular dynamics simulations, and calculations using a tight-binding variable-charge model show that the short-range order around Ti atoms in Y2T i2O7 is strongly modified by irradiation. Strong local distortions around Ti defects occur due to a decrease of the Ti coordination number. These local atomic rearrangements trigger the overall amorphization of the compound. These results show that the local short-range order influences the long-range structural stability of complex oxides, thus providing a key feature for the control of the functional properties of these materials.

  18. A novel isomorphic phase transition in beta-pyrochlore oxide KOs{sub 2}O{sub 6}: a study using high resolution neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, Kenzo; Kofu, Maiko; Yamaura, Jun-ichi; Hiroi, Zenji; Yamamuro, Osamu [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Ibberson, Richard M [ISIS Facility, STFC-Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Hirota, Kazuma, E-mail: yamamuro@issp.u-tokyo.ac.j [Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2010-01-13

    We have carried out adiabatic calorimetric and neutron powder diffraction experiments on the beta-pyrochlore oxide KOs{sub 2}O{sub 6}, which has a superconducting transition at T{sub c} = 9.6 K and another novel transition at T{sub p} = 7.6 K. A characteristic feature of this compound is that the K ions exhibit rattling vibrations in the cages formed by O atoms even at very low temperatures. The temperature and entropy of the T{sub p} transition is in good agreement with previous data measured using a heat relaxation method, indicating that the present sample is of high purity and the transition entropy, 0.296 J K{sup -1} mol{sup -1}, does not depend on the calorimetric method used. The neutron powder diffraction data show no peak splitting nor extra peaks over the temperature range between 2 and 295 K, suggesting that the T{sub p} transition is a rather unusual isomorphic transition. Rietveld analysis revealed an anomalous expansion of the lattice and a deformation of the O atom cage below 7.6 K. In the low-temperature phase, the distribution of scattering density corresponding to the K ions becomes broader whilst maintaining its maximum at the cage center. Based on these findings, we suggest that the T{sub p} transition is due to the expansion of the cage volume and cooperative condensation of the K ions into the ground state of the rattling motion.

  19. A novel isomorphic phase transition in β-pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction.

    Science.gov (United States)

    Sasai, Kenzo; Kofu, Maiko; Ibberson, Richard M; Hirota, Kazuma; Yamaura, Jun-ichi; Hiroi, Zenji; Yamamuro, Osamu

    2010-01-13

    We have carried out adiabatic calorimetric and neutron powder diffraction experiments on the β-pyrochlore oxide KOs(2)O(6), which has a superconducting transition at T(c) = 9.6 K and another novel transition at T(p) = 7.6 K. A characteristic feature of this compound is that the K ions exhibit rattling vibrations in the cages formed by O atoms even at very low temperatures. The temperature and entropy of the T(p) transition is in good agreement with previous data measured using a heat relaxation method, indicating that the present sample is of high purity and the transition entropy, 0.296 J K(-1) mol(-1), does not depend on the calorimetric method used. The neutron powder diffraction data show no peak splitting nor extra peaks over the temperature range between 2 and 295 K, suggesting that the T(p) transition is a rather unusual isomorphic transition. Rietveld analysis revealed an anomalous expansion of the lattice and a deformation of the O atom cage below 7.6 K. In the low-temperature phase, the distribution of scattering density corresponding to the K ions becomes broader whilst maintaining its maximum at the cage center. Based on these findings, we suggest that the T(p) transition is due to the expansion of the cage volume and cooperative condensation of the K ions into the ground state of the rattling motion.

  20. Frustrated pyrochlore oxides, Y2Mn2O7, Ho2Mn2O7, and Yb2Mn2O7: Bulk magnetism and magnetic microstructure

    DEFF Research Database (Denmark)

    Greedan, J.E.; Raju, N.P.; Maignan, A.

    1996-01-01

    The bulk magnetic properties, including de and ac susceptibilities and heat capacity, of the pyrochlore oxides Ho2Mn2O7 and Yb2Mn2O7 are reported and compared with those of the previously studied Y2Mn2O7. In the latter case the magnetic Mn4+ ions occupy the 16c sites in Fd3m which define...... a potentially frustrated three-dimensional array of corner sharing tetrahedra. For Ho2Mn2O7 and Yb2Mn2O7 magnetic rare earth ions occupy the 16d sites, as shown by powder neutron diffraction, which are topologically equivalent to the 16c sites but displaced by a vector (1/2 1/2 1/2). Ho2Mn2O7 and Yb2Mn2O7....... Surprisingly, neutron diffraction data for both Ho2Mn2O7 and Yb2Mn2O7 show resolution limited reflections of magnetic origin in contrast to the heat capacity results. The resolution of the neutron diffraction data places a minimum on the correlation length of 100 Angstrom. Small angle neutron scattering data...

  1. Highly (1 1 1)-oriented and pyrochlore-free PMN-PT thin films derived from a modified sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Feng, M. [Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Heilongjiang, Harbin 150001 (China); Wang, W., E-mail: wangwen@hit.edu.c [Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Heilongjiang, Harbin 150001 (China); Ke, H.; Rao, J.C.; Zhou, Y. [Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Heilongjiang, Harbin 150001 (China)

    2010-04-09

    Ferroelectric PMN-PT (68/32) thin films, about 250 nm in thickness, have been successfully grown on Pt/Ti/SiO{sub 2}/Si substrate by a modified sol-gel process. Pure perovskite phase with highly (1 1 1)-preferred orientation, determined by X-ray diffraction, was formed in the PMN-PT thin films when annealed at 650 {sup o}C. The pyrochlore phase has been effectively avoided through a variation of the processing parameters such as Mg content, Mg precursor and annealing temperature during thin film deposition. FE-SEM investigation showed that the films have a smooth and crack-free surface with densely packed grains after annealed at 650 {sup o}C. The annealed films exhibited well-defined hysteresis loops, with a respective remanent polarization P{sub r} of 16.1 {mu}C/cm{sup 2} and coercive field E{sub c} of 71.2 kV/cm at an applied electric field of 400 kV/cm at room temperature.

  2. Exchange interaction in pyrochlore vanadates Lu2V2O7 and Y2V2O7: Ab initio approach

    Science.gov (United States)

    Nazipov, D. V.; Nikiforov, A. E.; Chernyshev, V. A.

    2016-10-01

    The exchange interaction in vanadates with the pyrochlore structure, namely, Lu2V2O7 and Y2V2O7, has been investigated using the first-principles approach. The isotropic exchange coupling constants have been determined. The calculations have been performed within the unrestricted Hartree-Fock (UHF) approximation, as well as in the framework of the density functional theory (DFT), using hybrid functionals. It has been shown that, in the description of the exchange interaction in the compounds under investigation, the nonlocal Hartree-Fock exchange should be taken into account. The splitting patterns of the 3 d 1 level of the V4+ ion in the crystal field have been obtained within the model approach. The calculation has been carried out in the approximation of point charges taking into account the spin-orbit interaction. It has been revealed that the "orbital liquid" state cannot be observed in the compounds under investigation, because the exchange interaction energy is significantly less than the energy spacing between the ground state and the first excited state. The orbital ordering has been analyzed, and the spin density maps have been constructed.

  3. Magnetic Moments and Ordered States in Pyrochlore Iridates Nd2Ir2O7 and Sm2Ir2O7 Studied by Muon-Spin Relaxation

    Science.gov (United States)

    Asih, Retno; Adam, Noraina; Sakinah Mohd-Tajudin, Saidah; Puspita Sari, Dita; Matsuhira, Kazuyuki; Guo, Hanjie; Wakeshima, Makoto; Hinatsu, Yukio; Nakano, Takehito; Nozue, Yasuo; Sulaiman, Shukri; Ismail Mohamed-Ibrahim, Mohamad; Biswas, Pabitra Kumar; Watanabe, Isao

    2017-02-01

    Magnetic-ordered states of the pyrochlore iridates Nd2Ir2O7 (Nd227) and Sm2Ir2O7 (Sm227), showing metal-insulator transitions at 33 and 117 K, respectively, were studied by both the muon-spin-relaxation (μSR) method and density functional theory (DFT) calculations. A long-range magnetic ordering of Ir moments appeared in conjunction with the metal insulator transition, and additional long-range-ordered states of Nd/Sm moments were confirmed at temperatures below about 10 K. We found that the all-in all-out spin structure most convincingly explained the present μSR results of both Nd227 and Sm227. Observed internal fields were compared with values derived from DFT calculations. The lower limits of the sizes of magnetic moments were estimated to be 0.12 μB and 0.2 μB for Ir and Nd moments in Nd227, and 0.3 μB and 0.1 μB for Ir and Sm moments in Sm227, respectively. Further analysis indicated that the spin coupling between Ir and Nd/Sm moments was ferromagnetic for Nd227 and antiferromagnetic for Sm227.

  4. Heat capacity and magnetic properties of fluoride CsFe{sup 2+}Fe{sup 3+}F{sub 6} with defect pyrochlore structure

    Energy Technology Data Exchange (ETDEWEB)

    Gorev, M.V., E-mail: gorev@iph.krasn.ru [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Flerov, I.N. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Tressaud, A. [Institut de Chimie de la Matière Condensée, ICMCB-CNRS, Université Bordeaux, 33608 Pessac Cedex (France); Bogdanov, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk (Russian Federation); Kartashev, A.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Krasnoyarsk State Agrarian University, 660049 Krasnoyarsk (Russian Federation); Bayukov, O.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Eremin, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Krylov, A.S. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation)

    2016-05-15

    Heat capacity, Mössbauer and Raman spectra as well as magnetic properties of fluoride CsFe{sub 2}F{sub 6} with defect pyrochlore structure were studied. In addition to recently found above room temperature three successive structural transformations Pnma-Imma-I4{sub 1}amd-Fd-3m, phase transition of antiferromagnetic nature with the 13.7 K Neel temperature and a broad heat capacity anomaly with a maximum at about 30 K were observed. The room temperature symmetry Pnma is unchanged at least down to 7 K. Simple model of indirect bond used to estimate the exchange interactions and to propose a magnetic structure model. - Graphical abstract: The ordered arrangement of Fe{sup 2+} and Fe{sup 3+} ions in high-spin states as well as antiferromagnetic phase transition followed by significant magnetic frustrations were found in pyrocholore-related CsFe{sup 2+}Fe{sup 3+}F{sub 6}. A magnetic structure was proposed using a simple model of indirect bonds. - Highlights: • The Pnma structure in pyrocholore CsFe{sub 2}F{sub 6} is stable down to helium temperature. • Mössbauer spectra confirmed the ordering of Fe{sup 2+} and Fe{sup 3+} ions. • Antiferromagnetic transformation and significant magnetic frustrations are found. • Experimental magnetic entropy agrees with entropy for Fe ions in high-spin state. • Superexchange interactions were calculated and a magnetic structure was proposed.

  5. Evolution of structure, magnetism, and electronic transport in the doped pyrochlore iridate Y2Ir2 -xRuxO7

    Science.gov (United States)

    Kumar, Harish; Dhaka, R. S.; Pramanik, A. K.

    2017-02-01

    The interplay between spin-orbit coupling (SOC) and electron correlation (U ) is considered for many exotic phenomena in iridium oxides. We have investigated the evolution of structural, magnetic, and electronic properties in the pyrochlore iridate Y2Ir2 -xRuxO7 where the substitution of Ru has been aimed to tune this interplay. The Ru substitution does not introduce any structural phase transition, however, we do observe an evolution of lattice parameters with the doping level x . X-ray photoemission spectroscopy (XPS) study indicates Ru adopts the charge state of Ru4 + and replaces the Ir4 + accordingly. Magnetization data reveal both the onset of magnetic irreversibility and the magnetic moment decreases with progressive substitution of Ru. These materials show a nonequilibrium low temperature magnetic state as revealed by magnetic relaxation data. Interestingly, we find the magnetic relaxation rate increases with substitution of Ru. The electrical resistivity shows an insulating behavior in the whole temperature range, however, resistivity decreases with the substitution of Ru. The nature of electronic conduction has been found to follow power-law behavior for all the materials.

  6. Spin dynamics of the pyrochlore magnets Gd2Ti2O7 and Gd2Sn2O7 in the paramagnetic state

    Science.gov (United States)

    Sosin, S. S.; Prozorova, L. A.; Smirnov, A. I.; Bonville, P.; Jasmin-Le Bras, G.; Petrenko, O. A.

    2008-03-01

    The strongly correlated disordered phase of two highly frustrated pyrochlore magnets Gd2Ti2O7 and Gd2Sn2O7 is probed using electron-spin resonance in the temperature range 1.3-30K . The deviation of the absorption line from the paramagnetic position ν=γH observed in both compounds below the Curie-Weiss temperature ΘCW≃10K suggests an opening up of a gap in the excitation spectra. On cooling to 1.3K (which is above the ordering transition TN≃1.0K ) the resonance spectrum is transformed into a wideband of excitations with the gap amounting to Δ≃26GHz (1.2K) in Gd2Ti2O7 and 18GHz (0.8K) in Gd2Sn2O7 . The gaps increase linearly with the external magnetic field. For Gd2Ti2O7 this branch coexists with an additional nearly paramagnetic line absent in Gd2Sn2O7 . These low-lying excitations with gaps, which are preformed above the ordering transition, may be interpreted as collective spin modes split by the single-ion anisotropy.

  7. Swift heavy ion track formation in Gd2Zr2-xTixO7 pyrochlore: Effect of electronic energy loss

    Science.gov (United States)

    Lang, Maik; Toulemonde, Marcel; Zhang, Jiaming; Zhang, Fuxiang; Tracy, Cameron L.; Lian, Jie; Wang, Zhongwu; Weber, William J.; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2014-10-01

    The morphology of swift heavy ion tracks in the Gd2Zr2-xTixO7 pyrochlore system has been investigated as a function of the variation in chemical composition and electronic energy loss, dE/dx, over a range of energetic ions: 58Ni, 101Ru, 129Xe, 181Ta, 197Au, 208Pb, and 238U of 11.1 MeV/u specific energy. Bright-field transmission electron microscopy, synchrotron X-ray diffraction, and Raman spectroscopy reveal an increasing degree of amorphization with increasing Ti-content and dE/dx. The size and morphology of individual ion tracks in Gd2Ti2O7 were characterized by high-resolution transmission electron microscopy revealing a core-shell structure with an outer defect-fluorite dominated shell at low dE/dx to predominantly amorphous tracks at high dE/dx. Inelastic thermal-spike calculations have been used together with atomic-scale characterization of ion tracks in Gd2Ti2O7 by high resolution transmission electron microscopy to deduce critical energy densities for the complex core-shell morphologies induced by ions of different dE/dx.

  8. Coherent phonons in pyrochlore titanates A2Ti2O7 (A= Dy, Gd, Tb): A phase transition in Dy2Ti2O7 at 110 K

    Science.gov (United States)

    Kamaraju, N.; Kumar, Sunil; Saha, Surajit; Singh, Surjeet; Suryanarayanan, R.; Revcolevschi, A.; Sood, A. K.

    2011-04-01

    We study the generation of coherent optical phonons in spin-frustrated pyrochlore single crystals Dy2Ti2O7, Gd2Ti2O7, and Tb2Ti2O7 using femtosecond laser pulses (65 fs, 1.57 eV) in degenerate time-resolved transmission experiments as a function of temperature from 4 to 296 K. At 4 K, two coherent phonons are observed at ~5.3 THz (5.0 THz) and ~9.3 THz (9.4 THz) for Dy2Ti2O7 (Gd2Ti2O7), whereas three coherent phonons are generated at ~5.0, 8.6, and 9.7 THz for Tb2Ti2O7. In the case of spin-ice Dy2Ti2O7, a clear discontinuity is observed in the linewidths of both the coherent phonons as well as in the phase of lower-energy coherent phonon mode, indicating a subtle structural change at 110 K. Another important observation is a phase difference of π between the modes in all the samples, thus suggesting that the driving forces behind the generation of these modes could be different in nature, unlike a purely impulsive or displacive mechanism.

  9. Molecular dynamics evidence for alkali-metal rattling in the β-pyrochlores, AOs2O6 (A = K, Rb, Cs).

    Science.gov (United States)

    Shoko, E; Peterson, V K; Kearley, G J

    2013-11-27

    We have used ab initio molecular dynamics simulations validated against inelastic neutron scattering data to study alkali-metal dynamics in the β-pyrochlore osmates AOs2O6 (A=K, Rb, Cs) at 300 K to gain insight into the microscopic nature of rattling dynamics in these materials. Our results provide new evidence at the microscopic level for rattling dynamics: (1) the elemental magnitude spectra calculated from the MD show a striking dominance by the alkali metals at low energies indicating weak coupling to the cage, (2) the atomic root-mean-square displacements for the alkali metals are significantly larger than for the other atoms, e.g., 25% and 150% larger than O and Os, respectively, in KOs2O6, and (3) motions of the alkali metals are weakly correlated to the dynamics in their immediate environment, e.g. K in KOs2O6 is 6 times less sensitive to its local environment than Os, indicating weak bonding of the K. There is broadening of the elemental spectra of the alkali metals from Cs to K corresponding to a similar broadening of the local potential around these atoms as determined from potential of mean-force calculations. This feature of the spectra is partly explained by the well-known increase in the relative cage volume with decreasing atomic size of the alkali metal. We find that for the smallest rattler in this series (K) the larger relative cage volume allows this atom freedom to explore a large space inside the cage leading to vibration at a broader range of frequencies, hence a broader spectrum. Thus, since K is considered the best rattler in this series, these findings suggest that a significant feature of a good rattler is the ability to vibrate at several different but closely spaced frequencies.

  10. Synthesis, characterization, photocatalytic and conductivity studies of defect pyrochlore KM{sub 0.33}Te{sub 1.67}O{sub 6} (M=Al, Cr and Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Guje, Ravinder; Ravi, G.; Palla, Suresh; Rao, K. Nageshwar; Vithal, M., E-mail: mugavithal@gmail.com

    2015-08-15

    Graphical abstract: - Highlights: • New defect pyrochlores, KM{sub 0.33}Te{sub 1.67}O{sub 6} (M = Al, Cr and Fe), are prepared. • Structural, morphological and optical properties of these materials were studied. • Methylene blue degradation is studied in the presence of these catalysts. • The variation of conductivity with temperature follows the Arrhenius equation. - Abstract: Defect pyrochlores of composition KM{sub 0.33}Te{sub 1.67}O{sub 6} (M = Al, Cr and Fe) were prepared by solid state method. Structural, morphological and optical properties of these materials were obtained by XRD, Raman, SEM, particle size analyser, and UV–Visible diffuse reflectance techniques. The lattice parameter “a” was deduced for all the materials from Rietveld refinement program, Fullprof.2k by refining d-lines. The photocatalytic activities of these materials were evaluated by photodegradation of methylene blue. The mechanistic degradation pathway of methylene blue (MB) was studied in the presence of KAl{sub 0.33}Te{sub 1.67}O{sub 6} using terepthalic acid. The DC conductivity measurements of all compositions were carried out in the temperature range 373–673 K. The variation of conductivity with temperature is explained.

  11. Transitions and Spin Dynamics at Very Low Temperature in the Pyrochlores Yb{sub 2}Ti{sub 2}O{sub 7} and Gd{sub 2}Sn{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, P.; Hodges, J. A.; Bertin, E.; Bouchaud, J.-Ph.; Dalmas de Reotier, P.; Regnault, L.-P.; Ronnow, H. M.; Sanchez, J.-P.; Sosin, S.; Yaouanc, A. [Service de Physique de l' Etat Condense, C.E.A. - Saclay (France)

    2004-12-15

    The very low temperature properties of two pyrochlore compounds, Yb{sub 2}Ti{sub 2}O{sub 7} and Gd{sub 2}Sn{sub 2}O{sub 7}, were investigated using an ensemble of microscopic and bulk techniques. In both compounds, a first order transition is evidenced, as well as spin dynamics persisting down to the 20 mK range. The transition however has a quite different character in the two materials: whereas that in Gd{sub 2}Sn{sub 2}O{sub 7} (at 1 K) is a magnetic transition towards long range order, that in Yb{sub 2}Ti{sub 2}O{sub 7} (at 0.24 K) is reminiscent of the liquid-gas transition, in the sense that it involves a 4 orders of magnitude drop of the spin fluctuation frequency, with no long range order. We attribute these unusual features to the frustration of the antiferromagnetic exchange interaction in the pyrochlore lattice.

  12. Lattice dynamics of rare-earth titanates with the structure of pyrochlore R 2Ti2O7 ( R = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu): Ab initio calculation

    Science.gov (United States)

    Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.

    2015-05-01

    The ab initio calculation has been performed for the crystal structure and the phonon spectrum of titanates with the structure of pyrochlore R 2Ti2O7 ( R = Gd-Lu). The frequencies and types of fundamental vibrations have been found. For R = Tb, Tm, and Yb, this calculation has been carried out for the first time; furthermore, there is no available information on experimental studies of the phonon spectrum for Tm and Yb. The influence of hydrostatic pressure to 35 GPa on the structure, dynamics, and elastic properties of the Gd2Ti2O7 lattice has been investigated. The dependence of the phonon frequencies on the pressure has been obtained. The calculations have predicted that the relative change in the pyrochlore structure volume during compression at pressures to 35 GPa is well described by the third-order Birch-Murnaghan equation of states. The results of the calculations agree with the available experimental data. It has been shown that the structural, dynamic, and elastic properties of the R 2Ti2O7 crystal lattice can be adequately described in the case where the inner shells of the RE ion up to 4 f are replaced by the pseudopotential.

  13. Order and disorder in the local and long-range structure of the spin-glass pyrochlore, Tb{sub 2}Mo{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu; Huq, Ashfia; Booth, Corwin H.; Ehlers, Georg; Greedan, John E.; Gardner, Jason S.

    2011-02-11

    To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb{sub 2}Mo{sub 2}O{sub 7} is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction (NPD), and local structure information was obtained from the extended x-ray absorption fine structure (EXAFS) technique. While the long-range structure appears generally well ordered, enhanced mean-squared site displacements on the O(1) site and the lack of temperature dependence of the strongly anisotropic displacement parameters for both the Mo and O(1) sites indicate some disorder exists. Likewise, the local structure measurements indicate some Mo-Mo and Tb-O(1) nearest-neighbor disorder exists, similar to that found in the related spin-glass pyrochlore, Y{sub 2}Mo{sub 2}O{sub 7}. Although the freezing temperature in Tb{sub 2}Mo{sub 2}O{sub 7}, 25 K, is slightly higher than in Y{sub 2}Mo{sub 2}O{sub 7}, 22 K, the degree of local pair distance disorder is actually less in Tb{sub 2}Mo{sub 2}O{sub 7}. This apparent contradiction is considered in light of the interactions involved in the freezing process.

  14. Syntheses and properties of a family of new compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=La, Pr, Nd, Sm–Ho) with an ordered pyrochlore structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuo; Hu, Yufei [Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang, Yingxia, E-mail: Wangyx@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Kamiyama, Takashi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Wang, Bingwu; Li, Zhaofei [Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lin, Jianhua, E-mail: jhlin@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2014-09-15

    Isostructural compounds RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} (RE=La, Pr, Nd, Sm–Ho) with an ordered pyrochlore structure were synthesized. The structure of La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} was solved ab initio based on powder XRD data, and refined by combining with high resolution neutron diffraction data. La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} crystallizes in the space group R-3m with the unit cell parameters a=7.52954(2) Å and c=17.59983(6) Å. The structures of other members in this family are confirmed by Rietveld refinement using powder X-ray diffraction data. The cations (RE, Sb and Co) in RE{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} are orderly distributed, presenting as [RE{sub 3}Co][Sb{sub 3}Co]O{sub 14} formula, and giving rise to two distinctive Kagome lattices constructed by RE{sup 3+} and Sb{sup 5+}, respectively. Co{sup 2+} occupies 8-coordinated and 6-coordinated environments, showing low spin (S=1/2) and high spin (S=3/2) states respectively. The magnetic susceptibility and UV–visual spectroscopy supports the magnetic observation. TDDFT calculation was performed to interpret the electronic states. The compounds [RE{sub 3}Co][Sb{sub 3}Co]O{sub 14} provide a profound example in which the ideal 2D Kagome lattice is derived from the 3D pyrochlore-type structure by an ordered distribution of the metal cations. - Graphical abstract: La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} crystallizes in a pyrochlore related structure with an ordered distribution of cations, giving rise to two sets of ideal 2D Kagome lattices formed by La{sup 3+} or Sb{sup 5+} respectively. This rhombohedral pyrochlore is a tolerant structure for stable compounds composed by many light rare-earth and d-transition elements. Substituting Zn{sup 2+} or Mg{sup 2+} for Co{sup 2+} will provide a series of compounds useful for studying magnetic interactions in the rare-earth Kagome lattices. - Highlights: • Pyrochlore-type La{sub 3}Sb{sub 3}Co{sub 2}O{sub 14} shows an ordered distribution of

  15. Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets G d2G e2O7 and G d2P t2O7 synthesized under high pressure

    Science.gov (United States)

    Li, X.; Cai, Y. Q.; Cui, Q.; Lin, C. J.; Dun, Z. L.; Matsubayashi, K.; Uwatoko, Y.; Sato, Y.; Kawae, T.; Lv, S. J.; Jin, C. Q.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Cheng, J.-G.

    2016-12-01

    G d2S n2O7 and G d2T i2O7 have been regarded as good experimental realizations of the classical Heisenberg pyrochlore antiferromagnet with dipolar interaction. The former was found to adopt the Palmer-Chalker state via a single, first-order transition at TN≈1 K , while the latter enters a distinct, partially ordered state through two successive transitions at TN 1≈1 K and TN 2= 0.75 K . To shed more light on their distinct magnetic ground states, we have synthesized two more gadolinium-based pyrochlore oxides, G d2G e2O7 and G d2P t2O7 , under high-pressure conditions and performed detailed characterizations via x-ray powder diffraction, dc and ac magnetic susceptibility, and specific heat measurements down to 100 mK. We found that both compounds enter a long-range antiferromagnetically ordered state through a single, first-order transition at TN= 1.4 K for G d2G e2O7 and TN= 1.56 K for G d2P t2O7 , with the specific heat anomaly similar to that of G d2S n2O7 rather than G d2T i2O7 . Interestingly, the low-temperature magnetic specific heat values of both G d2G e2O7 and G d2P t2O7 were found to follow nicely the T3 dependence as expected for a three-dimensional antiferromagnet with gapless spin-wave excitations. We have rationalized the enhancement of TN in terms of the reduced Gd-Gd distances for the chemically pressurized G d2G e2O7 and the addition of extra superexchange pathways through the empty Pt -eg orbitals for G d2P t2O7 . Our current study has expanded the family of gadolinium-based pyrochlores and permits us to achieve a better understanding of their distinct magnetic properties in a more comprehensive perspective.

  16. Lifshitz metal–insulator transition induced by the all-in/all-out magnetic order in the pyrochlore oxide Cd{sub 2}Os{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Hiroi, Z., E-mail: hiroi@issp.u-tokyo.ac.jp; Hirose, T.; Nagashima, I.; Okamoto, Y. [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277–8581 (Japan); Yamaura, J. [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, Kanagawa 226–8503 (Japan)

    2015-04-01

    We investigate the metal–insulator transition (MIT) of the osmium pyrochlore oxide Cd{sub 2}Os{sub 2}O{sub 7} through transport and magnetization measurements. The MIT and a magnetic transition to the all-in/all-out (AIAO) order occur simultaneously at 227 K. We propose a mechanism based on a Lifshitz transition induced by the AIAO magnetic order probably via strong spin–orbit couplings in the specific semimetallic band structure. It is suggested, moreover, that two observed puzzles, a finite conductivity near T = 0 and an emergence of weak ferromagnetic moments, are not bulk properties but originate at magnetic domain walls between two kinds of AIAO domains.

  17. Probing cation antisite disorder in Gd2 Ti2 O7 pyrochlore by site-specific near-edge x-ray-absorption fine structure and x-ray photoelectron spectroscopy

    Science.gov (United States)

    Nachimuthu, P.; Thevuthasan, S.; Engelhard, M. H.; Weber, W. J.; Shuh, D. K.; Hamdan, N. M.; Mun, B. S.; Adams, E. M.; McCready, D. E.; Shutthanandan, V.; Lindle, D. W.; Balakrishnan, G.; Paul, D. M.; Gullikson, E. M.; Perera, R. C. C.; Lian, J.; Wang, L. M.; Ewing, R. C.

    2004-09-01

    Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for an anisotropic distribution of Ti and O. The extra features reported in the aforementioned communication resulted from charging effects and incomplete surface cleaning. Thus, a result confirming the direct observation of simultaneous cation-anion antisite disordering and lending credence to the split vacancy model has been clarified.

  18. Modifications of structural and physical properties induced by swift heavy ions in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, N., E-mail: neila.sellami@u-psud.fr [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Sattonnay, G. [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Grygiel, C.; Monnet, I. [CIMAP, CEA, CNRS, Université de Caen, BP 5133, F-14070 Caen Cedex 5 (France); Debelle, A. [CSNSM, CNRS, IN2P3, Université Paris-Sud, Bât. 108, F- 91405 Orsay (France); Legros, C. [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Menut, D. [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-Sur-Yvette (France); Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Simon, P. [CNRS UPR 3079 CEMHTI, 1D avenue de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France); Bechade, J.L [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-Sur-Yvette (France); Thomé, L. [CSNSM, CNRS, IN2P3, Université Paris-Sud, Bât. 108, F- 91405 Orsay (France)

    2015-12-15

    The structural transformations induced by ionization processes in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlores irradiated with swift heavy ions have been studied using XRD and Raman experiments. Results show that irradiation induces amorphization and that the phase transformation build-up can be accounted for in the framework of a model involving a single-impact mechanism. The radiation induced amorphization build-up is faster in Gd{sub 2}Ti{sub 2}O{sub 7} than in Y{sub 2}Ti{sub 2}O{sub 7}. Moreover, a decrease of the thermal conductivity (measured by the laser flash method) is induced by irradiation both in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7}.

  19. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan

    2013-12-24

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  20. Preparation, characterization and photocatalytic studies of N, Sn-doped defect pyrochlore oxide KTi{sub 0.5}W{sub 1.5}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Jitta, Raju Reddy; Guje, Ravinder; Veldurthi, Naveen Kumar; Prathapuram, Shrujana; Velchuri, Radha; Muga, Vithal, E-mail: mugavithal@gmail.com

    2015-01-05

    Highlights: • N and Sn doped KT{sub 0.5}W{sub 1.5}O{sub 6} were successfully prepared by low temperature methods. • MB and RhB were degraded in presence of visible light active Sn doped KT{sub 0.5}W{sub 1.5}O{sub 6}. • The mechanism involved in photodegradation process was studied. - Abstract: Quaternary oxides containing transition metal and tungsten with the general formula AMWO{sub 6} (A = K, Rb, Cs; M = Sb, Nb, Ti) have been studied as photocatalysts for decomposition of organic dyes. In this paper, defect pyrochlore of composition KTi{sub 0.5}W{sub 1.5}O{sub 6} was prepared via facile sol–gel method. Its nitrogen and tin doped analogues were prepared by solid state and ion exchange methods respectively. All compounds were characterized by powder X-ray diffraction, Thermogravimetric analysis, FT-IR, Raman, Scanning electron microscopy and UV–Vis diffuse reflectance spectra. X-ray photoelectron spectroscopy and energy dispersive spectroscopy were also used to characterize the incorporation of doped ions into the defect pyrochlore lattice. The photocatalytic activity of all compounds was studied by degradation of methylene blue and Rhodamine B. The tin doped KTi{sub 0.5}W{sub 1.5}O{sub 6} shows higher photocatalytic activity against both the dyes. The experimental results show that the higher photocatalytic activity of tin doped KTi{sub 0.5}W{sub 1.5}O{sub 6} is due to more absorption of light energy in the visible region attributable to the lowering of bandgap energy. Further, the role of reactive intermediate species in the photocatalytic degradation of dyes was studied using their appropriate scavengers and the obtained results show that {sup ·}OH radicals produced in the photocatalytic reaction play dominant role.

  1. Synthesis and characterization of Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} pyrochlore sun-light-responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Naceur, Benhadria, E-mail: nacer1974@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Abdelkader, Elaziouti, E-mail: elaziouti_a@yahoo.com [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Dr Moulay Tahar University, Saida (Algeria); Nadjia, Laouedj, E-mail: nlaouedj@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Dr Moulay Tahar University, Saida (Algeria); Sellami, Mayouf, E-mail: Mourad7dz@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Noureddine, Bettahar, E-mail: nbettahar2001@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria)

    2016-02-15

    Graphical abstract: Heterogeneous photo Fenton process with dye sensitized mechanism of RhB by Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} compound. - Highlights: • Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} (BSCO) catalyst was synthesized by improved solid state reaction method. • BSCO/H{sub 2}O{sub 2}/UVA and BSCO/H{sub 2}O{sub 2}/SL catalyst systems exhibit excellent photocatalytic activities for rhodamine B. • The photocatalytic degradation was preceded via heterogeneous photo Fenton mechanism process. • ·OH radicals are the main reactive species for the degradation of RhB. - Abstract: Novel nanostructure pyrochlore Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} was successfully synthesized via solid state reaction method in air. The as-synthesized photocatalyst was characterized by X-ray diffraction, Scanning electron microscopy and UV–vis diffuse reflectance spectroscopy techniques. The results showed that the BSCO was crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The average particle size and band gap for BSCO were D = 76.29 nm and E{sub g} = 1.50 eV respectively. Under the optimum conditions for discoloration of the dye: initial concentration of 20 mg L{sup −1} RhB, pH 7, 25 °C, 0.5 mL H{sub 2}O{sub 2} and BSCO/dye mass ration of 1 g L{sup −1}, 97.77 and 90.16% of RhB were removed with BSCO/H{sub 2}O{sub 2} photocatalytic system within 60 min of irradiation time under UVA- and SL irradiations respectively. Pseudo-second-order kinetic model gave the best fit, with highest correlation coefficients (R{sup 2} ≥ 0.99). On the base of these results, the mechanism of the enhancement of the discoloration efficiency was discussed. .

  2. Study of the nearly constant dielectric loss regime in ionic conductors with pyrochlore-like structure; Estudio del regimen de perdidas dielectricas constantes en conductores ionicos con estructura de tipo pirocloro

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Guillen, M. r.; Fuentes, A. F.; Diaz-Guillen, J. a.; Santamaria, J.; Leon, C.

    2012-07-01

    We report on ac conductivity measurement of oxide ion conductors with composition Gd{sub 2}(ZryTi{sub 1}-y){sub 2}O{sub 7} and a pyrochlore type structure, at temperatures between -20 and 250 degree centigrade and in the frequency range from 1 Hz to 3 MHz by using impedance spectroscopy. Results show that a crossover from a power law dependence to a linear frequency dependence (or nearly constant loss behavior) in the ac conductivity can be clearly observed in a wide temperature range. This crossover is found to be thermally activated, and its activation energy ENCL to be much lower than the activation energy Edc for the dc conductivity. We also found that the values of ENCL are almost independent of composition, and therefore of the concentration of mobile oxygen vacancies, unlike those of Edc. Moreover, for each composition, the values of E{sub N}CL=0.67{+-}0.04 eV are very similar to those estimated for the energy barrier for the ions to leave their cages, E{sub {alpha}}=0.69{+-}0.05 eV. These results support that the nearly constant loss behavior, ubiquitous in ionic conductors, is originated from caged ion dynamics. (Author) 33 refs.

  3. Increased stability of nanocrystals of Gd{sub 2}(Ti{sub 0.65}Zr{sub 0.35}){sub 2}O{sub 7} pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.X., E-mail: zhangfx@umich.ed [Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Lian, J. [Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Zhang, J.M. [Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Moreno, K.J.; Fuentes, A.F. [Cinvestav Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila (Mexico); Wang Zhongwu [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853 (United States); Ewing, R.C., E-mail: rodewing@umich.ed [Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2010-04-02

    Pyrochlore powders Gd{sub 2}(Ti{sub 0.65}Zr{sub 0.35}){sub 2}O{sub 7}, were synthesized by mechanical milling of constituent oxides, and their grain-sizes (from <20 nm to {mu}m-sized) were controlled by subsequent thermal treatments (800-1500 {sup o}C). Using in situ X-ray diffraction (XRD) measurements at pressures up to more than 40 GPa, the bulk moduli were determined to be greater (>10%) than the values of the end-member compositions: Gd{sub 2}Ti{sub 2}O{sub 7} and Gd{sub 2}Zr{sub 2}O{sub 7}. The higher values are attributed to the mixed occupancy of cations at the A- and B-sites. There was also a significant increase in the stability of Gd{sub 2}(Ti{sub 0.65}Zr{sub 0.35}){sub 2}O{sub 7} as the grain-size decreased below a critical value. The nanocrystalline sample, <20 nm, had a transition to the high-pressure phase that was {approx}10 GPa higher than that for the same composition but with grain-size larger than 100 nm.

  4. Comparative study of the Mn4+2E → 4A2 luminescence in isostructural RE2Sn2O7:Mn4+ pyrochlores (RE3+ = Y3+, Lu3+ or Gd3+)

    Science.gov (United States)

    Senden, Tim; Broers, Fréderique T. H.; Meijerink, Andries

    2016-10-01

    Red emitting Mn4+-doped crystalline materials have potential for application in light emitting devices and therefore it is important to understand how the optical properties of Mn4+ are influenced by the host lattice the Mn4+ ions are situated in. In this work we investigate the effect of the host cations in the second coordination sphere on the Mn4+ emission by studying the luminescence of Mn4+ ions doped into three isostructural rare earth (RE) stannate RE2Sn2O7 pyrochlores (RE3+ = Y3+, Lu3+ or Gd3+). It is found that the energies of the Mn4+4T1 and 4T2 states significantly increase with decreasing Mn4+-O2- distance, whereas the energy of the 2E level shows a small shift to higher energies from RE3+ = Gd3+ to Lu3+ to Y3+. The observed trend for the 2E level energy is not related to the size of the RE3+ ion and is not in line with theoretical calculations reported previously. Low temperature emission spectra of the RE2Sn2O7:Mn4+ phosphors reveal that only asymmetrical vibronic modes couple to the 2E → 4A2 transition and furthermore show there is significant and unexpected local disorder for Mn4+ in Gd2Sn2O7 that is not observed for Mn4+ in the other hosts. Photoluminescence decay measurements demonstrate that the luminescence of RE2Sn2O7:Mn4+ is strongly quenched below room temperature which is assigned to non-radiative relaxation via a low-lying O2- → Mn4+ charge-transfer state.

