WorldWideScience

Sample records for pyrite particle fractions

  1. Comment on "Abiotic pyrite formation produces a large Fe isotope fractionation".

    Science.gov (United States)

    Czaja, Andrew D; Johnson, Clark M; Yamaguchi, Kosei E; Beard, Brian L

    2012-02-01

    Guilbaud et al. (Reports, 24 June 2011, p. 1548) suggest that the geologic record of Fe isotope fractionation can be explained by abiological precipitation of pyrite. We argue that a detailed understanding of the depositional setting, mineralogy, and geologic history of Precambrian sedimentary rocks indicates that the Fe isotope record dominantly reflects biological fractionations and Fe redox processes.

  2. Fractional Dynamics of Relativistic Particle

    CERN Document Server

    Tarasov, Vasily E

    2011-01-01

    Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.

  3. Bacterial Disproportionation of Elemental Sulfur Inferred from a Field Study of Stable-Isotope Fractionations between Elemental Sulfur and Pyrite

    Science.gov (United States)

    Hardisty, D.; Pratt, L. M.; Olyphant, G. A.; Bell, J.; Johnson, A.

    2011-12-01

    Elemental sulfur (ES) is a common product of pyrite oxidation during acid mine drainage (AMD), but bacterial disproportionation of ES has not previously been inferred in acidic environments. Pore water profiles were collected seasonally within a coal-mine waste deposit, Minnehaha, in Southwest Indiana that has been abandoned for over 30 years. Geochemical characterization and modeling were used to assess how the interactions between the sulfur and iron cycle are affected by seasonally dynamic hydrologic conditions. Pore waters were collected seasonally and concentrations of Fe-species and sulfur isotopic compositions of sulfate were determined. Additionally, a sediment core was collected and used for sequential extraction and isotopic characterization of solid-phase sulfur species including elemental sulfur (δ34Ses), pyrite (δ34Spy), acid-volatile sulfides, water-soluble sulfates, and acid-soluble sulfates. The dominant disulfide phase was found to be pyrite through x-ray diffraction of an additional sediment core. Sulfur isotope fractionations between δ34Spy and δ34Ses (Δ34Ses-py) of up to -33% are inferred to indicate bacterial disproportionation of ES in the presence of a non-limiting sulfide 'scrub' Fe(III). The initial isotopic composition, following formation from pyrite oxidation, is inferred from δ34Spy, found to be ≈ 8.75% at the study site. Although ES has previously been found to accumulate in acidic Fe(III)-rich pore waters, ES is typically assumed to account for less than 1% of the oxidized sulfur pool and measurements of the ES isotopic composition are often neglected during field studies of acid AMD. The pore waters at Minnehaha were seasonally suboxic with sharp transitions from Fe(III)- to Fe(II)- dominated conditions near the phreatic surface. It is hypothesized that the sulfide product of ES disproportionation, fractionated by up to -8.6%, is immediately re-oxidized to ES near the redox gradient via reaction with Fe(III). Sulfide re

  4. [XRD, FTIR and XPS analysis of oxidized particles from Dongshengmiao pyrite-polymetallic sulfide deposit, inner Mongolia].

    Science.gov (United States)

    Yuan, Xue-Ling; Cao, Jian-Jin; Xie, Fang-Yan; Yang, Xiao-Jie; Yan, Hong-Bin; Lai, Pei-Xin; Wang, Zheng-Hai; Zeng, Jian-Nian

    2013-01-01

    In the present paper, characteristics of material compositions, phase structures, surface element states, and transformation mechanism of oxidized particles from Dongshengmiao pyrite-polymetallic sulfide deposit were studied using modern analytical testing technology including XRD, FTIR and XPS. The results show that the samples consist of gypsum, calcite, quartz, muscovite, goethite, organic matter, etc. Primary ore in deep oxidation zone mainly under went such processes as oxidization, hydrolysis, dehydration and carbonation. Compared to the surface oxidation zone of arid and extremely arid regions in the northwestern China, the oxidation process and oxidizing condition of the deep oxidation zone were less complex. New mineral type was also not found, and extensively developed sulfate minerals were rare to be seen. The research results can not only be applied to mineral identification of oxidized particles from this type of ore deposit but also play an important role in ore exploration, mining, mineral processing, etc.

  5. An improved pyrite pretreatment protocol for kinetic and isotopic studies

    Science.gov (United States)

    Mirzoyan, Natella; Kamyshny, Alexey; Halevy, Itay

    2014-05-01

    An improved pyrite pretreatment protocol for kinetic and isotopic studies Natella Mirzoyan1, Alexey Kamyshny Jr.2, Itay Halevy1 1Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel 2Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel Pyrite is one of the most abundant and widespread of the sulfide minerals with a central role in biogeochemical cycles of iron and sulfur. Due to its diverse roles in the natural and anthropogenic sulfur cycle, pyrite has been extensively studied in various experimental investigations of the kinetics of its dissolution and oxidation, the isotopic fractionations associated with these reactions, and the microbiological processes involved. Pretreatment of pyrite for removal of oxidation impurities to prevent experimental artifacts and inaccuracies is often practiced. While numerous pyrite-cleaning methods have been used in experiments, a common pyrite pretreatment method, often used to investigate pyrite chemistry by the isotopic fractionations associated with it, includes several rinses by HCl, acetone and deionized water. Elemental sulfur (S0) is a common product of incomplete pyrite oxidation. Removal of S0 is desirable to avoid experimental biases associated with its participation in pyrite transformations, but is more complicated than the removal of sulfate. Although rinsing with an organic solvent is in part aimed at removing S0, to the best of our knowledge, the extraction efficiency of S0 in existing protocols has not been assessed. We have developed and tested a new protocol for elemental sulfur removal from the surface of pyrite by ultrasonication with warm acetone. Our data demonstrate the presence of large fractions of S0 on untreated pyrite particle surfaces, of which only approximately 60% was removed by the commonly used pretreatment method. The new protocol described here was found to be more efficient at S0 removal than the commonly used method

  6. Large bulk matter search for fractional charge particles

    CERN Document Server

    Lee, I

    2002-01-01

    We have carried out the largest search for stable particles with fractional electric charge, based on an oil drop method that incorporates a horizontal electric field and upward air flow. No evidence for such particles was found, giving a 95% C.L. upper limit of $1.15\\times 10^{-22}$ particles per nucleon on the abundance of fractional charge particles in silicone oil for $0.18 e \\le |Q_{residual}| \\le 0.82 e$.

  7. A search for free fractional electric charge elementary particles

    Science.gov (United States)

    Halyo, Valerie

    2001-07-01

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 × 10-22 particles per nucleon with 95% confidence.

  8. Search for free fractional electric charge elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, V.

    1999-10-29

    The authors have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup {minus}22} particles per nucleon with 95% confidence.

  9. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  10. Search for Free Fractional Electric Charge Elementary Particles

    CERN Document Server

    Halyo, V; Lee, E R; Lee, I T; Loomba, D; Perl, Martin Lewis

    2000-01-01

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than $4.71\\times10^{-22}$ particles per nucleon with 95% confidence.

  11. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  12. Search for Free Fractional Electric Charge Elementary Particles

    OpenAIRE

    Halyo, V.; Kim, P.; Lee, E. R.; Lee, I T; Loomba, D.; Perl, M. L.

    1999-01-01

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than $4.71\\times...

  13. Packing fraction of particles with lognormal size distribution.

    Science.gov (United States)

    Brouwers, H J H

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  14. Packing fraction of particles with lognormal size distribution

    Science.gov (United States)

    Brouwers, H. J. H.

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  15. Particle separation and fractionation by microfiltration

    NARCIS (Netherlands)

    Kromkamp, J.

    2005-01-01

    cum laude graduation (with distinction) For the production of present-day dairy products, raw milk is often considered an entity. However, a large quality improvement could be reached if selected constituents were available. In order to achieve this, milk will have to be fractionated prior to use in

  16. Particle related fractionation and characterisation of municipal wastewater.

    Science.gov (United States)

    van Nieuwenhuijzen, A F; van der Graaf, J H J M; Kampschreur, M J; Mels, A R

    2004-01-01

    Several studies show that a more detailed characterisation of the particulate matter in municipal wastewater gives a better understanding and prediction of removal efficiencies of physical-chemical treatment techniques and the application of optimal chemical dosages. Such a characterisation should include the distribution of contaminants over various particle sizes. This article describes a method and results of experimental and full-scale investigations, conducted to determine how contaminants in wastewater are distributed over different particle sizes. For this purpose, particle size fractionations of wastewater influents originating from more than thirteen WWTP were carried out. One of these fractionations (WWTP Venray) is shown and interpreted in this article. First, the wastewaters were fractionated into 5 to 6 particle fractions (45, 5.0, 1.0/1.2, 0.45 and 0.1 microm) after which the fractions were analyzed for various water quality parameters like organic components, nutrients, salts, solids and turbidity. Based on the results the effects of removal of the different size fractions on design of the biological treatment and energy balance of a wastewater treatment plant can be assessed. The method also indicates whether a certain wastewater is efficiently treatable with physical-chemical pre-treatment methods. It is concluded wastewater fractionation on particle size is very useful, but that wastewater characteristics and particle size distributions should not be generalised, but have to be interpreted as indications for a certain average wastewater composition. To give more insight into the distribution of contaminants over particle size and the particle removal potential, a specific wastewater fractionation has to be carried out per WWTP.

  17. Searches for Fractionally Charged Particles: What Should Be Done Next?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  18. An improved search for elementary particles with fractional electric charge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.R.

    1996-08-01

    The SLAC Quark Search Group has demonstrated successful operation of a low cost, high mass throughput Millikan apparatus designed to search for fractionally charged particles. About six million silicone oil drops were measured with no evidence of fractional charges. A second experiment is under construction with 100 times greater throughput which will utilize optimized search fluids.

  19. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  20. Search for Fractional-Charge Particles in Meteoritic Material

    Science.gov (United States)

    Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Halyo, Valerie; Loomba, Dinesh

    2007-10-01

    We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5μm with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth‘s surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3×10-21 particles per nucleon in the meteoritic material and less than 1.9×10-23 particles per nucleon in the mineral oil.

