WorldWideScience

Sample records for pyro-chemical partitioning methods

  1. Development of a pyro-partitioning process for long-lived radioactive nuclides. Process test for pretreatment of simulated high-level waste containing uranium

    International Nuclear Information System (INIS)

    Kurata, Masateru; Hijikata, Takatoshi; Kinoshita, Kensuke; Inoue, Tadashi

    2000-01-01

    A pyro-partitioning process developed at CRIEPI requires a pre-treatment process to convert high-level liquid waste to chloride. A combination process of denitration and chlorination has been developed for this purpose. Continuous process tests using simulated high-level waste were performed to certify the applicability of the process. Test results indicated a successful material balance sufficient for satisfying pyro-partitioning process criteria. In the present study, process tests using simulated high-level waste containing uranium were also carried out to prove that the pre-treatment process is feasible for uranium. The results indicated that uranium can be converted to chloride appropriate for the pyro-partitioning process. The material balance obtained from the tests is to be used to revise the process flow diagram. (author)

  2. Evaluation of construction cost of pyro-partitioning plant

    International Nuclear Information System (INIS)

    Kinoshita, Kensuke; Kurata, Masateru; Inoue, Tadashi

    1999-01-01

    This study was conducted to evaluate the construction cost of a pyro-partitioning plant. The plant capacity was chosen to accommodate processing of the HLLW generated by PUREX reprocessing of 800 ton of spent LWR fuel. The block flow diagram and mass balance obtained from our previous experimental data were used to produce a detailed process-flow diagram and to design the plant. In this evaluation, the plant was estimated to cover an area of about 90 m x 70 m, and to cost $576 million for construction. This study shows that the cost of process equipments, such as reaction vessels, accountability tanks and so on, is just about 13% of total construction cost. On the other hand, the cost of process robots and the equipments for key measurement point (KMP) is major part in the cost of in-cell equipment. So it is clear that the construction cost can be reduced by reducing the number of material balance area (MBA) and KMP. (author)

  3. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations

    Directory of Open Access Journals (Sweden)

    Yuntao Xia

    2017-04-01

    Full Text Available A pyro-electro-chemical catalytic dye decomposition using lead-free BaTiO3 nanofibers was realized under room-temperature cold–hot cycle excitation (30–47 °C with a high Rhodamine B (RhB decomposition efficiency ~99%, which should be ascribed to the product of pyro-electric effect and electrochemical redox reaction. Furthermore, the existence of intermediate product of hydroxyl radical in pyro-electro-chemical catalytic process was also observed. There is no significant decrease in pyro-electro-chemical catalysis activity after being recycled five times. The pyro-electrically induced pyro-electro-chemical catalysis provides a high-efficient, reusable and environmentally friendly technology to remove organic pollutants from water.

  4. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations

    OpenAIRE

    Yuntao Xia; Yanmin Jia; Weiqi Qian; Xiaoli Xu; Zheng Wu; Zichen Han; Yuanting Hong; Huilin You; Muhammad Ismail; Ge Bai; Liwei Wang

    2017-01-01

    A pyro-electro-chemical catalytic dye decomposition using lead-free BaTiO3 nanofibers was realized under room-temperature cold–hot cycle excitation (30–47 °C) with a high Rhodamine B (RhB) decomposition efficiency ~99%, which should be ascribed to the product of pyro-electric effect and electrochemical redox reaction. Furthermore, the existence of intermediate product of hydroxyl radical in pyro-electro-chemical catalytic process was also observed. There is no significant decrease in pyro-ele...

  5. Spent Nuclear Fuel Reprocessing Flowsheet. A Report by the WPFC Expert Group on Chemical Partitioning of the NEA Nuclear Science Committee

    International Nuclear Information System (INIS)

    Na, Chan; Yamagishi, Isao; Choi, Yong-Joon; Glatz, Jean-Paul; Hyland, Bronwyn; Uhlir, Jan; Baron, Pascal; Warin, Dominique; De Angelis, Giorgio; Luce, Alfredo; INOUE, Tadashi; Morita, Yasuji; Minato, Kazuo; Lee, Han Soo; Ignatiev, Victor V.; Kormilitsyn, Mikhail V.; Caravaca, Concepcion; Lewin, Robert G.; Taylor, Robin J.; Collins, Emory D.; Laidler, James J.

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials, and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific fields in the nuclear fuel cycle. The Expert Group on Chemical Partitioning was created in 2001 to (1) perform a thorough technical assessment of separations processes in application to a broad set of partitioning and transmutation (P and T) operating scenarios and (2) identify important research, development and demonstration necessary to bring preferred technologies to a deployable stage and (3) recommend collaborative international efforts to further technological development. This report aims to collect spent nuclear fuel reprocessing flowsheet of various processes developed by member states: aqueous, pyro and fluoride volatility. Contents: 1 - Hydrometallurgy process: Standard PUREX, Extended PUREX, UREX+3, Grind/Leach; 2 - Pyrometallurgy process: pyro-process (CRIEPI - Japan), 4-group partitioning process, pyro-process (KAERI - Korea), Direct electrochemical processing of metallic fuel, PyroGreen (reduce radiotoxicity to the level of low and intermediate level waste - LILW); 3 - Fluoride volatility process: Fluoride volatility process, Uranium and protactinium removal from fuel salt compositions by fluorine bubbling, Flowsheet studies on non-aqueous reprocessing of LWR/FBR spent nuclear fuel; Appendix A: Flowsheet studies of RIAR (Russian Federation), List of contributors, Members of the expert group

  6. Long-term environmental assessment of waste from PyroGreen system

    International Nuclear Information System (INIS)

    Ju, Heejae; Hahm, Inhye; Sohn, Sungjune; Hwang, Il-Soon

    2016-01-01

    We have conducted a long-term environmental assessment of a geological repository for Intermediate Level Wastes (ILW) arising from PyroGreen processes that has been developed to decontaminate all HLW from the pyrochemical partitioning of spent nuclear fuels (SNF). PyroGreen process has been designed so that final ILW can meet conservative acceptance criteria such as one established for the Waste Isolation Pilot Plant (WIPP) in U.S.A. The nuclide inventory of final vitrified PyroGreen waste is calculated using ORIGEN 2.1 based on the design decontamination factor of PyroGreen processes applied to 18,171 metric tons of PWR SNF with 45 GWD/MTU burnup. Using GoldSim model, the environmental impact of ILW upon geological disposal at an intermediate depth. Among radioactive nuclides, Ra 226 , Rn 222 and Sn 126 are identified as key contributors to radiological dose for general public. The environmental impact of PyroGreen wastes satisfies the Korean dose limit of 0.1 mSv/year with sufficiently high margin. Sensitivity studies have shown that the predicted dose can vary significantly by distribution coefficient of Ra 226 and Rn 222 , solubility limit of Se 79 . (authors)

  7. Long-term environmental assessment of waste from PyroGreen system

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Heejae; Hahm, Inhye; Sohn, Sungjune; Hwang, Il-Soon [Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2016-07-01

    We have conducted a long-term environmental assessment of a geological repository for Intermediate Level Wastes (ILW) arising from PyroGreen processes that has been developed to decontaminate all HLW from the pyrochemical partitioning of spent nuclear fuels (SNF). PyroGreen process has been designed so that final ILW can meet conservative acceptance criteria such as one established for the Waste Isolation Pilot Plant (WIPP) in U.S.A. The nuclide inventory of final vitrified PyroGreen waste is calculated using ORIGEN 2.1 based on the design decontamination factor of PyroGreen processes applied to 18,171 metric tons of PWR SNF with 45 GWD/MTU burnup. Using GoldSim model, the environmental impact of ILW upon geological disposal at an intermediate depth. Among radioactive nuclides, Ra{sup 226}, Rn{sup 222} and Sn{sup 126} are identified as key contributors to radiological dose for general public. The environmental impact of PyroGreen wastes satisfies the Korean dose limit of 0.1 mSv/year with sufficiently high margin. Sensitivity studies have shown that the predicted dose can vary significantly by distribution coefficient of Ra{sup 226} and Rn{sup 222}, solubility limit of Se{sup 79}. (authors)

  8. PYRO - new capability for isotopic mass tracking in pyroprocess simulation

    International Nuclear Information System (INIS)

    Liaw, J.R.; Ackerman, J.P.

    1990-01-01

    A new computational code package called PYRO has been developed to support the IFR fuel recycle demonstration project in the HFEF/S facility at ANL-W. The basic pyrochemical code PYRO1 1 models the atomic mass flows and phase compositions of 48 essential chemical elements involved in the pyroprocess. It has been extended to PYRO1 2 by linking with the ORIGEN code to track more than 1000 isotopic species, their radioactive decays, and related phenomena. This paper first describes the pyroprocess to be modeled and the pyrochemical capability that has been implemented in PYRO1 1 , and then gives a full account on the algorithm of extending it to PYRO1 2 for isotopic mass tracking. Results from several scoping and simulation runs will be discussed to illustrate the significance of modeling in process radioactive decays

  9. PYRO: New capability for isotopic mass tracking in pyroprocess simulation

    International Nuclear Information System (INIS)

    Liaw, J.R.; Ackerman, J.P.

    1990-01-01

    A new computational code package called PYRO has been developed to support the IFR fuel recycle demonstration project in the HFEF/S facility at ANL-W. The basic pyrochemical code PYRO1-1 models the atomic mass flows and phase compositions of 48 essential chemical elements involved in the pyroprocess. It has been extended to PYRO1-2 by linking with the ORIGEN code to track more than 1000 isotopic species, their radioactive decays, and related phenomena. This paper first describes the pyroprocess to be modeled and the pyrochemical capability that has been implemented in PYRO1-1, and then gives a full account on the algorithm of extending it to PYRO1-2 for isotopic mass tracking. Results from several scoping and simulation runs will be discussed to illustrate the significance of modeling in-process radioactive decays. 16 refs., 8 figs., 2 tabs

  10. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    International Nuclear Information System (INIS)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon

    2016-01-01

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  11. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  12. Safe, secure, and clean disposal of final nuclear wastes using 'PyroGreen' strategies

    International Nuclear Information System (INIS)

    Jung, HyoSook; Choi, Sungyeol; Hwang, Il Soon

    2011-01-01

    Spent nuclear fuels (SNFs) present global challenges that must be overcome to pave way for safe, secure, peaceful and clean nuclear energy. As one of innovative solutions, we have proposed an innovative partitioning, transmutation, and disposal approach named as 'PyroGreen' that is designed to eliminate the need for high-level waste repositories. A flowsheet of pyrochemical partitioning process with technically achievable values of decontamination factors on long-living radionuclides has been established to enable all the final wastes to be disposed of as low and intermediate level wastes. The long-term performance of a geological repository was assessed by SAFE-ROCK code for the final wastes from the PyroGreen processing of entire 26,000 MTHM of SNFs arising from lifetime operation of 24 pressurized water reactors. The assessment results agree well with an earlier study in the fact that most harmful radionuclides dominating groundwater migration risk are shown to be long-living fission products including C-14, Cl-36, Se-79, I-129, and Cs-135, whereas most actinides including U, Pu, Np, Am, and Cm are shown to remain near the repository. It is shown that the final wastes can meet the radiological dose limit of current Korean regulation on the low and intermediate level waste repository. Long-living actinide concentration in wastes is comparable with those in wastes in Waste Isolation Pilot Plant that has proved adequately low risk of human intrusion. Overall decontamination factors required for PyroGreen are finally determined as 20,000 for uranium and all transuranic elements whereas much lower values in the range of 10-50 are required for important fission products including Se, Tc, I, Sr, and Cs in order to eliminate the need for any high-level waste repository. It has been shown that experimentally demonstrated recovery rate data for key process steps positively support the feasibility of PyroGreen. SAFE-ROCK code was used to evaluate the long-term performance

  13. Pyro processing technology at KAERI

    International Nuclear Information System (INIS)

    Lee, Hansoo; Kim, Eungho; Park, Seongwon

    2008-01-01

    KAERI has studied on the pyro processing as a spent fuel treatment method for more than decade. The process includes voloxidation, electroreduction, electrorefining with solid and liquid cathodes, and waste salt treatment. Each process has developed its own characteristics which are suitable for treating high mass flow. In the electroreduction process, a magnesia filter was used for integrated electrolytic reduction. More than 99% of reduction yield was achieved. Electrorefining process employs the continuous operation concept. Uranium deposits on the surface of graphite cathode and it is stripped off spontaneously to the bottom of the reactor, which allows continuous operation. Crystallization method was used for treating waste salt. Pure salt is recovered by Czochralski method or zone freezing method and subsequently recycled to the reactor. These advanced technologies ensure the operation of pyro processing in a larger scale

  14. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  15. Economic Analysis of Pyro-SFR Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byungheung; Kwon, Eunha; Ko, Wonil

    2010-01-01

    In this study, based on the material flow the economics of Pyro-SFR has been estimated. These are mainly two methodologies to perform nuclear fuel cycle cost study which is based on the material flow calculations. One is equilibrium model and the other is dynamic model. Equilibrium model focus on the batch study with the assumptions that the whole system is in a steady state and mass flow as well as the electricity production all through the fuel cycle is in equilibrium state, which calculates the electricity production within a certain period and associated material flow with reference to unit cost in order to obtain the cost of electricity. Dynamic model takes the time factor into consideration to simulate the actual cases. Compared with the dynamic analysis model, the outcome of equilibrium model is more theoretical comparisons, especially with regard to the large uncertainty of the development of the pyro-technology evaluated. In this study equilibrium model was built to calculate the material flow on a batch basis. With the unit cost being determined, the cost of each step of fuel cycle could be obtained, so does the FMC. Due to the unavoidable uncertainty with certain unit costs, evaluated cost range and uncertainty study are applied. Sensitivity analysis has also been performed to obtain the breakeven uranium price for Pyro-SFR against PWR-O T. Economics of Pyro-SFR fuel cycle scenario has been calculated and compared by employing equilibrium model. The LFCC were obtained, Pyro-SFR 7.68 mills/kWh. The Uranium price is the dominant driver of LFCC. Pyro-techniques also weight considerably in Pyro-SFR scenario. On consideration of the current unavoidable uncertainties introduced by certain cost data, cost range and triangle techniques were used to perform the uncertainty study which indicates that the gap between Pyro-SFR and PWR-O T fuel cycle scenario is relatively small

  16. A rapid and highly selective method for the estimation of pyro-, tri- and orthophosphates.

    Science.gov (United States)

    Kamat, D R; Savant, V V; Sathyanarayana, D N

    1995-03-01

    A rapid, highly selective and simple method has been developed for the quantitative determination of pyro-, tri- and orthophosphates. The method is based on the formation of a solid complex of bis(ethylenediamine)cobalt(III) species with pyrophosphate at pH 4.2-4.3, with triphosphate at pH 2.0-2.1 and with orthophosphate at pH 8.2-8.6. The proposed method for pyro- and triphosphates differs from the available method, which is based on the formation of an adduct with tris(ethylenediamine)cobalt(III) species. The complexes have the composition [Co(en)(2)HP(2)O(7)]4H(2)O and [Co(en)(2)H(2)P(3)O(10)]2H(2)O, respectively. The precipitation is instantaneous and quantitative under the recommended optimum conditions giving 99.5% gravimetric yield in both cases. There is no interferences from orthophosphate, trimetaphosphate and pyrophosphate species in the triphosphate estimation up to 5% of each component. The efficacy of the method has been established by determining pyrophosphate and triphosphate contents in various matrices. In the case of orthophosphate, the proposed method differs from the available methods such as ammonium phosphomolybdate, vanadophosphomolybdate and quinoline phosphomolybdate, which are based on the formation of a precipitate, followed by either titrimetry or gravimetry. The precipitation is instantaneous and the method is simple. Under the recommended pH and other reaction conditions, gravimetric yields of 99.6-100% are obtainable. The method is applicable to orthophosphoric acid and a variety of phosphate salts.

  17. Pyro-synthesis of functional nanocrystals.

    Science.gov (United States)

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop "design rules" not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations.

  18. Website development with PyroCMS

    CERN Document Server

    Vineyard, Zachary

    2013-01-01

    A practical and a fast-paced guide that gives you all the information you need to start developing websites with PyroCMS. The book is an excellent resource for developers and makes website development easy and financially viable for everyone.This book is ideal if you are a PHP developer who is looking for a great content management system or a web developer looking to speed up your development times. If you are a web developer, you will need to have some familiarity with OOP and the MVC programming pattern, especially if you want to extend PyroCMS by building add-ons.

  19. PYRO, a system for modeling fuel reprocessing

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1989-01-01

    Compact, on-site fuel reprocessing and waste management for the Integral Fast Reactor are based on the pyrochemical reprocessing of metal fuel. In that process, uranium and plutonium in spent fuel are separated from fission products in an electrorefiner using liquid cadmium and molten salt solvents. Quantitative estimates of the distribution of the chemical elements among the metal and salt phases are essential for development of both individual pyrochemical process steps and the complete process. This paper describes the PYRO system of programs used to generate reliable mass flows and compositions

  20. Thermogravimetry for optimization of chloride pyro hydrolytic separations in zirconia-magnesia matrix

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Dantas, E.S.K.

    1992-08-01

    A fast and accurate method for chloride ion determination in zirconia-magnesia matrix was studied the method consists in the pyro hydrolysis of the oxides at 900 o C, using a quartz apparatus, during thirty minutes and further determination of the chloride ion collected by means of either ion-selective electrode or ion chromatography. The thermogravimetric curves (TG curves) of the metal oxides and oxychlorides provide all the information about the chloride ion evolution temperature and the influence of pyro hydrolytic accelerators (U 3 O 8 ) on ion evolution. (author)

  1. Patterned piezo-, pyro-, and ferroelectricity of poled polymer electrets

    International Nuclear Information System (INIS)

    Qiu, Xunlin

    2010-01-01

    Polymers with strong piezo-, pyro-, and ferroelectricity are attractive for a wide range of applications. In particular, semicrystalline ferroelectric polymers are suitable for a large variety of piezo- and pyroelectric transducers or sensors, while amorphous polymers containing chromophore molecules are particularly interesting for photonic devices. Recently, a new class of polymer materials has been added to this family: internally charged cellular space-charge polymer electrets (so-called “ferroelectrets”), whose piezoelectricity can be orders of magnitude higher than that of conventional ferroelectric polymers. Suitable patterning of these materials leads to improved or unusual macroscopic piezo-, pyro-, and ferroelectric or nonlinear optical properties that may be particularly useful for advanced transducer or waveguide applications. In the present paper, the piezo-, pyro-, and ferroelectricity of poled polymers is briefly introduced, an overview on the preparation of polymer electrets with patterned piezo-, pyro-, and ferroelectricity is provided and a survey of selected applications is presented.

  2. Feasibility study for the development of a pyro starter

    NARCIS (Netherlands)

    Hong, M.; Welland, W.; Bouquet, F.; Lee, S.Y.

    2009-01-01

    Pyro starters can play a role as turbopump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start up. For such a purpose, the pyro starters supply a flow of combustion gases with a relatively low flame temperature to the turbines. A

  3. Research and development of pyro-reprocessing and its world status

    International Nuclear Information System (INIS)

    Inoue, Tadashi

    2005-01-01

    The next generation fuel cycle requires a strong resistance of nuclear proliferation and lightening the environmental burden as well as safety and economic advantage. The pyro-reprocessing technology satisfies such kinds of requirements. Central Research Institute of Electric Power Industry, CRIEPI, has been involving the development of metal fuel cycle integrated pyro-reprocessing with metal-electrorefining and metal fuel fast reactor since 1986. The study on pyro-processing technology of spent MOX fuel from LWR has been also started. Based on the fast that metal-electrorefining does not produce pure plutonium but transuranium elements, irradiation experiment of metal fuel with minor actinides is carried out by use of Phenix Fast Reactor in France. This article reports an overview of pyro-reprocessing and the present status of its research and development. The R and D activity proceeds to the process verification by use of genuine material and the development of engineering model of the process after finishing the verification of elemental technology. Irradiation study of metal fuel will be started by use of JOYO Fast Reactor as well as Phenix Fast Reactor. The target at 2015 is to finish the irradiation programs by both reactors and to demonstrate the pyro-process flow and related technologies by use of irradiated material. After finishing this stage, we expect to be technically feasible to design a pyro-process facility with a throughput of several tones of spent fuels. While R and D on pyro-technology has started initially in the U.S. and followed by CRIEPI, the several activities, currently, are followed in European and Asian nations. The engineering installation of electrochemical reduction successfully achieved by uranium test with 20 kg/batch and the construction of hot cell for handling a 20 kg/batch spent fuel finished in the Korean Atomic Energy Research Institute, KAERI. China has started R and D on metal fuel fast reactor and pyro-reprocessing as a

  4. Evaluation of Spent Fuel Recycling Scenario using Pyro-SFR related System

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Sang Ji; Kim, Young Jin

    2014-01-01

    It is needed to validate whether the recycling scenario connecting pyro-processing and sodium-cooled fast reactor(SFR) is promising or not. The latest technologies of pyro-processing are applied to SFR and the recycling scenario is evaluated through the SFR's performance analysis. The analyzed SFR is KALIMER-600 TRU burner which purpose is to transmute transuranics (TRU). National policy of CANDU SF management has not been decided yet. However, the stored quantity of this SF is large enough not to be neglected. So this study includes additionally the recycling scenario of CANDU SF. Adopting the mass ratio of TRU and RE recovered in pyro-processing is 4 to 1 on PWR SF recycling, the sodium void reactivity is higher than design basis of metal fuel. So the current pyro-processing technology is may not be acceptable. If pyro-processing technology of CANDU SF is assumed to be the same as PWR's case, CANDU recycling scenario is acceptable. Transmutation performance is worse than PWR's, while the sodium void reactivity is within design limit

  5. Proliferation resistance assessment of pyro processing

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, E. H.; Ko, W. I.; Kim, H. D. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    In 2002, world experts gathered and defined the term proliferation resistance as 'the characteristic of a nuclear energy system that impedes the diversion or undeclared production of nuclear material, or misuse of technology, by State in order to acquire nuclear weapons or other nuclear explosive devices.' The same report also defines the following terms: Intrinsic barriers (technical features) of proliferation resistance are features that result from the technical design of nuclear energy systems, including those that facilitate the implementation of extrinsic measures. Extrinsic barriers (institutional measures) of proliferation resistance are features that result from the decisions and undertakings of states related to nuclear energy system. Intrinsic barriers are further divided into material barriers.the 'intrinsic, or inherent, qualities of materials that reduce the inherent desirability or attractiveness of the material as an explosive' and technical barriers. The 'intrinsic technical lements of the fuel cycle, its facilities, processes, and equipment that serve to make it difficult to gain access to materials and/or to use or misuse facilities to obtain weapons usable materials.' Material barriers include isotopic, chemical, radiological, mass and bulk, and detectability, whereas technical barriers include facility unattractiveness, accessibility, available fissile mass, detectability of and time required for diversion, and skills, expertise, and knowledge. Assessing the proliferation resistance of pyro processing is meaningful only when compared with other processes. This paper attempts to discuss the features of pyro processing by comparing it with direct disposal and aqueous separation processes from a proliferation resistance viewpoint.

  6. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  7. Enhanced Performance of a Self-Powered Organic/Inorganic Photodetector by Pyro-Phototronic and Piezo-Phototronic Effects.

    Science.gov (United States)

    Peng, Wenbo; Wang, Xingfu; Yu, Ruomeng; Dai, Yejing; Zou, Haiyang; Wang, Aurelia C; He, Yongning; Wang, Zhong Lin

    2017-06-01

    Self-powered photodetectors (PDs) have long been realized by utilizing photovoltaic effect and their performances can be effectively enhanced by introducing the piezo-phototronic effect. Recently, a novel pyro-phototronic effect is invented as an alternative approach for performance enhancement of self-powered PDs. Here, a self-powered organic/inorganic PD is demonstrated and the influences of externally applied strain on the pyro-phototronic and the photovoltaic effects are thoroughly investigated. Under 325 nm 2.30 mW cm -2 UV illumination and at a -0.45% compressive strain, the PD's photocurrent is dramatically enhanced from ≈14.5 to ≈103 nA by combining the pyro-phototronic and piezo-phototronic effects together, showing a significant improvement of over 600%. Theoretical simulations have been carried out via the finite element method to propose the underlying working mechanism. Moreover, the pyro-phototronic effect can be introduced by applying a -0.45% compressive strain to greatly enhance the PD's response to 442 nm illumination, including photocurrent, rise time, and fall time. This work provides in-depth understandings about the pyro-phototronic and the piezo-phototronic effects on the performances of self-powered PD to light sources with different wavelengths and indicates huge potential of these two effects in optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preliminary Evaluation on Characteristics of Waste from Pyro-processing (FS v5.1)

    International Nuclear Information System (INIS)

    Kim, In-Young; Choi, Heui-Joo

    2016-01-01

    In this study, characteristic of waste from pyro-processing which based on material balance FS v5.1 is evaluated for revising of A-KRS concept. To reduce volume and toxicity of PWR SNFs, the P and T Technology using pyro-processing and SFR is under development in KAERI. In accordance with this R and D, the A-KRS was developed by KAERI for disposal of waste from pyro-processing. After A-KRS concept development, material balance has been revised and characteristics of waste have been changed. To solve impending saturation of storage capacity of NPP sites, national policy on SNF management seems to be determined shortly. Demand on detailed analysis on impact of P and T using pyro-processing and SFR as base data is increasing. To compare direct disposal scenario to the P and T scenario using pyro-processing and SFR, updating of A-KRS reflecting amendment of material balance is required. In this study, characteristic of waste from pyro-processing which based on material balance FS v5.1 is evaluated. Every 15 types of outputs generated from pyro-processing are evaluated. Great reduction can be achieved by complete reuse of U/TRU/RE in SFR, because most of decay heat, radioactivity and radiotoxicity are generated from U/TRU/RE ingot. Within about 300 years, the fly ash filter containing Cs, Sr containing salt waste are important waste in perspective of decay heat and radioactivity. Importance of RE containing salt waste reduced. Management of hold-ups must be clarified because hold-ups take large portion of decay heat, radioactivity in the material balance FS v5.1

  9. Preliminary Evaluation on Characteristics of Waste from Pyro-processing (FS v5.1)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Young; Choi, Heui-Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, characteristic of waste from pyro-processing which based on material balance FS v5.1 is evaluated for revising of A-KRS concept. To reduce volume and toxicity of PWR SNFs, the P and T Technology using pyro-processing and SFR is under development in KAERI. In accordance with this R and D, the A-KRS was developed by KAERI for disposal of waste from pyro-processing. After A-KRS concept development, material balance has been revised and characteristics of waste have been changed. To solve impending saturation of storage capacity of NPP sites, national policy on SNF management seems to be determined shortly. Demand on detailed analysis on impact of P and T using pyro-processing and SFR as base data is increasing. To compare direct disposal scenario to the P and T scenario using pyro-processing and SFR, updating of A-KRS reflecting amendment of material balance is required. In this study, characteristic of waste from pyro-processing which based on material balance FS v5.1 is evaluated. Every 15 types of outputs generated from pyro-processing are evaluated. Great reduction can be achieved by complete reuse of U/TRU/RE in SFR, because most of decay heat, radioactivity and radiotoxicity are generated from U/TRU/RE ingot. Within about 300 years, the fly ash filter containing Cs, Sr containing salt waste are important waste in perspective of decay heat and radioactivity. Importance of RE containing salt waste reduced. Management of hold-ups must be clarified because hold-ups take large portion of decay heat, radioactivity in the material balance FS v5.1.

  10. Pyro-oxidation of plutonium spent salts with sodium carbonate

    International Nuclear Information System (INIS)

    Bourges, G.; Godot, A.; Valot, C.; Devillard, D.

    2001-01-01

    The purification of plutonium generates spent salts, which are temporarily stored in a nuclear building. A development programme for pyrochemical treatment is in progress to stabilize and concentrate these salts in order to reduce the quantities for long-term disposal. The treatment, inspired by work previously done by LANL, consists of a pyro-oxidation of the salt with sodium carbonate to convert the actinides into oxides, then of a vacuum distillation to separate the oxides from the volatile salt matrix. Pyro-oxidation of NaCl/KCl base spent salts first produces a 'black salt' which contains more than 97% of the initial actinides. XRD analyses indicate PuO 2 as major plutonium species and sodium plutonates or plutonium sub-oxides PuO 2-x can also be identified. Next appears a 'white salt' containing less than 500 ppm of plutonium, which meets the operational criterion for LLW discard. For these salts, the pyro-oxidation process in and of itself is expected to reduce the quantities to be stored on-site by more than one-third. The pyro-oxidation of CaCl 2 /NaCl base americium extraction salts leads to oxides PuO 2 and probably AmO 2 , but the yield of concentration in the black salt is lower and the white salt cannot be discarded as LLW. During vacuum distillation, excess carbonate can dissociate and damage the efficiency of the process. Appropriate chlorine sparging at the end of the oxidation can eliminate this carbonate. (authors)

  11. Laser Pyro System Standardization and Man Rating

    Science.gov (United States)

    Brown, Christopher W.

    2004-01-01

    This viewgraph presentation reviews an X-38 laser pyro system standardization system designed for a new manned rated program. The plans to approve this laser initiation system and preliminary ideas for this system are also provided.

  12. Multimedia environmental chemical partitioning from molecular information

    International Nuclear Information System (INIS)

    Martinez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert

    2010-01-01

    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q 2 ≥ 0.90 both for air and water, which respectively dropped to q 2 ∼ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  13. Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study

    International Nuclear Information System (INIS)

    Zhai, Qingqing; Yang, Jun; Zhao, Yu

    2014-01-01

    Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator's variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one

  14. Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2015-06-01

    The benefits of partitioning and transmutation (P and T) have now been established worldwide and, as a result, many countries are pursuing R and D programmes to advance the technologies associated with P and T. In this context, the OECD Nuclear Energy Agency (NEA) has organised a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. The OECD Nuclear Energy Agency Information Exchange Meeting on Actinides and Fission Products Partitioning and Transmutation is a forum for experts to present and discuss the state-of-the-art development in the field of P and T. Thirteen meetings have been organised so far and held in Japan, the United States, France, Belgium, Spain, the Republic of Korea and the Czech Republic. This 13. meeting was hosted by Seoul National University (Seoul, Republic of Korea) and was organised in co-operation with the International Atomic Energy Agency (IAEA) and the European Community (EC). The meeting covered strategic and scientific developments in the field of P and T such as: fuel cycle strategies and transition scenarios, the role of P and T in the potential evolution of nuclear energy as part of the future energy mix; radioactive waste management strategies; transmutation fuels and targets; advances in pyro and aqueous separation processes; P and T specific technology requirements (materials, spallation targets, coolants, etc.); transmutation systems: design, performance and safety; impact of P and T on the fuel cycle; fabrication, handling and transportation of transmutation fuels. A total of 103 presentations (39 oral and 64 posters) were discussed among the 110 participants from 19 countries and 2 international organisations. The meeting consisted of one plenary session where national and international programmes were presented followed by 5 technical sessions: - Fuel Cycle Strategies and Transition

  15. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  16. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.; MacDonald, Colin B.; Ruuth, Steven J.

    2013-01-01

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  17. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    Science.gov (United States)

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  18. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  19. Examination of chemical elements partitioning between the γ and γ′ phases in CMSX-4 superalloy using EDS microanalysis and electron tomography

    Directory of Open Access Journals (Sweden)

    Kruk Adam

    2014-01-01

    Full Text Available In the present study, the partition of chemical elements between γ and γ′ phases in CMSX-4 was investigated using EDS microanalysis and electron tomography (FIB-SEM and STEM-EDS methods. The investigation has been performed for the superalloy after standard heat treatment and the ex-service CMSX-4 turbine blade after operation for 12 700 hours and 200 starts in industrial gas turbine. The results have shown that Co, Cr and Re partition to the γ matrix, Ni and W are present in both γ and γ′ phases, while Al, Ti and Ta strongly partition to the γ′ phase. The results show the abilities of new analytical electron microscopy and electron tomography methods to characterize the microstructure and chemical composition of single crystal superalloys at the nanoscale.

  20. Development of partitioning method : cold experiment with partitioning test facility in NUCEF (I)

    International Nuclear Information System (INIS)

    Yamaguchi, Isoo; Morita, Yasuji; Kondo, Yasuo

    1996-03-01

    A test facility in which about 1.85 x 10 14 Bq of high-level liquid waste can be treated has been completed in 1994 at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) for research and development of Partitioning Method. The outline of the partitioning test facility and support equipments for it which were design terms, constructions, arrangements, functions and inspections were given in JAERI-Tech 94-030. The present report describes the results of the water transfer test and partitioning tests, which are methods of precipitation by denitration, oxalate precipitation, solvent extraction, and adsorption with inorganic ion exchanger, using nitric acid to master operation method of the test facility. As often as issues related to equipments occurred during the tests, they were improved. As to issues related to processes such as being stopped up of columns, their measures of solution were found by testing in laboratories. They were reflected in operation of the Partitioning Test Facility. Their particulars and improving points were described in this report. (author)

  1. The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals.

    Science.gov (United States)

    Abraham, Michael H; Gola, Joelle M R; Ibrahim, Adam; Acree, William E; Liu, Xiangli

    2014-07-01

    There is considerable interest in the blood-tissue distribution of agrochemicals, and a number of researchers have developed experimental methods for in vitro distribution. These methods involve the determination of saline-blood and saline-tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution. The authors set out equations for gas-tissue and blood-tissue distribution, for partition from water into skin and for permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equations can be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivo blood-tissue distribution where available. The predictions require no more than simple arithmetic. The present method represents a much easier and much more economic way of estimating blood-tissue partitions than the method that uses saline-blood and saline-tissue partitions. It has the added advantages of yielding the required in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin and permeation from water through skin. © 2013 Society of Chemical Industry.

  2. A Deterministic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae; Choi, Jong Won

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called 'A-KRS', in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

  3. Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris

    International Nuclear Information System (INIS)

    O'Connor, Isabel A.; Golsteijn, Laura; Hendriks, A. Jan

    2016-01-01

    Marine plastic debris are found worldwide in oceans and coastal areas. They degrade only slowly and contain chemicals added during manufacture or absorbed from the seawater. Therefore, they can pose a long-lasting contaminant source and potentially transfer chemicals to marine organisms when ingested. In order to assess their risk, the contaminant concentration in the plastics needs to be estimated and differences understood. We collected from literature plastic water partition coefficients of various organic chemicals for seven plastic types: polydimethylsiloxane (PDMS), high-density, low-density and ultra-high molecular weight polyethylene (LDPE, HDPE, UHMWPE), polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC). Most data was available for PDMS (1060) and LDPE (220), but much less for the remaining plastics (73). Where possible, regression models were developed and the partitioning was compared between the different plastic types. The partitioning of chemicals follows the order of LDPE ≈ HDPE ≥ PP > PVC ≈ PS. Data describing the impact of weathering are urgently needed. - Highlights: • Comparison of organic chemicals partitioning into seven plastic types • Linear correlation between plastic-water partition coefficient K pw and K ow • More data is needed for polypropylene, polystyrene and polyvinyl chloride. • In all plastic types, most K pw were similar to/smaller than the corresponding K ow .

  4. A procedure to create isoconcentration surfaces in low-chemical-partitioning, high-solute alloys

    International Nuclear Information System (INIS)

    Hornbuckle, B.C.; Kapoor, M.; Thompson, G.B.

    2015-01-01

    A proximity histogram or proxigram is the prevailing technique of calculating 3D composition profiles of a second phase in atom probe tomography. The second phase in the reconstruction is delineated by creating an isoconcentration surface, i.e. the precipitate–matrix interface. The 3D composition profile is then calculated with respect to this user-defined isoconcentration surface. Hence, the selection of the correct isoconcentration surface is critical. In general, the preliminary selection of an isoconcentration value is guided by the visual observation of a chemically partitioned second phase. However, in low-chemical -partitioning systems, such a visual guide is absent. The lack of a priori composition information of the precipitate phase may further confound the issue. This paper presents a methodology of selecting an appropriate elemental species and subsequently obtaining an isoconcentration value to create an accurate isoconcentration surface that will act as the precipitate–matrix interface. We use the H-phase precipitate in the Ni–Ti–Hf shape memory alloy as our case study to illustrate the procedure. - Highlights: • A procedure for creating accurate isoconcentration surface for low-chemical-partitioning, high-solute alloys. • Determine the appropriate element to create the isosconcentration surface. • Subsequently identify the accurate isoconcentration value to create an isoconcentration surface.

  5. A novel partitioning method for block-structured adaptive meshes

    Science.gov (United States)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  6. A novel partitioning method for block-structured adaptive meshes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-07-15

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  7. Dominant partition method. [based on a wave function formalism

    Science.gov (United States)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  8. A passive dosing method to determine fugacity capacities and partitioning properties of leaves

    DEFF Research Database (Denmark)

    Bolinius, Damien Johann; Macleod, Matthew; McLachlan, Michael S.

    2016-01-01

    The capacity of leaves to take up chemicals from the atmosphere and water influences how contaminants are transferred into food webs and soil. We provide a proof of concept of a passive dosing method to measure leaf/polydimethylsiloxane partition ratios (Kleaf/PDMS) for intact leaves, using...... polychlorinated biphenyls (PCBs) as model chemicals. Rhododendron leaves held in contact with PCB-loaded PDMS reached between 76 and 99% of equilibrium within 4 days for PCBs 3, 4, 28, 52, 101, 118, 138 and 180. Equilibrium Kleaf/PDMS extrapolated from the uptake kinetics measured over 4 days ranged from 0...... the variability in sorptive capacities of leaves that would improve descriptions of uptake of chemicals by leaves in multimedia fate models....