  5. The Crystal Structure and Chemistry of Pyrochlore-and Hollandite-Type Minerals and Their Application as Nuclear Waste-Forms%烧绿石及碱硬锰矿型矿物晶体化学及其核废料固化基材研究进展

    Institute of Scientific and Technical Information of China (English)

    李国武; 邢晓琳; 徐凯

    2016-01-01

    Pyrochlore- and hollandite-type minerals were extensively investigated as the nuclear waste-forms, showing the unique properties on thermal and chemical stabilities and irradiation resistance. In the past decade, our group methodically studied the crystal structure and chemistry of pyrochlore- and holladnite-type natural minerals and their synthesized compounds. According to X-ray diffraction analysis of fourteen synthesized rare-earth pyrochlore (Ree2B2O7, B=Ti, Zr), both Ree2Ti2O7 and Ree2Zr2O7 show obvious crystal structure variable. The study of hollandite crystal structure indicates that contents of cationA (A0-2B8O16,A=Na, K, Sr, Ba, etc.,B=Ti, Fe, Mn, Al, etc.) in the tunnel and parameters regarding anisotropy usually cause one-dimension incommensurate modulation structure along with c direction. This paper summarized our recent results on their structure and chemistry, and reviewed the research and development of their application in nuclear waste immobilization.%研究表明烧绿石和碱硬锰矿在固化核废料方面具有良好的性能。近年来我们对烧绿石型和碱硬锰矿型天然矿物以及系列人工合成矿物的晶体结构及晶体化学进行了系统详细的研究。通过人工合成14种镧系稀土的Ti和Zr的Ree2B2O7系列氧化物的X射线衍射实验,发现其Ti的Ree2Ti2O7系列氧化物和Zr的Ree2Zr2O7系列氧化物都出现了明显的晶变现象。晶体结构研究显示碱硬锰矿型结构矿物中 A 类阳离子在孔道中的含量变化及各向异性参数的变化导致了该型结构往往存在沿 c轴方向的一维非公度调制结构。同时对烧绿石和碱硬锰矿在固化核废料方面的研究现状及进展进行了综述。

  6. Superconductivity in the {beta}-pyrochlore osmates

    Energy Technology Data Exchange (ETDEWEB)

    Bruehwiler, M. [Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich (Switzerland)], E-mail: markus.bruehwiler@phys.ethz.ch; Schulze, T.; Kazakov, S.M.; Bukowski, Z.; Puzniak, R.; Zhigadlo, N.D.; Karpinski, J.; Batlogg, B. [Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2007-09-01

    To elucidate the effect of the mass renormalization on the superconducting state in AOs{sub 2}O{sub 6}, we have performed thermodynamic and transport measurements on K{sub x}Rb{sub 1-x}Os{sub 2}O{sub 6} with x = 0-1. We show that KOs{sub 2}O{sub 6} (RbOs{sub 2}O{sub 6}) is an intermediate to strong-coupling superconductor with a coupling parameter {lambda}{sub ep} {approx} 1.2 ({lambda}{sub ep} {approx} 1). Quantifying {lambda}{sub ep} allows us to determine the mass enhancement over the calculated band electronic density of states in addition to the electron-phonon term. We correlate the additional enhancement with the upper critical field slope which is determined by orbital magnetism. In the normal state, the charge carriers scatter at a low-energetic phonon. This rattling motion appears as an Einstein contribution with three modes per Rb in the RbOs{sub 2}O{sub 6} specific heat data, suggesting the rattler being the alkali-ion.

  7. β型烧绿石氧化物超导体AOs_2O_6(A=K,Rb)的声子软化与超导电性%Phonon softening and superconductivity of β-pyrochlore oxide superconductors AOs2O6 (A=K, Rb)

    Institute of Scientific and Technical Information of China (English)

    孙家法; 王玮

    2012-01-01

    运用基于密度泛函理论的第一性原理计算方法,研究两种β型烧绿石氧化物超导体AOs_2O_6(A=K,Rb)的结构稳定性,声子软化以及与超导电性的关系.通过计算发现,AOs_2O_6中碱金属原子A(=K,Rb)沿〈111〉晶向具有不稳定性,且以K原子的不稳定性更为突出.同时,计算得到的KOs2_O_6在布里渊区中心的卢子频率普遍比RbOs_2O_6的低,使得KOs_2O_6的电声子耦合常数比RbOs_2O_6的大.本文计算结果表明,较小的碱金属原子K位于较大的氧笼子中,活动性较强,导致声子的软化,是引起KOs_2O_6具有较强的电声子耦合及较高的超导转变温度的根本原因.这些结果对解释两种β型烧绿石氧化物超导体AOs_2O_6(A=K,Rb)的超导电性具有重要意义.%Using the first-principles calculational method based on the density functional theory, we study the structural instabilities, phonon softenings, and their relation to the superconductivities of twoβ-pyrochlore oxide superconductors AOs206 (A=K, Rb). It is found that there are structural instabilities of alkali ions along the (111) direction in the two/3-pyrochlore oxide superconductors AOs206 (A=K, Rb), especially in KOs206. Meanwhile, a comparison of the pbonon frequency at zone-center between KOs206 and RbOs206 shows that the frequency of KOs206 is lower in general than that of RbOs206, leading to the stronger electron-phonon coupling. We conclude that K atom located in a large oxygen cage has an unusual large atomic displacement parameter and strong activity, thereby resulting in strong phonon softening. This is the foundamental cause for stronger electron-phonon coupling and higher superconducting transition temperature of KOs206. These are of significance for explaining the superconductivities inβ-pyrochlore oxide superconductors AOs2O6(A=K, Rb).

  8. Structures, phase transformations, and dielectric properties of (1-x)Bi{sub 2}Zn{sub 2/3}Nb{sub 4/3}O{sub 7}-xBi{sub 1.5}NiNb{sub 1.5}O{sub 7} pyrochlore ceramics prepared by aqueous sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.X.; Li, L.X., E-mail: lilingxia91@163.com; Dong, H.L.; Yu, S.H.; Xu, D.

    2015-02-15

    Highlights: • The sol-gel process was employed to produce (1-x)β-BZN-xBNN pre-nanopowders. • The phase structure evolution procedure in (1-x)β-BZN-xBNN system was determined. • A near-zero τ{sub ε} together with a high ε{sub r} was obtained at 900 °C. • The structure-dielectric property relationships of the ceramics were determined. - Abstract: As a candidate of thermostable low temperature co-fired ceramics (LTCC) material, (1-x)Bi{sub 2}Zn{sub 2/3}Nb{sub 4/3}O{sub 7}-xBi{sub 1.5}NiNb{sub 1.5}O{sub 7} (0.0 ⩽ x ⩽ 1.0) ceramics with improved dielectric properties have been prepared via aqueous sol-gel method. The relations of phase equilibrium, crystal structure and dielectric properties of the composites were investigated systematically. Phase transformation, from orthorhombic zirconolite-like to cubic pyrochlore structure, occured with the increasing Bi{sub 1.5}NiNb{sub 1.5}O{sub 7} content. The phase stability of the orthorhombic and cubic pyrochlore phase in the (1-x)β-BZN-xBNN system was dependent on the Bi{sup 3+} content as well as the distribution and variety of divalent cations, such as Ni{sup 2+}/Zn{sup 2+} ratio. The phase boundaries were located around x = 0.1 and x = 0.6 for orthorhombic and cubic phases, respectively. Near-zero temperature coefficient of dielectric constant (τ{sub ε}) was obtained and the dielectric constant (ε{sub r}) was in the range of 80-165 in this system, which were strongly correlated with phase composition. The (1-x)β-BZN-xBNN ceramic with x = 0.2 satisfied the EIA (Electronic Industries Association) specification NP0 (τ{sub ε}≤± 30 ppm/°C between -55 and 125 °C) exhibited excellent dielectric properties of ε{sub r} = 105.6, small dielectric tangent (tan δ) ∼ 10{sup -4}, τ{sub ε} = -11.1 ppm/°C with the low-firing temperature of 900 °C within the two-phase region, which can be a promising candidate for LTCC and multilayer components applications in high frequency and microwave range.

  9. Thermo-selective TmxTi1-xO2-x/2 nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application

    Science.gov (United States)

    Navas, Javier; Sánchez-Coronilla, Antonio; Aguilar, Teresa; de Los Santos, Desireé M.; Hernández, Norge C.; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2014-10-01

    This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From an experimental perspective, a method was used to synthesize thulium-doped TiO2 nanoparticles in which Tm3+ replaces Ti4+ in the lattice, which to our knowledge has neither been reported nor studied theoretically so far. Different proportions of anatase and rutile phases were obtained at different annealing temperatures, and XRD and Raman spectroscopy also revealed the presence of a pyrochlore phase (Tm2Ti2O7) at 1173 K. Thus, the structure of the Tm-doped nanoparticles was thermally-controlled. Furthermore, XPS showed the presence of Tm3+ in the samples synthesized, which produces oxygen vacancies to maintain the local neutrality in the lattice. The presence of Tm3+ in the samples led to changes in the UV-Vis absorption spectra, so they showed photoluminescence properties and new states in the band gap, which produce a new lower energy electronic transition than the main TiO2 one. Periodic DFT calculations were performed to understand the experimentally produced structures. The production of oxygen vacancies was analysed and the changes generated in the structure were fully detailed. The DOS and PDOS analyses confirmed the experimental results obtained using UV-Vis spectroscopy, and showed that the new electronic states in the band gap are due to interactions of the f state of Tm and the p state of O. Likewise, the charge study and the ELF analysis indicate that when Tm is introduced into the TiO2 structure, the Ti-O bond around the oxygen vacancy is strengthened. Finally, an example of a photocatalytic application was developed to show the high efficiency of the samples due to the heterojunction in the interfaces of the phases in the samples, which improved the charge separation and the good charge carrier mobility due to the presence of the pyrochlore phase, as was also shown theoretically.This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From

  10. Investigation of the Structural Stability of Ion-Implanted Gd2Ti2-xSnxO7 Pyrochlore-Type Oxides by Glancing Angle X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aluri, Esther Rani; Hayes, John R.; Walker, James D.S.; Grosvenor, Andrew P. (Saskatchewan)

    2016-03-24

    Rare-earth titanate and stannate pyrochlore-type oxides have been investigated in the past for the sequestration of nuclear waste elements because of their resistance to radiation-induced structural damage. In order to enhance this property, it is necessary to understand the effect of radioactive decay of the incorporated actinide elements on the local chemical environment. In this study, Gd2Ti2–xSnxO7 materials have been implanted with Au– ions to simulate radiation-induced structural damage. Glancing angle X-ray absorption near-edge spectroscopy (GA-XANES), glancing angle X-ray absorption fine structure (GA-EXAFS) analysis, and powder X-ray diffraction have been used to investigate changes in the local coordination environment of the metal atoms in the damaged surface layer. Examination of GA-XANES/EXAFS spectra from the implanted Gd2Ti2–xSnxO7 materials collected at various glancing angles allowed for an investigation of how the local coordination environment around the absorbing atoms changed at different depths in the damaged surface layer. This study has shown the usefulness of GA-XANES to the examination of ion-implanted materials and has suggested that Gd2Ti2–xSnxO7 becomes more susceptible to ion-beam-induced structural damage with increasing Sn concentration.

  11. Swelling Effects of Pyrochlore Gd2Ti2O7 Induced by Ne Ion Irradiation%Ne离子束辐照引起Gd_2Ti_2O_7烧绿石体积肿胀效应研究

    Institute of Scientific and Technical Information of China (English)

    李玉红; 许春萍

    2011-01-01

    Polycrystalline pyrochlore Gd2Ti2O7 compounds were irradiated with 400 keV Ne2+ ions at cryogenic temperature(~77 K).The irradiation fluences was ranging from 5×1014 to 1×1016 ions/cm2,corresponding to a peak ballistic damage dose of ~0.16 to 3.3 displacements per atom dpa.Irradiation-induced structural evolution was examined using grazing incidence X-ray diffraction(GIXRD) at angles from 0.25° to 3° degrees.It was found that the lattice parameter increases as a function of(1) X-ray incident angle and(2) ion irradiation fluence,suggesting that the irradiated layer is volumetrically swelled compared with the underlying un-irradiated substrate.At ion fluence of 1×1016 ions/cm2,the irradiation layer was found to be amorphous.%在液氮低温下用400 keV的Ne2+离子束对Gd2Ti2O7多晶烧绿石进行了辐照实验研究,离子束辐照量范围为5×1014—1×1016ions/cm2。利用掠X射线衍射技术对样品辐照层的结构变化进行了分析表征,X射线的掠射角分别为γ=0.25°,0.5°,1°和3°。结果表明:在该实验条件的离子束辐照下,Gd2Ti2O7辐照层会发生明显的体积肿胀效应,体积肿胀程度随入射离子束辐照量的增大而增大;在同一辐照量下,辐照层的体积肿胀程度也随X射线入射角的增大而增大。当辐照量达到1×1016ions/cm2时,辐照层发生非晶化相变。

  12. Magnetic ordering in pyrochlore Ho2Mn2O7

    DEFF Research Database (Denmark)

    Raju, N.P.; Greedan, J.E.; Pedersen, J.S.

    1996-01-01

    The magnetic susceptibility of Ho2Mn2O7 With a spontaneous rise below about 40 K and a paramagnetic Curie temperature of +39 K suggests a ferromagnetic ordering. Indeed neutron diffraction profiles show strongly enhanced Bragg peaks with a temperature dependence which indicates an apparent T-c...... approximate to 35 K. Nonetheless, the magnetic diffraction pattern is not consistent with a collinear ferro or ferrimagnetic ordering of the Ho3+ and Mn4+ sublattices. Furthermore, specific heat and small angle neutron scattering (SANS) show features which are also incompatible with conventional long...

  13. Protonic defects in pure and doped La2Zr2O7 pyrochlore oxide

    DEFF Research Database (Denmark)

    Björketun, Mårten; Knee, Christopher S.; Nyman, B. Joakim

    2008-01-01

    migration pathway that enables long-range transport is proposed. In addition, the interaction energies between protons and divalent Ba, Sr, Ca, and Mg dopants located on the La- and Zr-sites have been calculated. All interactions are found to be attractive; they are strong in the case of Ba and Mg and quite...

  14. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films.

    Science.gov (United States)

    Hwang, Kyusung; Kim, Yong Baek

    2016-07-15

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect.

  15. Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2005-01-01

    When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.

  16. C60 and U ion irradiation of Gd2TixZr2-xO7 pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik; Costantini, Jean Marc; Della-Negra, Serge; Ewing, Rodney C.

    2015-08-01

    Abstract

  17. Crystal-chemical and physicochemical properties of complex cadmium oxides with pyrochlore and columbite type of structure

    Energy Technology Data Exchange (ETDEWEB)

    Samigullina, R.F., E-mail: rina@ihim.uran.ru [Russian Academy of Sciences, Ural Branch, Institute of Solid State Chemistry, Ekaterinburg 620990 (Russian Federation); Krasnenko, T.I.; Rotermel, M.V.; Tyutyunnik, A.P. [Russian Academy of Sciences, Ural Branch, Institute of Solid State Chemistry, Ekaterinburg 620990 (Russian Federation); Titova, S.G.; Fedorova, O.M. [Russian Academy of Sciences, Ural Branch, Institute of Metallurgy, Ekaterinburg 620016 (Russian Federation)

    2015-11-15

    Single-phase samples of cadmium pyroniobate and metaniobate were successfully prepared by solid-state synthesis. The crystal structures of cadmium niobates were refined by full-profile fitting of X-ray powder diffraction patterns. The thermal behavior of cadmium niobates in air was studied by thermogravimetric (TG), differential thermal analysis (DTA) and X-ray powder diffraction at elevated temperatures. Found that CdNb{sub 2}O{sub 6} is stable in air up to 1150 °C, Cd{sub 2}Nb{sub 2}O{sub 7} – up to 1120 °C. Above these temperatures these niobates undergoes a solid state decay with volatilization of cadmium oxide, resulting in formation of metaniobate CdNb{sub 2}O{sub 6} from Cd{sub 2}Nb{sub 2}O{sub 7}, and niobium oxide Nb{sub 2}O{sub 5} from CdNb{sub 2}O{sub 6}. - Highlights: • The crystal structures of cadmium niobates were refined. • Linear thermal expansion coefficients of cadmium niobates Cd{sub 2}Nb{sub 2}O{sub 7} and CdNb{sub 2}O{sub 6} were determined. • The limits of thermal stability of both oxides in the air were found.

  18. Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: A study on lanthanum cerate–zirconate based compounds

    DEFF Research Database (Denmark)

    Besikiotis, Vasileios; Ricote, Sandrine; Jensen, Molly Hjorth

    2012-01-01

    protons become more dominating as charge carrier at temperatures below typically 500°C under wet conditions. The hydration enthalpies were determined by simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC). The contribution from ionic conductivity increases and the hydration...... enthalpy becomes more exothermic with higher cerium content, i.e. with more disordered materials. The proton conductivity decreases upon acceptor substitution of La3+ with Ca2+ which is attributed to trapping of the charge carriers by the effectively negative acceptor....

  19. A Validation of a Molecular Dynamics Simulation in Determining the Thermal Conductivity of a La-Zr Pyrochlore

    Science.gov (United States)

    2008-12-01

    Temperature (K) C on du ct iv ity (W /m -K ) MD Simulation Experiment (Zhou) Experiment (Suresh) AIP Core ( Chartier ) Simulation Data Trendline Figure 9...York: Oxford University Press, 2005. [8] A. Chartier , C. Meis, J. P. Crocombette, L. R. Corrales, and W. J. Weber, “Atomistic Modeling of

  20. Heat capacity of the frustrated magnetic pyrochlores Gd2Zr2O7 and Gd2Hf2O7

    Science.gov (United States)

    Durand, Alice M.; Klavins, Peter; Corruccini, L. R.

    2008-06-01

    The heat capacities of Gd2Zr2O7 and Gd2Hf2O7 both show sharp peaks in the vicinity of 0.77 K, consistent with the existence of long range magnetic order. They are superimposed in both cases on broader maxima centered at approximately 1 K, presumably due to short range spin correlations. Both compounds exhibit antiferromagnetic interactions, with Weiss constants of approximately -7 K. Comparisons are made to earlier results for the isomorphic compounds Gd2Ti2O7 and Gd2Sn2O7.

  1. Magnetic phases in a Gd2Ti2O7 pyrochlore for a field applied along the [100] axis

    Science.gov (United States)

    Petrenko, O. A.; Lees, M. R.; Balakrishnan, G.; Glazkov, V. N.; Sosin, S. S.

    2012-05-01

    We report on longitudinal and transverse magnetization measurements performed on single crystal samples of Gd2Ti2O7 for a magnetic field applied along the [100] direction. The measurements reveal the presence of previously unreported phases in fields below 10 kOe in addition to the higher-field-induced phases that are also seen for H∥[111], [110], and [112]. The proposed H-T phase diagram for the [100] direction looks distinctly different from all the other directions studied previously.

  2. X-ray Photoelectron Spectroscopy Study of Disordering in Gd2(Ti1-xZrx)2O7 Pyrochlores

    Science.gov (United States)

    Chen, J.; Lian, J.; Wang, L. M.; Ewing, R. C.; Wang, R. G.; Pan, W.

    2002-03-01

    The dramatic increases in ionic conductivity in Gd2(Ti1-xZrx)2O7 solid solution are related to disordering on the cation and anion lattices. Disordering in Gd2(Ti1-xZrx)2O7 was characterized using x-ray photoelectron spectroscopy (XPS). As Zr substitutes for Ti in Gd2Ti2O7 to form Gd2(Ti1-xZrx)2O7 (0.25

  3. Ruthenium-europium configuration in the Eu{sub 2}Ru{sub 2}O{sub 7} pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Pérez, S., E-mail: s.munozperez@adfa.edu.au; Cobas, R.; Cadogan, J. M. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra, ACT 2610 (Australia); Albino Aguiar, J. [Departmento de Fisica, Universidade Federal de Pernambuco, Av. Prof. Luis Freire, s/n, 50670-901, Recife-PE (Brazil); Streltsov, S. V. [Institute of Metal Physics, Ekaterinburg 620219 (Russian Federation); Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Obradors, X. [Institut de Ciència dels Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra (Spain)

    2015-05-07

    The magnetic and electronic properties of Eu{sub 2}Ru{sub 2}O{sub 7} are discussed in terms of the local ruthenium and europium coordination, electronic band structure calculations, and molecular orbital energy levels. A preliminary electronic structure was calculated within the local density approximation (LDA) and local spin density approximation taking in to account on-site Hubbard U (LSDA + U). The molecular orbital energy level diagrams have been used to interpret the Eu-Ru ligand spectrum and the ensuing magnetic properties. The orbital hybridizations and bonds are discussed.

  4. Synthesis and Characterization of Pyrochlore Bi2Sn2O7 Doping with Praseodymium by Hydrothermal Method and Its Photocatalytic Activity Study

    Directory of Open Access Journals (Sweden)

    Weicheng Xu

    2013-01-01

    Full Text Available Praseodymium doped Bi2Sn2O7 (BSO, as a visible-light responsive photocatalyst, was prepared by a hydrothermal method with different dopant contents. The as-prepared photocatalysts were investigated by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, N2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy analysis (XPS, and UV-Vis diffuse reflectance spectroscopy (DRS. The photocatalytic activity of prepared catalysts was evaluated by the degradation of Rhodamine Bextra (RhB and 2,4-dichlorophenol (2,4-DCP in aqueous solution under visible light irradiation. It was found that Pr doping inhibited the growth of crystalline size and the as-prepared materials were small in size (10–20 nm. In our experiments, Pr-doped BSO samples exhibited enhanced visible-light photocatalytic activity compared to the undoped BSO, and the optimal dopant amount of Pr was 1.0 mol% for the best photocatalytic activity. On the basis of the calculated PL spectra, the mechanism of enhanced photocatalytic activity has been discussed.

  5. Enhanced Photocatalytic Activities of g-C3N4 via Hybridization with a Bi-Fe-Nb-Containing Ferroelectric Pyrochlore.

    Science.gov (United States)

    Yin, Xiaofeng; Li, Xiaoning; Gu, Wen; Wang, Fangfang; Zou, Yijun; Sun, Shujie; Fu, Zhengping; Lu, Yalin

    2017-06-14

    Ferroelectricity may promote photocatalytic performance because the carrier-separation efficiency can be effectively improved by the internal electrostatic field caused by spontaneous polarization. Heterostructures that combine ferroelectric materials with other semiconductor materials can be further advantageous to the photocatalysis process. In this work, Bi1.65Fe1.16Nb1.12O7 was hybridized with g-C3N4 via a facile low-temperature method. The results of high-resolution transmission electron microscopy confirmed that a tight interface was formed between g-C3N4 and Bi1.65Fe1.16Nb1.12O7, which gave the (g-C3N4)-(Bi1.65Fe1.16Nb1.12O7) heterojunction a more superior visible light photocatalytic performance. The degradation of rhodamine B by optimized (g-C3N4)0.5-(Bi1.65Fe1.16Nb1.12O7)0.5 under visible light was almost 3.3 times higher than that by monomer Bi1.65Fe1.16Nb1.12O7 and 7.4 times higher than that by g-C3N4. The (g-C3N4)0.5-(Bi1.65Fe1.16Nb1.12O7)0.5 sample also showed the highest photocurrent in the photoelectrochemical tests. To further verify the benefit of the built-in electric field in terms of the photocatalytic performance, Bi2FeNbO7, with a higher spontaneous polarization, was also synthesized and hybridized with g-C3N4. Both Bi2FeNbO7 and (g-C3N4)0.5-(Bi2FeNbO7)0.5 exhibited better photocatalytic activities than those of Bi1.65Fe1.16Nb1.12O7 and (g-C3N4)0.5-(Bi1.65Fe1.16Nb1.12O7)0.5, although the latter ones had a stronger visible-light absorbance. This implies the very promising prospects of applying ferroelectric materials for solar energy harvest.

  6. Synthesis and characterisation of the uranium pyrochlore betafite [(Ca,U){sub 2}(Ti,Nb,Ta){sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    McMaster, Scott A.; Ram, Rahul; Charalambous, Fiona [Centre for Advanced Materials and Industrial Chemistry, School of Applied Sciences RMIT University, GPO Box 2476, Melbourne, Vic 3001 (Australia); Pownceby, Mark I. [CSIRO Process Science and Engineering, Bayview Avenue Clayton, Victoria 3168 (Australia); Tardio, James [Centre for Advanced Materials and Industrial Chemistry, School of Applied Sciences RMIT University, GPO Box 2476, Melbourne, Vic 3001 (Australia); Bhargava, Suresh K., E-mail: suresh.bhargava@rmit.edu.au [Centre for Advanced Materials and Industrial Chemistry, School of Applied Sciences RMIT University, GPO Box 2476, Melbourne, Vic 3001 (Australia)

    2014-09-15

    Highlights: • First published method for preparation of a synthetic form of betafite. • X-ray photoelectron spectroscopy data on uranium oxidation state(s) in synthetic betafite. • Detailed microscopy based characterisation of synthetic betafite. - Abstract: Betafite of composition [(Ca,U){sub 2}(Ti,Nb,Ta){sub 2}O{sub 7}] was prepared via a solid state synthesis route. The synthesis was shown to be sensitive to initial reactant ratios, the atmosphere used (oxidising, neutral, reducing) and time. The optimum conditions for the synthesis of betafite were found to be heating the reactants required at 1150 °C for 48 h under an inert gas atmosphere. XRD characterisation revealed that the synthesised betafite contained minor impurities. EPMA analysis of a sectioned surface showed very small regions of Ca-free betafite on grain boundaries as well as minor rutile impurities. Some heterogeneity between the Nb:Ta ratio was observed by quantitative EPMA but was generally within the nomenclature requirements stated for betafite. SEM analysis revealed the synthesised betafite was comprised mostly of hexaoctohedral crystals of ∼3 μm in diameter. XPS analysis of the sample showed that the uranium in the synthesised betafite was predominately present in the U{sup 5+} oxidation state. A minor amount of U{sup 6+} was also detected which was possibly due to surface oxidation.

  7. Neutron Diffraction Study of Pyrochlore Compound R 2Ru 2O 7 (R=Y, Nd) above and below the Spin Freezing Temperature

    Science.gov (United States)

    Ito, Masafumi; Yasui, Yukio; Kanada, Masaki; Harashina, Hiroshi; Yoshii, Shunsuke; Murata, Kazuhiro; Sato, Masatoshi; Okumura, Hajime; Kakurai, Kazuhisa

    2000-03-01

    Neutron Rietveld analyses have been carried out onY2Ru2O7 and Nd2Ru2O7 to clarify theprimary mechanism of the transition at T G to the spin-glass-likestate which is accompanied by the specific heat jump. The resultsindicate that the lattice system does not seem to participate in thetransition and changes of the neutron diffraction data with decreasingtemperature through T G can consistently be understood by theordering of magnetic moments at Ru sites to an almost long rangeordered state, even though the low temperature phase is glassy in themacroscopic sense.

  8. The atomic structure of protons and hydrides in Sm1.92Ca0.08Sn2O7-δ pyrochlore from DFT calculations and FTIR spectroscopy

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Eurenius, K. E. J.; Rossmeisl, Jan

    2012-01-01

    ) oxygen atoms closely associated with a Ca dopant. Further, the unexpected presence of Ho hydride defects in undoped, oxygen deficient Sm2Sn2O7 is reported. Finally, the stretching frequencies and relative intensities for these and other sites are calculated. The main features of the Fourier transform...

  9. Intermediate temperature ionic conductivity of Sm1.92Ca0.08Ti2O7–δ pyrochlore

    DEFF Research Database (Denmark)

    Eurenius, Karinh E. J.; Bentzer, Henrik Karnøe; Bonanos, Nikolaos;

    2011-01-01

    (500–300 °C). The impedance measurements revealed the conductivity to be mainly ionic under all conditions, with the highest total conductivity measured being 0.045 S/m under wet oxygen at 500 °C. Both bulk and grain boundary conductivity was predominantly ionic, but electronic conductivity appeared...... to play a slightly larger part in the grain boundaries. EMF data confirmed the conductivity to be mainly ionic, with oxide ions being the major conducting species at 500 °C and protons becoming increasingly important below this temperature....

  10. Energetics and concentration of defects in Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at high-pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Zhang, Fuxiang; Lian, Jie; Ewing, Rodney C.

    Using first-principles calculations and complementary experiments, the defect formation energies and defect concentrations were calculated as a function of pressure. The results show that at high pressure, the defect formation energies decrease with pressure for both systems. In Gd{sub 2}Ti{sub 2}O{sub 7}, the dominant defect type is cation anti-site defect, the local structure around a defect is highly distorted, and the energetically favorable defect–defect interactions at shorter distance suggest the possibility of defect clustering. In Gd{sub 2}Zr{sub 2}O{sub 7}, anion Frenkel-pair defects are favored at all pressures and the dominant defect type involving a cation is a coupled defect of a cation anti-site and an anion Frenkel-pair defect. There are only minor distortions around the defects, and the defect–defect interactions are weak, which suggests almost-ideal non-interacting defect formation. Comparison of experimentally observed defect concentrations and those based on the calculated defect formation energies suggests that the defects formed at high pressure are better estimated with a concentrated limit approximation, while those formed at ambient pressure can be evaluated at a dilute limit approximation.

  11. Energetics and Concentration of Defects in Gd2Ti2O7 and Gd2ZrO7 Pyrochlore at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    J Wang; F Zhang; J Lian; R Ewing; U Becker

    2011-12-31

    Using first-principles calculations and complementary experiments, the defect formation energies and defect concentrations were calculated as a function of pressure. The results show that at high pressure, the defect formation energies decrease with pressure for both systems. In Gd{sub 2}Ti{sub 2}O{sub 7}, the dominant defect type is cation anti-site defect, the local structure around a defect is highly distorted, and the energetically favorable defect-defect interactions at shorter distance suggest the possibility of defect clustering. In Gd{sub 2}Zr{sub 2}O{sub 7}, anion Frenkel-pair defects are favored at all pressures and the dominant defect type involving a cation is a coupled defect of a cation anti-site and an anion Frenkel-pair defect. There are only minor distortions around the defects, and the defect-defect interactions are weak, which suggests almost-ideal non-interacting defect formation. Comparison of experimentally observed defect concentrations and those based on the calculated defect formation energies suggests that the defects formed at high pressure are better estimated with a concentrated limit approximation, while those formed at ambient pressure can be evaluated at a dilute limit approximation.

  12. Structural Analysis of Eu2Mn2/3Ta4/3O7 with a Pyrochlore-Related Structure

    Institute of Scientific and Technical Information of China (English)

    Chen Gang(陈刚); Satoh Hirohisa; Kamegashira Naoki

    2004-01-01

    Eu2Mn2/3Ta4/3O7 specimen was synthesized from Eu2O3, MnO and Ta2O5 in a reducing atmosphere. Structure analysis was carried out by Rietveld method from X-ray diffraction data. The X-ray diffraction profile calculated with monoclinic C2/c model was in a good agreement with the observed X-ray diffraction patterns since several small peaks of super lattice could be also assigned with C2/c symmetry in addition to fundamental reflection peaks. Eu2Mn2/3Ta4/3O7 has two kinds of distorted(Mn, Ta)O6 octahedra and HTB layers, which deviates from the regular forms. Europium atoms coordinate to eight or seven oxygen atoms and lead to two kinds of polyhedra, EuO8 and EuO7 in this compound.

  13. Raman spectra and dielectric studies in Ti substituted Bi2 (Zn2/3Nb4/3)O7 pyrochlores

    Science.gov (United States)

    Kumar, Aditya; Singh, Manoj K.; Singh, Gulab; Sudheendran, K.; Raju, K. C. James

    2016-05-01

    Bi2Zn2/3-x/3Nb4/3-2x/3TixO7 (m - BZNT) with x = 0 to 0.4 were synthesized in the conventional solid state route. The dielectric constants of these ceramics at microwave frequencies are found to be increasing from 70 to 114 when x increased from 0 to 0.4. Raman scattering studies were carried out to investigate the effect of Ti4+ substitution on the dielectric properties of Bi2 (Zn2/3Nb4/3)O7 (m-BZN) ceramics. The observed Raman peaks in the m-BZNT are slightly shifted towards lower frequency in comparison to that of m-BZN clearly indicated that the Ti4+ ions are indeed occupying substitution sites in the host m - BZN. The anomalous change in intensity and full with at half maxima (FWHM) of Raman modes at 749 and 847 cm-1 suggest change in oxygen octahedral closely related to dielectric properties of m-BZNT.

  14. Transparent nanoscale floating gate memory using self-assembled bismuth nanocrystals in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) pyrochlore thin films grown at room temperature.

    Science.gov (United States)

    Jung, Hyun-June; Yoon, Soon-Gil; Hong, Soon-Ku; Lee, Jeong-Yong

    2012-07-01

    Bismuth nanocrystals for a nanoscale floating gate memory device are self-assembled in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) dielectric films grown at room temperature by radio-frequency sputtering. The TEM cross-sectional image shows the "real" structure grown on a Si (001) substrate. The image magnified from the dotted box (red color) in the the cross-sectional image clearly shows bismuth nanoparticles at the interface between the Al(2) O(3) and HfO(2) layer (right image). Nanoparticles approximately 3 nm in size are regularly distributed at the interface.

  15. 两步无机盐-凝胶法制备PMN-PT弛豫铁电陶瓷粉体%Preparation of Pyrochlore-Free PMN-PT Powder by a Two-Stage Polymerized Complex Method

    Institute of Scientific and Technical Information of China (English)

    陈晋; 樊慧庆; 邱少君; 王志银

    2007-01-01

    0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3(简称:PMN-PT)弛豫铁电粉体采用两步无机盐-凝胶法制备.以氧化镁,醋酸铅,钛酸丁脂为原料,柠檬酸为螯合剂,乙二醇为溶剂,分别合成稳定的Mg,Pb-Ti的有机化合物先驱体溶液.Nb2O5粉体与Mg先驱体溶液均匀混合,并采用溶胶-凝胶工艺制备MgNb2O6(MN)先驱体粉体;MN粉体与Pb-Ti先驱体溶液均匀混合,并制备PMN-PT粉体.通过XRD和SEM分析PMN-PT钙钛矿相形成的影响因素和微观形貌,研究全钙钛矿相PMN-PT铁电粉体的制备.结果表明:过量3%MgO前驱体经1050℃,4 h煅烧可以得到纯相MgNb2O6先驱体粉体;过量5%PbO前驱体经900℃,4 h煅烧可以得到全钙钛矿相PMN-PT粉体.

  16. Neutron diffraction study of pyrochlore compound R{sub 2}Ru{sub 2}O{sub 7} (R=Y, Nd) above and below the spin freezing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masafumi; Yasui, Yukio; Kanada, Masaki; Harashina, Hiroshi; Murata, Kazuhiro; Sato, Masatoshi [Department of Physics, Division of Material Science, Nagoya University, Nagoya, Aichi (Japan); Yoshii, Shunsuke [CREST, Japan Science and Technology Corporation (JST) (Japan); Okumura, Hajime; Kakurai, Kazuhisa [Neutron Scattering Laboratory, ISSP, The University of Tokyo, Tokai, Ibaraki (Japan)

    2000-03-01

    Neutron Rietveld analyses have been carried out on Y{sub 2}Ru{sub 2}O{sub 7} and Nd{sub 2}Ru{sub 2}O{sub 7} to clarify the primary mechanism of the transition at T{sub G} to the spin-glass-like state which is accompanied by the specific heat jump. The results indicate that the lattice system does not seem to participate in the transition and changes of the neutron diffraction data with decreasing temperature through T{sub G} can consistently be understood by the ordering of magnetic moments at Ru sites to an almost long range ordered state, even though the low temperature phase is glassy in the macroscopic sense. (author)

  17. Synthesis of BZN-(α) and BZN-(β) pyrochloric ceramics by the solid state relation; Sintese das ceramicas pirocloricas BZN-α e BZN-β pela relacao em estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Farias, F.C.; Alves, A.G.; Alves, Y.M.; Pereira, F.M.M.; Barroso, M.B., E-mail: werleyfarias@gmail.com [Universidade Federal do Cariri (UFCA), Juazeiro do Norte, CE (Brazil); Pereira, C.A.; Saraiva, I.R. [Faculdade DeVry Fanor (FANOR), Fortaleza, CE (Brazil); Conde, W.S.; Sombra, A.B. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia de Materiais (LOCEM), CE (Brazil)

    2016-07-01

    The ceramics the base of Bi{sub 2}O{sub 3}-ZnO-Nb{sub 2}O{sub 5} (BZN) have two main phases, Bi{sub 1,5}ZnNb{sub 1,5}O{sub 7} (α) and Bi{sub 2}Zn{sub 2/3}Nb{sub 4/3}O{sub 7} (β) with cubic and monoclinic crystal structures, respectively. This study was aimed to summarize the BZN-α phase and BZN-β chemically homogeneous and observe the phase transformations that occur in the system, using the ceramic method. They were characterized by scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and the Rietveld method in structural refinement and Infrared Spectroscopy. The BZN-α phase is presented in pure sintering temperatures used, although BZN-β phase has brought the remaining stages of its formation process, as Bi{sub 5}Nb{sub 3}O{sub 15} and BiNbO{sub 4}. For BZN-α were observed absorptions at 469 and 328 cm{sup -1}, attributed to the metal-oxygen stretch the BZN-β showed absorption bands at wavelengths of 601, 515, 447 and 328 cm{sup -1}, also being assigned metal-oxygen bond. (author)

  18. Occurrence of uranium in rocks of the intrusive complex at Ekiek Creek, western Alaska

    Science.gov (United States)

    Wallace, Alan R.

    1979-01-01

    Uranium in the Ekiek Creek Complex of western Alaska is related to a niobium-rich pyrochlore in the nepheline syenite of the complex. The complex consists of an aegirine-phlogopite pyroxenite that has been intruded and partly replaced by nepheline syenite. The contact zone between the two igneous units varies from a sharp contact to a diffuse zone where the pyroxenite has been metasomatically replaced by the syenite. The entire complex was intruded into an older Cretaceous monzonite. The pyrochlore occurs as an accessory mineral in the syenite, and is visible in rocks containing over 50 ppm uranium. Chemical analyses indicate that, in all samples of syenite, there is a positive correlation between uranium and niobium; this suggests that the uranium-pyrochlore association persists even when pyrochlore is not readily visible in thin section. The small amount of pyrochlore, and its refractory nature, make the complex an unfavorable source for secondary uranium leaching or heavy-mineral concentration.

  19. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  20. 烧绿石结构A2B2O7热障涂层材料热物理性能综述%Thermophysical Properties of Pyrochlore Structure A2B2O7 Thermal Barrier Coating Materials: A review

    Institute of Scientific and Technical Information of China (English)

    吴琼; 张鑫; 彭浩然; 冀晓鹃; 章德铭; 任先京

    2014-01-01

    烧绿石结构材料由于具有良好的高温相结构稳定性,低热导率等优点,是最为广泛研究且最具有应用前景的新型热障涂层材料系列之一.本文从烧绿石结构材料高温相稳定性、热导率、热膨胀系数、断裂韧性、抗烧结性、与Al2O3化学相容性等几个方面进行了综述,并将成分和掺杂对各性能的影响规律进行了归纳和总结,对新型烧绿石结构热障涂层材料的成分设计、性能研究等具有重要意义.

  1. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  2. Anomalous Hall Effect in Geometrically Frustrated Magnets

    Directory of Open Access Journals (Sweden)

    D. Boldrin

    2012-01-01

    space mechanism based on spin chirality that was originally applied to the pyrochlore Nd2Mo2O7 appears unsatisfactory. Recently, an orbital description based on the Aharonov-Bohm effect has been proposed and applied to both the ferromagnetic pyrochlores Nd2Mo2O7 and Pr2Ir2O7; the first of which features long-ranged magnetic order while the latter is a chiral spin liquid. Two further examples of geometrically frustrated conducting magnets are presented in this paper—the kagome-like Fe3Sn2 and the triangular PdCrO2. These possess very different electronic structures to the 3-dimensional heavy-metal pyrochlores and provide new opportunities to explore the different origins of the AHE. This paper summarises the experimental findings in these materials in an attempt to unite the conflicting theoretical arguments.

  3. New cubic structure compounds as actinide host phases

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S V [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Yudintsev, S V; Livshits, T S, E-mail: profstef@mtu-net.ru [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetny lane 35, Moscow 119017 (Russian Federation)

    2010-03-15

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds - stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd{sub 2}Zr{sub 2}O{sub 7}) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 deg. C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn{sup 4+} substitution for Zr{sup 4+} reduces production temperature and the compounds REE{sub 2}ZrSnO{sub 7} may be hot-pressed or cold pressed and sintered at {approx}1400 deg. C. Pyrochlore, A{sub 2}B{sub 2}O{sub 7-x} (two-fold elementary fluorite unit cell), and murataite, A{sub 3}B{sub 6}C{sub 2}O{sub 20-y} (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C - murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO{sub 2} (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C {yields} 8C {yields} 3C phases with the highest actinide concentration in the core and the lowest - in the rim of the grains. Radiation resistance of the 'murataite' is comparable to titanate pyrochlores. One

  4. Subsolidus phase equilibria and properties in the system Bi 2O 3:Mn 2O 3±x:Nb 2O 5

    Science.gov (United States)

    Vanderah, T. A.; Lufaso, M. W.; Adler, A. U.; Levin, I.; Nino, J. C.; Provenzano, V.; Schenck, P. K.