  1. THE DEPRESSION OF PYRITE FLOTATION BY THIOBACILLUS FERROOXIDANS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The experimental studies on the microbial flotation of a pure pyrite sample using Thiobacillus ferrooxidans was conducted in the laboratory. The results indicate that Thiobacillus ferrooaidans has strong depression effect on the flotation of pyrite. Thiobacillus f errooxidans can adsorb on the surface of pyrite in a very short time (a few min. ), changing the surface from hydrophobic into hydrophilic and making the pyrite particles to lose their floatability. Therefore, Thiobacillus ferrooxidans is an effective microbial depressant of pyrite. It has also been pointed out that the depression of pyrite by Thiobacillus ferrooxidans is caused by the adsorption of the microbial colloids, but not by the oxidation effect.

  2. Packing fraction of particles with a Weibull size distribution

    Science.gov (United States)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  3. Determination of reactivity rates of silicate particle-size fractions

    OpenAIRE

    Angélica Cristina Fernandes Deus; Leonardo Theodoro Büll; Juliano Corulli Corrêa; Roberto Lyra Villas Boas

    2014-01-01

    The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicat...

  4. Time-fractional particle deposition in porous media

    Science.gov (United States)

    Xu, Jianping

    2017-05-01

    In the percolation process where fluids carry small solid particles, particle deposition causes a real-time permeability change of the medium as the swarm of particles propagates along the medium. Then the permeability change influences percolation and deposition behaviors as a feedback. This fact triggers memory effect in the deposition dynamics, which means the particulate transport and deposition behaviors become history-dependent. In this paper, we conduct the time-fractional generalization of the classical phenomenological model of particle deposition in porous media to incorporate the memory effect. We tested and compared the effects of employing different types of fractional operators, i.e. the Riemann-Liouville type, the Hadamard type and the Prabhakar type. Numerical simulation results show that the system behaviors vary according to the change of distinct memory kernels in an expected way. We then discuss the physical meaning of the time-fractional generalization. It is shown that different types of fractional operators unanimously ground themselves on the local-Newtonian time transformation in a complex system, which is equivalent to a class of history integrals. By the introduction of various memory kernels, it enables the model to more powerfully fit and approximate observed data. Further, the fundamental meaning of this work is not to show which fractional operator is ‘better’, but to argue collectively the legitimacy and practicality of a non-Markovian particle deposition dynamics in porous media, and in fact it is admissible to a bunch of memory kernels which differ greatly from each other in functional forms. Hopefully the presented generalized mass conservation formalism offers a broader framework to investigate transport problems in porous media.

  5. The effect of quartz on the flotation of pyrite depressed by serpentine

    Directory of Open Access Journals (Sweden)

    Bo Feng

    2015-01-01

    Full Text Available The effect of quartz particles on the flotation of pyrite depressed by serpentine has been investigated through flotation tests, adsorption tests, zeta potential measurements and DLVO calculation. The results show that the presence of hydrophilic serpentine slimes on pyrite surface reduces collector adsorption and results in lower recovery of pyrite. The finer the serpentine slime is, the lower the pyrite recovery will be. Quartz particles do not interfere with pyrite flotation. However, the addition of quartz particles increases the adsorption of collector on pyrite surface and limits the detrimental effect of serpentine on pyrite flotation. The fine-grained quartz is more effective. Zeta potential measurements and DLVO calculation illustrate that the zeta potential of quartz is more negative than that of pyrite and the attraction force between serpentine and quartz is stronger than force between serpentine and pyrite, thus some serpentine slimes were transferred from pyrite surface to quartz in the process of attrition.

  6. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  7. Fractional particle swarm optimization in multidimensional search space.

    Science.gov (United States)

    Kiranyaz, Serkan; Ince, Turker; Yildirim, Alper; Gabbouj, Moncef

    2010-04-01

    In this paper, we propose two novel techniques, which successfully address several major problems in the field of particle swarm optimization (PSO) and promise a significant breakthrough over complex multimodal optimization problems at high dimensions. The first one, which is the so-called multidimensional (MD) PSO, re-forms the native structure of swarm particles in such a way that they can make interdimensional passes with a dedicated dimensional PSO process. Therefore, in an MD search space, where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. This eventually removes the necessity of setting a fixed dimension a priori, which is a common drawback for the family of swarm optimizers. Nevertheless, MD PSO is still susceptible to premature convergences due to lack of divergence. Among many PSO variants in the literature, none yields a robust solution, particularly over multimodal complex problems at high dimensions. To address this problem, we propose the fractional global best formation (FGBF) technique, which basically collects all the best dimensional components and fractionally creates an artificial global best (aGB) particle that has the potential to be a better "guide" than the PSO's native gbest particle. This way, the potential diversity that is present among the dimensions of swarm particles can be efficiently used within the aGB particle. We investigated both individual and mutual applications of the proposed techniques over the following two well-known domains: 1) nonlinear function minimization and 2) data clustering. An extensive set of experiments shows that in both application domains, MD PSO with FGBF exhibits an impressive speed gain and converges to the global optima at the true dimension regardless of the search space dimension, swarm size, and the complexity of the problem.

  8. Anomalous/Fractional Diffusion in Particle Acceleration Processes.

    Science.gov (United States)

    Bian, Nicolas

    2016-07-01

    This talk is aimed at reviewing a certain number of theoretical aspects concerning the relation between stochastic acceleration and anomalous/fractional transport of particles. As a matter of fact, anomalous velocity-space diffusion is required within any stochastic acceleration scenario to explain the formation of the ubiquitous power-law tail of non-thermal particles, as observed e.g. in the accelerated distribution of electrons during solar flares. I will establish a classification scheme for stochastic acceleration models involving turbulence in magnetized plasmas. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the spatial transport (possibly fractional) of charged particles in the acceleration region. I will also discuss recent attempts to obtain spatially non-local and fractional diffusion equations directly from first principles, starting either from the Fokker-Planck equation in the large mean free-path regime or the Boltzmann equation involving velocity-space relaxation toward the kappa distribution instead of the standard Maxwellian distribution.

  9. Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media

    CERN Document Server

    Tarasov, Vasily E

    2010-01-01

    "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and...

  10. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    -ray maps and SIMS depth vs. isotope concentration profiles reveal that pyrites from the TGS are characterized by chemical zoning where the studied elements occur in different mineralogical forms. Arsenic and Co occur as structurally bound elements in pyrite, Cu and Au in pyrite can occur as both solid solution and submicron-sized particles of chalcopyrite and native Au (or Au tellurides), respectively. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusions in quartz and calcite veins (high Cu/As ratios) and borehole fluid (low Cu/As ratios) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical zonation in pyrite. These observations provide direct evidence supporting the selective partitioning of metals into pyrite as a result of changes in ore-forming fluid composition, most likely due to separation of a single-phase fluid into a low-density vapor and a denser brine, capable of fractionating Cu and As.

  11. Improved search for elementary particles with fractional electric charge

    Energy Technology Data Exchange (ETDEWEB)

    Mar, N.M.; Lee, E.R.; Fleming, G.R.; Casey, B.C.; Perl, M.L.; Garwin, E.L. [Stanford Linear Accelerator Center, Stanford, California 94309 (United States); Hendricks, C.D. [W. J. Schafer Associates, Livermore, California 94550 (United States); Lackner, K.S. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Shaw, G.L. [Department of Physics, University of California, Irvine, California 92717 (United States)

    1996-06-01

    We have devised and demonstrated the successful operation of a low-cost, high-mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a charge coupled device video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, we have looked at 5974941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95{percent} confidence, the concentration of isolated quarks with {plus_minus}1/3{ital e} or {plus_minus}2/3{ital e} in silicone oil is less than one per 2.14{times}10{sup 20} nucleons. {copyright} {ital 1996 The American Physical Society.}

  12. Improved search for elementary particles with fractional electric charge

    Science.gov (United States)

    Mar, Nancy M.; Lee, Eric R.; Fleming, George R.; Casey, Brendan C. K.; Perl, Martin L.; Garwin, Edward L.; Hendricks, Charles D.; Lackner, Klaus S.; Shaw, Gordon L.

    1996-06-01

    We have devised and demonstrated the successful operation of a low-cost, high-mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a charge coupled device video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, we have looked at 5 974 941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with +/-1/3e or +/-2/3e in silicone oil is less than one per 2.14×1020 nucleons.

  13. Particle-size distribution and packing fraction of geometric random packings

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    2006-01-01

    This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when t

  14. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  15. Search for Free Fractional Electric Charge Elementary Particles Using an Automated Millikan Oil Drop Technique

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, V.; Kim, P.; Lee, E. R.; Lee, I. T.; Loomba, D.; Perl, M. L.

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10{sup -22} particles per nucleon with 95% confidence. (c) 2000 The American Physical Society.

  16. Search for Free Fractional Electric Charge Elementary Particles Using an Automated Millikan Oil Drop Technique

    Science.gov (United States)

    Halyo, V.; Kim, P.; Lee, E. R.; Lee, I. T.; Loomba, D.; Perl, M. L.

    2000-03-01

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10-22 particles per nucleon with 95% confidence.

  17. The search for free particles with fractional charge;Experimental survey and new results.

    Science.gov (United States)

    Halyo, Valerie; Kim, Peter; Lee, Eric R.; Lee, Irwin T.; Loomba, Dinesh; Perl, Martin L.

    2000-04-01

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--- about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10-22 particles per nucleon with 95% confidence.

  18. Effect of particle volume fraction on the settling velocity of volcanic ash particles: implications for ash dispersion models

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.

    2015-12-01

    We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.

  19. Pyrite oxidation by thermophilic archaebacteria

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L.; Olsson, G.; Holst, O.; Karlsson, H.T. (Lund Univ. (Sweden))

    1990-03-01

    Three species of thermophilic archaebacteria of the genera Sulfolobus (Sulfolobus acidocaldarius and S. solfataricus) and Acidianus (Acidianus brierleyi) were tested for their ability to oxidize pyrite and to grow autotropbically on pyrite, to explore their potential for use in coal desulfurization. Only A. brierleyi was able to oxidize and grow autotrophically on pyrite. Jarosite was formed during the pyrite oxidation, resulting in the precipitation of sulfate and iron. The medium composition affected the extent of jarosite formation.

  20. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...