  9. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Mullabaev, Albert; Tkacheva, Olga; Shishkin, Vladimir; Kovrov, Vadim; Zaikov, Yuriy; Sukhanov, Leonid; Mochalov, Yuriy

    2018-03-01

    Crystallization temperatures (liquidus and solidus) in the LiCl-Li2O and (LiCl-KCl)-Li2O systems with the KCl content of 10 and 20 mol.% were obtained with independent methods of thermal analysis using cooling curves, isothermal saturation, and differential scanning calorimetry. The linear sweep voltammetry was applied to control the time of the equilibrium establishment in the molten system after the Li2O addition, which depended on the composition of the base melt and the concentration of Li2O. The fragments of the binary LiCl-Li2O and quazi-binary [LiCl-KCl(10 mol.%)]-Li2O and [LiCl-KCl(20 mol.%)]-Li2O phase diagrams in the Li2O concentration range from 0 to 12 mol.% were obtained. The KCl presence in the LiCl-KCl-Li2O molten mixture in the amount of 10 and 20 mol.% reduces the liquidus temperature by 30 and 80°, respectively, but the region of the homogeneous molten state of the system is considerably narrowed, which complicates its practical application. The Li2O solubility in the molten LiCl, LiCl-KCl(10 mol.%) and LiCl-KCl(20 mol.%) decreases with increasing the KCl content and is equal to 11.5, 7.7 and 3.9 mol.% at 650°С, respectively. The LiCl-KCl melt with 10 mol.% KCl can be recommended for practical use as a medium for the SNF pyro-chemical reprocessing at temperature below 700 °C.

  10. Approximation methods for the partition functions of anharmonic systems

    International Nuclear Information System (INIS)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations

  11. Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.

    Science.gov (United States)

    Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe

    2011-10-01

    The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Pyro: A Python-Based Versatile Programming Environment for Teaching Robotics

    Science.gov (United States)

    Blank, Douglas; Kumar, Deepak; Meeden, Lisa; Yanco, Holly

    2004-01-01

    In this article we describe a programming framework called Pyro, which provides a set of abstractions that allows students to write platform-independent robot programs. This project is unique because of its focus on the pedagogical implications of teaching mobile robotics via a top-down approach. We describe the background of the project, its…

  13. A Probabilistic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

  14. A conjugate gradient method for the spectral partitioning of graphs

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    1997-01-01

    The partitioning of graphs is a frequently occurring problem in science and engineering. The spectral graph partitioning method is a promising heuristic method for this class of problems. Its main disadvantage is the large computing time required to solve a special eigenproblem. Here a simple and

  15. A study on development of Pyro process integrated inactive demonstration facility

    International Nuclear Information System (INIS)

    Cho, I.; Lee, E.; Choung, W.; You, G.; Kim, H.

    2010-10-01

    Since 2007, the Pride (Pyro process integrated inactive demonstration facility) has been developed to demonstrate the integrated engineering-scale pyro processing using natural uranium with surrogate materials. In this paper, safety evaluation on hypothetical accident case is carried out to ensure the release of radioactivity being negligible to the environment and the performance of indoor argon flow for the argon cell has been investigated by means of CFD analysis. The worst accident case, even in the firing of the all uranium metal in argon cell, cause dose rate are negligible comparing to 0.25 Sv of effective dose rate to whole body or 3 Sv of equivalent dose rate to the thyroid preliminary CFD analyses show the temperature and velocity distribution of argon cell, and give the information to change the argon exchange rate and displace the argon supply or exhaust duct. CFD will allow design change and improvements in ventilation systems at lower cost. (Author)

  16. The Development of Pyro Human Resource Information System

    International Nuclear Information System (INIS)

    Jung, M. S.; Kim, S. K.; Ko, W. I.

    2012-01-01

    This paper aims to provide the current status of the development of a human resource information system. Establishing an expert information system helps readily provide the personal information of international and local pyroprocess experts who are currently conducting research at institutes. The information system offers a data processing environment in which users can easily access the necessary information online for a prompt search. Setting up this online networking enables us to easily obtain the personal information of pyro-experts, if necessary, and to provide the basic materials to seek an efficient system of technical cooperation. As pyro-technology presently falls under a high-tech field in the area of back-end fuel cycle, the research is under way at some advanced nuclear nations such as the United States, Korea, and Japan: therefore, the cooperation of experts from home and abroad is critical, helping gain maximum achievements through minimum investments and personnel. Since many efforts should be preceded to secure original technology in the field of fair technology and pyrosystem engineering, we can attain the research goal efficiently if other advanced nuclear nations have already obtained advanced technology, by efficiently realizing the goal through the benchmarking of the necessary technology. To form a cooperative system for such experts, we should know, above all, what research experts are conducting in certain fields at certain laboratories of certain countries

  17. Study on remain actinides recovery in pyro reprocessing

    International Nuclear Information System (INIS)

    Suharto, Bambang

    1996-01-01

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  18. Mapping Pesticide Partition Coefficients By Electromagnetic Induction

    Science.gov (United States)

    A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...

  19. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  20. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    Science.gov (United States)

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  1. New parallel SOR method by domain partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Dexuan [Courant Inst. of Mathematical Sciences New York Univ., NY (United States)

    1996-12-31

    In this paper, we propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning together with an interprocessor data-communication technique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR and the SOR using the row-wise ordering have the same convergence rate. However, in general, the ordering used in PSOR may not be {open_quote}consistently ordered{close_quotes}. So, there is a need to analyze the convergence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method can have the same asymptotic rate of convergence as the corresponding sequential SOR method for a wide class of linear systems in which the matrix is {open_quotes}consistently ordered{close_quotes}. Finally, we demonstrate the parallel performance of the PSOR method on four different message passing multiprocessors (a KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point Red-Black and four-color SOR methods.

  2. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    Science.gov (United States)

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  3. Estimation of the Waste Mass from a Pyro-Process of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo (and others)

    2008-04-15

    Pyro-Process is now developing to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a nuclear power plant. In this situation, it is strongly required for the estimation of expected masses and their physical properties of the wastes. In this report, the amount of wastes and their physical properties are presupposed through some assumptions in regard to 10MTHM of Oxide Fuel with 4.5wt% U-235, 45,000 MWD/MTU, and 5yrs cooling. The produced wastes can be divided into three categories such as metal, CWF(Ceramic Waste Form), and VWF(Vitrified Waste Form). The 42 nuclrides in a spent nuclear fuel are distributed into the waste categories on the their physical and thermodynamic properties when they exist in metal, oxide, or chloride forms. The treated atomic groups are Uranium, TRU, Noble metal, Rare earth, Alkali metal, Halogens, and others. The mass of each waste is estimated by the distribution results. The off-gas waste is included into a CWF. The heat generations by the wastes in this Pyro-Process are calculated using a ORIGEN-ARP program. It is possible to estimate the amounts of wastes and their heat generation rates in this Pyro-Process analysis. These information are very helpful to design a waste container and its quantity also can be determined. The number of container and its heat generation rate will be key factor for the construction of interim storage facilities including a underground disposal site.

  4. Pyro-electrification of polymer membranes for cell patterning

    Energy Technology Data Exchange (ETDEWEB)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P. [National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) ‘E. Caianiello’, Via Campi Flegrei 34, 80078 Pozzuoli (Italy)

    2016-05-18

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it’s possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  5. Nested partitions method, theory and applications

    CERN Document Server

    Shi, Leyuan

    2009-01-01

    There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...

  6. Chemical separations schemes for partitioning and transmutation systems

    International Nuclear Information System (INIS)

    Laidler, J.

    2002-01-01

    In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, 99 Tc and 129 I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining

  7. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  8. A chemical basis for the partitioning of radionuclides in incinerator operation

    International Nuclear Information System (INIS)

    Burger, L.L.

    1995-01-01

    Incineration as a method of treating radioactive or mixed waste is attractive because of volume reduction, but may result in high concentrations of some hazardous components. For safety reasons during operation, and because of the environmental impact of the plant, it is important to know how these materials partition between the furnace slay, the fly ash, and the stack emission. The chemistry of about 50 elements is discussed and through consideration of high temperature thermodynamic equilibria, an attempt is made to provide a basis for predicting how various radionuclides and heavy metals behave in a typical incinerator. The chemistry of the individual elements is first considered and a prediction of the most stable chemical species in the typical incinerator atmosphere is made. The treatment emphasizes volatility and the parameters considered are temperature, acidity, oxygen, sulfur, and halogen content, and the presence of several other key non-radioactive elements. A computer model is used to calculate equilibrium concentrations of many species in several systems at temperatures ranging from 500 to 1600 degrees K. It is suggested that deliberate addition of various feed chemicals can have a major impact on the fate of many radionuclides and heavy metals. Several problems concerning limitations and application of the data are considered

  9. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining 'slow stirring' and solid phase micro extraction

    NARCIS (Netherlands)

    Jonker, Michiel T O

    Octanol-water partition coefficients (Kow ) are widely used in fate and effects modelling of chemicals. Still, high quality experimental Kow data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and

  10. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe

    2016-01-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...

  11. Modeling water and hydrogen networks with partitioning regeneration units

    Directory of Open Access Journals (Sweden)

    W.M. Shehata

    2015-03-01

    Full Text Available Strict environment regulations in chemical and refinery industries lead to minimize resource consumption by designing utility networks within industrial process plants. The present study proposed a superstructure based optimization model for the synthesis of water and hydrogen networks with partitioning regenerators without mixing the regenerated sources. This method determines the number of partitioning regenerators needed for the regeneration of the sources. The number of the regenerators is based on the number of sources required to be treated for recovery. Each source is regenerated in an individual partitioning regenerator. Multiple regeneration systems can be employed to achieve minimum flowrate and costs. The formulation is linear in the regenerator balance equations. The optimized model is applied for two systems, partitioning regeneration systems of the fixed outlet impurity concentration and partitioning regeneration systems of the fixed impurity load removal ratio (RR for water and hydrogen networks. Several case studies from the literature are solved to illustrate the ease and applicability of the proposed method.

  12. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  13. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miae [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Heo, Jong, E-mail: jheo@postech.ac.kr [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Department of Materials Engineering, Adama Science and Technology University (ASTU), PO Box 1888, Adama (Ethiopia)

    2015-12-15

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2}] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca–silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca–silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10{sup −6} g m{sup −2} for Ce ion and 2.19·10{sup −6} g m{sup −2} for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing. - Highlights: • Glass-ceramic wasteforms containing Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2} crystals were synthesized to immobilize lanthanide wastes. • Maximum lanthanide oxide waste loading was >26.8 wt.%. • Ce and Nd ions were highly partitioned inside Ca–Nd–silicate crystals compared to glass matrix. • Amounts of Ce and Nd ions released in the material characterization center-type 1 were below the detection limit (0.1 ppb). • Normalized release values performed by a PCT were 2.64• 10{sup −6} g m{sup −2} for Ce ions and 2.19• 10{sup −6} g m{sup −2} for Nd ions.

  14. Evaluation of alternative approaches for measuring n-octanol/water partition coefficients for methodologically challenging chemicals (MCCs)

    Science.gov (United States)

    Measurements of n-octanol/water partition coefficients (KOW) for highly hydrophobic chemicals, i.e., greater than 108, are extremely difficult and are rarely made, in part because the vanishingly small concentrations in the water phase require extraordinary analytical sensitivity...

  15. Development of polyparameter linear free energy relationship models for octanol-air partition coefficients of diverse chemicals.

    Science.gov (United States)

    Jin, Xiaochen; Fu, Zhiqiang; Li, Xuehua; Chen, Jingwen

    2017-03-22

    The octanol-air partition coefficient (K OA ) is a key parameter describing the partition behavior of organic chemicals between air and environmental organic phases. As the experimental determination of K OA is costly, time-consuming and sometimes limited by the availability of authentic chemical standards for the compounds to be determined, it becomes necessary to develop credible predictive models for K OA . In this study, a polyparameter linear free energy relationship (pp-LFER) model for predicting K OA at 298.15 K and a novel model incorporating pp-LFERs with temperature (pp-LFER-T model) were developed from 795 log K OA values for 367 chemicals at different temperatures (263.15-323.15 K), and were evaluated with the OECD guidelines on QSAR model validation and applicability domain description. Statistical results show that both models are well-fitted, robust and have good predictive capabilities. Particularly, the pp-LFER model shows a strong predictive ability for polyfluoroalkyl substances and organosilicon compounds, and the pp-LFER-T model maintains a high predictive accuracy within a wide temperature range (263.15-323.15 K).

  16. Restoring canonical partition functions from imaginary chemical potential

    Science.gov (United States)

    Bornyakov, V. G.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2018-03-01

    Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions Zn(T) are coefficients of this expansion. Using various methods we study properties of Zn(T). At the last step we perform cubic spline for temperature dependence of Zn(T) at fixed n and compute baryon number susceptibility χB/T2 as function of temperature. After that we compute numerically ∂χ/∂T and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the 163 × 4 lattice with mπ/mρ = 0.8 as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line Tc(µ2B) = Tc(C-ĸµ2B/T2c) with ĸ = -0.0453 ± 0.0099.

  17. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    2010-04-01

    develop element-specific, highly durable, materials for solidification and final disposal of residual actinides; To develop advanced characterisation methods for measurement of actinide hold-up in plants for the purpose of fissile material tracking as needed for nuclear material safeguards and criticality control; To establish element specific partitioning criteria to achieve a radiotoxicity reduction of about a factor of 100; To define proliferation resistance attributes for the processes and products; To compare advantages and disadvantages of aqueous and pyro-partitioning processes; and To assess the benefits of partitioning processes by reducing public radiation exposure, decreasing final repository capacity, reducing necessity of uranium mining and, consequently, diminishing the impact of uranium mill tailings

  18. Pyro shock simulation: Experience with the MIPS simulator

    Science.gov (United States)

    Dwyer, Thomas J.; Moul, David S.

    1988-01-01

    The Mechanical Impulse Pyro Shock (MIPS) Simulator at GE Astro Space Division is one version of a design that is in limited use throughout the aerospace industry, and is typically used for component shock testing at levels up to 10,000 response g's. Modifications to the force imput, table and component boundary conditions have allowed a range of test conditions to be achieved. Twelve different designs of components with weights up to 23 Kg are in the process or have completed qualification testing in the Dynamic Simulation Lab at GE in Valley Forge, Pa. A summary of the experience gained through the use of this simulator is presented as well as examples of shock experiments that can be readily simulated at the GE Astro MIPS facility.

  19. In-situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles.

    Science.gov (United States)

    Wang, Chong-Min; Genc, Arda; Cheng, Huikai; Pullan, Lee; Baer, Donald R; Bruemmer, Stephen M

    2014-01-14

    Oxidation of alloy often involves chemical partition and injection of vacancies. Chemical partition is the consequence of selective oxidation, while injection of vacancies is associated with the differences of diffusivity of cations and anions. It is far from clear as how the injected vacancies behave during oxidation of metal. Using in-situ transmission electron microscopy, we captured unprecedented details on the collective behavior of injected vacancies during oxidation of metal, featuring an initial multi-site oxide nucleation, vacancy supersaturation, nucleation of a single cavity, sinking of vacancies into the cavity and accelerated oxidation of the particle. High sensitive energy dispersive x-ray spectroscopy mapping reveals that Cr is preferentially oxidized even at the initial oxidation, leading to a structure that Cr oxide is sandwiched near the inner wall of the hollow particle. The work provides a general guidance on tailoring of nanostructured materials involving multi-ion exchange such as core-shell structured composite nanoparticles.

  20. Further Stable methods for the calculation of partition functions

    International Nuclear Information System (INIS)

    Wilson, B G; Gilleron, F; Pain, J

    2007-01-01

    The extension to recursion over holes of the Gilleron and Pain method for calculating partition functions of a canonical ensemble of non-interacting bound electrons is presented as well as a generalization for the efficient computation of collisional line broadening

  1. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  2. Current status on development of P and T in Korea

    International Nuclear Information System (INIS)

    Eung Ho, Kim

    2007-01-01

    According to the long-term plan for nuclear technology development in Korea, KAERI is conducting an R and D project on transmutation with the objective of key technology development in the areas of partitioning based on a pyro-process and transmutation system. The R and D activities for the partitioning and transmutation of long-lived radionuclides are introduced in this work. The study on partitioning is focused on the development of a pyro-process. The major experimental items of the partitioning include an electroreduction for a reduction of oxide fuel into metal, an electrorefining for a uranium recovery from the obtained metal, an electrowinning for an investigation of the thermodynamic behaviour of actinide mixture on a liquid metal cathode and a molten salt waste treatment such as the removal of fission products from waste salts. In particular, KAERI is presently developing a new method to, in a consecutive manner, remove fission products resulting from pyro-processing units in order to minimise the amount of waste salt to be disposed of. As for the transmutation system, we have studied, up to now, an accelerator-driven transmutation system, which is a subcritical reactor connected to a proton accelerator. Details on the design and the transmutation performance of the ADS system being studied at KAERI are presented, and an experimental scale facility related to the corrosion loop is introduced. In addition, a development plan of Gen IV-SFR being recently considered as a burner for transmutation of long-lived nuclides is discussed in this work. (author)

  3. Separation of soil respiration: a site-specific comparison of partition methods

    Science.gov (United States)

    Comeau, Louis-Pierre; Lai, Derrick Y. F.; Jinglan Cui, Jane; Farmer, Jenny

    2018-06-01

    Without accurate data on soil heterotrophic respiration (Rh), assessments of soil carbon (C) sequestration rate and C balance are challenging to produce. Accordingly, it is essential to determine the contribution of the different sources of the total soil CO2 efflux (Rs) in different ecosystems, but to date, there are still many uncertainties and unknowns regarding the soil respiration partitioning procedures currently available. This study compared the suitability and relative accuracy of five different Rs partitioning methods in a subtropical forest: (1) regression between root biomass and CO2 efflux, (2) lab incubations with minimally disturbed soil microcosm cores, (3) root exclusion bags with hand-sorted roots, (4) root exclusion bags with intact soil blocks and (5) soil δ13C-CO2 natural abundance. The relationship between Rh and soil moisture and temperature was also investigated. A qualitative evaluation table of the partition methods with five performance parameters was produced. The Rs was measured weekly from 3 February to 19 April 2017 and found to average 6.1 ± 0.3 Mg C ha-1 yr-1. During this period, the Rh measured with the in situ mesh bags with intact soil blocks and hand-sorted roots was estimated to contribute 49 ± 7 and 79 ± 3 % of Rs, respectively. The Rh percentages estimated with the root biomass regression, microcosm incubation and δ13C-CO2 natural abundance were 54 ± 41, 8-17 and 61 ± 39 %, respectively. Overall, no systematically superior or inferior Rs partition method was found. The paper discusses the strengths and weaknesses of each technique with the conclusion that combining two or more methods optimizes Rh assessment reliability.

  4. Optimisation-Based Solution Methods for Set Partitioning Models

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel

    The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...

  5. Structural characteristics and physical properties of diortho(pyro)silicate crystals of lanthanides yttrium and scandium grown by the Czochralski technique

    Energy Technology Data Exchange (ETDEWEB)

    Anan' eva, G.V.; Karapetyan, V.E.; Korovkin, A.M.; Merkulyaeva, T.I.; Peschanskaya, I.A.; Savinova, I.P.; Feofilov, P.P. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1982-03-01

    Optically uniform monocrystals of diortho (pyro) silicates of lanthanides, yttrium, and scandium were grown by the Czochralski technique. Four structural types of Ln/sub 2/(Si/sub 2/O/sub 7/) crystals were determined by the roentgenographic method. The presence of structural subgroups was also supported by the method of spectroscopic probes. Structural parameters were determined and data on certain physical properties (fusion temperature, density, refractive indices, transparency) of investigated crystals were presented. The generation of induced emission at lambda=1.057 ..mu..m was obtained in La/sub 2/(Si/sub 2/O/sub 7/)-Nd/sup 3 +/ crystal.

  6. Fire Safety Consideration in the Pre-conceptual Design State of Pyro-Facillity

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hong Rae; Seo, Seok Jun; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The government, in order to solve this problem, has organized a public engagement committee and is searching for a solution. To use sustainable nuclear energy, our country is also pursuing research and development of fast breeder reactor and pyroprocessing technology in accordance with the international movement of spent fuel recycling and efforts towards nuclear non-proliferation which is centered on the development and demonstration of recycling spent fuel and fast breeder reactors. Pyro-facility has different features with nuclear power plant. In the pyroprocess, chemical and electrochemical separation were took place in the hot cells and material at risk (MAR) is distributed in many working areas. In this paper, we conducted the fire modeling of hot cells to see the stability of pyrophoric materials which is considered as one of the potential hazardous materials in the main process cell. Based on modeling results, consideration of fire safety pyrofacility will be discussed. We performed preliminary hazard analysis for pyrofacility and summarized potential fire hazard. Pyrophoric material fire is the dominant hazard in the main process hot cell and fire modeling of cable tray in the cell was analyzed to see the stability of pyrophoric materials. Analysis results clearly shows that pyrophoric materials are prone to be affected.

  7. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    Energy Technology Data Exchange (ETDEWEB)

    Kulik, D.; Berner, U.; Curti, E

    2004-03-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  8. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    International Nuclear Information System (INIS)

    Kulik, D.; Berner, U.; Curti, E.

    2004-01-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  9. European Europart integrated project on actinide partitioning

    International Nuclear Information System (INIS)

    Madic, C.; Hudson, M.J.

    2005-01-01

    This poster presents the objectives of EUROPART, a scientific integrated project between 24 European partners, mostly funded by the European Community within the FP6. EUROPART aims at developing chemical partitioning processes for the so-called minor actinides (MA) contained in nuclear wastes, i.e. from Am to Cf. In the case of dedicated spent fuels or targets, the actinides to be separated also include U, Pu and Np. The techniques considered for the separation of these radionuclides belong to the fields of hydrometallurgy and pyrometallurgy, as in the previous FP5 programs named PARTNEW and PYROREP. The two main axes of research within EUROPART will be: The partitioning of MA (from Am to Cf) from high burn-up UO x fuels and multi-recycled MOx fuels; the partitioning of the whole actinide family for recycling, as an option for advanced dedicated fuel cycles (and in connection with the studies to be performed in the EUROTRANS integrated project). In hydrometallurgy, the research is organised into five Work Packages (WP). Four WP are dedicated to the study of partitioning methods mainly based on the use of solvent extraction methods, one WP is dedicated to the development of actinide co-conversion methods for fuel or target preparation. The research in pyrometallurgy is organized into four WP, listed hereafter: development of actinide partitioning methods, study of the basic chemistry of trans-curium elements in molten salts, study of the conditioning of the wastes, some system studies. Moreover, a strong management team will be concerned not only with the technical and financial issues arising from EUROPART, but also with information, communication and benefits for Europe. Training and education of young researchers will also pertain to the project. EUROPART has also established collaboration with US DOE and Japanese CRIEPI. (authors)

  10. Partitioning in P-T concept

    International Nuclear Information System (INIS)

    Zhang Peilu; Qi Zhanshun; Zhu Zhixuan

    2000-01-01

    Comparison of dry- and water-method for partitioning fission products and minor actinides from the spent fuels, and description of advance of dry-method were done. Partitioning process, some typical concept and some results of dry-method were described. The problems fond in dry-method up to now were pointed out. The partitioning study program was suggested

  11. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun; Liu Haiyan [University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Structural Biology, School of Life Sciences (China)], E-mail: hyliu@ustc.edu.cn

    2007-01-15

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the {alpha} and {beta} regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  12. Development of DGR System Concept for Radioactive Waste from Pyro-processing of CANDU SNFs

    International Nuclear Information System (INIS)

    Kim, In Young; Choi, Heui Joo; Lee, Jong Youl; Lee, Minsoo; Kim, Hyeon A

    2016-01-01

    In this study, DGR concept for radioactive waste from pyro-processing of CANDU SNFs is developed. Identical material balance for PWR (MB 2.6.0) and mass ratio of radioactive nuclides to binding material for LiCl-KCl waste is applied to determine specification of waste form, packing/disposal canister. Optimum thermal dimensioning is estimated to be 40 m for disposal tunnel and 8 m for disposal hole pitch through ABAQUS thermal analyses. To reduce volume and toxicity of PWR SNFs, the P and T technology using pyro-processing and SFR is under development in KAERI. CANDU SNFs are not considered as a subject of P and T because of its low fissile content caused by use of natural uranium as a fuel material. However, contention that not only PWR SNFs but also CANDU SNFs must be re-used is raised constantly. To evaluate impact of application of P and T on CANDU SNFs in the perspective of disposal, DGR system concept for radioactive waste from pyroprocessing of CANDU SNFs based on material balance version 2.6.0 is developed in this study. The disposal area is expected to be about 20,800 m 2 for disposal of 842,000 CANDU fuel bundles.

  13. Development of DGR System Concept for Radioactive Waste from Pyro-processing of CANDU SNFs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Choi, Heui Joo; Lee, Jong Youl; Lee, Minsoo; Kim, Hyeon A [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, DGR concept for radioactive waste from pyro-processing of CANDU SNFs is developed. Identical material balance for PWR (MB 2.6.0) and mass ratio of radioactive nuclides to binding material for LiCl-KCl waste is applied to determine specification of waste form, packing/disposal canister. Optimum thermal dimensioning is estimated to be 40 m for disposal tunnel and 8 m for disposal hole pitch through ABAQUS thermal analyses. To reduce volume and toxicity of PWR SNFs, the P and T technology using pyro-processing and SFR is under development in KAERI. CANDU SNFs are not considered as a subject of P and T because of its low fissile content caused by use of natural uranium as a fuel material. However, contention that not only PWR SNFs but also CANDU SNFs must be re-used is raised constantly. To evaluate impact of application of P and T on CANDU SNFs in the perspective of disposal, DGR system concept for radioactive waste from pyroprocessing of CANDU SNFs based on material balance version 2.6.0 is developed in this study. The disposal area is expected to be about 20,800 m{sup 2} for disposal of 842,000 CANDU fuel bundles.

  14. Actinide recycling by pyro process for future nuclear fuel cycle system

    International Nuclear Information System (INIS)

    Inoue, T.

    2001-01-01

    Pyrometallurgical technology is one of the potential devices for the future nuclear fuel cycle. Not only economic advantage but also environmental safety and strong resistance for proliferation are required. So as to satisfy the requirements, actinide recycling applicable to LWR and FBR cycles by pyro-process has been developed over a ten-year period at the CRIEPI. The main technology is electrorefining for U and Pu separation and reductive extraction for TRU separation, which can be applied on oxide fuels through reduction process as well as metal fuels. The application of this technology for separation of TRU in HLLW through chlorination could contribute to the improvement of public acceptance with regard to geologic disposal. The main achievements are summarised as follows: - Elemental technologies such as electrorefining, reductive extraction, injection casting and salt waste treatment and solidification have been successfully developed with lots of experiments. - Fuel dissolution into molten salt and uranium recovery on solid cathode for electrorefining has been demonstrated at an engineering scale facility in Argonne National Laboratory using spent fuels and at the CRIEPI through uranium tests. - Single element tests using actinides showed Li reduction to be technically feasible; the subjects of technical feasibility on multi-element systems and on effective recycle of Li by electrolysis of Li 2 O remain to be addressed. - Concerning the treatment of HLLW for actinide separation, the conversion to chlorides through oxides has also been established through uranium tests. - It is confirmed that more than 99% of TRU nuclides can be recovered from high-level liquid waste by TRU tests. - Through these studies, the process flowsheets for reprocessing of metal and oxide fuels and for partitioning of TRU separation have been established. The subjects to be emphasised for further development are classified into three categories: process development (demonstration

  15. A physically based catchment partitioning method for hydrological analysis

    Science.gov (United States)

    Menduni, Giovanni; Riboni, Vittoria

    2000-07-01

    We propose a partitioning method for the topographic surface, which is particularly suitable for hydrological distributed modelling and shallow-landslide distributed modelling. The model provides variable mesh size and appears to be a natural evolution of contour-based digital terrain models. The proposed method allows the drainage network to be derived from the contour lines. The single channels are calculated via a search for the steepest downslope lines. Then, for each network node, the contributing area is determined by means of a search for both steepest upslope and downslope lines. This leads to the basin being partitioned into physically based finite elements delimited by irregular polygons. In particular, the distributed computation of local geomorphological parameters (i.e. aspect, average slope and elevation, main stream length, concentration time, etc.) can be performed easily for each single element. The contributing area system, together with the information on the distribution of geomorphological parameters provide a useful tool for distributed hydrological modelling and simulation of environmental processes such as erosion, sediment transport and shallow landslides.

  16. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    Science.gov (United States)

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  17. [On the partition of acupuncture academic schools].

    Science.gov (United States)

    Yang, Pengyan; Luo, Xi; Xia, Youbing

    2016-05-01

    Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.

  18. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  19. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Full text of publication follows: The importance of partitioning and transmutation (P and T) processes for sustaining nuclear energy growth in the world has been realised in several countries across the world. P and T processes aim at separation and recycling of actinides including minor actinides (MAs) from the spent fuel or high-level liquid waste. The objective of these processes include reuse of separated fissile materials from spent nuclear fuels to obtain energy, enhance resource utilisation, reduce the disposal of toxic radio-nuclides and improve long-term performance of geological repositories. R and D programmes have been launched in many of the Member States to develop advanced partitioning process based on either aqueous or pyro to recover MAs along with other actinides as well as automated and remote techniques for manufacturing fuels containing MAs for the purpose of transmuting them either in fast reactors or accelerator driven hybrids. A number of Member States have been also developing such transmutation systems with the aim to construct and operate demo plants and prototypes in the next decade. The International Atomic Energy Agency has a high priority for the activities on partitioning and transmutation and regularly organises conferences, workshops, seminars and technical meetings in the areas of P and T as a part of information exchange and knowledge sharing at the international level. In the recent past, the Agency organised two technical meetings on advanced partitioning processes and actinide recycle technologies with the objective of providing a common platform for the scientists and engineers working in the areas of separation of actinides along with MAs from spent nuclear fuels and manufacturing of advanced fuels containing MAs in order to bridge the technological gap between them. In 2010, the Agency concluded a Coordinated Research Project (CRP) related to Assessment of Partitioning Processes. The Agency also conducted a first CRP on

  20. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Van Stan, John T., E-mail: jvanstan@georgiasouthern.edu [Dept. of Geology and Geography, Georgia Southern University, Statesboro, GA 30460 (United States); Pypker, Thomas G. [Dept. of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC (Canada)

    2015-12-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  1. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    International Nuclear Information System (INIS)

    Van Stan, John T.; Pypker, Thomas G.

    2015-01-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  2. Different Methods for Conditioning Chloride Salt Wastes

    International Nuclear Information System (INIS)

    De Angelis, G.; Fedeli, C.; Capone, M.; Marzo, G.A.; Mariani, M.; Da Ros, M.; Giacobbo, F.; Macerata, E.; Giola, M.

    2015-01-01

    Three different methods have been used to condition chloride salt wastes coming from pyro-processes. Two of them allow to synthesise sodalite, a naturally occurring mineral containing chlorine: the former, starting from Zeolite 4A, which transforms the zeolite into sodalite; the latter, which starts from kaolinite, giving sodalite as well. In addition, a new matrix, termed SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ), has been synthesised. It is able to form different mineral phases which occlude fission metals. The products from the different processes have been fully characterised. In particular the chemical durability of the final waste forms has been determined using the standard product consistency test. According to the results obtained, SAP seems to be a promising matrix for the incorporation of chloride salt wastes from pyro-processes. Financial support from the Nuclear Fission Safety Programme of the European Union (projects ACSEPT, contract FP7-CP-2007- 211 267, and SACSESS, Collaborative Project 323282), as well as from Italian Ministry for Economic Development (Accordo di Programma: Piano Annuale di Realizzazione 2008-2009) is gratefully acknowledged. (authors)

  3. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  4. Binary recursive partitioning: background, methods, and application to psychology.

    Science.gov (United States)

    Merkle, Edgar C; Shaffer, Victoria A

    2011-02-01

    Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.

  5. Development of long-lived radionuclide partitioning technology

    International Nuclear Information System (INIS)

    Lee, Eil Hee; Kwon, S. G.; Yang, H. B.

    2001-04-01

    This project was aimed at the development of an optimal process that could get recovery yields of 99% for Am and Np and 90% for Tc from a simulated radioactive waste and the improvements of unit processes. The performed works are summarized, as follows. 1) The design and the establishment of a laboratory-scale partitioning process were accomplished, and the interfacial conditions between each unit process were determined. An optimal flow diagram for long-lived radionuclide partitioning process was suggested. 2) In improvements of unit processes, a) Behaviors of the co-extraction and sequential separation for residual U, Np and Tc(/Re) by chemical and electrochemical methods were examined. b) Conditions for co-extraction of Am/RE, and selective stripping of Am with metal containing extractant and a mixed extractant were decided. c) Characteristics of adsorption and elution by ion exchange chromatography and extraction chromatography methods were analysed. d) The simulation codes for long-lived radionuclide partitioning were gathered. and reaction equations were numerically formulated. 3) An existing γ-lead cell was modified the α-γ cells for treatment of long-lived radioactive materials. 4) As the applications of new separation technologies, a) Behaviors of photo reductive precipitation for Am/RE were investigated, b) Conditions for selective extraction and stripping of Am with pyridine series extractants were established. All results will be used as the fundamental data for establishment of partitioning process and radiochemical test of long-lived radionuclides recovery technology to be performed in the next stage

  6. The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil or sediment

    NARCIS (Netherlands)

    Beelen P van; Verbruggen EMJ; Peijnenburg WJGM; ECO

    2002-01-01

    The equilibrium partitioning method (EqP-method) can be used to derive environmental quality standards (like the Maximum Permissible Concentration or the intervention value) for soil or sediment, from aquatic toxicity data and a soil/water or sediment/water partitioning coefficient. The validity of

  7. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation

    Directory of Open Access Journals (Sweden)

    Dongmei Huang

    2017-09-01

    Full Text Available Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  8. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.

    Science.gov (United States)

    Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi

    2017-09-21

    Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  9. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  10. A Family of Trigonometrically-fitted Partitioned Runge-Kutta Symplectic Methods

    International Nuclear Information System (INIS)

    Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.

    2007-01-01

    We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one dimensional time independent Schroedinger equation is considered by trigonometrically fitted symplectic integrators. The Schroedinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential

  11. Effect of vehicles and sodium lauryl sulphate on xenobiotic permeability and stratum corneum partitioning in porcine skin

    International Nuclear Information System (INIS)

    Merwe, Deon van der; Riviere, Jim E.

    2005-01-01

    Dermal contact with potentially toxic agricultural and industrial chemicals is a common hazard encountered in occupational, accidental spill and environmental contamination scenarios. Different solvents and chemical mixtures may influence dermal absorption. The effects of sodium lauryl sulphate (SLS) on the stratum corneum partitioning and permeability in porcine skin of 10 agricultural and industrial chemicals in water, ethanol and propylene glycol were investigated. The chemicals were phenol, p-nitrophenol, pentachlorophenol, methyl parathion, ethyl parathion, chlorpyrifos, fenthion, simazine, atrazine and propazine. SLS decreased partitioning into stratum corneum from water for lipophilic compounds, decreased partitioning from propylene glycol and did not alter partitioning from ethanol. SLS effects on permeability were less consistent, but generally decreased permeability from water, increased permeability from ethanol and had an inconsistent effect on permeability from propylene glycol. It was concluded that, for the compounds tested, partitioning into the stratum corneum was determined by the relative solubility of the solute in the donor solvent and the stratum corneum lipids. Permeability, however, reflected the result of successive, complex processes and was not predictable from stratum corneum partitioning alone. Addition of SLS to solvents altered partitioning and absorption characteristics across a range of compounds, which indicates that partition coefficients or skin permeability from neat chemical exposure should be used with caution in risk assessment procedures for chemical mixtures

  12. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  13. Estimation of octanol/water partition coefficients using LSER parameters

    Science.gov (United States)

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  14. Partition wall structure in spent fuel storage pool and construction method for the partition wall

    International Nuclear Information System (INIS)

    Izawa, Masaaki

    1998-01-01

    A partitioning wall for forming cask pits as radiation shielding regions by partitioning inside of a spent fuel storage pool is prepared by covering both surface of a concrete body by shielding metal plates. The metal plate comprises opposed plate units integrated by welding while sandwiching a metal frame as a reinforcing material for the concrete body, the lower end of the units is connected to a floor of a pool by fastening members, and concrete is set while using the metal plate of the units as a frame to form the concrete body. The shielding metal plate has a double walled structure formed by welding a lining plate disposed on the outer surface of the partition wall and a shield plate disposed to the inner side. Then the term for construction can be shortened, and the capacity for storing spent fuels can be increased. (N.H.)