    2006-11-01

    Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn 2+, Mn 3+, and Mn 4+ were all observed. Ternary compound formation was limited to pyrochlore (A 2B 2O 6O'), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi 2(Mn,Nb) 2O 7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn 2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi 2O 3:Mn 2O 3±x:Nb 2O 5 using neutron powder diffraction data is reported with the A and O' atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn 2+ on A-sites and Mn 3+ on B-sites (Bi 1.6Mn 2+0.4(Mn 3+0.8Nb 1.2)O 7, Fd3¯m (♯227), a=10.478(1) Å); evidence of A or O' vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi 1.5Zn 0.92Nb 1.5O 6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi 1.600Mn 1.200Nb 1.200O 7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi 1.5Zn 0.92Nb 1.5O 6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.

  5. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Science.gov (United States)

    Owerre, S. A.

    2016-07-01

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κxy changes sign as a function of magnetic field or temperature on the kagome lattice, and κxy changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κxy has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T2 law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  6. Cs8.5W15O48 and CsW2O6 : Members of a New Homologous Series of Cesium Tungsten Oxides

    NARCIS (Netherlands)

    Cava, R.J.; Roth, R.S.; Siegrist, T.; Hessen, B.; Krajewski, J.J.; Peck, Jr.

    1993-01-01

    The crystal structures of two new reduced cesium tungsten oxides are reported. Along with the previously reported compound Cs6W11O36, they represent several members of a homologous series of layer compounds between the hexagonal tungsten bronze and pyrochlore structure types. The series formula is [

  7. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    Science.gov (United States)

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  8. Study of thulium doping effect and enhancement of photocatalytic activity of rutile TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es [Department of Physical Chemistry, Cádiz University, 11510 Puerto Real, Cádiz (Spain); Navas, Javier, E-mail: javier.navas@uca.es [Department of Physical Chemistry, Cádiz University, 11510 Puerto Real, Cádiz (Spain); Aguilar, Teresa [Department of Physical Chemistry, Cádiz University, 11510 Puerto Real, Cádiz (Spain); Sánchez-Coronilla, Antonio [Department of Physical Chemistry, Seville University, 41012 Seville (Spain); Alcántara, Rodrigo; Fernández-Lorenzo, Concha [Department of Physical Chemistry, Cádiz University, 11510 Puerto Real, Cádiz (Spain); Blanco, G. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, Science Faculty, University of Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz (Spain); Calleja, Joaquín Martín [Department of Physical Chemistry, Cádiz University, 11510 Puerto Real, Cádiz (Spain)

    2015-07-01

    This is a study of the effect of temperature and thulium doping on TiO{sub 2} nanoparticles and how it affects photocatalytic activity. The ball mill method was used to synthesize pure TiO{sub 2} and 2.0 at. %, 3.7 at. % y 4.8 at. % Tm-doped TiO{sub 2}. To study the effect of Tm-doping and annealing temperature on the structural and electronic properties of the samples synthesized and how they influence photocatalytic activity, the samples were annealed at three temperatures, 773 K, 973 K and 1173 K. Then, they were characterized and analysed using ICP-AES, XRD, Raman spectroscopy, FT-IR, XPS and UV–Vis spectroscopy. Tm-doping was shown to delay amorphous-anatase-rutile phase transformation, and at high annealing temperatures a crystalline pyrochlore phase was obtained due to the formation of the mixed oxide Tm{sub 2}Ti{sub 2}O{sub 7}, which significantly improved the photoactivity of the predominant rutile phase. - Highlights: • Internal Tm-doped anatase TiO{sub 2} is obtained at 773 and 973 K. • Pyrochlore phase (Tm{sub 2}Ti{sub 2}O{sub 7}) is found at high annealing temperatures. • Pyrochlore phase obtained at 1173 K improves the photoactivity of rutile TiO{sub 2}. • The charge separation efficiency is improved thanks to the pyrochlore phase. • The mobility of the electrons is high in pyrochlore phase, reducing the recombination.

  9. Diffuse neutron scattering of interesting phases in Dy2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Jonathan; Rule, Kirrily; Klemke, Bastian [Helmholtz-Zentrum Berlin for Materials and Energy, Berlin (Germany); Tennant, Alan [Helmholtz-Zentrum Berlin for Materials and Energy, Berlin (Germany); Institut fur Festkoerperphysik, Technische Universitaet Berlin (Germany); Grigera, Santiago [St. Andrew' s University, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, La Plata (Argentina)

    2009-07-01

    The prospect of observing emergent magnetic monopoles in spin-ice has recently increased the interest in these systems. Dy{sub 2}Ti{sub 2}O{sub 7} is a effective spin-1/2 pyrochlore which is a clean model frustrated system where interesting physics may be observed and compared with theory. Here we present new neutron measurements from E2 at the Helmholtz-Zentrum Berlin which show an agreement with spin-ice correlation functions at 0.7 K and 0 T, and a complex Q-dependent diffuse scattering at fields below the saturation field along[100]. These are being understood in the context of spin-strings, or spin-random-walks, which are the prerequisite for monopoles. The scattering allows us to follow the development of these strings with field and provides new insight into the Kastelyn physics within this pyrochlore.

  10. Atomistic stimulation of defective oxides

    CERN Document Server

    Minervini, L

    2000-01-01

    defect processes. The predominant intrinsic disorder reaction and the mechanism by which excess oxygen is accommodated are established. Furthermore, the most favourable migration mechanism and pathway for oxygen ions is predicted. Chapters 7 and 8 investigate pyrochlore oxides. These materials are candidates for solid oxide fuel cell components and as actinide host phases. Such applications require a detailed understanding of the defect processes. The defect energies, displayed as contour maps, are able to account for structure stability and, given an appropriate partial charge potential model, to accurately determine the oxygen positional parameter. In particular, the dependence of the positional parameter on intrinsic disorder is predicted. It is demonstrated, by radiation damage experiments, that these results are able to predict the radiation performance of pyrochlore oxides. Atomistic simulation calculations based on energy minimization techniques and classical pair potentials are used to study several i...

  11. Numerical evidence of quantum melting of spin ice: quantum-classical crossover

    Science.gov (United States)

    Kato, Yasuyuki; Onoda, Shigeki

    2015-03-01

    Unbiased quantum Monte-Carlo simulations are performed on the simplest case of the quantum spin ice model, namely, the nearest-neighbor spin-1/2 XXZ model on the pyrochlore lattice with an antiferromagnetic longitudinal and a weak ferromagnetic transverse exchange couplings, J and J⊥. On cooling across TCSI ~ 0 . 2 J , the specific heat shows a broad peak associated with a crossover to a classical Coulomb liquid regime characterized by a remnant of the pinch-point singularity in longitudinal spin correlations as well as the Pauling ice entropy for | J⊥ | J⊥ c ~ - 0 . 104 J , as expected for bosonic quantum Coulomb liquids. With negatively increasing J⊥ across J⊥ c, a first-order transition occurs at a nonzero temperature from the quantum Coulomb liquid to an XY ferromagnet. Relevance to magnetic rare-earth pyrochlore oxides is discussed.

  12. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  13. Synthesis and structural characterization of some Pb(B$^{'}_{1/3}$Nb2/3)O3 type materials by two-stage solid-state route

    Indian Academy of Sciences (India)

    Mukul Pastor; P K Bajpai; R N P Choudhary

    2005-06-01

    Two-stage columbite solid state reaction route has been used for the preparation of Pb (B$^{'}_{1/3}$Nb2/3)O3 materials (B′ = Mg, Ni and Cd). The columbite precursor phase was structurally characterized using diffraction data. MgNb2O6, NiNb2O6 and CdNb2O6 show orthorhombic structures i.e. pure columbite phase. Final phase materials get stabilized in mixed phase. The diffraction pattern shows that it is a mixture of cubic pyrochlore and perovskite phase. Percentage of perovskite phase was calculated using the band intensities of (110) perovskite and (222) pyrochlore peaks. The calculated percentages show the dominant perovskite phase. Possible reasons for mixed phase are discussed.

  14. Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications

    Science.gov (United States)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1990-01-01

    The lead ruthenate pyrochlore Pb2Ru2O6.5, in both high- and low-area forms, has been characterized using thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, cyclic voltammetry, and O2 reduction and generation kinetic-mechanistic studies. Mechanisms are proposed. Compounds in which part of the Ru is substituted with Ir have also been prepared. They exhibit somewhat better performance for O2 reduction in porous, gas-fed electrodes than the unsubstituted compound. The anodic corrosion resistance of pyrochlore-based porous electrodes was improved by using two different anionically conducting polymer overlayers, which slow down the diffusion of ruthenate and plumbate out of the electrode. The O2 generation performance was improved with both types of electrodes. With a hydrogel overlayer, the O2 reduction performance was also improved.

  15. Phase Relations at 1500°C in the Ternary System ZrO 2-Gd 2O 3-TiO 2

    Science.gov (United States)

    Feighery, A. J.; Irvine, J. T. S.; Zheng, C.

    2001-09-01

    Phase relations at 1500°C in the ternary system ZrO2-Gd2O3-TiO2 have been determined by the powder X-ray diffraction of samples prepared by standard solid state reaction. A large area of this ternary oxide system centered on the Gd2Ti2O7-Gd2Zr2O7 join was shown to exhibit the pyrochlore and defect fluorite structures. The pyrochlore structure was observed for stoichiometries as far from the ideal M4O7 as M4O6.7 and M4O7.4, although the degree of disorder seemed much higher at these stoichiometries. On further deviation from the ideal M4O7 stoichiometry a smooth transition to fluorite average structure was observed for Zr-rich compositions. None of the other binary phases were observed to show significant extent of solid solution into the ternary region.

  16. Electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications

    Science.gov (United States)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-01-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation (1,2). Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium). A possible approach to this problem is to immobilize the pyrochlore catalyst within an ionic-conducting solid polymer, which would replace the fluid electrolyte within the porous gas diffusion O2 electrode. For bulk alkaline electrolyte, an anion-exchange polymer is needed with a transference number close to unity for the Oh(-) ion. Preliminary short-term measurements with lead ruthenates using a commercially available partially-fluorinated anion-exchange membrane as an overlayer on the porous gas-fed electrode indicate lower anodic polarization and virtually unchanged cathodic polarization.

  17. Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implication for cooling history of carbonatites

    OpenAIRE

    Seifert, W.; Horst Kämpf; J. Wasternack;  ,

    2001-01-01

    A representative suite of samples from the ultramafic lamprophyre–carbonatite (UML–CR) complex of Delitzsch, Germany, shows significant variations in mineral composition and geothermobarometry. Petrographically distinct carbonatites of intrusive dolomitic and subvolcanic dolomitic and subvolcanic calcitic types clearly show marked compositional differences in such minerals as apatite, phlogopite and pyrochlore. Increasing concentrations are established for S, Cl, Si in apatite, and Ti, Al, Cr...

  18. Computer simulations applied in materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)

  19. Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications

    Science.gov (United States)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-01-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation. Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium).

  20. First-principles prediction of disordering tendencies in complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chao [Los Alamos National Laboratory; Stanek, Christopher R [Los Alamos National Laboratory; Sickafus, Kurt E [Los Alamos National Laboratory; Uberuaga, Blas P [Los Alamos National Laboratory

    2008-01-01

    The disordering tendencies of a series of zirconate (A{sub 2}Zr{sub 2}O{sub 7}) , hafnate (A{sub 2}Hf{sub 2}O{sub 7}), titanate (A{sub 2}Ti{sub 2}O{sub 7}), and stannate (A{sub 2} Sn{sub 2}O{sub 7}) pyrochlores are predicted in this study using first-principles total energy calculations. To model the disordered (A{sub 1/2}B{sub 1/2})(O{sub 7/8}/V{sub 1/8}){sub 2} fluorite structure, we have developed an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most important near-neighbor intra-sublattice and inter-sublattice pair correlation functions of the random alloy. From the calculated disordering energies, the order-disorder transition temperatures of those pyrochlores are further predicted and our results agree well with the existing experimental phase diagrams. It is clearly demonstrated that both size and electronic effects play an important role in determining the disordering tendencies of pyrochlore compounds.

  1. X-ray diffraction and Raman spectroscopic investigations on CaZrTi2O7sbnd Y2Ti2O7 system: Delineation of phase fields consisting of potential ceramic host materials

    Science.gov (United States)

    Jafar, M.; Achary, S. N.; Salke, Niliesh P.; Sahu, A. K.; Rao, Rekha; Tyagi, A. K.

    2016-07-01

    Phase evolution from CaZrTi2O7 (zirconolite) to Y2Ti2O7 (pyrochlore) have been delineated by systematic characterization of a series of sample with composition as Ca1-xZr1-xY2xTi2O7 (0.00 ≤ x ≤ 1.00) by powder XRD, Raman spectroscopy, SEM and EDS analyses. Comparative analyses of XRD and Raman spectra revealed sequential evolution of phases with increasing concentration of Y3+ in the compositions. From the XRD studies, three distinct phase fields, namely two layer (2M) and four layer (4M) zirconolite-types and cubic pyrochlore-type are observed in between zirconolite (CaZrTi2O7) and Y2Ti2O7. 4M-zirconolite phase is observed in a narrow range of composition, viz. 0.35 ≤ x ≤ 0.40 while cubic pyrochlore type phase is observed in the compositions with x ≥ 1.20. The unit cell volume of different phases shows a non-linear increasing trend with Y3+ ion concentration which has been attributed to the distribution of cations in different structure and change in their coordination number.

  2. Computer simulations applied in materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)

  3. Ternary Phase Diagrams that Relate to the Plutonium Immobilization Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B b; Krikorian, O H; Vance, E R; Stewart, M W

    2001-01-01

    The plutonium immobilization ceramic consists primarily of a pyrochlore titanate phase of the approximate composition Ca{sub 0.97}Hf{sub 0.17}Pu{sub 0.22}U{sub 0.39}Gd{sub 0.24} Ti{sub 2}O{sub 7}. In this study, a series of ternary phase diagrams was constructed to evaluate the relationship of various titanate phases (e.g., brannerite, zirconolite-2M, zirconolite-4M, and perovskite) to pyrochlore titanates, usually in the presence of excess TiO{sub 2} (rutile), and at temperatures in the vicinity of 1350 C. To facilitate the studies, U, Th, and Ce were used as surrogates for Pu in a number of the phase diagrams in addition to the use of Pu itself. The effects of impurity oxides, Al{sub 2}O{sub 3} and MgO, were also studied on pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}) and zirconolite (CaHfTi{sub 2}O{sub 7}) mixtures. Either electron microprobe (at Lawrence Livermore National Laboratory) or quantitative SEM-EDS (at Australian Nuclear Science and Technology Organization) were used to evaluate the compositions of the phases.

  4. Fluid-mediated alteration of (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals in granitic pegmatite from the Evje-Iveland district, southern Norway

    Science.gov (United States)

    Duran, Charley J.; Seydoux-Guillaume, Anne-Magali; Bingen, Bernard; Gouy, Sophie; de Parseval, Philippe; Ingrin, Jannick; Guillaume, Damien

    2016-10-01

    We document the textural relations and chemical composition of (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals in a granitic pegmatite from the Evje-Iveland district, southern Norway, using a combination of scanning and transmission electron microscopy, electron probe micro-analysis and infrared absorption spectroscopy. The (Y,REE,U,Th)-(Nb,Ta,Ti) oxide mineral is euxenite, which is strongly radiation damaged and surrounded by radial fractures. Within euxenite grains, three domains of distinct composition comprising unaltered, intermediate and altered euxenite, have been identified. In most cases pyrochlore occurs as corroded grain boundaries around euxenite and within relict fractures. Intermediate and altered euxenite are depleted in U, Pb, Ti, Nb, and Y, but enriched in Si and Ca relative to unaltered euxenite. Pyrochlore is also enriched in Fe, Pb, Zr and LREE relative to all euxenite phases. Altered domains of euxenite have deficient analytical totals and contain O-H. These domains are metamict and contain nanopores and nanodomains enriched in U and Ca. We suggest that as radiation damage accumulated in euxenite, radial fractures developed around the euxenite grains, thus allowing fluid infiltration. In the presence of fluid, euxenite was replaced by secondary euxenite then pyrochlore, owing to dissolution-precipitation and diffusion reactions. During alteration, U and the strategic metals Nb, Ti, and REE were mobilized at both the nanoscale and the scale of the pegmatite.

  5. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  6. The Elk Creek Carbonatite Complex, Nebraska (USA)

    Science.gov (United States)

    Kettler, R. M.; Blessington, M.

    2015-12-01

    The Elk Creek carbonatite complex (ECCC) is a large Early Cambrian carbonatite-alkaline syenite complex located in SE Nebraska (USA). The carbonatite and related rocks are buried by more than 200 m of Pennsylvanian marine sedimentary rocks and Quaternary till. The pre-Pennsylvanian sub-crop is crudely circular in plan-view and exceeds 30 km2, making it one of the larger carbonatite complexes in North America. The rocks of the complex were intruded in Precambrian granite and gneiss on the eastern margin of the Mid-Continent rift where it has been offset by one of a series of southeasterly trending structures. The primary rock type in the ECCC is dolomite carbonatite. The dolomite carbonatite ranges from fine-grained flow-banded dolomite to a coarse-grained rock comprising large prismatic dolomite crystals. The central portion of the complex comprises a pipe-like intrusion of magnetite dolomite carbonatite and magnetite dolomite carbonatite breccia. Magnetite dolomite carbonatite is typically fine-grained and contains angular or rounded elongate fragments of dolomite carbonatite. Fragments of magnetite dolomite carbonatite are also included in dolomite carbonatite and other carbonatite rocks in the complex. Emplacement of a discreet pulse of reduced, iron-rich carbonatite magma was, therefore, a likely early event in the evolution of the ECCC. The magnetite is altered locally to hematite and other iron oxides. The oxidation ranges from a dusting of hematite to pervasive alteration to hematite and ferric oxyhydroxides and occurs to depths as much as 630 m below the modern land surface. Other volumetrically important rock types include apatite dolomite carbonatite and barite dolomite carbonatite. Both of these rock types are localized largely along fractures, occur later in the intrusive sequence, and may reflect exsolution of phosphates and sulfates with decreasing temperatures. The magnetite dolomite carbonatite hosts significant pyrochlore mineralization. Microprobe

  7. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    Science.gov (United States)

    Tryk, Donald A.; Yeager, E.

    1992-01-01

    The objective was to identify promising electrocatalyst/support systems for oxygen cathodes capable of operating at ultrahigh current densities in alkaline fuel cells. Such cells will require operation at relatively high temperatures and O2 pressures. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, lithiated NiO and La-Ni perovskites. Several of these materials were prepared using techniques that had not been previously used to prepare them. Particularly interesting was the use of the alkaline solution technique to prepare Pt-doped and Pb-Ru pyrochlores in high area form. Also interesting was the use of the fusion (melt) method for preparing the Pb-Ru pyrochlore. Several of the materials were also deposited with platinum. Well-crystallized Pb2Ru2O(7-y) was used to fabricate very high performance O2 cathodes with good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approx. 140 C in concentrated KOH. For some of the samples, fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. Pyrochlores that were not well-crystallized were found to be unstable in alkaline solution. Very good O2 reduction performance and stability were observed with Pb2RuO(7-y) in a carbon-based gas-fed electrode with an anion-conducting membrane placed on the electrolyte side of the electrode. The performance came within a factor of about two of that observed without carbon. High area platinum and gold supported on several conductive metal oxide supports were examined. Only small improvements in O2 reduction performance at room temperature were observed for Pb2Ru2O(7-y) as a support because of the high intrinsic activity of the pyrochlore. In contrast, a large improvement was observed for Li-doped NiO as a support for Pt. Very poor performance was observed for Au deposited on Li-NiO at approx. 150 C

  8. The Chemistry of Niobium Mineralisation at Bayan Obo,Inner Mongolia, China: Constraints on the Hydrothermal Precipitation and Alteration of Nb-Minerals%The Chemistry of Niobium Mineralisation at Bayan Obo,Inner Mongolia,China:Constraints on the Hydrothermal Precipitation and Alteration of Nb-Minerals

    Institute of Scientific and Technical Information of China (English)

    Martin SMITH; John SPRATT

    2012-01-01

    As well as world class Fe and REE resources the Bayan Obo mineral deposits also hosts significant niobium resources (estimated as 2.2 Mt Nb with an average grade of 0.13 wt% Nb).Niobium in this study is primarily hosted in aeschynite-(Ce) and (Nd),but with subsidiary amounts of pyrochlore,fergusonite-(Ce),fersmite and columbite.Here we report on the paragenetic and textural setting of aeschynite,pyrochlore and fergusonite in the main ore bodies and in a carbonatite dyke.Niobium in a carbonatite sample is hosted in a phase tentatively (due to significant Ca,Mn and Ti contents) identified as fergusonite-(Ce).Aeschynite occurs overgrowing foliation in banded ores,in fractures and vugs in aegirine-rich rocks and in calcite veins.The composition in all settings is similar,but some examples in banded ores develop significant zonation in Y,Th and the REE,inferred to relate to buffering of halogen acid species to low levels by dissolution and fluoritisation of calcite,and the preferential precipitation of LREE from solution due to lower mineral solubility products compared to the HREE.Although lower in total concentration the ratios of REE in pyrochlore are similar to those of aeschynite and suggest the same metal source.The crystallisation of pyroehlore probably relates to growth in paragenetic settings where carbonates had already been eliminated and hence the buffering of F-species activities in the hydrothermal fluid was reduced.Both aeschynite and pyrochlore show evidence of alteration.Primary alteration of aeschynite resulted in leaching of A-site cations (Ca,REE,Th) and Nh,addition of Fe,and ultimately replacement by Ba-Ti phases (baotite and bafertisite).Secondary,metamictisation enhanced,possibly supergene alteration of pyrochlore resulted in hydration,leaching of A-site cations leading to the development of lattice vacancies and increases in Si.The presence of hydrothermal Nb resources at Bayan Obo suggests there may be potential for further Nb discoveries in

  9. Structures and stabilities of trivalent and tetravalent rare earth ions in sevenfold and eightfold coordination in fluorite-related complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Morss, L.R.

    1991-12-31

    This paper reports the preparation and characterization of a series of oxides containing 3+ or 4+ lanthanide (M = Ce, Pr, or Tb) ions, with different ionic sizes and varying M{sup 4+}/M{sup 3+} reduction potentials, in nearly cubic coordination. The objective of the study was to demonstrate how oxidation-reduction characteristics and ionic size trends explain the properties of these oxides and to compare the oxidation-reduction stability of M{sup 3+} and M{sup 4+} lanthanide ions in high (CN 7 or 8) coordination in fluorite-related oxides versus low (CN 6) coordination in perovskite oxides. Efficient preparative methods are reported, as well as powder diffraction and thermogravimetric measurements for oxides CaMTi{sub 2}O{sub 7-x} and CaMZr{sub 2}O{sub 7-x}. These oxides were characterized by X-ray powder diffraction and by thermogravimetric analysis. CaCeTi{sub 2}O{sub 7} is a pyrochlore, a = 10.142(4) {Angstrom}, with Ce{sup 4+} much more easily reducible than in the perovskite BaCeO{sub 3}. By contrast, a preparation with the stoichiometry ``CaPbTi{sub 2}O{sub 7-x}`` is a two-phase mixture-of perovskite CaTiCo{sub 3} and a presumably Pr{sup 3+}-rich pyrochlore Pr{sub 2}Ti{sub 2}O{sub 7}(?). CaTbTi{sub 2}O{sub 7-x} appears to be a Tb{sup 3+} pyrochlore, a = 10.149(2) {Angstrom}. CaCeZr{sub 2}O{sub 7} is a pyrochlore, a = 10.524(1) {Angstrom}. A preparation of ``CaPbZr{sub 2}O{sub 7-x}`` also appeared to yield a two-phase mixture, perovskite CaZrO{sub 3} and pyrochlore Pr{sub 2}Zr{sub 2}O{sub 7}. In this paper, the structures, f-element ion sites, and M(4)-M(3) stability trends in the CaMTi{sub 2}O{sub 7-x} and CaMZr{sub 2}O{sub 7-x} oxides are compared with the structural and stability trends in the perovskites BaMO{sub 3} which have M{sup 4+} ions in sixfold (tilted octahedra) coordination.

  10. Structures and stabilities of trivalent and tetravalent rare earth ions in sevenfold and eightfold coordination in fluorite-related complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Morss, L.R.

    1991-01-01

    This paper reports the preparation and characterization of a series of oxides containing 3+ or 4+ lanthanide (M = Ce, Pr, or Tb) ions, with different ionic sizes and varying M{sup 4+}/M{sup 3+} reduction potentials, in nearly cubic coordination. The objective of the study was to demonstrate how oxidation-reduction characteristics and ionic size trends explain the properties of these oxides and to compare the oxidation-reduction stability of M{sup 3+} and M{sup 4+} lanthanide ions in high (CN 7 or 8) coordination in fluorite-related oxides versus low (CN 6) coordination in perovskite oxides. Efficient preparative methods are reported, as well as powder diffraction and thermogravimetric measurements for oxides CaMTi{sub 2}O{sub 7-x} and CaMZr{sub 2}O{sub 7-x}. These oxides were characterized by X-ray powder diffraction and by thermogravimetric analysis. CaCeTi{sub 2}O{sub 7} is a pyrochlore, a = 10.142(4) {Angstrom}, with Ce{sup 4+} much more easily reducible than in the perovskite BaCeO{sub 3}. By contrast, a preparation with the stoichiometry CaPbTi{sub 2}O{sub 7-x}'' is a two-phase mixture-of perovskite CaTiCo{sub 3} and a presumably Pr{sup 3+}-rich pyrochlore Pr{sub 2}Ti{sub 2}O{sub 7}( ). CaTbTi{sub 2}O{sub 7-x} appears to be a Tb{sup 3+} pyrochlore, a = 10.149(2) {Angstrom}. CaCeZr{sub 2}O{sub 7} is a pyrochlore, a = 10.524(1) {Angstrom}. A preparation of CaPbZr{sub 2}O{sub 7-x}'' also appeared to yield a two-phase mixture, perovskite CaZrO{sub 3} and pyrochlore Pr{sub 2}Zr{sub 2}O{sub 7}. In this paper, the structures, f-element ion sites, and M(4)-M(3) stability trends in the CaMTi{sub 2}O{sub 7-x} and CaMZr{sub 2}O{sub 7-x} oxides are compared with the structural and stability trends in the perovskites BaMO{sub 3} which have M{sup 4+} ions in sixfold (tilted octahedra) coordination.

  11. New complex bismuth oxides in the Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5} system and their properties

    Energy Technology Data Exchange (ETDEWEB)

    Egorysheva, A.V., E-mail: anna_egorysheva@rambler.ru [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Ellert, O.G. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Zubavichus, Y.V. [National Research Center “Kurchatov Institute”, Acad. Kurchatov sq., 1, Moscow 123182 (Russian Federation); Gajtko, O.M.; Efimov, N.N. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Svetogorov, R.D.; Murzin, V.Yu. [National Research Center “Kurchatov Institute”, Acad. Kurchatov sq., 1, Moscow 123182 (Russian Federation)

    2015-05-15

    Phase equilibria in the Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5} system have been investigated. The isothermal section of the system (650°) has been constructed. For the first time the existence of the pyrochlore structure solid solution, (Bi{sub 2−x}Ni{sub x})Ni{sub 2/3−y}Sb{sub 4/3+y}O{sub 7±δ}, x=0.1−0.35, y=0−0.1, and a new compound Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} of KSbO{sub 3} structure type have been discovered. The structures and properties of these compounds were studied by XRD, XAFS, diffuse reflection spectroscopy and magnetic methods. Rietveld refinement of synchrotron radiation-based powder XRD data for pyrochlore sample of 38.43Bi{sub 2}O{sub 3}–33.0NiO–28.57Sb{sub 2}O{sub 5} composition and Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} compound was performed. The best possible refinement of the positional parameters for both pyrochlore and Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} structures was achieved for disordered models. Magnetic, diffuse reflection and an X-ray absorption spectroscopy study confirmed that in both compounds nickel ions are mainly in a 2+ oxidation state. According to magnetic data, Bi{sub 1.84}Ni{sub 0.16}(Ni{sub 0.63}Sb{sub 1.37})O{sub 7} pyrochlore and Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} are overall paramagnetic in nature. - Graphical abstract: Isothermal section of the Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5} system at 650 °C in air and variation of magnetic susceptibility and inverse susceptibility with temperature for Bi{sub 1.84}Ni{sub 0.79}Sb{sub 1.37}O{sub 7} pyrochlore. - Highlights: • We have constructed the isothermal section of the system Bi{sub 2}O{sub 3}–NiO–Sb{sub 2}O{sub 5}. • The boundaries of pyrochlore structure solid solution have been determined. • New Bi{sub 3}Ni{sub 2/3}Sb{sub 7/3}O{sub 11} compound of KSbO{sub 3} structure type have been discovered. • The structures were studied by means of synchrotron X-ray diffraction and XAFS. • Magnetic measurements

  12. Partial Oxidation of Hydrocarbons in a Segmented Bed Using Oxide-based Catalysts and Oxygen-conducting Supports

    Science.gov (United States)

    Smith, Mark W.

    Two objectives for the catalytic reforming of hydrocarbons to produce synthesis gas are investigated herein: (1) the effect of oxygen-conducting supports with partially substituted mixed-metal oxide catalysts, and (2) a segmented bed approach using different catalyst configurations. Excess carbon deposition was the primary cause of catalyst deactivation, and was the focus of the experiments for both objectives. The formation and characterization of deposited carbon was examined after reaction for one of the selected catalysts to determine the quantity and location of the carbon on the catalyst surface leading to deactivation. A nickel-substituted barium hexaaluminate (BNHA), with the formula BaAl 11.6Ni0.4O18.8, and a Rh-substituted lanthanum zirconate pyrochlore (LCZR) with the formula La1.89Ca0.11 Zr1.89Rh0.11, were combined with two different doped ceria supports. These supports were gadolinium-doped ceria (GDC) and zirconium-doped ceria (ZDC). The active catalyst phases were combined with the supports in different ratios using different synthesis techniques. The catalysts were characterized using several different techniques and were tested under partial oxidation (POX) of n-tetradecane (TD), a diesel fuel surrogate. It was found that the presence of GDC and ZDC reduced the formation of carbon for both catalysts; the optimal ratio of catalyst to support was different for the hexaaluminate and the pyrochlore; a loading of 20 wt% of the pyrochlore with ZDC produced the most stable performance in the presence of common fuel contaminants (>50 h); and, the incipient wetness impregnation synthesis method of applying the active catalyst to the support produced more stable product yields than the catalyst prepared by a solid-state mixing technique. Different hexaaluminate and pyrochlore catalysts were used in different configurations in a segmented bed approach. The first strategy was to promote the indirect reforming mechanism by placing a combustion catalyst in the

  13. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  14. Kagome spin ice

    Science.gov (United States)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  15. Phase analysis and dielectric properties of ceramics in PbO–MgO–ZnO–Nb2O5 system: A comparative study of materials obtained by ceramic and molten salt synthesis routes

    Indian Academy of Sciences (India)

    M Thirumal; A K Ganguli

    2000-08-01

    Compositions of the type 3PbO–MgO/ZnO–Nb2O5 were synthesized by the ceramic route at 1000°C and sintered at 1200°C. Powder X-ray diffraction studies of the 1000°C heated products show the presence of the cubic pyrochlore and the columbite (Mg/ZnNb2O6) type phase in the ratio of 3 : 1 for all possible combinations of MgO and ZnO. Further heating at 1200°C led to a decrease in the cubic pyrochlore phase and an increase in the columbite phase by around 10%. Compacted pellets sintered further showed the appearance of the perovskite phase. Similar compositions synthesized using the KCl–NaCl molten salt method at 900°C for 6 h gave a significant amount of the cubic perovskite related phase of the type Pb(Mg/Zn)1/3Nb2/3O3 for all compositions containing MgO. The amount of the perovskite phase was nearly 55% for the Mg rich compositions and decreased with increase in Zn content, the pure Zn composition yielding mainly the cubic pyrochlore phase. On sintering these phases at 1000°C the perovskite phase content decreased. The dielectric constant of the composite materials formed by the ceramic route was in the region of 14 to 20 and varied little with frequency. The composites obtained by the molten salt method, however, showed much larger dielectric constants in the region 40–150 at 500 kHz for various compositions. The dielectric loss tangent of these composites were lower by an order (0.005–0.03 at 500 kHz) compared to the ceramic route.

  16. Effect of annealing conditions on structural and luminescencent properties of Eu{sup 3+}-doped Gd{sub 2}Ti{sub 2}O{sub 7} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Antić, Željka, E-mail: antic@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton (Canada); Prashanthi, K. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton (Canada); Ćulubrk, Sanja; Vuković, Katarina; Dramićanin, Miroslav D. [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton (Canada)

    2016-02-28

    Graphical abstract: - Highlights: • Pulsed laser deposition of Gd{sub 2}Ti{sub 2}O{sub 7}:Eu{sup 3+} films and optimization of annealing conditions. • Pure pyrochlore phase films ∼700 nm thick are obtained after annealing at T ≥ 1000 °C. • Crystalline films show better resolved, more complex emission spectra than amorphous. • Optimization of annealing conditions leads to an enhancement of films luminescence. • Calculated quantum efficiency of emission is highest in film treated at 1100 °C in Ar. - Abstract: Here we report on preparation of Eu{sup 3+}-doped Gd{sub 2}Ti{sub 2}O{sub 7} pyrochlore luminescent thin films by pulsed laser deposition technique and their structural, morphological and optical characterization. The influence of annealing temperature and background gas (air vs. argon) on film photoluminescence is examined for the optimization of post-deposition annealing conditions. As-deposited amorphous films become pure pyrochlore crystalline after calcination at temperatures higher than 1000 °C. Atomic force microscopy showed increase in the grain size from ∼20 nm in the as-deposited to ∼60 nm in the crystalline sample annealed at 1100 °C. Scanning electron microscopy showed dense films with the uniform thickness of about 700 nm. Luminescence spectra of crystalline films were complex and composed of better resolved emission lines than in the amorphous sample. Emission spectra showed that symmetry of Eu{sup 3+} sites become disturbed in annealed films due to the extrinsic thermal stress. Films treated in argon displayed similar emission and excitation spectral features like air-treated ones, but with better resolved emission lines. Calculated quantum efficiency of emission showed that optimization of annealing conditions led to an enhancement of films luminescence. The highest quantum efficiency of emission and the longest lifetime is found for the sample annealed at 1100 °C in presence of argon.

  17. Thermal conductivity of (Sm1-xLax)2Zr2O7 (x=0, 0.25, 0.5, 0.75 and 1) oxides for advanced thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongsong; SUN Kun; XU Qiang; WANG Fuchi; LIU Ling

    2009-01-01

    Pyrochlore oxides of general compositions, A2Zr2O7, where A is a 3+ cation (La to Lu), are promising candidate materials for ap-plications as high temperature thermal barrier coatings because of their high melting points, high thermal expansion coefficients, and low thermal conductivities. In this study, oxides of Sm2Zr2O7, (Sm0.75La0.25)2Zr2O7, (Sm0.5 La0.5)2Zr2O7, (Sm0.25La0.75)2Zr2O7 and La2Zr2O7 were prepared by solid reactions at 1600 ℃ for 10 h using Sm2O3, La2O3 and ZrO2 as the reactants. The phase compositions of these ceramic ma-terials were analyzed by X-ray diffractometer (XRD) and fourier transform infrared spectroscopy (FT-IR) methods, respectively. The micro-structure was observed by scanning electronl microscope (SEM). The thermal conductivities of these ceramic materials were measured using laser-flash method. XRD and FT-IR results showed that pure ceramic materials with pyrochlore structure were prepared successfully. SEM results indicated that microstructures of these ceramic materials were dense and grain boundaries were very clean. The La2O3 doped Sm2Zr2O7 pyrochlores (Sm0.75 La0.25)2Zr2O7 and (Sm0.5 La0.5)2Zr2O7 had lower thermal conductivity than the undoped Sm2Zr2O7. The thermal conductivity of (Sm0.25La0.75)2Zr2O7 was found to be lower than that of La2Zr2O7. The results showed that these ceramic materials had the poten-tial to be used as candidate materials for TBCs.

  18. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Indiana Univ., Indianapolis, IN (United States)

    2016-11-01

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transition at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La2Zr2O7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.

  19. Bubble Formation and Lattice Parameter Changes Resulting from He Irradiation of Defect-Fluorite Gd2Zr2O7

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.; Zhang, Yanwen; Crespillo, Miguel L.; Wen, Juan; Xue, Haizhou; Wang, Yongqiang; Weber, William J.

    2016-08-15

    Pyrochlores have long been considered as potential candidates for advanced ceramic waste-forms for the immobilization of radioactive waste nuclides. This work provides evidence that Gd2Zr2O7, often considered the most radiation tolerant pyrochlore, could be susceptible to radiation damage in the form of bubble nucleation at the highest He doses expected over geological time. Ion irradiations were utilized to experimentally simulate the radiation damage and He accumulation produced by ..alpha..-decay. Samples were pre-damaged using 7 MeV Au3+ to induce the pyrochlore to defect-fluorite phase transformation, which would occur due to ..alpha..-recoil damage within several hundred years of storage in a Gd2Zr2O7 waste-form. These samples were then implanted to various He concentrations in order to study the long-term effects of He accumulation. Helium bubbles 1-3 nm in diameter were observed in TEM at a concentration of 4.6 at.% He. Some bubbles remained isolated, while others formed chains 10-30 nm in length parallel to the surface. GIXRD measurements showed lattice swelling after irradiating pristine Gd2Zr2O7 with 7 MeV Au3+ to a fluence of 2.2 x 1015 Au/cm2. An increase in lattice swelling was also measured after 2.2 x 1015 Au/cm2 + 2 x 1015 He/cm2 and 2.2 x 1015 Au/cm2 + 2 x 1016 He/cm2. A decrease in lattice swelling was measured after irradiation with 2.2 x 1015 Au/cm2 + 2 x 1017 He/cm2, the fluence where bubbles and bubble chains were observed in TEM. Bubble chains are thought to form in order to reduce lattice strain normal to the surface, which is produced by the Au and He irradiation damage.

  20. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dandeneau, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performance and properties.

  1. Phase equilibria and crystal chemistry of rubidium niobates and rubidium tantalates

    Science.gov (United States)

    Minor, D. B.; Roth, R. S.; Parker, H. S.; Brower, W. S.

    1977-01-01

    The phase equilibria relations and crystal chemistry of portions of the Rb2O-Nb2O5 and Rb2O-Ta2O5 systems were investigated for structures potentially useful as ionic conductors. A hexagonal tungsten bronze-type (HTB) structure was found in both systems as well as three hexagonal phases with mixed HTB-pyrochlore type structures. Ion exchange experiments between various alkali ions are described for several phases. Unit cell dimensions and X-ray diffraction powder patterns are reported.

  2. Optimization of parameters in the synthesis of 0.90Pb(Zn1/3Nb2/3)O3–0.10PbTiO3 (PZN-10PT) powders obtained by the mixed oxides method

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, C.F.V.; Garcia, D.; Eiras, J.A.; Kiminami, R.H.G.A.

    2017-07-01

    Preventing the formation of the pyrochlore phase in the synthesis of PZN-PT powders requires controlling calcination parameters such as temperature, soaking time and atmosphere. These parameters were examined extensively to determine the time and temperature at which the perovskite phase is the majority phase, as well as the atmosphere that facilitates the formation of this phase. A maximum of 74% of perovskite phase was obtained under the following conditions: 1000°C, 4h in nitrogen atmosphere. In this work, we studied the influence of these parameters, which were optimized, on the formation the perovskite phase in PZN-10PT powders synthesized by the conventional solid state method. (Author)

  3. Possible quantum diffusion of polaronic muons in Dy(2)Ti(2)O(7) spin ice.

    Science.gov (United States)

    Quémerais, P; McClarty, P; Moessner, R

    2012-09-21

    We interpret recent measurements of the zero field muon relaxation rate in the magnetic pyrochlore Dy(2)Ti(2)O(7) as resulting from the quantum diffusion of muons in the material. In this scenario, the plateau observed at low temperature (muons through a spatially disordered spin state and not to any magnetic fluctuations persisting at low temperature. Two further regimes either side of a maximum relaxation rate at T* = 50 K correspond to a crossover between tunneling and incoherent activated hopping motion of the muon. Our fit of the experimental data is compared with the case of muonium diffusion in KCl.