  1. A RELATION FOR THE VOID FRACTION OF RANDOMLY PACKED PARTICLE BEDS

    NARCIS (Netherlands)

    HOFFMANN, AC; FINKERS, HJ

    1995-01-01

    The void fractions of loosely packed and tapped beds of particles of continuous size distributions are correlated by means of a proposed new semi-empirical relation. In this relation four parameters describing the following particle properties are included: (i) mean particle size, (ii) spread of the

  2. Particle migration leads to deposition-free fractionation

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    In membrane filtration, theporesizeofthemembranedeterminesthesizeof ‘particles’ that shouldbe rejected,leading to accumulation of particles on the membrane surface and changed particle retention in time.A process without accumulation and thereby constant retention as function of time would be well s

  3. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE

    Science.gov (United States)

    Cafagna, Fabio; Jugo, Pedro J.

    2016-04-01

    Pyrite, the most abundant sulfide in the Earth's crust, is an accessory mineral in several magmatic sulfide deposits. Although most pyrite is hydrothermal, previous experimental studies have shown that pyrite can also have a primary magmatic origin, by exsolving from monosulfide solid solution (mss) during cooling of a sulfide melt, if sulfur fugacity is sufficiently high. Pyrite from some localities has significant amounts of Co, and complex zonation in some low-melting-point chalcophile elements (LMCE), such as As, Se, Sb, Te, Bi (henceforth referred to as metalloids) and some platinum-group elements (PGE: Ru, Rh, Pd, Os, Ir, Pt). However, the origin of such pyrite and the causes of zonation are not clear. Because the distribution of some of these elements is heterogeneous and seems to be developed in concentric zones, the zonation has been interpreted to represent growth stages, some of them secondary and caused partly by hydrothermal fluids. Better constraints on the origin of Co-PGE-bearing pyrite could help unravel the geochemical processes affecting the sulfide assemblages in which it is found; thus, an experimental study was undertaken to characterize pyrite formation in magmatic sulfide environments and its relationship with metalloids and highly siderophile elements (HSE: PGE, Re, Au). Natural pyrrhotite, chalcopyrite, pentlandite and elemental S were mixed and doped with approximately 50 ppm of each HSE. A mixture of metalloids was added at 0.2 wt.% or 3 wt.% to aliquots of sulfide mixtures. Starting materials were sealed in evacuated silica tubes and fused at 1200 °C. The temperature was subsequently reduced to 750 °C (at 60 °C/h), then to 650 °C (at 0.5 °C/h) to produce relatively large euhedral pyrite crystals, then quenched. The experiments were analyzed using reflected light, SEM, EPMA and LA-ICP-MS. Experimental products contained euhedral pyrite, mss, intermediate solid solution (iss) and metalloid-rich phases, interpreted as quench product

  4. Ultrasonic ash/pyrite liberation

    Energy Technology Data Exchange (ETDEWEB)

    Yungman, B.A.; Buban, K.S.; Stotts, W.F.

    1990-06-01

    The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

  5. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations

    Science.gov (United States)

    Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio

    2017-01-01

    Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10‑7-10‑3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10‑3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.

  6. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations

    Science.gov (United States)

    Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio

    2017-01-01

    Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056

  7. Solving Time-Fractional Advection-Dispersion Equation by Variable Weights Particle Tracking Method

    Science.gov (United States)

    Cao, Shaohua; Jiang, Jianguo; Wu, Jichun

    2017-09-01

    Particle tracking method is an efficient and reliable method to solve time-fractional advection-dispersion equation, which can describe anomalous transport in heterogeneous porous media. However, this method will lead to severe fluctuation or disappearance of solutions if the concentration value is small. A variable weights method is developed to conquer the shortcoming of particle tracking method. Then, one-dimensional and two-dimensional time-fractional advection-dispersion equations are solved by the variable weights particle tracking method. Compared to traditional particle tracking method, the variable weights version may eliminate the fluctuation and improve the accuracy by orders of magnitude without more computational cost.

  8. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    NARCIS (Netherlands)

    Megens, L; van der Plicht, J; de Leeuw, JW; Smedes, F; Altabet, M.

    2002-01-01

    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (

  9. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    NARCIS (Netherlands)

    Megens, L; van der Plicht, J; de Leeuw, JW; Smedes, F; Altabet, M.

    2002-01-01

    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (

  10. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus;

    F value. Hereby, the Xw*-model implicitly assumes that a given particle size fraction creates an analogue pore size fraction and, also, is based on the validity of the well-known capillary law equation relating equivalent drained pore size to the soil-water matric potential. The Xw*-model was found...

  11. Fractionation effects in particle radiotherapy: implications for hypo-fractionation regimes

    Energy Technology Data Exchange (ETDEWEB)

    Carabe-Fernandez, A; Paganetti, H [Department of Radiation Oncology, Harvard Medical School, Francis H Burr Proton Therapy Center, Massachusetts General Hospital, Boston, MA 02114 (United States); Dale, R G [Department of Radiation Physics and Radiobiology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF (United Kingdom); Hopewell, J W; Jones, B, E-mail: acarabe@partners.or [Particle Therapy Cancer Research Institute, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2010-10-07

    The aim is to demonstrate the potential impact of changes in the value of the {beta} parameter in the linear quadratic (LQ) model on the calculation of clinical relative biological effectiveness (RBE) values used for high linear energy transfer (LET) radiotherapy. The parameter RBE{sub min} is introduced into the LQ formulation to account for possible changes in the {beta} radiosensitivity coefficient with changing LET. The model is used to fit fractionated data under two conditions, where RBE{sub min} = 1 and RBE{sub min} {ne} 1. Nonlinear regression and analysis of variance are used to test the hypothesis that the inclusion of a non-unity value of RBE{sub min} better predicts the total iso-effective dose required at low number of fractions for fast neutrons, carbon ions, {pi}-meson and proton fractionation data obtained for various tissues from previous publications. For neutrons the assumption of RBE{sub min} {ne} 1 provided a better fit in 89% of the cases, whereas for carbon ions RBE{sub min} {ne} 1 provided a better fit only for normal tissue at the spread-out Bragg peak. The results provide evidence of the impact that variations in the {beta} parameter may have when calculating clinically relevant RBE values, especially when using high doses per fraction (i.e. hypofractionation) of high-LET radiations.

  12. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    Science.gov (United States)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  13. The Aharonov-Bohm effect and fractional statistics of distinguishable particles

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, Stefan, E-mail: mash@mashke.or [Schroedinger, 120 W 45th St., New York, NY 10036 (United States); Bogolyubov Institute for Theoretical Physics, Kiev 03143 (Ukraine)

    2010-09-03

    In two-dimensional space, the topological coupling arising between charged particles with attached magnetic fluxes, via the Aharonov-Bohm effect, causes distinguishable particles to effectively acquire quantum statistics: a nontrivial quantum phase is generated when a particle of one species encircles one of a different species. We discuss a number of exact and numerical results concerning distinguishable particles with fractional statistics. Just like for anyons, the spectrum of such particles confined to the lowest Landau level of a strong magnetic field can be found exactly. Then a system of particles in the presence of static magnetic fluxes (equivalent to particles with infinite mass) is considered, and the low-lying states of one particle in the presence of two fluxes and two particles in the presence of one flux are analyzed.

  14. Pyrite oxidation by microbial consortia

    Science.gov (United States)

    Bostick, B. C.; Revill, K. L.; Doyle, C.; Kendelewicz, T.; Brown, G. E.; Spormann, A. M.; Fendorf, S.

    2003-12-01

    Acid mine drainage (AMD) is formed through pyrite oxidation, which produces acidity and releases toxic metals associated with pyrite and other sulfide minerals. Microbes accelerate pyrite oxidation markedly, thereby playing a major role in the production of AMD. Here, we probe pyrite oxidation by consortia of Thiobacillus ferrooxidans and thiooxidans using surface-sensitive photoelectron spectroscopy and X-ray absorption spectroscopy and compare them with surfaces oxidized through chemical and single species cultures. Microbial oxidation resulted in the formation of distinct oxidized surface species distributed non-uniformly over the pyrite surface; consortia produced a surface both more heterogeneous and more oxidized. In contrast, chemical oxidation proceeds without the build-up of passivating oxidation products. Surface morphology was not correlated with sites of nucleation or oxidation in any obvious manner. These results demonstrate that microbial oxidation occurs through a similar mechanism to chemical oxidation, but that the presence of complex microbial communities may impact the manner by which pyrite oxidation proceeds.

  15. Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics.

    Science.gov (United States)

    Pellegrino, F M D; Angilella, G G N; March, N H; Pucci, R

    2007-12-01

    After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio mu/k_(B)T of chemical potential to thermal energy being obtained numerically as a function of a scaled particle density. Pair correlation functions are also presented as a function of the statistical parameter, with Friedel oscillations developing close to the fermion limit, for sufficiently large density.

  16. Pyritization in the Gaojiashan Biota

    Institute of Scientific and Technical Information of China (English)

    CAI YaoPing; HUA Hong

    2007-01-01

    The Late Sinian (Ediacaran) Gaojiashan Biota was a soft-bodied fossil-Lagerst(a)tte dominated by substantial pyritized, three-dimensionally preserved tubular and conotubular fossils. Soft-tissue pyritization is extremely scarce in the fossil records, especially in the Precambrian, therefore it has very important and unique significance for the study of pyritization in the Gaojiashan Biota. Early pyritization played a pivotal role in the fossil preservation and two main factors ensured the successful pyritization of the fossils, namely rapid burial and permineralization. The former was controlled by secular storm deposition, and the latter was achieved by sufficient supply of available iron from sediments. SEM data of Conotubus demonstrate two types of preservation of the tubes (defined as type A and type B, respectively). In type A, pyritization took place relatively earlier and completely preserved both tube wall and coelom, but no detailed structure. While in type B, pyritization took place somewhat later and preserved the integrated tube wall, but partially the coelom. The size frequency distribution of the pyrite framboids suggests that pyritization took place in two different environments with entire different oxygen content.

  17. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    CERN Document Server

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-01-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young solar system and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan s atmosphere and in the protosolar nebula, respectively. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25 permil relative to the initial N2 gas, whatever the experimental set...

  18. Fractional order Darwinian particle swarm optimization applications and evaluation of an evolutionary algorithm

    CERN Document Server

    Couceiro, Micael

    2015-01-01

    This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, suc

  19. Search for fractionally charged particles in pp collisions at s=7TeV

    Science.gov (United States)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.

    2013-05-01

    A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions at s=7TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0fb-1. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)C and SU(2)L. We exclude at 95% confidence level such particles with electric charge ±2e/3 with masses below 310 GeV, and those with charge ±e/3 with masses below 140 GeV.