  15. New Applications of the Human Whole Blood Pyrogen Assay (PyroCheck).

    Science.gov (United States)

    Fennrich; Wendel; Hartung

    1999-01-01

    The absence of pyrogens in injectable drugs is an indispensable safety control because contaminants causing fever pose a life-threatening risk to the patient resulting in the worst case in death by shock. When fever- inducing agents, i.e.pyrogens, come into contact with the immunocompetent cells in blood, these cells release mediators which transmit the fever signal to the thermoregulatory centre of the brain. The Phamocopoeia lists currently two test systems for pyrogenicity: 1. The in vivo rabbit pyrogen test which measures the fever reaction following injection of the sample to the animals. 2. The in vitro Limulus Amebocyte Lysate assay (LAL) which measures the coagulation in a lysate prepared from the blood of the horseshoe crab specifically initiated by endotoxins, i.e. cell wall components from Gram-negative bacteria. The new test presented here (PyroCheck) exploits the reaction of monocytes/macrophages for the detection of pyrogens: human whole blood taken from healthy volunteers is incubated in the presence of the test sample in any form, be it a solution, a powder or even solid material. Pyrogenic contaminations initiate the release of the "endogenous pyrogen" Interleukin-1beta determined by ELISA after a fixed incubation time. The technology presently listed in the Pharmacopoeia is limited to parenteralia (rabbit test: biologicals and pharmaceuticals, LAL: predominantly pharmaceuticals). In the EU Medical Devices Directive from 1995 the rabbit pyrogen test for medical products is in some cases requested. (in some cases LAL of an eluate from the device). However, pyrogen-testing needs to cover also innovative high-tech products such as medical devices (implants, medical plastic materials, dialysis machines), cellular therapies and species-specific agents (e.g. recombinant proteins). Here we report that the human blood test PyroCheck is suitable for testing filters in air quality control as well as for assessing medical devices and biocompatibility

  16. Calculation of site affinity constants and cooperativity coefficients for binding of ligands and/or protons to macromolecules. II. Relationships between chemical model and partition function algorithm.

    Science.gov (United States)

    Fisicaro, E; Braibanti, A; Lamb, J D; Oscarson, J L

    1990-05-01

    The relationships between the chemical properties of a system and the partition function algorithm as applied to the description of multiple equilibria in solution are explained. The partition functions ZM, ZA, and ZH are obtained from powers of the binary generating functions Jj = (1 + kappa j gamma j,i[Y])i tau j, where i tau j = p tau j, q tau j, or r tau j represent the maximum number of sites in sites in class j, for Y = M, A, or H, respectively. Each term of the generating function can be considered an element (ij) of a vector Jj and each power of the cooperativity factor gamma ij,i can be considered an element of a diagonal cooperativity matrix gamma j. The vectors Jj are combined in tensor product matrices L tau = (J1) [J2]...[Jj]..., thus representing different receptor-ligand combinations. The partition functions are obtained by summing elements of the tensor matrices. The relationship of the partition functions with the total chemical amounts TM, TA, and TH has been found. The aim is to describe the total chemical amounts TM, TA, and TH as functions of the site affinity constants kappa j and cooperativity coefficients bj. The total amounts are calculated from the sum of elements of tensor matrices Ll. Each set of indices (pj..., qj..., rj...) represents one element of a tensor matrix L tau and defines each term of the summation. Each term corresponds to the concentration of a chemical microspecies. The distinction between microspecies MpjAqjHrj with ligands bound on specific sites and macrospecies MpAqHR corresponding to a chemical stoichiometric composition is shown. The translation of the properties of chemical model schemes into the algorithms for the generation of partition functions is illustrated with reference to a series of examples of gradually increasing complexity. The equilibria examined concern: (1) a unique class of sites; (2) the protonation of a base with two classes of sites; (3) the simultaneous binding of ligand A and proton H to a

  17. Partitioning technologies and actinide science: towards pilot facilities in Europe (ACSEPT project)

    International Nuclear Information System (INIS)

    Bourg, S.; Hill, C.; Ouvrier, N.

    2010-01-01

    ACSEPT is an essential contribution to the demonstration, in the long term, of the potential benefits of actinide recycling to minimize the burden on the geological repositories. To succeed, ACSEPT is organized into three technical domains: (i) Considering technically mature aqueous separation processes, ACSEPT works to optimize and select the most promising ones dedicated either to actinide partitioning or to grouped actinide separation. A substantial review was undertaken either to be sure that the right molecule families are being studied, or, on the contrary, to identify new candidates. Results of the first hot tests allowed the validation of some process options. (ii) Concerning pyrochemical separation processes, ACSEPT is focused on the enhancement of the two reference cores of process selected within EUROPART with specific attention to the exhaustive electrolysis in molten chloride (quantitative recovery of the actinides with the lowest amount of fission products) and to actinide back-extraction from an An-Al alloy. R and D efforts are also brought to key scientific and technical issues compulsory for building a complete separation process (head-end steps, salt treatment for recycling and waste management). (iii) By integrating all the experimental results within engineering and systems studies, both in hydro and pyro domains, ACSEPT will deliver relevant flowsheets and recommendations to prepare for future demonstration at a pilot level, in relation with strategies developed through the SNE-TP. In addition, a training and education programme is implemented to share the knowledge among the partitioning community and the future generations of researchers

  18. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  19. Gait Partitioning Methods: A Systematic Review

    Science.gov (United States)

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  20. Partition function for a singular background

    International Nuclear Information System (INIS)

    McKenzie-Smith, J.J.; Naylor, W.

    2005-01-01

    We present a method for evaluating the partition function in a varying external field. Specifically, we look at the case of a non-interacting, charged, massive scalar field at finite temperature with an associated chemical potential in the background of a delta-function potential. Whilst we present a general method, valid at all temperatures, we only give the result for the leading order term in the high temperature limit. Although the derivative expansion breaks down for inhomogeneous backgrounds we are able to obtain the high temperature expansion, as well as an analytic expression for the zero point energy, by way of a different approximation scheme, which we call the local Born approximation (LBA)

  1. Partition function for a singular background

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie-Smith, J.J. [Financial Risk Management Ltd, 15 Adam Street, London WC2N 6AH (United Kingdom)]. E-mail: julian.mckenzie-smith@frmhedge.com; Naylor, W. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)]. E-mail: naylor@yukawa.kyoto-u.ac.jp

    2005-03-17

    We present a method for evaluating the partition function in a varying external field. Specifically, we look at the case of a non-interacting, charged, massive scalar field at finite temperature with an associated chemical potential in the background of a delta-function potential. Whilst we present a general method, valid at all temperatures, we only give the result for the leading order term in the high temperature limit. Although the derivative expansion breaks down for inhomogeneous backgrounds we are able to obtain the high temperature expansion, as well as an analytic expression for the zero point energy, by way of a different approximation scheme, which we call the local Born approximation (LBA)

  2. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  3. Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products

    Directory of Open Access Journals (Sweden)

    C. Wang

    2017-06-01

    Full Text Available Gas–particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA. The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas–organic and gas–aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC, and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas–organic phase partitioning coefficients (KWIOM/G by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas–aqueous partitioning (KW/G are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.

  4. Spectroscopic studies of lutetium pyro-silicates Lu2Si2O7 doped with bismuth and europium

    International Nuclear Information System (INIS)

    Bretheau-Raynal, Francoise

    1981-01-01

    Single crystals of thortveitite structure pyro-silicates were grown by a floating zone technique associated with an arc image furnace. The samples were systematically characterized by X-Ray diffraction and microprobe analysis. Thanks to oriented single crystals of Lu 2 Si 2 O 7 , Yb 2 Si 2 O 7 and Sc 2 Si 2 O 7 , the recorded infrared and Raman spectra allow complete attribution of internal and external vibration modes, in good agreement with group theory predictions for C 2h factor group. Spectroscopic studies of Eu 3+ doping ion in Lu 2 Si 2 O 7 confirm C 2 point symmetry for the cationic site. Oscillator strengths and Judd-Ofelt parameters for Eu 3+ were calculated. A three level scheme ( 1 S 0 , 3 P 0 , 3 P 1 ) of Bi 3+ ion is used to explain radiative and non radiative mechanisms in Lu 2 Si 2 O 7 doped with bismuth. Finally, the mechanisms of low temperature (T =9 K) energy transfer between Bi 3+ and Eu 3+ in lutetium pyro-silicate was studied. The transfer occurs by non radiative process, without any diffusion of the excitation energy within the donor system and is due to dipole-dipole interactions between Bi 3+ and Eu 3+ ions. (author) [fr

  5. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  6. Application of partition chromatography method for separation and analysis of actinium radionuclides

    International Nuclear Information System (INIS)

    Sinitsina, G.S.; Shestakova, I.A.; Shestakov, B.I.; Plyushcheva, N.A.; Malyshev, N.A.; Belyatskij, A.F.; Tsirlin, V.A.

    1979-01-01

    The method of partition chromatography is considered with the use of different extractants for the extraction of actinium-227, actinium-225 and actinium-228. It is advisable to extract actinium-227 from the irradiated radium with the help of D2FGFK. The use of 2DEGFK allows us to separate actinium-227 from alkaline and alkaline-earth elements. Amines have a higher radiative stability. An express-method has been developed for the identification of actinium-227 with TOA by its intrinsic α-emission in nonequilibrium preparations of irradiated radium-226 of small activity. Actinium-225 is extracted from uranium-233 with due regard for the fact that U, Th, and Ac are extracted differently by TBP from HNO 3 solutions. With the help of the given procedure one can reach the purifying coefficient of 10 4 . Actinium-228 is extracted from the radiummesothorium preparations by a deposition of decay products, including polonium-210 on the iron hydroxyde. Actinium-228 extraction from the mixture of radium radionuclides is performed by the partition chromatography method on D2EGFK. All the procedures for separation of actinium isotopes by the above methods are described

  7. Extraction of americium from acid aqueous solutions by diethyl-2-hexyl-pyro-phosphoric acid

    International Nuclear Information System (INIS)

    Guillaume, Bernard

    1971-02-01

    After having outlined the interesting properties of americium and the difficulties of its recovery, the author reports the study of the mechanism of extraction of americium from acid aqueous solutions by using the diethyl-2hexyl-pyro-phosphoric acid. Several aspects are thus discussed: influence of concentration of H 2 DEHPP, influence of the acidity of the aqueous phase, saturation of extracting agent, influence of the diluting agent, complexing of americium, influence of other cations. In a second part, the author reports the application to the recovery of americium from effluents, and discusses the obtained results

  8. EUROPART: an European integrated project on actinide partitioning

    International Nuclear Information System (INIS)

    Madic, C.; Baron, P.; Hudson, M.J.

    2006-01-01

    Full text of publication follows: The EUROPART project is a scientific integrated project between 24 European partners, from 10 countries, mostly funded by the European Community within the FP6, together with CRIEPI from Japan and ANSTO from Australia. EUROPART aims at developing chemical partitioning processes for the so-called minor actinides (MA) contained in nuclear wastes, i.e. from Am to Cf. In the case of the treatment of dedicated spent fuels or targets, the actinides to be separated also include U, Pu and Np. The techniques considered for the separation of these radionuclides belong to the fields of hydrometallurgy and pyrometallurgy, as in the previous European FP5 programs named PARTNEW, CALIXPART and PYROREP, respectively. The two main axes of research within EUROPART are: 1/ the partitioning of MA (from Am to Cf) from wastes issuing from the reprocessing of high burn-up UOX fuels and multi-recycled MOX fuels, 2/ the partitioning of the whole actinide family of elements for recycling, as an option for advanced dedicated fuel cycles (this work will be connected to the studies to be performed within the EUROTRANS European integrated project). In hydrometallurgy, the research is organized in five Work Packages (WP). Four are dedicated to the study of partitioning methods mainly based on the use of solvent extraction methods and of solid extractants, one WP is dedicated to the development of actinide co-conversion methods for fuel or target preparations. The research in pyrometallurgy is organized into four WPs, listed hereafter: (i) study of the basic chemistry of transuranium elements and of some fission products in molten salts (chlorides, fluorides), (ii) development of actinide partitioning methods, (iii) study of the conditioning of the salt wastes, (iv) system studies. Moreover, a strong management team is concerned not only with the technical and financial issues arising from EUROPART, but also with information, communication and benefits for Europe

  9. ACSEPT-Partitioning technologies and actinide science: Towards pilot facilities in Europe

    International Nuclear Information System (INIS)

    Bourg, S.; Hill, C.; Caravaca, C.; Rhodes, C.; Ekberg, C.; Taylor, R.; Geist, A.; Modolo, G.; Cassayre, L.; Malmbeck, R.; Harrison, M.; Angelis, G. de; Espartero, A.; Bouvet, S.; Ouvrier, N.

    2011-01-01

    Highlights: → ACSEPT works at developing actinide separation processes for advanced fuel cycles. → ACSEPT develops both aqueous and pyrochemical actinide separation processes. → Homogeneous and heterogeneous recycling strategies are both considered in ACSEPT. → Training and education in actinide chemistry are important issues addressed by ACSEPT. - Abstract: Actinide recycling by separation and transmutation is considered worldwide and particularly in several European countries as one of the most promising strategies to reduce the inventory of radioactive waste and to optimise the use of natural resources. With its multidisciplinary consortium of 34 partners from 12 European countries plus Australia and Japan, the European Research Project ACSEPT (Actinide reCycling by SEParation and Transmutation) aims at contributing to the development of this strategy by studying both hydrometallurgical and pyrochemical partitioning routes. ACSEPT is organised into three technical domains: (i)Considering technically mature aqueous separation processes, ACSEPT works to optimise and select the most promising ones dedicated either to actinide partitioning (for the heterogeneous recycling of actinides in ADS target or specific actinide bearing blanket fuels in fast reactor) or to grouped actinide separation (for the homogeneous recycling of the actinides in fast reactor fuels). In addition, dissolution and conversion studies are underway taking into account the specific requirements of these specific fuels. (ii)Concerning pyrochemical separation processes, ACSEPT focuses on the enhancement of the two reference cores processes selected within FP6-EUROPART. R and D efforts are also devoted to key scientific and technical issues compulsory to set up a complete separation process (head-end steps, salt treatment for recycling and waste management). (iii)By integrating all the experimental results in engineering and system studies, both in hydro and pyro domains, ACSEPT will

  10. Partitioning high-level waste from alkaline solution: A literature survey

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1993-05-01

    Most chemical partitioning procedures are designed for acidic feed solutions. However, the high-level waste solutions in the underground storage tanks at US Department of Energy defense production sites are alkaline. Effective partitioning procedures for alkaline solutions could decrease the need to acidify these solutions and to dissolve the solids in acid, which would simplify subsequent processing and decrease the generation of secondary waste. The author compiles candidate technologies from his review of the chemical literature, experience, and personal contacts. Several of these are recommended for evaluation

  11. Absorption dynamics of organic chemical transport across trout gills as related to octanol-water partition coefficient

    International Nuclear Information System (INIS)

    McKim, J.; Schmieder, P.; Veith, G.

    1985-01-01

    An in vivo fish preparation was used that allowed a direct measure of the transport rates of 14 different organic chemicals across the gills of rainbow trout (Salmo gairdneri). The chemicals, all C14 labeled, were selected from five classes, encompassing a range of octanol-water partition coefficient (log P) values, from 0.23 (ethyl formate) to 7.5 (mirex). The uptake efficiency (extraction efficiency) of each chemical was determined by monitoring the inspired and expired water of trout exposed to each chemical over an exposure period of 1 to 6 hr. The mean gill extraction efficiency for all chemicals tested varied from a low of 7% to a high of 60%, extracted in a single pall of the chemical across the gills. The extraction efficiency of chemicals with log P or 1 or less were low and showed no relationship to log P. These low extraction efficiencies seen at log P of 1 and below with molecular weights below 100 were indicative of aqueous pore transport. The mean extraction efficiency for chemicals with log P values of 1 to 3 seemed to vary directly with log P, to a maximum of slightly greater than 60%, suggesting that uptake was controlled by the lipid membrane. The mean extraction efficiency for chemicals with log P of 3 to 6 was independent of log P and remained at 60%, which suggested that gill uptake was controlled by aqueous diffusion rates rather than gill membrane permeability. The mean extraction efficiency with mirex (log P . 7.5) decreased to 20%

  12. Determination of partition behavior of organic surrogates between paperboard packaging materials and air.

    Science.gov (United States)

    Triantafyllou, V I; Akrida-Demertzi, K; Demertzis, P G

    2005-06-03

    The suitability of recycled paperboard packaging materials for direct food contact applications is a major area of investigation. Chemical contaminants (surrogates) partitioning between recycled paper packaging and foods may affect the safety and health of the consumer. The partition behavior of all possible organic compounds between cardboards and individual foodstuffs is difficult and too time consuming for being fully investigated. Therefore it may be more efficient to determine these partition coefficients indirectly through experimental determination of the partitioning behavior between cardboard samples and air. In this work, the behavior of organic pollutants present in a set of two paper and board samples intended to be in contact with foods was studied. Adsorption isotherms have been plotted and partition coefficients between paper and air have been calculated as a basis for the estimation of their migration potential into food. Values of partition coefficients (Kpaper/air) from 47 to 1207 were obtained at different temperatures. For the less volatile surrogates such as dibutyl phthalate and methyl stearate higher Kpaper/air values were obtained. The adsorption curves showed that the more volatile substances are partitioning mainly in air phase and increasing the temperature from 70 to 100 degrees C their concentrations in air (Cair) have almost doubled. The analysis of surrogates was performed with a method based on solvent extraction and gas chromatographic-flame ionization detection (GC-FID) quantification.

  13. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  14. Organic Matter Quality and Partitioning of Polychlorinated Biphenyls

    National Research Council Canada - National Science Library

    Brannon, James

    1997-01-01

    ...). Equilibrium partitioning of neutral organic chemicals between the organic carbon fraction of bedded sediments and the interstitial water of the sediments provides the theoretical basis for the most...

  15. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  16. A Preliminary Shielding Study on the Integrated Operation Verification System in the Head-End Hot-Cell of the Pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhwam; Kim, Yewon; Park, Se-Hwan; Ahn, Seong-Kyu; Cho, Gyuseong [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power accounts for more than 30 percent of power production in Korea. Its significance has annually been increased. Disposal spent fuel containing uranium, transuranic elements, and fission products is unavoidable byproduct of nuclear power production. it is recognized that finding appropriate sites for interim storage of disposal spent fuel is not easy because isolated sites should be required. Pyro-processing technology, Pyro-processing should be operated under high radiation environment in hot-cell structures. Because of this reason, all workers should be unauthorized to access inside the hot-cell areas under any circumstances except for acceptable dose verification and a normal operation should be remotely manipulated. For the reliable normal operation of pyroprocessing, it is noted that an evaluation of the space dose distribution in the hot-cell environments is necessary in advance in order to determine which technologies or instruments can be utilized on or near the process as the Integrated Operation Verification System (IOVS) is measured. Not like the electroreduction and electro-refining hot-cells, the head-end hot-cell equips Camera Radiation Detector (CRD) in which plutonium is securely measured and monitored for the safeguard of the pyro-processing. Results have been obtained using F2 surface tally in order to observe the magnitude of the gamma-ray and neutron flux which pass through the surface of the process cell. Furthermore, T-mesh tally has also been used to obtain the space dose distribution in the headend hot-cell. The hot-cell was divided into 7,668 cells in which each dimension was 1 x 1 x 1m for the T-mesh tally. To determine the position of the CRD and the surveillance camera, divergent approaches were required. Because the purpose of the CRD which contains a gamma-ray detector and a neutron detector is to identify the material composition as the process proceeds, the position in which detectable flux is exposed is required, whereas

  17. A comparison of octanol-water partitioning between organic chemicals and their metabolites in mammals.

    Science.gov (United States)

    Pirovano, Alessandra; Borile, Nicolò; Jan Hendriks, A

    2012-08-01

    Bioaccumulation models take various elimination and uptake processes into account, estimating rates from chemical lipophilicity, expressed as the octanol-water partition ratio (K(ow)). Here, we focussed on metabolism, which transforms parent compounds into usually more polar metabolites, thus enhancing elimination. The aim of this study was to quantify the change in lipophilicity of relevant organic pollutants undergoing various biotransformation reactions in mammals. We considered oxidation reactions catalyzed by three enzyme groups: cytochrome P450 (CYP), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH). Estimated logK(ow) values of a selected dataset of parent compounds were compared with the logK(ow) of their first metabolites. The logK(ow) decreased by a factor that varies between 0 and -2, depending on the metabolic pathway. For reactions mediated by CYP, the decrease in K(ow) was one order of magnitude for hydroxylated and epoxidated compounds and two orders of magnitude for dihydroxylated and sulphoxidated xenobiotics. On the other hand, no significant change in lipophilicity was observed for compounds N-hydroxylated by CYP and for alcohols and aldehydes metabolized by ADH and ALDH. These trends could be anticipated by the calculus method of logK(ow). Yet, they were validated using experimental logK(ow) values, when available. These relationships estimate the extent to which the elimination of pollutants is increased by biotransformation. Thus, the quantification of the K(ow) reduction can be considered as a first necessary step in an alternative approach to anticipate biotransformation rates, which are hard to estimate with existing methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa; Landgren, A; Liljenzin, J O; Skaalberg, M; Spjuth, L [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  19. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  20. Partition functions with spin in AdS2 via quasinormal mode methods

    International Nuclear Information System (INIS)

    Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng

    2016-01-01

    We extend the results of http://dx.doi.org/10.1007/JHEP06(2014)099, computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev http://dx.doi.org/10.1088/0264-9381/27/12/125001. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |h〉 and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the full answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.

  1. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter; Cohen, Albert; Dahmen, Wolfgang; DeVore, Ronald

    2014-01-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  2. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter

    2014-12-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  3. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  4. Foundational aspects of the concept of chemical activity

    DEFF Research Database (Denmark)

    Mayer, Philipp

    2015-01-01

    The chemical activity of an organic chemical quantifies its potential for spontaneous physicochemical processes, such as diffusion, sorption, and partitioning. For instance, the chemical activity of a sediment contaminant determines its equilibrium partitioning concentration in sediment-dwelling ...

  5. Abiotic partitioning of clothianidin under simulated rice field conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Parikh, Sanjai J; Tjeerdema, Ronald S

    2015-10-01

    Clothianidin is registered for pre- and post-flood application in Californian rice fields for control of the rice seed midge, Cricotopus sylvestris, and the rice water weevil, Lissorhoptrus oryzophilus. The objective was to characterize air-water and soil-water partitioning of clothianidin under simulated Californian rice field conditions. Clothianidin was confirmed to be non-volatile (from water) via the gas purge method, as no loss from the aqueous phase was observed at 22 and 37 °C; an upper-limit KH value was calculated at 2.9 × 10(-11) Pa m(3) mol(-1) (20 °C). Soil-water partitioning was determined by the batch equilibrium method using four soils collected from rice fields in the Sacramento Valley, and sorption affinity (Kd ), sorbent capacity, desorption and organic-carbon-normalized distribution (Koc ) were determined. Values for pH, cation exchange capacity and organic matter content ranged from 4.5 to 6.6, from 5.9 to 37.9 and from 1.25 to 1.97% respectively. The log Koc values (22 and 37 °C) ranged from 2.6 to 2.7, while sorption capacity was low at 22 °C and decreased further at 37 °C. Hysteresis was observed in soils at both temperatures, suggesting that bound residues do not readily desorb. Soil-water and air-water partitioning will not significantly reduce offsite transport of clothianidin from flooded rice fields via drainage. © 2014 Society of Chemical Industry.

  6. Partitioning and transmutation. Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Naestren, Catharina; Retegan, Teodora; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high cross sections for neutron capture of some elements, like the lanthanides. Other reasons may be the unintentional making of other long lived isotopes. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. Due to new recruitments we will now also work

  7. A novel method to augment extraction of mangiferin by application of microwave on three phase partitioning.

    Science.gov (United States)

    Kulkarni, Vrushali M; Rathod, Virendra K

    2015-06-01

    This work reports a novel approach where three phase partitioning (TPP) was combined with microwave for extraction of mangiferin from leaves of Mangifera indica . Soxhlet extraction was used as reference method, which yielded 57 mg/g in 5 h. Under optimal conditions such as microwave irradiation time 5 min, ammonium sulphate concentration 40% w/v, power 272 W, solute to solvent ratio 1:20, slurry to t -butanol ratio 1:1, soaking time 5 min and duty cycle 50%, the mangiferin yield obtained was 54 mg/g by microwave assisted three phase partitioning extraction (MTPP). Thus extraction method developed resulted into higher extraction yield in a shorter span, thereby making it an interesting alternative prior to down-stream processing.

  8. Present status of partitioning developments

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Kubota, Masumitsu; Tachimori, Shoichi

    1978-09-01

    Evolution and development of the concept of partitioning of high-level liquid wastes (HLLW) in nuclear fuel reprocessing are reviewed historically from the early phase of separating useful radioisotopes from HLLW to the recent phase of eliminating hazardous nuclides such as transuranium elements for safe waste disposal. Since the criteria in determining the nuclides for elimination and the respective decontamination factors are important in the strategy of partitioning, current views on the criteria are summarized. As elimination of the transuranium is most significant in the partitioning, various methods available of separating them from fission products are evaluated. (auth.)

  9. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators.

    Science.gov (United States)

    Yin, Kedong; Yang, Benshuo; Li, Xuemei

    2018-01-24

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.

  10. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  11. The effect of different evapotranspiration methods on portraying soil water dynamics and ET partitioning in a semi-arid environment in Northwest China

    OpenAIRE

    Yu, L.; Zeng, Yijian; Su, Zhongbo; Cai, H.; Zheng, Z.

    2016-01-01

    Different methods for assessing evapotranspiration (ET) can significantly affect the performance of land surface models in portraying soil water dynamics and ET partitioning. An accurate understanding of the impact a method has is crucial to determining the effectiveness of an irrigation scheme. Two ET methods are discussed: one is based on reference crop evapotranspiration (ET0) theory, uses leaf area index (LAI) for partitioning into soil evaporation and transpiration, and...

  12. A novel method to augment extraction of mangiferin by application of microwave on three phase partitioning

    Directory of Open Access Journals (Sweden)

    Vrushali M. Kulkarni

    2015-06-01

    Full Text Available This work reports a novel approach where three phase partitioning (TPP was combined with microwave for extraction of mangiferin from leaves of Mangifera indica. Soxhlet extraction was used as reference method, which yielded 57 mg/g in 5 h. Under optimal conditions such as microwave irradiation time 5 min, ammonium sulphate concentration 40% w/v, power 272 W, solute to solvent ratio 1:20, slurry to t-butanol ratio 1:1, soaking time 5 min and duty cycle 50%, the mangiferin yield obtained was 54 mg/g by microwave assisted three phase partitioning extraction (MTPP. Thus extraction method developed resulted into higher extraction yield in a shorter span, thereby making it an interesting alternative prior to down-stream processing.

  13. The Benefits of Adaptive Partitioning for Parallel AMR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steensland, Johan [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Advanced Software Research and Development

    2008-07-01

    Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the

  14. Partition functions with spin in AdS{sub 2} via quasinormal mode methods

    Energy Technology Data Exchange (ETDEWEB)

    Keeler, Cynthia [Niels Bohr International Academy, Niels Bohr Institute,University of Copenhagen, Blegdamsvej 17, DK 2100, Copenhagen (Denmark); Lisbão, Pedro [Department of Physics, University of Michigan,Ann Arbor, MI-48109 (United States); Ng, Gim Seng [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada)

    2016-10-12

    We extend the results of http://dx.doi.org/10.1007/JHEP06(2014)099, computing one loop partition functions for massive fields with spin half in AdS{sub 2} using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev http://dx.doi.org/10.1088/0264-9381/27/12/125001. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |h〉 and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the full answer for the one loop determinants. We also discuss extensions to higher dimensional AdS{sub 2n} and higher spins.

  15. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  16. VLSI PARTITIONING ALGORITHM WITH ADAPTIVE CONTROL PARAMETER

    Directory of Open Access Journals (Sweden)

    P. N. Filippenko

    2013-03-01

    Full Text Available The article deals with the problem of very large-scale integration circuit partitioning. A graph is selected as a mathematical model describing integrated circuit. Modification of ant colony optimization algorithm is presented, which is used to solve graph partitioning problem. Ant colony optimization algorithm is an optimization method based on the principles of self-organization and other useful features of the ants’ behavior. The proposed search system is based on ant colony optimization algorithm with the improved method of the initial distribution and dynamic adjustment of the control search parameters. The experimental results and performance comparison show that the proposed method of very large-scale integration circuit partitioning provides the better search performance over other well known algorithms.

  17. Partition function zeros of the one-dimensional Potts model: the recursive method

    International Nuclear Information System (INIS)

    Ghulghazaryan, R G; Ananikian, N S

    2003-01-01

    The Yang-Lee, Fisher and Potts zeros of the one-dimensional Q-state Potts model are studied using the theory of dynamical systems. An exact recurrence relation for the partition function is derived. It is shown that zeros of the partition function may be associated with neutral fixed points of the recurrence relation. Further, a general equation for zeros of the partition function is found and a classification of the Yang-Lee, Fisher and Potts zeros is given. It is shown that the Fisher zeros in a nonzero magnetic field are located on several lines in the complex temperature plane and that the number of these lines depends on the value of the magnetic field. Analytical expressions for the densities of the Yang-Lee, Fisher and Potts zeros are derived. It is shown that densities of all types of zeros of the partition function are singular at the edge singularity points with the same critical exponent

  18. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  19. Development of Chemical Technology in Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jee, Kwang Yong; Kim, W. H.; Kim, J. S.

    2007-06-01

    This project mainly concentrates on the development of technologies related to elemental analysis for the mass balance of pyro-chemical process, on the development of in-line measurement system for high temperature molten salt, and on the development of radiation shielded LA-ICP-MS and micro-XRD system to evaluate the integrity of nuclear fuel. Chemical analysis methods for the quantitative determination of fissile elements, minor actinide elements, fission products, chemical additive and corrosion products in Uranium Metal Ingots are established. It will be applied to the evaluation of mass balance in electrolytic reduction process for the optimization of the process. Optical fiber based UV-VIS spectrophotometer combined with reaction cell was developed for the measurement of reactions in high temperature molten salt. This system is applicable to in-line monitoring of electro-refining process and contribute to clarify the chemical reactions. Radiation shielded LA-ICP-MS and micro-XRD systems are planned to be used for the analysis of isotopic distribution and structural changes from core to rim of spent nuclear fuel pellet, respectively. The developed techniques can contribute to produce database needed for authorization and practical use of ultra high burn-up fuel. In addition, it can be applicable to the other industries such as microelectronics, nano material science and semiconductor to analyze micro region

  20. Separation of transuranic elements and some fission products in irradiated spent fuels. Program 2005; Separacion de elementos transuranicos y algunos productos de fision presentes en los combustibles nucleares irradiados Programa 2005

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; Espartero, A. G.; Cordoba, G. de; Gascon, J. L.; Pina, G.; Martinez-Esparza, A.; Uriarte, A.

    2006-07-01

    This technical publication of ENRESA refers to Partitioning of some chemical elements containing longlived radionuclides (actinides and fission products), from spent nuclear fuels. The Partitioning includes the different processes developed or on R and D way, from the middle of the past century to the present. These processes are of two types, wet (hydro-metallurgical) and dry (pyro-metallurgical). Among the hydro-metallurgical processes the most important is the PUREX process, developed in the U.S.A. at the middle of the past century, used for the separation of uranium and plutonium from spent nuclear fuels, previous dissolution with nitric acid of the irradiated fuels. Later other hydrometallurgical processes have been developed for the separation of some TRUs and long-lived fission products from the high activity liquid (HLW) coming from PUREX reprocessing. Among the most important countries and institutions that are developing new hydrometallurgical processes are USA, Japan, China, Russia and the European Union, fundamentally France, the Czech Republic, United Kingdom, Italy, Belgium, Holland, Germany, Spain and the JRC-ITU. In the case of Spain it is possible to remark the works of synthesis of new extractants, developed by the group of the Prof. Javier de Mendoza of the Dept. of Organic Chemistry of the Universidad Autonoma de Madrid and by the group of Prof. Teixidor of the Instituto de Ciencias de Materiales de Barcelona (ICMAB) of the Consejo Superior de Investigaciones Cientificas (CSIC) and the activities carried out by the CIEMAT from 1999, based fundamentally on a collaboration agreement with ENRESA, that are related to the characterization and tests of the new extractants synthesized in Spain and also abroad, mainly by the CEA (France). All these activities are included in the Projects PARTNEW and EUROPART of the European Union. About Pyro-metallurgical Processes, they started in the ANL (Argonne National Laboratory, USA) by the 60' is of the

  1. Partition method and experimental validation for impact dynamics of flexible multibody system

    Science.gov (United States)

    Wang, J. Y.; Liu, Z. Y.; Hong, J. Z.

    2018-06-01

    The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effective formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.

  2. OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD

    Directory of Open Access Journals (Sweden)

    A. Jalila

    2015-10-01

    Full Text Available The adoption of fault detection techniques during initial stages of software development life cycle urges to improve reliability of a software product. Specification-based testing is one of the major criterions to detect faults in the requirement specification or design of a software system. However, due to the non-availability of implementation details, test case generation from formal specifications become a challenging task. As a novel approach, the proposed work presents a methodology to generate test cases from OCL (Object constraint Language formal specification using Category Partitioning Method (CPM. The experiment results indicate that the proposed methodology is more effective in revealing specification based faults. Furthermore, it has been observed that OCL and CPM form an excellent combination for performing functional testing at the earliest to improve software quality with reduced cost.

  3. Experiments and Recommendations for Partitioning Systems of Equations

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-06-01

    Full Text Available Partitioning the systems of equations is a very important process when solving it on a parallel computer. This paper presents some criteria which leads to more efficient parallelization, that must be taken into consideration. New criteria added to preconditioning process by reducing average bandwidth are pro- posed in this paper. These new criteria lead to a combination between preconditioning and partitioning of systems equations, so no need two distinct algorithms/processes. In our proposed methods - where the preconditioning is done by reducing the average bandwidth- two directions were followed in terms of partitioning: for a given preconditioned system determining the best partitioning (or one as close and the second consist in achieving an adequate preconditioning, depending on a given/desired partitioning. A mixed method it is also proposed. Experimental results, conclusions and recommendations, obtained after parallel implementation of conjugate gradient on IBM BlueGene /P supercomputer- based on a synchronous model of parallelization- are also presented in this paper.

  4. Conceptual methods for actinide partitioning

    International Nuclear Information System (INIS)

    Leuze, R.E.; Bond, W.D.; Tedder, D.W.

    1978-01-01

    The conceptual processing sequence under consideration is based on a combination of modified Purex processing and secondary processing of the high-level waste. In this concept, iodine will be removed from dissolver solution prior to extraction, and the Purex processing will be modified so that low- and intermediate-level wastes, all the way through final product purification, are recycled. A supplementary extraction is assumed to ensure adequate recovery of uranium, neptunium and possibly plutonium. Technetium may be removed from the high-level waste if a satisfactory method can be developed. Extraction into a quaternary amine is being evaluated for this removal. Methods that have been used in the past to recover americium and curium have some rather serious deficiencies, including inadequate recovery, solids formation and generation of large volumes of low- and intermediate-level wastes containing significant quantities of chemical reagents

  5. The Partition of Multi-Resolution LOD Based on Qtm

    Science.gov (United States)

    Hou, M.-L.; Xing, H.-Q.; Zhao, X.-S.; Chen, J.

    2011-08-01

    The partition hierarch of Quaternary Triangular Mesh (QTM) determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details) based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  6. THE PARTITION OF MULTI-RESOLUTION LOD BASED ON QTM

    Directory of Open Access Journals (Sweden)

    M.-L. Hou

    2012-08-01

    Full Text Available The partition hierarch of Quaternary Triangular Mesh (QTM determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  7. Voting-based consensus clustering for combining multiple clusterings of chemical structures

    Directory of Open Access Journals (Sweden)

    Saeed Faisal

    2012-12-01

    Full Text Available Abstract Background Although many consensus clustering methods have been successfully used for combining multiple classifiers in many areas such as machine learning, applied statistics, pattern recognition and bioinformatics, few consensus clustering methods have been applied for combining multiple clusterings of chemical structures. It is known that any individual clustering method will not always give the best results for all types of applications. So, in this paper, three voting and graph-based consensus clusterings were used for combining multiple clusterings of chemical structures to enhance the ability of separating biologically active molecules from inactive ones in each cluster. Results The cumulative voting-based aggregation algorithm (CVAA, cluster-based similarity partitioning algorithm (CSPA and hyper-graph partitioning algorithm (HGPA were examined. The F-measure and Quality Partition Index method (QPI were used to evaluate the clusterings and the results were compared to the Ward’s clustering method. The MDL Drug Data Report (MDDR dataset was used for experiments and was represented by two 2D fingerprints, ALOGP and ECFP_4. The performance of voting-based consensus clustering method outperformed the Ward’s method using F-measure and QPI method for both ALOGP and ECFP_4 fingerprints, while the graph-based consensus clustering methods outperformed the Ward’s method only for ALOGP using QPI. The Jaccard and Euclidean distance measures were the methods of choice to generate the ensembles, which give the highest values for both criteria. Conclusions The results of the experiments show that consensus clustering methods can improve the effectiveness of chemical structures clusterings. The cumulative voting-based aggregation algorithm (CVAA was the method of choice among consensus clustering methods.

  8. Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes

    KAUST Repository

    Hundsdorfer, Willem; Mozartova, Anna; Savcenco, Valeriu

    2013-01-01

    of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods.