  4. Key insights on the structural characterization of textured Er{sub 2}O{sub 3}-ZrO{sub 2} nano-oxides prepared by a surfactant-free solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Julian-Lopez, Beatriz, E-mail: julian@qio.uji.es [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain); Luz, Veronica de la; Gonell, Francisco; Cordoncillo, Eloisa [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain); Lopez-Haro, Miguel; Calvino, Jose J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, Puerto Real, 11510 Cadiz (Spain); Escribano, Purificacion [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer Structural resolution of fluorite vs. pyrochlore in small nanocrystals. Black-Right-Pointing-Pointer Simple template-free solvothermal synthesis of Er{sub 2}O{sub 3}-ZrO{sub 2} nanooxides. Black-Right-Pointing-Pointer Good control over size, morphology and surface properties (280 m{sup 2} g{sup -1}). - Abstract: Zirconia-mixed oxides can exhibit cubic fluorite and pyrochlore structure. Their discrimination is not easy in nanooxides with a crystal size close to that of a few unit cells. In this work, high resolution transmission electron microscopy (HRTEM) has been employed to provide key insights on the structural characterization of a nanometric and porous mixed Er{sub 2}O{sub 3}-ZrO{sub 2} oxide. The material was prepared by a simple template-free solvothermal route that provided nanocrystalline powders at low temperature (170 Degree-Sign C) with spherical morphology, and high surface area ({approx}280 m{sup 2} g{sup -1}). The porosity was mainly originated from the assembling of organic complexing agents used in the synthesis to limit the crystal growth and to control hydrolysis and condensation reaction rates. The samples were characterized by thermal analysis, X-ray diffraction, scanning electron microscopy and N{sub 2} adsorption measurements. A detailed study by HRTEM was conducted on microtomed samples. It was observed that the material was made of nanocrystals packed into spherical agglomerates. HRTEM simulations indicated that it is not possible to identify the pyrochlore phase in nanoparticles with diameter below 2 nm. In our samples, the analysis of the HRTEM lattice images by means of fast Fourier transform (FFT) techniques revealed well defined spots that can be assigned to different planes of a cubic fluorite-type phase, even in the raw material. Raman spectroscopy was also a powerful technique to elucidate the crystalline phase of the materials with the smallest nanoparticles. HREM and Raman results evidenced

  5. Synthesis of solid solutions of perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.; Plaude, A.V.

    1986-03-01

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoretical value and showing zero apparent porosity and water absorption.

  6. Observation of localized flat-band states in Kagome photonic lattices.

    Science.gov (United States)

    Zong, Yuanyuan; Xia, Shiqiang; Tang, Liqin; Song, Daohong; Hu, Yi; Pei, Yumiao; Su, Jing; Li, Yigang; Chen, Zhigang

    2016-04-18

    We report the first experimental demonstration of localized flat-band states in optically induced Kagome photonic lattices. Such lattices exhibit a unique band structure with the lowest band being completely flat (diffractionless) in the tight-binding approximation. By taking the advantage of linear superposition of the flat-band eigenmodes of the Kagome lattices, we demonstrate a high-fidelity transmission of complex patterns in such two-dimensional pyrochlore-like photonic structures. Our numerical simulations find good agreement with experimental observations, upholding the belief that flat-band lattices can support distortion-free image transmission.

  7. Corrosion behavior of pyroclore-rich titanate ceramics for plutonium disposition ; impurity effects.

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, A. J.

    1999-01-13

    The baseline ceramic contains Ti, U, Ca, Hf, Gd, and Ce, and is made up of only four phases, pyrochlore, zirconolite, rutile, and brannerite. The impurities present in the three other ceramics represent impurities expected in the feed, and result in different phase distributions. The results from 3 day, 90 C MCC-1 tests with impurity ceramics were significantly different than the results from tests with the baseline ceramic. Overall, the addition of impurities to these titanate ceramics alters the phase distributions, which in turn, affects the corrosion behavior.

  8. Magnetic Density of States at Low Energy in Geometrically Frustrated Systems

    Science.gov (United States)

    Yaouanc, A.; de Réotier, P. Dalmas; Glazkov, V.; Marin, C.; Bonville, P.; Hodges, J. A.; Gubbens, P. C.; Sakarya, S.; Baines, C.

    2005-07-01

    Using muon-spin-relaxation measurements we show that the pyrochlore compound Gd2Ti2O7, in its magnetically ordered phase below ˜1 K, displays persistent spin dynamics down to temperatures as low as 20 mK. The characteristics of the induced muon relaxation can be accounted for by a scattering process involving two magnetic excitations, with a density of states characterized by an upturn at low energy and a small gap depending linearly on the temperature. We propose that such a density of states is a generic feature of geometrically frustrated magnetic materials.

  9. The magnetic phase diagram of Gd2Sn2O7

    Science.gov (United States)

    Freitas, R. S.; Gardner, J. S.

    2011-04-01

    Measurements of the magnetic susceptibility of the frustrated pyrochlore magnet Gd2Sn2O7 have been performed at temperatures below T = 5 K and in magnetic fields up to H = 12 T. The phase boundaries determined from these measurements are mapped out in an H-T phase diagram. In this gadolinium compound, where the crystal-field splitting is small and the exchange and dipolar energy are comparable, the Zeeman energy overcomes these competing energies, resulting in at least four magnetic phase transitions below 1 K. These data are compared against those for Gd2Ti2O7 and will, we hope, stimulate further studies.

  10. Generalising spin-ice: the magnetic ground-state of gadolinium titanate

    Science.gov (United States)

    Brammall, M. I.; Briffa, A. K. R.; Long, M. W.

    2011-03-01

    We investigate the complex low-temperature magnetic ordering of the antiferro-magnetic pyrochlore Gd2Ti2O7. Mössbauer experiments indicate that the spins have equal-magnitude magnetic moments, which are restricted to lie in planes perpendicular to the local crystallographic directions. In addition neutron diffraction experiments show a magnetic scattering vector of (1/2,1/2,1/2) which is consistent with thirty-two atoms per magnetic unit cell. These restrictions are compatible with only two distinct magnetically ordered states.

  11. Oxygen potentials of transuranium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Haruyoshi Otobe; Mituso Akabori; Arai Yasuo; Kazuo Minato [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency: Tokai-mura, Ibaraki-ken, 319-1195 (Japan)

    2008-07-01

    The oxygen potentials of pyrochlore-type Pu{sub 2}Zr{sub 2}O{sub 7+y}, fluorite-type (Pu{sub 0.5}Zr{sub 0.5})O{sub 2-x} and AmO{sub 2-x} have been measured by the electromotive force (EMF) method with a zirconia solid-electrolyte. The oxygen potentials of these oxides were reviewed. The phase relations, microstructure, equilibrium state of these oxides were discussed, referring to the isothermal curve of the oxygen potentials. (authors)

  12. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  13. Mesoporous tertiary oxides via a novel amphiphilic approach

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Natasha; Hall, Simon R., E-mail: simon.hall@bristol.ac.uk, E-mail: Annela.Seddon@bristol.ac.uk [Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom and Complex Functional Materials Group, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Seddon, Annela M., E-mail: simon.hall@bristol.ac.uk, E-mail: Annela.Seddon@bristol.ac.uk; Hallett, James E. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Kockelmann, Winfried [STFC Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom); Ting, Valeska P. [Department of Chemical Engineering, University of Bath, Bath BA2 7AY (United Kingdom); Sadasivan, Sajanikumari; Tooze, Robert P. [Sasol Technology (UK) Ltd, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST (United Kingdom)

    2016-01-01

    We report a facile biomimetic sol-gel synthesis using the sponge phase formed by the lipid monoolein as a structure-directing template, resulting in high phase purity, mesoporous dysprosium- and gadolinium titanates. The stability of monoolein in a 1,4-butanediol and water mixture complements the use of a simple sol-gel metal oxide synthesis route. By judicious control of the lipid/solvent concentration, the sponge phase of monoolein can be directly realised in the pyrochlore material, leading to a porous metal oxide network with an average pore diameter of 10 nm.

  14. Er2Ti2O7: Evidence of quantum order by disorder in a frustrated antiferromagnet

    DEFF Research Database (Denmark)

    Champion, J.D.M.; Harris, M.J.; Holdsworth, P.C.W.;

    2003-01-01

    Er(2)Ti(2)O(7) has been suggested to be a realization of the frustrated XY pyrochlore lattice antiferromagnet, for which theory predicts fluctuation-induced symmetry breaking in a highly degenerate ground state manifold. We present a theoretical analysis of the classical model compared...... to neutron scattering experiments on the real material, both below and above T(N)=1.173(2) K. The model correctly predicts the ordered magnetic structure, suggesting that the real system has order stabilized by zero-point quantum fluctuations that can be modeled by classical spin wave theory. However...

  15. Terahertz Time-Domain Spectroscopy for In Situ Monitoring of Ceramic Nuclear Waste Forms

    Science.gov (United States)

    Clark, Braeden M.; Sundaram, S. K.

    2016-10-01

    The use of terahertz time-domain spectroscopy (THz-TDS) is presented as a non-contact method for in situ monitoring of ceramic waste forms. Single-phase materials of zirconolite (CaZrTi2O7), pyrochlore (Nd2Ti2O7), and hollandite (BaCs0.3Cr2.3Ti5.7O16 and BaCs0.3CrFeAl0.3Ti5.7O16) were characterized. The refractive index and dielectric properties in THz frequencies demonstrate the ability to distinguish between these materials. Differences in processing methods show distinct changes in both the THz-TDS spectra and optical and dielectric properties of these ceramic phases. The temperature dependence of the refractive index and relative permittivity of pyrochlore and zirconolite materials in the range of 25-200 °C is found to follow an exponential increasing trend. This can also be used to monitor the temperature of the ceramic waste forms on storage over extended geological time scales.

  16. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

    Science.gov (United States)

    Ewing, Rodney C.

    2011-02-01

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). There are two basic strategies for the disposition of these heavy elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2B 2O 7 (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  17. Solid-state NMR and short-range order in crystalline oxides and silicates: a new tool in paramagnetic resonances.

    Science.gov (United States)

    Stebbins, Jonathan F; McCarty, Ryan J; Palke, Aaron C

    2017-03-01

    Most applications of high-resolution NMR to questions of short-range order/disorder in inorganic materials have been made in systems where ions with unpaired electron spins are of negligible concentration, with structural information extracted primarily from chemical shifts, quadrupolar coupling parameters, and nuclear dipolar couplings. In some cases, however, the often-large additional resonance shifts caused by interactions between unpaired electron and nuclear spins can provide unique new structural information in materials with contents of paramagnetic cations ranging from hundreds of ppm to several per cent and even higher. In this brief review we focus on recent work on silicate, phosphate, and oxide materials with relatively low concentrations of paramagnetic ions, where spectral resolution can remain high enough to distinguish interactions between NMR-observed nuclides and one or more magnetic neighbors in different bonding configurations in the first, second, and even farther cation shells. We illustrate the types of information available, some of the limitations of this approach, and the great prospects for future experimental and theoretical work in this field. We give examples for the effects of paramagnetic transition metal, lanthanide, and actinide cation substitutions in simple oxides, pyrochlore, zircon, monazite, olivine, garnet, pyrochlores, and olivine structures.

  18. Structural and mechanical properties of lanthanide doped La1/3Nb0.8Ta0.2O3 thin films prepared by sol–gel method

    Science.gov (United States)

    Brunckova, Helena; Medvecky, Lubomir; Kovalcikova, Alexandra; Fides, Martin; Mudra, Erika; Durisin, Juraj; Skvarla, Jiri; Kanuchova, Maria

    2017-04-01

    Transparent Eu and Nd doped lanthanum niobate tantalate La1/3Nb0.8Ta0.2O3 (LNT) thin films (∼150 nm) were prepared by sol–gel/spin-coating process on Pt/SiO2/Si substrates and annealing at 1100 °C. The x-ray diffraction analysis of films confirmed formation of the perovskite La1/3NbO3 and La1/3TaO3 phases with traces of pyrochlore LaNbO4. Eu and Nd doped LNT films were smoother with roughness 17.1 and 25.4 nm in comparison with LNT (43.3 nm). In all films was observed heterogeneous microstructure with the perovskite spherical and pyrochlore needle-like particles. The mechanical properties of films were characterized for the first time by conventional and continuous stiffness (CSM) nanoindentation. The Eu and Nd doped LNT film modulus (E) and hardness (H) were higher than LNT (∼99.8 and 4.4 GPa) determined by conventional nanoindentation. It was measured the significant effect of substrate on properties of Eu or Nd films (H ∼ 5.9 or 4.9 GPa and E ∼ 107.3 or 104.1 GPa) by CSM nanoindentation.

  19. Slater to Mott Crossover in the Metal to Insulator Transition of Nd2Ir2O7

    Science.gov (United States)

    Nakayama, M.; Kondo, Takeshi; Tian, Z.; Ishikawa, J. J.; Halim, M.; Bareille, C.; Malaeb, W.; Kuroda, K.; Tomita, T.; Ideta, S.; Tanaka, K.; Matsunami, M.; Kimura, S.; Inami, N.; Ono, K.; Kumigashira, H.; Balents, L.; Nakatsuji, S.; Shin, S.

    2016-07-01

    We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd2Ir2O7 through its magnetic metal-insulator transition. Our data reveal that metallic Nd2Ir2O7 has a quadratic band, touching the Fermi level at the Γ point, similar to that of Pr2Ir2O7 . The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however, with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a nondispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition.

  20. Ab initio energetic study of oxide ceramics with rare-earth elements

    Institute of Scientific and Technical Information of China (English)

    WU Bo; Matvei Zinkevich; WANG Chong; Fritz Aldinger

    2006-01-01

    Ab initio energetic calculations based on the density functional theory (DFT) and the projector augmented wave method (PAW) for determining the polymorphisms of lanthanide sesquioxides Ln2O3 (where Ln = rare-earth element. Y,and Sc), LnMO3 perovskites (where M = Al and Ga), and Ln2B2O7 pyrochlores (where B = Ti, Zr, and Hf) were reported. The relative lattice stabilities agreed well with the critically assessed results or the experimental results except the C-type Ln2O3 with a cubic structure, for which the calculated total energies were considerably more negative. With the increase of the Ln3+-cation radius, the polymorphic structures showed a degenerative tendency. The tendencies and quantities of the enthalpies of formation of the ternary oxide ceramics synthesized from their constituent binary oxides reasonably agreed with the available experimental results, and valuable thermodynamic properties were afforded to the compound, for which no experimental data is available. The enthalpies of formation of both perovskites and pyrochlores tend to become more negative with the increase of the Ln3+-cation radius.

  1. Synthesis and characterization of PLZT thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Verardi, P.; Craciun, F. [CNR Istituto di Acustica, Via del Fosso del Cavaliere 100, 00133, Rome (Italy); Scarisoreanu, N.; Epurescu, G.; Dinescu, M.; Vrejoiu, I. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), P.O. Box MG-16, 76900, Bucharest (Romania); Dauscher, A. [Laboratoire de Physique des Materiaux (LPM) - UMR CNRS-UHP-INPL 7556, Ecole des Mines, Parc de Saurupt, 54042, Nancy Cedex (France)

    2004-09-01

    Thin films of Pb{sub 1-x}La{sub x}(Zr{sub 0.65}Ti{sub 0.35}){sub 1-x/4}O{sub 3} with x=0.09 (PLZT 9/65/35) have been grown by pulsed laser deposition (PLD) and by PLD assisted by radio frequency (RF) discharge in oxygen which increases the plasma reactivity and reduces the oxygen vacancies in films and at the film-bottom electrode interface. Significant compositional, structural and dielectric differences have been found among samples grown in the same deposition conditions excepting for RF power. Films grown by RF-assisted PLD have less pyrochlore and are more oriented. For these films dielectric permittivity vs. temperature variation was typical of relaxor ferroelectrics and the temperature of the dielectric maximum was close to that obtained in bulk, but the permittivity value was much lower. This was attributed mainly to the influence of a low permittivity interface layer and to the detrimental effect of pyrochlore phase, still present in small quantities even in the films obtained by RF-PLD. The dielectric behavior of films grown without RF discharge was very different: no dielectric anomaly was observed, only a step increase above 180 C. Moreover much higher dielectric loss was measured for these films. (orig.)

  2. Electronic Structure Studies and Photocatalytic Properties of Cubic Bi1.5ZnNb1.5O7

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2015-01-01

    Full Text Available The photocatalytic ability of cubic Bi1.5ZnNb1.5O7 (BZN pyrochlore for the decolorization of an acid orange 7 (AO7 azo dye in aqueous solution under ultraviolet (UV irradiation has been investigated for the first time. BZN catalyst powders prepared using low temperature sol-gel and higher temperature solid-state methods have been evaluated and their reaction rates have been compared. The experimental band gap energy has been estimated from the optical absorption edge and has been used as reference for theoretical calculations. The electronic band structure of BZN has been investigated using first-principles density functional theory (DFT calculations for random, completely and partially ordered solid solutions of Zn cations in both the A and B sites of the pyrochlore structure. The nature of the orbitals in the valence band (VB and the conduction band (CB has been identified and the theoretical band gap energy has been discussed in terms of the DFT model approximations.

  3. Fabrication and phase transition of Gd{sub 2}Zr{sub 2}O{sub 7} ceramics immobilized various simulated radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Long; Shu, Xiaoyan; Ding, Yi; Duan, Tao; Song, Mianxin [Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Lu, Xirui, E-mail: luxiruimvp116@163.com [Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2015-01-15

    Highlights: • Gd{sub 2}Zr{sub 2}O{sub 7} ceramics immobilized multi-nuclides were successfully fabricated. • All samples exhibited a single phase structure. • Phase transition happened with enhanced doping content. - Abstract: To investigate the feasibility of Gd{sub 2}Zr{sub 2}O{sub 7} used for disposal waste of multi-nuclides with multi-valence, simulated trialkyl phosphine oxides (TRPO) waste was chosen to research the fabrication method and phase evolution. A series of (Gd,A){sub 2}(Zr,B){sub 2}O{sub 7} ceramics were successfully fabricated through a solid-state reaction sintering at 1500 °C for 72 h. XRD studies reveal that the compositions containing up to 35 wt.% simulated TRPO waste exhibit a single pyrochlore structure, while the doping content varies from 35 to 65 wt.%, the samples adopt a single defect fluorite structure. In the discussed range, the lattice parameter decreases with the increased doping content, and the r{sub A}/r{sub B} ratio decreases from 1.43 to 1.27, while the degree order increases in turn. Furthermore, the densification and grain growth in pyrochlore structure are promoted by an enhanced doping content.

  4. Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material

    Energy Technology Data Exchange (ETDEWEB)

    Ribis, J., E-mail: joel.ribis@cea.fr [CEA, DEN, DMN, SRMA, F-91191 Gif sur Yvette (France); Lozano-Perez, S. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom)

    2014-01-15

    ODS steels are promising materials for Sodium cooled Fast Reactors since their fine distribution of nano-clusters confers excellent mechanical properties. However, the nano-feature stability needs to be assessed under neutron irradiation. Before irradiation, the characterizations show that nano-particles are finely distributed within the ferritic matrix and are identified to have a pyrochlore type structure. After irradiation of the MA957 alloy in the Phenix French reactor at 412 °C up to 50 dpa and 430 °C up to 75 dpa, transmission electron microscopy characterization reveals a very slight density fall but no distinguishable difference in nano-features size before and after irradiation. In addition, after both irradiations, the nano-oxides are still (Y, Ti, O) compounds with orientation relationship with the matrix. A multislice simulation of high resolution images suggests that nano-particles still have a fcc pyrochlore type structure after irradiation. A possible change of lattice parameter seems to be highlighted, possibly due to disordering by cascade effect.

  5. Opportunities for functional oxides in yttrium oxide-titanium oxide-zirconium oxide system: Applications for novel thermal barrier coatings

    Science.gov (United States)

    Francillon, Wesley

    This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is

  6. PPHASE AND MORPHOLOGY FORMATION OF Na DOPED PMN THIN FILMS PREPARED BY MODIFIED SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    HELENA BRUNCKOVÁ

    2013-03-01

    Full Text Available Na doped lead magnesium niobate Pb(Mg1/3Nb2/3O3 (Na-PMN thin films of 100 nm thickness were prepared by modified sol-gel route with niobium precursor. Na-PMN films were deposited from sol derived using tartaric acid modified polymerizable complex method by mixing of Nb-tartarate (Pechini complex with Na, Pb and Mg acetates at 80°C with molar ratio of Na : Pb : Mg : Nb = 1/2 : 1 :1/3 : 2/3 on Pt/Al2O3 substrates by spin-coating method. In Na doped PMN film the perovskite Pb(Mg1/3Nb2/3O3 phase (65 vol. % and a small amount of pyrochlore Na2Nb8O21 phase were revealed after sintering at 650°C. In the microstructure of 2-layered Na-PMN/Pt/Al2O3 thin film, with ~9.5 nm of roughness, the bimodal particle distribution was observed with small spherical particles of pyrochlore phase and larger sponge-like particles of the perovskite phase. The smallest visible spherical particles (~30 nm and mutually interconected particles (~125 nm were found in TEM and AFM micrographs.

  7. Corrosion testing of candidates for the alkaline fuel cell cathode

    Science.gov (United States)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  8. Nd2±xZr2∓xO7±x/2 (-0.2≤x≤0.4) complex oxides: Effect of anion disorder on ionic conductivity

    Science.gov (United States)

    Anithakumari, P.; Grover, V.; Tyagi, A. K.

    2016-05-01

    In the present work, a series of Nd2±xZr2∓xO7±x/2 (-0.2≤x≤0.4) was prepared by self assisted gel-combution method followed by high temperature sintering at 1673 K. Thorough structural characterizations were done by X-ray diffraction and Raman spectroscopic techniques. The nominal compositions Nd1.6Zr2.4O7.2 and Nd1.8Zr2.2O7.1 were found to possess single-phasic pyrochlore structure whereas Nd2.0Zr2.0O7 and Nd2.2Zr1.8O6.9 consisted of a pyrochlore phase and a small amount of hexagonal Nd2O3 as an impurity phase. Electrical behavior of the samples was examined by AC impedance analysis. Even though the activation energies of all the samples are not very different, a high pre-exponential factor for the Nd1.6Zr2.4O7.2 composition resulted in high ionic conductivity (3.37 × 10-3 Scm-1 at 773 K). This high ionic conductivity value makes it a superior candidate as an electrolyte material for SOFC applications.

  9. Magnetocapacitance effect in EuTiO3 and related compounds

    Science.gov (United States)

    Katsufuji, Takuro

    2005-03-01

    Perovskite titanates, EuTiO3, contains Ti^4+ ions, similarly with BaTiO3 and SrTiO3, and is expected to show ferroelectric instability. In addition, this compound contains Eu^2+ ions with S=7/2 spin, which order antiferromagnetically at 5.5 K. We measured the dielectric constant of this compound [1], and found that large dielectric constants (>400) critically decrease with antiferromagnetic ordering of the Eu spins at 5.5 K. We also found a large change of the dielectric constant under magnetic field (magnetocapacitance) by 7 % with 1.5 T at 2 K. From a comparison with a mean-field calculation, it was shown that the variation of dielectric constants scales with the pair correlation of the nearest-neighbor Eu spins. We also measured the magnetocapacitance of pyrochlore titanates, R2Ti2O7 (R=rare earth) [2], having the same Ti^4+, but the magnetic moment is located on a pyrochlore lattice, and thus is dominated by geometrical frustration. By comparing the magnitude of mangetocapacitance with the square of magnetization, evidence of ferromagnetic (R=Ho) and antiferromagnetic (R=Gd) fluctuation was obtained. [1] T. Katsufuji et al., Phys. Rev. B 64, 054415 (2001). [2] T. Katsufuji et al., Phys. Rev. B 69 064422 (2004).

  10. Hydrothermal Synthesis and Photochromism Property of Superfine Powders of Metastable Tungsten Oxide%介稳态氧化钨超微粉体的水热合成与光致变色性质研究

    Institute of Scientific and Technical Information of China (English)

    徐英明; 霍丽华; 赵辉; 高山; 赵经贵

    2005-01-01

    Under hydrothermal conditions, the superfine powders of cubic pyrochlore-type of tungsten oxide and hexagonal tungsten bronze were obtained by using Na2WO4·2H2O as the starting material. The products were characterized by XRD, TG, IR, UV and EPMA, respectively. The effects of the pH value, the acid concentration, reaction temperature and time on the structure and particle size of products were investigated in detail. The conditions for the preparation of superfine powders of tungsten oxide were optimized. The pH 2.5~4.5 of the reaction system led to the formation of a pyroehlore phase and pH 0.5~2.0 gave the hexagonal tungsten bronze structure. The photochromism property of the hexagonal tungsten bronze was studied. The results show that pyroehlore and bronze phases are decomposed at 300℃ and 450℃, respectively. With the increasing of temperature, the structure of the two oxides changes. The pyrochlore-type powder changes completely into trielinic Na2W4O13 around 500℃, while the bronze phase into a mixture of Na2W6O19 and trielinie WO3 at 550℃. The powder of the hexagonal tungsten bronze showed better photochromism property。

  11. Expected radiation effects in plutonium immobilization ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A., LLNL

    1997-09-01

    The current formulation of the candidate ceramic for plutonium immobilization consists primarily of pyrochlore, with smaller amounts of hafnium-zirconolite, rutile, and brannerite or perovskite. At a plutonium loading of 10.5 weight %, this ceramic would be made metamict (amorphous) by radiation damage resulting from alpha decay in a time much less than 10,000 years, the actual time depending on the repository temperature as a function of time. Based on previous experimental radiation damage work by others, it seems clear that this process would also result in a bulk volume increase (swelling) of about 6% for ceramic that was mechanically unconfined. For the candidate ceramic, which is made by cold pressing and sintering and has porosity amounting to somewhat more than this amount, it seems likely that this swelling would be accommodated by filling in the porosity, if the material were tightly confined mechanically by the waste package. Some ceramics have been observed to undergo microcracking as a result of radiation-induced anisotropic or differential swelling. It is unlikely that the candidate ceramic will microcrack extensively, for three reasons: (1) its phase composition is dominated by a single matrix mineral phase, pyrochlore, which has a cubic crystal structure and is thus not subject to anisotropic swelling; (2) the proportion of minor phases is small, minimizing potential cracking due to differential swelling; and (3) there is some flexibility in sintering process parameters that will allow limitation of the grain size, which can further limit stresses resulting from either cause.

  12. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy; La gestion des actinides dans le cycle du combustible nucleaire: le role de la mineralogie

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C. [Department of Nuclear Engineering and Radiological Sciences, Department of Geological Sciences, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005 (United States)

    2011-02-15

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the 'minor' actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., {sup 239}Pu), a source of fissile material for nuclear weapons (e.g., {sup 239}Pu and {sup 237}Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., {sup 239}Pu and {sup 237}Np). There are two basic strategies for the disposition of these heavy elements: (1) to 'burn' or transmute the actinides using nuclear reactors or accelerators; (2) to 'sequester' the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A{sub 2}B{sub 2}O{sub 7} (A rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms. (author)

  13. Structural and crystallization behavior of (Ba,Sr)TiO3 borosilicate glasses

    Science.gov (United States)

    Yadav, Avadhesh Kumar; Gautam, C. R.; Gautam, Arvind; Mishra, Vijay Kumar

    2013-10-01

    Various glass samples were prepared by melt quench technique in the glass system [(Ba1- x Sr x ) TiO3]-[2SiO2-B2O3]-[K2O] doped with 1 mole% of La2O3. Infrared spectra show the number of absorption peaks with different spliting in the wave number range from 450 to 4000 cm-1. Absorption peaks occurs due to asymetric vibrational streching of borate by relaxation of the bond B-O of trigonal BO3. Raman spectra show the Raman bands due to ring-type metaborate anions, symmetric breathing vibrations BO3 triangles replaced by BO4 tetrahedra, and symmetric breathing vibrations of six-member rings. The differential thermal analysis of a glass sample corresponding to composition x = 0.0 shows crystallization temperature at 847°C and glass transition temperature at 688°C. X-ray diffraction (XRD) pattern of glass ceramic samples shows the major crystalline phase of BaTiO3 whereas pyrochlore phases of barium titanium silicate. Scanning electron micrographs confirm the results of XRD as barium titanate is major crystalline phase along with pyrochlore phase of barium titanium silicate.

  14. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  15. Fundamental thermodynamics of actinide-bearing mineral waste forms. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M.A. [Los Alamos National Lab., NM (US); Ebbinghaus, B.B.

    1998-06-01

    'The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly, understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpy of formation of actinide substituted zircon, zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stability of these materials. This report summarizes work after eight months of a three year project.'

  16. Phonon and crystal field excitations in geometrically frustrated rare earth titanates

    Science.gov (United States)

    Lummen, T. T. A.; Handayani, I. P.; Donker, M. C.; Fausti, D.; Dhalenne, G.; Berthet, P.; Revcolevschi, A.; van Loosdrecht, P. H. M.

    2008-06-01

    The phonon and crystal field excitations in several rare earth titanate pyrochlores are investigated. Magnetic measurements on single crystals of Gd2Ti2O7 , Tb2Ti2O7 , Dy2Ti2O7 , and Ho2Ti2O7 are used for characterization, while Raman spectroscopy and terahertz time domain spectroscopy are employed to probe the excitations in the materials. The lattice excitations are found to be analogous across the compounds over the whole temperature range investigated (295-4 K). The resulting full phononic characterization of the R2Ti2O7 pyrochlore structure is then used to identify crystal field excitations observed in the materials. Several crystal field excitations have been observed in Tb2Ti2O7 in Raman spectroscopy, among which all of the previously reported excitations. The presence of additional crystal field excitations, however, suggests the presence of two inequivalent Tb3+ sites in the low-temperature structure. Furthermore, the crystal field level at approximately 13cm-1 is found to be both Raman and dipole active, indicating broken inversion symmetry in the system and thus undermining its current symmetry interpretation. In addition, evidence is found for a significant crystal field-phonon coupling in Tb2Ti2O7 . The additional crystal field information on Tb2Ti2O7 adds to the recent discussion on the low temperature symmetry of this system and may serve to improve its theoretical understanding.

  17. Effect of annealing conditions on structural and luminescencent properties of Eu3+-doped Gd2Ti2O7 thin films

    Science.gov (United States)

    Antić, Željka; Prashanthi, K.; Ćulubrk, Sanja; Vuković, Katarina; Dramićanin, Miroslav D.; Thundat, Thomas

    2016-02-01

    Here we report on preparation of Eu3+-doped Gd2Ti2O7 pyrochlore luminescent thin films by pulsed laser deposition technique and their structural, morphological and optical characterization. The influence of annealing temperature and background gas (air vs. argon) on film photoluminescence is examined for the optimization of post-deposition annealing conditions. As-deposited amorphous films become pure pyrochlore crystalline after calcination at temperatures higher than 1000 °C. Atomic force microscopy showed increase in the grain size from ∼20 nm in the as-deposited to ∼60 nm in the crystalline sample annealed at 1100 °C. Scanning electron microscopy showed dense films with the uniform thickness of about 700 nm. Luminescence spectra of crystalline films were complex and composed of better resolved emission lines than in the amorphous sample. Emission spectra showed that symmetry of Eu3+ sites become disturbed in annealed films due to the extrinsic thermal stress. Films treated in argon displayed similar emission and excitation spectral features like air-treated ones, but with better resolved emission lines. Calculated quantum efficiency of emission showed that optimization of annealing conditions led to an enhancement of films luminescence. The highest quantum efficiency of emission and the longest lifetime is found for the sample annealed at 1100 °C in presence of argon.

  18. Low Temperature Spin Structure of Gadolinium Titanate

    Science.gov (United States)

    Javanparast, Behnam; McClarty, Paul; Gingras, Michel

    2012-02-01

    Many rare earth pyrochlore oxides exhibit exotic spin configurations at low temperatures due to frustration. The nearest neighbor coupling between spins on the corner-sharing tetrahedral network generate geometrical magnetic frustration. Among these materials, gadolinium titanate (Gd2Ti2O7) is of particular interest. Its low temperature ordered phases are not yet understood theoretically. Bulk thermal measurements such as specific heat and magnetic susceptibility measurements find two phase transitions in zero external field, in agreement with simple mean field calculations. However, recent neutron scattering experiments suggest a so-called 4-k spin structure for intermediate phase and a so called canted 4-k structure for lower temperature phase that does not agree with either mean-field theory or Monte Carlo simulation which find the 1-k state and Palmer-Chalker state respectively as the lowest free energy configuration for those phases. In our work, we study the 4-k structure in detail and present a new phase diagram for dipolar Heisenberg spins on a pyrochlore lattice, certain portions of which describe gadolinium titanate.

  19. X-ray photoelectron spectroscopy study of irradiation-induced amorphizaton of Gd2Ti2O7

    Science.gov (United States)

    Chen, J.; Lian, J.; Wang, L. M.; Ewing, R. C.; Boatner, L. A.

    2001-09-01

    The radiation-induced evolution of the microstructure of Gd2Ti2O7, an important pyrochlore phase in radioactive waste disposal ceramics and a potential solid electrolyte and oxygen gas sensor, has been characterized using transmission electron microscopy and x-ray photoelectron spectroscopy. Following the irradiation of a Gd2Ti2O7 single crystal with 1.5 MeV Xe+ ions at a fluence of 1.7×1014Xe+/cm2, cross-sectional transmission electron microscopy revealed a 300-nm-thick amorphous layer at the specimen surface. X-ray photoelectron spectroscopy analysis of the Ti 2p and O 1s electron binding energy shifts of Gd2Ti2O7 before and after amorphization showed that the main results of ion-irradiation-induced disorder are a decrease in the coordination number of titanium and a transformation of the Gd-O bond. These features resemble those occurring in titanate glass formation, and they have implications for the chemical stability and electronic properties of pyrochlores subjected to displacive radiation damage.

  20. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  1. Order parameter and connectivity topology analysis of crystalline ceramics for nuclear waste immobilization.

    Science.gov (United States)

    Archer, Adam; Foxhall, Henry R; Allan, Neil L; Gunn, David S D; Harding, John H; Todorov, Ilian T; Travis, Karl P; Purton, John A

    2014-12-01

    We apply bond order and topological methods to the problem of analysing the results of radiation damage cascade simulations in ceramics. Both modified Steinhardt local order and connectivity topology analysis techniques provide results that are both translationally and rotationally invariant and which do not rely on a particular choice of a reference structure. We illustrate the methods with new analyses of molecular dynamics simulations of single cascades in the pyrochlores Gd(2)Ti(2)O(7) and Gd(2)Zr(2)O(7) similar to those reported previously (Todorov et al 2006 J. Phys.: Condens. Matter 18 2217). Results from the Steinhardt and topology analyses are consistent, while often providing complementary information, since the Steinhardt parameters are sensitive to changes in angular arrangement even when the overall topological connectivity is fixed. During the highly non-equilibrium conditions at the start of the cascade, both techniques reveal significant localized transient structural changes and variation in the cation connectivity. After a few picoseconds, the connectivity is largely fixed, while the order parameters continue to change. In the zirconate there is a shift to the anion disordered system while in the titanate there is substantial reversion and healing back to the parent pyrochlore structure.

  2. Order parameter and connectivity topology analysis of crystalline ceramics for nuclear waste immobilization

    Science.gov (United States)

    Archer, Adam; Foxhall, Henry R.; Allan, Neil L.; Gunn, David S. D.; Harding, John H.; Todorov, Ilian T.; Travis, Karl P.; Purton, John A.

    2014-12-01

    We apply bond order and topological methods to the problem of analysing the results of radiation damage cascade simulations in ceramics. Both modified Steinhardt local order and connectivity topology analysis techniques provide results that are both translationally and rotationally invariant and which do not rely on a particular choice of a reference structure. We illustrate the methods with new analyses of molecular dynamics simulations of single cascades in the pyrochlores Gd2Ti2O7 and Gd2Zr2O7 similar to those reported previously (Todorov et al 2006 J. Phys.: Condens. Matter 18 2217). Results from the Steinhardt and topology analyses are consistent, while often providing complementary information, since the Steinhardt parameters are sensitive to changes in angular arrangement even when the overall topological connectivity is fixed. During the highly non-equilibrium conditions at the start of the cascade, both techniques reveal significant localized transient structural changes and variation in the cation connectivity. After a few picoseconds, the connectivity is largely fixed, while the order parameters continue to change. In the zirconate there is a shift to the anion disordered system while in the titanate there is substantial reversion and healing back to the parent pyrochlore structure.

  3. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  4. Synthesis and Characterization of Thermal Properties of Type Eu2O3-ZrO2 Sinters

    Directory of Open Access Journals (Sweden)

    Jucha S.

    2016-06-01

    Full Text Available The oxides with pyrochlore or defected fluorite structure are a potential alternative ceramic materials for now widely used yttria-stabilized zirconia 8YSZ in the application for the insulation layer of thermal barrier coatings systems. This paper presents a procedure of synthesis of europium zirconate of Eu2Zr2O7 type, by the method of high temperature sintering under pressure. The analysis of the effect of the powders` homogenization methods on homogeneity of final sintered material showed that the highest homogeneity can be obtained after mechanical mixing in alcohol. Moreover, the DSC investigation carried out on a mixture of powders before the sintering process and on the material after high temperature sintering under pressure, suggest the synthesis of a new phase an europium zirconate Eu2Zr2O7 with the pyrochlore structure. Obtained phase was characterized by stability over the entire range of tested temperature, i.e. to 1450°C. The resulting material based on europium zirconate has a lower coefficient of thermal diffusivity than the now widely used 8YSZ.

  5. Orbital Dimer Model for the Spin-Glass State in Y2 Mo2 O7

    Science.gov (United States)

    Thygesen, Peter M. M.; Paddison, Joseph A. M.; Zhang, Ronghuan; Beyer, Kevin A.; Chapman, Karena W.; Playford, Helen Y.; Tucker, Matthew G.; Keen, David A.; Hayward, Michael A.; Goodwin, Andrew L.

    2017-02-01

    The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y2 Mo2 O7 —in which magnetic Mo4 + ions occupy a frustrated pyrochlore lattice with minimal compositional disorder—has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-ray-absorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo4 + ions displace according to a local "two-in-two-out" rule on each Mo4 tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo4 + ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O2 - displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. Our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.

  6. Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material

    Science.gov (United States)

    Ribis, J.; Lozano-Perez, S.

    2014-01-01

    ODS steels are promising materials for Sodium cooled Fast Reactors since their fine distribution of nano-clusters confers excellent mechanical properties. However, the nano-feature stability needs to be assessed under neutron irradiation. Before irradiation, the characterizations show that nano-particles are finely distributed within the ferritic matrix and are identified to have a pyrochlore type structure. After irradiation of the MA957 alloy in the Phenix French reactor at 412 °C up to 50 dpa and 430 °C up to 75 dpa, transmission electron microscopy characterization reveals a very slight density fall but no distinguishable difference in nano-features size before and after irradiation. In addition, after both irradiations, the nano-oxides are still (Y, Ti, O) compounds with orientation relationship with the matrix. A multislice simulation of high resolution images suggests that nano-particles still have a fcc pyrochlore type structure after irradiation. A possible change of lattice parameter seems to be highlighted, possibly due to disordering by cascade effect.

  7. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  8. Orbital Dimer Model for the Spin-Glass State in Y_{2}Mo_{2}O_{7}.