  20. Search for fractionally charged particles in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc

    2013-01-01

    A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions at $\\sqrt{s}$ = 7 TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)$_C$ and SU(2)$_L$. We exclude at 95% confidence level such particles with electric charge ±2e/3 with masses below 310 GeV, and those with charge ±e/3 with masses below 140 GeV.

  1. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  2. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-06-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  3. Hydrodynamic and magnetic fractionation of superparamagnetic nanoparticles for magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Löwa, Norbert, E-mail: norbert.loewa@ptb.de [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Knappe, Patrick [Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205 Berlin (Germany); Wiekhorst, Frank; Eberbeck, Dietmar [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Thünemann, Andreas F. [Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205 Berlin (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2015-04-15

    Resovist{sup ®} originally developed as a clinical liver contrast agent for Magnetic Resonance Imaging exhibits also an outstanding performance as a tracer in Magnetic Particle Imaging (MPI). In order to study the physical mechanism of the high MPI performance of Resovist{sup ®}, we applied asymmetric flow field–flow fractionation (A4F) and static magnetic fractionation (SMF) to separate Resovist{sup ®} into a set of fractions with defined size classes. As A4F based on an elution method separates MNP according to their hydrodynamic size, SMF fractionates a particle distribution by its magnetic moment. The obtained fractions of both separation techniques were then magnetically characterized by magnetorelaxometry measurements to extract the corresponding effective magnetic anisotropy and hydrodynamic size distribution parameters. Additionally, the MPI performance of each fraction was assessed using magnetic particle spectroscopy. With both separation techniques fractions (normalized to their iron amount) an MPI signal gain of a factor of two could be obtained, even though the distribution of effective anisotropy and hydrodynamic size were significantly different. Relating these findings to the results from magnetic characterization allows for a better understanding of the underlying mechanisms of MPI performance of Resovist{sup ®}. This knowledge may help to improve the design of novel MPI tracers and development of separation methods.

  4. Pyrite oxidation by Acidithiobacillus ferrooxidans bacteria

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2005-01-01

    Full Text Available The kinetic model of pyrite particle dissolution by the action of bacteria Acidithiobacillus ferrooxidans in a shaken Erlenmeyer flask was presented. The model agreed well with the experimental data for the extracted iron and the number of cells in the liquid phase. The specific growth rate of the adsorbed cells was evaluated (μA = 1,6 d-1 by fitting the experimental data to the model curve. Also, the relevance of the two proposed mechanisms for the bacterial dissolution of sulphide (direct and indirect was discussed, indicating that the indirect one was dominant. The adsorption process of A. ferrooxidans to the pyrite surface was well correlated by a Langmuir type isotherm.

  5. Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm.

    Science.gov (United States)

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.

  6. Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm.

    Directory of Open Access Journals (Sweden)

    Yu Huang

    Full Text Available Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.

  7. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.

    Science.gov (United States)

    Gonsalves, Maria-Judith; Fernandes, Sheryl Oliveira; Priya, Madasamy Lakshmi; LokaBharathi, Ponnapakkam Adikesavan

    Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42h showed that at the end of 24h, growth coefficient (k) of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, 'k' value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g)=0.564), the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, 'g' of non-viable fraction (particle-associated bacteria=0.615, Free=0.0086) was much greater than the viable fraction (particle-associated bacteria=0.056, Free=0.068). Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the "persistent variants" where the viable fraction multiply and release their progeny.

  8. Local exclusion principle for identical particles obeying intermediate and fractional statistics

    DEFF Research Database (Denmark)

    Lundholm, Douglas; Solovej, Jan Philip

    2013-01-01

    A local exclusion principle is observed for identical particles obeying intermediate and fractional exchange statistics in one and two dimensions, leading to bounds for the kinetic energy in terms of the density. This has implications for models of Lieb-Liniger and Calogero-Sutherland type...... and implies a nontrivial lower bound for the energy of the anyon gas whenever the statistics parameter is an odd numerator fraction. We discuss whether this is actually a necessary requirement....

  9. Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique

    CERN Document Server

    Maiti, Deepyaman; Konar, Amit

    2008-01-01

    Particle Swarm Optimization technique offers optimal or suboptimal solution to multidimensional rough objective functions. In this paper, this optimization technique is used for designing fractional order PID controllers that give better performance than their integer order counterparts. Controller synthesis is based on required peak overshoot and rise time specifications. The characteristic equation is minimized to obtain an optimum set of controller parameters. Results show that this design method can effectively tune the parameters of the fractional order controller.

  10. NUMBER CONCENTRATION, SIZE DISTRIBUTION AND FINE PARTICLE FRACTION OF TROPOSPHERIC AND STRATOSPHERIC AEROSOLS

    Institute of Scientific and Technical Information of China (English)

    Li Xu; Guangyu Shi; Li Zhang; Jun Zhou; Yasunobu Iwasaka

    2003-01-01

    Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45°N, 117°E) using a stratospheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly explored.The vertical distributions of the number concentration, number-size (that is, particle number versus particle size)distribution, and the fraction of fine particles (0.5 μm>r>0.15 μm/r>0.15 μm) are reported in this paper. The profiles of particle concentration present multi-peak phenomenon. The pattern of size distribution for atmospheric aerosol indicates a tri-modal (r=~0.2 μm, ~0.88 μm and ~7.0 μm) and a bi-modal (r=~0.13 μm and 2.0 μm). The number-size distribution almost fits the Junge distribution for particles with r<0.5 μm in the stratosphere of 1993 and the troposphere of 1994. But the distributions of coarse particles (r>0.5 μm) are not uniform. The number-size distribution exhibits also a wide size range in the troposphere of 1993. The results demonstrate that fine particles represent the major portion in the troposphere during the measurement period, reaching as high as 95% in 1994. Certain coarse particle peaks in the troposphere were attributed to clouds and other causes, and in the stratosphere to volcanic eruption. The stratospheric aerosol layer consists of unique fractions of fine or coarse particles depending on their sources. In summary, the process of gas-to-particles conversion was active and the coarse particles were rich over the Xianghe area. The measurements also demonstrate that the spatial and temporal atmospheric aerosol distributions are nonuniform and changeful.

  11. The effect of particle size of wheat bran fractions on bread quality - Evidence for fibre-protein interactions

    NARCIS (Netherlands)

    Noort, M.W.J.; Haaster, D. van; Hemery, Y.; Schols, H.A.; Hamer, R.J.

    2010-01-01

    The nature of the adverse effects of wheat bran fractions on bread-making quality was studied. Two fractions of bran, representing different tissue layers and having different compositions, were used. The particle size of the bran fractions was varied by various milling techniques. All fractions wer

  12. Pyrite oxidation by sulfolobus acidocaldarius

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, M.; Yokozeki, M.; Nishikawa, N.; Kawakami, Y. (Institute of Research and Innovation, Kashiwa (Japan). Dept. of Biotechnology)

    1994-04-01

    Two strains of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium, were examined for their pyrite-oxidizing ability. S. acidocaldarius ATCC 33909 was shown to possess iron-oxidizing activity by ferrous sulfate oxidizing experiments, but S. acidocaldarius No. 7 did not have it. Pyrite-oxidizing rate of S. acidocaldarius ATCC 33909 was 1.6-fold higher than that of strain 7 though they had a similar level of self-oxidizing ability. These results show that the iron-oxidizing activity accelerates pyrite oxidation.

  13. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p......F value. Hereby, the Xw*-model implicitly assumes that a given particle size fraction creates an analogue pore size fraction and, also, is based on the validity of the well-known capillary law equation relating equivalent drained pore size to the soil-water matric potential. The Xw*-model was found...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...

  14. A Pressure Controlled Pinched Flow Fractionation Device for Continuous Particle Separation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Trosborg, Jacqueline; Tanzi, Simone;

    2012-01-01

    In this work the problem of separating small particles of di↵erent sizes is solved by developing a simple microfluidic device using pinched flow fractionation (PFF), a technique originally presented by Yamada et al. in 2004 [1]. The present work takes the concept of PFF to the next level by makin...

  15. Efficiency of size-dependent particle separation by pinched flow fractionation

    CERN Document Server

    Srivastav, Aparna; Coupier, Gwennou

    2012-01-01

    Pinched flow fractionation is shown to be an efficient and selective way to quickly separate particles by size in a very polydisperse semi-concentrated suspension. In an effort to optimize the method, we discuss the quantitative influence of the pinching intensity in the balance between the requirements of selectivity and minimal dilution.

  16. Iron Phosphate Coating:A Novel Approach to Controlling Pyrite Oxidation

    Institute of Scientific and Technical Information of China (English)

    HUANGXIAO; V.P.EVANGELOU

    1997-01-01

    A novel coating technique was develped for controlling pyrite oxidation .The technique involved leaching pyrite particles with a solution containing low concentrations of phosphate and hydrogen peroxide.During the leaching rpocess,the iron released from pyrite by hydrogen proxide was precipitated by phosphate as a ferric phosphate coating .This coating was shown to be able to effectively prevent pyirte from oxidation and it could be established at the expense of only surface portions of pyrite.The emergence of this technique could provide a unique potential route for abating acid mine draingage and reclaiming sulfide-containing degraded mining land.

  17. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect I: Effects of variations of the fuel particle volume fractions

    Science.gov (United States)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-05-01

    A new method of modeling the in-pile mechanical behaviors of dispersion nuclear fuel elements is proposed. Considering the irradiation swelling together with the thermal effect, numerical simulations of the in-pile mechanical behaviors are performed with the developed finite element models for different fuel particle volume fractions of the fuel meat. The effects of the particle volume fractions on the mechanical performances of the fuel element are studied. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the particle volume fractions at each burnup; the locations of the maximum first principal stresses shift with increasing burnup; at low burnups, the maximum first principal stresses increase with the particle volume fractions; while at high burnups, the 20% volume fraction case holds the lowest value; (2) at the cladding, the maximum equivalent plastic strains and the tensile principal stresses increase with the particle volume fractions; while the maximum Mises stresses do not follow this order at high burnups; (3) the maximum Mises stresses at the fuel particles increase with the particle volume fractions, and the particles will engender plastic strains until the particle volume fraction reaches high enough.

  18. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Science.gov (United States)

    Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.