  9. Fault Localization Method by Partitioning Memory Using Memory Map and the Stack for Automotive ECU Software Testing

    Directory of Open Access Journals (Sweden)

    Kwanhyo Kim

    2016-09-01

    Full Text Available Recently, the usage of the automotive Electronic Control Unit (ECU and its software in cars is increasing. Therefore, as the functional complexity of such software increases, so does the likelihood of software-related faults. Therefore, it is important to ensure the reliability of ECU software in order to ensure automobile safety. For this reason, systematic testing methods are required that can guarantee software quality. However, it is difficult to locate a fault during testing with the current ECU development system because a tester performs the black-box testing using a Hardware-in-the-Loop (HiL simulator. Consequently, developers consume a large amount of money and time for debugging because they perform debugging without any information about the location of the fault. In this paper, we propose a method for localizing the fault utilizing memory information during black-box testing. This is likely to be of use to developers who debug automotive software. In order to observe whether symbols stored in the memory have been updated, the memory is partitioned by a memory map and the stack, thus the fault candidate region is reduced. A memory map method has the advantage of being able to finely partition the memory, and the stack method can partition the memory without a memory map. We validated these methods by applying these to HiL testing of the ECU for a body control system. The preliminary results indicate that a memory map and the stack reduce the possible fault locations to 22% and 19% of the updated memory, respectively.

  10. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  11. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.

    Science.gov (United States)

    Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G

    2014-09-16

    atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

  12. Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments.

    Science.gov (United States)

    Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy

    2018-01-09

    Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.

  13. Linking biosensor responses to Cd, Cu and Zn partitioning in soils

    International Nuclear Information System (INIS)

    Dawson, J.J.C.; Campbell, C.D.; Towers, W.; Cameron, C.M.; Paton, G.I.

    2006-01-01

    Soils bind heavy metals according to fundamental physico-chemical parameters. Bioassays, using bacterial biosensors, were performed in pore waters extracted from 19 contrasting soils individually amended with Cd, Cu and Zn concentrations related to the EU Sewage Sludge Directive. The biosensors were responsive to pore waters extracted from Zn amended soils but less so to those of Cu and showed no toxicity to pore water Cd at these environmentally relevant amended concentrations. Across the range of soils, the solid-solution heavy metal partitioning coefficient (K d ) decreased (p d values. Gompertz functions of Cu and Zn, K d values against luminescence explained the relationship between heavy metals and biosensors. Consequently, biosensors provide a link between biologically defined hazard assessments of metals and standard soil-metal physico-chemical parameters for determining critical metal loadings in soils. - Biosensors link biological hazard assessments of metals in soils with physico-chemical partitioning

  14. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of log SW, log KOA, and log KOW with electron-correlation

    International Nuclear Information System (INIS)

    Chayawan; Vikas

    2015-01-01

    Highlights: • Aqueous solubility and partition coefficient are modelled using single-parameter. • Electron-correlation observed as a vital predictorof physico-chemical properties. • For octanol-air partition coefficient, energy and polarizability yield best models. • Dipole-moment is found to be worst single-descriptor for the properties analysed. - Abstract: Quantitative structure–property relationships (QSPRs), based only on a single-parameter, are proposed for the prediction of physico-chemical properties, namely, aqueous solubility (log S W ), octanol–water partition coefficient (log K OW ) and octanol–air partition coefficient (log K OA ) of polychloronaphthalenes (PCNs) including all the 75 chloronaphthalene congeners. The QSPR models are developed using molecular descriptors computed through quantum mechanical methods including ab-initio as well as advanced semi-empirical methods. The predictivity of the developed models is tested through state-of-the-art external validation procedures employing an external prediction set of compounds. To analyse the role of instantaneous interactions between electrons (the electron-correlation), the models are also compared with those developed using only the electron-correlation contribution of the quantum chemical descriptor. The electron-correlation contribution towards the chemical hardness and the LUMO energy are observed to be the best predictors for octanol–water partition coefficient, whereas for the octanol–air partition coefficient, the total electronic energy and electron-correlation energy are found to be reliable descriptors, in fact, even better than the polarisability. For aqueous solubility of PCNs, the absolute electronegativity is observed to be the best predictor. This work suggests that the electron-correlation contribution of a quantum-chemical descriptor can be used as a reliable indicator for physico-chemical properties, particularly the partition coefficients

  15. Development of the four group partitioning process at JAERI

    International Nuclear Information System (INIS)

    Kubota, Masumitsu; Morita, Yasuji; Yamaguchi, Isoo; Yamagishi, Isao; Fujiwara, T.; Watanabe, Masayuki; Mizoguchi, Kenichi; Tatsugae, Ryozo

    1999-01-01

    At JAERI, development of a partitioning method started about 24 years ago. From 1973 to 1984, a partitioning process was developed for separating elements in HLLW into 3 groups; TRU, Sr-Cs and others. The partitioning process consisted of three steps; solvent extraction of U and Pu with TBP, solvent extraction of Am and Cm with DIDPA, and adsorption of Sr and Cs with inorganic ion exchangers. The process was demonstrated with real HLLW. Since 1985, a four group partitioning process has been developed, in which a step for separating the Tc-PGM group was developed in addition to the three group separation. Effective methods for separating TRU, especially Np, and Tc have been developed. In this paper, the flow sheet of the four group partitioning and the results of tests with simulated and real HLLW in NUCEF hot-cell are shown. (J.P.N.)

  16. n-Alcohol/Water Partition Coefficients for Decachlorobiphenyl (PCB 209)

    Science.gov (United States)

    Measurements of n-octanol/water partition coefficients (Kow) for highly hydrophobic chemicals are extremely difficult and are rarely made, in part due to the large volumes of water typically needed to quantify these compounds in the aqueous phase. An extrapolation approach using ...

  17. TEMPERATURE DEPENDENT PHASE BEHAVIOR AND PROTEIN PARTITIONING IN GIANT PLASMA MEMBRANE VESICLES

    OpenAIRE

    Johnson, SA; Stinson, BM; Go, M; Carmona, LM; Reminick, JI; Fang, X; Baumgart, T

    2010-01-01

    Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma membrane vesicles, obtained by chemically induced blebbing from cultured...

  18. Partitioning and transmutation. Annual report 2009

    International Nuclear Information System (INIS)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Loefstroem-Engdahl, Elin; Retegan, Teodora; Skarnemark, Gunnar; Spendlikova, Irena

    2010-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ( 79 Se, 87 Rb, 99 Tc, 107 Pd, 126 Sn, 129 I and 135 Cs) and activation products ( 14 C, 36 Cl, 59 Ni, 93 Zr, 94 Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a

  19. Partitioning and transmutation. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Loefstroem-Engdahl, Elin; Retegan, Teodora; Skarnemark, Gunnar; Spendlikova, Irena (Nuclear Chemistry, Department of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2010-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I and 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a novel process

  20. On the partitioning method and the perturbation quantum theory - discrete spectra

    International Nuclear Information System (INIS)

    Logrado, P.G.

    1982-05-01

    Lower and upper bounds to eigenvalues of the Schroedinger equation H Ψ = E Ψ (H = H 0 + V) and the convergence condition, in Schonberg's perturbation theory, are presented. These results are obtained using the partitioning technique. It is presented for the first time a perturbation treatment obtained when the reference function in the partitioning technique is chosen to be a true eigenfunction Ψ. The convergence condition and upper and lower bounds for the true eigenvalues E are derived in this formulation. The concept of the reaction and wave operators is also discussed. (author)

  1. Yoink: An interaction-based partitioning API.

    Science.gov (United States)

    Zheng, Min; Waller, Mark P

    2018-05-15

    Herein, we describe the implementation details of our interaction-based partitioning API (application programming interface) called Yoink for QM/MM modeling and fragment-based quantum chemistry studies. Interactions are detected by computing density descriptors such as reduced density gradient, density overlap regions indicator, and single exponential decay detector. Only molecules having an interaction with a user-definable QM core are added to the QM region of a hybrid QM/MM calculation. Moreover, a set of molecule pairs having density-based interactions within a molecular system can be computed in Yoink, and an interaction graph can then be constructed. Standard graph clustering methods can then be applied to construct fragments for further quantum chemical calculations. The Yoink API is licensed under Apache 2.0 and can be accessed via yoink.wallerlab.org. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...

  3. Characterization of Archaeological Sediments Using Fourier Transform Infrared (FT-IR) and Portable X-ray Fluorescence (pXRF): An Application to Formative Period Pyro-Industrial Sites in Pacific Coastal Southern Chiapas, Mexico.

    Science.gov (United States)

    Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J

    2016-01-01

    Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.

  4. Determination of Partition coefficients for a Mixture of Volatile Organic Compounds in Rats and Humans at Different Life Stages

    National Research Council Canada - National Science Library

    Mahle, Deidre A; Gearhart, Jeffrey M; Godfrey, Richard J; Mattie, David R; Cook, Robert S; Grisby, Claude C

    2004-01-01

    .... Partition coefficients (PCs) are an integral component of pharmacokinetic models and determining differences in tissue partitioning of volatile organic chemicals across life stages can help reduce the uncertainty in risk assessment...

  5. Novel medium-throughput technique for investigating drug-cyclodextrin complexation by pH-metric titration using the partition coefficient method.

    Science.gov (United States)

    Dargó, Gergő; Boros, Krisztina; Péter, László; Malanga, Milo; Sohajda, Tamás; Szente, Lajos; Balogh, György T

    2018-05-05

    The present study was aimed to develop a medium-throughput screening technique for investigation of cyclodextrin (CD)-active pharmaceutical ingredient (API) complexes. Dual-phase potentiometric lipophilicity measurement, as gold standard technique, was combined with the partition coefficient method (plotting the reciprocal of partition coefficients of APIs as a function of CD concentration). A general equation was derived for determination of stability constants of 1:1 CD-API complexes (K 1:1,CD ) based on solely the changes of partition coefficients (logP o/w N -logP app N ), without measurement of the actual API concentrations. Experimentally determined logP value (-1.64) of 6-deoxy-6[(5/6)-fluoresceinylthioureido]-HPBCD (FITC-NH-HPBCD) was used to estimate the logP value (≈ -2.5 to -3) of (2-hydroxypropyl)-ß-cyclodextrin (HPBCD). The results suggested that the amount of HPBCD can be considered to be inconsequential in the octanol phase. The decrease of octanol volume due to the octanol-CD complexation was considered, thus a corrected octanol-water phase ratio was also introduced. The K 1:1,CD values obtained by this developed method showed a good accordance with the results from other orthogonal methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fat polygonal partitions with applications to visualization and embeddings

    Directory of Open Access Journals (Sweden)

    Mark de Berg

    2013-12-01

    Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space:  we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  7. Polarographic determination of Sn (II) and total Sn in PYRO and MDP radiopharmaceutical kits

    International Nuclear Information System (INIS)

    Sebastian, Maria V.A.; Lugon, Marcelo Di M.V.; Silva, Jose L. da; Fukumori, Neuza T.O.; Pereira, Nilda P.S. de; Silva, Constancia P.G. da; Matsuda, Margareth M.N.

    2007-01-01

    A sensitive, alternative method to atom absorption spectrometry, fluorimetry or potentiometry for the evaluation of tin(II) ions (0.1- 10 mg) and total tin in radiopharmaceutical kits was investigated. Differential pulse polarography was chosen. The supporting electrolyte was H 2 SO 4 3 mol L -1 and HCl 3 mol L -1 solution. The potential was swept from -250 to -800 mV vs Ag/AgCl/saturated KCl, using a dropping mercury electrode with 1 s drop time, 50 mV s -1 scan rate, -50 mV pulse amplitude, 40 ms pulse time and 10 mV step amplitude. Pure nitrogen was used to deaerate the polarographic cell solution for 5 min, before and after each sample introduction. Oxidation of Sn(II) was made in the same sample vial by adding H 2 O 2 (hydrogen peroxide) 10 mol L -1 , at 37 deg C, in order to quantify the total Sn. The calibration curve for Sn(II) and Sn(IV) was obtained in the concentration range of 0-10 ppm from a 1000 ppm standard solution. The detection limit of Sn(II) is 0.5 ppm and for Sn(IV) is 0.6 ppm. Differential pulse polarography was performed in the pyrophosphate (PYRO) and methylenediphosphonic acid (MDP) radiopharmaceutical kits, containing 2 mg and 1 mg of SnCl 2 .2H 2 O per vial, respectively. The described method for determination of stannous ion (Sn(II)), is selective, reproducible and adequate to be used in the quality control of lyophilized reagents and it shall be performed for other cold kits produced at IPEN. (author)

  8. Partitioning of monomethylmercury between freshwater algae and water.

    Science.gov (United States)

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  9. A New Ensemble Method with Feature Space Partitioning for High-Dimensional Data Classification

    Directory of Open Access Journals (Sweden)

    Yongjun Piao

    2015-01-01

    Full Text Available Ensemble data mining methods, also known as classifier combination, are often used to improve the performance of classification. Various classifier combination methods such as bagging, boosting, and random forest have been devised and have received considerable attention in the past. However, data dimensionality increases rapidly day by day. Such a trend poses various challenges as these methods are not suitable to directly apply to high-dimensional datasets. In this paper, we propose an ensemble method for classification of high-dimensional data, with each classifier constructed from a different set of features determined by partitioning of redundant features. In our method, the redundancy of features is considered to divide the original feature space. Then, each generated feature subset is trained by a support vector machine, and the results of each classifier are combined by majority voting. The efficiency and effectiveness of our method are demonstrated through comparisons with other ensemble techniques, and the results show that our method outperforms other methods.

  10. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Martin, O.C.; Otto, S.W.

    1994-01-01

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  11. Partitioning and Transmutation - Physics, Technology and Politics

    International Nuclear Information System (INIS)

    Gudowski, W.

    2002-01-01

    Nuclear reactions can be effectively used to destroy radio toxic isotopes through transmutation processes transforming those isotopes into less radio toxic or stable ones Spent nuclear fuel, a mixture of many isotopes with some of them being highly radio toxic for many hundred thousands of years, may be effectively transmuted through nuclear reactions with neutrons. In a dedicated, well designed transmutation system one can, in principle, reduce the radiotoxicity of the spent nuclear fuel to a level, which will require isolation from the biosphere for the period of time for which engineered barriers can be constructed and licensed (not more than 1-2 thousands of years). En effective transmutation process can not be achieved without a suitable partitioning. Only partitioning of the spent nuclear fuel into predetermined groups of elements makes possible an effective use of neutrons to transmute long-lived radioactive isotopes into short-lived or stable one. However, most of the chemical separation/partitioning processes are element- not isotope-specific, therefore the transmutation of the elements with an existing isotope composition is a typical alternative for transmutation processes. Isotope-specific separation is possible but still very expensive and technologically not matured

  12. Biotransformation of dichlorodiphenyltrichloroethane in the benthic polychaete, Nereis succinea: quantitative estimation by analyzing the partitioning of chemicals between gut fluid and lipid.

    Science.gov (United States)

    Wang, Fei; Pei, Yuan-yuan; You, Jing

    2015-02-01

    Biotransformation plays an important role in the bioaccumulation and toxicity of a chemical in biota. Dichlorodiphenyltrichloroethane (DDT) commonly co-occurs with its metabolites (dichlorodiphenyldichloroethane [DDD] and dichlorodiphenyldichloroethylene [DDE]), in the environment; thus it is a challenge to accurately quantify the biotransformation rates of DDT and distinguish the sources of the accumulated metabolites in an organism. The present study describes a method developed to quantitatively analyze the biotransformation of p,p'-DDT in the benthic polychaete, Nereis succinea. The lugworms were exposed to sediments spiked with DDT at various concentrations for 28 d. Degradation of DDT to DDD and DDE occurred in sediments during the aging period, and approximately two-thirds of the DDT remained in the sediment. To calculate the biotransformation rates, residues of individual compounds measured in the bioaccumulation testing (after biotransformation) were compared with residues predicted by analyzing the partitioning of the parent and metabolite compounds between gut fluid and tissue lipid (before biotransformation). The results suggest that sediment ingestion rates decreased when DDT concentrations in sediment increased. Extensive biotransformation of DDT occurred in N. succinea, with 86% of DDT being metabolized to DDD and biotransformation, and the remaining 30% was from direct uptake of sediment-associated DDD. In addition, the biotransformation was not dependent on bulk sediment concentrations, but rather on bioaccessible concentrations of the chemicals in sediment, which were quantified by gut fluid extraction. The newly established method improved the accuracy of prediction of the bioaccumulation and toxicity of DDTs. © 2014 SETAC.

  13. Phylogenetic relationships in Asarum: Effect of data partitioning and a revised classification.

    Science.gov (United States)

    Sinn, Brandon T; Kelly, Lawrence M; Freudenstein, John V

    2015-05-01

    Generic boundaries and infrageneric relationships among the charismatic temperate magnoliid Asarum sensu lato (Aristolochiaceae) have long been uncertain. Previous molecular phylogenetic analyses used either plastid or nuclear loci alone and varied greatly in their taxonomic implications for the genus. We analyzed additional molecular markers from the nuclear and plastid genomes, reevaluated the possibility of a derived loss of autonomous self-pollination, and investigated the topological effects of matrix-partitioning-scheme choice. We sequenced seven plastid regions and the nuclear ITS1-ITS2 region of 58 individuals representing all previously recognized Asarum s.l. segregate genera and the monotypic genus Saruma. Matrices were partitioned using common a priori partitioning schemes and PartitionFinder. Topologies that were recovered using a priori partitioning of matrices differed from those recovered using a PartitionFinder-selected scheme, and by analysis method. We recovered six monophyletic groups that we circumscribed into three subgenera and six sections. Putative fungal mimic characters served as synapomorphies only for subgenus Heterotropa. Subgenus Geotaenium, a new subgenus, was recovered as sister to the remainder of Asarum by ML analyses of highly partitioned datasets. Section Longistylis, also newly named, is sister to section Hexastylis. Our analyses do not unambiguously support a single origin for all fungal-mimicry characters. Topologies recovered through the analysis of PartitionFinder-optimized matrices can differ drastically from those inferred from a priori partitioned matrices, and by analytical method. We recommend that investigators evaluate the topological effects of matrix partitioning using multiple methods of phylogenetic reconstruction. © 2015 Botanical Society of America, Inc.

  14. Pyrochemistry: from flowsheet to industrial facility

    International Nuclear Information System (INIS)

    Donaldson, N.; Thied, R.; Lamorlette, G.; Greneche, D.

    2001-01-01

    Challenges to any future commercial deployment of pyro-chemistry will be significant. The implications of industrial use must be well understood in technical, economic and social terms to gain commercial and regulatory acceptance. The broad base of knowledge necessary to support general commercial use of pyro-chemistry in the nuclear field is considered. Pyro-chemistry development is discussed in the context of a commercial application-based approach and issues to be addressed are outlined. A stepwise evolutionary development of pyro-chemical processing is anticipated which might allow industrialization in the absence of acceptance of evolutionary development at industrial scale which benefited Purex development. (author)

  15. Phase Grouping Line Extraction Algorithm Using Overlapped Partition

    Directory of Open Access Journals (Sweden)

    WANG Jingxue

    2015-07-01

    Full Text Available Aiming at solving the problem of fracture at the discontinuities area and the challenges of line fitting in each partition, an innovative line extraction algorithm is proposed based on phase grouping using overlapped partition. The proposed algorithm adopted dual partition steps, which will generate overlapped eight partitions. Between the two steps, the middle axis in the first step coincides with the border lines in the other step. Firstly, the connected edge points that share the same phase gradients are merged into the line candidates, and fitted into line segments. Then to remedy the break lines at the border areas, the break segments in the second partition steps are refitted. The proposed algorithm is robust and does not need any parameter tuning. Experiments with various datasets have confirmed that the method is not only capable of handling the linear features, but also powerful enough in handling the curve features.

  16. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of log S{sub W}, log K{sub OA}, and log K{sub OW} with electron-correlation

    Energy Technology Data Exchange (ETDEWEB)

    Chayawan; Vikas, E-mail: qlabspu@pu.ac.in

    2015-10-15

    Highlights: • Aqueous solubility and partition coefficient are modelled using single-parameter. • Electron-correlation observed as a vital predictorof physico-chemical properties. • For octanol-air partition coefficient, energy and polarizability yield best models. • Dipole-moment is found to be worst single-descriptor for the properties analysed. - Abstract: Quantitative structure–property relationships (QSPRs), based only on a single-parameter, are proposed for the prediction of physico-chemical properties, namely, aqueous solubility (log S{sub W}), octanol–water partition coefficient (log K{sub OW}) and octanol–air partition coefficient (log K{sub OA}) of polychloronaphthalenes (PCNs) including all the 75 chloronaphthalene congeners. The QSPR models are developed using molecular descriptors computed through quantum mechanical methods including ab-initio as well as advanced semi-empirical methods. The predictivity of the developed models is tested through state-of-the-art external validation procedures employing an external prediction set of compounds. To analyse the role of instantaneous interactions between electrons (the electron-correlation), the models are also compared with those developed using only the electron-correlation contribution of the quantum chemical descriptor. The electron-correlation contribution towards the chemical hardness and the LUMO energy are observed to be the best predictors for octanol–water partition coefficient, whereas for the octanol–air partition coefficient, the total electronic energy and electron-correlation energy are found to be reliable descriptors, in fact, even better than the polarisability. For aqueous solubility of PCNs, the absolute electronegativity is observed to be the best predictor. This work suggests that the electron-correlation contribution of a quantum-chemical descriptor can be used as a reliable indicator for physico-chemical properties, particularly the partition coefficients.

  17. Partitioning of fissile and radio-toxic materials from spent nuclear fuel

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Skiba, O.V.; Kormilitsyn, M.V.

    2007-01-01

    Full text of publication follows. The term ''partitioning'' means separation of one group of radwaste components from another. Such technological approaches are mainly applied to extraction of long-lived fission products (Tc, I) and minor actinides (Np, Am, Cm) from the waste arising from spent nuclear fuel reprocessing. Transmutation of the extracted minor actinides should be performed in a reactor or some accelerated systems. The combination of these technologies, partitioning and transmutation (P and T), will reduce the radiotoxicity of radwaste. In recent decades, partitioning has been directly linked to spent fuel reprocessing. Therefore, the basic investigations have been focused on the partitioning of liquid wastes arising from the PUREX process. These subjects have been the most developed ones, but the processes of fine aqueous separation generates an extra amount of liquid waste. This fact has an effect on the nuclear fuel cycle economy. Therefore, some other advanced compact methods have also been studied. These are dry methods involving molten chlorides and fluorides, the methods based on a supercritical movable phase, etc. The report provides a brief review of information on the basic partitioning process flow-sheets developed in France, Japan, Russia and other countries. Recent approaches to partitioning have been mostly directed towards radio-toxic hazard reduction and ecology. In the future, partitioning should be closely bound up with reprocessing and other spent nuclear fuel management processes. Reprocessing/partitioning should also be aimed at solving the problems of safety (non-proliferation) and economy in a closed fuel cycle. It is necessary to change a future ''technological philosophy'' of reprocessing and partitioning. The basic spent fuel components (U, Pu, Th) are to be extracted only for recycling in a closed nuclear fuel cycle. If these elements are regarded as a waste, additional expenses are required for transmutation. If we consider

  18. Partitioning and transmutation. Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed.

  19. Partitioning and transmutation. Annual Report 1999

    International Nuclear Information System (INIS)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L.

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed

  20. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography.

    Science.gov (United States)

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2013-10-04

    A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Use of JANAF Tables in Equilibrium Calculations and Partition Function Calculations for an Undergraduate Physical Chemistry Course

    Science.gov (United States)

    Cleary, David A.

    2014-01-01

    The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.

  2. Determination of 1-octanol-air partition coefficient using gaseous diffusion in the air boundary layer.

    Science.gov (United States)

    Ha, Yeonjeong; Kwon, Jung-Hwan

    2010-04-15

    Exact determination of the partition coefficient between 1-octanol and air (K(OA)) is very important because it is a key descriptor for describing the thermodynamic partitioning between the air and organic phases. In spite of its importance, the number and quality of experimental K(OA) values for hydrophobic organic chemicals are limited because of experimental difficulties. Thus, to measure K(OA) values, a high-throughput method was developed that used liquid-phase extraction with 1-octanol drop at the tip of a microsyringe needle. The concentration in the headspace surrounding the 1 muL octanol drop was equilibrated with liquid octanol containing polycyclic aromatic hydrocarbons (PAHs). The change in concentrations of PAHs in the octanol drop was measured to obtain mass transfer rate constants, and these rate constants were then converted into K(OA) values using a film diffusion model. Thirteen polycyclic aromatic hydrocarbons with log K(OA) between 5 and 12 were chosen for the proof of the principle. Experimental determination of log K(OA) was accomplished in 30 h for PAHs with their log K(OA) less than 11. The measured log K(OA) values were very close to those obtained by various experimental and estimation methods in the literature, suggesting that this new method can provide a fast and easy determination of log K(OA) values for many chemicals of environmental interests. In addition, the applicability of the method can be extended to determine Henry's law constant for compounds with low vapor pressure and to estimate gaseous transfer rate of semivolatile compounds for environmental fate modeling.

  3. Multiplex pyrosequencing assay using AdvISER-MH-PYRO algorithm: a case for rapid and cost-effective genotyping analysis of prostate cancer risk-associated SNPs.

    Science.gov (United States)

    Ambroise, Jérôme; Butoescu, Valentina; Robert, Annie; Tombal, Bertrand; Gala, Jean-Luc

    2015-06-25

    Single Nucleotide Polymorphisms (SNPs) identified in Genome Wide Association Studies (GWAS) have generally moderate association with related complex diseases. Accordingly, Multilocus Genetic Risk Scores (MGRSs) have been computed in previous studies in order to assess the cumulative association of multiple SNPs. When several SNPs have to be genotyped for each patient, using successive uniplex pyrosequencing reactions increases analytical reagent expenses and Turnaround Time (TAT). While a set of several pyrosequencing primers could theoretically be used to analyze multiplex amplicons, this would generate overlapping primer-specific pyro-signals that are visually uninterpretable. In the current study, two multiplex assays were developed consisting of a quadruplex (n=4) and a quintuplex (n=5) polymerase chain reaction (PCR) each followed by multiplex pyrosequencing analysis. The aim was to reliably but rapidly genotype a set of prostate cancer-related SNPs (n=9). The nucleotide dispensation order was selected using SENATOR software. Multiplex pyro-signals were analyzed using the new AdvISER-MH-PYRO software based on a sparse representation of the signal. Using uniplex assays as gold standard, the concordance between multiplex and uniplex assays was assessed on DNA extracted from patient blood samples (n = 10). All genotypes (n=90) generated with the quadruplex and the quintuplex pyroquencing assays were perfectly (100 %) concordant with uniplex pyrosequencing. Using multiplex genotyping approach for analyzing a set of 90 patients allowed reducing TAT by approximately 75 % (i.e., from 2025 to 470 min) while reducing reagent consumption and cost by approximately 70 % (i.e., from ~229 US$ /patient to ~64 US$ /patient). This combination of quadruplex and quintuplex pyrosequencing and PCR assays enabled to reduce the amount of DNA required for multi-SNP analysis, and to lower the global TAT and costs of SNP genotyping while providing results as reliable as uniplex

  4. Inside-sediment partitioning of PAH, PCB and organochlorine compounds and inferences on sampling and normalization methods

    International Nuclear Information System (INIS)

    Opel, Oliver; Palm, Wolf-Ulrich; Steffen, Dieter; Ruck, Wolfgang K.L.

    2011-01-01

    Comparability of sediment analyses for semivolatile organic substances is still low. Neither screening of the sediments nor organic-carbon based normalization is sufficient to obtain comparable results. We are showing the interdependency of grain-size effects with inside-sediment organic-matter distribution for PAH, PCB and organochlorine compounds. Surface sediment samples collected by Van-Veen grab were sieved and analyzed for 16 PAH, 6 PCB and 18 organochlorine pesticides (OCP) as well as organic-matter content. Since bulk concentrations are influenced by grain-size effects themselves, we used a novel normalization method based on the sum of concentrations in the separate grain-size fractions of the sediments. By calculating relative normalized concentrations, it was possible to clearly show underlying mechanisms throughout a heterogeneous set of samples. Furthermore, we were able to show that, for comparability, screening at <125 μm is best suited and can be further improved by additional organic-carbon normalization. - Research highlights: → New method for the comparison of heterogeneous sets of sediment samples. → Assessment of organic pollutants partitioning mechanisms in sediments. → Proposed method for more comparable sediment sampling. - Inside-sediment partitioning mechanisms are shown using a new mathematical approach and discussed in terms of sediment sampling and normalization.

  5. Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation

    Science.gov (United States)

    Su, Bo; Tuo, Xianguo; Xu, Ling

    2017-08-01

    Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.

  6. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  7. Partition functions in even dimensional AdS via quasinormal mode methods

    International Nuclear Information System (INIS)

    Keeler, Cynthia; Ng, Gim Seng

    2014-01-01

    In this note, we calculate the one-loop determinant for a massive scalar (with conformal dimension Δ) in even-dimensional AdS d+1 space, using the quasinormal mode method developed in http://dx.doi.org/10.1088/0264-9381/27/12/125001 by Denef, Hartnoll, and Sachdev. Working first in two dimensions on the related Euclidean hyperbolic plane H 2 , we find a series of zero modes for negative real values of Δ whose presence indicates a series of poles in the one-loop partition function Z(Δ) in the Δ complex plane; these poles contribute temperature-independent terms to the thermal AdS partition function computed in http://dx.doi.org/10.1088/0264-9381/27/12/125001. Our results match those in a series of papers by Camporesi and Higuchi, as well as Gopakumar et al. http://dx.doi.org/10.1007/JHEP11(2011)010 and Banerjee et al. http://dx.doi.org/10.1007/JHEP03(2011)147. We additionally examine the meaning of these zero modes, finding that they Wick-rotate to quasinormal modes of the AdS 2 black hole. They are also interpretable as matrix elements of the discrete series representations of SO(2,1) in the space of smooth functions on S 1 . We generalize our results to general even dimensional AdS 2n , again finding a series of zero modes which are related to discrete series representations of SO(2n,1), the motion group of H 2n .

  8. Countering oversegmentation in partitioning-based connectivities

    NARCIS (Netherlands)

    Ouzounis, Georgios K.; Wilkinson, Michael H.F.

    2005-01-01

    A new theoretical development is presented for handling the over-segmentation problem in partitioning-based connected openings. The definition we propose treats singletons generated with the earlier method, as elements of a larger connected component. Unlike the existing formalism, this new method

  9. High-throughput determination of octanol/water partition coefficients using a shake-flask method and novel two-phase solvent system.

    Science.gov (United States)

    Morikawa, Go; Suzuka, Chihiro; Shoji, Atsushi; Shibusawa, Yoichi; Yanagida, Akio

    2016-01-05

    A high-throughput method for determining the octanol/water partition coefficient (P(o/w)) of a large variety of compounds exhibiting a wide range in hydrophobicity was established. The method combines a simple shake-flask method with a novel two-phase solvent system comprising an acetonitrile-phosphate buffer (0.1 M, pH 7.4)-1-octanol (25:25:4, v/v/v; AN system). The AN system partition coefficients (K(AN)) of 51 standard compounds for which log P(o/w) (at pH 7.4; log D) values had been reported were determined by single two-phase partitioning in test tubes, followed by measurement of the solute concentration in both phases using an automatic flow injection-ultraviolet detection system. The log K(AN) values were closely related to reported log D values, and the relationship could be expressed by the following linear regression equation: log D=2.8630 log K(AN) -0.1497(n=51). The relationship reveals that log D values (+8 to -8) for a large variety of highly hydrophobic and/or hydrophilic compounds can be estimated indirectly from the narrow range of log K(AN) values (+3 to -3) determined using the present method. Furthermore, log K(AN) values for highly polar compounds for which no log D values have been reported, such as amino acids, peptides, proteins, nucleosides, and nucleotides, can be estimated using the present method. The wide-ranging log D values (+5.9 to -7.5) of these molecules were estimated for the first time from their log K(AN) values and the above regression equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Many-body formalism for fermions: The partition function

    Science.gov (United States)

    Watson, D. K.

    2017-09-01

    The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli

  11. An Improved Quick Method for the Isolation of Total RNA from Cotton ...

    African Journals Online (AJOL)

    David PANG

    2011-11-02

    Nov 2, 2011 ... in liquid nitrogen in a mortar and pestle and stored until. RNA isolation. ... our laboratory for microarray analysis, cDNA pyro- sequencing studies and construction ..... Economic and rapid method for extracting cotton genomic ...

  12. Calculation of the octanol-water partition coefficient of armchair polyhex BN nanotubes

    Science.gov (United States)

    Mohammadinasab, E.; Pérez-Sánchez, H.; Goodarzi, M.

    2017-12-01

    A predictive model for determination partition coefficient (log P) of armchair polyhex BN nanotubes by using simple descriptors was built. The relationship between the octanol-water log P and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory electric moments and physico-chemical properties of those nanotubes are calculated.

  13. Choosing the best partition of the output from a large-scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Chelsea Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casleton, Emily Michele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    Data partitioning becomes necessary when a large-scale simulation produces more data than can be feasibly stored. The goal is to partition the data, typically so that every element belongs to one and only one partition, and store summary information about the partition, either a representative value plus an estimate of the error or a distribution. Once the partitions are determined and the summary information stored, the raw data is discarded. This process can be performed in-situ; meaning while the simulation is running. When creating the partitions there are many decisions that researchers must make. For instance, how to determine once an adequate number of partitions have been created, how are the partitions created with respect to dividing the data, or how many variables should be considered simultaneously. In addition, decisions must be made for how to summarize the information within each partition. Because of the combinatorial number of possible ways to partition and summarize the data, a method of comparing the different possibilities will help guide researchers into choosing a good partitioning and summarization scheme for their application.

  14. Development of a high-order finite volume method with multiblock partition techniques

    Directory of Open Access Journals (Sweden)

    E. M. Lemos

    2012-03-01

    Full Text Available This work deals with a new numerical methodology to solve the Navier-Stokes equations based on a finite volume method applied to structured meshes with co-located grids. High-order schemes used to approximate advective, diffusive and non-linear terms, connected with multiblock partition techniques, are the main contributions of this paper. Combination of these two techniques resulted in a computer code that involves high accuracy due the high-order schemes and great flexibility to generate locally refined meshes based on the multiblock approach. This computer code has been able to obtain results with higher or equal accuracy in comparison with results obtained using classical procedures, with considerably less computational effort.

  15. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    International Nuclear Information System (INIS)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio

    2008-01-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h -1 ) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  16. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  17. Partitioning and Transmutation - Annual Report 2010 and 2011

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Littley, Alexander; Loefstroem-Engdahl, Elin; Mabile, Nathalie; Skarnemark, Gunnar [Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden)

    2013-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I and {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93}Zr, {sup 94}Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross-sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects have ranged from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One recycling route, called DIAMEX (DIAmide EXtracton) / SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and has been proven in hot tests and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behavior are required, we have our main focus on the chemical processes and

  18. An International Peer Review of the Programme for the Deep Geological Disposal of High Level Radioactive Waste from Pyro-Processing in the Republic of Korea. Report of an IAEA International Review Team

    International Nuclear Information System (INIS)

    2013-09-01

    The development of a radioactive waste disposal system is indispensable in maintaining the sustainability of nuclear energy. The Korea Atomic Energy Research Institute (KAERI) has studied the direct geological disposal of spent nuclear fuel since 1997. KAERI has also focused on the development of processes suitable for reducing the volume of spent nuclear fuel and the recycling of valuable fissile material. One of the most promising technologies investigated by KAERI is the pyro-processing of spent nuclear fuel followed by the geological disposal of the generated high level waste (HLW). Since 2007, KAERI has been running a research programme focusing on the recycling of spent nuclear fuel, as well as studies aimed at the development of a relevant geological disposal system able to accept the resulting HLW. The core aims of the KAERI study were to characterize the geological media, design a repository system and assess the overall safety of the disposal system. The development of pyro-processing technology is ongoing and has not yet been demonstrated at the commercial level. Thus, the government of the Republic of Korea requested an assessment of the technical feasibility of this technology. The assessment also included the appraisal of a disposal solution for waste generated by pyro-processing. With regard to the latter, KAERI requested that the IAEA review the status of the disposal project within the Waste Management Assessment and Technical Review Programme (WATRP). Peer reviews are increasingly being acknowledged as an important element in building broader stakeholder confidence in the safety and viability of related facilities. This report presents the consensus view of the international group of experts convened by the IAEA to perform the review

  19. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    Science.gov (United States)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  20. LHCb: Optimising query execution time in LHCb Bookkeeping System using partition pruning and partition wise joins

    CERN Multimedia

    Mathe, Z

    2013-01-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as rang...

  1. Schinus terebinthifolius countercurrent chromatography (Part III): Method transfer from small countercurrent chromatography column to preparative centrifugal partition chromatography ones as a part of method development.

    Science.gov (United States)

    das Neves Costa, Fernanda; Hubert, Jane; Borie, Nicolas; Kotland, Alexis; Hewitson, Peter; Ignatova, Svetlana; Renault, Jean-Hugues

    2017-03-03

    Countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC) are support free liquid-liquid chromatography techniques sharing the same basic principles and features. Method transfer has previously been demonstrated for both techniques but never from one to another. This study aimed to show such a feasibility using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. Heptane - ethyl acetate - methanol -water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds. The optimized separation methodology previously described in Part I and II, was scaled up from an analytical hydrodynamic CCC column (17.4mL) to preparative hydrostatic CPC instruments (250mL and 303mL) as a part of method development. Flow-rate and sample loading were further optimized on CPC. Mobile phase linear velocity is suggested as a transfer invariant parameter if the CPC column contains sufficient number of partition cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Axiomatic method of partitions in the theory of Noebeling spaces. I. Improvement of partition connectivity

    International Nuclear Information System (INIS)

    Ageev, S M

    2007-01-01

    The Noebeling space N k 2k+1 , a k-dimensional analogue of the Hilbert space, is considered; this is a topologically complete separable (that is, Polish) k-dimensional absolute extensor in dimension k (that is, AE(k)) and a strongly k-universal space. The conjecture that the above-listed properties characterize the Noebeling space N k 2k+1 in an arbitrary finite dimension k is proved. In the first part of the paper a full axiom system of the Noebeling spaces is presented and the problem of the improvement of a partition connectivity is solved on its basis. Bibliography: 29 titles.