    Science.gov (United States)

    Thygesen, Peter M M; Paddison, Joseph A M; Zhang, Ronghuan; Beyer, Kevin A; Chapman, Karena W; Playford, Helen Y; Tucker, Matthew G; Keen, David A; Hayward, Michael A; Goodwin, Andrew L

    2017-02-10

    The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y_{2}Mo_{2}O_{7}-in which magnetic Mo^{4+} ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-ray-absorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo^{4+} ions displace according to a local "two-in-two-out" rule on each Mo_{4} tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo^{4+} ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O^{2-} displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. Our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.

  9. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    Science.gov (United States)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  10. Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability

    Science.gov (United States)

    Schmitt, Michael P.; Schreiber, Jeremy M.; Rai, Amarendra K.; Eden, Timothy J.; Wolfe, Douglas E.

    2017-08-01

    Rare-earth pyrochlores, RE2Zr2O7, have been identified as potential thermal barrier coating (TBC) materials due to their attractive thermal properties and CMAS resistance. However, they possess a low fracture toughness which results in poor erosion durability/foreign object damage resistance. This research focuses on the development of tailored composite air plasma spray (APS) TBC design architectures utilizing a t' Low-k secondary toughening phase (ZrO2-2Y2O3-1Gd2O3-1Yb2O3; mol.%) to enhance the erosion durability of a hyper-stoichiometric pyrochlore, NZO (ZrO2-25Nd2O3-5Y2O3-5Yb2O3; mol.%). In this study, composite coatings have been deposited with 30, 50, and 70% (wt.%) t' Low-k toughening phase in a horizontally aligned lamellar morphology which enhances the toughening response of the coating. The coatings were characterized via SEM and XRD and were tested for erosion durability before and after isothermal heat treatment at 1100 °C. Analysis with mixing laws indicated improved erosion performance; however, a lack of long-term thermal stability was shown via isothermal heat treatments at 1316 °C. An impact stress analysis was performed using finite element analysis of a coating cross section, representing the first microstructurally realistic study of mechanical properties of TBCs with the results correlating well with observed behavior.

  11. Plutonium, Mineralogy and Radiation Effects

    Science.gov (United States)

    Ewing, R. C.

    2006-05-01

    During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long

  12. Durability of Actinide Ceramic Waste Forms Under Conditions of Granitoid Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burakov, B. E.; Anderson, E. B.

    2002-02-26

    Three samples of {sup 239}Pu-{sup 241}Am-doped ceramics obtained from previous research were used for alteration experiments simulating corrosion of waste forms in ion-saturated solutions. These were ceramics based on: pyrochlore, (Ca,Hf,Pu,U,Gd){sub 2}Ti{sub 2}O{sub 7}, containing 10 wt.% Pu and 0.1 wt.% Am; zircon, (Zr,Pu)SiO{sub 4}, containing 5-6 wt.% Pu and 0.05 wt.% Am; cubic zirconia, (Zr,Gd,Pu)O{sub 2}, containing 10 wt.% Pu and 0.1 wt.% Am. All these samples were milled in an agate mortar to obtain powder with particle sizes less than 30 micron. Sample of granite taken from the depth 500-503 m was studied and then used for preparing ion-saturated water solutions. A rock sample was ground, washed and classified. A fraction with particle size 0.10-0.25 mm was selected for alteration experiments. Powdered ceramic samples were separately placed into deionized water together with ground granite (approximately 1gram granite per 12-ml water) in special Teflon{trademark} vessels and set at 90 C in the oven for 3 months. After alteration experiments, the ceramic powders were studied by precise XRD analysis. Aqueous solutions and granite grains were analyzed for Am and Pu contents. The results show that alteration did not cause significant phase transformation in all ceramic samples. For all altered samples, the Am contents in aqueous solutions after experiments were similar (approximately n x 10{sup 2} Bq/ml) as well as Am amounts absorbed on granite grains (approximately n x 10{sup 5} Bq/g). Results on Pu contents were varied: for the solutions--from 60 Bq/ml for pyrochlore ceramic to 2.1 x 10{sup 3} Bq/ml for zircon ceramic; and for the absorption on granite--from 2.6 x 10{sup 4} Bq/g for zirconia ceramic to 1.4-6.8 x 10{sup 5} Bq/g for pyrochlore and zircon ceramics.

  13. Uranium in the Nuclear Fuel Cycle: Creation of Plutonium (Invited)

    Science.gov (United States)

    Ewing, R. C.

    2009-12-01

    One of the important properties of uranium is that it can be used to “breed” higher actinides, particularly plutonium. During the past sixty years, more than 1,800 metric tonnes of Pu, and substantial quantities of the “minor” actinides, such as Np, Am and Cm, have been generated in nuclear reactors - a permanent record of nuclear power. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). In fact, the new strategies of the Advance Fuel Cycle Initiative (AFCI) are, in part, motivated by an effort to mitigate some of the challenges of the disposal of these long-lived actinides. There are two basic strategies for the disposition of these heavy elements: 1.) to “burn” or transmute the actinides using nuclear reactors or accelerators; 2.) to “sequester” the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A= rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage1. The radiation stability of these compositions is closely related to the structural distortions that can be accommodated for specific pyrochlore compositions and the electronic structure of the B-site cation. Recent developments in the understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  14. 甲醇在不同结构氧化钨-Pt/C催化剂上的电催化氧化行为%Compared Study of Catalytic Activity for Methanol Oxidation on Different Pt-WO3/C Electrodes

    Institute of Scientific and Technical Information of China (English)

    闫鹏; 徐英明; 赵辉; 霍丽华; 高山

    2011-01-01

    Tungsten oxide-based nano-materials with two different crystal structures were prepared by hydrothermal method and characterized by X-ray diffraction ( XRD) and electron probe micro analyzer (EPMA) , respectively. The electrocatalytic activity for methanol oxidation on Pt-WO3/C electrode was studied by cyclic voltammetry. The results indicate that the electrocatalytic activity of Pt-WO3/C is much higher than that of Pt/C catalyst. For various amount of WO3, the catalyst with 20% mass fraction of WO3 has the best electrocatalytic activity. The electrocatalytic activity of the pyrochlore type tungsten oxide doped Pt/C electrode is higher than that of the tungsten bronze doped electrode, which is likely due to the strong attractions of OH^ on the surface of pyrochlore type tungsten oxide. The current density of the pyrochlore type tungsten oxide doped Pt/C electrode for electro-oxidation of methanol is 87. 2 x 10 "3 A/cm2 in 0. 5 mol/L CH30H + 1 mol/L H2SO4 solution.%采用水热法合成2种氧化钨( WO3)纳米材料,并利用XRD和电子探针显微分析仪(EPMA)进行了表征.利用循环伏安法研究了Pt-WO3/C电极对甲醇氧化的电催化活性.结果表明,Pt-WO#C催化剂对甲醇氧化的电催化活性优于Pt/C催化剂,且氧化钨质量分数为20%的Pt-氧化钨/C催化效果最好.与青铜相氧化钨掺杂的Pt/C电极比较,掺杂焦绿石型氧化钨的Pt/C电极催化性能有很大提高,这是由于焦绿石型氧化钨表面具有较多OH..质量分数20%的Pt-焦绿石型氧化钨/C在0.5mol/LCH3OH+1 mol/L H2SO4溶液中对甲醇氧化的峰电流密度达到87.2×10-3 A/cm2.

  15. Magnetic order and Mott transition on the checkerboard lattice

    Science.gov (United States)

    Swain, Nyayabanta; Majumdar, Pinaki

    2017-03-01

    The checkerboard lattice, with alternating ‘crossed’ plaquettes, serves as the two dimensional analog of the pyrochlore lattice. The corner sharing plaquette structure leads to a hugely degenerate ground state, and no magnetic order, for classical spins with short range antiferromagnetic interaction. For the half-filled Hubbard model on this structure, however, we find that the Mott insulating phase involves virtual electronic processes that generate longer range and multispin couplings. These couplings lift the degeneracy, selecting a ‘flux like’ state in the Mott insulator. Increasing temperature leads, strangely, to a sharp crossover from this state to a ‘120 degree’ correlated state and then a paramagnet. Decrease in the Hubbard repulsion drives the system towards an insulator-metal transition—the moments reduce, and a spin disordered state wins over the flux state. Near the insulator-metal transition the electron system displays a pseudogap extending over a large temperature window.

  16. Physical Properties of Ni2GeO4 Spinel Perturbed by Magnetic Dilution and Applied Pressure

    Science.gov (United States)

    Korobanik, Jory; Razavi, Fereidoon

    2014-03-01

    Geometrically frustrated magnetic systems have yielded an interesting and rich playground for physicists. Recently, a new disordered low temperature state was discovered in the frustrated pyrochlore type Ho2Ti2O7 which is termed spin ice. This phase is the magnetic analog to water ice with local spin disorder replacing proton disorder. Geometric frustration arises when nearest neighbor exchange interactions cannot be simultaneously satisfied resulting in large macroscopic degeneracy. This has the effect of suppressing Neel ordering temperature. This work seeks to understand the effects of applied pressure and magnetic dilution to the frustrated spinel Ni2GeO4. The parent material undergoes two closely spaced ordering events at T1 = 12.1K and T2 = 11.4K. Upon dilution a downward shift in the ordering temperatures is observed with a destruction of the lower T2 transition. Heat capacity, AC and DC magnetometry are used to probe the changes in physical properties.

  17. Phase evolution and microwave dielectric properties of A5M5O17-type ceramics

    Directory of Open Access Journals (Sweden)

    Ali Murad

    2017-07-01

    Full Text Available A number of A5M5O17 (A = Na, Ca, Sr, La, Nd, Sm, Gd, Dy, Yb; B = Ti, Nb, Ta type compounds were prepared by a solid-state sintering route and characterized in terms of structure, microstructure and microwave dielectric properties. The compatibility of rare earths with mixed niobate/tantalate and titanate phases was investigated. The larger ionic radii mismatch resulted in the formation of pyrochlore and/or mixed phases while in other cases, pure A5M5O17 phase was formed. The samples exhibited relative permittivity in the range of 35 to 82, quality factor (Q × fo = 897 GHz to 11946 GHz and temperature coefficient of resonance frequency (τf = -120 ppm/°C to 318 ppm/°C.

  18. Luminescence properties of Eu3+-doped Lanthanum gadolinium hafnates transparent ceramics

    Science.gov (United States)

    Wang, Zhengjuan; Zhou, Guohong; Zhang, Jian; Qin, Xianpeng; Wang, Shiwei

    2017-09-01

    Eu3+-doped Lanthanum gadolinium hafnates (La0.8Gd1.2Hf2O7) transparent ceramics with different Eu3+ concentration were fabricated by vacuum sintering. XRD results showed all the ceramics are cubic pyrochlore structure. The effects of annealing process on in-line transmittance and luminescence behavior of the Eu3+-doped La0.8Gd1.2Hf2O7 transparent ceramics were investigated. Before annealing, the in-line transmittance of the ceramics was low and the luminescence intensity was weak. As Eu3+ doping content increased, the transmittance as well as the luminescence intensity decreased. This was ascribed to oxygen vacancy and other defects in the ceramics resulted from the vacuum sintering. After annealing, the transmittance and luminescence intensity were raised, indicating the elimination of oxygen vacancy. Moreover, with the increase of Eu3+ doping content from 1 at% to 10 at%, the luminescence intensity increased without concentration quenching.

  19. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  20. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  1. Dating brittle tectonic movements with cleft monazite

    DEFF Research Database (Denmark)

    Berger, Alfons; Gnos, E.; Janots, E.

    2013-01-01

    . Interaction of cleft-filling hydrothermal fluid with wall-rock results in REE mineral formation-/crystallisation and alteration of the wall-rock. The main newly-formed REE-minerals are Y-Si mineral grains (probably tombarthite), a Y-Nb-Ti mineral (aeschynite/pyrochlore) and monazite. Despite......Two millimeter-sized hydrothermal monazites from a cleft that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using EMP and ion probe. The monazites are characterised by high Th/U ratios typical of other hydrothermal monazites...... these mineralogical changes, the bulk chemistry of the system remains constant at the decimetre scale and thus these mineralogical changes require redistribution of elements via a fluid over short distances (cm). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory...

  2. Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects.

    Science.gov (United States)

    Molavian, Hamid R; Gingras, Michel J P; Canals, Benjamin

    2007-04-13

    The Tb2Ti2O7 pyrochlore magnetic material is attracting much attention for its spin liquid state, failing to develop long-range order down to 50 mK despite a Curie-Weiss temperature thetaCW approximately -14 K. In this Letter we reinvestigate the theoretical description of this material by considering a quantum model of independent tetrahedra to describe its low-temperature properties. The naturally tuned proximity of this system near a Néel to spin ice phase boundary allows for a resurgence of quantum fluctuation effects that lead to an important renormalization of its effective low-energy spin Hamiltonian. As a result, Tb2Ti2O7 is argued to be a quantum spin ice. We put forward an experimental test of this proposal using neutron scattering on a single crystal.

  3. Nanocomposite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension Plasma Spray Process

    Science.gov (United States)

    Wang, Chaohui; Wang, You; Wang, Liang; Hao, Guangzhao; Sun, Xiaoguang; Shan, Fan; Zou, Zhiwei

    2014-10-01

    This work seeks to develop an innovative nanocomposite thermal barrier coating (TBC) exhibiting low thermal conductivity and high durability compared with that of current TBCs. To achieve this objective, nanosized lanthanum zirconate particles were selected for the topcoat of the TBC system, and a new process—suspension plasma spray—was employed to produce desirable microstructural features: the nanocomposite lanthanum zirconate TBC contains ultrafine splats and high volume porosity, for lower thermal conductivity, and better durability. The parameters of plasma spray experiment included two main variables: (i) spray distance varying from 40 to 80 mm and (ii) the concentration of suspension 20, 25, and 30 wt.%, respectively. The microstructure of obtained coatings was characterized with scanning electron microscope and x-ray diffraction. The porosity of coatings is in the range of 6-10%, and the single phase in the as-sprayed coatings was pyrochlore lanthanum zirconate.

  4. Magnetization plateaus of dipolar spin ice on kagome lattice

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y. L.; Wang, Y. L.; Yan, Z. B.; Liu, J.-M., E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2014-05-07

    Unlike spin ice on pyrochlore lattice, the spin ice structure on kagome lattice retains net magnetic charge, indicating non-negligible dipolar interaction in modulating the spin ice states. While it is predicted that the dipolar spin ice on kagome lattice exhibits a ground state with magnetic charge order and √3 × √3 spin order, our work focuses on the magnetization plateau of this system. By employing the Wang-Landau algorithm, it is revealed that the lattice exhibits the fantastic three-step magnetization in response to magnetic field h along the [10] and [01] directions, respectively. For the h//[1 0] case, an additional √3/6M{sub s} step, where M{sub s} is the saturated magnetization, is observed in a specific temperature range, corresponding to a new state with charge order and short-range spin order.

  5. Electrocaloric effect of PMN–PT thin films near morphotropic phase boundary

    Indian Academy of Sciences (India)

    D Saranya; Ayan Roy Chaudhuri; Jayanta Parui; S B Krupanidhi

    2009-06-01

    The electrocaloric effect is calculated for PMN–PT relaxor ferroelectric thin film near morphotropic phase boundary composition. Thin film of thickness, ∼ 240 nm, has been deposited using pulsed laser deposition technique on a highly (111) oriented platinized silicon substrate at 700°C and at 100 mtorr oxygen partial pressure. Prior to the deposition of PMN–PT, a template layer of LSCO of thickness, ∼ 60 nm, is deposited on the platinized silicon substrate to hinder the pyrochlore phase formation. The temperature dependent P–E loops were measured at 200 Hz triangular wave operating at the virtual ground mode. Maximum reversible adiabatic temperature change, = 31 K, was calculated at 140°C for an external applied voltage of 18 V.

  6. Synthesis and photocatalytic properties of Co- and Cu-doped Bi2Sn2O7

    Science.gov (United States)

    Zhuang, Jing; Hu, Chaohao; Zhu, Binqing; Zhong, Yan; Zhou, Huaiying

    2017-01-01

    Bi2Sn2O7 photocatalysts doped by Co and Cu ions were successfully synthesized by using the hydrothermal process and impregnation method. The products were characterized using X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray detector (EDS), infrared spectroscopy (IR), the photoluminescence (PL) spectra and UV-visible diffuse reflectance spectroscopy (DRS). The photocatalytic properties were further evaluated by degrading rhodamine B (RhB) as a model pollution under visible-light irradiation. The results indicated that Co- and Cu-doped Bi2Sn2O7 photocatalysts have a cubic pyrochlore phase with the hybrid metals. The metal-loaded photocatalysts show the enhanced photocatalytic efficiency for degradation of RhB under visible-light (λ> 420 nm). The mechanism of improved photocatalytic activity is also discussed in detail.

  7. Electrical behaviour of PMN-PT-PVDF nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Shrabanee; Mishra, S K [MST Division, National Metallurgical Laboratory, Jamshedpur 834007 (India)], E-mail: shrabaneesen@yahoo.co.in

    2008-08-21

    Nanocomposites of polyvinyldene fluoride (PVDF) and a solid solution of lead magnesium niobate and lead titanate (0.65PMN-0.35PT) with varying composition ratios were prepared by the hot-press technique. The phase structure and morphology were studied by thermal analysis (DTA), x-ray diffraction and scanning electron microscopy. The PVDF sample showed an exothermic peak due to the crystallization of the PVDF phase, but with the addition of PMN-PT powders an extra peak appeared due to the crystallization of the pyrochlore phase present in the PMN-PT powder. The crystallite size of the prepared samples was found to be between 40 and 60 nm. The value of the relative permittivity increased with the increase in the ceramic concentration. The presence of a single semicircle confirmed the presence of the bulk effect only. The bulk conductivity indicated an Arrhenius type thermally activated process. The ac conductivity spectrum obeyed the Jonscher power law.

  8. Perovskite phase transformation in 0.65Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.35PbTiO{sub 3} nanoparticles derived by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyendra [Materials Research Centre, Indian Institute of Science, Bangalore - 560012 (India); Applied Sciences Department, PEC University of Technology, Chandigarh - 12 (India); Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore - 560012 (India)

    2012-01-15

    Fabrication of 0.65Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.35PbTiO{sub 3} (PMN-PT) nanoparticles with an average size of about 40 nm and their phase transformation behavior from pyrochlore to perovskite phase is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PMN-PT which was dried and partially calcined at 450 deg. C for 1 h to decompose organics and bring down the free energy barrier for perovskite crystallization and then finally annealed in the temperature range 600 to 700 deg. C. Annealed at around 700 deg. C for 1 h, PMN-PT gel powder exhibited nanocrystalline morphology with perovskite phase as confirmed by the transmission electron microscopy and X-ray diffraction techniques.

  9. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-01-06

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  10. CTAB-Assisted Hydrothermal Synthesis of Bi2Sn2O7 Photocatalyst and Its Highly Efficient Degradation of Organic Dye under Visible-Light Irradiation

    Directory of Open Access Journals (Sweden)

    Weicheng Xu

    2013-01-01

    Full Text Available Pyrochlore-type Bi2Sn2O7 (BSO nanoparticles have been prepared by a hydrothermal method assisted with a cationic surfactant cetyltrimethylammonium bromide (CTAB. These BSO products were characterized by powder X-ray diffraction (XRD, infrared spectroscopy (IR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Brunauer-Emmett-Teller (BET, and UV-visible diffuse reflectance spectroscopy (DRS. The results indicated that CTAB alters the surface parameters and the morphology and enhances the photoinduced charge separation rate of BSO. The photocatalytic degradation test using rhodamine B as a model pollutant showed that the photocatalytic activity of the BSO assisted with CTAB was two times that of the reference BSO. Close investigation revealed that the size, the band gap, the structure, and the existence of impurity level played an important role in the photocatalytic activities.

  11. Local structural evidence for strong electronic correlations in spinel LiRh2O4

    Science.gov (United States)

    Knox, K. R.; Abeykoon, A. M. M.; Zheng, H.; Yin, W.-G.; Tsvelik, A. M.; Mitchell, J. F.; Billinge, S. J. L.; Bozin, E. S.

    2013-11-01

    The local structure of the spinel LiRh2O4 has been studied using atomic-pair distribution function analysis of powder x-ray diffraction data. This measurement is sensitive to the presence of short Rh-Rh bonds that form due to dimerization of Rh4+ ions on the pyrochlore sublattice, independent of the existence of long-range order. We show that structural dimers exist in the low-temperature phase, as previously supposed, with a bond shortening of Δr˜0.15 Å. The dimers persist up to 350 K, well above the insulator-metal transition, with Δr decreasing in magnitude on warming. Such behavior is inconsistent with the Fermi-surface nesting-driven Peierls transition model. Instead, we argue that LiRh2O4 should properly be described as a strongly correlated system.

  12. A MATLAB GUI to study Ising model phase transition

    Science.gov (United States)

    Thornton, Curtislee; Datta, Trinanjan

    We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.

  13. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  14. Crystal structure of triple oxides HO/sub 2/ScNbO/sub 7/ and Sm/sub 2/ScTaO/sub 7/

    Energy Technology Data Exchange (ETDEWEB)

    Filip' ev, V.S.; Cherner, Ya.E.; Bunina, O.A.; Seregin, V.F.

    The structure of new Ho/sub 2/Sc NbO/sub 7/ and Sm/sub 2/ScTaO/sub 7/ compounds synthesized by the three-stage roasting at 1100-1350 deg C was investigated. Powdergrams of the synthesized compounds indicated to be like the cubic structure of pyrochlore type. Periods of unit cells were determined by Bragg reflex angles. The dependence of unreliability factor on values of the position parameter of oxygen x atoms was calculated. Data were obtained that indirectly indicated a substantial disorder in the disposition of Ho and Sc atoms over A and B positions. Values of bond lengths and valence angles were presented.

  15. A novel antifuse structure based on amorphous bismuth zinc niobate thin films

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Li Wei; Li Ping; Li Zuxiong; Fan Xue; Jiang Jing

    2012-01-01

    A novel antifuse structure with amorphous bismuth zinc niobate (a-BZN) dielectrics was proposed.The characteristics of the a-BZN antifuse were investigated.Programming direction of up to down was chosen to rupture the a-BZN antifuse.The breakdown voltage of the a-BZN antifuse was obtained at a magnitude of 6.56 V.A large off-state resistance of more than 1 GΩ for the a-BZN antifuse was demonstrated.The surface micrograph of the ruptured a-BZN antifuses was illustrated.Programming characteristics with the programming time of 0.46 ms and on-state properties with the average resistance value of 26.1 Ω of the a-BZN antifuse were exhibited.The difference of characteristics of the a-BZN antifuse from that of a cubic pyrochlore bismuth zinc niobate (cp-BZN) antifuse and gate oxide antifuse was compared and analyzed.

  16. Magnetodielectric effect and optic soft mode behaviour in quantum paraelectric EuTiO3 ceramics

    Science.gov (United States)

    Kamba, S.; Nuzhnyy, D.; Vanek, P.; Savinov, M.; Knízek, K.; Shen, Z.; Santavá, E.; Maca, K.; Sadowski, M.; Petzelt, J.

    2007-10-01

    Infrared reflectivity and time-domain terahertz transmission spectra of EuTiO3 ceramics revealed a polar optic phonon at 6-300 K whose softening is fully responsible for the recently observed quantum paraelectric behaviour. Even if our EuTiO3 ceramics show lower permittivity than the single crystal due to a reduced density and/or small amount of secondary pyrochlore Eu2Ti2O7 phase, we confirmed a magnetic field dependence of the permittivity, also slightly smaller than in single crystal. An attempt to reveal the soft phonon dependence at 1.8 K on the magnetic field up to 13 T remained below the accuracy of our infrared reflectivity experiment.

  17. Magnetic Ground States of the Rare-Earth Tripod Kagome Lattice Mg2 RE3 Sb3 O14 (RE =Gd ,Dy ,Er )

    Science.gov (United States)

    Dun, Z. L.; Trinh, J.; Li, K.; Lee, M.; Chen, K. W.; Baumbach, R.; Hu, Y. F.; Wang, Y. X.; Choi, E. S.; Shastry, B. S.; Ramirez, A. P.; Zhou, H. D.

    2016-04-01

    We present the structural and magnetic properties of a new compound family, Mg2 RE3 Sb3 O14 (RE =Gd ,Dy ,Er ), with a hitherto unstudied frustrating lattice, the "tripod kagome" structure. Susceptibility (ac, dc) and specific heat exhibit features that are understood within a simple Luttinger-Tisza-type theory. For RE =Gd , we found long-ranged order (LRO) at 1.65 K, which is consistent with a 120° structure, demonstrating the importance of diople interactions for this 2D Heisenberg system. For RE =Dy , LRO at 0.37 K is related to the "kagome spin ice" physics for a 2D system. This result shows that the tripod kagome structure accelerates the transition to LRO predicted for the related pyrochlore systems. For RE =Er , two transitions, at 80 mK and 2.1 K are observed, suggesting the importance of quantum fluctuations for this putative X Y system.

  18. Magnetic Response of Itinerant Spin Ice

    Science.gov (United States)

    Udagawa, Masafumi

    2015-07-01

    We have studied the magnetic response of itinerant spin ice, by applying the cluster dynamical mean field theory (CDMFT) to the Ising Kondo lattice model on a pyrochlore lattice. As a result, we found a characteristic interplay between magnetization curve and spin ice correlation developed at low temperatures. The magnetization develops a kink-like structure at the 2/3 of its saturation value, reminiscent of kagome ice plateau. Accompanied with the magnetization process, the monopole density shows nonmonotonic magnetic field dependence with a clear minimum, reflecting a subtle energetics of spin configurations. The spin ice correlation also affects the transport properties of the system, and brings about negative magnetoresistivity with its slope strongly dependent on the magnitude of spin ice correlation. We discuss these behaviors in comparison with the magnetic response observed in Pr2Ir2O7.

  19. Magnetic spin structure of geometrically frustrated Co{sub 2}Cl(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tokita, Masahiko; Zenmyo, Kazuko, E-mail: tokita@fit.ac.j, E-mail: zenmyo@fit.ac.j [Fukuoka Institute of Technology, Wajirohigashi, Fukuoka 811-0295 (Japan)

    2009-03-01

    The magnetic structure of a geometrically frustrated system Co{sub 2}Cl(OH){sub 3} is determined by comparing the observed proton NMR spectrum with many magnetic models. The best fit model is obtained as that the magnetic moments of Co{sup 2+} ions in the triangular plane are parallel to the principal axis of local crystal field and those of Co{sup 2+} ions in the kagome lattice plane are randomly disordered in the a-b plane. Furthermore, the Co{sup 2+} ions in the triangular plane have a smaller magnitude of magnetic moment than those in the kagome plane. Our result suggests that the compound Co{sub 2}Cl(OH){sub 3} is different from the 'spin ice' in magnetic structure, although the crystal structure is similar to rare earth pyrochlores.

  20. An FeF(3)·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries.

    Science.gov (United States)

    Li, Chilin; Yin, Congling; Gu, Lin; Dinnebier, Robert E; Mu, Xiaoke; van Aken, Peter A; Maier, Joachim

    2013-08-07

    To improve the energy/power density of energy storage materials, numerous efforts have focused on the exploration of new structure prototypes, in particular metal-organic fameworks, Prussian blue analogues, open-framework oxides, and polyanion salts. Here we report a novel pyrochlore phase that appears to be useful as a high-capacity cathode for Li and Na batteries. It is an iron fluoride polymorph characterized by an intersecting tunnel structure, providing the space for accommodation and transport of Li and Na ions. It is prepared using hydrolyzable ionic liquids, which serve as reaction educts and structure-directing agents not only as far as the chemical structure is concerned but also in terms of morphology (shape, defect structure, electrode network structure). A capacity higher than 220 mA h g(-1) (for Li and Na storage) and a lifetime of at least 300 cycles (for Li storage) are demonstrated.

  1. The Crystal Structure of Lanthanide Zirconates

    Science.gov (United States)

    Clements, Richard; Kennedy, Brendan; Ling, Christopher; Stampfl, Anton P. J.

    2010-03-01

    The lanthanide zirconates of composition Ln2Zr2O7 (Ln = La-Gd) are of interest for use in inert matrix fuels and nuclear wasteforms. The series undergoes a pyrochlore to fluorite phase transition as a function of the Ln atomic radii. The phase transition has been attributed to disordering of both the cation and the anion [1]. We have undertaken a synthesis of the lanthanide zirconate series Ln2Zr2O7 (Ln = La-Gd), Ln0.2Zr0.8O1.9 (Ln = Tb-Yb) and NdxHo2-xZr2O7 (0ANSTO's new high resolution powder diffractometer Echidna, in order to obtain accurate data on atomic displacement parameters and O 48f position across the series. These results will be presented, along with details of the analysis and synthetic techniques used.

  2. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Science.gov (United States)

    Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; Brinkman, Kyle; Xu, Yun; Tang, Ming; Maio, Vince; Webb, Samuel M.; Chiu, Wilson K. S.

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  3. Ceramic materials for energy and environmental applications: Functionalizing of properties by tailored compositions

    DEFF Research Database (Denmark)

    Ivanova, Mariya; Ricote, Sandrine; Baumann, Stefan

    2013-01-01

    Stable social development requires novel approaches for energy production, distribution and storage combined with reasonable restrictions of the environmental impact. The fuel cell-based technologies, as well as the separation of gases from mixtures, particularly implemented into innovative power....... This chapter is dedicated to the fascinating world of tailoring ceramic materials for energy and environmental applications. Selected approaches to tune ceramics will be discussed to illustrate the versatile effects that compositional variation can have on the macroscopic properties, e.g. the conductivity...... additives and substituents on sinterability, electrical/electrochemical properties and stability of selected ceramic materials for energy and environmental applications. The material variety will cover ceramic materials with different crystal structures like fluorites, perovskites, pyrochlores, fergusonites...

  4. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms

    Science.gov (United States)

    Tumurugoti, P.; Clark, B. M.; Edwards, D. J.; Amoroso, Jake; Sundaram, S. K.

    2017-02-01

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.

  5. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dandeneau, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL[13], simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performance and properties. Table 1 lists the samples studied.

  6. The behaviour of Ru based thick film resistor as a comonent of LCR network

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.A.; Lee, H. L.; Moon, J.W.; Kim, G.D.; Lee, D. A.; Son, Y.B. [Yonsei University, Seoul (Korea, Republic of)

    1997-03-01

    The Ru-based thick film resistor(TFR) for sintering at 900 deg. C was synthesized to prepare the LCR network. These compositions of pyrochlore could be prepared by decreasing the amount of PbO and increasing alumina and silica contents of glass frit. In this study, the sheet resistances of the TFRs which were sintered at 900 deg. C after printing on alumina substrate, the sheet resistances of the TFRs on inductor and capacitor substrate and the interphase between TFR and substrate were observed. And the changes of the sheet resistance were obtained with the contents of RuO{sub 2}. In case of the TFR sintered at 900 deg. C, the sheet resistances on alumina substrates were in the range of 10{sup 3}-10{sup 6} {Omega}/{open_square}, but the sheet resistances of TFR on inductor and capacitor substrate were not obtained. (author)13 refs., 8 figs., 3 tabs.

  7. Effect of cerium additive and secondary phase analysis on Ag0.5Bi0.5TiO3 ceramics

    Indian Academy of Sciences (India)

    S Supriya; Antonio J Dos Santos-García; F Fernández-Martinez

    2016-02-01

    Cerium-doped silver bismuth titanate—Ag0.5Bi0.5TiO3 (ABT) ceramics have been synthesized by the high-temperature solid-state reaction method. The structure and elemental examination of the prepared ceramic was analysed by X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energydispersive spectroscopy. XRD analysis showed the presence of pyrochlore structure and secondary phase when more than 5 mol% cerium was added. The impact of temperature on cerium-doped silver bismuth titanate samples was analysed by differential thermal analysis and differential scanning calorimetry. Cerium doping caused the flaky morphology comparing with undoped sample. The homogeneity of all the samples was discussed in detail by diffuse reflectance spectrum. This is the first time the reflection process is analysed for the cerium-doped ABT system to the best of our knowledge.

  8. Pressure induced structural transformation in Gd2Ti2O7 and Gd2Zr2O7

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haiyan [Pacific Northwest National Laboratory (PNNL); Weber, William J [ORNL

    2011-01-01

    Ab initio total energy calculations have been performed to study the phase stability of Gd2Ti2O7 and Gd2Zr2O7 pyrochlores over the pressure range from 0 to 60 GPa. Both compounds are unstable under pressure, and phase transformations to the defect-cotunnite structure are predicted. The phase transformation pressure of 43.6 GPa for Gd2Ti2O7 is considerably larger than the value of 13 GPa for Gd2Zr2O7, in good agreement with experiments. The decreased structural stability of Gd2Zr2O7 under pressure, relative to Gd2Ti2O7, is a consequence of the lower compressibility of the Zr O bond and the higher compressibility of the Gd O bond. In addition, the Gd 4f electrons are found to have only a small effect in determining the pressure induced phase transformation.

  9. Pressure Induced Structural Transformation in Gd2Ti2O7 and Gd2Zr2O7

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haiyan Y.; Weber, William J.

    2011-01-05

    Ab initio total energy calculations have been performed to study the phase stability of Gd2Ti2O7 and Gd2Zr2O7 pyrochlores over the pressure range from 0 to 60 GPa. Both compounds are unstable under pressure, and phase transformations to the defect-cotunnite structure are predicted. The phase transformation pressure of 43.6 GPa for Gd2Ti2O7 is considerably larger than the value of 13 GPa for Gd2Zr2O7, in good agreement with experiments. The decreased structural stability of Gd2Zr2O7 under pressure, relative to Gd2Ti2O7, is a consequence of the lower compressibility of the langZr–Orang bond and the higher compressibility of the langGd–Orang bond. In addition, the Gd 4f electrons are found to have only a small effect in determining the pressure induced phase transformation.

  10. Pressure induced structural transformation in Gd2Ti2O7 and Gd2Zr2O7

    Science.gov (United States)

    Xiao, H. Y.; Weber, W. J.

    2011-01-01

    Ab initio total energy calculations have been performed to study the phase stability of Gd2Ti2O7 and Gd2Zr2O7 pyrochlores over the pressure range from 0 to 60 GPa. Both compounds are unstable under pressure, and phase transformations to the defect-cotunnite structure are predicted. The phase transformation pressure of 43.6 GPa for Gd2Ti2O7 is considerably larger than the value of 13 GPa for Gd2Zr2O7, in good agreement with experiments. The decreased structural stability of Gd2Zr2O7 under pressure, relative to Gd2Ti2O7, is a consequence of the lower compressibility of the langZr-Orang bond and the higher compressibility of the langGd-Orang bond. In addition, the Gd 4f electrons are found to have only a small effect in determining the pressure induced phase transformation.

  11. Transport in ferromagnetic GdTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Moetakef, Pouya; Zhang, Jack Y.; Kozhanov, Alexander; Jalan, Bharat; Seshadri, Ram; Allen, S. James; Stemmer, Susanne

    2011-03-01

    Epitaxial GdTiO3/SrTiO3 structures with different SrTiO3 layer thicknesses are grown on (001) (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate surfaces by hybrid molecular beam epitaxy. It is shown that the formation of the pyrochlore (Gd2Ti2O7) phase can be avoided if GdTiO3 is grown by shuttered growth, supplying alternating monolayer doses of Gd and of the metalorganic precursor that supplies both Ti and O. Phase-pure GdTiO3 films grown by this approach exhibit magnetic ordering with a Curie temperature of 30 K. The electrical transport characteristics can be understood as being dominated by a conductive interface layer within the SrTiO3.

  12. HRTEM study of track evolution in 120-MeV U irradiated Gd2Ti2O7

    Science.gov (United States)

    Jozwik-Biala, I.; Jagielski, J.; Thomé, L.; Arey, B.; Kovarik, L.; Sattonnay, G.; Debelle, A.; Monnet, I.

    2012-09-01

    High Resolution Scanning Transmission Electron Microscopy (HRTEM) experiments were performed on Gd2Ti2O7 pyrochlore irradiated with 120-MeV U ions. A judicious choice of irradiation energy, sample preparation (using Focused Ion Beam) and analytical technique (HRTEM) allowed us to visualize the complete evolution of tracks from the surface of samples down to depths exceeding the projected range of irradiating ions. Such features as variation of track diameters, changes in track directions and discontinuous segments of tracks were clearly documented at various depths. By using two different Scanning Transmission Electron Microscopy (STEM) imaging modes: High- and Low-Angle Annular Dark Field imaging (HAADF and LAADF), it was possible to observe the radial substructure of tracks composed of an amorphous core surrounded by a damaged and strained crystalline envelope.

  13. Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2.

    Science.gov (United States)

    Abe, Ryu; Higashi, Masanobu; Sayama, Kazuhiro; Abe, Yoshimoto; Sugihara, Hideki

    2006-02-01

    The photocatalytic activities of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) strongly depended on the crystal structure. Overall, photocatalytic water splitting into H2 and O2 proceeded over La3TaO7 and La3NbO7, which have an orthorhombic weberite structure, Y2Ti2O7 and Gd2Ti2O7, which have a cubic pyrochlore structure, and La2Ti2O7, which has a monoclinic perovskite structure. All of these materials are composed of a network of corner-shared octahedral units of metal cations (TaO6, NbO6, or TiO6); materials without such a network were inactive. The octahedral network certainly increased the mobility of electrons and holes, thereby enhancing photocatalytic activity.

  14. HRTEM study of track evolution in 120-MeV U irradiated Gd2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Jozwik Biala, Iwona; Jagielski, Jacek K.; Thome, Lionel; Arey, Bruce W.; Kovarik, Libor; Sattonay, G.; Debelle, A.; Monnet, I.

    2012-09-01

    High resolution Scanning Transmission Electron Microscopy (HRTEM) experiments were performed on Gd2Ti2O7 pyrochlores irradiated with 120-MeV U ions. A judicious choice of irradiation energy, sample preparation (using Focused Ion Beam) and analytical technique (HRTEM) allowed us to visualize the complete evolution of tracks from the surface of samples down to depths exceeding the projected range of irradiating ions. Such features as variation of track diameters, changes in track directions and discontinuous segments of tracks were clearly documented at various depths. By using two different STEM imaging modes: High- and Low-Angle Annular Dark Field imaging (HAADF and LAADF), it was possible to observe the layered structure of tracks composed of an amorphous core surrounded by a strained crystalline envelope.

  15. Observation of the magnon Hall effect.

    Science.gov (United States)

    Onose, Y; Ideue, T; Katsura, H; Shiomi, Y; Nagaosa, N; Tokura, Y

    2010-07-16

    The Hall effect usually occurs in conductors when the Lorentz force acts on a charge current in the presence of a perpendicular magnetic field. Neutral quasi-particles such as phonons and spins can, however, carry heat current and potentially exhibit the thermal Hall effect without resorting to the Lorentz force. We report experimental evidence for the anomalous thermal Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore lattice structure. Our theoretical analysis indicates that the propagation of the spin waves is influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector potential, much as in the intrinsic anomalous Hall effect in metallic ferromagnets.

  16. Optimization of parameters in the synthesis of 0.90Pb(Zn1/3Nb2/3O3–0.10PbTiO3 (PZN-10PT powders obtained by the mixed oxides method

    Directory of Open Access Journals (Sweden)

    C.F.V. Raigoza

    2017-01-01

    Full Text Available Preventing the formation of the pyrochlore phase in the synthesis of PZN-PT powders requires controlling calcination parameters such as temperature, soaking time and atmosphere. These parameters were examined extensively to determine the time and temperature at which the perovskite phase is the majority phase, as well as the atmosphere that facilitates the formation of this phase. A maximum of 74% of perovskite phase was obtained under the following conditions: 1000 °C, 4 h in nitrogen atmosphere. In this work, we studied the influence of these parameters, which were optimized, on the formation the perovskite phase in PZN-10PT powders synthesized by the conventional solid state method.

  17. First-order magnetic transition in Yb2Ti2O7

    Science.gov (United States)

    Lhotel, E.; Giblin, S. R.; Lees, M. R.; Balakrishnan, G.; Chang, L. J.; Yasui, Y.