    2005-12-01

    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, dammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  19. Decreasing Particle Size of Paclitaxel Using Polymer in Fractional Precipitation Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Jin-Hyun [Kongju National University, Cheonan (Korea, Republic of)

    2016-04-15

    In this study, we have for the first time applied fractional precipitation with hydrophilic polymer in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no hydrophilic polymer was employed, the addition of hydrophilic polymer in fractional precipitation resulted in a decrease in the size of the paclitaxel precipitate. Among the polymers used, HPMC 2910 was the most effective for inhibition of precipitate growth. A polymer concentration of 0.2% (w/v) obtained the smallest particle size. The particle size was reduced by -35% compared to control. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.

  20. The relation between heavy metals distribution and particle size fractions in some egyptian soils

    Directory of Open Access Journals (Sweden)

    Monier Morad Wahba

    Full Text Available Soil as a part of the environment receives pollutants from all types of human activities. Heavy metals originating from various organic waste sources and industrial activities accumulate in the soil surface, and their fate depends not only on the types and amounts of waste applied, but on soil properties. Furthermore, soils differ in their retention power for various heavy or trace elements. Twelve soil samples were selected from different sites irrigated with industrial and sewage wastes at Helwan city (Cairo Governorate in the north and El-Saff (Giza Governorate in the south. Separation of clay, silt and sand fractions were carried out. Chemical analyses of trace elements in the form of total and available contents (Fe, Mn, Zn and Pb were determined in each fraction. The obtained results show that the average amounts of heavy metals in different fractions are related to the particle size of the soil especially the fine fraction. Heavy metals content was always in the surface layers higher than sub-surface. All metals were highest in clay fraction followed by silt and sand fractions respectively. This investigation discussed the importance of the fine fractions in the accumulation of heavy metals by coordination number in the lattice structure.

  1. Cytotoxicity to alveolar macrophages of airborne particles and waste incinerator fly-ash fractions.

    Science.gov (United States)

    Gulyas, H; Gercken, G

    1988-01-01

    A waste incinerator fly ash was separated into different grain-size fractions by sieving and sedimentation in butanol. The element content of each fraction was determined by atomic absorption and emission spectrometry. The fly-ash fractions, an eluted fine fly-ash fraction and an eluted airborne dust were analysed microscopically for particle size and numbers, together with standard quartz DQ 12 and three element-analysed airborne dusts. Rabbit alveolar macrophages, isolated by lung lavage, were incubated for 24 h with the particulates, the two eluates and a mixed element compound solution corresponding to the element concentrations of one airborne dust. At the end of incubation, the activities of lactate dehydrogenase, N-acetyl-beta-glucosaminidase, beta-galactosidase and acid phosphatase were determined in medium and cell lysates. Cytotoxicity was expressed as ratio of extracellular to total LDH (lactate dehydrogenase) activity. Release of N-acetyl-beta-glucosaminidase and beta-galactosidase was correlated positively with LDH release, whereas the total activity of acid phosphatase decreased with increasing LDH release. Cytotoxicity of the dusts was correlated with particle numbers, and As, Sb and Pb contents. The contribution of As to particle toxicity is discussed. Eluates of dusts did not affect rabbit alveolar macrophage viability.

  2. Precision in the measurement of dairy feed fractions based on particle size.

    Directory of Open Access Journals (Sweden)

    Mauro Spanghero

    2010-01-01

    Full Text Available The aim of this research note is to evaluate the variability of the physical measurements obtained by a separator of feeds  for dairy cows based on particle size. Fresh samples of total mixed ration (TMR and corn silage were collected from four  dairy units and were immediately fractionated using a particle separator (NASCO®, Pennsylvania State University com-  posed of two sieves (diameters of 19 and 8 mm and a collector on the bottom. Repeatability expressed as standard devi-  ation was similar between fractions (>19, 8-19 and   +1.7 and +1.5% for corn silages, but when expressed as coefficient of variation there were, for both samples, large dif-  ferences between the values for fraction exceeding 19 mm (44.7 and 35.1 %, respectively for TMR and corn silages and  the middle (3.9 and 2.5 %, respectively for TMR and corn silages and bottom fractions (3.7 and 5.6 %, respectively for  TMR and corn silages. The between operator reproducibility was very close to repeatability and this indicates that the  operator’s contribution to the overall variability is marginal in comparison with residual variability. In conclusion, differ-  ent operators properly trained in the use of the NASCO® separator can produce satisfactory repeatable and reproducible  values for the middle and the bottom fractions

  3. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    Science.gov (United States)

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  4. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    Science.gov (United States)

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh

    Science.gov (United States)

    Lowers, H.A.; Breit, G.N.; Foster, A.L.; Whitney, J.; Yount, J.; Uddin, Md. N.; Muneem, Ad. A.

    2007-01-01

    Sediment from two deep boreholes (???400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wells containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.

  6. Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thao M. Nguyen

    2015-07-01

    Full Text Available Gold nanorods (GNRs are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F and single particle inductively coupled mass spectrometry (spICP-MS provide unique advantages for fractionating and analyzing the typically complex mixtures produced by common synthetic procedures. A4F fractions collected at specific elution times were analyzed off-line by spICP-MS. The individual particle masses were obtained by conversion of the ICP-MS pulse intensity for each detected particle event, using a defined calibration procedure. Size distributions were then derived by transforming particle mass to length assuming a fixed diameter. The resulting particle lengths correlated closely with ex situ transmission electron microscopy. In contrast to our previously reported observations on the fractionation of low-aspect ratio (AR GNRs (AR < 4, under optimal A4F separation conditions the results for high-AR GNRs of fixed diameter (≈20 nm suggest normal, rather than steric, mode elution (i.e., shorter rods with lower AR generally elute first. The relatively narrow populations in late eluting fractions suggest the method can be used to collect and analyze specific length fractions; it is feasible that A4F could be appropriately modified for industrial scale purification of GNRs.

  7. Speciation of arsenic in pyrite by micro-X-ray absorption fine- structure spectroscopy (XAFS)

    Energy Technology Data Exchange (ETDEWEB)

    Paktunc, D. (CCM)

    2008-09-30

    Pyrite (FeS2) often contains variable levels of arsenic, regardless of the environment of formation. Arsenian pyrite has been reported in coals, sediments and ore deposits. Arsenian pyrite having As concentrations of up to 10 wt % in sedimentary rocks (Kolker et al. 1997), about 10 wt% in gold deposits (Fleet et al. 1993), 12 wt % in a refractory gold ore (Paktunc et al. 2006) and 20 wt % in a Carlin-type gold deposit in Nevada (Reich et al. 2005) have been reported. Arsenian pyrite is the carrier of gold in hydrothermal Carlin-type gold deposits, and gold concentrations of up to 0.9 wt % have been reported (Reich et al. 2005; Paktunc et al. 2006). In general, high Au concentrations correlate with As-rich zones in pyrite (Paktunc et al. 2006). Pyrite often ends up in mining and metallurgical wastes as an unwanted mineral and consititutes one of the primary sources of As in the wastes. Arsenic can be readily released to the environment due to rapid oxidative dissolution of host pyrite under atmospheric conditions. Pyrite is also the primary source of arsenic in emissions and dust resulting from combustion of bituminous coals. Despite the importance of arsenian pyrite as a primary source of anthropogenic arsenic in the environment and its economic significance as the primary carrier of gold in Carlin-type gold deposits, our understanding of the nature of arsenic in pyrite is limited. There are few papers dealing with the mode of occurrence of arsenic by bulk XAFS in a limited number of pyrite-bearing samples. The present study documents the analysis of pyrite particles displaying different morphologies and a range of arsenic and gold concentrations to determine the nature and speciation of arsenic.

  8. Distribution of pre- and post-Chernobyl radiocaesium with particle size fractions of soils

    Energy Technology Data Exchange (ETDEWEB)

    Spezzano, Pasquale [ENEA, Sezione Metodi di Analisi e Prevenzione del Rischio Antropico, Frascati, Rome (Italy)

    2005-07-01

    The association of radiocaesium with particle size fractions separated by sieving and settling from soils sampled eight years after the Chernobyl accident has been determined. The three size fractions were: <2 {mu}m, 2-63 {mu}m and >63 {mu}m. {sup 137}Cs in the soil samples was associated essentially with the finer size fractions, which generally showed specific activities 3-5 times higher than the bulk samples. Activity ratios of {sup 134}Cs/{sup 137}Cs in the clay-sized fractions appear to be lower with respect to the corresponding values in bulk soil samples. This result indicates that some differences still exists in the particle size distribution between {sup 137}Cs originating from nuclear weapons, which has been in the soil for decades after fallout, and {sup 137}Cs coming from the Chernobyl accident, eight years after the deposition event. This behaviour could be related to 'ageing' processes of radiocaesium in soils.

  9. Oxidation of pyrite: Consequences and significance

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2002-01-01

    Full Text Available This paper presents the most important studies on the oxidation of pyrite particularly in aqueous solutions. The consequences of pyrite oxidation was examined, as well as its importance, from both the technical-technological and environmental points of view. The oxidation of pyrite was considered in two parts. The spontaneous oxidation of pyrite in nature was described in the first part, with this part comprising pyrite oxidation in deposits depots and mines. It is explained how way natural electrochemical processes lead to the decomposition of pyrite and other minerals associated with pyrite. The oxidation of pyrite occurring during technological processes such as grinding, flotation and leaching, was shown in the second part. Particular emphasis was placed on the oxidation of pyrite during leaching. This part includes the leaching of sulphide and oxide ores, the leaching of pyrite coal and the leaching of refractory gold-bearing ores (pressure oxidation, bacterial oxidation, oxidation by means of strong oxidants and the electrolysis of pyrite suspensions. Various mechanisms of pyrite oxidation and of the galvanic interaction of pyrite with other sulphide minerals are shown.

  10. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Science.gov (United States)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  11. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).