  3. Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction

    International Nuclear Information System (INIS)

    Delmotte, A; Barahona, M; Tate, E W; Yaliraki, S N

    2011-01-01

    Despite the recognized importance of the multi-scale spatio-temporal organization of proteins, most computational tools can only access a limited spectrum of time and spatial scales, thereby ignoring the effects on protein behavior of the intricate coupling between the different scales. Starting from a physico-chemical atomistic network of interactions that encodes the structure of the protein, we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and levels of organization of proteins that span the whole range of scales, revealing biological features occurring at different levels of organization and tracking their effect across scales. Additionally, we introduce a measure of robustness to quantify the relevance of the partitions through the generation of biochemically-motivated surrogate random graph models. We apply the method to four distinct conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria parasite, and study properties that have been experimentally addressed such as the closing mechanism, the presence of conserved clusters, and the identification through computational mutational analysis of key residues for binding

  4. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  5. Improving the risk assessment of lipophilic persistent environmental chemicals in breast milk.

    Science.gov (United States)

    Lehmann, Geniece M; Verner, Marc-André; Luukinen, Bryan; Henning, Cara; Assimon, Sue Anne; LaKind, Judy S; McLanahan, Eva D; Phillips, Linda J; Davis, Matthew H; Powers, Christina M; Hines, Erin P; Haddad, Sami; Longnecker, Matthew P; Poulsen, Michael T; Farrer, David G; Marchitti, Satori A; Tan, Yu-Mei; Swartout, Jeffrey C; Sagiv, Sharon K; Welsh, Clement; Campbell, Jerry L; Foster, Warren G; Yang, Raymond S H; Fenton, Suzanne E; Tornero-Velez, Rogelio; Francis, Bettina M; Barnett, John B; El-Masri, Hisham A; Simmons, Jane Ellen

    2014-08-01

    Lipophilic persistent environmental chemicals (LPECs) have the potential to accumulate within a woman's body lipids over the course of many years prior to pregnancy, to partition into human milk, and to transfer to infants upon breastfeeding. As a result of this accumulation and partitioning, a breastfeeding infant's intake of these LPECs may be much greater than his/her mother's average daily exposure. Because the developmental period sets the stage for lifelong health, it is important to be able to accurately assess chemical exposures in early life. In many cases, current human health risk assessment methods do not account for differences between maternal and infant exposures to LPECs or for lifestage-specific effects of exposure to these chemicals. Because of their persistence and accumulation in body lipids and partitioning into breast milk, LPECs present unique challenges for each component of the human health risk assessment process, including hazard identification, dose-response assessment, and exposure assessment. Specific biological modeling approaches are available to support both dose-response and exposure assessment for lactational exposures to LPECs. Yet, lack of data limits the application of these approaches. The goal of this review is to outline the available approaches and to identify key issues that, if addressed, could improve efforts to apply these approaches to risk assessment of lactational exposure to these chemicals.

  6. Hashing for Statistics over K-Partitions

    DEFF Research Database (Denmark)

    Dahlgaard, Soren; Knudsen, Mathias Baek Tejs; Rotenberg, Eva

    2015-01-01

    In this paper we analyze a hash function for k-partitioning a set into bins, obtaining strong concentration bounds for standard algorithms combining statistics from each bin. This generic method was originally introduced by Flajolet and Martin [FOCS'83] in order to save a factor Ω(k) of time per...... concentration bounds on the most popular applications of k-partitioning similar to those we would get using a truly random hash function. The analysis is very involved and implies several new results of independent interest for both simple and double tabulation, e.g. A simple and efficient construction...

  7. Partitioning of trace metals in the chemical fractions of bed-load sediments of Nahr-Ibrahim river, Lebanon

    International Nuclear Information System (INIS)

    Korfali, Samira I.; Davies, Brian E.

    1999-01-01

    Full text.Sediments are the ultimate sink of trace elements. The total metal analysis may only give information concerning possible enrichment of metals. The analysis of metal partitioning in the different chemical components of sediments (exchangeable, carbonate, easily reducible, moderately reducible, organic and residual); give a detailed information on the way in which these metals are bound to sediments, their mobilization capacity and their ability to affect water quality under different environmental conditions. The studied river basin is dominated by limestone formation, the enrichment of metals in the carbonate sediment fraction is a high probability. The objective of the study was to determine the percentage of the total metal content (Fe, Mn, Zn, Cu and Pb) in the six chemical fractions of the bed load sediments of Nahr-Ibrahim river during the dry season and verify the role of carbonate for metal sediment deposition. Bed load sediments were sampled at five locations 13Km stretch, upstream from river mouth at two dates, August and October 1996. the dried samples were sieved into three mechanical fractions (1180-250 μm, 250-75 μm and <75 μm). A sequential chemical extraction was carried on each sized sample sediment, Fe, Mn, Zn, Cu and Pb were determined on the extracts by AAS. The reported data showed that Fe in mainly in the residual fraction, Mn in the residual and carbonate fraction, Zn in the residual, carbonate and Fe oxide fraction, Cu in the residual, carbonate and organic fraction, Pb in the carbonate fraction. The carbonate fraction in sediments played the major common role for metal sediment deposition

  8. Organic Carbon/Water and Dissolved Organic Carbon/Water Partitioning of Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Linear Free Energy Relationships.

    Science.gov (United States)

    Panagopoulos, Dimitri; Jahnke, Annika; Kierkegaard, Amelie; MacLeod, Matthew

    2015-10-20

    The sorption of cyclic volatile methyl siloxanes (cVMS) to organic matter has a strong influence on their fate in the aquatic environment. We report new measurements of the partition ratios between freshwater sediment organic carbon and water (KOC) and between Aldrich humic acid dissolved organic carbon and water (KDOC) for three cVMS, and for three polychlorinated biphenyls (PCBs) that were used as reference chemicals. Our measurements were made using a purge-and-trap method that employs benchmark chemicals to calibrate mass transfer at the air/water interface in a fugacity-based multimedia model. The measured log KOC of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were 5.06, 6.12, and 7.07, and log KDOC were 5.05, 6.13, and 6.79. To our knowledge, our measurements for KOC of D6 and KDOC of D4 and D6 are the first reported. Polyparameter linear free energy relationships (PP-LFERs) derived from training sets of empirical data that did not include cVMS generally did not predict our measured partition ratios of cVMS accurately (root-mean-squared-error (RMSE) for logKOC 0.76 and for logKDOC 0.73). We constructed new PP-LFERs that accurately describe partition ratios for the cVMS as well as for other chemicals by including our new measurements in the existing training sets (logKOC RMSEcVMS: 0.09, logKDOC RMSEcVMS: 0.12). The PP-LFERs we have developed here should be further evaluated and perhaps recalibrated when experimental data for other siloxanes become available.

  9. The Gas-Absorption/Chemical-Reaction Method for Measuring Air-Water Interfacial Area in Natural Porous Media

    Science.gov (United States)

    Lyu, Ying; Brusseau, Mark L.; El Ouni, Asma; Araujo, Juliana B.; Su, Xiaosi

    2017-11-01

    The gas-absorption/chemical-reaction (GACR) method used in chemical engineering to quantify gas-liquid interfacial area in reactor systems is adapted for the first time to measure the effective air-water interfacial area of natural porous media. Experiments were conducted with the GACR method, and two standard methods (X-ray microtomographic imaging and interfacial partitioning tracer tests) for comparison, using model glass beads and a natural sand. The results of a series of experiments conducted under identical conditions demonstrated that the GACR method exhibited excellent repeatability for measurement of interfacial area (Aia). Coefficients of variation for Aia were 3.5% for the glass beads and 11% for the sand. Extrapolated maximum interfacial areas (Am) obtained with the GACR method were statistically identical to independent measures of the specific solid surface areas of the media. For example, the Am for the glass beads is 29 (±1) cm-1, compared to 32 (±3), 30 (±2), and 31 (±2) cm-1 determined from geometric calculation, N2/BET measurement, and microtomographic measurement, respectively. This indicates that the method produced accurate measures of interfacial area. Interfacial areas determined with the GACR method were similar to those obtained with the standard methods. For example, Aias of 47 and 44 cm-1 were measured with the GACR and XMT methods, respectively, for the sand at a water saturation of 0.57. The results of the study indicate that the GACR method is a viable alternative for measuring air-water interfacial areas. The method is relatively quick, inexpensive, and requires no specialized instrumentation compared to the standard methods.

  10. Polyacrylate–water partitioning of biocidal compounds: Enhancing the understanding of biocide partitioning between render and water

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Ou, Yi; Mayer, Philipp

    2014-01-01

    -N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating...

  11. Comparison of Chemical and Physical-chemical Wastewater Discoloring Methods

    Directory of Open Access Journals (Sweden)

    Durašević, V.

    2007-11-01

    Full Text Available Today's chemical and physical-chemical wastewater discoloration methods do not completely meet demands regarding degree of discoloration. In this paper discoloration was performed using Fenton (FeSO4 . 7 H2O + H2O2 + H2SO4 and Fenton-like (FeCl3 . 6 H2O + H2O2 + HCOOH chemical methods and physical-chemical method of coagulation/flocculation (using poly-electrolyte (POEL combining anion active coagulant (modified poly-acrylamides and cationic flocculant (product of nitrogen compounds in combination with adsorption on activated carbon. Suitability of aforementioned methods was investigated on reactive and acid dyes, regarding their most common use in the textile industry. Also, investigations on dyes of different chromogen (anthraquinone, phthalocyanine, azo and xanthene were carried out in order to determine the importance of molecular spatial structure. Oxidative effect of Fenton and Fenton-like reagents resulted in decomposition of colored chromogen and high degree of discoloration. However, the problem is the inability of adding POEL in stechiometrical ratio (also present in physical-chemical methods, when the phenomenon of overdosing coagulants occurs in order to obtain a higher degree of discoloration, creating a potential danger of burdening water with POEL. Input and output water quality was controlled through spectrophotometric measurements and standard biological parameters. In addition, part of the investigations concerned industrial wastewaters obtained from dyeing cotton materials using reactive dye (C. I. Reactive Blue 19, a process that demands the use of vast amounts of electrolytes. Also, investigations of industrial wastewaters was labeled as a crucial step carried out in order to avoid serious misassumptions and false conclusions, which may arise if dyeing processes are only simulated in the laboratory.

  12. Salt separation of uranium deposits generated from electrorefining in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  13. Salt separation of uranium deposits generated from electrorefining in pyro process

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  14. A partition function approximation using elementary symmetric functions.

    Directory of Open Access Journals (Sweden)

    Ramu Anandakrishnan

    Full Text Available In statistical mechanics, the canonical partition function [Formula: see text] can be used to compute equilibrium properties of a physical system. Calculating [Formula: see text] however, is in general computationally intractable, since the computation scales exponentially with the number of particles [Formula: see text] in the system. A commonly used method for approximating equilibrium properties, is the Monte Carlo (MC method. For some problems the MC method converges slowly, requiring a very large number of MC steps. For such problems the computational cost of the Monte Carlo method can be prohibitive. Presented here is a deterministic algorithm - the direct interaction algorithm (DIA - for approximating the canonical partition function [Formula: see text] in [Formula: see text] operations. The DIA approximates the partition function as a combinatorial sum of products known as elementary symmetric functions (ESFs, which can be computed in [Formula: see text] operations. The DIA was used to compute equilibrium properties for the isotropic 2D Ising model, and the accuracy of the DIA was compared to that of the basic Metropolis Monte Carlo method. Our results show that the DIA may be a practical alternative for some problems where the Monte Carlo method converge slowly, and computational speed is a critical constraint, such as for very large systems or web-based applications.

  15. Cost efficient CFD simulations: Proper selection of domain partitioning strategies

    Science.gov (United States)

    Haddadi, Bahram; Jordan, Christian; Harasek, Michael

    2017-10-01

    Computational Fluid Dynamics (CFD) is one of the most powerful simulation methods, which is used for temporally and spatially resolved solutions of fluid flow, heat transfer, mass transfer, etc. One of the challenges of Computational Fluid Dynamics is the extreme hardware demand. Nowadays super-computers (e.g. High Performance Computing, HPC) featuring multiple CPU cores are applied for solving-the simulation domain is split into partitions for each core. Some of the different methods for partitioning are investigated in this paper. As a practical example, a new open source based solver was utilized for simulating packed bed adsorption, a common separation method within the field of thermal process engineering. Adsorption can for example be applied for removal of trace gases from a gas stream or pure gases production like Hydrogen. For comparing the performance of the partitioning methods, a 60 million cell mesh for a packed bed of spherical adsorbents was created; one second of the adsorption process was simulated. Different partitioning methods available in OpenFOAM® (Scotch, Simple, and Hierarchical) have been used with different numbers of sub-domains. The effect of the different methods and number of processor cores on the simulation speedup and also energy consumption were investigated for two different hardware infrastructures (Vienna Scientific Clusters VSC 2 and VSC 3). As a general recommendation an optimum number of cells per processor core was calculated. Optimized simulation speed, lower energy consumption and consequently the cost effects are reported here.

  16. A new 3-D ray tracing method based on LTI using successive partitioning of cell interfaces and traveltime gradients

    Science.gov (United States)

    Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing

    2013-05-01

    We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.

  17. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    Science.gov (United States)

    Jakobtorweihen, S.; Zuniga, A. Chaides; Ingram, T.; Gerlach, T.; Keil, F. J.; Smirnova, I.

    2014-07-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  18. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    International Nuclear Information System (INIS)

    Jakobtorweihen, S.; Ingram, T.; Gerlach, T.; Smirnova, I.; Zuniga, A. Chaides; Keil, F. J.

    2014-01-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations

  19. The complex formation-partition and partition-association models of solvent extraction of ions

    International Nuclear Information System (INIS)

    Siekierski, S.

    1976-01-01

    Two models of the extraction process have been proposed. In the first model it is assumed that the partitioning neutral species is at first formed in the aqueous phase and then transferred into the organic phase. The second model is based on the assumption that equivalent amounts of cations are at first transferred from the aqueous into the organic phase and then associated to form a neutral molecule. The role of the solubility parameter in extraction and the relation between the solubility of liquid organic substances in water and the partition of complexes have been discussed. The extraction of simple complexes and complexes with organic ligands has been discussed using the first model. Partition coefficients have been calculated theoretically and compared with experimental values in some very simple cases. The extraction of ion pairs has been discussed using the partition-association model and the concept of single-ion partition coefficients. (author)

  20. Development of partitioning method: confirmation of behavior of technetium in 4-Group Partitioning Process by a small scale experiment

    International Nuclear Information System (INIS)

    Morita, Yasuji; Yamaguchi, Isoo; Fujiwara, Takeshi; Kubota, Masumitsu; Mizoguchi, Kenichi

    1998-08-01

    The separation behavior of Tc in the whole of 4-Group Partitioning Process was examined by a flask-scale experiment using simulated high-level liquid waste containing a macro amount of Tc, in order to confirm the reproducibility of the results obtained in previous studies on the Tc behavior at each step of the process. The 4-Group Partitioning Process consists of pre-treatment step, extraction step with diisodecylphosphoric acid (DIDPA), adsorption step with active carbon or precipitation step by denitration for the separation of Tc and platinum group metals (PGM), and adsorption step with inorganic ion exchangers. The present study deals with the behavior of Tc and other elements at all the above steps and additional step for Tc dissolution from the precipitate formed by the denitration. At the pre-treatment step, the ratio of Tc precipitated was very low (about 0.2%) at both operations of heating-denitration and colloid removal. Tc was not extracted with DIDPA and was contained quantitatively in the raffinate from the extraction step. Batch adsorption with active carbon directly from the raffinate showed that distribution coefficient of Tc was more than 100ml/g, which is high enough for the separation. It also revealed much effect of coexisting Mo on the Tc adsorption. At the precipitation step by denitration, 98.2% of Tc were precipitated. At the Tc dissolution from the precipitate with H 2 O 2 , 84.2% of Tc were selectively dissolved in a single operation. Tc was not adsorbed with inorganic ion exchangers. From these results, composition of Tc product from the partitioning process was estimated. The weight ratio of Tc in the Tc product can be increased to about 50% at least. Main contaminating elements are Cr, Ni, Sr, Ba, Mo and Pd. Process optimization to decrease their contamination should be performed in a next study. (J.P.N.)

  1. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    International Nuclear Information System (INIS)

    Bauer, C.B.; Rogers, R.D.

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K d ) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles

  2. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.B.; Rogers, R.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F. [Argonne National Lab., IL (United States)

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  3. Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian

    2006-10-01

    An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.

  4. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  5. Mesh Partitioning Algorithm Based on Parallel Finite Element Analysis and Its Actualization

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2013-01-01

    Full Text Available In parallel computing based on finite element analysis, domain decomposition is a key technique for its preprocessing. Generally, a domain decomposition of a mesh can be realized through partitioning of a graph which is converted from a finite element mesh. This paper discusses the method for graph partitioning and the way to actualize mesh partitioning. Relevant softwares are introduced, and the data structure and key functions of Metis and ParMetis are introduced. The writing, compiling, and testing of the mesh partitioning interface program based on these key functions are performed. The results indicate some objective law and characteristics to guide the users who use the graph partitioning algorithm and software to write PFEM program, and ideal partitioning effects can be achieved by actualizing mesh partitioning through the program. The interface program can also be used directly by the engineering researchers as a module of the PFEM software. So that it can reduce the application of the threshold of graph partitioning algorithm, improve the calculation efficiency, and promote the application of graph theory and parallel computing.

  6. A new modeling and solution approach for the number partitioning problem

    Directory of Open Access Journals (Sweden)

    Bahram Alidaee

    2005-01-01

    Full Text Available The number partitioning problem has proven to be a challenging problem for both exact and heuristic solution methods. We present a new modeling and solution approach that consists of recasting the problem as an unconstrained quadratic binary program that can be solved by efficient metaheuristic methods. Our approach readily accommodates both the common two-subset partition case as well as the more general case of multiple subsets. Preliminary computational experience is presented illustrating the attractiveness of the method.

  7. INVESTIGATION INTO THE RATE OF TRIOCTYLAMINE PARTITIONING INTO THE MCU AQUEOUS PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Couture, A.

    2013-07-16

    The Savannah River National Laboratory (SRNL) has examined the issue of trioctylamine (TOA) losses at the Modular Caustic-Side Solvent Extraction Unit (MCU) solvent. For this study, SRNL used partitioning and radiolysis data from the Oak Ridge National Laboratory (ORNL) as well as actual MCU operational data. From the radiolysis data, SRNL prepared a model on the rate of TOA degradation. From the combined sets of data, SRNL has calculated the largest possible value of TOA (although this value is not credible) in the Strip Effluent (SE) and also calculated two different conservative, more realistic values for TOA in the SE. Even under conservative assumptions, such as all of the TOA losses partitioning solely into the Strip Effluent (SE), the MCU operational data suggests that the maximum realistic TOA concentration in the SE is < 0.6 mg/L. Furthermore, from understanding the chemical differences between the old and new strip solutions, SRNL does not believe that the TOA will deplete from the blended BOBCalixC6 – Next Generation Solvent (NGS-MCU) at a rate higher than previously experienced. Finally, SRNL recommends pursuing analytical development of a method for TOA with a superior precision compared to the current method. However, as the TOA in the blended solvent will continuously decline during MCU operations, further improvements in the development of the understanding of TOA losses may not be cost effective.

  8. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  9. PROCEDURES FOR THE DERIVATION OF EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARKS (ESBS) FOR THE PROTECTION OF BENTHIC ORGANISMS: COMPENDIUM OF TIER 2 VALUES FOR NONIONIC ORGANICS

    Science.gov (United States)

    This equilibrium partitioning sediment benchmark (ESB) document describes procedures to derive concentrations for 32 nonionic organic chemicals in sediment which are protective of the presence of freshwater and marine benthic organisms. The equilibrium partitioning (EqP) approach...

  10. Radiation Fog in the US Mid-Atlantic Region: Chemical Composition, Trends, and Gas-Liquid Partitioning

    Science.gov (United States)

    Straub, D.

    2016-12-01

    The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.

  11. Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning.

    Science.gov (United States)

    Kuo, Dave T F; Di Toro, Dominic M

    2013-08-01

    A model for whole-body in vivo biotransformation of neutral and weakly polar organic chemicals in fish is presented. It considers internal chemical partitioning and uses Abraham solvation parameters as reactivity descriptors. It assumes that only chemicals freely dissolved in the body fluid may bind with enzymes and subsequently undergo biotransformation reactions. Consequently, the whole-body biotransformation rate of a chemical is retarded by the extent of its distribution in different biological compartments. Using a randomly generated training set (n = 64), the biotransformation model is found to be: log (HLφfish ) = 2.2 (±0.3)B - 2.1 (±0.2)V - 0.6 (±0.3) (root mean square error of prediction [RMSE] = 0.71), where HL is the whole-body biotransformation half-life in days, φfish is the freely dissolved fraction in body fluid, and B and V are the chemical's H-bond acceptance capacity and molecular volume. Abraham-type linear free energy equations were also developed for lipid-water (Klipidw ) and protein-water (Kprotw ) partition coefficients needed for the computation of φfish from independent determinations. These were found to be 1) log Klipidw  = 0.77E - 1.10S - 0.47A - 3.52B + 3.37V + 0.84 (in Lwat /kglipid ; n = 248, RMSE = 0.57) and 2) log Kprotw  = 0.74E - 0.37S - 0.13A - 1.37B + 1.06V - 0.88 (in Lwat /kgprot ; n = 69, RMSE = 0.38), where E, S, and A quantify dispersive/polarization, dipolar, and H-bond-donating interactions, respectively. The biotransformation model performs well in the validation of HL (n = 424, RMSE = 0.71). The predicted rate constants do not exceed the transport limit due to circulatory flow. Furthermore, the model adequately captures variation in biotransformation rate between chemicals with varying log octanol-water partitioning coefficient, B, and V and exhibits high degree of independence from the choice of training chemicals. The

  12. "K"-Balance Partitioning: An Exact Method with Applications to Generalized Structural Balance and Other Psychological Contexts

    Science.gov (United States)

    Brusco, Michael; Steinley, Douglas

    2010-01-01

    Structural balance theory (SBT) has maintained a venerable status in the psychological literature for more than 5 decades. One important problem pertaining to SBT is the approximation of structural or generalized balance via the partitioning of the vertices of a signed graph into "K" clusters. This "K"-balance partitioning problem also has more…

  13. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  14. A rapid kinetic chromogenic method for quantification of bacterial endotoxins in lyophilized reagents for labeling with 99mTc radiopharmaceuticals

    International Nuclear Information System (INIS)

    Fukumori, Neuza T.O.; Campos, Domingos G.; Silva, Laercio; Fernandes, Adriana V.; Mengatti, Jair; Silva, Constancia P.G.; Matsuda, Margareth M.N.

    2009-01-01

    A rapid quantitative kinetic chromogenic test in an automated Portable Test System (PTS) has been developed for determination of bacterial endotoxins in water, in-process and end-products using the Limulus amebocyte lysate (LAL). The aim of this work was to validate the method for lyophilized reagents for labeling with 99m Tc radiopharmaceuticals with no interfering factors. Experiments were performed in three consecutive batches of the lyophilized reagents Methylenediphosphonic Acid (MDP) and Pyrophosphate (PYRO) produced at IPEN-CNEN/ SP using the PTS from Endosafe, Inc. TM , Charleston, SC. The Maximum Valid Dilution (MVD) was calculated to establish the extent of dilution to avoid interfering test conditions (MVD=500). Better results were obtained above 1:20 dilution factor for MDP and 1:100 for PYRO. The parameters of coefficient correlation (R) -0.980, RPPC between 50 - 200% and coefficient variation (CV) of the samples less than 25% were satisfied and the endotoxin concentration was lower than the lowest concentration of the standard curve (0.05 EU mL -1 ), therefore less than the established limit in pharmacopoeias. The PTS is a rapid, simple and accurate technique using the quantitative kinetic chromogenic method for bacterial endotoxin determination. For this reason, it is very practical in the radiopharmaceutical area and it trends to be the method of choice for the pyrogen test. For MDP and PYRO, the validation was successfully performed. (author)

  15. Incentives and recent proposals for partitioning and transmutation in the United States

    International Nuclear Information System (INIS)

    Donovan, T.J.

    1995-05-01

    Partitioning and transmutation (P-T) is perhaps the most elegant means of high level waste disposal. Currently, the cost of fuel obtained from reprocessing spent fuel exceeds the cost of fuel obtained by mining. This has resulted in the once through fuel cycle dominating the US nuclear industry. Despite this fact P-T continues to be examined and debated by the US as well as abroad. The US first seriously considered P-T between approximately 1976 and 1982 but rejected the concept in favor of reprocessing. More recently, since about 1989, as a result of the once through fuel cycle and the growing problems of waste disposal, studies concerning P-T have resumed. This essay will seek to outline the incentives and goals of partitioning and transmutation as it would apply to the disposal of spent fuel in the US. Recent proposals by various US national laboratories for implementing partitioning and transmutation as a high level waste management and disposal device will also be discussed. The review will seek to examine the technical concepts utilized in each of the proposals and their feasibility. The major focus of this essay will be the transmutation methods themselves, while the partitioning methods will be discussed only briefly. This is because of the fact that partitioning methods fall under reprocessing as an already fairly well established and accepted technology while feasible methods for transmutation are still being advanced

  16. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    International Nuclear Information System (INIS)

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-01-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection

  17. Uranium partitioning under acidic conditions in a sandy soil aquifer

    International Nuclear Information System (INIS)

    Johnson, W.H.; Serkiz, S.M.; Johnson, L.M.

    1995-01-01

    The partitioning of uranium in an aquifer down gradient of two large mixed waste sites was examined with respect to the solution and soil chemistry (e.g., pH redox potential and contaminant concentration) and aqueous-phase chemical speciation. This involved generation of field-derived, batch sorption, and reactive mineral surface sorption data. Field-derived distribution coefficients for uranium at these waste sites were found to vary between 0.40 and 15,000. Based on thermodynamic speciation modeling and a comparison of field and laboratory data, gibbsite is a potential reactive mineral surface present in modified soils at the sites. Uranium partitioning data are presented from field samples and laboratory studies of background soil and the mineral surface gibbsite. Mechanistic and empirical sorption models fit to the field-derived uranium partitioning data show an improvement of over two orders of magnitude, as measured by the normalized sum of errors squared, when compared with the single K d model used in previous risk work. Models fit to batch sorption data provided a better fit of sorbed uranium than do models fit to the field-derived data

  18. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  19. Progress on the Application of Metallic Fuels for Actinide Transmutation

    International Nuclear Information System (INIS)

    Kennedy, J. Rory; Fielding, Randall; Janney, Dawn; Mariani, Robert; Teague, Melissa; Egeland, Gerald

    2015-01-01

    Full text of publication follows: Idaho National Laboratory (INL) is developing actinide bearing alloy metallic fuels intended for effecting the transmutation of long-lived isotopes in fast reactor application as part of a partitioning and transmutation strategy. This presentation will report on progress in three areas of this effort: demonstration of the fabrication of fuels under remote (hot cell) conditions directly coupled to the product from the Pyro-processing of spent fuel as part of the Joint Fuel Cycle Studies (JFCS) collaboration with the Korean Atomic Energy Research Institute (KAERI); the chemical sequestration of lanthanide fission products to mitigate fuel-cladding-chemical-interaction (FCCI); and transmission electron microscopy (TEM) and atom probe tomography (APT) studies on the as-cast microstructure of the metallic fuel alloy. For the JFCS efforts, we report on the implementation of the Glove-box Advanced Casting System (GACS) as a prototype casting furnace for eventual installation into the INL Hot Fuel Examination Facility (HFEF) where the recycled fuel will be cast. Results from optimising process parameters with respect to fuel characteristics, americium volatility, materials interaction, and lanthanide fission product carry over distribution will be discussed. With respect to the lanthanide carry over from the Pyro-processing product, encouraging studies on concepts to chemically sequester the FCCI promoting lanthanides within the fuel matrix thus inhibiting migration and interaction with the cladding will be presented. Finally, in relation to advanced modelling and simulation efforts, detailed investigations and interpretation on the nano-scale as cast microstructure of possible recycle fuel composition containing U, Pu, Am, Np as well as carry-over lanthanide species will be discussed. These studies are important for establishing the initial conditions from which advanced physics based fuel performance codes will run. (authors)

  20. PAQ: Partition Analysis of Quasispecies.

    Science.gov (United States)

    Baccam, P; Thompson, R J; Fedrigo, O; Carpenter, S; Cornette, J L

    2001-01-01

    The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups. We have developed an intuitive exploratory program, Partition Analysis of Quasispecies (PAQ), which utilizes a non-hierarchical technique to partition sequences that are genetically similar. PAQ was used to analyze a data set of human immunodeficiency virus type 1 (HIV-1) envelope sequences isolated from different regions of the brain and another data set consisting of the equine infectious anemia virus (EIAV) regulatory gene rev. Analysis of the HIV-1 data set by PAQ was consistent with phylogenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping groups. PAQ provides an additional tool which can be used to glean information from genetic data and can be used in conjunction with other tools to study genetic similarities and genetic evolution of viral quasispecies.

  1. Chemical microreactor and method thereof

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  2. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    Science.gov (United States)

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  3. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.

    2011-08-25

    There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like

  4. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    International Nuclear Information System (INIS)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools

  5. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  6. The fate of uranium contaminants of phosphate fertiliser: chemical partitioning of uranium in two New Zealand soils of volcanic origin and the effect on partitioning of amending one of those soils with uranium

    International Nuclear Information System (INIS)

    Taylor, M.D.

    1998-01-01

    This study assessed the chemical partitioning of U isotopes in Horomanga Sandy Loam and Te Kowhai silt loam, two agricultural soils derived from rhyolitic ash and receiving low level contamination from U impurities in phosphate fertiliser. To simulate future U additions, a sub-sample of the Horomanga soil was amended with 2.259 μg U g -1 soil before sequential extraction. The hypothesis that U additions will be strongly held on to the soil and are not available for leaching or plant uptake was tested. After extraction U was purified and determined by alpha spectrometry. Results were corrected for tailing, background, for losses in the purification process (using 232 U), and for soil moisture. It is concluded that only a small proportion of U in the two type of soils examined was derived from fertiliser and that very little U would be available to plants or to leaching

  7. Estimating the Partition Function Zeros by Using the Wang-Landau Monte Carlo Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Yeon [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    The concept of the partition function zeros is one of the most efficient methods for investigating the phase transitions and the critical phenomena in various physical systems. Estimating the partition function zeros requires information on the density of states Ω(E) as a function of the energy E. Currently, the Wang-Landau Monte Carlo algorithm is one of the best methods for calculating Ω(E). The partition function zeros in the complex temperature plane of the Ising model on an L × L square lattice (L = 10 ∼ 80) with a periodic boundary condition have been estimated by using the Wang-Landau Monte Carlo algorithm. The efficiency of the Wang-Landau Monte Carlo algorithm and the accuracies of the partition function zeros have been evaluated for three different, 5%, 10%, and 20%, flatness criteria for the histogram H(E).

  8. The Euler–Riemann gases, and partition identities

    International Nuclear Information System (INIS)

    Chair, Noureddine

    2013-01-01

    The Euler theorem in partition theory and its generalization are derived from a non-interacting quantum field theory in which each bosonic mode with a given frequency is equivalent to a sum of bosonic mode whose frequency is twice (s-times) as much, and a fermionic (parafermionic) mode with the same frequency. Explicit formulas for the graded parafermionic partition functions are obtained, and the inverse of the graded partition function (IGPPF), turns out to be bosonic (fermionic) partition function depending on the parity of the order s of the parafermions. It is also shown that these partition functions are generating functions of partitions of integers with restrictions, the Euler generating function is identified with the inverse of the graded parafermionic partition function of order 2. As a result we obtain new sequences of partitions of integers with given restrictions. If the parity of the order s is even, then mixing a system of parafermions with a system whose partition function is (IGPPF), results in a system of fermions and bosons. On the other hand, if the parity of s is odd, then, the system we obtain is still a mixture of fermions and bosons but the corresponding Fock space of states is truncated. It turns out that these partition functions are given in terms of the Jacobi theta function θ 4 , and generate sequences in partition theory. Our partition functions coincide with the overpartitions of Corteel and Lovejoy, and jagged partitions in conformal field theory. Also, the partition functions obtained are related to the Ramond characters of the superconformal minimal models, and in the counting of the Moore–Read edge spectra that appear in the fractional quantum Hall effect. The different partition functions for the Riemann gas that are the counter parts of the Euler gas are obtained by a simple change of variables. In particular the counter part of the Jacobi theta function is (ζ(2t))/(ζ(t) 2 ) . Finally, we propose two formulas which brings

  9. Hawk: A Runtime System for Partitioned Objects

    NARCIS (Netherlands)

    Ben Hassen, S.; Bal, H.E.; Tanenbaum, A.S.

    1997-01-01

    Hawk is a language-independent runtime system for writing data-parallel programs using partitioned objects. A partitioned object is a multidimensional array of elements that can be partitioned and distributed by the programmer. The Hawk runtime system uses the user-defined partitioning of objects

  10. Chemical control methods and tools

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  11. Device for collecting chemical compounds and related methods

    Science.gov (United States)

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  12. Analysis of load balance in hybrid partitioning | Talib | Botswana ...

    African Journals Online (AJOL)

    In information retrieval systems, there are three types of index partitioning schemes - term partitioning, document partitioning, and hybrid partitioning. The hybrid-partitioning scheme combines both term and document partitioning schemes. Term partitioning provides high concurrency, which means that queries can be ...

  13. Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes

    KAUST Repository

    Hundsdorfer, Willem

    2013-01-01

    Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for one-dimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total variation diminishing (TVD) property. The study of these properties will be done within the framework of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods.

  14. Development of a partitioning method for the management of high-level liquid waste

    International Nuclear Information System (INIS)

    Kubota, M.; Dojiri, S.; Yamaguchi, I.; Morita, Y.; Yamagishi, I.; Kobayashi, T.; Tani, S.

    1989-01-01

    Fundamental studies especially focused on the separation of neptunium and technetium have been carried out to construct the advanced partitioning process of fractioning elements in a high-level liquid waste into four groups: transuranium elements, technetium-noble metals, strontium-cesium, and other elements. For the separation of neptunium by solvent extraction, DIDPA proved excellent for extracting Np(V), and its extraction rate was accelerated by hydrogen peroxide. Np(V) was found to be also separated quantitatively as precipitate with oxalic acid. For the separation of technetium, the denitration with formic acid was effective in precipitating it along with noble metals, and the adsorption with activated carbon was also effective for quantitative separation. Through these fundamental studies, the advanced partitioning process is presented as the candidate to be examined with an actual high-level liquid waste

  15. Estimation of Partition Coefficients of Benzene, Toluene, Ethylbenzene, and ρ-Xylene by Consecutive Extraction with Solid Phase Microextraction

    International Nuclear Information System (INIS)

    Eom, In Yong

    2011-01-01

    The results show that the partition coefficients of the BTEX compound can be estimated using the SPME method under the consecutive extraction mode. The proposed technique is much simpler than previously reported methods. Its novelty is that it eliminated the calibration step in the GC/FID, i. e., liquid injection method. The use of the autosampler for the SPME fiber can facilitate the adoption of consecutive extractions; thus, it allows estimation of the partition coefficients of various analytes. Recently, GC/MS has increasingly been used in analytical laboratories; this may facilitate the identification of an unknown analyte as well as the computation of the corresponding partition coefficients with the proposed method. It is very important to use partition coefficients of organic pollutants to predict their fate in the environment. A liquid-liquid extraction technique was used to determine the partition coefficients of organic compounds between water and organic solvent. The concentration of the target compounds must be determined after equilibrium is established between the two phases. The partition coefficients can be estimated using the capacity factors of HPLC and GC

  16. Human Rights and Peace Audit on Partition in South Asia - Phase I ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Human Rights and Peace Audit on Partition in South Asia - Phase I ... the South Asia Forum for Human Rights (SAFHR) to examine the efficacy of partition as a method ... Call for new OWSD Fellowships for Early Career Women Scientists now open ... IWRA/IDRC webinar on climate change and adaptive water management.

  17. The chemical constituents from leaves of Acer saccharum.

    Science.gov (United States)

    Zhang, Yu; Zhao, Hong

    2009-03-01

    To study the chemical constituents of leaves of Acer saccharum. The leaves of Acer saccharum were extracted by ethanol. The concentrated material was partitioned by petroleum ether, ethyl acetate, and n-butanol. After extracted by ethyl acetate, the extract was isolated and purified by silica gel column chromatography and recrystallization. The compound structures were identified on the basis of spectral data and chemical methods. Seven compounds were isolated from the leaves of Acer saccharum. Their compound structures were identified as 3-keton-ursane,3beta-hydroxy-12-olean-12-en and 5-en-7-hydroxy-sitosterol. All the three compounds identified are isolated from this genus for the first time.