    2014-06-01

    The very nature of the ground state of the pyrochlore compound Yb2Ti2O7 is much debated, because experimental results demonstrate evidence for either a disordered ground state or a long-range ordered ground state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing states, such as a quantum spin liquid state or a ferromagnetic state which may originate from an Anderson-Higgs transition. We present a detailed magnetization study demonstrating a first-order ferromagnetic transition at 245 and 150 mK in a powder and a single-crystal sample, respectively. Its first-order character is preserved up to applied fields of ˜200 Oe. The transition stabilizes a ferromagnetic component and involves slow dynamics in the magnetization. Residual fluctuations are also evidenced, the presence of which might explain some of the discrepancies between previously published data for Yb2Ti2O7.

  18. Random site dilution properties of frustrated magnets on a hierarchical lattice.

    Science.gov (United States)

    Fortin, Jean-Yves

    2013-07-24

    We present a method to analyze the magnetic properties of frustrated Ising spin models on specific hierarchical lattices with random dilution. Disorder is induced by dilution and geometrical frustration rather than randomness in the internal couplings of the original Hamiltonian. The two-dimensional model presented here possesses a macroscopic entropy at zero temperature in the large size limit, very close to the Pauling estimate for spin-ice on the pyrochlore lattice, and a crossover towards a paramagnetic phase. The disorder due to dilution is taken into account by considering a replicated version of the recursion equations between partition functions at different lattice sizes. An analysis to first order in replica number allows a systematic reorganization of the disorder configurations, leading to a recurrence scheme. This method is numerically implemented to evaluate thermodynamical quantities such as specific heat and susceptibility in an external field.

  19. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B.M. (ed.)

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned.

  20. Fissile materials disposition program plutonium immobilization project baseline formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B B; Armantrout, G A; Gray, L; Herman, C C; Shaw, H F; Van Konynenburg, R A

    2000-09-01

    Since 1994 Lawrence Livermore National Laboratory (LLNL), with the help of several other laboratories and university groups, has been the lead laboratory for the Plutonium Immobilization Project (PIP). This involves, among other tasks, the development of a formulation and a fabrication process for a ceramic to be used in the immobilization of excess weapons-usable plutonium. This report reviews the history of the project as it relates to the development of the ceramic form. It describes the sample test plan for the pyrochlore-rich ceramic formulation that was selected, and it specifies the baseline formulation that has been adopted. It also presents compositional specifications (e.g. precursor compositions and mixing recipes) and other form and process specifications that are linked or potentially linked to the baseline formulation.

  1. Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels

    Science.gov (United States)

    Miao, Yinbin; Mo, Kun; Zhou, Zhangjian; Liu, Xiang; Lan, Kuan-Che; Zhang, Guangming; Miller, Michael K.; Powers, Kathy A.; Stubbins, James F.

    2016-11-01

    Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high-resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y2Ti2-xO7-2x stoichiometry were found to have a pyrochlore structure, whereas smaller YxTiyOz nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODS steels.

  2. Effects of rare earth oxides on dielectric properties of Y_2Ti_2O_7 series ceramics

    Institute of Scientific and Technical Information of China (English)

    丁佳钰; 肖瑗; 韩朋德; 张其土

    2010-01-01

    A series of Y2Ti2O7 microwave dielectric ceramics were synthesized by conventional solid-state method. The effects of rare earth oxide (La2O3, CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Dy2O3) and Nd2O3 doping content on the microstructure and dielectric properties of Y2Ti2O7 ceramics were investigated. The experimental results showed that the rare earth ions were considered to dissolve in Y-sites of the pyrochlore structure, different rare earth oxides and concentration had different influences on Y2Ti2O7 cerami...

  3. Magnetic monopoles in quantum spin ice

    Science.gov (United States)

    Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji

    Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.

  4. The XPS study of the structure of uranium-containing ceramics

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The samples of the (Ca0.5GdU0.5Zr2O7 and (Ca0.5GdU0.5(ZrTiO7 ceramics with the fluorite and pyrochlore structures used as matrixes for the long-lived high-level radioactive waste disposal were studied with the X-ray photoelectron spectroscopy method. On the basis of the X-ray photoelectron spectroscopy parameters of the outer and core electrons from the binding energy range of 0-1250 eV the oxidation states of the included metal ions were determined, the quantitative elemental and ionic analysis was done, and the orderliness (monophaseness was evaluated. The obtained data agree with the X-ray diffraction and the scanning electron microscopy results.

  5. Ceramics: Durability and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  6. Integration of epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on GaN/AlGaN/GaN/Si(111) substrates using rutile TiO{sub 2} buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Elibol, K. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Nguyen, M.D. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522NB Enschede (Netherlands); International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1 Dai Co Viet road, Hanoi 10000 (Viet Nam); Hueting, R.J.E. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Gravesteijn, D.J. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); NXP Semiconductors Research, High Tech Campus 46, 5656AE Eindhoven (Netherlands); Koster, G., E-mail: g.koster@utwente.nl [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Rijnders, G. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2015-09-30

    The integration of ferroelectric layers on gallium nitride (GaN) offers a great potential for various applications. Lead zirconate titanate (PZT), in particular Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}, is an interesting candidate. For that a suitable buffer layer should be grown on GaN in order to prevent the reaction between PZT and GaN, and to obtain PZT with a preferred orientation and phase. Here, we study pulsed laser deposited (100) rutile titanium oxide (R-TiO{sub 2}) as a potential buffer layer candidate for ferroelectric PZT. For this purpose, the growth, morphology and the surface chemical composition of R-TiO{sub 2} films were analyzed by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We find optimally (100) oriented R-TiO{sub 2} growth on GaN (0002) using a 675 °C growth temperature and 2 Pa O{sub 2} deposition pressure as process conditions. More importantly, the R-TiO{sub 2} buffer layer grown on GaN/Si substrates prevents the unwanted formation of the PZT pyrochlore phase. Finally, the remnant polarization and coercive voltage of the PZT film on TiO{sub 2}/GaN/Si with an interdigitated-electrode structure were found to be 25.6 μC/cm{sup 2} and 8.1 V, respectively. - Highlights: • Epitaxial rutile TiO{sub 2} films were grown on GaN layer buffered Si substrate using pulsed laser deposition. • The rutile-TiO{sub 2} layer suppresses the formation of the pyrochlore phase in the epitaxial PZT film grown on GaN/Si. • An epitaxial PZT film on GaN/Si substrate with rutile TiO{sub 2} buffer layer exhibits good ferroelectric properties.

  7. Phase Composition and Disorder in La2(Sn,Ti)2O7 Ceramics: New Insights from NMR Crystallography

    Science.gov (United States)

    2016-01-01

    An NMR crystallographic approach, involving the combination of 119Sn NMR spectroscopy, XRD, and DFT calculations, is demonstrated for the characterization of La2Sn2–xTixO7 ceramics. A phase change from pyrochlore (La2Sn2O7) to a layered perovskite phase (La2Ti2O7) is predicted (by radius ratio rules) to occur when x ≈ 0.95. However, the sensitivity of NMR spectroscopy to the local environment is able to reveal a significant two-phase region is present, extending from x = 1.8 to ∼0.2, with limited solid solution at the two extremes, in broad agreement with powder XRD measurements. DFT calculations reveal that there is preferential site substitution of Sn in La2Ti2O7, with calculated shifts for Sn substitution onto Ti1 and Ti2 sites (in the “bulk” perovskite layers) in better agreement with experiment than those for Ti3 and Ti4 (“edge” sites). Substitution onto these two sites also produces structural models with lower relative enthalpy. As the Sn content decreases, there is a further preference for substitution onto Sn2. In contrast, the relative intensities of the spectral resonances suggest that Ti substitution into the pyrochlore phase is random, although only a limited solid solution is observed (up to ∼7% Ti). DFT calculations predict very similar 119Sn shifts for Sn substitution into the two proposed models of La2Ti2O7 (monoclinic (P21) and orthorhombic (Pna21)), indicating it is not possible to distinguish between them. However, the relative energy of the Sn-substituted orthorhombic phase was higher than that of substituted monoclinic cells, suggesting that the latter is the more likely structure. PMID:27721909

  8. Phase Behavior of Rare Earth Manganites

    Institute of Scientific and Technical Information of China (English)

    Naoki Kamegashira; Hiromi Nakano; Gang Chen; Jian Meng

    2004-01-01

    Among complex oxides containing rare earth and manganese BaLn2Mn2O7 (Ln=rare earth) with the layered perovskite type and Ln2(Mn, M)O7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn2Mn2O7 there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu2Mn2O7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P42/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln2Mn2-xMxO7 (M=Ta, Nb, W etc), there also appear several phases with different crystal structures. With regard to every rare earth, Ln2MnTaO7 phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type (P3121 space group). On the other hand Ln2Mn2/3Nb4/3O7 phase has monoclinic (C2/c space group) and zirconolite type structure. All of these structural models have the fundamental structure based on HTB (hexagonal tungsten bronze) layers formed by the arrangement of oxygen octahedra.

  9. Luminescence properties of nanocrystalline europium titanate Eu{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Mrázek, Jan, E-mail: mrazek@ufe.cz [Institute of Photonics and Electronics AS CR, v.v.i., Chaberská 57, 18251 Prague 8 (Czech Republic); Surýnek, Martin [Institute of Photonics and Electronics AS CR, v.v.i., Chaberská 57, 18251 Prague 8 (Czech Republic); Bakardjieva, Snejana [Institute of Inorganic Chemistry AS CR, v.v.i., 25068 Řež (Czech Republic); Buršík, Jiří [Institute of Physics of Materials AS CR, v.v.i., Žižkova 22, 616 62 Brno (Czech Republic); Proboštová, Jana; Kašík, Ivan [Institute of Photonics and Electronics AS CR, v.v.i., Chaberská 57, 18251 Prague 8 (Czech Republic)

    2015-10-05

    Highlights: • Nanocrystalline europium titanate Eu{sub 2}Ti{sub 2}O{sub 7} with tailored structural properties was prepared. • Thermal evolution of nanocrystalline Eu{sub 2}Ti{sub 2}O{sub 7} was studied by structural and luminescence methods. • Effect of the nanocrystalline structure to the luminescence properties of Eu{sub 2}Ti{sub 2}O{sub 7} was evaluated. • The displacement of Eu{sup 3+} within the pyrochlore lattice and within the nanocrystals was determined. - Abstract: Nanocrystalline europium titanate Eu{sub 2}Ti{sub 2}O{sub 7} with tailored structural properties was prepared by a sol–gel approach. Structural properties of prepared nanocrystals were correlated to the steady-state and time-resolved luminescence spectroscopy of europium ions incorporated within formed nanocrystals. The formation of nanocrystalline Eu{sub 2}Ti{sub 2}O{sub 7} raised up the existence of two inequivalent positions of Eu{sup 3+} ions. Eu{sup 3+} ions displaced in highly symmetrical positions within the pyrochlore lattice provided low intensity luminescence and lifetime shorter than 10 μs. Eu{sup 3+} ions displaced in asymmetrical positions on the surface of formed nanoparticles provided lifetimes on the level of 50 μs. Number of Eu{sup 3+} ions displaced in asymmetrical positions was decreased according to increase size and crystallinity of formed nanocrystals. The presented results provide fundamental information about the influence of the structure and the morphology of formed nanocrystals to their luminescence properties.

  10. Technical Progress Report on Single Pass Flow Through Tests of Ceramic Waste Forms for Plutonium Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Roberts, S; Bourcier, W

    2000-12-01

    This report updates work on measurements of the dissolution rates of single-phase and multi-phase ceramic waste forms in flow-through reactors at Lawrence Livermore National Laboratory. Previous results were reported in Bourcier (1999). Two types of tests are in progress: (1) tests of baseline pyrochlore-based multiphase ceramics; and (2) tests of single-phase pyrochlore, zirconolite, and brannerite (the three phases that will contain most of the actinides). Tests of the multi-phase material are all being run at 25 C. The single-phase tests are being run at 25, 50, and 75 C. All tests are being performed at ambient pressure. The as-made bulk compositions of the ceramics are given in Table 1. The single pass flow-through test procedure [Knauss, 1986 No.140] allows the powdered ceramic to react with pH buffer solutions traveling upward vertically through the powder. Gentle rocking during the course of the experiment keeps the powder suspended and avoids clumping, and allows the system to behave as a continuously stirred reactor. For each test, a cell is loaded with approximately one gram of the appropriate size fraction of powdered ceramic and reacted with a buffer solution of the desired pH. The buffer solution compositions are given in Table 2. All the ceramics tested were cold pressed and sintered at 1350 C in air, except brannerite, which was sintered at 1350 C in a CO/CO{sub 2} gas mixture. They were then crushed, sieved, rinsed repeatedly in alcohol and distilled water, and the desired particle size fraction collected for the single pass flow-through tests (SPFT). The surface area of the ceramics measured by BET ranged from 0.1-0.35 m{sup 2}/g. The measured surface area values, average particle size, and sample weights for each ceramic test are given in the Appendices.

  11. Near-edge x-ray absorption fine-structure study of ion-beam-induced phase transformation in Gd2(Ti1-yZry)2O7

    Science.gov (United States)

    Nachimuthu, P.; Thevuthasan, S.; Shutthanandan, V.; Adams, E. M.; Weber, W. J.; Begg, B. D.; Shuh, D. K.; Lindle, D. W.; Gullikson, E. M.; Perera, R. C. C.

    2005-02-01

    The structural and electronic properties of Gd2(Ti1-yZry)2O7 (y =0-1) pyrochlores following a 2.0-MeV Au2+ ion-beam irradiation (˜5.0×1014Au2+/cm2) have been investigated by Ti2p and O1s near-edge x-ray absorption fine structure (NEXAFS). The irradiation of Gd2(Ti1-yZry)2O7 leads to the phase transformation from the ordered pyrochlore structure (Fd3m) to the defect fluorite structure (Fm3m) regardless of Zr concentration. Irradiated Gd2(Ti1-yZry)2O7 with y ⩽0.5 are amorphous, although significant short-range order is present. Contrasting to this behavior, compositions with y ⩾0.75 retain crystallinity in the defect fluorite structure following irradiation. The local structures of Zr4+ in the irradiated Gd2(Ti1-yZry)2O7 with y ⩾0.75 determined by NEXAFS are the same as in the cubic fluorite-structured yttria-stabilized zirconia (Y -ZrO2), thereby providing conclusive evidence for the phase transformation. The TiO6 octahedra present in Gd2(Ti1-yZry)2O7 are completely modified by ion-beam irradiation to TiOx polyhedra, and the Ti coordination is increased to eight with longer Ti -O bond distances. The similarity between cation sites and the degree of disorder in Gd2Zr2O7 facilitate the rearrangement and relaxation of Gd, Zr, and O ions/defects. This inhibits amorphization during the ion-beam-induced phase transition to the radiation-resistant defect fluorite structure, which is in contrast to the ordered Gd2Ti2O7.

  12. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    Science.gov (United States)

    Kulriya, P. K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A. K.; Avasthi, D. K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd2Ti2O7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd2Ti2O7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd2Ti2O7 is readily amorphized at an ion fluence 6 × 1012 ions/cm2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 1013 ions/cm2. The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures.

  13. Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides

    Science.gov (United States)

    Wang, Jianwei; Lang, Maik; Ewing, Rodney C.; Becker, Udo

    2013-04-01

    Tracks formed by swift-heavy ion irradiation, 2.2 GeV Au, of isometric Gd2Ti2O7 pyrochlore and orthorhombic Gd2TiO5 were modeled using the thermal-spike model combined with a molecular-dynamics simulation. The thermal-spike model was used to calculate the energy dissipation over time and space. Using the time, space, and energy profile generated from the thermal-spike model, the molecular-dynamics simulations were performed to model the atomic-scale evolution of the tracks. The advantage of the combination of these two methods, which uses the output from the continuum model as an input for the atomistic model, is that it provides a means of simulating the coupling of the electronic and atomic subsystems and provides simultaneously atomic-scale detail of the track structure and morphology. The simulated internal structure of the track consists of an amorphous core and a shell of disordered, but still periodic, domains. For Gd2Ti2O7, the shell region has a disordered pyrochlore with a defect fluorite structure and is relatively thick and heterogeneous with different degrees of disordering. For Gd2TiO5, the disordered region is relatively small as compared with Gd2Ti2O7. In the simulation, ‘facets’, which are surfaces with definite crystallographic orientations, are apparent around the amorphous core and more evident in Gd2TiO5 along [010] than [001], suggesting an orientational dependence of the radiation response. These results show that track formation is controlled by the coupling of several complex processes, involving different degrees of amorphization, disordering, and dynamic annealing. Each of the processes depends on the mass and energy of the energetic ion, the properties of the material, and its crystallographic orientation with respect to the incident ion beam.

  14. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  15. A measure of monopole inertia in the quantum spin ice Yb2Ti2O7

    Science.gov (United States)

    Pan, Lidong; Laurita, N. J.; Ross, Kate A.; Gaulin, Bruce D.; Armitage, N. P.

    2016-04-01

    An important and continuing theme of modern solid state physics is the realization of exotic excitations in materials, known as quasiparticles, that have no analogy in the actual physical vacuum of free space. Although they are not fundamental, such quasiparticles do constitute the most basic description of the excited states of the `vacuum' in which they reside. In this regard the magnetic textures of the excited states of spin ices, magnetic pyrochlore oxides with dominant Ising interactions, have been proposed to behave as effective magnetic charge monopoles. Inelastic neutron scattering experiments have established the pyrochlore material Yb2Ti2O7 (YbTO) as a quantum spin ice, where, in addition to the Ising interactions, there are substantial transverse terms that may induce quantum dynamics and--in principle--coherent monopole motion. Here we report a combined time-domain terahertz spectroscopy (TDTS) and microwave cavity study of YbTO to probe its complex dynamic magnetic susceptibility. We find that the form of the susceptibility is consistent with that of a monopole gas, and a magnetic monopole conductivity can be defined and measured. Using the phase sensitive capabilities of these techniques, we observe a sign change in the reactive part of the magnetic response. In generic models of magnetic excitations this is possible only by introducing inertial effects, such as a mass-dependent term, to the equations of motion. Analogous to conventional electric charge systems, measurement of the conductivity's spectral weight allows us to derive a value for the magnetic monopole mass. Our results support the idea of magnetic monopoles of quantum spin ice as the true coherently propagating quasiparticles of this system.

  16. Encapsulating Bi2Ti2O7 (BTO) with reduced graphene oxide (RGO): an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO.

    Science.gov (United States)

    Gupta, Satyajit; Subramanian, Vaidyanathan Ravi

    2014-11-12

    Multimetal oxides (AxByOz) offer a higher degree of freedom compared to single metal oxides (AOx) in that these oxides facilitate (i) designing nanomaterials with greater stability, (ii) tuning of the optical bandgap, and (iii) promoting visible light absorption. However, all AxByOz materials such as pyrochlores (A2B2O7)--referred to here as band-gap engineered composite oxide nanomaterials or BECONs--are traditionally prone to severe charge recombination at their surface. To alleviate the charge recombination, an effective strategy is to employ reduced graphene oxide (RGO) as a charge separator. The BECON and the RGO with oppositely charged functional groups attached to them can be integrated at the interface by employing a simple electrostatic self-assembly approach. As a case study, the approach is demonstrated using the Pt-free pyrochlore bismuth titanate (BTO) with RGO, and the application of the composite is investigated for the first time. When tested as a photocatalyst toward hydrogen production, an increase of ∼ 250% using BTO in the presence of RGO was observed. Further, photoelectrochemical measurements indicate an enhancement of ∼ 130% in the photocurrent with RGO inclusion. These two results firmly establish the viability of the electrostatic approach and the inclusion of RGO. The merits of the RGO addition is identified as (i) the RGO-assisted improvement in the separation of the photogenerated charges of BTO, (ii) the enhanced utilization of the charges in a photocatalytic process, and (iii) the maintenance of the BTO/RGO structural integrity after repeated use (established through reusability analysis). The success of the self-assembly strategy presented here lays the foundation for developing other forms of BECONs, belonging to perovskites (ABO3), sillenite (A12BO20), or delafossite (ABO2) groups, hitherto written off due to limited or no photoelectrochemicalactivity.

  17. Influence of grain growth on the structural properties of the nanocrystalline Gd2Ti2O7

    Science.gov (United States)

    Kulriya, P. K.; Yao, Tiankai; Scott, Spencer Michael; Nanda, Sonal; Lian, Jie

    2017-04-01

    The microstructural evolution and grain growth kinetics of the nanocrystalline Gd2Ti2O7 drastically affect its properties and functionalities as thermal barrier coatings and nuclear waste forms for actinide incorporation. Here, we report the synthesis of the dense nano-sized Gd2Ti2O7 by high energy ball milling (HEBM), and spark plasma sintering (SPS), and also investigated the isothermally annealing induced grain coarsening and structural properties variations. As-prepared nano powder (D∼60 nm) by HEBM exhibited an amorphous nature, which was consolidated to a dense single phase crystalline pyrochlore nano-ceramic (D∼120 ± 10 nm) by SPS sintering at 1200 °C. Isothermal annealing was performed at different temperatures (1300 °C - 1500 °C) with holding time varying from 0.5 to 8 h, and the pyrochlore phase is stable with no indication of a transformation into a defect fluorite structure. A rapid initial grain growth was observed which increased with temperature and annealing durations due to the large driving force of the curvature-driven grain coarsening of the nano-ceramics, and grain growth saturates at longer durations. The calculated value of the time constant and activation energy for the nanocrystalline Gd2Ti2O7 were 0.52 ± 0.02 and 240 ± 20 kJ/mol (∼2.48 eV), respectively. The enhanced grain growth kinetics with a lower value of activation energy can be explained by the effect of fast diffusion across the grain boundaries for dense nanoceramics.

  18. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

    Science.gov (United States)

    Gardner, Jason S.

    2011-04-01

    Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

  19. The Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram refinement, Bi{sub 3}FeSb{sub 2}O{sub 11} structure peculiarities and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Egorysheva, A.V., E-mail: anna_egorysheva@rambler.ru [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Ellert, O.G.; Gajtko, O.M.; Efimov, N.N. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation); Svetogorov, R.D.; Zubavichus, Y.V. [National Research Center “Kurchatov Institute”, Academy Kurchatov Sq. 1, Moscow 123182 (Russian Federation); Grigorieva, A.V. [Department of Materials Science, Lomonosov Moscow State University, Leninskiye Gory 1-73, Laboratory Building B, Moscow 119991 (Russian Federation)

    2015-05-15

    The refinement of the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram has been performed and the existence of the two ternary compounds has been confirmed. The first one with a pyrochlore-type structure (sp. gr. Fd 3-barm) exists in the wide solid solution region, (Bi{sub 2−x}Fe{sub x})Fe{sub 1+y}Sb{sub 1−y}O{sub 7±δ}, where x=0.1–0.4 and y=−0.13–0.11. The second one, Bi{sub 3}FeSb{sub 2}O{sub 11}, corresponds to the cubic KSbO{sub 3}-type structure (sp. gr. Pn 3-bar) with unit cell parameter a=9.51521(2) Å. The Rietveld structure refinement showed that this compound is characterized by disordered structure. The Bi{sub 3}FeSb{sub 2}O{sub 11} factor group analysis has been carried out and a Raman spectrum has been investigated. According to magnetization measurements performed at the temperature range 2–300 K it may be concluded that the Bi{sub 3}FeSb{sub 2}O{sub 11} magnetic properties can be substantially described as a superposition of strong short-range antiferromagnetic exchange interactions realizing inside the [(FeSb{sub 2})O{sub 9}] 3D-framework via different pathways. - Graphical abstract: The refinement of the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram has been performed and the existence of the solid solution with a pyrochlore-type structure (sp. gr. Fd 3-barm) and Bi{sub 3}FeSb{sub 2}O{sub 11}, correspond of the cubic KSbO{sub 3}-type structure (sp. gr. Pn 3-bar has been confirmed. The structure refinement, Raman spectroscopy as well as magnetic measurements data of Bi{sub 3}FeSb{sub 2}O{sub 11} are presented. - Highlights: • The Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram refinement has been performed. • The Bi{sub 3}FeSb{sub 2}O{sub 11} existence along with pyrochlore structure compound is shown. • It was determined that the Bi{sub 3}FeSb{sub 2}O{sub 11} is of disordered cubic KSbO{sub 3}-type structure. • Factor group analysis

  20. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647, OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    PI: JUAN C. NINO, ASSOCIATE PROFESSOR

    2009-01-11

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K {center_dot} m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO{sub 2} composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO{sub 2} is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO{sub 2} is low and typically less than 3 W {center_dot} m{sup -1} {center_dot} K{sup -1} at 1000 C. In search for an alternative composite strategy, Nd{sub 2}Zr{sub 2}O{sub 7}, an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W {center_dot} m{sup -} 1 {center_dot} K{sup -1} at 1000 C for the MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd{sub 2}Zr{sub 2}O{sub 7

  1. The high-temperature phase chemistry and thermochemistry of the lead magnesium niobium titanium oxide system

    Science.gov (United States)

    Mangham, Robert Ingvar

    The phase equilibrium diagrams for the PbO-MgO-Nb2O5 -TiO2 system were experimentally evaluated in the vicinity of 1000°C. In addition, the equilibrium vapor pressure of lead oxide was measured as a function of temperature and composition for most of the phase compatibility relationships. Together, this information was combined to map out the thermochemistry of the perovskite and pyrochlore solid solutions, and the compounds in the surrounding compositional space. The focus of this investigation has been to provide a thermodynamic description of the stability of the perovskite phase as it pertains to high-temperature synthesis and compositional control. The ternary diagram for the PbO-MgO-Nb2O5 system was previously reported at 1000°C. Here, the three remaining ternary diagrams, PbO-MgO-TiO2, PbO-Nb2O5-TiO2, and MgO-Nb2O5-TiO2 are presented at 1000°C. The individual equilibrium compatibilities were assessed via more than one reaction path. Typically, samples were combinations of the constituent oxides and/or previously synthesized ternary compounds pelletized and welded shut in platinum capsules. Equilibration was a particularly slow process in the MgO-Nb2O5-TiO2 system and, therefore, samples were analyzed at higher temperatures, up to 1450°C, and then extrapolated to 1000°C. Samples prepared that did not contain lead oxide were annealed in air. Upon finishing the four ternary diagrams, the complete quaternary phase equilibrium was evaluated at 1000°C. Details surrounding the perovskite and extended pyrochlore solid solutions were revealed. Lead oxide vapor pressures were measured by Knudsen cell thermogravimetric analysis (KC-TGA). Due to the multiple lead oxide species present, and discrepancies in the thermodynamic descriptions of the molecular distributions, a calibration procedure was devised from which the lead oxide activity was deduced directly from the measured weight-loss rates. From the activities, the Gibbs energy of formation was calculated for

  2. Phase evolution, interdiffusion and failure of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/YSZ thermal barrier coatings prepared by electron beam–physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Zhou, Xin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhong, Bintao [AVIC Aviation Power Plant Research Institute, Zhuzhou 412002 (China); Xu, Zhenhua; Mu, Rende; Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-03-05

    Highlights: • No interruption of column morphology from YSZ to LZ7C3 layer in TBCs. • A fluorite to pyrochlore ordering occurs for LZ7C3 during thermal shocking. • Some diffusion of Y from YSZ to LZ7C3 layer is occurred after thermal shocking. • Outward diffusion of Cr takes place due to the chemical reaction of LZ7C3 and Cr. • The delaminations occur at interface of LZ7C3/YSZ and inside the LZ7C3 coating. - Abstract: La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) has attracted great interest for thermal barrier coatings (TBCs) because it presents extremely low thermal conductivity, high thermal stability and is more resistant to sintering than yttria stabilized zirconia (YSZ). In the present study, an LZ7C3/YSZ double-ceramic-layer (DCL) TBC was deposited by electron beam–physical vapor deposition (EB–PVD) and the TBC system was investigated for its phase evolution, interdiffusion and failure pattern though thermal shock test at 1373 K. X-ray diffraction and Raman spectra results indicate that the as-deposited LZ7C3 coating transforms from fluorite to pyrochlore structure upon thermal shocking between 373 K and 1373 K. It seems that this phase change may have affected the durability of the DCL TBCs. The EDS mapping analysis indicates that some diffusion of Y from YSZ to LZ7C3 layer is occurred after thermal shock test. Additionally, an obvious outward diffusion of Cr from bond coat into LZ7C3 layer takes place due to the chemical reaction of LZ7C3 and Cr. The phase transformation of LZ7C3, the abnormal oxidation of bond coat, and the outward diffusion of Y and Cr alloying element into LZ7C3 coating would be the primary factors for the spallation of LZ7C3/YSZ thermal barrier coating.

  3. The durability of single, dual, and multiphase titanate ceramic waste forms for nuclear waste immobilization

    Science.gov (United States)

    Harkins, Devin J. H.

    A significant amount of the energy used in the United States comes from nuclear power, which produces a large amount of waste materials. Recycling nuclear waste is possible, but requires a way to permanently fix the unusable radionuclides remaining from the recycling process in a stable, leach resistant structure. Multiphase titanate ceramic waste forms are one promising option under consideration. However, there is insufficient work on the long term corrosion of the individual phases, as well as the multiphase systems of these ceramics. These multiphase titanate ceramic waste forms have three targeted phases: hollandite, pyrochlore, and zirconolite. Hollandite is a promising candidate for the incorporation of Cs, while pyrochlore is readily formed with lanthanides, such as Nd, the most prevalent lanthanide in the waste stream. The third targeted phase, zirconolite, is for the incorporation of zirconium and the actinides. This work looks into the formation of single phase systems of lanthanide titanates, formation of dual phase systems of Ga doped Ba hollandites and Nd titanate, durability of single phase hollandites and multiphase model systems using Vapor Hydration Testing (ASTM C 1663-09), dissolution of dual phase systems of Ga doped Ba hollandites and Nd titanate using Product Consistency Testing (ASTM C 1285-02), as well investigating how grain size affects amount of alterative phases formed using Vapor Hydration Testing. The dual phase systems of hollandites and Nd titanate show significant amounts of secondary phases forming, heavily influenced by the composition of hollandite used in the systems. The most significant phase present was BaNd2Ti5O14. This phase proves to be problematic due to the degradation to the hollandite structure. Using Vapor Hydration Testing to investigate single and multiphase systems presented many some possible alteration phases that could occur in the long term aging of these ceramics. Most notably, Cs rich phases were found in

  4. Anatomy of topological surface states: Exact solutions from destructive interference on frustrated lattices

    Science.gov (United States)

    Kunst, Flore K.; Trescher, Maximilian; Bergholtz, Emil J.

    2017-08-01

    The hallmark of topological phases is their robust boundary signature whose intriguing properties—such as the one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming open Fermi arcs on the surfaces of Weyl semimetals—are impossible to realize on the surface alone. Yet, despite the glaring simplicity of noninteracting topological bulk Hamiltonians and their concomitant energy spectrum, the detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into the structure of the surface states that enable analytical calculation of many desired properties including correlation functions, surface dispersion, Berry curvature, and the system size dependent gap closing, which necessarily occurs when the spatial localization switches surface. This further provides a deepened understanding of the bulk-boundary correspondence. We illustrate our general findings on a large number of examples in two and three spatial dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin-orbit-coupled kagome lattice, and Fermi arcs relevant for recently synthesized slabs of pyrochlore-based Eu2Ir2O7 and Nd2Ir2O7 , which realize an all-in-all-out spin configuration, as well as for spin-ice-like two-in-two-out and one-in-three-out configurations, which are both relevant for Pr2Ir2O7 . Remarkably, each of the pyrochlore examples exhibit clearly resolved Fermi arcs although only the one

  5. Tuning structure in epitaxial Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} thin films by using miscut substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mietschke, M., E-mail: m.mietschke@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Oswald, S.; Fähler, S. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schultz, L. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Hühne, R. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2015-08-31

    Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (PMN–PT) is one of the most promising ferroelectric material for actuator, dielectric and electrocaloric applications. However, oriented and phase pure thin films are essential to use the outstanding properties of these compounds. In this work it is demonstrated that the use of miscut substrates influences the growth mechanism leading to a significantly broader deposition window to achieve the required film quality. Therefore, epitaxial 0.68Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.32PbTiO{sub 3} films were grown by pulsed laser deposition on (001)-oriented single crystalline SrTiO{sub 3} (STO) substrates with a miscut angle between 0 and 15° towards the [100] direction using a conducting La{sub 0.7}Sr{sub 0.3}CoO{sub 3} buffer layer. The influence of the vicinal angle on the PMN–PT structure was studied by high resolution X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. A nearly pure perovskite phase growth with a cube-on-cube epitaxial relationship was obtained on all miscut STO substrates, whereas a significant volume fraction of the pyrochlore phase was present on the standard substrate. Reciprocal space measurements revealed a peak split of the perovskite reflections indicating structural variants of PMN–PT with different c/a ratios. An additional tilting of the PMN–PT planes with respect to the buffer layer was observed on some samples, which might be explained with the incorporation of dislocations according to the Nagai model. Polarization loops were measured in a temperature range between room temperature and 150 °C showing a sharp drop of the remanent polarization above 65 °C on vicinal substrates. - Highlights: • Epitaxial growth of pure perovskite Pb (Mg{sub 1}/{sub 3}Nb{sub 2}/{sub 3})O{sub 3}–PbTiO{sub 3} on miscut SrTiO{sub 3}. • Significant broadening of the deposition window for pyrochlore-free films. • Dependence of the structural parameters

  6. Crystal structure and phase transition mechanisms in CsFe{sub 2}F{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Molokeev, M.S., E-mail: msmolokeev@gmail.com [Kirensky Institute of Physics, Siberian Department RAS, 660036 Krasnoyarsk (Russian Federation); Bogdanov, E.V., E-mail: evbogdanov@iph.krasn.ru [Kirensky Institute of Physics, Siberian Department RAS, 660036 Krasnoyarsk (Russian Federation); Institute of Energetics and Management of Energetic Sources, State Agrarian University, 660049 Krasnoyarsk (Russian Federation); Misyul, S.V., E-mail: misjul@akadem.ru [Institute of Physical Engineering and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Tressaud, A., E-mail: tressaud@icmcb-bordeaux.cnrs.fr [Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), Université Bordeaux, 33608-Pessac (France); Flerov, I.N., E-mail: flerov@iph.krasn.ru [Kirensky Institute of Physics, Siberian Department RAS, 660036 Krasnoyarsk (Russian Federation); Institute of Physical Engineering and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk (Russian Federation)

    2013-04-15

    For the first time, structural phase transitions induced by the temperature were found in A{sub x}M{sub x}{sup II}M{sub (1−x)}{sup III}F{sub 3} fluorides with the defect pyrochlore structure (Fd3{sup ¯}m, Z=8). The room temperature structure of CsFe{sub 2}F{sub 6} was determined using X-ray powder diffraction technique. This phase was found to be ordered with the Pnma space group. The study of the temperature stability of orthorhombic structure by differential scanning calorimeter between 100 K and 700 K has shown a succession of phase transitions. The Pnma (Z=4)→Imma (Z=4)→I4{sub 1}/amd (Z=4)→Fd3{sup ¯}m (Z=8) structural sequence was proposed to occur within a rather narrow temperature range 500–560 K. The mechanism of structural transition has been mainly associated with the rotation of (MF{sub 6}) octahedra and small displacements of some Fe atoms. This assumption is in good agreement with the low experimental entropy value, which is characteristic for displacive transformations. - Graphical abstract: Mechanism of phase transition between the HT cubic form of CsFe{sub 2}F{sub 6} at 573 K (left) and the room temperature orthorhombic form at 298 K (right). The grey rectangles are clusters of five FeF{sub 6} octahedra. Highlights: ► Structural transition found for the first time in CsFe{sub 2}F{sub 6} with defect pyrochlore type. ► Fe{sup II} and Fe{sup III} atoms are ordered in room temperature Pnma form of CsFe{sub 2}F{sub 6}. ► Pnma(Z=4)→Imma(Z=4)→I4{sub 1}/amd(Z=4)→Fd-3m(Z=8) transition sequence is proposed. ► Structural transition due to rotation of MF{sub 6} groups+small displacements of Fe atoms. ► The low value of the entropy is in agreement with a displacive-type transition.

  7. Geology, market and supply chain of niobium and tantalum—a review

    Science.gov (United States)

    Mackay, Duncan A. R.; Simandl, George J.

    2014-12-01

    Tantalum (Ta) and niobium (Nb) are essential metals in modern society. Their use in corrosion prevention, micro-electronics, specialty alloys and high-strength low-alloy (HSLA) steel earns them a strategic designation in most industrialised countries. The Ta market is unstable due in part to historic influx of `conflict' columbite-tantalite concentrate, or "Coltan," that caused Ta mines in Australia and Canada to be placed on care and maintenance. More recently, the growing appetite of modern society for consumer goods made of `conflict-free' minerals or metals has put pressure on suppliers. Pegmatites, rare-element-enriched granites, related placer deposits and weathered crusts overlying carbonatite and peralkaline complexes account for the majority of Ta production. Several carbonatite-related deposits (e.g. Upper Fir and Crevier, Canada) are being considered for potential co-production of Ta and Nb. Pyrochlore (Nb-Ta), columbite-tantalite (Nb-Ta), wodginite (Ta, Nb and Sn) and microlite (Ta and Nb) are the main ore minerals. Approximately 40 % of Ta used in 2012 came from Ta mines, 30 % from recycling, 20 % from tin slag refining and 10 % from secondary mine concentrates. Due to rapid industrialisation and increased use of Nb in steel making in countries such as China and India, demand for Nb is rising. Weathered crusts overlying carbonatite complexes in Brazil and one hard rock carbonatite deposit in Canada account for about 92 and 7 % of Nb world mine production, respectively. Since the bulk of the production is geographically and politically restricted to a single country, security of supply is considered at risk. Other prospective resources of Nb, beside carbonatites and associated weathered crusts, are peralkaline complexes (e.g. Nechalacho; where Nb is considered as a potential co-product of REE and zirconium). Economically, significant deposits of Ta and Nb contain pyrochlore, columbite-tantalite, fersmite, loparite and strüverite. Assuming continued

  8. Thermophysical properties of Gd{sub 2}Zr{sub 2}O{sub 7} powders prepared by mechanical milling: Effect of homovalent Gd{sup 3+} substitution

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Guillén, J.A., E-mail: jadiaz@itsaltillo.edu.mx [División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Saltillo, 25280 Saltillo, Coahuila (Mexico); Durá, O.J. [GFMA, Departamento de Física Aplicada, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Díaz-Guillén, M.R. [Instituto de Investigaciones Eléctricas, 62490 Cuernavaca, Morelos (Mexico); Bauer, E. [Institute of Solid State Physics, Vienna University of Technology, Wien A-1040 (Austria); López de la Torre, M.A. [GFMA, Departamento de Física Aplicada, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Fuentes, A.F. [Cinvestav Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila (Mexico)

    2015-11-15

    This contribution analyzes the thermophysical properties of Gd{sub 1.6}Ln{sub 0.4}Zr{sub 2}O{sub 7} (Ln = La{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Dy{sup 3+} and Er{sup 3+}) ceramics synthesized at room temperature, by mechanically milling stoichiometric mixtures of high purity oxides. Regardless of chemical composition, powders milled for 27 h show XRD patterns similar to fluorite-type materials. Post-milling thermal treatments at 1500 °C, facilitates the evolution to the ordered pyrochlore derivative for Gd{sub 2}Zr{sub 2}O{sub 7}, and the La{sup 3+}-, Nd{sup 3+}-, and Sm{sup 3+}-containing materials. By contrast, samples containing the smaller lanthanides (Dy{sup 3+} or Er{sup 3+}), maintain the fluorite structure. Thermal conductivity of the as-prepared samples was obtained as a function of temperature, from thermal diffusivity, heat capacity and density values, using sintered pellets. We found that doping has an important effect in lowering Gd{sub 2}Zr{sub 2}O{sub 7} thermal conductivity, with final values ranging from 1.22 to 1.94 W m{sup −1} K{sup −1}; Nd{sup 3+}- and Er{sup 3+}-containing samples represent an optimum combination of defects and disordering of oxygen vacancies that generate the lowest conductivity values of all samples tested. - Highlights: • Gd{sub 2}Zr{sub 2}O{sub 7} doped with different lanthanides was synthesized by mechanical milling. • Smaller Ln{sup 3+} yield fluorites whereas larger lanthanides produce pyrochlores. • Thermophysical properties of the samples were measured as a function of temperature. • All samples show low thermal conductivities, and might find application as TBCs. • Doping is a valid strategy to increase Gd{sub 2}Zr{sub 2}O{sub 7} thermal resistance.