    Science.gov (United States)

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-07-01

    This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of fraction was polluted by heavy metals more seriously than the other size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic metals in urban soils. The variation of heavy metals in various size fractions

  12. The role of soil's particle-size fractions in the adsorption of heavy metals

    Directory of Open Access Journals (Sweden)

    Saglara Mandzhieva

    2014-08-01

    Full Text Available The parameters of adsorption of Cu2+, Pb2+, and Zn2+ cations by southern chernozem and their particle-size fractions were studied. The adsorption of metals by soils and the strength of their fixation on the surface of soil particles under both mono- and poly-element contamination decreased with the decreasing proportion of fine fractions in the soil. The aim of this work was to study the effect of the particle-size distribution and the silt and physical clay fractions on the adsorption of copper, lead, and zinc by chernozems. The objects of study included the upper humus horizons of different southern chernozems of the Rostov oblast. To study the ion-exchange adsorption of the Cu2+, Pb2+, and Zn2+ cations, the soil in the natural ionic form was disaggregated using a pestle with a rubber head and sieved through a 1mm sieve. The soil samples were treated with solutions of Cu2+, Pb2+, and Zn2+ nitrates and acetates at the separate and simultaneous presence of heavy metals (HMs. In the solutions with the simultaneous presence of HMs, their molar concentrations were similar. The concentrations of the initial solutions varied in the range from 0.05 to 1 mM/l. The soil: solution ratio was 1:10. The contents of HMs in the filtrates were determined by atomic absorption spectrophotometry. The contents of adsorbed HM cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The increase in the degree of dispersion of the particle-size fractions in similar soils resulted not only in an increase in the content of adsorbed HMs but also in an enhancement of their fixation on the surface of the fine particles. Therefore, the adsorption capacity of the Lower Don soils for Cu2+, Pb2+, and Zn2+ decreased in the following sequence: clay loamy southern chernozem > loamy southern chernozem > loamy sandy southern chernozem. This was related to the qualitative differences in the mineralogy and chemistry of

  13. Modeling the Process of Particle Fractionation in a Pneumatic Centrifugal Apparatus

    Science.gov (United States)

    Shvab, A. V.; Evseev, N. S.

    2016-07-01

    The present investigation pertains to simulation of the aerodynamics of a two-phase nonisothermal twisted turbulent flow in the vortex chamber of an air-centrifugal classifier. The gas phase dynamics was determined with the aid of Reynolds equations whose closure was based on the Wilcox turbulence model. The motion of the solid phase of an ultradisperse powder is simulated by a combination of calculations of the motion trajectories of particular particles in a Lagrangian coordinate system. The influence of turbulent diffusion of particles and of other factors on the efficiency of the segregation of particle fractions by size is shown. The reliability of the results obtained is confirmed by test studies and by comparing numerical results with well-known experimental data.

  14. MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2016-06-01

    Full Text Available In this study we analyzed the momentum and heat transfer behavior of MHD nanofluid embedded with conducting dust particles past a stretching surface in the presence of volume fraction of dust particles. The governing equations of the flow and heat transfer are transformed into nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Runge–Kutta based shooting technique. The effect of non-dimensional governing parameters on velocity and temperature profiles of the flow are discussed and presented through graphs. Additionally friction factor and the Nusselt number have also been computed. Under some special conditions, numerical results obtained by the present study were compared with the existed studies. The result of the present study proves to be highly satisfactory. The results indicate that an increase in the interaction between the fluid and particle phase enhances the heat transfer rate and reduces the friction factor.

  15. A computer program for two-particle intrinsic coefficients of fractional parentage

    Science.gov (United States)

    Deveikis, A.

    2012-06-01

    A Fortran 90 program CESOS for the calculation of the two-particle intrinsic coefficients of fractional parentage for several j-shells with isospin and an arbitrary number of oscillator quanta (CESOs) is presented. The implemented procedure for CESOs calculation consistently follows the principles of antisymmetry and translational invariance. The approach is based on a simple enumeration scheme for antisymmetric many-particle states, efficient algorithms for calculation of the coefficients of fractional parentage for j-shells with isospin, and construction of the subspace of the center-of-mass Hamiltonian eigenvectors corresponding to the minimal eigenvalue equal to 3/2 (in ℏω). The program provides fast calculation of CESOs for a given particle number and produces results possessing small numerical uncertainties. The introduced CESOs may be used for calculation of expectation values of two-particle nuclear shell-model operators within the isospin formalism. Program summaryProgram title: CESOS Catalogue identifier: AELT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 932 No. of bytes in distributed program, including test data, etc.: 61 023 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any computer with a Fortran 90 compiler Operating system: Windows XP, Linux RAM: The memory demand depends on the number of particles A and the excitation energy of the system E. Computation of the A=6 particle system with the total angular momentum J=0 and the total isospin T=1 requires around 4 kB of RAM at E=0,˜3 MB at E=3, and ˜172 MB at E=5. Classification: 17.18 Nature of problem: The code CESOS generates a list of two-particle intrinsic coefficients of fractional parentage for several

  16. An unaccounted fraction of marine biogenic CaCO3 particles.

    Directory of Open Access Journals (Sweden)

    Mikal Heldal

    Full Text Available Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from 100 µm, and in a typical concentration of 10(4-10(5 particles L(-1 (size range counted 1-100 µm. Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1-100 µm size range account for 2-4 times more CaCO(3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO(2 remains to be investigated.

  17. Non-monotonic dependence of Pickering emulsion gel rheology on particle volume fraction.

    Science.gov (United States)

    Kaganyuk, M; Mohraz, A

    2017-03-29

    The microstructure of Pickering emulsion gels features a tenuous network of faceted droplets, bridged together by shared monolayers of particles. In this investigation, we use standard oscillatory rheometry in conjunction with confocal microscopy to gain a more comprehensive understanding of the role particle bridged interfaces have on the rheology of Pickering emulsion gels. The zero-shear elastic modulus of Pickering emulsion gels shows a non-monotonic dependence on particle loading, with three separate regimes of power-law and linear gel strengthening, and subsequent gel weakening. The transition from power-law to linear scaling is found to coincide with a peak in the volume fraction of particles that participate in bridging, which we indirectly calculate using measureable quantities, and the transition to gel weakening is shown to result from a loss in network connectivity at high particle loadings. These observations are explained via a simple representation of how Pickering emulsion gels arise from an initial population of partially-covered droplets. Based on these considerations, we propose a combined variable related to the initial droplet coverage, to be used in reporting and rationalizing the rheology of Pickering emulsion gels. We demonstrate the applicability of this variable with Pickering emulsions prepared at variable fluid ratios and with different-sized colloidal particles. The results of our investigation have important implications for many technological applications that utilize solid stabilized multi-phase emulsions and require a priori knowledge or engineering of their flow characteristics.

  18. Pyrite synthesis via polysulfide compounds

    Science.gov (United States)

    Luther, George W., III

    1991-10-01

    The reactions of Fe(II) and Fe(III) solutions with polysulfide solutions prepared from freshly synthesized Na 2S x ( x = 2, 4, 5) were studied at 25 and 100°C over the pH range 5.5 to 8. Direct and instantaneous pyrite formation was not observed in any reaction. High temperature reactions are nearly quantitative over periods of four hours with Fe(II) and polysulfide solutions. The rate of reaction at room temperature is comparable to that found by RICKARD (1975), and the observations reported here are in agreement with his mechanism of pyrite formation. Based on the polarographic results of these reactions and previous work, a refinement of the mechanism which includes dissolved iron sulfide complexes is proposed. Every reaction of equimolar amounts of polysulfide and Fe(II) gave the kinetic product "FeS" (an example of the Ostwald step rule). Polarographic results demonstrate that the "FeS" initially formed consists of (1) a complex of the form Fe(SH) + and (2) solid FeS. When excess polysulfide is present, a complex of form [Fe(SH) S x] - is present. This complex should readily allow for (1) the reduction of polysulfide by sulfide which produces S 22- in unprotonated form, and (2) the change of Fe(II) from high spin to low spin during the formation of pyrite. The reduction of polysulfide by sulfide was proposed by RICKARD (1975), but at the pH of the solutions studied herein, S 22- in solution should be protonated. The 22- ion is critical in the formation and structure of pyrite ( TOSSEL et al., 1981). The proposed complex allows for a cyclic intermediate which cleaves the reacting polysulfide to form S 22- unprotonated. As this process occurs, there is a change in the spin state of the Fe(II) from the high spin t 2g4e g2 to the low spin t 2g6 state which is an electron configuration exhibiting kinetic inertness. On change of the Fe(II) spin state, the complex irreversibly decomposes to form pyrite. The complex may be a cluster complex containing two or more

  19. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    Science.gov (United States)

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the

  20. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil.

    Science.gov (United States)

    Bol, Roland; Poirier, Natacha; Balesdent, Jérôme; Gleixner, Gerd

    2009-08-30

    The composition and molecular residence time of soil organic matter (SOM) in four particle-size fractions (POM >200 microm, POM 63-200 microm, silt and clay) were determined using Curie-point pyrolysis/gas chromatography coupled on-line to mass spectrometry. The fractions were isolated from soils, either continuously with a C(3) wheat (soil (13)C value = -26.4 per thousand), or transferred to a C(4) maize (soil (13)C value = -20.2 per thousand) cropping system 23 years ago. Pyrograms contained up to 45 different pyrolysis peaks; 37 (ca. 85%) were identifiable compounds. Lignins and carbohydrates dominated the POM fractions, proteins were abundant, but lignin was (nearly) absent in the silt and clay fractions. The mean turnover time (MRT) for the pyrolysis products in particulate organic matter (POM) was generally <15 years (fast C pool) and 20-300 years (medium or slow C pools) in silt and clay fractions. Methylcyclopentenone (carbohydrate) in the clay fraction and benzene (mixed source) in the silt fraction exhibited the longest MRTs, 297 and 159 years, respectively. Plant-derived organic matter was not stored in soils, but was transformed to microbial remains, mainly in the form of carbohydrates and proteins and held in soil by organo-mineral interactions. Selective preservation of plant-derived OM (i.e. lignin) based on chemical recalcitrance was not observed in these arable soils. Association/presence of C with silt or clays in soils clearly increased MRT values, but in an as yet unresolved manner (i.e. 'truly' stabilized, or potentially still 'labile' but just not accessible C).

  1. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  2. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives

    Energy Technology Data Exchange (ETDEWEB)

    Contado, Catia, E-mail: Catia.Contado@unife.it [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy); Ravani, Laura [University of Ferrara, Department of Life Sciences and Biotechnologies, via L. Borsari, 46, 44121 Ferrara (Italy); Passarella, Martina [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy)

    2013-07-25

    Graphical abstract: -- Highlights: •Four types of SiO{sub 2} particles were characterized by SdFFF, PCS and EM techniques. •Clusters of 10 nm nanoparticles were found in some SiO{sub 2} samples. •A method was set up to extract SiO{sub 2} particles from food matrices. •The effects of the carrier solution composition on SdFFF separations were evaluated. •Particle size distributions were obtained from SiO{sub 2} particles extracted from foodstuffs. -- Abstract: Four types of SiO{sub 2}, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w{sup −1}) a nearly silica-free instant barley coffee powder with a known SiO{sub 2} sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO{sub 2} particles and verify the new particle size distribution. The SiO{sub 2} content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w{sup −1}). The protocol to isolate the silica particles was so applied to the most SiO{sub 2}-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  3. Pyritized ooids from the Arabian Sea basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Rao, Ch.M.; Reddy, N.P.C.