  18. Partitioning of TRU elements from Chinese HLLW

    International Nuclear Information System (INIS)

    Song Chongli; Zhu Yongjun

    1994-04-01

    The partitioning of TRU elements from the Chinese HLLW is feasible. The required D.F. values for producing a waste suitable for land disposal are given. The TRPO process developed in China could be used for this purpose. The research and development of the TRPO process is summarized and the general flowsheet is given. The Chinese HLLW has very high salt concentration. It causes the formation of third phase when contacted with TRPO extractant. The third phase would disappear by diluting the Chinese HLLW to 2∼3 times before extraction. The preliminary experiment shows very attractive results. The separation of Sr and Cs from the Chinese HLLW is also possible. The process is being studied. The partitioning of TRU elements and long lived ratio-nuclides from the Chinese HLLW provides an alternative method for its disposal. The partitioning of the Chinese HLLW could greatly reduce the waste volume, that is needed to be vitrified and to be disposed in to the deep repository, and then would drastically save the overall waste disposal cost

  19. Illustrating sensitivity in environmental fate models using partitioning maps - application to selected contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wania, F. [Univ. of Toronto at Scarborough - DPES, Toronto (Canada)

    2004-09-15

    Generic environmental multimedia fate models are important tools in the assessment of the impact of organic pollutants. Because of limited possibilities to evaluate generic models by comparison with measured data and the increasing regulatory use of such models, uncertainties of model input and output are of considerable concern. This led to a demand for sensitivity and uncertainty analyses for the outputs of environmental fate models. Usually, variations of model predictions of the environmental fate of organic contaminants are analyzed for only one or at most a few selected chemicals, even though parameter sensitivity and contribution to uncertainty are widely different for different chemicals. We recently presented a graphical method that allows for the comprehensive investigation of model sensitivity and uncertainty for all neutral organic chemicals simultaneously. This is achieved by defining a two-dimensional hypothetical ''chemical space'' as a function of the equilibrium partition coefficients between air, water, and octanol (K{sub OW}, K{sub AW}, K{sub OA}), and plotting sensitivity and/or uncertainty of a specific model result to each input parameter as function of this chemical space. Here we show how such sensitivity maps can be used to quickly identify the variables with the highest influence on the environmental fate of selected, chlorobenzenes, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs) and brominated flame retardents (BFRs).

  20. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    Science.gov (United States)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  1. Helium-air exchange flows through partitioned opening and two-opening

    International Nuclear Information System (INIS)

    Kang, T. I.

    1997-01-01

    This paper describes experimental investigations of helium-air exchange flows through partitioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the two types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange flow rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with two-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between two types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction. (author)

  2. An Efficient Technique for Hardware/Software Partitioning Process in Codesign

    Directory of Open Access Journals (Sweden)

    Imene Mhadhbi

    2016-01-01

    Full Text Available Codesign methodology deals with the problem of designing complex embedded systems, where automatic hardware/software partitioning is one key issue. The research efforts in this issue are focused on exploring new automatic partitioning methods which consider only binary or extended partitioning problems. The main contribution of this paper is to propose a hybrid FCMPSO partitioning technique, based on Fuzzy C-Means (FCM and Particle Swarm Optimization (PSO algorithms suitable for mapping embedded applications for both binary and multicores target architecture. Our FCMPSO optimization technique has been compared using different graphical models with a large number of instances. Performance analysis reveals that FCMPSO outperforms PSO algorithm as well as the Genetic Algorithm (GA, Simulated Annealing (SA, Ant Colony Optimization (ACO, and FCM standard metaheuristic based techniques and also hybrid solutions including PSO then GA, GA then SA, GA then ACO, ACO then SA, FCM then GA, FCM then SA, and finally ACO followed by FCM.

  3. Dissolution of uranium oxide TBP-HNO3 complex

    International Nuclear Information System (INIS)

    Mizuno, Mineo; Kosaka, Yuji; Mori, Yukihide; Shimada, Takashi

    2002-12-01

    As a head end process for the pulverization of the spent fuel, the mechanical method (the shredder method) and the pyro-chemical method (oxidisation heat-treatment) have been examined. UO 2 is a main ingredient of Uranium oxide powder by the mechanical method, and U 3 O 8 is that by the pyro-chemical method. Moreover, the particle size of the pulverized powder depend on the conditions of the pulverizing process. As it was considered that the difference of dissolution rates of samples was caused by the difference of sample chemical forms and dissolution temperature, parametric surveys on chemical form and particle size of powder and dissolution temperature were carried out, and the following results were obtained. 1) The remarkable difference of dissolution rate between U 3 O 8 powder (average particle size 3.7 μm) and UO 2 powder (average particle size 2.4 μm) which have comparatively similar particle size was not observed. 2) It was confirmed that the dissolution rate became lower according to the particle size increase (average particle size 2.4 μm-1 mm). And it was considered that dissolution rate had strong dependency on particle size, according to the results that the powder with 1 mm particle size did not dissolute completely after 5 hours test. 3) The temperature dependency of the dissolution rate was confirmed by dissolution test with UO 2 powder (average particle size 2.4 μm-1 mm). The higher dissolution rate was obtained in the higher dissolution temperature, and 11 kcal/mol was obtained as activation energy of dissolution. 4) In the dissolution test of UO 2 powder, the nitric acid concentration started to change earlier than that of U 3 O 8 powder and concentration change range became larger compared with that in the dissolution test of U 3 O 8 powder. It was considered that those differences were caused by difference in mole ratio of Uranium and nitric acid which are consumed in the dissolution reaction (3:7 for U 3 O 8 , 3:8 for UO 2 ). 5) In case

  4. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  5. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C ratio is lower than ~0.6, as in the case of α-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the α-pinene system are also discussed from a more general point of view.

  6. A brief history of partitions of numbers, partition functions and their modern applications

    Science.gov (United States)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  7. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  8. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX → MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  9. Chemical technology of the systems, partitioning and separation, disposal

    International Nuclear Information System (INIS)

    Volk, V.I.

    1997-01-01

    A reactor-accelerator reprocessing complex is described. The complex comprises an electronuclear transmutation installation and chemical and technological support units for maintenance of the steady-state of the blanket, separation of short-lived transmutation products to be disposed of from other components of the blanket, chemical conversion to relevant stable species of products to be disposed of for interim storage and disposal

  10. Ocean surface partitioning strategies using ocean colour remote Sensing: A review

    Science.gov (United States)

    Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.

    2017-06-01

    The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and

  11. Generalized Enhanced Multivariance Product Representation for Data Partitioning: Constancy Level

    International Nuclear Information System (INIS)

    Tunga, M. Alper; Demiralp, Metin

    2011-01-01

    Enhanced Multivariance Product Representation (EMPR) method is used to represent multivariate functions in terms of less-variate structures. The EMPR method extends the HDMR expansion by inserting some additional support functions to increase the quality of the approximants obtained for dominantly or purely multiplicative analytical structures. This work aims to develop the generalized form of the EMPR method to be used in multivariate data partitioning approaches. For this purpose, the Generalized HDMR philosophy is taken into consideration to construct the details of the Generalized EMPR at constancy level as the introductory steps and encouraging results are obtained in data partitioning problems by using our new method. In addition, to examine this performance, a number of numerical implementations with concluding remarks are given at the end of this paper.

  12. Handling Data Skew in MapReduce Cluster by Using Partition Tuning

    Directory of Open Access Journals (Sweden)

    Yufei Gao

    2017-01-01

    Full Text Available The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH. In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN. We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM on healthcare data.

  13. A Partitioning and Bounded Variable Algorithm for Linear Programming

    Science.gov (United States)

    Sheskin, Theodore J.

    2006-01-01

    An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

  14. Development of the scientific concept of the phosphate methods for actinide-containing waste handling (pyrochemical fuel reprocessing)

    International Nuclear Information System (INIS)

    Orlova, A.I.; Orlova, V.A.; Skiba, O.V.; Bychkov, A.V.; Volkov, Yu.F.; Lukinykh, A.N.; Tomilin, S.V.; Lizin, A.A.

    2008-01-01

    Full text of publication follows: The crystallochemical phosphate concept in question is developed successfully in the new pyro-electrochemical reprocessing technology of irradiated fuel in molten chlorides of alkaline elements at one of the leading scientific nuclear centers - Research Institute of Atomic Reactors. Irradiated fuel is dissolved in molten chlorides of alkaline elements by mean of treating by chlorine. Then uranium and plutonium dioxides are removed electrochemically. The melt, when used many times, is contaminated by the residual actinide and contains fission products and the so called 'process' elements. This melt is unacceptable for future use. Phosphate methods can be applied for the solution of the following tasks: a) reprocessing (purification) of molten chloride salt solvents; b) conversion of the spent chloride melts to the insoluble stable crystalline product for safe storage and disposal. Within the framework of task 'a' phosphate methods may be realized by the several ways: 1) phosphate concentrating of impurities and their extraction from molten chlorides into solid phase by mean of chemical precipitation, co-precipitation, ion exchange and other chemical interactions, 2) conversion of precipitated waste phosphates to stable crystalline phosphate powders or ceramics for safe storage and disposal. (authors)

  15. Cylindric partitions, {{\\boldsymbol{ W }}}_{r} characters and the Andrews-Gordon-Bressoud identities

    Science.gov (United States)

    Foda, O.; Welsh, T. A.

    2016-04-01

    We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.

  16. Recent progress of partitioning process in JAERI: development of amide-based artist process

    International Nuclear Information System (INIS)

    Shoichi, Tachimori; Yuji, Sasaki; Yasuji, Morita; Shin-ichi, Suzuki

    2003-01-01

    A branched-alkyl monoamide which extracts An(VI) exclusively by the steric effect and tridentate diglycol-amide; TODGA, which recovers all actinides and Sr(II) from highly acidic waste solutions, were developed. Then, a new chemical process, ARTIST process, is proposed for the treatment of nuclear spent fuel consolidating plutonium management and the partitioning concept. (author)

  17. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  18. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to sugar-free chewing gum with pyro- and triphosphates and reduction of calculus formation (ID 1309) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    calculus/tartar formation, gums health”. The target population is assumed to be the general population. The Panel considers that reduction of calculus formation at sites which are most important for dental health is a beneficial physiological effect. No human studies have been provided from which...... conclusions could be drawn for the scientific substantiation of a claim on the use of sugar-free chewing gum with pyro- and triphosphates and the reduction of calculus formation at sites which are most important for dental health (e.g. gingival margin or between teeth). On the basis of the data presented......, the Panel concludes that a cause and effect relationship has not been established between the use of sugar-free chewing gum with pyro- and triphosphates and reduction of calculus formation at sites which are most important for dental health....

  19. Waste partitioning and transmutation as a means towards long-term risk reduction

    International Nuclear Information System (INIS)

    Merz, E.R.

    1993-09-01

    It has been an idea for some time to reduce the long-term potential hazard of the waste by chemical removal of the actinides as well as some long-lived fission products and their subsequent transmutation in an intense neutron flux. Transmutation would thus shorten the required containment period of radioactive material in a repository. It is estimated, that development of such technology would take at least 40 years because facilities would be required to perform a clean actinide and fission product isolation and to fabricate the fuel elements that contained the separated nuclides. This latter requirements would involve a major expansion of new chemical process steps which are not available as yet. Development of new equipment to maintain occupational exposures as low as reasonably achievable and to minimize releases of radioactivity to the environment would also be necessary. Partitioning and transmutation should be introduced, if at all, as a long-term decision about new nuclear power technology as a future energy source. With regard to this, R and D work dealing with basic questions seems to be worthwhile, However, the introduction of partitioning and transmutation will not eliminate the need for radioactive waste disposal. (orig./HP) [de

  20. Documenting PyroCb Development on High-Intensity Boreal Fires: Implications for the Arctic Atmosphere

    Science.gov (United States)

    Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.

    2007-12-01

    The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an

  1. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    Science.gov (United States)

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  2. Current status of development in dry pyro-electrochemical technology of SNF reprocessing

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Skiba, O.V.; Kormilitsyn, M.V.

    2004-01-01

    The technology of SNF management in molten salts currently developed by a group of institutes headed by RIAR has had several stages of development: - basic research of uranium, plutonium and main FP properties (investigation and reprocessing of different kinds of SNF in 1960 - 1970); - development of the equipment and implementation of the pyro-electrochemical technology of granulated UPu fuel production. Development of the vibro-packing method and in-pile testing of vibro-packed fuel pins with granulated fuel as the most 'logical' continuation of reprocessing: implementation of the technology for BOR-60 and BN-600 (1980 - 1990); - development of closed fuel cycle elements. Checking of the technology using batches of SNF. In-pile tests. Feasibility study of the closed fuel cycle (CFC). Study of application of the technology to other objects (transmutation; nitride, cermet and other fuels) (1980 - 1990). The current status of the research is the following: - Basic research. Properties of uranium, plutonium, thorium, and neptunium in chloride melts have been studied in much detail. The data on physical chemistry and electrochemistry of the main FP is enough for understanding the processes. Detailed studies of americium, curium, and technetium chemistry are the essential investigation directions; - Engineering development. The technology and equipment bases have been developed for the processes of oxide fuel reprocessing and fabrication. The technology was checked using 5500 kg of pure fuel from different reactors and 20 kg of irradiated BN-350 and BOR-60 fuel. The bases of the technology have been provided and the feasibility study has been carried out for a full-scale plant of BN-800 CFC; - Industrial application: Since the technology is highly prepared, the activities on industrial application of U-Pu fuel are now underway. The BOR-60 reactor uses fuel obtained by the dry method, the design of the facility for implementation of CFC reactors is being developed. 9

  3. Investigation of Evaluation method of chemical runaway reaction

    International Nuclear Information System (INIS)

    Sato, Yoshihiko; Sasaya, Shinji; Kurakata, Koichiro; Nojiri, Ichiro

    2002-02-01

    Safety study 'Study of evaluation of abnormal occurrence for chemical substances in the nuclear fuel facilities' will be carried out from 2001 to 2005. In this study, the prediction of thermal hazards of chemical substances will be investigated and prepared. The hazard prediction method of chemical substances will be constructed from these results. Therefore, the hazard prediction methods applied in the chemical engineering in which the chemical substances with the hazard of fire and explosion were often treated were investigated. CHETAH (The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation) developed by ASTM (American Society for Testing and Materials) and TSS (Thermal Safety Software) developed by CISP (ChemInform St. Petersburg) were introduced and the fire and explosion hazards of chemical substances and reactions in the reprocessing process were evaluated. From these evaluated results, CHETAH could almost estimate the heat of reaction at 10% accuracy. It was supposed that CHETAH was useful as a screening for the hazards of fire and explosion of the new chemical substances and so on. TSS could calculate the reaction rate and the reaction behavior from the data measured by the various calorimeters rapidly. It was supposed that TSS was useful as an evaluation method for the hazards of fire and explosion of the new chemical reactions and so on. (author)

  4. Betweenness-based algorithm for a partition scale-free graph

    International Nuclear Information System (INIS)

    Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua

    2011-01-01

    Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)

  5. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    Science.gov (United States)

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  6. The partition coefficients of 133Xe between blood and bone

    International Nuclear Information System (INIS)

    Lahtinen, T.; Karjalainen, P.; Vaeaenaenen, A.; Lahtinen, R.; Alhava, E.M.

    1981-01-01

    The partition coefficients of 133 Xe between blood and haematopoietic bone marrow and homogenised bone have been determined in vitro. The partition coefficient lambda 1 corresponding to haematopoietic marrow was 0.95 ml g -1 while that corresponding to homogenised bone was a function of age, lambda 2 = 3.11 + 0.049(age)(ml g -1 ). These data can be used for calculating regional blood flow in healthy human femur by means of a simple 133 Xe radionuclide method. (author)

  7. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    Science.gov (United States)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the

  8. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  9. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    Science.gov (United States)

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  11. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  12. The importance of applying an appropriate data partitioning

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2015-01-01

    In this presentation are described specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the ATLAS Nightly Build System to achieve uniform data segmentation. However the most challenging was to segment the data of the new ATLAS Distributed Data Management system, which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge wi...

  13. Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Alfaruqi, Muhammad Hilmy; Rai, Alok Kumar; Mathew, Vinod; Jo, Jeonggeun; Kim, Jaekook

    2015-01-01

    ZnMn 2 O 4 /C nanoparticles are synthesized by one step polyol assisted pyro-synthesis for use as the anode in rechargeable lithium ion batteries without any post heat treatment. The as-prepared ZnMn 2 O 4 /C is tetragonal with a spherical particle size in the range of 10–30 nm. Electrochemical measurements were performed using the as-prepared powders as the active material for a lithium-ion cell. The nanoparticle electrode delivered an initial charge capacity of 666.1 mAh g −1 and exhibited a capacity retention of ∼81% (539.4 mAh g −1 ) after 50 cycles. The capacity enhancement in the as-prepared ZnMn 2 O 4 /C may be explained on the basis of the polyol medium that enables to develop a sufficient carbon network that can act as electrical conduits during electrochemical reactions. The carbon network appears to enhance the particle-connectivity and hence improve the electronic conductivities

  14. The Train Driver Recovery Problem - a Set Partitioning Based Model and Solution Method

    DEFF Research Database (Denmark)

    Rezanova, Natalia Jurjevna; Ryan, David

    2010-01-01

    The need to recover a train driver schedule occurs during major disruptions in the daily railway operations. Based on data from the Danish passenger railway operator DSB S-tog A/S, a solution method to the train driver recovery problem (TDRP) is developed. The TDRP is formulated as a set...... branching strategy using the depth-first search of the Branch & Bound tree. The LP relaxation of the TDRP possesses strong integer properties. We present test scenarios generated from the historical real-life operations data of DSB S-tog A/S. The numerical results show that all but one tested instances...... partitioning problem. We define a disruption neighbourhood by identifying a small set of drivers and train tasks directly affected by the disruption. Based on the disruption neighbourhood, the TDRP model is formed and solved. If the TDRP solution provides a feasible recovery for the drivers within...

  15. The influence of precipitation kinetics on trace element partitioning between solid and liquid solutions: A coupled fluid dynamics/thermodynamics framework to predict distribution coefficients

    Science.gov (United States)

    Kavner, A.

    2017-12-01

    In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.

  16. Chemical Methods to Knock Down the Amyloid Proteins

    Directory of Open Access Journals (Sweden)

    Na Gao

    2017-06-01

    Full Text Available Amyloid proteins are closely related with amyloid diseases and do tremendous harm to human health. However, there is still a lack of effective strategies to treat these amyloid diseases, so it is important to develop novel methods. Accelerating the clearance of amyloid proteins is a favorable method for amyloid disease treatment. Recently, chemical methods for protein reduction have been developed and have attracted much attention. In this review, we focus on the latest progress of chemical methods that knock down amyloid proteins, including the proteolysis-targeting chimera (PROTAC strategy, the “recognition-cleavage” strategy, the chaperone-mediated autophagy (CMA strategy, the selectively light-activatable organic and inorganic molecules strategy and other chemical strategies.

  17. Partitioning and transmutation. Annual Report 2001

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G.

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents

  18. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Science.gov (United States)

    2010-07-01

    ... using the CLogP3 computer program in paragraph (e)(9) of this section. 4 Hawker and Connell (1988... (B) Constant temperature bath with circulation pump-bath and capable of controlling temperature to 25...-partition coefficient correlation. Environmental Science and Technology 14:1227-1229 (1980). (2) Bruggemann...

  19. Solidification of metal chloride waste from pyrochemical process via dechlorination-chlorination reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Cho, I.H.; Lee, K.R.; Choi, J.H.; Eun, H.C.; Kim, I.T.; Park, G.I. [Korea Atomic Energy Research Inst., Deajeon (Korea, Republic of)

    2014-07-01

    The metal chloride wastes generated from the pyro-chemical process to recover uranium and TRUs has been considered as a problematic waste due to the high volatility and low compatibility with conventional silicate glass. Our research group has suggested the dechlorination approach for the solidification of this kind of waste by using a synthetic composite, SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}). During the dechlorination, metal elements are chemically interacted with the inorganic composite, SAP, while chlorine is vaporized as gaseous chlorine. Metal elements in the salt were immobilized into phosphate and silicate glass which are uniformly distributed in tens of nm scale. During the dechlorination, gaseous chlorine is captured by Li{sub 2}O-Li{sub 2}O{sub 2} composite that can be converted into metal chloride (LiCl). About 98wt% of oxide composite was converted into LiCl that can be used as an electrolyte in the electrochemical process. The method suggested in this study can provide a chance to minimize the waste volume for the final disposal of salt wastes from a pyro-chemical process. (author)

  20. Survey of Nuclear Methods in Chemical Technology

    International Nuclear Information System (INIS)

    Broda, E.

    1966-01-01

    An attempt is made to classify nuclear methods on a logical basis to facilitate assimilation by the technologist. The three main groups are: (I) Tracer methods, (II) Methods based on the influence of absorbers on radiations to be measured, and (III) Radiation chemical methods. The variants of the first two groups are discussed in some detail, and typical examples are given. Group I can be subdivided into (1) Indicator methods, (2) Emanation methods, (3) Radioreagent methods, and (4) Isotope dilution methods, Group II into (5) Activation methods, (6) Absorption methods, (7) Induced Nuclear Reaction methods, (8) Scattering methods, and (9) Fluorescence methods. While the economic benefits due to nuclear methods already run into hundreds of millions of dollars annually, owing to radiation protection problems radiochemical methods in the strict sense are not widely used in actual production. It is suggested that more use should be made of pilot plant tracer studies of chemical processes as used in industry. (author)

  1. Trace-element speciation and partitioning in environmental geochemistry and health

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.G.; Gibson, M.J.; Lovell, M.A.

    1983-09-01

    Establishment of the chemical form and associations of trace elements is important in the scientifc and medical fields related to environmental geochemistry and health. Fundamental understanding of trace-element behavior, the realistic formulation of historical perspectives of trace-element contamination, an assessment of environmental transformation processes and a thorough appraisal of environment-related ill health and disease all depend on knowledge of the chemical speciation and partitioning of trace elements. These topics and the development of analytical speciation techniques and procedures are discussed with reference to trace-element studies in the Department of Forensic Medicine and Science, University of Glasgow, on lacustrine sediments and water, the atmosphere, soil and street dirt of an urban environment, and human biological fluids. 206 references, 4 figures.

  2. Simple Method to Determine the Partition Coefficient of Naphthenic Acid in Oil/Water

    DEFF Research Database (Denmark)

    Bitsch-Larsen, Anders; Andersen, Simon Ivar

    2008-01-01

    The partition coefficient for technical grade naphthenic acid in water/n-decane at 295 K has been determined (K-wo = 2.1 center dot 10(-4)) using a simple experimental technique with large extraction volumes (0.09 m(3) of water). Furthermore, nonequilibrium values at different pH values...

  3. Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 1. Model description

    NARCIS (Netherlands)

    Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2004-01-01

    A dynamic mechanistic model was developed for growing and fattening pigs. The aim of the model was to predict growth rate and the chemical and anatomical body compositions from the digestible nutrient intake of gilts (20-105 kg live weight). The model represents the partitioning of digestible

  4. Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables

    Science.gov (United States)

    Goodwell, Allison E.; Kumar, Praveen

    2017-07-01

    Information theoretic measures can be used to identify nonlinear interactions between source and target variables through reductions in uncertainty. In information partitioning, multivariate mutual information is decomposed into synergistic, unique, and redundant components. Synergy is information shared only when sources influence a target together, uniqueness is information only provided by one source, and redundancy is overlapping shared information from multiple sources. While this partitioning has been applied to provide insights into complex dependencies, several proposed partitioning methods overestimate redundant information and omit a component of unique information because they do not account for source dependencies. Additionally, information partitioning has only been applied to time-series data in a limited context, using basic pdf estimation techniques or a Gaussian assumption. We develop a Rescaled Redundancy measure (Rs) to solve the source dependency issue, and present Gaussian, autoregressive, and chaotic test cases to demonstrate its advantages over existing techniques in the presence of noise, various source correlations, and different types of interactions. This study constitutes the first rigorous application of information partitioning to environmental time-series data, and addresses how noise, pdf estimation technique, or source dependencies can influence detected measures. We illustrate how our techniques can unravel the complex nature of forcing and feedback within an ecohydrologic system with an application to 1 min environmental signals of air temperature, relative humidity, and windspeed. The methods presented here are applicable to the study of a broad range of complex systems composed of interacting variables.

  5. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  6. LRSim: A Linked-Reads Simulator Generating Insights for Better Genome Partitioning

    Directory of Open Access Journals (Sweden)

    Ruibang Luo

    Full Text Available Linked-read sequencing, using highly-multiplexed genome partitioning and barcoding, can span hundreds of kilobases to improve de novo assembly, haplotype phasing, and other applications. Based on our analysis of 14 datasets, we introduce LRSim that simulates linked-reads by emulating the library preparation and sequencing process with fine control over variants, linked-read characteristics, and the short-read profile. We conclude from the phasing and assembly of multiple datasets, recommendations on coverage, fragment length, and partitioning when sequencing genomes of different sizes and complexities. These optimizations improve results by orders of magnitude, and enable the development of novel methods. LRSim is available at https://github.com/aquaskyline/LRSIM. Keywords: Linked-read, Molecular barcoding, Reads partitioning, Phasing, Reads simulation, Genome assembly, 10X Genomics

  7. Actinide-Lanthanide separation by an electrolytic method in molten salt media: feasibility assessment of a renewed liquid cathode

    International Nuclear Information System (INIS)

    Huguet, A.

    2009-12-01

    This study is part of a research program concerning the assessment of pyrochemical methods for the nuclear waste processing. The An-Ln partitioning could be achieved by an electrolytic selective extraction in molten salt media. It has been decided to focus on liquid reactive cathode which better suits to a group actinides co-recycling. The aim of the study is to propose, define and initiate the development of an electrolytic pyro-process dedicated to the quantitative and selective recovery of the actinides. Quantitativeness is related to technology, whereas selectivity is governed by chemistry. The first step consisted in selecting the adequate operating conditions, which enables a sufficient An-Ln separation. The first step consisted, by means of thermodynamic calculi and electrochemical investigations, in selecting a promising combination between molten electrolyte and cathodic material, regarding the process constraints. To improve the recovery yield, it is necessary to develop a disruptive technology: here comes the concept of a dynamic electrodeposition carried out onto liquid metallic drops. The next step consisted in designing and manufacturing a lab-scale device which enables dropping flow studies. Since interfacial phenomena are of primary meaning in such a concept, it has been decided to focus on high temperature liquid-liquid interfacial measurements. (author)

  8. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  9. Effects of partitioned enthalpy of mixing on glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wen-Xiong; Zhao, Shi-Jin, E-mail: shijin.zhao@shu.edu.cn [Institute of Materials Science, Shanghai University, Shanghai 200072 (China)

    2015-04-14

    We explore the inherent reason at atomic level for the glass-forming ability of alloys by molecular simulation, in which the effect of partitioned enthalpy of mixing is studied. Based on Morse potential, we divide the enthalpy of mixing into three parts: the chemical part (Δ E{sub nn}), strain part (Δ E{sub strain}), and non-bond part (Δ E{sub nnn}). We find that a large negative Δ E{sub nn} value represents strong AB chemical bonding in AB alloy and is the driving force to form a local ordered structure, meanwhile the transformed local ordered structure needs to satisfy the condition (Δ E{sub nn}/2 + Δ E{sub strain}) < 0 to be stabilized. Understanding the chemical and strain parts of enthalpy of mixing is helpful to design a new metallic glass with a good glass forming ability. Moreover, two types of metallic glasses (i.e., “strain dominant” and “chemical dominant”) are classified according to the relative importance between chemical effect and strain effect, which enriches our knowledge of the forming mechanism of metallic glass. Finally, a soft sphere model is established, different from the common hard sphere model.

  10. A geometric toolbox for tetrahedral finite element partitions

    NARCIS (Netherlands)

    Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.

    2011-01-01

    In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.

  11. Experimental partition determination of octanol-water coefficients of ...

    African Journals Online (AJOL)

    An electrochemical method based on square wave voltammetry was developed for the measurement of octanol-water partition coefficient, LogP, for ten ferrocene derivatives. Measured LogP values ranged over two orders of magnitude, between 2.18 for 1- ferrocenylethanol and 4.38 for ferrocenyl-2-nitrophenyl.

  12. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    The partition function of Gentile statistics also has the property that it nicely interpolates between the ... We now construct the partition function for such a system which also incorporates the property of interpolation ... As in [4], we however keep s arbitrary even though for s > 2 there are no quadratic. Hamiltonian systems.

  13. The importance of having an appropriate data segmentation (partitioning)

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2014-01-01

    In this presentation will be shown real life examples from database applications in the ATLAS experiment @ LHC where we make use of many Oracle partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL for sustaining data sliding windows in order to enforce various data retention policies. We also make use of the reference partitioning in some use cases, however the most challenging was to segment the data of a large bookkeeping system which resulted in tens of thousands list partitions and list sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate for the use case data management model. The gained experience with all of those will be shared with the audience.

  14. Utilization of tritiated water dilution technique in determination of nitrogen partitioning in cashmere goats

    International Nuclear Information System (INIS)

    Wang Linfeng; Yang Gaiqing; Liu Ping; Zhang Shijun

    2010-01-01

    In order to investigate nitrogen partitioning in local cashmere goats, six Inner Mogolia White Cashmere goats between 2 to 2.5 years old were used to determine the nitrogen partitioning in cashmere goats. The total retained nitrogen (TN) in body, distribution of body nitrgen and hair nitrogen were measured by general digestive and metabolism method combined with tritiated water dilution technique. Results showed that the combined methods were ideal for determining body nitrgen (BN) and hair nitrogen (fur nitrogen, FN) of Cashmere goats. There were obvious significance between BN and FN in different seasons. In telogen, BN and FN partitioning was 75.7% ± 0.62% and 24.3% ± 0.62%, respectively. Whereas, it changed to 66.6% ± 2.2% and 33.4% ± 2.2% in anagen. BN partitioning decreased when the season changed from telogen to anagen, while FN partitioning increased, which indicated that more nitrogen substance was partitioned to body growth in telogen, and more nitrogen substance was distribute to cashmere growth in anagen. These transformation were related to the changing of photoperiod and some hormones, such as melatonin (MT), prolactin (PRL) and IGF-I. It could be concluded that tritiated water dilution technique can be used to detect body protein content as well as BN, combining general digestive and metabolism experiment, FN partitoning can be determined. BN and FN partitoning varied with the season in cashmere goats because of hormones changing. (authors)

  15. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  16. Generating Milton Babbitt's all-partition arrays

    OpenAIRE

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms of a tone row as possible (generated by any combination of transposition, inversion or reversal) are expressed 'horizontally' and that each integer partition of 12 whose cardinality is no greater than the n...

  17. Lift of dilogarithm to partition identities

    International Nuclear Information System (INIS)

    Terhoeven, M.

    1992-11-01

    For the whole set of dilogarithm identities found recently using the thermodynamic Bethe-Ansatz for the ADET series of purely elastic scattering theories we give partition identities which involve characters of those conformal field theories which correspond to the UV-limits of the scattering theories. These partition identities in turn allow to derive the dilogarithm identities using modular invariance and a saddle point approximation. We conjecture on possible generalizations of this correspondance, namely, a lift from dilogarithm to partition identities. (orig.)

  18. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: toward more environmentally realistic nickel partitioning

    Science.gov (United States)

    Brumbaugh, William G.; Besser, John M.; Ingersoll, Christopher G.; May, Thomas W.; Ivey, Chris D.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.

  19. Data Partitioning Technique for Improved Video Prioritization

    Directory of Open Access Journals (Sweden)

    Ismail Amin Ali

    2017-07-01

    Full Text Available A compressed video bitstream can be partitioned according to the coding priority of the data, allowing prioritized wireless communication or selective dropping in a congested channel. Known as data partitioning in the H.264/Advanced Video Coding (AVC codec, this paper introduces a further sub-partition of one of the H.264/AVC codec’s three data-partitions. Results show a 5 dB improvement in Peak Signal-to-Noise Ratio (PSNR through this innovation. In particular, the data partition containing intra-coded residuals is sub-divided into data from: those macroblocks (MBs naturally intra-coded, and those MBs forcibly inserted for non-periodic intra-refresh. Interactive user-to-user video streaming can benefit, as then HTTP adaptive streaming is inappropriate and the High Efficiency Video Coding (HEVC codec is too energy demanding.

  20. EXTENSION OF FORMULAS FOR PARTITION FUNCTIONS

    African Journals Online (AJOL)

    Ladan et al.

    2Department of Mathematics, Ahmadu Bello University, Zaria. ... 2 + 1 + 1. = 1 + 1 + 1 + 1. Partition function ( ). Andrew and Erikson (2004) stated that the ..... Andrews, G.E., 1984, The Theory of Partitions, Cambridge ... Pure Appl. Math.

  1. The partition dimension of cycle books graph

    Science.gov (United States)

    Santoso, Jaya; Darmaji

    2018-03-01

    Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.

  2. Quantum Dilogarithms and Partition q-Series

    Science.gov (United States)

    Kato, Akishi; Terashima, Yuji

    2015-08-01

    In our previous work (Kato and Terashima, Commun Math Phys. arXiv:1403.6569, 2014), we introduced the partition q-series for mutation loop γ—a loop in exchange quiver. In this paper, we show that for a certain class of mutation sequences, called reddening sequences, the graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by Keller.

  3. The use of microbial and chemical analyses to characterize the variations in fouling profile of seawater reverse osmosis (SWRO) membrane

    KAUST Repository

    Manes, Carmem Lara De O

    2013-01-01

    Biofouling of reverse osmosis (RO) membranes is one of the most common problems in desalinations plants reducing the efficiency of the water production process. The characterization of bacterial community composition from fouling layers as well as detailed analysis of surrounding chemical environment might reveal process specific bacterial groups/species that are involved in RO biofouling. In this study, advanced organics analytic methods (elemental analysis, FTIR, and ICP-OES) were combined with high-throughput 16S rRNA (pyro) sequencing to assess in parallel, the chemical properties and the active microbial community composition of SWRO membranes from a pilot desalination plant (MFT, Tarragona) in February 2011 and July 2011. Prefiltered ultrafiltration. waters fed SWRO membranes during third and fifth month of operation, respectively. SWRO samples were taken from three modules at different positions (first, fourth, and sixth) in order to investigate the spatial changes in fouling layers\\' chemical and microbiological composition. The overall assessment of chemical parameters revealed that fouling layers were mainly composed by bio and organic material (proteins and lipids). Ca and Fe were found to be the most abundant elements having an increasing concentration gradient according to the module position. Bacterial community composition of SWRO membranes is mostly represented by the Gammaproteobacteria class with interesting differences in genera/species spatial and temporal distribution. This preliminary result suggests that pretreatments and/or operational conditions might have selected different bacterial groups more adapted to colonize SWRO membranes. © 2013 Desalination Publications.

  4. Proceedings of the Eleventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2012-01-01

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste arisings. Recent developments indicate the need for embedding P and T strategies in advanced fuel cycles considering both waste management and economic issues. In order to provide experts a forum to present and discuss state-of-the-art developments in the P and T field, the OECD/NEA has been organising biennial information exchange meetings on actinide and fission product partitioning and transmutation since 1990. The previous meetings were held in Mito (Japan) in 1990, at Argonne (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006 and in Mito (Japan) in 2008. They have often been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 11. Information Exchange Meeting was held in San Francisco, California, United States on 1-4 November 2010, comprising a plenary session on national P and T programmes and six technical sessions covering various fields of P and T. The meeting was hosted by the Idaho National Laboratory (INL), United States. The information exchange meetings on P and T form an integral part of NEA activities on advanced nuclear fuel cycles. The meeting covered scientific as well as strategic/policy developments in the field of P and T, such as: fuel cycle strategies and transition scenarios; radioactive waste forms; the impact of P and T on geological disposal; radioactive waste management strategies (including secondary wastes); transmutation fuels and targets; pyro and aqueous separation processes; materials, spallation targets and coolants; transmutation physics, experiments and nuclear data; transmutation systems (design, performance and safety); handling and transportation of transmutation fuels; and

  5. A non-conventional watershed partitioning method for semi-distributed hydrological modelling: the package ALADHYN

    Science.gov (United States)

    Menduni, Giovanni; Pagani, Alessandro; Rulli, Maria Cristina; Rosso, Renzo

    2002-02-01

    The extraction of the river network from a digital elevation model (DEM) plays a fundamental role in modelling spatially distributed hydrological processes. The present paper deals with a new two-step procedure based on the preliminary identification of an ideal drainage network (IDN) from contour lines through a variable mesh size, and the further extraction of the actual drainage network (AND) from the IDN using land morphology. The steepest downslope direction search is used to identify individual channels, which are further merged into a network path draining to a given node of the IDN. The contributing area, peaks and saddles are determined by means of a steepest upslope direction search. The basin area is thus partitioned into physically based finite elements enclosed by irregular polygons. Different methods, i.e. the constant and variable threshold area methods, the contour line curvature method, and a topologic method descending from the Hortonian ordering scheme, are used to extract the ADN from the IDN. The contour line curvature method is shown to provide the most appropriate method from a comparison with field surveys. Using the ADN one can model the hydrological response of any sub-basin using a semi-distributed approach. The model presented here combines storm abstraction by the SCS-CN method with surface runoff routing as a geomorphological dispersion process. This is modelled using the gamma instantaneous unit hydrograph as parameterized by river geomorphology. The results are implemented using a project-oriented software facility for the Analysis of LAnd Digital HYdrological Networks (ALADHYN).