  9. Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2006-09-30

    This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

  10. Synergistic effects in multicomponent electrocatalysts: the Pb-Ir-O system.

    Science.gov (United States)

    Mullens, Conor; Pikulski, Michael; Agachan, Sabri; Gorski, Waldemar

    2003-11-05

    The ionic interactions were studied in aqueous solutions of Na(3)IrCl(6) + Pb(NO(3))(2) in order to develop a facilitated electrosynthesis of iridium-based catalytic surfaces. Spectroscopic studies indicated that ion pair charge-transfer complexes [IrCl(6)(3-)]-Pb(II) (K = 6 x 10(3)) and [Ir(H(2)O)Cl(5)(2-)]-Pb(II) (K = 2 x 10(3)) were formed in fresh and aged solutions, respectively. Electrochemical studies showed that interactions between the Ir(H(2)O)Cl(5)(2-) and Pb(II) species lead to synergistic lowering of the overpotential that was necessary for nucleation and growth of mixed metal oxide PbIrOx on the surface of glassy carbon electrodes. The Ir:Pb stoichiometry of the PbIrOx surface films was the same (1:1) as that of the high-temperature phase of Pb-Ir-O pyrochlore. Compared to IrOx, the PbIrOx films displayed enhanced catalytic activity toward the electrooxidation of carbohydrates. This was ascribed to synergism that involved retention of carbohydrate molecules at the Pb(II) sites of a PbIrOx film and oxidation at the adjacent Ir(IV) sites. The synergistic electroplating utilizing interactions between the partially aquated transition metal complex and posttransition metal ion represents a new synthetic route to highly homogeneous and reactive films of mixed metal oxides.

  11. Mineralogical aspects of Morro de Seis Lagos deposit (Amazonas, Brazil).

    Science.gov (United States)

    Takehara, Lucy; Almeida, Marcelo; Silveira, Francisco

    2014-05-01

    The alkaline body Morro dos Seis Lagos, situated in the northwest Amazonian region, is a Nb bearing deposit formed by thick lateritic regolith as circular geological feature about 5 km in diameter. The host rock of this deposit is an intensely weathered siderite carbonatite. The alkaline intrusion body was formed during the late Mesozoic and enriched during the Cenozoic by process of denudation of the surrounding rocks and formation of lateritic cover with thickness in the order of hundreds of meters. In this process, enrichment of Nb, Fe, Ti, Mn, P and rare earth elements (REE) occurred where the lateritic regolith represents the major Nb mineralization, with estimated inferred reserves of 2.9 billion ton@ 2.8 % Nb2O5, one of the largest deposits of Nb in the world. The mineralogical composition of the lateritic regolith has the predominance of the goethite and hematite, followed by oxy - hydroxides of Mn, Ti - Nb oxides, pyrochlore, cerianite and phosphates. The lateritic regolith samples showed high contents of Fe2O3 40 %, and is followed by elevated Th concentration, which locally has concentration higher than (18%). Another REE mineral is the cerianite. The main manganese minerals are hollandite, romanechite (BaMn9O16[OH4] - mixtures of manganese oxides) and amorphous Mn oxy - hydroxides. The higher concentration of MnO2 (about 40 %) is restricted to manganesiferous range, where manganese minerals occur as layers and filling voids, indicating strong remobilization by later process.

  12. COMPARISION OF THE COLOR PROPERTIES OF COMPOUNDS Ln2Ce2O7 AND Ln2CeZrO7

    Directory of Open Access Journals (Sweden)

    B. Hablovicova

    2015-09-01

    Full Text Available Pyrochlore type pigments Ln2Ce2O7 and Ln2CeZrO7 (Ln = Nd, Sm, Gd, Dy, Er, Yb and Y prepared by solid-state reaction were investigated. Effect of rare earths and zirconium ions and calcination temperature (1400, 1500 and 1600oC for Ln2Ce2O7 and 1400, 1450 and 1500 C for Ln2CeZrO7 on their color properties in organic matrix and ceramic glazes, particle size distribution and phase composition were evaluated. The most interesting shades achieve compounds with the highest calcination temperature. Their colors depend on used rare earth ions (shades change from green, cross yellow to pink in organic mass and from green, cross yellow-green to orange in ceramic glazes, while compounds without zirconium have better color properties. Pigments Ln2Ce2O7 calcined at 1600 C are single-phase (except Yb2Ce2O7.

  13. Thermal conductivity of Gd{sub 2}Zr{sub 2}O{sub 7} thin films using thermal-impedance method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W. [Department of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jeong, G.E. [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Yang, Ho-Soon [Department of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)

    2011-05-15

    Pyrochlore-structured rare-earth materials have been of interest recently as thermal-barrier coating materials because they show low thermal conductivity due to the oxygen vacancy. This study reports the preparation and thermal characterization of Gd{sub 2}Zr{sub 2}O{sub 7} films deposited on YSZ and Al{sub 2}O{sub 3} substrates. Since the thermal properties of Gd{sub 2}Zr{sub 2}O{sub 7} and YSZ are not obviously different, the thermal-impedance method (the extended 3{omega} method) is used to study the films in this work. Gd{sub 2}Zr{sub 2}O{sub 7} thin films of various thicknesses are deposited using a pulsed laser deposition method. The thermal conductivity of Gd{sub 2}Zr{sub 2}O{sub 7} thin films exhibits a dependence on film thickness. The thickness-dependent thermal conductivity is ascribed to the interfacial thermal resistance between the Gd{sub 2}Zr{sub 2}O{sub 7} film and substrates. The interfacial resistance is obtained by fitting the thickness-dependent thermal conductivity with the effective thermal-conductivity equation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Effect of atmosphere on the formation of perovskite phase in 0.90Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-0.10PbTiO{sub 3} (PZN-10PT) powders

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, C.F.V., E-mail: claudiafercha@gmail.com [Universidad del Cauca, Dpto. de Física, Grupo de Ciencia y Tecnología de Materiales Cerámicos, Popayán (Colombia); Kiminami, R.H.G.A. [Federal University of São Carlos, Department of Materials Engineering, São Carlos, SP, 13565-905 (Brazil); Eiras, J.A.; Garcia, D. [Federal University of São Carlos, Department of Physics, São Carlos, SP, 13565-905 (Brazil)

    2017-04-01

    Lead zinc niobate (PZN) and lead titanate (PT) solid solutions close to the morphotropic phase boundary (MPB) exhibit unusually large dielectric and piezoelectric constants. PZN-PT ceramics with a composition close to the MPB processed by the conventional route yield ceramics with a pyrochlore structure. In the last few decades, attempts to synthesize PZN-PT powders with perovskite structure via traditional ceramic methods and novel chemical processing routes have failed. In the present research, an analysis was made of the effect of the calcination atmosphere on the formation of perovskite phase in PZN-10PT powders. To this end, thermal analyses were carried out in four different atmospheres: oxygen, air, argon and nitrogen. The powders were calcined at the temperatures at which the DTA curves presented peaks, and the resulting phases were identified by X-ray diffraction. - Highlights: • PZN-PT ceramics powders. • Air, oxygen, argon and nitrogen as synthesis atmospheres. • Zinc as essential element in the formation and stabilization of the perovskite phase. • Nitrogen as inhibitor of the decomposition the zinc oxide.

  15. Sm2FeTaO7 Photocatalyst for Degradation of Indigo Carmine Dye under Solar Light Irradiation

    Directory of Open Access Journals (Sweden)

    Leticia M. Torres-Martínez

    2012-01-01

    Full Text Available This paper is focused to study Sm2FeTaO7 pyrochlore-type compound as solar photocatalyst for the degradation of indigo carmine dye in aqueous solution. Sm2FeTaO7 was synthesized by using conventional solid state reaction and sol-gel method. X-ray diffraction results indicated that Sm2FeTaO7 exhibit a monoclinic crystal structure. By scanning electron microscopy analysis, it was observed that sol-gel material presents particle size of around 150 nm. The specific surface area and energy bandgap values were 12 m2 g−1 and 2.0 eV, respectively. The photocatalytic results showed that indigo carmine molecule can be degraded under solar light irradiation using the synthesized materials, sol-gel photocatalyst was 8 times more active than solid state. On the other hand, when Sm2FeTaO7 was impregnated with CuO as cocatalyst the photocatalytic activity was increased because CuO acts as electron trap decreasing electron-hole pair recombination rates.

  16. In situ x-ray diffraction of solution-derived ferroelectric thin films for quantitative phase and texture evolution measurement

    Science.gov (United States)

    Nittala, Krishna; Mhin, Sungwook; Jones, Jacob L.; Robinson, Douglas S.; Ihlefeld, Jon F.; Brennecka, Geoff L.

    2012-11-01

    An in situ measurement technique is developed and presented, which utilizes x-rays from a synchrotron source with a two-dimensional detector to measure thin film microstructural and crystallographic evolution during heating. A demonstration experiment is also shown wherein the measured diffraction patterns are used to describe phase and texture evolution during heating and crystallization of solution-derived thin films. The diffraction images are measured sequentially while heating the thin film with an infrared lamp. Data reduction methodologies and representations are also outlined to extract phase and texture information from the diffraction images as a function of time and temperature. These techniques and data reduction methods are demonstrated during crystallization of solution-derived lead zirconate titanate ferroelectric thin films heated at a rate of 30 °C/min and using an acquisition time of 8 s. During heating and crystallization, a PtxPb type phase was not observed. A pyrochlore phase was observed prior to the formation and growth of the perovskite phase. The final crystallized films are observed to have both 111 and 100 texture components. The in situ measurement methodology developed in this work allows for acquiring diffraction images in times as low as 0.25 s and can be used to investigate changes during crystallization at faster heating rates. Moreover, the experiments are shown to provide unique information during materials processing.

  17. Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator: Fate of Extinct Weyl Electrons

    Directory of Open Access Journals (Sweden)

    Youhei Yamaji

    2014-05-01

    Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.

  18. In Situ Diffraction from Levitated Solids Under Extreme Conditions-Structure and Thermal Expansion in the Eu 2 O 3 -ZrO 2 System

    Energy Technology Data Exchange (ETDEWEB)

    Maram, Pardha S. [Peter A. Rock Thermochemistry Laboratory and Neat ORU, University of California, Davis, One Shields Avenue 4415 Chemistry Annex Davis California 95616; Ushakov, Sergey V. [Peter A. Rock Thermochemistry Laboratory and Neat ORU, University of California, Davis, One Shields Avenue 4415 Chemistry Annex Davis California 95616; Weber, Richard J. K. [Materials Development, Inc., 3090 Daniels Court Arlington Heights Illinois 60004; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Navrotsky, Alexandra [Peter A. Rock Thermochemistry Laboratory and Neat ORU, University of California, Davis, One Shields Avenue 4415 Chemistry Annex Davis California 95616; Raveau, B.

    2014-12-31

    The accurate determination of structure and thermal expansion of refractory materials at temperatures above 1500 degrees C is challenging. Here, for the first time, we demonstrate the ability to reliably refine the structure and thermal expansion coefficient of oxides at temperatures to 2200 degrees C using in situ synchrotron diffraction coupled with aerodynamic levitation. Solid solutions in the Eu2O3-ZrO2 binary system were investigated, including the high-temperature order-disorder transformation in Eu2Zr2O7. The disordered fluorite phase is found to be stable above 1900 degrees C, and a reversible phase transition to the pyrochlore phase is noticed during cooling. Site occupancies in Eu2Zr2O7 show a gradual increase in disorder on both cation and anion sublattices with increasing temperature. The thermal expansion coefficients of all cubic solid solutions are relatively similar, falling in the range 8.6-12.0x10(-6)C(-1). These studies open new vistas for in situ exploration of complex structural changes in high-temperature materials.

  19. Unveiling the Role of CNTs on the Phase Formation of 1D Ferroelectrics

    KAUST Repository

    Mahajan, Amit

    2015-05-21

    Carbon nanotubes (CNTs) have the potential to act as templates or bottom electrodes for three dimension (3D) capacitor arrays, which utilise one dimension (1D) ferroelectric nanostructures to increase memory size and density. However, growing a ferroelectric on the surface of CNTs is non-trivial. Here, we demonstrate that multi-walled (MW) CNTs decrease the time and temperature for formation of lead zirconium titanate Pb(Zr1-xTix)O3 (PZT) by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs/PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNT/PZT synthesised at 500 ºC for 1 h was proved. Although further work is required to prove the concept of 3D capacitor arrays, our result suggests that it is feasible to utilise MWCNTs as templates/electrodes for the formation of 1D PZT nano ferroelectrics.

  20. James C. McGroddy Prize for New Materials Talk: Geometrically Frustrated Materials

    Science.gov (United States)

    Ramirez, Arthur

    2011-03-01

    Geometrical frustration occurs when interacting degrees of freedom do not ``fit'' into the lattice that they occupy and, as a result, are under-constrained at low temperature. While the early ideas behind geometrical frustration originate in Wannier's triangular antiferromagnetic Ising model and Anderson's resonating valence bond model, they are broadened here to define an entire class of magnetic materials whose structures are based on triangular or tetrahedral units. When the degree of misfit is high, conventional long range order is suppressed and thermodynamic spectral weight is pushed to energies much lower than the mean field value. Out of this low energy spectral weight, new states of matter are found to emerge experimentally, such as spin liquid on the kagome lattice and spin ice on the pyrochlore lattice. The concept of geometrical frustration can be broadened beyond magnetism to describe a frustrated soft mode that can lead to persistent negative thermal expansion and giant dielectric constants. A brief review will be given of recent work on excitations in frustrating lattices, including the prediction of, and evidence for, magnetic monopoles in spin ice, and the relevance of frustrated hopping for topological insulators.

  1. Magnetoelastic properties of the quantum-spin-ice candidate Yb{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Stoeter, T.; Wang, Z.S.; Wosnitza, J. [SFB 1143 (Germany); TUD/IFP, Dresden (Germany); HZDR, Dresden (Germany); Doerr, M.; Granovsky, S. [SFB 1143 (Germany); TUD/IFP, Dresden (Germany); Erfanifam, S.; Green, E. [HZDR, Dresden (Germany); Zherlitsyn, S. [SFB 1143 (Germany); HZDR, Dresden (Germany); Maljuk, A.; Wurmehl, S. [SFB 1143 (Germany); IFW, Dresden (Germany)

    2016-07-01

    Intriguing phenomena such as the occurrence of magnetic monopoles and a wide variety of ground states are associated to magnetic frustration. In a number of cases, elastic effects, e.g. lattice distortions, may result in the lifting of degeneracies or the appearance of new magnetic states. The rare-earth titanate Yb{sub 2}Ti{sub 2}O{sub 7}, where the magnetic Yb{sup 3+} ions form a pyrochlore spin network, is a prime example of a geometrically frustrated material, with numerous field-induced phases and strong ferromagnetic correlations below 170 mK. In order to characterize the magneto-elastic coupling in this material, we have investigated the thermal expansion, magnetostriction, and sound propagation in different dilution refrigerators between 60 mK and 1.5 K and large applied magnetic fields. At around 170 mK we find distinct anomalies in the expansion coefficient, acoustic properties, as well as the specific heat. Lattice anomalies in field hint to additional low temperature phases.

  2. Special quasirandom structure modeling of fluorite-structured oxide solid solutions with aliovalent cation substitutions

    Science.gov (United States)

    Wolff-Goodrich, Silas; Hanken, Benjamin E.; Solomon, Jonathan M.; Asta, Mark

    2015-07-01

    The accuracy of the special quasirandom structure (SQS) approach for modeling the structure and energetics of fluorite-structured oxide solid solutions with aliovalent cation substitutions is assessed in an ionic-pair potential study of urania and ceria based systems mixed with trivalent rare-earth ions. Mixing enthalpies for SQS supercells containing 96 and 324 lattice sites were calculated using ionic pair potentials for U0.5La0.5O1.75, U0.5Y0.5O1.75, Ce0.5La0.5O1.75, Ce0.5Y0.5O1.75, and Ce0.5Gd0.5O1.75, which all have stoichiometries of pyrochlores. The SQS results were compared to benchmark values for random substitutional disorder obtained using large supercell models. The calculations show significant improvement of the mixing enthalpy for the larger 324 site SQS, which is attributed to a better description of the structural distortions, as characterized by the radial distribution functions in relaxed systems.

  3. Characterization of energy conversion of multiferroic PFN and PFN:Mn

    Directory of Open Access Journals (Sweden)

    Lucjan Kozielski

    2013-12-01

    Full Text Available Characterization of energy conversion of multiferroic materials is concerned with multifunctional properties of materials, a topic that is fascinating from the scientific point of view and important for the modern technology. The complex characterization of multiferroic structures suffers at present from lack of a systematic experimental approach and deficiency of multifunctional magnetoelectric properties testing capabilities. Compactness and high frequency energy conversion capacity are the main reasons of invention and improvement of sophisticated materials which are prepared for high-speed computer memories and broadband transducer devices. As a consequence, one can easily notice an intense search for new materials for generation, transformation and amplification of magnetic and electric energies. In this scenario, the combination of excellent piezoelectric and magnetic properties makes lead iron niobate Pb(Fe1/2Nb1/2O3 (PFN an attractive host material for application in integrated magnetoelectric energy conversion applications. PFN multiferroic materials are attractive for commercial electroceramics due to high value of dielectric permittivity and magnetoelectric coefficients as well as relatively easy synthesis process. However, synthesis of PFN ceramics is mostly connected with formation of the secondary unwanted pyrochlore phase associated with dramatic decrease of ferroelectric properties. The authors have successfully reduced this negative phenomenon by Mn doping and finally present high piezoelectric and magnetoelectric energy conversion efficiency in fabricated PMFN ceramics.

  4. Petrography and chemistry of tungsten-rich oxycalciobetafite in hydrothermal veins of the Adamello contact aureole, northern Italy

    Science.gov (United States)

    Lumpkin, Gregory R.; Gieré, Reto; Williams, C. Terry; McGlinn, Peter J.; Payne, Timothy E.

    2017-07-01

    Tungsten-rich oxycalciobetafite occurs in complex Ti-rich hydrothermal veins emplaced within dolomite marble in the contact aureole of the Adamello batholith, northern Italy, where it occurs as overgrowths on zirconolite. The betafite is weakly zoned and contains 29-34 wt% UO2. In terms of end-members, the betafite contains approximately 50 mol% CaUTi2O7 and is one of the closest known natural compositions to the pyrochlore phase proposed for use in titanate nuclear waste forms. Amorphization and volume expansion of the betafite caused cracks to form in the enclosing silicate mineral grains. Backscattered electron images reveal that betafite was subsequently altered along crystal rims, particularly near the cracks. Electron probe microanalyses reveal little difference in composition between altered and unaltered areas, except for lower totals, suggesting that alteration is primarily due to hydration. Zirconolite contains up to 18 wt% ThO2 and 24 wt% UO2, and exhibits strong compositional zoning, but no internal cracking due to differential (and anisotropic) volume expansion and no visible alteration. The available evidence demonstrates that both oxycalciobetafite and zirconolite retained actinides for approximately 40 million years after the final stage of vein formation. During this time, oxycalciobetafite and zirconolite accumulated a total alpha-decay dose of 3.0-3.6 × 1016 and 0.2-2.0 × 1016 α/mg, respectively.

  5. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    Science.gov (United States)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  6. Classical Spin Nematic Transition in LiGa0.95In0.05Cr4O8

    Science.gov (United States)

    Wawrzyńczak, R.; Tanaka, Y.; Yoshida, M.; Okamoto, Y.; Manuel, P.; Casati, N.; Hiroi, Z.; Takigawa, M.; Nilsen, G. J.

    2017-08-01

    We present the results of a combined 7Li -NMR and diffraction study on LiGa0.95In0.05Cr4O8, a member of the LiGa1 -xInxCr4O8 "breathing" pyrochlore family. Via specific heat and NMR measurements, we find that the complex sequence of first-order transitions observed for LiGaCr4O8 is replaced by a single second-order transition at Tf=11 K . Neutron and x-ray diffraction rule out both structural symmetry lowering and magnetic long-range order as the origin of this transition. Instead, reverse Monte Carlo fitting of the magnetic diffuse scattering indicates that the low-temperature phase may be described as a collinear spin nematic state, characterized by a quadrupolar order parameter. This state also shows signs of short-range order between collinear spin arrangements on tetrahedra, revealed by mapping the reverse Monte Carlo spin configurations onto a three-state color model.

  7. Phase transformations during HLnTiO4 (Ln=La, Nd) thermolysis and photocatalytic activity of obtained compounds

    Science.gov (United States)

    Silyukov, Oleg I.; Abdulaeva, Liliia D.; Burovikhina, Alena A.; Rodionov, Ivan A.; Zvereva, Irina A.

    2015-03-01

    Layered HLnTiO4 (Ln=La, Nd) compounds belonging to Ruddlesden-Popper phases were found to form partially hydrated compounds Ln2Ti2O7·xH2O during thermal dehydration as well as defect oxides Ln2□Ti2O7 as final products. Further heating of metastable defect Ln2□Ti2O7 substances leads to the formation of pyrochlore-type oxides Ln2Ti2O7 (p), with subsequent transformation under higher temperatures to stable layered 110-type perovskites Ln2Ti2O7. The occurring structure transformations lead to an increase of photocatalytic activity in the order of HLnTiO4

  8. Self-interaction corrected electronic structure of Ti4 O7 , TiO2 and Ti2 O3

    Science.gov (United States)

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; Heinonen, Olle

    2015-03-01

    I will present recent theoretical work on cluster Mott insulators (CMI) in which interesting physics such as emergent charge lattices, charge fractionalization and quantum spin liquids are proposed. For the anisotropic Kagome system like LiZn2Mo3O8, we find two distinct CMIs, type-I and type-II, can arise from the repulsive interactions. In type-I CMI, the electrons are localized in one half of the triangle clusters of the Kagome system while the electrons in the type-II CMI are localized in every triangle cluster. Both CMIs are U(1) quantum spin liquids (QSL) in the weak Mott regime with a spinon Fermi surface and gapped charge excitations. In type-II CMI, however, the charge fluctuations lead to a long-range plaquette charge order that breaks the lattice symmetry, gives rise to an emergent charge lattice and reconstructs the mean-field spinon band structure of the underlying U(1) QSL. Such a reconstruction gives a consistent prediction of the ``fractional spin susceptibility'' that is observed in LiZn2Mo3O8. For the pyrochlore system, the CMI can further support a charge fractionalization with an emergent gauge photon in the charge sector in addition to the spin fractionalization in the spin sector. Experimental connection with the several cluster magnets such as LiZn2Mo3O8.

  9. How quantum are classical spin ices?

    Science.gov (United States)

    Gingras, Michel J. P.; Rau, Jeffrey G.

    The pyrochlore spin ice compounds Dy2TiO7 and Ho2Ti2O7 are well described by classical Ising models down to low temperatures. Given the empirical success of this description, the question of the importance of quantum effects in these materials has been mostly ignored. We argue that the common wisdom that the strictly Ising moments of non-interacting Dy3+ and Ho3+ ions imply Ising interactions is too naive and that a more complex argument is needed to explain the close agreement between the classical Ising model theory and experiments. By considering a microscopic picture of the interactions in rare-earth oxides, we show that the high-rank multipolar interactions needed to induce quantum effects in these two materials are generated only very weakly by superexchange. Using this framework, we formulate an estimate of the scale of quantum effects in Dy2Ti2O7 and Ho2Ti2O7, finding it to be well below experimentally relevant temperatures. Published as: PHYSICAL REVIEW B 92, 144417 (2015).

  10. Radiation damage of hollandite in multiphase ceramic waste forms

    Science.gov (United States)

    Clark, Braeden M.; Tumurgoti, Priyatham; Sundaram, S. K.; Amoroso, Jake W.; Marra, James C.; Shutthanandan, Vaithiyalingam; Tang, Ming

    2017-10-01

    Radiation damage was simulated in multiphase titanate-based ceramic waste forms using an ion accelerator to generate high energy alpha particles (He+) and an ion implanter to generate 7 MeV gold (Au3+) particles. X-ray diffraction and transmission electron microscopy were used to characterize the damaged surfaces and nearby regions. Simulated multiphase ceramic waste forms were prepared using two processing methods: spark plasma sintering and melt-processing. Both processing methods produced ceramics with similar phase assemblages consisting of hollandite-, zirconolite/pyrochlore-, and perovskite-type phases. The measured heavy ion (Au3+) penetration depth was less in spark plasma sintered samples than in melt-processed samples. Structural breakdown of the hollandite phase occurred under He+ irradiation indicated by the presence of x-ray diffraction peaks belonging to TiO2, BaTiO5, and other hollandite related phases (Ba2Ti9O20). The composition of the constituent hollandite phase affected the extent of damage induced by Au3+ ions.

  11. Low temperature magnetic properties of geometrically frustrated Gd{sub 2}Sn{sub 2}O{sub 7} and Gd{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, P [CEA, Centre d' Etudes de Saclay, Service de Physique de l' Etat Condense, 91191 Gif sur Yvette (France); Hodges, J A [CEA, Centre d' Etudes de Saclay, Service de Physique de l' Etat Condense, 91191 Gif sur Yvette (France); Ocio, M [CEA, Centre d' Etudes de Saclay, Service de Physique de l' Etat Condense, 91191 Gif sur Yvette (France); Sanchez, J P [CEA, Centre d' Etudes de Grenoble, Service de Physique Statistique, Magnetisme et Supraconductivite, 38054 Grenoble (France); Vulliet, P [CEA, Centre d' Etudes de Grenoble, Service de Physique Statistique, Magnetisme et Supraconductivite, 38054 Grenoble (France); Sosin, S [CEA, Centre d' Etudes de Grenoble, Service de Physique Statistique, Magnetisme et Supraconductivite, 38054 Grenoble (France); Braithwaite, D [CEA, Centre d' Etudes de Grenoble, Service de Physique Statistique, Magnetisme et Supraconductivite, 38054 Grenoble (France)

    2003-11-19

    We have examined the low temperature magnetic properties of the geometrically frustrated antiferromagnetic pyrochlores Gd{sub 2}Sn{sub 2}O{sub 7} and Gd{sub 2}Ti{sub 2}O{sub 7} using specific heat, {sup 155}Gd Moessbauer, magnetic susceptibility and magnetization measurements. For Gd{sub 2}Sn{sub 2}O{sub 7}, the specific heat evidences a single, strongly first order magnetic transition near 1.0 deg. K; in Gd{sub 2}Ti{sub 2}O{sub 7}, we confirm the presence of both the transition near 1.0 deg. K and the second transition near 0.75 deg. K. Below 1 deg. K, magnetic irreversibilities are present in both compounds, but their signature (the difference between the FC and ZFC branches) is more marked in Gd{sub 2}Sn{sub 2}O{sub 7}. At 0.03 deg. K in each compound, the Moessbauer data show that the four Gd{sup 3+} of a tetrahedron carry moments of equal sizes and on a frequency scale of 120 x 10{sup 6} deg. s{sup -1} each is oriented perpendicular to the local [111] direction. In Gd{sub 2}Ti{sub 2}O{sub 7}, the Moessbauer data also indicates that the transition at 0.75 deg. K involves a small change in the magnetic structure.

  12. Frustrated spin correlations in diluted spin ice Ho{sub 2-x}La{sub x}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, G; Mamontov, E; Zamponi, M [Spallation Neutron Source, Oak Ridge National Laboratory, Building 8600, Oak Ridge, TN 37831-6475 (United States); Faraone, A; Qiu, Y [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Cornelius, A L [Physics Department, University of Nevada Las Vegas, Las Vegas, NV 89154-4002 (United States); Booth, C H [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kam, K C; Toquin, R Le; Cheetham, A K [Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Gardner, J S [NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899-6102 (United States)], E-mail: ehlersg@ornl.gov

    2008-06-11

    We have studied the evolution of the structural properties as well as the static and dynamic spin correlations of spin ice Ho{sub 2}Ti{sub 2}O{sub 7}, where Ho was partially replaced by non-magnetic La. The crystal structure of diluted samples Ho{sub 2-x}La{sub x}Ti{sub 2}O{sub 7} was characterized by x-ray and neutron diffraction and by Ho L{sub III}-edge and Ti K-edge extended x-ray absorption fine structure (EXAFS) measurements. It is found that the pyrochlore structure remains intact until about x = 0.3, but a systematic increase in local disorder with increasing La concentration is observed in the EXAFS data, especially from the Ti K edge. Quasi-elastic neutron scattering and ac susceptibility measurements show that, in x{<=}0.4 samples at temperatures above macroscopic freezing, the spin-spin correlations are short ranged and dynamic in nature. The main difference with pure spin ice in the dynamics is the appearance of a second, faster, relaxation process.

  13. Frustrated spin correlations in diluted spin ice Ho2-xLaxTi2O7

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, Georg; Ehlers, G.; Mamontov, E.; Zamponi, M.; Faraone, A.; Qiu, Y.; Cornelius, A.L.; Booth, C.H.; Kam, K.C.; Le Toquin, R.; Cheetham, A.K.; Gardner, J.S.

    2008-04-30

    We have studied the evolution of the structural properties as well as the static and dynamic spin correlations of spin ice Ho2Ti2O7, where Ho was partially replaced by non-magnetic La. The crystal structure of diluted samples Ho2-xLaxTi2O7 was characterized by x-ray and neutron diffraction and by Ho L-III-edge and Ti K-edge extended x-ray absorption fine structure (EXAFS) measurements. It is found that the pyrochlore structure remains intact until about x = 0.3, but a systematic increase in local disorder with increasing La concentration is observed in the EXAFS data, especially from the Ti K edge.Quasi-elastic neutron scattering and ac susceptibility measurements show that, in x<= 0.4 samples at temperatures above macroscopic freezing, the spin -spin correlations are short ranged and dynamic in nature. The main difference with pure spin ice in the dynamics is the appearance of a second, faster, relaxation process.

  14. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing

    Indian Academy of Sciences (India)

    Hua Wang; Li Liu; Ji-Wen Xu; Chang-Lai Yuan; Ling Yang

    2013-06-01

    [Pb0.95(La1−Bi)0.05][Zr0.53Ti0.47]O3 (PLBZT) ferroelectric thin films have been synthesized on indium tin oxide (ITO)-coated glass by sol–gel processing. PLBZT thin films were annealed at a relatively low temperature of 550 °C in oxygen ambient. Effects of Bi doping on structure, dielectric and ferroelectric properties of PLBZT were investigated. Bi doping is useful in crystallization of PLBZT films and promoting grain growth. When the Bi-doping content is not more than 0.4, an obvious improvement in dielectric properties and leakage current of PLBZT was confirmed. However, when the Bi-doping content is more than 0.6, the pyrochlore phase appears and the remnant polarization r of PLBZT thin films is smaller than that of (Pb1−La)(Zr1− Ti)O3 (PLZT) thin films without Bi doping. PLBZT thin films with excessive Bi-doping content are easier to fatigue than PLZT thin films.

  15. Uranium luminescence in La2 Zr2 O7 : effect of concentration and annealing temperature.

    Science.gov (United States)

    Mohapatra, M; Rajeswari, B; Hon, N S; Kadam, R M

    2016-12-01

    The speciation of a particular element in any given matrix is a prerequisite to understanding its solubility and leaching properties. In this context, speciation of uranium in lanthanum zirconate pyrochlore (La2 Zr2 O7  = LZO), prepared by a low-temperature combustion route, was carried out using a simple photoluminescence lifetime technique. The LZO matrix is considered to be a potential ceramic host for fixing nuclear and actinide waste products generated during the nuclear fuel cycle. Special emphasis has been given to understanding the dynamics of the uranium species in the host as a function of annealing temperature and concentration. It was found that, in the LZO host, uranium is stabilized as the commonly encountered uranyl species (UO2(2+) ) up to a heat treatment of 500 °C at the surface. Above 500 °C, the uranyl ion is diffused into the matrix as the more symmetric octahedral uranate species (UO6(6-) ). The uranate ions thus formed replace the six-coordinated 'Zr' atoms at regular lattice positions. Further, it was observed that concentration quenching takes place beyond 5 mol% of uranium doping. The mechanism of the quenching was found to be a multipolar interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; Bowden, Mark E.; Varga, Tamas; Shutthanandan, Vaithiyalingam; Spurgeon, Steven R.; Yan, Pengfei; Wang, Chongmin; Ramuhalli, Pradeep; Henager, Charles H.

    2017-05-01

    Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.

  17. Some recent results on the correlation of nano-structural and redox properties in ceria-zirconia mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, S. [Departamento de Ciencia de los Materiales, Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz) (Spain)], E-mail: serafin.bernal@uca.es; Blanco, G.; Calvino, J.J.; Hernandez, J.C.; Perez-Omil, J.A.; Pintado, J.M.; Yeste, M.P. [Departamento de Ciencia de los Materiales, Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz) (Spain)

    2008-02-28

    Some recent results on the redox behaviour of thermally aged ceria-zirconia mixed oxides with Ce/Zr molar ratios typically ranging from 50/50 to 70/30 are briefly reviewed. In accordance with them, a tentative model allowing us to correlate ageing conditions, surface and bulk nano-structural properties of the oxides, and changes occurred in their redox behaviour is proposed. As revealed by the analysis of appropriate chemical studies and the nano-structural information provided with High Resolution Transmission (HREM) and High Angle Annular Dark Field-Scanning Transmission (HAADF-STEM) electron microscopies, the presence/absence of a pyrochlore-related {kappa}-phase in the aged oxides plays a key role in determining their redox response. In the low-temperature region (T{sub red} {<=} 773 K), the enhanced reducibility exhibited by the oxide resulting from a high-temperature reduction/mild re-oxidation ageing cycle (SR-MO sample) is interpreted as due to kinetic reasons, the occurrence of the {kappa}-like phase in its surface being responsible for a faster H{sub 2} chemisorption, the rate controlling step of the overall reduction process. By contrast, in the high-temperature range (T{sub red} {>=} 973 K), the observed differences of reducibility would have a thermodynamic origin, which may be correlated with the total amount of {kappa}-like phase present in the aged sample.

  18. Magnetic cooling close to a quantum phase transition—The case of Er{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, B.; Tutsch, U.; Dörschug, S.; Krellner, C.; Ritter, F.; Assmus, W.; Lang, M. [Physikalisches Institut, Goethe Universität, SFB-TR49, 60438 Frankfurt (Germany)

    2016-10-14

    Magnetic cooling, first introduced in the late twenties of last century, has regained considerable interest recently as a cost-efficient and easy-to-handle alternative to {sup 3}He-based refrigeration techniques. Especially, adiabatic demagnetization of paramagnets—the standard materials for magnetic refrigeration—has become indispensable for the present space applications. To match the growing demand for increasing the efficiency in these applications, a new concept for magnetic cooling based on many-body effects around a quantum-critical-point has been introduced and successfully tested [B. Wolf et al., Proc. Natl. Acad. Sci. U.S.A. 108, 6862 (2011)]. By extending this concept to three-dimensional magnetic systems, we present here the magnetothermal response of the cubic pyrochlore material Er{sub 2}Ti{sub 2}O{sub 7} in the vicinity of its B-induced quantum-critical point which is located around 1.5 T. We discuss performance characteristics such as the range of operation, the efficiency, and the hold time. These figures are compared with those of state-of-the-art paramagnetic coolants and with other quantum-critical systems which differ by the dimensionality of the magnetic interactions and the degree of frustration.

  19. Supersymmetry protected topological phases of isostatic lattices and kagome antiferromagnets

    Science.gov (United States)

    Lawler, Michael J.

    2016-10-01

    I generalize the theory of phonon topological band structures of isostatic lattices to frustrated antiferromagnets. I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs and its connection to local constraints satisfied by ground states. The Witten index of the SUSY model demands the Maxwell-Calladine index of mechanical structures. "Spontaneous supersymmetry breaking" is identified as the need to gap all modes in the bulk to create the topological isostatic lattice state. Since ground states of magnetic systems also satisfy local constraint conditions (such as the vanishing of the total spin on a triangle), I identify a similar SUSY structure for many common models of antiferromagnets including the square, triangluar, kagome, pyrochlore nearest-neighbor antiferromagnets, and the J2=J1/2 square-lattice antiferromagnet. Remarkably, the kagome family of antiferromagnets is the analog of topological isostatic lattices among this collection of models. Thus, a solid-state realization of the theory of phonon topological band structure may be found in frustrated magnetic materials.

  20. Magnetic Ground States of the Rare-Earth Tripod Kagome Lattice Mg_{2}RE_{3}Sb_{3}O_{14} (RE=Gd,Dy,Er).

    Science.gov (United States)

    Dun, Z L; Trinh, J; Li, K; Lee, M; Chen, K W; Baumbach, R; Hu, Y F; Wang, Y X; Choi, E S; Shastry, B S; Ramirez, A P; Zhou, H D

    2016-04-15

    We present the structural and magnetic properties of a new compound family, Mg_{2}RE_{3}Sb_{3}O_{14} (RE=Gd,Dy,Er), with a hitherto unstudied frustrating lattice, the "tripod kagome" structure. Susceptibility (ac, dc) and specific heat exhibit features that are understood within a simple Luttinger-Tisza-type theory. For RE=Gd, we found long-ranged order (LRO) at 1.65 K, which is consistent with a 120° structure, demonstrating the importance of diople interactions for this 2D Heisenberg system. For RE=Dy, LRO at 0.37 K is related to the "kagome spin ice" physics for a 2D system. This result shows that the tripod kagome structure accelerates the transition to LRO predicted for the related pyrochlore systems. For RE=Er, two transitions, at 80 mK and 2.1 K are observed, suggesting the importance of quantum fluctuations for this putative XY system.

  1. Simulation of coexisting ferromagnetic order and disorder of geometrically frustrated Co{sub 2}Cl(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kitazaki, Tamotsu, E-mail: ad08001@bene.fit.ac.jp [Fukuoka Institute of Technology, Higashi-ku, Fukuoka 811-0295 (Japan); Koga, Yosuke; Kato, Tomohiko [Fukuoka Institute of Technology, Higashi-ku, Fukuoka 811-0295 (Japan)

    2011-10-15

    The ground state and phase transition of Co{sub 2}Cl(OH){sub 3} were investigated by Monte Carlo simulation. This compound is a magnet, with a pyrochlore structure distorted along one axis. The magnetic structure at low temperatures consists of coexisting ferromagnetism and random spin, according to experiments. However, the formation mechanism of the coexistence and the interaction between the spins were unclear. We assumed an anisotropic Ising model and examined the ground state by multicanonical Monte Carlo simulation. In a nearest neighbor model, the ground states were highly degenerated. Almost all of the states were spin glass states, but a few of the states were ferromagnetic. The latter magnetic states were ferromagnetic at triangular layers and two in-one out random state at Kagome layers. The latter states should be stabilized if weak ferromagnetic interactions exist between second nearest neighbor spins and correspond to the states reported by the experiments. This expectation was confirmed by simulation. - Highlights: > A peculiar coexisting state was interpreted by assuming an anisotropic Ising model. > In a nearest interaction model, the coexisting state is suppressed by spin glass. > The coexisting state is stabilized by weak ferromagnetic 2nd nearest interaction. > Temperature dependences of order parameters are consistent with the experiments.