    . Occurrence of pyrite at turbidite intervals suggests that pyritization in high organic carbon and H2S abundant environments was mainly controlled by the supply of reactive iron. From the distribution of pyrite in the core it is inferred that reactive iron...

  4. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China

    Institute of Scientific and Technical Information of China (English)

    WANG Huan-hua; LI Lian-qing; WU Xin-min; PAN Gen-xing

    2006-01-01

    Soil samples from 4 defined city zones of Nanjing were randomly collected at 0-5 cm and 5-20 cm intervals and size fractions of soil particles were separated from undisturbed bulk soils by low energy dispersion procedure. The total contents of Cu and Pb in the different particle size fractions of the urban soils were analyzed by HNO3-HF-HC1O4 digestion and flame atomic absorption spectrophotometer determination. The total content of Cu and Pb in soil particle size fractions varied with their size and with city zones as well. Both the content and variation with the size fractions of Pb was bigger than of Cu supporting our previous finding that there was Pb pollution to different degrees in the urban soils although the two elements were generally enriched in clay-sized fraction.Contaminated Pb tended to be preferentially enriched in the size fraction of 2000-250 μm and clay-sized fraction. While the size fractions of the soils from newly developed and preserved area contained smaller amount of Cu and Pb, the partitioning of them in coarse and fine particle size fractions were insignificant compared to that from inner residence and commercial area. The very high Pb level over 150 mg/kg of the fine particle fractions from the soils of the inner city could be a cause of high blood Pb level reported of children from the city as acute exposure to Pb of fine particles of the urban soil might occur by soil ingestion and inhalation by young children. Thus, much attention should be paid to the partitioning of toxic metals in fine soil particles of the urban soils and countermeasures against high health risk of Pb exposure by soil ingestion and dust inhalation should be practiced against the health problem of blood Pb for young children from the cities.

  5. Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability

    Energy Technology Data Exchange (ETDEWEB)

    Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. [Hokkaido University, Hokkaido (Japan). Graduate School of Engineering

    2008-11-15

    Pyrite (FeS{sub 2}) is a common sulfide mineral associated with valuable metal minerals and coal, and it is rejected as a gangue mineral using physical separation techniques such as froth flotation and discharged into tailing pond. In the flotation, pyrite is frequently entrapped in the froth due to its hydrophobic nature. Formation of acid mine drainage due to the air-oxidation of pyrite in the tailing pond is also a serious problem. The authors have proposed carrier-microencapsulation (CME) as a method for suppressing both the floatability and oxidation of pyrite. In this method, pyrite is coated with a thin layer of metal oxide or hydroxide using catechol solution as a carrier combined with metal ions. The layer converts the pyrite surface from hydrophobic to hydrophilic and acts as a protective coating against oxidation. The present study demonstrates the effect of CME using Si-catechol complex to suppress the pyrite floatability: The bubble pick-up experiments showed that attachment of pyrite particles to air bubble is suppressed by the CME treatment at pH 4-10, Si-catechol complex concentration over 0.5 mol m{sup -3} and treatment time within 2 min. The Hallimond tube flotation experiments showed that the pyrite floatability is suppressed by the CME treatment even in the presence of typical flotation collectors such as kerosene and xanthate. SEM-EDX analysis confirmed that Si present on the pyrite surface treated by Si-catechol complex, implying that SiO{sub 2} or SiOH{sub 4} layer formed by the CME treatment convert the pyrite surface hydrophobic to hydrophilic.

  6. Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Nguyen, Thao M; Jingyu Liu; Vincent A. Hackley

    2015-01-01

    Gold nanorods (GNRs) are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F) and single particle inductively coupled mass spectrometry (spICP-MS) provide unique advantages for fractionating and analyzing the typically complex mixtur...

  7. Flocculation of Pyrite Fines in Aqueous Suspensions with Corn Starch to Eliminate Mechanical Entrainment in Flotation

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2015-10-01

    Full Text Available The hydrophilic flocculation of pyrite fines in aqueous suspensions with corn starch was studied by measuring particle size distribution, microscopy observation and micro-flotation. Furthermore, the interaction of corn starch with pyrite was investigated by determining the adsorption density and based on zeta potential measurements and X-ray photoelectron spectrometer (XPS analysis in this work. The results of the particle size distribution measurement show that corn starch can effectively aggregate pyrite fines, and the pyrite floccules (flocs are sensitive to mechanical stirring. The micro-flotation results suggest that the mechanical entrainment of pyrite fines in flotation can be effectively eliminated through the formation of large-size flocs. The zeta potential of pyrite particles decreases with the addition of corn starch. The XPS results prove that carboxyl groups are generated on the digested corn starch, and both iron hydroxyl compounds and ferrous disulfide on the pyrite surface can chemically interact with the corn starch digested by sodium hydroxide.

  8. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  9. Aliphatic and aromatic plant biopolymer dynamics in soil particles isolated from sequential density fractionation

    Science.gov (United States)

    Caldwell, B.; Filley, T.; Sollins, P.; Lajtha, K.; Swanston, C.; Kleber, M.; Kramer, M.

    2007-12-01

    A recent multi-layer-based soil organic matter-mineral interaction mechanistic model to describe the nature of soil organic matter-mineral surface mechanism for soil organic matter stabilization predicts that proteinaceous and aliphatic materials establish the core of strong binding-interactions upon which other organic matter is layered. A key methodology providing data underpinning this hypothesis is sequential density fractionation where soil is partitioned into particles of increasing density with the assumption that a partial control on organic matter distribution through density series is the thickness of its layering. Four soils of varying mineralogy and texture were investigated for their biopolymer, isotopic, and mineralogical properties. Light fractions (cutin and suberin while heavier fractions, 1.8-2.6 g/cm3, exhibited a progressive decrease in concentration in plant derived biopolymers with density. Extractable lignin phenols exhibited a progressive oxidation state with density. The concentration of biopolymers roughly mirrored the C:N ratio of soil particles which dropped consistently with increasing particle density. Although, in all soils, both lignin phenols and SFA concentration generally decreased with increasing density the ratio SFA/lignin varied with density and depending upon the soil. All soils, except the oxisol, exhibited an increase in SFA with respect to lignin suggesting a selective stabilization of those material with respect to lignin. In the oxisol, which showed little variation in its hematite dominated mineralogy across density, SFA/lignin remained constant, potentially indicating a greater capacity to stabilize lignin in that system. Interestingly, the lignin oxidation state increased with density in the oxisol. Given the variation in soil character, the consistency in these trends it suggests a general phenomenon of progressive decay in plant derived material with thinness of mineral coating but an overall relative increase in

  10. Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture

    Indian Academy of Sciences (India)

    Lifang Zhang; Yanyan Zheng; Chengdong Xiong

    2015-06-01

    A series of highly interconnected porous poly(D,L-lactide acid) (PDLLA)/pyrite (Zi-Ran-Tong, FeS2) scaffold containing 5–20% of pyrite was fabricated by particle leaching combined with the thermal-induced phase separation method. Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional Chinesemedicine, has been used in the Chinese population to treat bone diseases and to promote bone healing. The mechanical properties of the PDLLA scaffold were significantly enhanced after the addition of pyrite. The osteoblastic ROS17/2.8 cell line was used and seeded on the PDLLA/pyrite scaffold to study its potential to support the growth of osteoblastic cells and to estimate the optimal dose of pyrite for bone tissue engineering. The effects of pyrite on cell proliferation and differentiation were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide and alkaline phosphatase activity assay. The cells on the porous composite scaffold formed a continuous layer on the outer and inner surface observed by scanning electron microscopy and fluorescence microscope. The results strongly suggested that the PDLLA/pyrite composite scaffold could stimulate the growth of ROS17/2.8 cells in vitro and it could be potentially used as a scaffold for bone tissue engineering.

  11. Quantification of Pyritic Sulfur of One Colombian Coal by Mössbauer Spectroscopy

    Science.gov (United States)

    Reyes, F.; Pérez Alcázar, G. A.; Barraza, J. M.; Bohórquez, A.; Tabares, J. A.

    2003-06-01

    The aim of this work was to identify and quantify by means of Mössbauer spectroscopy the amount of pyritic sulfur in coal samples of the Guachinte mine, Valle, Colombia. For the quantification a calibration curve for pyritic sulfur content vs. relative spectral area ratio of sulfur and pure (99.99%) Fe-powder was obtained, using Mössbauer spectroscopy. The samples used in the calibration were the representative ones of the fractions obtained after one and two hydrocyclonic removal processes of a homogeneous sample of raw coal. A linear relationship was obtained and used to determine the amount of pyritic sulfur of the original coal.

  12. Bioflotation of pyrite with Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    Shaoxian Song; Yimin Zhang; Shouci Lu

    2004-01-01

    Bioflotation of pyrite with bacteria Thiobacillus ferrooxidans in the presence or absence of potassium ethyl xanthate was studied on a pure pyrite through microflotation and electrophoretic light scattering measurements. The experimental results showed that in the absence of xanthate, pyrite flotation is slightly enhanced by Thiobacillus ferrooxidans. However, with xanthate as a collector, pyrite flotation is strongly depressed after being exposed to the bacteria. The longer is the time when the pyrite is exposed to the bacteria, the stronger the depression is. The mechanism of the depression might be due to the formation of the biofilms of Thiobacillus ferrooxidans on pyrite surfaces, preventing the adsorption of xanthate on pyrite surfaces in the form of dixanthogen or xanthate ions.

  13. Characterization of Time-Dependent Contact Angles for Oleic Acid Mixed Sands with Different Particle Size Fractions

    DEFF Research Database (Denmark)

    Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko

    2014-01-01

    ) mixed sands representing four different particle size fractions ranging from 0.105 to 0.84 mm. Initial soil-water contact angle (αi), and the time dependence of contact angle were measured by the sessile drop method. Results showed that the αi value for fine and middle sand fractions increased rapidly...