  6. Intuitionistic uncertain linguistic partitioned Bonferroni means and their application to multiple attribute decision-making

    Science.gov (United States)

    Liu, Zhengmin; Liu, Peide

    2017-04-01

    The Bonferroni mean (BM) was originally introduced by Bonferroni and generalised by many other researchers due to its capacity to capture the interrelationship between input arguments. Nevertheless, in many situations, interrelationships do not always exist between all of the attributes. Attributes can be partitioned into several different categories and members of intra-partition are interrelated while no interrelationship exists between attributes of different partitions. In this paper, as complements to the existing generalisations of BM, we investigate the partitioned Bonferroni mean (PBM) under intuitionistic uncertain linguistic environments and develop two linguistic aggregation operators: intuitionistic uncertain linguistic partitioned Bonferroni mean (IULPBM) and its weighted form (WIULPBM). Then, motivated by the ideal of geometric mean and PBM, we further present the partitioned geometric Bonferroni mean (PGBM) and develop two linguistic geometric aggregation operators: intuitionistic uncertain linguistic partitioned geometric Bonferroni mean (IULPGBM) and its weighted form (WIULPGBM). Some properties and special cases of these proposed operators are also investigated and discussed in detail. Based on these operators, an approach for multiple attribute decision-making problems with intuitionistic uncertain linguistic information is developed. Finally, a practical example is presented to illustrate the developed approach and comparison analyses are conducted with other representative methods to verify the effectiveness and feasibility of the developed approach.

  7. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  8. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  9. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  10. Development of chemical conversion process of long-lived radionuclides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho

    2001-05-01

    The objective of this project is to develop a conversion technology of long-lived radionuclides so that it can be a suitable form as a fuel or target in the nuclear transmutation system. During the first stage of the project (Apr 1997∼Mar 2001), the fundamental studies were performed with a focus on non-radioactive experiments as well as theoretical analyses in such areas as follows : fluorination of metals or metal oxides, electrorefining and electrowinning of actinides and lanthanides, pyro hydrolysis and regeneration of used molten salt. Since the chemical form of transuranium fuel in the transmutation system was assumed to be a molten fluoride, the electrolysis experiments of molten fluoride were conducted to study on the recovery of unused transuranium from the LiF-BeF 2 salt that was chosen as a basic salt medium. Fluorination of metals or metal oxides were also tested in this work by applying the method of three-phase (gas-liquid-solid) reaction. In the electrowinning experiments, the depositions of uranium, zirconium and niobium on the cathode were tested and analyzed. The electrorefining of lanthanides was studied with the salt media of FLINAK and FLICA and their behaviors were compared. In addition, the regeneration of used salts was examined by applying the method of electrolysis of molten salt, where alkali and alkali earth metals were found to be removed into the liquid lead cathode

  11. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  12. QCD phase transition at real chemical potential with canonical approach

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi [RCNP, Osaka University,Osaka, 567-0047 (Japan); Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan); School of Biomedicine, Far Eastern Federal University,Vladivostok, 690950 (Russian Federation); Oka, Shotaro [Institute of Theoretical Physics, Department of Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Taniguchi, Yusuke [Graduate School of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571 (Japan)

    2016-02-08

    We study the finite density phase transition in the lattice QCD at real chemical potential. We adopt a canonical approach and the canonical partition function is constructed for N{sub f}=2 QCD. After derivation of the canonical partition function we calculate observables like the pressure, the quark number density, its second cumulant and the chiral condensate as a function of the real chemical potential. We covered a wide range of temperature region starting from the confining low to the deconfining high temperature; 0.65T{sub c}≤T≤3.62T{sub c}. We observe a possible signal of the deconfinement and the chiral restoration phase transition at real chemical potential below T{sub c} starting from the confining phase. We give also the convergence range of the fugacity expansion.

  13. Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail

    Science.gov (United States)

    Michael, R. A.; Stuart, A. L.

    2007-12-01

    Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.

  14. Pyro-Synthesis of Functional Nanocrystals

    OpenAIRE

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a ra...

  15. Effects of Single Nucleotide Polymorphism Marker Density on Haplotype Block Partition

    Directory of Open Access Journals (Sweden)

    Sun Ah Kim

    2016-12-01

    Full Text Available Many researchers have found that one of the most important characteristics of the structure of linkage disequilibrium is that the human genome can be divided into non-overlapping block partitions in which only a small number of haplotypes are observed. The location and distribution of haplotype blocks can be seen as a population property influenced by population genetic events such as selection, mutation, recombination and population structure. In this study, we investigate the effects of the density of markers relative to the full set of all polymorphisms in the region on the results of haplotype partitioning for five popular haplotype block partition methods: three methods in Haploview (confidence interval, four gamete test, and solid spine, MIG++ implemented in PLINK 1.9 and S-MIG++. We used several experimental datasets obtained by sampling subsets of single nucleotide polymorphism (SNP markers of chromosome 22 region in the 1000 Genomes Project data and also the HapMap phase 3 data to compare the results of haplotype block partitions by five methods. With decreasing sampling ratio down to 20% of the original SNP markers, the total number of haplotype blocks decreases and the length of haplotype blocks increases for all algorithms. When we examined the marker-independence of the haplotype block locations constructed from the datasets of different density, the results using below 50% of the entire SNP markers were very different from the results using the entire SNP markers. We conclude that the haplotype block construction results should be used and interpreted carefully depending on the selection of markers and the purpose of the study.

  16. Partitioning and transmutation. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents.

  17. Chemical lasers in the visible

    International Nuclear Information System (INIS)

    Jones, C.R.; Broida, H.P.

    1974-01-01

    Since the beginning of the laser era in 1960, a continuing search for chemical lasers has been carried out. This quest has been influenced by the knowledge that many chemical reactions produce visible chemiluminescence and, therefore, partition some of the reaction products into emitting, electronically excited states. Such luminescence has been observed not only from low-pressure, gas-phase reactions, notably those of alkali metals and halogens, but also from a limited number of liquid-phase reactions. (U.S.)

  18. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    Science.gov (United States)

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  19. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  20. Constraint Programming Approach to the Problem of Generating Milton Babbitt's All-partition Arrays

    DEFF Research Database (Denmark)

    Tanaka, Tsubasa; Bemman, Brian; Meredith, David

    2016-01-01

    elements and corresponding to a distinct integer partition of 12. Constraint programming (CP) is a tool for solving such combinatorial and constraint satisfaction problems. In this paper, we use CP for the first time to formalize this problem in generating an all-partition array. Solving the whole...... of this problem is difficult and few known solutions exist. Therefore, we propose solving two sub-problems and joining these to form a complete solution. We conclude by presenting a solution found using this method. Our solution is the first we are aware of to be discovered automatically using a computer......Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for creating the all-partition array. One part of the problem in generating an all-partition array requires finding a covering of a pitch-class matrix by a collection of sets, each forming a region containing 12 distinct...

  1. Investigating fire emissions and smoke transport during the Summer of 2013 using an operational smoke modeling system and chemical transport model

    Science.gov (United States)

    ONeill, S. M.; Chung, S. H.; Wiedinmyer, C.; Larkin, N. K.; Martinez, M. E.; Solomon, R. C.; Rorig, M.

    2014-12-01

    Emissions from fires in the Western US are substantial and can impact air quality and regional climate. Many methods exist that estimate the particulate and gaseous emissions from fires, including those run operationally for use with chemical forecast models. The US Forest Service Smartfire2/BlueSky modeling framework uses satellite data and reported information about fire perimeters to estimate emissions of pollutants to the atmosphere. The emission estimates are used as inputs to dispersion models, such as HYSPLIT, and chemical transport models, such as CMAQ and WRF-Chem, to assess the chemical and physical impacts of fires on the atmosphere. Here we investigate the use of Smartfire2/BlueSky and WRF-Chem to simulate emissions from the 2013 fire summer fire season, with special focus on the Rim Fire in northern California. The 2013 Rim Fire ignited on August 17 and eventually burned more than 250,000 total acres before being contained on October 24. Large smoke plumes and pyro-convection events were observed. In this study, the Smartfire2/BlueSky operational emission estimates are compared to other estimation methods, such as the Fire INventory from NCAR (FINN) and other global databases to quantify variations in emission estimation methods for this wildfire event. The impact of the emissions on downwind chemical composition is investigated with the coupled meteorology-chemistry WRF-Chem model. The inclusion of aerosol-cloud and aerosol-radiation interactions in the model framework enables the evaluation of the downwind impacts of the fire plume. The emissions and modeled chemistry can also be evaluated with data collected from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft field campaign, which intersected the fire plume.

  2. Partitions in languages and parallel computations

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, M S; Burgina, E S

    1982-05-01

    Partitions of entries (linguistic structures) are studied that are intended for parallel data processing. The representations of formal languages with the aid of such structures is examined, and the relationships are considered between partitions of entries and abstract families of languages and automata. 18 references.

  3. Partition coefficients of some purine derivatives and its application to pharmacokinetics.

    Science.gov (United States)

    Chrzanowska, M; Sobiak, J; Kuehn, M; Dorawa, E; Hermann, T

    2009-12-01

    Metazathioprine (MAZA), a methylated derivative of azathioprine (AZA), demonstrated the greatest values of apparent and specific partition coefficients in n-octanol/phosphate buffer at pH 5.7 and pH 7.4 among purine derivatives such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and AZA. Introduction of a methyl group into the imidazole ring of AZA increases lipophilic properties of MAZA compared to AZA. Mass balance of purine derivatives in n-octanol and in phosphate buffer indicated their chemical stability in those media.

  4. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1998-01-01

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared...... busses, our partitioning algorithm finds the partitioning with the smallest hardware cost and is able to predict and guarantee the performance of the system in terms of worst case delay....

  5. 1-loop partition function in AdS{sub 3}/CFT{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China)

    2015-12-16

    The 1-loop partition function of the handlebody solutions in the AdS{sub 3} gravity have been derived some years ago using the heat kernel techniques and the method of images. In the semiclassical limit, such partition function should correspond to the order O(c{sup 0}) part in the partition function of dual conformal field theory(CFT) on the boundary Riemann surface. The higher genus partition function could be computed by the multi-point functions in the Riemann sphere via sewing prescription. In the large central charge limit, the CFT is effectively free in the sense that to the leading order of c the multi-point function is further simplified to be a summation over the products of two-point functions of single-particle states. Correspondingly in the bulk, the graviton is freely propagating without interaction. Furthermore the product of the two-point functions may define the links, each of which is in one-to-one correspondence with the conjugacy class of the Schottky group of the Riemann surface. Moreover, the value of a link is determined by the multiplier of the element in the conjugacy class. This allows us to reproduce exactly the gravitational 1-loop partition function. The proof can be generalized to the higher spin gravity and its dual CFT.

  6. Trace element partitioning in rock forming minerals of co-genetic, subduction-related alkaline and tholeiitic mafic rocks in the Ural Mountains, Russia

    Science.gov (United States)

    Krause, J.; Brügmann, G. E.; Pushkarev, E. V.

    2009-04-01

    The partitioning of trace elements between rock forming minerals in igneous rocks is largely controlled by physical and chemical parameters e.g. temperature, pressure and chemical composition of the minerals and the coexisting melt. In the present study partition coefficients for REE between hornblende, orthopyroxene, feldspars, apatite and clinopyroxene in a suite of co-genetic alkaline and tholeiitic mafic rocks from the Ural Mountains (Russia) were calculated. The results give insights to the influence of the chemical composition of the parental melt on the partitioning behaviour of the REE. Nepheline-bearing, alkaline melanogabbros (tilaites) are assumed to represent the most fractionated products of the melt that formed the ultramafic cumulates in zoned mafic-ultramafic complexes in the Ural Mountains. Co-genetic with the latter is a suite of olivine gabbros, gabbronorites and hornblende gabbros formed from a tholeiitic parental melt. Negative anomalies for the HFSE along with low Nb and Ta contents and a positive Sr anomaly indicate a subduction related origin of all parental melts. The nepheline gabbros consist predominantly of coarse-grained clinopyroxene phenocrysts in a matrix of fine grained clinopyroxene, olivine, plagioclase, K-feldspar and nepheline with accessory apatite. The tholeiitic gabbros have equigranular to porphyric textures with phenocrysts of olivine, pyroxene and hornblende in a plagioclase rich matrix with olivine hornblende, pyroxene and accessory apatite. Element concentrations of adjacent matrix grains and rims of phenochrysts were measured with LA-ICPMS. The distribution of REE between hornblende and clinopyroxene in the tholeiitic rocks is similar for most of the elements (DHbl•Cpx(La-Tm) = 2.7-2.8, decreasing to 2.6 and 2.4 for Yb and Lu, respectively). These values are about two times higher than published data (e.g. Ionov et al. 1997). Partition coefficients for orthopyroxene/clinopyroxene systematically decrease from the HREE

  7. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  9. Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

    KAUST Repository

    Lellmann, Jan

    2012-11-09

    We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter several optimality bounds are known, to our knowledge no such bounds exist in the infinite-dimensional setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula. © 2012 Springer Science+Business Media New York.

  10. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...... the importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  11. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles

    International Nuclear Information System (INIS)

    Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T.

    2015-01-01

    The critical role of Mn partitioning in the formation of ordered NiAl nanoparticles in ferritic steels has been examined through a combination of atom probe tomography (APT) and thermodynamic and first-principles calculations. Our APT study reveals that Mn partitions to the NiAl nanoparticles, and dramatically increases the particle number density by more than an order of magnitude, leading to a threefold enhancement in strengthening. Atomistic structural analyses reveal that Mn is energetically favored to partition to the NiAl nanoparticles by preferentially occupying the Al sublattice, which not only increases the driving force, but also reduces the strain energy for nucleation, thereby significantly decreasing the critical energy for formation of the NiAl nanoparticles in ferritic steels. In addition, the effects of Mn on the precipitation strengthening mechanisms were quantitatively evaluated in terms of chemical strengthening, coherency strengthening, modulus strengthening and order strengthening

  12. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    Science.gov (United States)

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  14. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms...

  15. Determination of Partition Coefficients of Selected Model Migrants between Polyethylene and Polypropylene and Nanocomposite Polypropylene

    Directory of Open Access Journals (Sweden)

    Pablo Otero-Pazos

    2016-01-01

    Full Text Available Studies on nanoparticles have focused the attention of the researchers because they can produce nanocomposites that exhibit unexpected hybrid properties. Polymeric materials are commonly used in food packaging, but from the standpoint of food safety, one of the main concerns on the use of these materials is the potential migration of low molecular substances from the packaging into the food. The key parameters of this phenomenon are the diffusion and partition coefficients. Studies on migration from food packaging with nanomaterials are very scarce. This study is focused on the determination of partition coefficients of different model migrants between the low-density polyethylene (LDPE and polypropylene (PP and between LDPE and nanocomposite polypropylene (naPP. The results show that the incorporation of nanoparticles in polypropylene increases the mass transport of model migrants from LDPE to naPP. This quantity of migrants absorbed into PP and naPP depends partially on the nature of the polymer and slightly on the chemical features of the migrant. Relation (RPP/naPP between partition coefficient KLDPE/PP and partition coefficient KLDPE/naPP at 60°C and 80°C shows that only BHT at 60°C has a RPP/naPP less than 1. On the other hand, bisphenol A has the highest RPP/naPP with approximately 50 times more.

  16. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  17. Radioactive Wastes Generated From JAERI Partitioning-Transmutation Fuel Cycle

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Morita, Yasuji; Nishihara, Kenji

    2003-01-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI's processes. Long-lived radionuclides such as 14 C and 59 Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (authors)

  18. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    Science.gov (United States)

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  19. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    Directory of Open Access Journals (Sweden)

    Shiping Huang

    2018-04-01

    Full Text Available The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  20. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    Science.gov (United States)

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  1. Phase-separation, partitioning and precipitation in MA956, an ODS ferritic stainless steel

    International Nuclear Information System (INIS)

    Read, H.G.; Hono, K.

    1996-01-01

    The behaviours of as-received and recrystallised (homogenised) MA 956, an Al-containing Cr-rich ferritic stainless steel, aged at 475 C for up to 2900 hours have been investigated. Atom probe microanalysis of the decomposition products revealed that Al did not partition significantly to the Fe-rich phase after =600 hours ageing, contrary to thermodynamic predictions. Ageing to 2900 hours, however, resulted in partitioning. Further thermodynamic analysis showed that the chemical potential of Al in the Cr-rich α' phase increased more rapidly at later stages of phase separation. The wavelength and amplitude of decomposition were found to be significantly larger in aged as-received material compared to aged homogenised material, consistent with coarsening accelerated by the enhanced solute mobilities associated with the highly-dislocated as-received material. Ti- and Si-rich precipitates were found at the α/α' interfaces at later stages of ageing. (orig.)

  2. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    International Nuclear Information System (INIS)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, 90 Sr, 99 Tc, 129 I, and 137 Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello

  3. Partitioning sources of variation in vertebrate species richness

    Science.gov (United States)

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  4. Programación de un robot autónomo: diseño, construcción, programación e integración de un robot autónomo en el entorno Pyro

    OpenAIRE

    Dávila Molina, Antonio Jesús

    2007-01-01

    En aquest projecte, s'ha dissenyat, construït i programat un robot autònom, dotat de sistema de locomoció i sensors que li permeten navegar sense impactar en un entorn controlat. Per assolir aquests objectius s'ha dissenyat i programat una unitat de control que gestiona el hardware de baix volum de dades amb diferents modes d'operació, abstraient-lo en una única interfície. Posteriorment s'ha integrat aquest sistema en l'entorn de robòtica Pyro. Aquest entorn permet usar i adaptar, segons es ...

  5. Applying the partitioned multiobjective risk method (PMRM) to portfolio selection.

    Science.gov (United States)

    Reyes Santos, Joost; Haimes, Yacov Y

    2004-06-01

    The analysis of risk-return tradeoffs and their practical applications to portfolio analysis paved the way for Modern Portfolio Theory (MPT), which won Harry Markowitz a 1992 Nobel Prize in Economics. A typical approach in measuring a portfolio's expected return is based on the historical returns of the assets included in a portfolio. On the other hand, portfolio risk is usually measured using volatility, which is derived from the historical variance-covariance relationships among the portfolio assets. This article focuses on assessing portfolio risk, with emphasis on extreme risks. To date, volatility is a major measure of risk owing to its simplicity and validity for relatively small asset price fluctuations. Volatility is a justified measure for stable market performance, but it is weak in addressing portfolio risk under aberrant market fluctuations. Extreme market crashes such as that on October 19, 1987 ("Black Monday") and catastrophic events such as the terrorist attack of September 11, 2001 that led to a four-day suspension of trading on the New York Stock Exchange (NYSE) are a few examples where measuring risk via volatility can lead to inaccurate predictions. Thus, there is a need for a more robust metric of risk. By invoking the principles of the extreme-risk-analysis method through the partitioned multiobjective risk method (PMRM), this article contributes to the modeling of extreme risks in portfolio performance. A measure of an extreme portfolio risk, denoted by f(4), is defined as the conditional expectation for a lower-tail region of the distribution of the possible portfolio returns. This article presents a multiobjective problem formulation consisting of optimizing expected return and f(4), whose solution is determined using Evolver-a software that implements a genetic algorithm. Under business-as-usual market scenarios, the results of the proposed PMRM portfolio selection model are found to be compatible with those of the volatility-based model

  6. Development of long-lived radionuclide partitioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Eil Hee; Kim, Kwang Wook; Yang, Han Beom; Chung, Dong Yong; Lim, Jae Kwan; Shin, Young Jun; Kim, Heung Ho; Kown, Sun Gil; Kim, Young Hwan; Hwang, Doo Seung

    1996-07-01

    This study has been focused on the development of unit processes for partitioning in the 1st stage, and experimentally carried out to examine the separation characteristics and operation conditions on the following unit processes. (1) Removal of a small amount of uranium by extraction with TBP, (2) Removal of Zr and Mo and destruction of nitric acid by uranium by denitration with formic acid, (3) Co-precipitation of Am, Np and RE oxalic acid, (4) Dissolution and destruction of oxalate by hydrogen peroxide, (5) Co-extraction of Am, Np and RE by nitric acid, (8) Back-extraction of Np by oxalic acid, (9) Adsorption and elution of Cs and Sr by zeolite, and (10) Advanced separation of radionuclide by electrochemical REDOX method. The results obtained from each unit process will be use as the basic materials for the establishment of optimal partitioning and design of process equipment. (author). 46 refs., 54 tabs., 222 figs.

  7. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  8. Determination of solid-liquid partition coefficients (Kd) for the herbicides inspiration and trifluralin in five UK agricultural soils

    International Nuclear Information System (INIS)

    Cooke, Cindy M.; Shaw, George; Collins, Chris D.

    2004-01-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14 C-isoproturon and 14 C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K d values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K d range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K d range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances

  9. Further insight into the mechanism of heavy metals partitioning in stormwater runoff.

    Science.gov (United States)

    Djukić, Aleksandar; Lekić, Branislava; Rajaković-Ognjanović, Vladana; Veljović, Djordje; Vulić, Tatjana; Djolić, Maja; Naunovic, Zorana; Despotović, Jovan; Prodanović, Dušan

    2016-03-01

    Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Equilibrium thermodynamics of the partitioning of non-steroidal anti-inflammatory drugs into human erythrocyte ghost membranes

    International Nuclear Information System (INIS)

    Omran, Ahmed A.

    2013-01-01

    Graphical abstract: Bar diagram representing thermodynamic parameters obtained for the partitioning of NSAIDs into human erythrocyte ghost membranes at physiological pH; 7.4. Highlights: • Partition coefficients of NSAIDs into HEG membranes were determined. • Thermodynamic parameters were evaluated and successfully analyzed. • Partitioning of NSAIDs into HEG membranes was exothermic. • Partitioning of NSAIDs into HEG is spontaneous with negative free energy values. • Identical partitioning enthalpy–entropy driven compensation mechanism was shown. -- Abstract: In this work,second derivative spectrophotometry was applied for determining the partition coefficients (K p s) of four non-steroidal anti-inflammatory drugs (NSAIDs; flufenamic, meclofenamic, mefenamic and niflumic acids) into human erythrocyte ghost (HEG) membranes over a temperature range from (283.2 to 313.2) K. The proposed method allowed the evaluation and direct analyses of thermodynamic parameters; enthalpy (ΔH W→M ), Gibbs energy (ΔG W→M ) and entropy (ΔS W→M ) changes of the partitioning of NSAIDs into HEG membranes. The partitioning of NSAIDs between polar aqueous phase and non-polar lipid bilayer HEG membrane phase was exothermic with negative (ΔH W→M ) which compensated for the changes in (ΔS W→M ). The negative values of (ΔG W→M ) revealed that the partitioning of NSAIDs into HEG, owing to their transfer from polar aqueous phase and non-polar HEG phase is spontaneous. The enthalpy–entropy correlation analysis resulted in a good linearity that suggests an identical partitioning enthalpy–entropy driven compensation mechanism for the studied NSAIDs

  11. Recycling of poly(ethylene terephthalate – A review focusing on chemical methods

    Directory of Open Access Journals (Sweden)

    B. Geyer

    2016-07-01

    Full Text Available Recycling of poly(ethylene terephthalate (PET is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers. Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.

  12. Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development.

    Science.gov (United States)

    Phansalkar, Rasika S; Nam, Joo-Won; Chen, Shao-Nong; McAlpine, James B; Leme, Ariene A; Aydin, Berdan; Bedran-Russo, Ana-Karina; Pauli, Guido F

    2018-02-02

    Proanthocyanidins (PACs) find wide applications for human use including food, cosmetics, dietary supplements, and pharmaceuticals. The chemical complexity associated with PACs has triggered the development of various chromatographic techniques, with countercurrent separation (CCS) gaining in popularity. This study applied the recently developed DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) approach for the selective enrichment of trimeric and tetrameric PACs using centrifugal partition chromatography (CPC). This CPC method aims at developing PAC based biomaterials, particularly for their application in restoring and repairing dental hard tissue. A general separation scheme beginning with the depletion of polymeric PACs, followed by the removal of monomeric flavan-3-ols and a final enrichment step produced PAC trimer and tetramer enriched fractions. A successful application of this separation scheme is demonstrated for four polyphenol rich plant sources: grape seeds, pine bark, cinnamon bark, and cocoa seeds. Minor modifications to the generic DESIGNER CCS method were sufficient to accommodate the varying chemical complexities of the individual source materials. The step-wise enrichment of PAC trimers and tetramers was monitored using normal phase TLC and Diol-HPLC-UV analyses. CPC proved to be a reliable tool for the selective enrichment of medium size oligomeric PACs (OPACs). This method plays a key role in the development of dental biomaterials considering its reliability and reproducibility, as well as its scale-up capabilities for possible larger-scale manufacturing. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Experimental constraints on partitioning and zoning of phosphorus in igneous olivine

    Science.gov (United States)

    Ersoy, Ö.; Nikogosian, I.; Mason, P. R. D.; Van Westrenen, W.; van Bergen, M.

    2017-12-01

    Fast diffusion and homogenization of divalent cations hamper the preservation of original chemical compositions and zoning patterns of igneous olivine phenocrysts. Sluggish intracrystalline diffusion of phosphorus in igneous olivine on the other hand allows the complex zoning patterns to be retained, making it a crucial element for reconstruction of cooling histories and evolution of the host magma. Crystallization rate variations, diffusion controlled growth or compositional controls on melt-mineral partitioning have been put forward as mechanisms controlling zoning of igneous olivine in phosphorus. Here, we investigate partitioning and zoning of phosphorus in igneous olivines by a comparison of natural and experimentally grown olivines. We explore the importance of variable degrees of undercooling and cooling rates in crystallizing melt (M1) with a starting composition equivalent to that of an Italian high-potassium basalt (Tliq=1274 °C). We examine the extent of compositional control on partitioning by varying the amount of alkali enrichment in starting compositions that are otherwise equivalent to melt M1. Olivine crystallization experiments were conducted in rhenium capsules suspended in a vertical 1-atm gas-mixing furnace at Vrije Universiteit Amsterdam (VUA) with fO2 buffered at 1.4 to 1.7 log units below the Ni-NiO buffer. Sets of dynamic crystallization experiments with various degrees of undercooling and controlled cooling rate experiments with varying cooling rates were performed. We compare the results with our extensive EPMA and LA-ICPMS dataset on olivines from Italian K-rich mafic lavas and olivine hosted primitive melt inclusions (MIs). Phosphorus concentrations in the natural olivines reach 435 ppm P and MIs contain up to 2.2 wt.% P2O5. High resolution (1-4 µm per pixel) element maps show both fine oscillatory, patchy and large scale sector zoning in P, uncorrelated with zoning in any other element. The MIs are almost always found in P-poor zones

  14. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  15. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    International Nuclear Information System (INIS)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A.

    2015-01-01

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction

  16. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  17. Toxicity of selected organic chemicals to the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.; Milligan, D.L.; Durkin, P.R.

    A number of methods recently have been developed to biologically evaluate the impact of man's activities on soil ecosystems. Two test methods, the 2-d contact test and the 14-d artificial soil test, were used to evaluate the impact of six major classes of organic chemicals on the earthworm Eisenia fetida (Savigny). Of the organic chemicals tested, phenols and amines were the most toxic to the worms, followed in descending order of toxicity by the substituted aromatics, halogenated aliphatics, polycyclic aromatic hydrocarbons, and phthalates. No relationship was found between earthworm toxicity as determined by the contact test and rat, Rattus norvegicus Berkenhout and mouse, Mus musculus L. LD/sub 50/ values. The physicochemical parameters of water solubility, vapor pressure, and octanol/water partition coefficient for the chemicals tested in the contact test did not show a significant relationship to the E. fetida LC/sub 50/ values. These studies indicate that: (i) earthworms can be a suitable biomonitoring tool to assist in measuring the impact of organic chemicals in wastes added to soils and (ii) contact and artificial soil tests can be useful in measuring biological impacts.

  18. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  19. Parallel Processing of Big Point Clouds Using Z-Order Partitioning

    Science.gov (United States)

    Alis, C.; Boehm, J.; Liu, K.

    2016-06-01

    As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of several commodity grade machines to process chunks of data in parallel. A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point cloud data because there exist different ways to partition data and they may require data transfer. We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order code for the grid square with coordinates (x = 1 = 012, y = 3 = 112) is 10112 = 11. The number of points in each partition is controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and investigating how different parameters affect the accuracy and running time of the k nearest neighbour algorithm

  20. VBSCF Methods: Classical Chemical Concepts and Beyond

    NARCIS (Netherlands)

    Rashid, Z.

    2013-01-01

    The aim of this research has been to extend the ab initio Valence Bond Self-Consistent Field (VBSCF) methodology and to apply this method to the electronic structure of molecules. The valence bond method directly deals with the chemical structure of molecules in a pictorial language, which chemists

  1. Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

    KAUST Repository

    Lellmann, Jan; Lenzen, Frank; Schnö rr, Christoph

    2012-01-01

    We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods

  2. Partitioning and transmutation (P and T) 1997. Status report

    International Nuclear Information System (INIS)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L.; Gudowski, W.; Wallenius, J.

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  3. Partitioning and transmutation (P and T) 1997. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Gudowski, W.; Wallenius, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  4. Cooperative mobile agents search using beehive partitioned structure and Tabu Random search algorithm

    Science.gov (United States)

    Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.

    2013-05-01

    In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.

  5. Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment.

    Science.gov (United States)

    Di Guardo, Antonio; Gouin, Todd; MacLeod, Matthew; Scheringer, Martin

    2018-01-24

    Environmental fate and exposure models are a powerful means to integrate information on chemicals, their partitioning and degradation behaviour, the environmental scenario and the emissions in order to compile a picture of chemical distribution and fluxes in the multimedia environment. A 1995 pioneering book, resulting from a series of workshops among model developers and users, reported the main advantages and identified needs for research in the field of multimedia fate models. Considerable efforts were devoted to their improvement in the past 25 years and many aspects were refined; notably the inclusion of nanomaterials among the modelled substances, the development of models at different spatial and temporal scales, the estimation of chemical properties and emission data, the incorporation of additional environmental media and processes, the integration of sensitivity and uncertainty analysis in the simulations. However, some challenging issues remain and require research efforts and attention: the need of methods to estimate partition coefficients for polar and ionizable chemical in the environment, a better description of bioavailability in different environments as well as the requirement of injecting more ecological realism in exposure predictions to account for the diversity of ecosystem structures and functions in risk assessment. Finally, to transfer new scientific developments into the realm of regulatory risk assessment, we propose the formation of expert groups that compare, discuss and recommend model modifications and updates and help develop practical tools for risk assessment.

  6. Linearization of non-commuting operators in the partition function

    International Nuclear Information System (INIS)

    Ahmed, M.

    1983-06-01

    A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)

  7. Dynamic Load Balancing for PIC code using Eulerian/Lagrangian partitioning

    OpenAIRE

    Sauget, Marc; Latu, Guillaume

    2017-01-01

    This document presents an analysis of different load balance strategies for a Plasma physics code that models high energy particle beams with PIC method. A comparison of different load balancing algorithms is given: static or dynamic ones. Lagrangian and Eulerian partitioning techniques have been investigated.

  8. Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention.

    Science.gov (United States)

    Giaginis, Costas; Tsantili-Kakoulidou, Anna

    2008-08-01

    This review describes lipophilicity parameters currently used in drug design and QSAR studies. After a short historical overview, the complex nature of lipophilicity as the outcome of polar/nonpolar inter- and intramolecular interactions is analysed and considered as the background for the discussion of the different lipophilicity descriptors. The first part focuses on octanol-water partitioning of neutral and ionisable compounds, evaluates the efficiency of predictions and provides a short description of the experimental methods for the determination of distribution coefficients. A next part is dedicated to reversed-phase chromatographic techniques, HPLC and TLC in lipophilicity assessment. The two methods are evaluated for their efficiency to simulate octanol-water and the progress achieved in the refinement of suitable chromatographic conditions, in particular in the field of HPLC, is outlined. Liposomes as direct models of biological membranes are examined and phospolipophilicity is compared to the traditional lipophilicity concept. Difficulties associated with liposome-water partitioning are discussed. The last part focuses on Immobilised Artificial Membrane (IAM) chromatography as an alternative which combines membrane simulation with rapid measurements. IAM chromatographic retention is compared to octanol-water and liposome-water partitioning as well as to reversed-phase retention and its potential to predict biopartitioning and biological activities is discussed.

  9. Spatial partitions systematize visual search and enhance target memory.

    Science.gov (United States)

    Solman, Grayden J F; Kingstone, Alan

    2017-02-01

    Humans are remarkably capable of finding desired objects in the world, despite the scale and complexity of naturalistic environments. Broadly, this ability is supported by an interplay between exploratory search and guidance from episodic memory for previously observed target locations. Here we examined how the environment itself may influence this interplay. In particular, we examined how partitions in the environment-like buildings, rooms, and furniture-can impact memory during repeated search. We report that the presence of partitions in a display, independent of item configuration, reliably improves episodic memory for item locations. Repeated search through partitioned displays was faster overall and was characterized by more rapid ballistic orienting in later repetitions. Explicit recall was also both faster and more accurate when displays were partitioned. Finally, we found that search paths were more regular and systematic when displays were partitioned. Given the ubiquity of partitions in real-world environments, these results provide important insights into the mechanisms of naturalistic search and its relation to memory.

  10. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  11. Topological string partition functions as polynomials

    International Nuclear Information System (INIS)

    Yamaguchi, Satoshi; Yau Shingtung

    2004-01-01

    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)

  12. [Bioinorganic chemical composition of the lens and methods of its investigation].

    Science.gov (United States)

    Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G

    2018-01-01

    Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.

  13. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol ...

  14. Method of cleaning oil slicks and chemical spills

    International Nuclear Information System (INIS)

    Billings, L.

    1992-01-01

    This patent describes a method of cleaning a floating chemical spill on a body of water. It comprises: providing a quantity of popular bark-based pelleted or granular product, flotation means and a flexible net having openings generally smaller than the smallest whole pellet dimension of the pelleted product, spreading the net over a chemical spill on the body of water, connecting the floatation means to the net thereby supporting the net adjacent the surface of the body of water, placing the poplar bark-based product on the net, absorbing the floating chemical spill into the product, and removing the chemical soaked product from the body of water

  15. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  16. Effects of Gas-Wall Partitioning in Teflon Tubing, Instrumentation and Other Materials on Time-Resolved Measurements of Gas-Phase Organic Compounds

    Science.gov (United States)

    Pagonis, D.; Deming, B.; Krechmer, J. E.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    Recently it has been shown that gas-phase organic compounds partition to and from the walls of Teflon environmental chambers. This process is fast, reversible, and can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning inside Teflon tubing by introducing step function changes in the concentration of compounds being sampled and measuring the delay in the response of a proton transfer reaction-mass spectrometer (PTR-MS). We find that these delays are significant for compounds with a saturation vapor concentration (c*) below 106 μg m-3, and that the Teflon tubing and the PTR-MS both contribute to the delays. Tubing delays range from minutes to hours under common sampling conditions and can be accurately predicted by a simple chromatography model across a range of tubing lengths and diameters, flow rates, compound functional groups, and c*. This method also allows one to determine the volatility-dependent response function of an instrument, which can be convolved with the output of the tubing model to correct for delays in instrument response time for these "sticky" compounds. This correction is expected to be of particular interest to researchers utilizing and developing chemical ionization mass spectrometry (CIMS) techniques, since many of the multifunctional organic compounds detected by CIMS show significant tubing and instrument delays. These results also enable better design of sampling systems, in particular when fast instrument response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. Additional results presented here extend this method to quantify the relative sorptive capacities for other commonly used tubing materials, including PFA, FEP, PTFE, PEEK, glass, copper, stainless steel, and passivated steel.

  17. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    Science.gov (United States)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  18. Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws

    KAUST Repository

    Hundsdorfer, Willem

    2014-08-27

    An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.

  19. Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws

    KAUST Repository

    Hundsdorfer, Willem; Ketcheson, David I.; Savostianov, Igor

    2014-01-01

    An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.

  20. Assessing the potential for isotopic partitioning of soil respiration at research sites in Nova Scotia and Newfoundland

    Energy Technology Data Exchange (ETDEWEB)

    Risk, D.; Kellman, L.; Black, M. [Saint Francis Xavier Univ., Antigonish, NS (Canada). Environmental Sciences Research Centre

    2005-07-01

    The stable isotope ratios of carbon and oxygen in different tree species were studied with respect to different tissues, at different points within the tree, through soil profiles and in carbon dioxide respired from laboratory incubations. Although isotopic methods of partitioning autotrophic and heterotrophic soil respiration have been used with some success, stable isotopic methods are complicated by the fact that carbon isotope fractionations are small in natural systems, and radiocarbon techniques are time and equipment intensive. Studies that use isotopic analysis opportunistically, such as in C3/C4 transitional systems, have proven to be the most successful. Previously unexploited opportunities have the potential to be used for stable isotope-based partitioning in natural systems if the autotrophic/heterotrophic process distribution in the profile is well understand and if there is good process resolution and concurrent analyses using physical partitioning methods such as trenches. This study explored the different paths of opportunity in terms of background isotopic characterization that is being carried out for an existing network of carbon flux research sites in eastern Nova Scotia and in western Newfoundland. The new continuous flow-isotope ratio mass spectrometer (CF-IRMS) at the Environmental Earth Sciences Laboratory at St. Francis Xavier University was used for the isotopic analyses. The isotopic information will be evaluated for potential partitioning opportunities, considering the combination of approaches that will give the best chances of success. Isotopic partitioning trials will take place at suitable sites.