  2. Successive spatial symmetry breaking under high pressure in the spin-orbit-coupled metal C d2R e2O7

    Science.gov (United States)

    Yamaura, Jun-ichi; Takeda, Keiki; Ikeda, Yoichi; Hirao, Naohisa; Ohishi, Yasuo; Kobayashi, Tatsuo C.; Hiroi, Zenji

    2017-01-01

    The 5 d -transition-metal pyrochlore oxide C d2R e2O7 , which was recently suggested to be a prototype of the spin-orbit-coupled metal [Phys. Rev. Lett. 115, 026401 (2015), 10.1103/PhysRevLett.115.026401], exhibits an inversion-symmetry-breaking (ISB) transition at 200 K and a subsequent superconductivity below 1 K at ambient pressure. We study the crystal structure at high pressures up to 5 GPa by means of synchrotron x-ray powder diffraction. A rich structural phase diagram is obtained, which contains at least seven phases, and is almost consistent with the electronic phase diagram determined by previous resistivity measurements. Interestingly, the ISB transition vanishes at ˜4 GPa where the enhancement of the upper critical field was observed in resistivity. Moreover, it is shown that the point groups at 8 K, probably kept in the superconducting phases, sequentially transform into piezoelectric, ferroelectric, and centrosymmetric structures on the application of pressure.

  3. Effect of Heating Rate on Electromechanical Properties ofPNN–PZT Solid Solution

    Directory of Open Access Journals (Sweden)

    Virendra Singh

    2007-01-01

    Full Text Available Lead nickel niobate–lead zirconate titanate (Pb(Ni1/3Nb2/30.5 –Pb(Zr0.15Ti0.35O3, (PNN-PZTsolid solution was synthesised by columbite  process. Samples sintered at various heating ratesfor 4 h holding and their effect on electromechanical properties have been studied. When heatingrate was 8 °C/min from room temperature to 900 °C and holding for 4 h at 1280 °C, highest relativepermittivity and piezoelectric charge constant were observed, whereas heating rate of 3.5° C/min and holding for 4 h at 1280 °C have shown inferior electromechanical properties and graincoarsening. The piezoelectric charge constant (d33 ~612 pC/N and dielectric constant (e~ 5950observed in fast heating rate specimen as against to d33~ 137 pC/N and e~4294. XRD result showsthe formation of pyrochlore-free perovskite phase. Fine grains were observed  for fast heatingrate specimens.

  4. Intermediate magnetization state and competing orders in Dy2Ti2O7 and Ho2Ti2O7

    Science.gov (United States)

    Borzi, R. A.; Gómez Albarracín, F. A.; Rosales, H. D.; Rossini, G. L.; Steppke, A.; Prabhakaran, D.; MacKenzie, A. P.; Cabra, D. C.; Grigera, S. A.

    2016-08-01

    Among the frustrated magnetic materials, spin-ice stands out as a particularly interesting system. Residual entropy, freezing and glassiness, Kasteleyn transitions and fractionalization of excitations in three dimensions all stem from a simple classical Hamiltonian. But is the usual spin-ice Hamiltonian a correct description of the experimental systems? Here we address this issue by measuring magnetic susceptibility in the two most studied spin-ice compounds, Dy2Ti2O7 and Ho2Ti2O7, using a vector magnet. Using these results, and guided by a theoretical analysis of possible distortions to the pyrochlore lattice, we construct an effective Hamiltonian and explore it using Monte Carlo simulations. We show how this Hamiltonian reproduces the experimental results, including the formation of a phase of intermediate polarization, and gives important information about the possible ground state of real spin-ice systems. Our work suggests an unusual situation in which distortions might contribute to the preservation rather than relief of the effects of frustration.

  5. Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.; Zhang, Yanwen; Crespillo, Miguel L.; Wen, Juan; Xue, Haizhou; Wang, Yongqiang; Weber, William J.

    2016-10-01

    Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo ..alpha..-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 x 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively, after implantation of 2 x 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.

  6. Pressure-induced frustration in charge ordered spinel AlV2O4

    Science.gov (United States)

    Kalavathi, S.; Vennila Raju, Selva; Williams, Quentin; Sahu, P. Ch; Sastry, V. S.; Sahu, H. K.

    2013-07-01

    AlV2O4 is the only spinel compound so far known that exists in the charge ordered state at room temperature. It is known to transform to a charge frustrated cubic spinel structure above 427 ° C. The presence of multivalent V ions in the pyrochlore lattice of the cubic spinel phase brings about the charge frustration that is relieved in the room temperature rhombohedral phase by the clustering of vanadium into a heptamer molecular unit along with a lone V atom. The present work is the first demonstration of pressure-induced frustration in the charge ordered state of AlV2O4. Synchrotron powder x-ray diffraction studies carried out at room temperature on AlV2O4 subjected to high pressure in a diamond anvil cell show that the charge ordered rhombohedral phase becomes unstable under the application of pressure and transforms to the frustrated cubic spinel structure. The frustration is found to be present even after pressure recovery. The possible role of pressure on vanadium t2g orbitals in understanding these observations is discussed.

  7. Synthesis, Characterization and Photocatalytic Activity of New Photocatalyst ZnBiSbO4 under Visible Light Irradiation

    Science.gov (United States)

    Luan, Jingfei; Chen, Mengjing; Hu, Wenhua

    2014-01-01

    In this paper, ZnBiSbO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiSbO4 had been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscope and UV-visible spectrometer. ZnBiSbO4 crystallized with a pyrochlore-type structure and a tetragonal crystal system. The band gap of ZnBiSbO4 was estimated to be 2.49 eV. The photocatalytic degradation of indigo carmine was realized under visible light irradiation with ZnBiSbO4 as a catalyst compared with nitrogen-doped TiO2 (N-TiO2) and CdBiYO4. The results showed that ZnBiSbO4 owned higher photocatalytic activity compared with N-TiO2 or CdBiYO4 for the photocatalytic degradation of indigo carmine under visible light irradiation. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3−, and the evolution of CO2 revealed the continuous mineralization of indigo carmine during the photocatalytic process. One possible photocatalytic degradation pathway of indigo carmine was obtained. The phytotoxicity of the photocatalytic-treated indigo carmine (IC) wastewater was detected by examining its effect on seed germination and growth. PMID:24879521

  8. Synthesis, Characterization and Photocatalytic Activity of New Photocatalyst ZnBiSbO4 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2014-05-01

    Full Text Available In this paper, ZnBiSbO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiSbO4 had been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscope and UV-visible spectrometer. ZnBiSbO4 crystallized with a pyrochlore-type structure and a tetragonal crystal system. The band gap of ZnBiSbO4 was estimated to be 2.49 eV. The photocatalytic degradation of indigo carmine was realized under visible light irradiation with ZnBiSbO4 as a catalyst compared with nitrogen-doped TiO2 (N-TiO2 and CdBiYO4. The results showed that ZnBiSbO4 owned higher photocatalytic activity compared with N-TiO2 or CdBiYO4 for the photocatalytic degradation of indigo carmine under visible light irradiation. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3−, and the evolution of CO2 revealed the continuous mineralization of indigo carmine during the photocatalytic process. One possible photocatalytic degradation pathway of indigo carmine was obtained. The phytotoxicity of the photocatalytic-treated indigo carmine (IC wastewater was detected by examining its effect on seed germination and growth.

  9. Surfactant-Assisted Hydrothermal Synthesis of PMN-PT Nanorods

    Science.gov (United States)

    Li, Chuan; Liu, Xingzhao; Luo, Wenbo; Xu, Dong; He, Kai

    2016-02-01

    The effects of surfactant polyacrylate acid (PAA) on shape evolution of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) nanorods were studied. The results revealed that the polyacrylic acid content had great influence on the morphology of 0.7PMN-0.3PT. With increasing PAA concentration from 0.45 to 0.82 g/ml, the ratio of perovskite phase (PMN-PT nanorod) increased, while the ratio of pyrochlore phase decreased. When the PAA concentration was 0.82 g/ml, pure 0.7PMN-0.3PT nanorods were obtained. However, when PAA concentration was higher than 0.82 g/ml, the excess of PAA would hindered their [100] orientation growth. The piezoelectric coefficient d 33 of 0.7PMN-0.3PT nanorod was obtained by linear fitting, and the d 33 value was 409 pm/V.

  10. Phase development and electrical properties of Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} ceramics prepared by partial oxalate route

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Kun; Fang, Bijun; Du, Qingbo [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu (China); Ding, Jianning [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu (China); School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu (China); Zhao, Xiangyong; Luo, Haosu [Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences, Shanghai (China)

    2013-06-15

    (1 - x)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3} (PMN-PT, x = 0.2-0.4) ferroelectric (FE) ceramics were prepared by the partial oxalate route. The synthesized PMN-PT ceramics exhibit high density and densified microstructure although slight content of pyrochlore phase impurity exists. With the increase of PbTiO{sub 3} (PT) content, the phase structure of the PMN-PT ceramics changes gradually from rhombohedral perovskite structure, across the morphotropic phase boundary (MPB) composition and to tetragonal perovskite structure. The FE structural phase transition of PMN-PT changes gradually from the diffused ferroelectric phase transition (FPT) of typical relaxor FEs to nearly first-order FPT of normal FEs, confirmed by dielectric and FE properties measurements. The PMN-PT ceramics exhibit excellent dielectric and piezoelectric properties, and fully developed and saturated P-E hysteresis loops, in which the MPB effects are clearly shown by these electrical properties. The MPB composition of the PMN-PT system is determined locating at x = 0.31-0.33 by XRD measurement and electrical properties measurements. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Features of dielectric response in PMN-PT ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, J D S [Grupo de Ferroeletricos e Materiais Multifuncionais, Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902 Uberlandia-MG (Brazil); Araujo, E B; Guarany, C A; Reis, R N; Lima, E C [Grupo Ferroeletricos e Novos Materiais, Departamento de Fisica e Quimica, Universidade Estadual Paulista, 15385-000 Ilha Solteira-SP (Brazil)], E-mail: santos@dfq.feis.unesp.br

    2008-11-21

    In this paper, electrical and structural properties were reported for pyrochlore free (1 - x)[Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}] - xPbTiO{sub 3} (PMN-PT) (with 35 mol% PbTiO{sub 3}) ceramics obtained from fine powders. Dielectric studies were focused on the investigation of the complex dielectric permittivity ({epsilon}' - i{epsilon}'') as a function of frequency and temperature. The effects of the dc applied electric field on dielectric response were also investigated. Results revealed a field dependence dielectric anomaly in the dielectric permittivity curves ({epsilon}(T)) in the low dc electric field region, which in turn prevails in the whole analysed frequency interval. To the best of our knowledge, these properties for the PMN-PT ceramic system have not been reported before as in this work. The results were analysed within the framework of the current models found in the literature.

  12. Mechanism of mechanochemical synthesis of complex oxides and the peculiarities of their nano-structurization determining sintering

    Directory of Open Access Journals (Sweden)

    Zyryanov V.V.

    2005-01-01

    Full Text Available A mechanism of superfast mechanosynthesis reaction for oxide systems is proposed on the base of a dynamics study. The threshold effect and linear dependence of the chemical response on the effective temperature of the reaction zone are established. Major factors are determined: molecular mass of reagents, enthalpy and difference of reagents in Mohs’s hardness, which also influence the composition of the primary product. Primary acts are characterized by a superfast roller mechanism of mass transfer with the formation of a transient dynamic state (D*. Secondary acts slowly approximate the composition of the product to the composition of the starting mixture by diffusion mass transfer in a deformation mixing regime with a contribution of a rotation (roller mechanism. The list of structure types for complex oxides derived by mechanosynthesis includes perovskites, fluorites, pyrochlors, sheelites, and some other ones. Powders of crystal products display multilevel structurization. In all studied complex oxides strong disordering of the “anti-glass” type was observed. The mechanism of sintering was studied in BaTiO3 powders of different origin and in metastable complex oxides derived by mechanosynthesis. The major contribution in shrinkage belongs to rearrangements of crystalline particles as a whole. Structure transformations accompany, as a rule, sintering of inhomogeneous powders derived by mechanosynthesis.

  13. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li; Feng, Zhao; Yu, Xiaohe [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gong, Yichao [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Yang, Mao; Wei, Nian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064 (China); Shi, Qiwu [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Lu, Tiecheng, E-mail: lutiecheng@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064 (China)

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  14. Enhanced transmittance properties in Pb{sub 0.865}La{sub 0.09}(Zr{sub 0.65}Ti{sub 0.35})O{sub 3} thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jinqiao [Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan (China); Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan (China); Zhang, Xue; Shen, Meng; Jiang, Shenglin [Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan (China); Xia, Jinsong [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan (China)

    2015-09-15

    Transparent Pb{sub 0.865}La{sub 0.09}(Zr{sub 0.65}Ti{sub 0.35})O{sub 3} (PLZT) ferroelectric films have been deposited on Si (100) substrate by the pulsed laser deposition (PLD), and the influence of different deposition temperatures (600-700 C) on crystalline state, microstructure, and optical properties has been investigated. When the deposition temperature increases from 600 to 700 C, X-ray diffraction analysis shows that a pyrochlore-to-perovskite phase transition occurs in PLZT thin films, and PLZT target is proved to have the pure perovskite structure. As the deposition temperature increases, particles on the surface of PLZT thin films gradually disappear, the density of the sample increases obviously, and the roughness is reduced from 14 to 7.5 nm. Meanwhile, the average transmittance rate of PLZT thin films increases from 91.86 to 92.84 %, and the maximum transmittance rate 97.69 % is obtained at the temperature of 700 C. At the incident light wavelength of 632.8 nm, the refractive index changes from 2.43 to 2.47 with the increase in the deposition temperature, and the extinction coefficients maintain at 0. These results indicate that properly increasing the deposition temperature is not only beneficial for enhancing the density of, but also can improve optical properties of PLZT thin films fabricated by the PLD method. (orig.)

  15. Influence of synthesis conditions on the crystal structure of the powder formed in the ZrO2 - Ce2O3/CeO2 system.

    Science.gov (United States)

    Popov, V. V.; Menushenkov, A. P.; Khubbutdinov, R. M.; Svetogorov, R. D.; Zubavichus, Ya V.; Sharapov, A. S.; Kurilkin, V. V.

    2016-09-01

    Influence of synthesis conditions (type of atmosphere, reduction and oxidation, annealing temperature) on the chemical composition and structure of the compounds formed in the “ZrO2 - Ce2O3 / CeO2” system has been investigated by X-ray absorption fine structure (XAFS) spectroscopy combined with X-ray diffraction (XRD) and thermogravimetric analysis (TGA). It is revealed that isothermal annealing of precursor at temperatures less than 1000 °C in air leads to formation of Ce0.5Zr0.5O2 powders with cubic fluorite-type structure (Fm-3m). Further increase of annealing temperatures above 1000 °C causes decomposition of formed crystal structure into two phases: cubic and tetragonal. Annealing in reduction hydrogen atmosphere causes formation of Ce4 + 2xCe3 + 2-2xZr2O7 + x compounds with intermediate valency of cerium, where value of x depends on the reducing conditions and treatment parameters of precursor. Annealing in vacuum at 1400 °C strongly reduces the content of Ce4+ in a powder samples and leads to formation of pyrochlore structure (space group Fd-3m) with practically Ce3+ valence state.

  16. Interplay between electron correlations and quantum orders in the Hubbard model

    Science.gov (United States)

    Witczak-Kremp, William

    We discuss the appearance of quantum orders in the Hubbard model for interacting electrons, at half-filling. Such phases do not have local order parameters and need to be characterized by the quantum mechanical properties of their ground state. On one hand, we study the Mott transition from a metal to a spin liquid insulator in two dimensions, of potential relevance to some layered organic compounds. The correlation-driven transition occurs at fixed filling and involves fractionalization of the electron: upon entering the insulator, a Fermi surface of neutral spinons coupled to an internal gauge field emerges. We focus on the transport properties near the quantum critical point and find that the emergent gauge uctuations play a key role in determining the universal scaling. Second, motivated by a class of three-dimensional transition metal oxides, the pyrochlore iridates, we study the interplay of non-trivial band topology and correlations. Building on the strong spin orbit coupling in these compounds, we construct a general microscopic Hubbard model and determine its mean-field phase diagram, which contains topological insulators, Weyl semimetals, axion insulators and various antiferromagnets. We also discuss the effects many-body correlations on theses phases. We close by examining a fractionalized topological insulator that combines the two main themes of the thesis: fractionalization and non-trivial band topology. Specifically, we study how the twodimensional protected surface states of a topological Mott insulator interact with a threedimensional emergent gauge field. Various correlation effects on observables are identified.

  17. Research for preparation of cation-conducting solids by high-pressure synthesis and other methods

    Science.gov (United States)

    Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A.; Dwight, K., Jr.

    1975-01-01

    It was shown that two body-centered-cubic skeleton structures, the Im3 KSbO3 phase and the defect-pyrochlore phase A(+)B2X6, do exhibit fast Na(+)-ion transport. The placement of anions at the tunnel intersection sites does not impede Na(+)-ion transport in (NaSb)3)(1/6 NaF), and may not in (Na(1+2x)Ta2 5F)(Ox). The activation energies are higher than those found in beta-alumina. There are two possible explanations for the higher activation energy: breathing of the bottleneck (site face or edge) through which the A(+) ions must pass on jumping from one site to another may be easier in a layer structure and/or A(+)-O bonding may be stronger in the cubic structures because the O(2-) ion bonds with two (instead of three) cations of the skeleton. If the former explanation is dominant, a lower activation energy may be achieved by optimizing the lattice parameter. If the latter is dominant, a new structural principle may have to be explored.

  18. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation

    Science.gov (United States)

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-01

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density.

  19. Study of perovskite oxides as the cathode for solid oxide fuel cell (SOFC); Koon kotai denkaishitsu nenryo denchi (SOFC) yo seikyoku to shite no perovskite gata sankabutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y. [Mie University, Mie (Japan). Faculty of Engineering

    1999-03-15

    The perovskite type manganite systems, Ln{sub 1-x}A{sub x}MO{sub 3} (Ln=rare earth, A=Sr, Ca) were studied as the electrode materials for solid oxide fuel cells (SOFC). The highest cathodic activity was obtained for the La{sub 1-x}Sr{sub x}CoO{sub 3} electrode. The reactivity tests of La{sub 1-x}A{sub x}MO{sub 3} with yttria-stabilized zirconia (YSZ) showed that the formation of the pyrochlore Ln{sub 2}Zr{sub 2}O{sub 7} decreases the electrode activity. However, this was suppressed for the perovskites having smaller lanthanoids than La, for example, for the Gd{sub 1-x}A{sub x}MnO{sub 3} and GdCoO{sub 3} systems. No reaction product appeared between the Gd{sub 1-x} A{sub x}MnO{sub 3} perovskite and YSZ even at a high annealing temperature of 1,400degreeC. GdCoO{sub 3} did not react with YSZ even at 1,000degreeC. The adjustment of the thermal expansion rate to YSZ needed the formation of solid solution such as Ln{sub 1-x}Sr{sub x}Mn{sub 1-y}Co{sub y}O{sub 3}, some of which showed the high cathodic activity and good compatibility. (author)

  20. The influence of sintering conditions on the phase purity of bulk EuTiO3 and Eu0.5Ba0.5TiO3 ceramics

    Science.gov (United States)

    Maca, Karel; Kachlik, Martin; Vanek, Premysl; Gautam, Devendraprakash; Winterer, Markus

    2013-07-01

    EuTiO3 and Eu0.5Ba0.5TiO3 ceramics were synthesized using mechanochemical activation of oxide precursors and then calcined. The uniaxially as well as isostatically pressed samples were sintered in different kinds of reducing atmospheres, namely Ar + (7-10)%H2, respectively, 99.99%H2 in the case of pressureless sintering or in vacuum (enriched by CO vapors) in the case of pressure-assisted spark plasma sintering (SPS). The samples prepared by SPS contained the pyrochlore phase as the second phase. In contrast with SPS, pressureless sintered samples were phase pure, although thermodynamics calculations showed that CO atmosphere in SPS is more reducing than pure hydrogen. This is explained by short sintering times in SPS that do not allow establishment of the thermodynamic equilibrium. The proper choice of sintering temperature, time, and atmosphere enabled preparation of dense and phase pure samples of Eu x Ba1- x TiO3 ceramics suitable for the evaluation of "true" physical properties (e.g., infrared reflectivity), or for experimental confirmation of specific functionalities proposed from theory.

  1. Magnetic cooling close to a quantum phase transition—The case of Er2Ti2O7

    Science.gov (United States)

    Wolf, B.; Tutsch, U.; Dörschug, S.; Krellner, C.; Ritter, F.; Assmus, W.; Lang, M.

    2016-10-01

    Magnetic cooling, first introduced in the late twenties of last century, has regained considerable interest recently as a cost-efficient and easy-to-handle alternative to 3He-based refrigeration techniques. Especially, adiabatic demagnetization of paramagnets—the standard materials for magnetic refrigeration—has become indispensable for the present space applications. To match the growing demand for increasing the efficiency in these applications, a new concept for magnetic cooling based on many-body effects around a quantum-critical-point has been introduced and successfully tested [B. Wolf et al., Proc. Natl. Acad. Sci. U.S.A. 108, 6862 (2011)]. By extending this concept to three-dimensional magnetic systems, we present here the magnetothermal response of the cubic pyrochlore material Er2Ti2O7 in the vicinity of its B-induced quantum-critical point which is located around 1.5 T. We discuss performance characteristics such as the range of operation, the efficiency, and the hold time. These figures are compared with those of state-of-the-art paramagnetic coolants and with other quantum-critical systems which differ by the dimensionality of the magnetic interactions and the degree of frustration.

  2. Atomistic simulations of the radiation resistance of oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, A., E-mail: alain.chartier@cea.fr [CEA-Saclay, DEN/DANS/DPC/SCP, 91191 Gif-Sur-Yvette (France); Van Brutzel, L. [CEA-Saclay, DEN/DANS/DPC/SCP, 91191 Gif-Sur-Yvette (France); Crocombette, J.-P. [CEA-Saclay, DEN/DANS/DMN/SRMP, 91191 Gif-Sur-Yvette (France)

    2012-09-01

    Fluorite compounds such as urania and ceria, or related compounds such as pyrochlores and also spinels show different behaviors under irradiations, which ranges from perfect radiation resistance to crystalline phase change or even complete amorphization depending on their structure and/or their composition. Displacement cascades - dedicated to the understanding of the ballistic regime and performed by empirical potentials molecular dynamics simulations - have revealed that the remaining damages of the above mentioned oxides are reduced to point defects unlike what is observed in zircon and zirconolite, which directly amorphize during the cascade. The variable behavior of these point defects is the key of the various responses of these materials to irradiations. This behavior can be investigated by two specific molecular dynamics methodologies that will be reviewed here: (i) the method of point defects accumulation as a function of temperature that gives access to the dose effects and to the critical doses for amorphization; (ii) the study Frenkel pairs life-time - i.e. their time of recombination as function of temperature - that may be used as a tool to understand the results obtained in displacements cascades or to identify the microscopic mechanisms responsible for the amorphization/re-crystallization during the point defects accumulations.

  3. Magnetic structure of geometrically frustrated compound Co{sub 2}Cl(OH){sub 3} determined by proton NMR

    Energy Technology Data Exchange (ETDEWEB)

    Zenmyo, Kazuko [Fukuoka Institute of Technology, Wajirohigashi, Fukuoka 811-0295 (Japan)], E-mail: zenmyou@fit.ac.jp; Tokita, Masahiko [Fukuoka Institute of Technology, Wajirohigashi, Fukuoka 811-0295 (Japan)], E-mail: tokita@fit.ac.jp

    2009-07-15

    The magnetic structure of a geometrically frustrated system Co{sub 2}Cl(OH){sub 3} is determined by comparing the observed proton NMR spectrum with numerical calculations based on various magnetic models. The best fit is obtained with a model that the magnetic moments of Co{sup 2+} ions in the triangular plane are parallel to the principal axis of local crystal field and those of Co{sup 2+} ions in the kagome lattice plane are randomly disordered in the a-b plane, which nearly bisects the angle between the principal axis of the local field and a line pointing towards the body center of the tetrahedron. The coexistence of the ferromagnetic order in the triangular plane and the random disorder in the kagome plane is consistent with the results of measurements by Zheng et al. However, the magnetic moments of Co{sup 2+} ions are not directed towards the body center of the tetrahedron as characteristic in the 'spin ice' magnetic structure. Furthermore, the Co{sup 2+} ions in the triangular plane have a smaller magnitude of magnetic moment than those in the kagome plane. Thus, our result suggests that the transition metal compound Co{sub 2}Cl(OH){sub 3} is different from the 'spin ice' in magnetic structure, although it is similar to rare-earth pyrochlores in crystal structure.

  4. Magnetic transitions in botallackite-structure Cu{sub 2}(OH){sub 3}Br and Cu{sub 2}(OH){sub 3}I

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.G., E-mail: zheng@cc.saga-u.ac.j [Department of Physics, Faculty of Science and Engineering, Saga University, Saga 840-8502 (Japan); Department of Physics, School of Engineering, Saga University, Saga 840-8502 (Japan); Yamashita, T.; Hagihala, M.; Fujihala, M. [Department of Physics, School of Engineering, Saga University, Saga 840-8502 (Japan); Kawae, T. [Department of Applied Quantum Physics, Faculty of Engineering, Kyushu University, Fukuoka 812-8581 (Japan)

    2009-04-15

    The deformed pyrochlore lattice compound clinoatacamite, Cu{sub 2}(OH){sub 3}Cl, shows intriguing magnetism and 1/4 substitution of Cu with nonmagnetic Zn leads to the two-dimensional kagome lattice ZnCu{sub 3}Cl{sub 2}(OH){sub 6} that exhibits spin liquid behaviour. These findings renewed interest in botallackite Cu{sub 2}(OH){sub 3}Cl, which is a polymorphous structure of clinoatacamite Cu{sub 2}(OH){sub 3}Cl possessing a two-dimensional triangular lattice. The present work investigates the effect of halogen ions on the magnetic transitions in the botallackite structure. Similar to the antiferromagnetic Cu{sub 2}(OH){sub 3}Cl (T{sub N}=7.2 K), Cu{sub 2}(OH){sub 3}Br and Cu{sub 2}(OH){sub 3}I both showed antiferromagnetic transitions at T{sub N}=10 and 14 K, respectively. Long-range order also exists in Cu{sub 2}(OH){sub 3}Br as exemplified by the muSR study. The experimental results suggest that the magnetic coupling on the triangular lattice is dominated by the super-exchange interaction through the halogen ions. Further detailed comparison studies on these botallackite-structure compounds are expected to clarify the spin configuration on this triangular lattice.

  5. Layered kagome spin ice

    Science.gov (United States)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  6. Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2015-10-06

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.

  7. Frustration effects in spinel compound GeCo{sub 2}O{sub 4} studied by ultrasound velocity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadataka [Department of Physics, College of Science and Technology (CST), Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Hara, Shigeo; Ikeda, Shin-Ichi, E-mail: tadataka@phys.cst.nihon-u.ac.j [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2009-03-01

    Ultrasound velocity measurements of the cubic spinel GeCo{sub 2}O{sub 4} in the single crystal have been performed for the investigations of shear and compression moduli. The shear moduli reveal the absence of Jahn-Teller activity despite the presence of the orbital degeneracy in the Co{sup 2+} ions. This Jahn-Teller inactivity indicates that the intersite orbital-orbital interaction is much stronger than the Jahn-Teller coupling. The compression moduli reveal that the dominant path of the exchange interactions for the antiferromagnetic transition lies in the [111] direction. This exchange-path anisotropy is consistent with the antiferromagnetic structure with the wave vector q || [111], suggesting the presence of bond frustration among several ferromagnetic and antiferromagientic interactions. In the JT-inactive condition, the bond frustration can be induced by geometrical orbital frustration of t{sub 2g}-t{sub 2g} interaction between the Co{sup 2+} ions which can be realized in the pyrochlore lattice of the high spin Co{sup 2+} with t{sub 2g} -orbital degeneracy. In GeCo{sub 2}O{sub 4}, the tetragonal elongation below T{sub N} releases the orbital frustration by quenching the orbital degeneracy.

  8. Cubic Phases in the Gd2O3-ZrO2 and Dy2O3-TiO2 Systems for Nuclear Industry Applications

    Directory of Open Access Journals (Sweden)

    Maria Teresa Malachevsky

    2015-01-01

    Full Text Available Neutron absorbers are elements with a high neutron capture cross section that are employed at nuclear reactors to control excess fuel reactivity. If these absorbers are converted into materials of relatively low absorption cross section as the result of neutron absorption, they consume during the reactor core life and so are called burnable. These elements can be distributed inside an oxide ceramic that is stable under irradiation and thus called inert. Cubic zirconium oxide is one of the preferred materials to be used as inert matrix. It is stable under irradiation, experiments very low swelling, and is isomorphic to uranium oxide. The cubic phase is stabilized by adding small amounts of dopants like Dy2O3 and Gd2O3. As both dysprosium and gadolinium have a high neutron cross section, they are good candidates to prepare burnable neutron absorbers. Pyrochlores, like Gd2Zr2O7 and Dy2Ti2O7, allow the solid solution of a large quantity of elements besides being stable under irradiation. These characteristics make them also useful for safe storage of nuclear wastes. We present a preliminary study of the thermal analysis of different compositions in the systems Gd2O3-ZrO2 and Dy2O3-TiO2, investigating the feasibility to obtain oxide ceramics useful for the nuclear industry.

  9. Twinned CsLn{sub 2}F{sub 7} compounds (Ln=Nd, Gd, Tb, Er, Yb). The role of a highly symmetrical cation lattice with an arrangement analogous to the Laves phase MgZn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Karen [Forschungszentrum Juelich GmbH, Juelich (Germany). Juelich Centre for Neutron Science-2; Khaidukov, Nicholas [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation); Grzechnik, Andrzej [RWTH Aachen Univ. (Germany). Inst. for Crystallography

    2016-07-01

    The occurrence of twinning can often be related to higher symmetrical structures. Fluorides are frequently twinned due to their close relation to high symmetry structures like fluoride, tysonite or pyrochlores. The series of compounds CsLn{sub 2}F{sub 7} is no exception. We refined the structures of the twinned compounds with Ln=Nd, Gd, Tb, Er, Yb in space group P112{sub 1}/b. An analysis of the pseudosymmetry of the resulting structures shows a highly symmetrical cation partial structure with a cation distribution similar to the one in the hexagonal Laves phase MgZn{sub 2}. Several other compounds ALn{sub 2}F{sub 7}, which have been described in the literature, show a similar cation array. The diversity of different space groups which have been reported for ALn{sub 2}F{sub 7} compounds can be better understood using group-subgroup relationships assuming the hypothetical structure of the cation array with space group P6{sub 3}/mmc as aristotype. Furthermore, the twinning is easily understood on the basis of the lost symmetry operations in the symmetry reduction from point group 6/mmm, e.g. to 2/m in the case of the CsLn{sub 2}F{sub 7} compounds.

  10. Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2017-03-21

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.

  11. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    Science.gov (United States)

    Tang, Ming; Kossoy, Anna; Jarvinen, Gordon; Crum, Jarrod; Turo, Laura; Riley, Brian; Brinkman, Kyle; Fox, Kevin; Amoroso, Jake; Marra, James

    2014-05-01

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (∼1-5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  12. Magnetic transitions in the chiral armchair-kagome system Mn2Sb2O7

    Science.gov (United States)

    Peets, Darren C.; Sim, Hasung; Choi, Seongil; Avdeev, Maxim; Lee, Seongsu; Kim, Su Jae; Kang, Hoju; Ahn, Docheon; Park, Je-Geun

    2017-01-01

    The competition between interactions in frustrated magnets allows a wide variety of new ground states, often exhibiting emergent physics and unique excitations. Expanding the suite of lattices available for study enhances our chances of finding exotic physics. Mn2Sb2O7forms in a chiral, kagome-based structure in which a fourth member is added to the kagome-plane triangles to form an armchair unit and link adjacent kagome planes. This structural motif may be viewed as intermediate between the triangles of the kagome network and the tetrahedra in the pyrochlore lattice. Mn2Sb2O7exhibits two distinct magnetic phase transitions, at 11.1 and 14.2 K, at least one of which has a weak ferromagnetic component. The magnetic propagation vector does not change through the lower transition, suggesting a metamagnetic transition or a transition involving a multicomponent order parameter. Although previously reported in the P 3121 space group, Mn2Sb2O7actually crystallizes in P 2 , which allows ferroelectricity, and we show clear evidence of magnetoelectric coupling indicative of multiferroic order. The quasi-two-dimensional "armchair-kagome" lattice presents a promising platform for probing chiral magnetism and the effect of dimensionality in highly frustrated systems.

  13. Impact of lanthanum on the modification of HfO2 films structure

    Institute of Scientific and Technical Information of China (English)

    T. P. Smirnova; L.V. Yakovkina; V.O. Borisov

    2015-01-01

    LaxHf1–xOy thin films with various concentrations of La, homogeneous and nonhomogeneous distributions of elements throughout the films thickness was purposefully grown by CVD. The composition of the films and their chemical structures were characterized throughout the films thickness by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometry (EDXA). A full picture of the film crystallinity was provided by the combination of grazing incidence X-ray diffraction (GIXRD) synchrotron radiation (SR) and high resolution transmission electron microscopy (HR TEM). It was shown that La acted as “molar volume modulator” and stabilized the nonequilibrium atT≤1300 °C cubic phases. The samples with La content in range of 7 at.%pyrochlore phase formation was observed at ~18 at.% La content. The correlation between the La-doped content and the films microstructure was revealed.

  14. Hydrothermal synthesis of WO3·0.5H2O microtubes with excellent photocatalytic properties

    Science.gov (United States)

    Wang, Xiaozhou; Meng, Xiuqing; Zhong, Mianzeng; Wu, Fengmin; Li, Jingbo

    2013-10-01

    Pyrochlore WO3 microtubes were synthesized via a hydrothermal method for the first time. In this process, thiourea was employed to overcome the hydrogen bonds on the rim of WO3·0.5H2O and hydroxylamine hydrochloride was used as a viscosity regulator. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy observations revealed that large amounts of uniform single-crystal WO3·0.5H2O microtubes with diameters ranging from 100 to 300 nm and length of tens of micrometers were obtained. The thickness of the tube wall was about 40 nm. A possible rolling mechanism was proposed to explain the formation of the tubular structures, and the influence of thiourea and hydroxylamine hydrochloride on the uniform tubular morphology was discussed. The WO3·0.5H2O microtubes showed excellent photocatalytic activity toward the degradation of organic molecules such as RhB, which may find potential applications in the fields of photocatalysts, sensors and transistors.

  15. Effect of rare-earth (La and Eu) doping on ferroelectric and magnetic properties of magnetoelectric Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Ramana, E.; Graca, M.P.F.; Valente, M.A. [I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193 (Portugal)

    2014-09-15

    Polycrystalline Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN) samples have been synthesized to study the effect of rare-earth ions, La and Eu, on multiferroic physical properties. The synthesis of materials in controlled PbO atmosphere accounted for the pyrochlore free ceramics with tetragonal structure. Small amount (1 at.%) of rare-earth doping resulted in a shrinkage of unit cell volume. The dielectric studies indicated a decrease in phase transition temperature from 375 K to 356 K for La doped ceramics. A well-saturated ferroelectric polarization with a remanent polarization of 8.9 μC/cm{sup 2} was observed for undoped PFN while the doping affected in the large leakage current and higher coercivity. We observed no significant effect of doping on magnetic transition temperatures at low temperatures. Doping with La resulted in reduced magnetoelectric coefficient compared to the undoped value of 9.2 mV/cmOe, due to the poor poling ability. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Effect of rare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hongming; YI Danqing

    2008-01-01

    The effect of rare earth doping on thermo-physical properties of lanthanum zirconate was investigated. Oxide powders of various compositions La2Zr2O7 were synthesized by coprecipitation-calcination method. High-temperature dilatometer, DSC, and laser thermal dif-fusivity methods were used to analyze thermal expansion coefficient (TEC), specific heat, and thermal diffusivity. The results showed that CeO2 doped pyrochlores La2(Zr1.8Ce0.2)2O7 and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had higher TEC than La2Zr2O7 and Lal.7Dyo.3Zr207. La2(Zr1.8Ce0.2)2O7, La1.7Oy0.3Zr2O7, and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had lower thermal conductivity than undoped La2Zr2O7. The Dy203, Nd2O3, and CeO2 codoped composition showed the lowest thermal conductivity and the highest TEC. Thermo-physical results also indicated that TEC of rare earth oxide doped La2Zr2O7 ceramic was slightly higher than that of conventional ZrO2-8wt.% Y2O3 (8YSZ), and its thermal conductivity was lower than that of 8YSZ.

  17. Phase evolution studies in CaZrTi{sub 2}O{sub 7}−RE{sub 2}Ti{sub 2}O{sub 7} (RE = Nd{sup 3+}, Sm{sup 3+}) system: Futuristic ceramic host matrices for nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Jafar, M., E-mail: sachary@barc.gov.in; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K., E-mail: sachary@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Series of compositions with general stoichiometry as Ca{sub 1−x}Zr{sub 1−x}RE{sub 2x}Ti{sub 2}O{sub 7} (RE = Nd{sup 3+}, Sm{sup 3+}) were prepared by solid state reaction and characterized by powder x-ray diffraction technique to unravel the phase fields in the title systems. The phase fields in CaZrTi{sub 2}O{sub 7−}Nd{sub 2}Ti{sub 2}O{sub 7} and CaZrTi{sub 2}O{sub 7−}Sm{sub 2}Ti{sub 2}O{sub 7} systems differed significantly at the rareearth rich regions. The common phase fields like zirconolite-2M, zirconolite-4M, cubic perovskite are observed at the zirconolite rich regions of both systems. Depending on the structure of RE{sub 2}Ti{sub 2}O{sub 7} phase, the cubic pyrochlore or monoclinic RE{sub 2}Ti{sub 2}O{sub 7} phases are observed in the studied system. The observed phase fields in these two systems indicate ionic radius of the rare-earth ion has a dominating role in the phase relations. Further details of the phases and their homogeneity are explained in the text of the manuscript.

  18. Phase evolution studies in CaZrTi2O7-RE2Ti2O7 (RE = Nd3+, Sm3+) system: Futuristic ceramic host matrices for nuclear waste immobilization

    Science.gov (United States)

    Jafar, M.; Achary, S. N.; Tyagi, A. K.

    2014-04-01

    Series of compositions with general stoichiometry as Ca1-xZr1-xRE2xTi2O7 (RE = Nd3+, Sm3+) were prepared by solid state reaction and characterized by powder x-ray diffraction technique to unravel the phase fields in the title systems. The phase fields in CaZrTi2O7-Nd2Ti2O7 and CaZrTi2O7-Sm2Ti2O7 systems differed significantly at the rareearth rich regions. The common phase fields like zirconolite-2M, zirconolite-4M, cubic perovskite are observed at the zirconolite rich regions of both systems. Depending on the structure of RE2Ti2O7 phase, the cubic pyrochlore or monoclinic RE2Ti2O7 phases are observed in the studied system. The observed phase fields in these two systems indicate ionic radius of the rare-earth ion has a dominating role in the phase relations. Further details of the phases and their homogeneity are explained in the text of the manuscript.

  19. Doped nanocrystalline ZnO powders for non-linear resistor applications by spray pyrolysis method.

    Science.gov (United States)

    Hembram, Kaliyan; Vijay, R; Rao, Y S; Rao, T N

    2009-07-01

    Homogeneous and doped nanocrystalline ZnO powders (30-200 nm) were synthesized by spray pyrolysis technique. The spray pyrolysed powders were calcined in the temperature range of 500-750 degrees C. Formation of insulating pyrochlore phase started from 700 degrees C during the calcination itself. The calcined powders were compacted and sintered at different temperatures ranging from 900-1200 degrees C for 0.5-4 h. The densification behavior was found to be dependent on calcination temperature of the nanopowder. The resulting discs were found to have density (5.34-5.62 g/cc) in the range of 96-99% of theoretical density. The breakdown voltage value obtained for the nanopowder based non-linear resistor is 10.3 kV/cm with low leakage current density of 0.7 microA/cm2 and coefficient of nonlinearity as high as 193. The activation energy for grain growth of the doped ZnO nanopowder powders is 449.4 +/- 15 kJ/mol.

  20. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation.

    Science.gov (United States)

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-12

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density.