  1. Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed.

    Science.gov (United States)

    de Sousa, Diana Nara Ribeiro; Mozeto, Antonio Aparecido; Carneiro, Renato Lajarim; Fadini, Pedro Sergio

    2018-02-01

    The occurrence, partitioning, and spatio-temporal distribution of seven pharmaceuticals for human use, three steroid hormones and one personal care product were determined in surface water, suspended particulate matter (SPM), and sediment of Piraí Creek and Jundiaí River (Jundiaí River Basin, São Paulo, Brazil). The maximum average detected concentrations of the compounds in the Piraí River samples were contaminants most frequently detected in sediment and SPM samples. Triclosan had the highest average proportion of SPM as opposed to in the aqueous phase (> 75%). Contaminants with acid functional groups showed, in general, a lower tendency to bind to particulate matter and sediments. In addition, hydrophobicity had an important effect on their environmental partitioning. The spatial distribution of contaminants along the Jundiaí River was mainly affected by the higher concentration of contaminants in water samples collected downstream from a sewage treatment plant (STP). The results obtained here clearly showed the importance of the analysis of some contaminants in the whole water, meaning both dissolved and particulate compartments in the water, and that the partitioning is ruled by a set of parameters associated to the physicochemical characteristics of contaminants and the matrix properties of the studied, which need be considered in an integrated approach to understand the fate of emerging chemical contaminants in aquatic environments.

  2. Overall assessment of actinide partitioning and transmutation for waste management purposes

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Croff, A.G.; Finney, B.C.; Tedder, D.W.

    1980-01-01

    A program to establish the technical feasibility and incentives for partitioning (i.e., recovering) actinides from fuel cycle wastes and then transmuting them in power reactors to shorter-lived or stable nuclides has recently been concluded at the Oak Ridge National Laboratory. The feasibility was established by experimentally investigating the reduction that can be practicably achieved in the actinide content of the wastes sent to a geologic repository, and the incentives for implementing this concept were defined by determining the incremental costs, risks, and benefits. Eight US Department of Energy laboratories and three private companies participated in the program over its 3-year duration. A reference fuel cycle was chosen based on a self-generated plutonium recycle PWR, and chemical flowsheets based on solvent extraction and ion-exchange techniques were generated that have the potential to reduce actinides in fuel fabrication and reprocessing plant wastes to less than 0.25% of those in the spent fuel. Waste treatment facilities utilizing these flowsheets were designed conceptually, and their costs were estimated. Finally, the short-term (contemporary) risks from fuel cycle operations and long-term (future) risks from deep geologic disposal of the wastes were estimated for cases with and without partitioning and transmutation. It was concluded that, while both actinide partitioning from wastes and transmutation in power reactors appear to be feasible using currently identified and studied technology, implementation of this concept cannot be justified because of the small long-term benefits and substantially increased costs of the concept

  3. Generalised partition functions: inferences on phase space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-06-01

    Full Text Available It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the

  4. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  5. Use of reversed-phase gel partition chromatography for the purification of chemically synthesized (5,6,8,9,11,12,14,15(n)) octadeuterium- and octatritium-labelled arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wollard, P M; Lascelles, P T [Department of Chemical Pathology, Institute of Neurology, London, Great Britain; Hensby, C N [Hammersmith Hospital, London (UK). Postgraduate Medical School

    1978-12-11

    The development of a method is described for the preparation and purification of (5,6,8,9,11,12,14,15(n)-/sup 2/H)arachidonic acid (/sup 2/H/sub 8/-AA). The /sup 2/H/sub 8/-AA was chemically synthesised by the selective reduction of 5,8,11,14-eiconsatetraynoic acid (ETYA) with deuterium gas. Using reversed-phase partition chromatography on a Lipidex 5000 column support, it was shown that: (1) The reaction products could readily be separated from each other to yield /sup 2/H/sub 8/-AA of greater than 98% mass purity by gas chromatography. (2) Closely related C20 cis-ethylenic fatty acids differing only in the degree of unsaturation are efficiently separated. The resolution increases exponentially on saturation of double bonds. (3) Commercially available (5,6,8,9,11,12,14,15(n))octatritium-labelled arachidonic acid (/sup 3/H/sub 8/-AA) was readily purified. Both (/sup 3/H/sub 8/)- and (1-/sup 14/C)arachidonic acid (/sup 14/C-AA) co-chromatographed with /sup 2/H/sub 8/-AA. (4) The mass spectra of the methyl ester and trimethylsilyl ester of the purified /sup 2/H/sub 8/-AA showed molecular ions at m/e 326 and 384, respectively.

  6. Scanning Auger microscopy study of lanthanum partitioning in sphene-based glass-ceramics

    International Nuclear Information System (INIS)

    Hocking, W.H.; Hayward, P.J.; Watson, D.G.; Allen, G.C.

    1984-01-01

    Glass-ceramics are being investigated as possible hosts for the radioactive wastes that would result from recycling irradiated nuclear fuels. The partitioning of lanthanum in sphene-based glass-ceramics has been studied by scanning Auger electron microscopy for lanthanum concentrations from 0.2 to 2.0 mol.%. Sphene crystals (CaTiSiO 5 ) were located in the silica-rich glass matrix by recording digital Auger images of the calcium and titanium distributions. The sphene crystals were typically 0.5 to 5 μm in size and occupied approximately 40% of the total specimen volume. Auger spot analyses revealed that lanthanum was strongly partitioned into the sphene phase of phosphorus-free glass-ceramics; however, when a small amount of phosphorus was included in the glass-ceramic composition as a crystal nucleating agent, the lanthanum was concentrated in a third minor phase which also contained calcium, phosphorus and oxygen. Chemical shift effects in the Auger spectra of silicon, titanium and phosphorus showed evidence for electron-stimulated desorption of oxygen. (author)

  7. Development of partitioning process: purification of DIDPA

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masayuki; Morita, Yasuji; Kubota, Masumitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The partitioning process has developed and demonstrated that the solvent extraction with diisodecylphosphoric acid (DIDPA) can successfully separate transuranium elements from a high-level liquid waste. In the solvent extraction, DIDPA is decomposed by radiolysis and hydrolysis. The main degradation product is monoisodecyl phosphoric acid (MIDPA). Ethylene glycol has been used for removing the product by a solvent extraction method. However this method has two drawbacks that two phases separate slowly and the used ethylene glycol is not regeneratable. First it was found that the addition of acetone or methanol with 20 volume % improved the phase separation. Then a new purification method was developed by using an aqueous solution of methanol or acetone. The new purification method is as excellent as the ethylene glycol method for the removal of MIDPA. (author)

  8. A Timing-Driven Partitioning System for Multiple FPGAs

    Directory of Open Access Journals (Sweden)

    Kalapi Roy

    1996-01-01

    Full Text Available Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the

  9. Combinatorics and complexity of partition functions

    CERN Document Server

    Barvinok, Alexander

    2016-01-01

    Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .

  10. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  11. Development of partitioning method

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Dojiri, Shigeru; Kubota, Masumitsu

    1988-10-01

    The literature survey was carried out on the amount of natural resources, behaviors in reprocessing process and in separation and recovery methods of the platinum group elements and technetium which are contained in spent fuel. The essential results are described below. (1) The platinum group elements, which are contained in spent fuel, are quantitatively limited, compared with total demand for them in Japan. And estimated separation and recovery cost is rather high. In spite of that, development of these techniques is considered to be very important because the supply of these elements is almost from foreign resources in Japan. (2) For recovery of these elements, studies of recovery from undisolved residue and from high level liquid waste (HLLW) also seem to be required. (3) As separation and recovery methods, following techniques are considered to be effective; lead extraction, liquid metal extraction, solvent extraction, ion-exchange, adsorption, precipitation, distillation, electrolysis or their combination. (4) But each of these methods has both advantages and disadvantages. So development of such processes largely depends on future works. (author) 94 refs

  12. A Quantitative Property-Property Relationship for Estimating Packaging-Food Partition Coefficients of Organic Compounds

    DEFF Research Database (Denmark)

    Huang, L.; Ernstoff, Alexi; Xu, H.

    2017-01-01

    Organic chemicals encapsulated in beverage and food packaging can migrate to the food and lead to human exposures via ingestion. The packaging-food (Kpf) partition coefficient is a key parameter to estimate the chemical migration from packaging materials. Previous studies have simply set Kpf to 1...... or 1000, or provided separate linear correlations for several discrete values of ethanol equivalencies of food simulants (EtOH-eq). The aim of the present study is to develop a single quantitative property-property relationship (QPPR) valid for different chemical-packaging combinations and for water...... because only two packaging types are included. This preliminary QPPR demonstrates that the Kpf for various chemicalpackaging-food combinations can be estimated by a single linear correlation. Based on more than 1000 collected Kpf in 15 materials, we will present extensive results for other packaging types...

  13. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  14. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  15. Finding reproducible cluster partitions for the k-means algorithm.

    Science.gov (United States)

    Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Chambers, Simon J

    2013-01-01

    K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset.

  16. Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT

    Science.gov (United States)

    Beretta, Elena; Micheletti, Stefano; Perotto, Simona; Santacesaria, Matteo

    2018-01-01

    In this paper, we develop a shape optimization-based algorithm for the electrical impedance tomography (EIT) problem of determining a piecewise constant conductivity on a polygonal partition from boundary measurements. The key tool is to use a distributed shape derivative of a suitable cost functional with respect to movements of the partition. Numerical simulations showing the robustness and accuracy of the method are presented for simulated test cases in two dimensions.

  17. Chemical decontamination method

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1996-01-01

    Metal wastes contaminated by radioactive materials are contained in a rotational decontamination vessel, and the metal wastes are rotated therein while being in contact with a slight amount of a decontamination liquid comprising a mineral acid. As the mineral acid, a mixed acid of nitric acid, hydrochloric acid and fluoric acid is preferably used. Alternatively, chemical decontamination can also be conducted by charging an acid resistant stirring medium in the rotational decontamination vessel. The surface of the metal wastes is uniformly covered by the slight amount of decontamination liquid to dissolve the surface layer. In addition, heat of dissolution generated in this case is accumulated in the inside of the rotational decontamination vessel, the temperature is elevated with no particular heating, thereby enabling to obtain an excellent decontamination effect substantially at the same level as in the case of heating the liquid to 70degC in a conventional immersion decontamination method. Further, although contact areas between the metal wastes and the immersion vessel are difficult to be decontaminated in the immersion decontamination method, all of areas can be dissolved uniformly in the present invention. (T.M.)

  18. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  19. Multiaxial creep-fatigue life analysis using strainrange partitioning

    International Nuclear Information System (INIS)

    Manson, S.S.; Halford, G.R.

    1976-01-01

    Strain-Range Partitioning is a recently developed method for treating creep-fatigue interaction at elevated temperature. Most of the work to date has been on uniaxially loaded specimens, whereas practical applications often involve load multiaxiality. This paper shows how the method can be extended to treat multiaxiality through a set of rules for combining the strain components in the three principal directions. Closed hysteresis loops, as well as plastic and creep strain ratcheting, are included. An application to hold-time tests in torsion is used to illustrate the approach

  20. Structural analysis of the ParR/parC plasmid partition complex

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Ringgaard, Simon; Mercogliano, Christopher P

    2007-01-01

    Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA...

  1. Interfacial thermodynamics and electrochemistry of protein partitioning in two-phase systems

    NARCIS (Netherlands)

    Fraaije, J.G.E.M.

    1987-01-01

    The subject of this thesis is protein partition between an aqueous salt solution and a surface or an apolair liquid and the concomitant co-partition of small ions. The extent of co-partitioning determines the charge regulation in the protein partitioning process.

    Chapters 2 and 3

  2. Partitioning of organochlorine pesticides from water to polyethylene passive samplers

    International Nuclear Information System (INIS)

    Hale, Sarah E.; Martin, Timothy J.; Goss, Kai-Uwe; Arp, Hans Peter H.; Werner, David

    2010-01-01

    The mass transfer rates and equilibrium partitioning behaviour of 14 diverse organochlorine pesticides (OCP) between water and polyethylene (PE) passive samplers, cut from custom made PE sheets and commercial polyethylene plastic bags, were quantified. Overall mass transfer coefficients, k O , estimated PE membrane diffusion coefficients, D PE , and PE-water partitioning coefficients, K PE-water, are reported. In addition, the partitioning of three polycyclic aromatic hydrocarbons (PAHs) from water to PE is quantified and compared with literature values. K PE-water values agreed mostly within a factor of two for both passive samplers and also with literature values for the reference PAHs. As PE is expected to exhibit similar sorption behaviour to long-chain alkanes, PE-water partitioning coefficients were compared to hexadecane-water partitioning coefficients estimated with the SPARC online calculator, COSMOtherm and a polyparameter linear free energy relationship based on the Abraham approach. The best correlation for all compounds tested was with COSMOtherm estimated hexadecane-water partitioning coefficients. - The partitioning of organochlorine pesticides between single phase polyethylene passive samplers and water is quantified.

  3. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.

    Science.gov (United States)

    Lara, A; Riquelme, M; Vöhringer-Martinez, E

    2018-05-11

    Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model

  4. A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability

    International Nuclear Information System (INIS)

    Risteski, Ice B.

    2008-01-01

    In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices

  5. Time and Space Partitioning the EagleEye Reference Misson

    Science.gov (United States)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  6. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  7. Determination of solid-liquid partition coefficients (K{sub d}) for the herbicides inspiration and trifluralin in five UK agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Cindy M. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)]. E-mail: cindy.cooke@imperial.ac.uk; Shaw, George [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom); Collins, Chris D. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of {sup 14}C-isoproturon and {sup 14}C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K{sub d} values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K{sub d} range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K{sub d} range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances.

  8. Total internal partition sums for molecular species in the 2000 edition of the HITRAN database

    International Nuclear Information System (INIS)

    Fischer, J.; Gamache, R.R.; Goldman, A.; Rothman, L.S.; Perrin, A.

    2003-01-01

    Total internal partition sums (TIPS) are calculated for all molecular species in the 2000 HITRAN database. In addition, the TIPS for 13 other isotopomers/isotopologues of ozone and carbon dioxide are presented. The calculations address the corrections suggested by Goldman et al. (JQSRT 66 (2000) 455). The calculations consider the temperature range 70-3000 K to be applicable to a variety of remote sensing needs. The method of calculation for each molecular species is stated and comparisons with data from the literature are discussed. A new method of recall for the partition sums, Lagrange 4-point interpolation, is developed. This method, unlike previous versions of the TIPS code, allows all molecular species to be considered

  9. Safety in the Chemical Laboratory--Chemical Management: A Method for Waste Reduction.

    Science.gov (United States)

    Pine, Stanley H.

    1984-01-01

    Discusses methods for reducing or eliminating waste disposal problems in the chemistry laboratory, considering both economic and environmental aspects of the problems. Proposes inventory control, shared use, solvent recycling, zero effluent, and various means of disposing of chemicals. (JM)

  10. Molecular Descriptors Family on Structure Activity Relationships 6. Octanol-Water Partition Coefficient of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2006-01-01

    Full Text Available Octanol-water partition coefficient of two hundred and six polychlorinated biphenyls was model by the use of an original method based on complex information obtained from compounds structure. The regression analysis shows that best results are obtained in four-varied model (r2 = 0.9168. The prediction ability of the model was studied through leave-one-out analysis (r2cv(loo = 0.9093 and in training and test sets analysis. Modeling the octanol-water partition coefficient of polychlorinated biphenyls by integration of complex structural information provide a stable and performing four-varied model, allowing us to make remarks about relationship between structure of polychlorinated biphenyls and associated octanol-water partition coefficients.

  11. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  12. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    Science.gov (United States)

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  13. Automated Potentiometric Titrations in KCl/Water-Saturated Octanol: Method for Quantifying Factors Influencing Ion-Pair Partitioning

    Science.gov (United States)

    2009-01-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log PI values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log PI through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log PN − I)). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pKa′′ values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log PI and log D. In contrast to the common assumption that diff (log PN − I) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log PI is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log PI. On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log DN and log DI. This work also brings attention to the fascinating world of nature’s highly stabilized ion pairs. PMID:19265385

  14. Automated potentiometric titrations in KCl/water-saturated octanol: method for quantifying factors influencing ion-pair partitioning.

    Science.gov (United States)

    Scherrer, Robert A; Donovan, Stephen F

    2009-04-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log P(I) values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log P(I) through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log P(N - I))). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pK(a)'' values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log P(I) and log D. In contrast to the common assumption that diff (log P(N - I)) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log P(I) is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log P(I). On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log D(N) and log D(I). This work also brings attention to the fascinating world of nature's highly stabilized ion pairs.

  15. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy.

    Science.gov (United States)

    McGuire, Jimmy A; Witt, Christopher C; Altshuler, Douglas L; Remsen, J V

    2007-10-01

    Hummingbirds are an important model system in avian biology, but to date the group has been the subject of remarkably few phylogenetic investigations. Here we present partitioned Bayesian and maximum likelihood phylogenetic analyses for 151 of approximately 330 species of hummingbirds and 12 outgroup taxa based on two protein-coding mitochondrial genes (ND2 and ND4), flanking tRNAs, and two nuclear introns (AK1 and BFib). We analyzed these data under several partitioning strategies ranging between unpartitioned and a maximum of nine partitions. In order to select a statistically justified partitioning strategy following partitioned Bayesian analysis, we considered four alternative criteria including Bayes factors, modified versions of the Akaike information criterion for small sample sizes (AIC(c)), Bayesian information criterion (BIC), and a decision-theoretic methodology (DT). Following partitioned maximum likelihood analyses, we selected a best-fitting strategy using hierarchical likelihood ratio tests (hLRTS), the conventional AICc, BIC, and DT, concluding that the most stringent criterion, the performance-based DT, was the most appropriate methodology for selecting amongst partitioning strategies. In the context of our well-resolved and well-supported phylogenetic estimate, we consider the historical biogeography of hummingbirds using ancestral state reconstructions of (1) primary geographic region of occurrence (i.e., South America, Central America, North America, Greater Antilles, Lesser Antilles), (2) Andean or non-Andean geographic distribution, and (3) minimum elevational occurrence. These analyses indicate that the basal hummingbird assemblages originated in the lowlands of South America, that most of the principle clades of hummingbirds (all but Mountain Gems and possibly Bees) originated on this continent, and that there have been many (at least 30) independent invasions of other primary landmasses, especially Central America.

  16. Construction of Scaling Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Ole Christensen

    2017-11-01

    Full Text Available Partitions of unity in ℝd formed by (matrix scales of a fixed function appear in many parts of harmonic analysis, e.g., wavelet analysis and the analysis of Triebel-Lizorkin spaces. We give a simple characterization of the functions and matrices yielding such a partition of unity. For expanding matrices, the characterization leads to easy ways of constructing appropriate functions with attractive properties like high regularity and small support. We also discuss a class of integral transforms that map functions having the partition of unity property to functions with the same property. The one-dimensional version of the transform allows a direct definition of a class of nonuniform splines with properties that are parallel to those of the classical B-splines. The results are illustrated with the construction of dual pairs of wavelet frames.

  17. Trace element partitioning between plagioclase and melt: An investigation of the impact of experimental and analytical procedures

    Science.gov (United States)

    Nielsen, Roger L.; Ustunisik, Gokce; Weinsteiger, Allison B.; Tepley, Frank J.; Johnston, A. Dana; Kent, Adam J. R.

    2017-09-01

    Quantitative models of petrologic processes require accurate partition coefficients. Our ability to obtain accurate partition coefficients is constrained by their dependence on pressure temperature and composition, and on the experimental and analytical techniques we apply. The source and magnitude of error in experimental studies of trace element partitioning may go unrecognized if one examines only the processed published data. The most important sources of error are relict crystals, and analyses of more than one phase in the analytical volume. Because we have typically published averaged data, identification of compromised data is difficult if not impossible. We addressed this problem by examining unprocessed data from plagioclase/melt partitioning experiments, by comparing models based on that data with existing partitioning models, and evaluated the degree to which the partitioning models are dependent on the calibration data. We found that partitioning models are dependent on the calibration data in ways that result in erroneous model values, and that the error will be systematic and dependent on the value of the partition coefficient. In effect, use of different calibration datasets will result in partitioning models whose results are systematically biased, and that one can arrive at different and conflicting conclusions depending on how a model is calibrated, defeating the purpose of applying the models. Ultimately this is an experimental data problem, which can be solved if we publish individual analyses (not averages) or use a projection method wherein we use an independent compositional constraint to identify and estimate the uncontaminated composition of each phase.

  18. Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

    Science.gov (United States)

    Grieshop, Andrew P.; Donahue, Neil M.; Robinson, Allen L.

    2007-07-01

    This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from α-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours-consistent with an uptake coefficient on the order of 0.001-0.01. However, given sufficient time, α-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA.

  19. Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs

    Directory of Open Access Journals (Sweden)

    Theis Fabian J

    2010-10-01

    Full Text Available Abstract Background Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type. Results Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2. Conclusions In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy k-partite graph partitioning

  20. PARALLEL PROCESSING OF BIG POINT CLOUDS USING Z-ORDER-BASED PARTITIONING

    Directory of Open Access Journals (Sweden)

    C. Alis

    2016-06-01

    Full Text Available As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of several commodity grade machines to process chunks of data in parallel. A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point cloud data because there exist different ways to partition data and they may require data transfer. We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order code for the grid square with coordinates (x = 1 = 012, y = 3 = 112 is 10112 = 11. The number of points in each partition is controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and investigating how different parameters affect the accuracy and running time of the k nearest

  1. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao

    2017-11-29

    In the latest Joint Video Exploration Team development, the quadtree plus binary tree (QTBT) block partitioning structure has been proposed for future video coding. Compared to the traditional quadtree structure of High Efficiency Video Coding (HEVC) standard, QTBT provides more flexible patterns for splitting the blocks, which results in dramatically increased combinations of block partitions and high computational complexity. In view of this, a confidence interval based early termination (CIET) scheme is proposed for QTBT to identify the unnecessary partition modes in the sense of rate-distortion (RD) optimization. In particular, a RD model is established to predict the RD cost of each partition pattern without the full encoding process. Subsequently, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure by reducing 54.7% encoding time with only 1.12% increase in terms of bit rate. Moreover, the proposed scheme performs consistently well for the high resolution sequences, of which the video coding efficiency is crucial in real applications.

  2. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.

    Science.gov (United States)

    Cooke, Cindy M; Shaw, George; Collins, Chris D

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.

  3. Chaos synchronization basing on symbolic dynamics with nongenerating partition.

    Science.gov (United States)

    Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen

    2009-06-01

    Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.

  4. Aqueous two-phase (polyethylene glycol + sodium sulfate) system for caffeine extraction: Equilibrium diagrams and partitioning study

    International Nuclear Information System (INIS)

    Araujo Sampaio, Daniela de; Mafra, Luciana Igarashi; Yamamoto, Carlos Itsuo; Forville de Andrade, Eriel; Oberson de Souza, Michèle; Mafra, Marcos Rogério; Castilhos, Fernanda de

    2016-01-01

    Highlights: • Binodal curves of PEG (400, 4000 and 6000) + Na_2SO_4 ATPS were determined. • Tie-lines were experimentally determined for aqueous (PEG 400 + Na_2SO_4) system. • Influence of caffeine on LLE of aqueous (PEG 400 + Na_2SO_4) system was investigated. • Partitioning of caffeine in aqueous (PEG 400 + Na_2SO_4) system was investigated. • Caffeine partition showed to be dependent on temperature and TLL. - Abstract: Environmental friendly methods for liquid–liquid extraction have been taken into account due to critical conditions and ecotoxicological effects potentially produced by organic solvents applied in traditional methods. Liquid–liquid extraction using aqueous two phase systems (ATPSs) presents advantages when compared to traditional liquid–liquid extraction. (Polyethylene glycol (PEG) + sodium sulfate + water) ATPS was applied to study partition of caffeine. Binodal curves for ATPSs composed of PEG of different molecular weights (400 g · mol"−"1, 4000 g · mol"−"1 and 6000 g · mol"−"1) sodium sulfate + water were determined by cloud point method at three different temperatures (293.15, 313.15 and 333.15) K. Liquid–liquid equilibrium (LLE) data (tie-lines, slope of the tie-line and tie-lines length) were obtained applying a gravimetric method proposed by Merchuck and co-workers at the same temperatures for aqueous (PEG 400 + sodium sulfate) and aqueous (PEG 400 + sodium sulfate + caffeine) systems. Reliability of the experimental tie-line (TL) data was evaluated using the equations reported by Othmer–Tobias and satisfactory linearity was obtained. Concerning to aqueous (PEG + sodium sulfate) system, the results pointed out that the higher PEG molecular weight the largest is the heterogeneous region. Moreover, temperature showed not to be relevant on binodal curves behavior, but it influenced on tie-line slopes. Partitioning of caffeine in aqueous (PEG 400 + sodium sulfate) system was investigated at different temperatures

  5. Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2008-06-01

    Full Text Available A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl-hydroxylamine (PFBHA to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively.

    Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons.

  6. On the application of the partition of unity method for nonlocal response of low-dimensional structures

    Science.gov (United States)

    Natarajan, Sundararajan

    2014-12-01

    The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.

  7. Study and modeling of the evolution of gas-liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations.

    Science.gov (United States)

    Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent

    2015-04-01

    The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.

  8. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, Applications

    Science.gov (United States)

    This problems-based, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks from multic...

  9. Solving Large-Scale TSP Using a Fast Wedging Insertion Partitioning Approach

    Directory of Open Access Journals (Sweden)

    Zuoyong Xiang

    2015-01-01

    Full Text Available A new partitioning method, called Wedging Insertion, is proposed for solving large-scale symmetric Traveling Salesman Problem (TSP. The idea of our proposed algorithm is to cut a TSP tour into four segments by nodes’ coordinate (not by rectangle, such as Strip, FRP, and Karp. Each node is located in one of their segments, which excludes four particular nodes, and each segment does not twist with other segments. After the partitioning process, this algorithm utilizes traditional construction method, that is, the insertion method, for each segment to improve the quality of tour, and then connects the starting node and the ending node of each segment to obtain the complete tour. In order to test the performance of our proposed algorithm, we conduct the experiments on various TSPLIB instances. The experimental results show that our proposed algorithm in this paper is more efficient for solving large-scale TSPs. Specifically, our approach is able to obviously reduce the time complexity for running the algorithm; meanwhile, it will lose only about 10% of the algorithm’s performance.

  10. Open software tools for eddy covariance flux partitioning

    Science.gov (United States)

    Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...

  11. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  12. The EU research activities on partitioning and transmutation. From the 4. to the 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.

    1999-01-01

    The European Commission is partly supporting research work on partitioning and transmutation of radioactive waste under the Fourth Framework Programme (1994-1998). This work includes nine research projects. Five strategy studies are evaluating the capabilities of various burners and fuel cycles to limit the production and even destroy the stock of actinides (plutonium and minor actinides). Two experimental projects are aiming at developing techniques for the chemical separation of actinides and two others are dealing with the investigation of transmutation of americium and long-lived fission products. The objectives of these studies are described together with the main results already obtained. The European Union should adopt the 5. Framework Programme (1998-2002) at the end of 1998. The broad lines of the research activities foreseen in partitioning and transmutation and future system under the 5. Framework Programme are briefly presented. (author)

  13. Deciding which chemical mixtures risk assessment methods work best for what mixtures

    International Nuclear Information System (INIS)

    Teuschler, Linda K.

    2007-01-01

    The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose-response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures

  14. Off-diagonal series expansion for quantum partition functions

    Science.gov (United States)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  15. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    Science.gov (United States)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  16. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    Science.gov (United States)

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  17. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  18. Creep-fatigue life prediction for different heats of Type 304 stainless steel by linear-damage rule, strain-range partitioning method, and damage-rate approach

    International Nuclear Information System (INIS)

    Maiya, P.S.

    1978-07-01

    The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included

  19. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate.

    Science.gov (United States)

    Kolb, Marit; Bahadir, Müfit; Teichgräber, Burkhard

    2017-10-01

    Worldwide, the standard methods for the determination of the important wastewater parameter chemical oxygen demand (COD) are still based on the use of the hazardous chemicals, mercury sulfate and chromium(VI). However, due to their properties they are meanwhile classified as "priority pollutants" and shall be phased out or banned in the frame of REACH (current European Chemical Law: Registration, Evaluation, Authorization and restriction of Chemicals) by the European Union. Hence, a new wet-chemical method free of mercury and chromium(VI) was developed. Manganese(III) was used as oxidant and silver nitrate for the removal of chloride ions. The quantification was performed by back titration of manganese(III) with iron(II) as done in the standard method. In order to minimize losses of organic substances during the precipitation of silver chloride, suspended and colloid organic matter had to be separated by precipitation of aluminum hydroxide in a first step. In these cases, two fractions, one of the suspended and colloid matters and a second of the dissolved organic substances, are prepared and oxidized separately. The method was tested with potassium hydrogen phthalate (KHP) as conventional COD reference substance and different types of wastewater samples. The oxidation of KHP was reproducible in a COD range of 20-500 mg/L with a mean recovery rate of 88.7% in comparison to the standard COD method (DIN 38409-41). Also in presence of 1000 mg/L chloride a recovery rate of 84.1% was reached. For a series of industrial and municipal wastewater samples a high correlation (R 2  = 0.9935) to the standard method with a mean recovery rate of 78.1% (±5.2%) was determined. Even though the results of the new method are not 100% of the standard method, its high correlation to the standard method and reproducibility offers an environmentally benign alternative method with no need to purchase new laboratory equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sharing-Aware Horizontal Partitioning for Exploiting Correlations during Query Processing

    DEFF Research Database (Denmark)

    Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian Søndergaard

    2010-01-01

    Optimization of join queries based on average selectivities is suboptimal in highly correlated databases. In such databases, relations are naturally divided into partitions, each partition having substantially different statistical characteristics. It is very compelling to discover such data...... partitions during query optimization and create multiple plans for a given query, one plan being optimal for a particular combination of data partitions. This scenario calls for the sharing of state among plans, so that common intermediate results are not recomputed. We study this problem in a setting...

  1. Industrial scale-plant for HLW partitioning in Russia

    International Nuclear Information System (INIS)

    Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.; Kurochkin, A.I.

    1996-01-01

    Radiochemical plant of PA > at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m 3 HLW and 235 MCi of radionuclides was included in glass. However only 1100 m 3 and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology and equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA > in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A density functional theory-based chemical potential equalisation approach to ... Electron localization functions and local measures of the covariance .... The assumed resolution imposes a given partitioning of the system in physical or functional space. .... Basis set effects on the energy and hardness profiles of the hydrogen ...

  3. Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment

    Science.gov (United States)

    Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.

    2012-01-01

    Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278

  4. Vertical partitioning of relational OLTP databases using integer programming

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen

    2010-01-01

    A way to optimize performance of relational row store databases is to reduce the row widths by vertically partition- ing tables into table fractions in order to minimize the number of irrelevant columns/attributes read by each transaction. This pa- per considers vertical partitioning algorithms...... for relational row- store OLTP databases with an H-store-like architecture, meaning that we would like to maximize the number of single-sited transactions. We present a model for the vertical partitioning problem that, given a schema together with a vertical partitioning and a workload, estimates the costs...... applied to the TPC-C benchmark and the heuristic is shown to obtain solutions with costs close to the ones found using the quadratic program....

  5. Metric Structures on Fibered Manifolds Through Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Hulya Kadioglu

    2016-05-01

    Full Text Available The notion of partitions of unity is extremely useful as it allows one to extend local constructions on Euclidean patches to global ones. It is widely used in many fields in mathematics. Therefore, prolongation of this useful tool to another manifold may help constructing many geometric structures. In this paper, we construct a partition of unity on a fiber bundle by using a given partition of unity on the base manifold. On the other hand we show that the converse is also possible if it is a vector bundle. As an application, we define a Riemannian metric on the fiber bundle by using induced partition of unity on the fiber bundle.

  6. Comparison of salting-out and sugaring-out liquid-liquid extraction methods for the partition of 10-hydroxy-2-decenoic acid in royal jelly and their co-extracted protein content.

    Science.gov (United States)

    Tu, Xijuan; Sun, Fanyi; Wu, Siyuan; Liu, Weiyi; Gao, Zhaosheng; Huang, Shaokang; Chen, Wenbin

    2018-01-15

    Homogeneous liquid-liquid extraction (h-LLE) has been receiving considerable attention as a sample preparation method due to its simple and fast partition of compounds with a wide range of polarities. To better understand the differences between the two h-LLE extraction approaches, salting-out assisted liquid-liquid extraction (SALLE) and sugaring-out assisted liquid-liquid extraction (SULLE), have been compared for the partition of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly, and for the co-extraction of proteins. Effects of the amount of phase partition agents and the concentration of acetonitrile (ACN) on the h-LLE were discussed. Results showed that partition efficiency of 10-HDA depends on the phase ratio in both SALLE and SULLE. Though the partition triggered by NaCl and glucose is less efficient than MgSO 4 in the 50% (v/v) ACN-water mixture, their extraction yields can be improved to be similar with that in MgSO 4 SALLE by increasing the initial concentration of ACN in the ACN-water mixture. The content of co-extracted protein was correlated with water concentration in the obtained upper phase. MgSO 4 showed the largest protein co-extraction at the low concentration of salt. Glucose exhibited a large protein co-extraction in the high phase ratio condition. Furthermore, NaCl with high initial ACN concentration is recommended because it produced high extraction yield for 10-HDA and the lowest amount of co-extracted protein. These observations would be valuable for the sample preparation of royal jelly. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    Science.gov (United States)

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  8. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    Science.gov (United States)

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  9. Manual of selected physico-chemical analytical methods. IV

    International Nuclear Information System (INIS)

    Beran, M.; Klosova, E.; Krtil, J.; Sus, F.; Kuvik, V.; Vrbova, L.; Hamplova, M.; Lengyel, J.; Kelnar, L.; Zakouril, K.

    1990-11-01

    The Central Testing Laboratory of the Nuclear Research Institute at Rez has for a decade been participating in the development of analytical procedures and has been providing analyses of samples of different types and origin. The analytical procedures developed have been published in special journals and a number of them in the Manuals of analytical methods, in three parts. The 4th part of the Manual contains selected physico-chemical methods developed or modified by the Laboratory in the years 1986-1990 within the project ''Development of physico-chemical analytical methods''. In most cases, techniques are involved for non-nuclear applications. Some can find wider applications, especially in analyses of environmental samples. Others have been developed for specific cases of sample analyses or require special instrumentation (mass spectrometer), which partly restricts their applicability by other institutions. (author)

  10. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  11. Insights: A New Method to Balance Chemical Equations.

    Science.gov (United States)

    Garcia, Arcesio

    1987-01-01

    Describes a method designed to balance oxidation-reduction chemical equations. Outlines a method which is based on changes in the oxidation number that can be applied to both molecular reactions and ionic reactions. Provides examples and delineates the steps to follow for each type of equation balancing. (TW)

  12. A multi-solver quasi-Newton method for the partitioned simulation of fluid-structure interaction

    International Nuclear Information System (INIS)

    Degroote, J; Annerel, S; Vierendeels, J

    2010-01-01

    In partitioned fluid-structure interaction simulations, the flow equations and the structural equations are solved separately. Consequently, the stresses and displacements on both sides of the fluid-structure interface are not automatically in equilibrium. Coupling techniques like Aitken relaxation and the Interface Block Quasi-Newton method with approximate Jacobians from Least-Squares models (IBQN-LS) enforce this equilibrium, even with black-box solvers. However, all existing coupling techniques use only one flow solver and one structural solver. To benefit from the large number of multi-core processors in modern clusters, a new Multi-Solver Interface Block Quasi-Newton (MS-IBQN-LS) algorithm has been developed. This algorithm uses more than one flow solver and structural solver, each running in parallel on a number of cores. One-dimensional and three-dimensional numerical experiments demonstrate that the run time of a simulation decreases as the number of solvers increases, albeit at a slower pace. Hence, the presented multi-solver algorithm accelerates fluid-structure interaction calculations by increasing the number of solvers, especially when the run time does not decrease further if more cores are used per solver.

  13. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  14. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  15. Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.

    1993-01-01

    The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing

  16. Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Johnson, T.R.

    1993-10-01

    The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

  17. Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.

    Science.gov (United States)

    Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing

    2017-10-11

    In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.

  18. Lattice fermions at non-zero temperature and chemical potential

    International Nuclear Information System (INIS)

    Bender, I.

    1993-01-01

    We study the free fermion gas at finite temperature and chemical potential in the lattice regularized version proposed by Hasenfratz and Karsch. Special emphasis is placed on the identification of the particle and antiparticle contributions to the partition function. In the case of naive fermions we show that the partition function no longer separates into particle-antiparticle contributions in the way familiar from the continuum formulation. The use of Wilson fermions, on the other hand, eliminates this unpleasant feature, and leads, after subtracting the vacuum contributions, to the familiar expressions for the average energy and charge densities. (orig.)

  19. Consistent Estimation of Partition Markov Models

    Directory of Open Access Journals (Sweden)

    Jesús E. García

    2017-04-01

    Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.

  20. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)