  14. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai

    Science.gov (United States)

    Chen, Xiaojia; Balasubramanian, Rajasekhar; Zhu, Qiongyu; Behera, Sailesh N.; Bo, Dandan; Huang, Xian; Xie, Haiyun; Cheng, Jinping

    2016-04-01

    Atmospheric particulate mercury (PHg) is recognized as a global pollutant that requires regulation because of its significant impacts on both human health and wildlife. The haze episodes that occur frequently in China could influence the transport and fate of PHg. To examine the characteristics of PHg during haze and non-haze days, size-fractioned particles were collected using thirteen-stage Nano-MOUDI samplers (10 nm-18 μm) during a severe haze episode (from December 2013 to January 2014) in Shanghai. The PHg concentration on haze days (4.11 ± 0.53 ng m-3) was three times higher than on non-haze days (1.34 ± 0.15 ng m-3). The ratio of the PHg concentration to total gaseous mercury (TGM) ranged from 0.42 during haze days to 0.21 during non-haze days, which was possibly due to the elevated concentration of particles for gaseous elemental mercury (GEM) adsorption, elevated sulfate and nitrate contributing to GEM oxidation, and the catalytic effect of elevated water-soluble inorganic metal ions. PHg/PM10 during haze days (0.019 ± 0.004 ng/μg) was lower than during non-haze days (0.024 ± 0.002 ng/μg), and PHg/PM10 was significantly reduced with an increasing concentration of PM10, which implied a relatively lower growth velocity of mercury than other compositions on particles during haze days, especially in the diameter range of 0.018-0.032 μm. During haze days, each size-fractioned PHg concentration was higher than the corresponding fraction on non-haze days, and the dominant particle size was in the accumulation mode, with constant accumulation to a particle size of 0.56-1.0 μm. The mass size distribution of PHg was bimodal with peaks at 0.32-0.56 μm and 3.1-6.2 μm on non-haze days, and 0.56-1.0 μm and 3.1-6.2 μm on haze days. There was a clear trend that the dominant size for PHg in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm on haze days, which revealed the higher growth velocity of PHg on haze days due to the

  15. Influence of the nucleus area distribution on the survival fraction after charged particles broad beam irradiation.

    Science.gov (United States)

    Wéra, A-C; Barazzuol, L; Jeynes, J C G; Merchant, M J; Suzuki, M; Kirkby, K J

    2014-08-07

    It is well known that broad beam irradiation with heavy ions leads to variation in the number of hit(s) received by each cell as the distribution of particles follows the Poisson statistics. Although the nucleus area will determine the number of hit(s) received for a given dose, variation amongst its irradiated cell population is generally not considered. In this work, we investigate the effect of the nucleus area's distribution on the survival fraction. More specifically, this work aims to explain the deviation, or tail, which might be observed in the survival fraction at high irradiation doses. For this purpose, the nucleus area distribution was added to the beam Poisson statistics and the Linear-Quadratic model in order to fit the experimental data. As shown in this study, nucleus size variation, and the associated Poisson statistics, can lead to an upward survival trend after broad beam irradiation. The influence of the distribution parameters (mean area and standard deviation) was studied using a normal distribution, along with the Linear-Quadratic model parameters (α and β). Finally, the model proposed here was successfully tested to the survival fraction of LN18 cells irradiated with a 85 keV µm(- 1) carbon ion broad beam for which the distribution in the area of the nucleus had been determined.

  16. Characterization and separation of pyrite from Abu Tartur black shale

    Institute of Scientific and Technical Information of China (English)

    Ibrahim S.S.; El Kammar A.M.; Guda A.M.

    2015-01-01

    This work aimed for pyrite separation from Abu Tartur black shale as a source of sulfur to be an added economic value of Abu Tartur area. The considered samples in the present work were collected from a core drilled in Abu Tartur plateau representing the pyrite-rich black shale of the U. Cretaceous age. Sample characterization was carried out using petrographic microscope, XRD, DTA/DTG, C/S and XRF techniques. Clay minerals, silt-sized quartz, calcite, and hematite were the main minerals associating pyr-ite (5.34%). Liberation behavior of the sample was about 80%below 5 lm. Sample processing was achieved through one-day soaking followed by classification using 1 inch Mozley hydro-cyclone where about 35.5% by weight went to underflow and 64.5% went to overflow. The underflow product was subjected to an advanced gravity separation process using SB-40 Falcon Concentrator through a CCD statistical design prepared by Design-Expert 6.0 software proposed to opti-mize the separation process through a study for the effects of frequency (Hz) and water pressure (Psi) on both assay and recovery of the sulfur-rich heavy fraction. A heavy concentrate weighed 10.90%with inorganic sulfur content reached 11.37%(21.24%pyrite) with overall recovery (50.01%) was obtained after two cleaning at the optimum conditions.

  17. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (treatment and promoted the utilization of pyrite in the field of environmental remediation.

  18. Adsorção de xantatos sobre pirita Adsorption of xanthate on pyrite

    Directory of Open Access Journals (Sweden)

    Fábio Garcia Penha

    2001-10-01

    Full Text Available This paper presents a study of adsorption of xanthate with alkyl chain of two (C2XK, four (C4XK and eight (C8XK atoms of carbon, on pyrite from Santa Catarina, Brazil. The results showed that pyrite surface changes from hydrophilic to hydrophobic when xanthate is adsorbed increasing the contact angle to 35º for C2XK, and to 90º for C4XK and C8XK. The rate of flotation of pyrite particles after adsorption increases with the increase of the number of carbon atoms in the alkyl chain in agreement with the results of contact angle measurements.

  19. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  20. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations

    OpenAIRE

    Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio

    2017-01-01

    Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash...

  1. A computer program for two-particle generalized coefficients of fractional parentage

    Science.gov (United States)

    Deveikis, A.; Juodagalvis, A.

    2008-10-01

    We present a FORTRAN90 program GCFP for the calculation of the generalized coefficients of fractional parentage (generalized CFPs or GCFP). The approach is based on the observation that the multi-shell CFPs can be expressed in terms of single-shell CFPs, while the latter can be readily calculated employing a simple enumeration scheme of antisymmetric A-particle states and an efficient method of construction of the idempotent matrix eigenvectors. The program provides fast calculation of GCFPs for a given particle number and produces results possessing numerical uncertainties below the desired tolerance. A single j-shell is defined by four quantum numbers, (e,l,j,t). A supplemental C++ program parGCFP allows calculation to be done in batches and/or in parallel. Program summaryProgram title:GCFP, parGCFP Catalogue identifier: AEBI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 17 199 No. of bytes in distributed program, including test data, etc.: 88 658 Distribution format: tar.gz Programming language: FORTRAN 77/90 ( GCFP), C++ ( parGCFP) Computer: Any computer with suitable compilers. The program GCFP requires a FORTRAN 77/90 compiler. The auxiliary program parGCFP requires GNU-C++ compatible compiler, while its parallel version additionally requires MPI-1 standard libraries Operating system: Linux (Ubuntu, Scientific) (all programs), also checked on Windows XP ( GCFP, serial version of parGCFP) RAM: The memory demand depends on the computation and output mode. If this mode is not 4, the program GCFP demands the following amounts of memory on a computer with Linux operating system. It requires around 2 MB of RAM for the A=12 system at E⩽2. Computation of the A=50 particle system requires around 60 MB of

  2. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

    Science.gov (United States)

    Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A.

    2017-06-01

    The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

  3. The Search for Fractional Charge Particles in an Advanced, Automated Variation of the Millikan Experiment

    Science.gov (United States)

    Lee, I. T.; Halyo, V.; Lee, E. R.; Loomba, D.; Perl, M. L.

    2001-04-01

    We will present a variation on the Millikan apparatus designed to look for fractionally charged particles in bulk materials, and results from the current run. Oil drops are produced from a drop-on-demand ejector, and imaged by a digital CCD camera and framegrabber combination. A networked Linux cluster is used to simultaneously collect and analyze data, and to monitor and control the apparatus. The experiment is fully automated, and utilizes laminar air flow to make possible the accurate measurements of charge on large (20 micron) fluid drops. The experiment has the capability to process a total of 10^7 to 10^8 drops (20-200 mg), and the ability to use large drops enables the search to be carried out in mineral suspensions.

  4. Specimen Preparation for Metal Matrix Composites with a High Volume Fraction of Reinforcing Particles for EBSD Analysis

    Science.gov (United States)

    Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.

    2016-07-01

    The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.

  5. A New Search for Elementary Particles with Fractional Electric Charge Using an Improved Millikan Technique

    CERN Document Server

    Mar, N

    2003-01-01

    The have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with +- 1/3e or +- 2/3e in silicone oil is less than one per 2.14 x 10 sup 2 sup 0 nucleons.

  6. A New Search for Elementary Particles with Fractional Electric Charge Using an Improved Millikan Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mar, Nancy

    2003-08-18

    The authors have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with {+-} 1/3e or {+-} 2/3e in silicone oil is less than one per 2.14 x 10{sup 20} nucleons.

  7. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    NARCIS (Netherlands)

    Unkelbach, J.; Zeng, C.; Engelsman, M.

    2013-01-01

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities. Meth

  8. Bioassay-Directed Fractionation and Sub-fractionation for Mutagenicity and Chemical Analysis of Diesel Exhaust Particles

    Science.gov (United States)

    Several types of diesel exhaust particles (DEPs) have been used for toxicology studies, including a high-organic automobile DEP (A-DEP) from Japan, and a low-organic forklift DEP developed by the National Institute of Standards and Technology (N-DEP). However, these DEPs were no...

  9. Study on Individual PAHs Content in Ultrafine Particles from Solid Fractions of Diesel and Biodiesel Exhaust Fumes

    OpenAIRE

    Małgorzata Szewczyńska; Małgorzata Pośniak; Elżbieta Dobrzyńska

    2013-01-01

    In order to characterize PAHs emissions of diesel engine fuelled with diesel and its blend (B20, B40). In the particle phase, PAHs in engine exhausts were collected by fiberglass filters using Electrical Low Pressure Impactor (ELPI) and then determined by a high performance liquid chromatography with a fluorimetric detector (HPLC-FL). The main content in exhaust gases from diesel engine, regardless the type of applied fuel, is constituted by the particles fraction of diameter

  10. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation.

    Science.gov (United States)

    Contado, Catia; Vighi, Eleonora; Dalpiaz, Alessandro; Leo, Eliana

    2013-01-01

    Poly(lactic-co-glycolic acid) particles in the 200-400-nm size range were formulated through nanoprecipitation and solvent evaporation methods. Different concentrations of the polymer and stabilizer (Pluronic® F 68) were tested in order to identify the best conditions for making poly(lactic-co-glycolic acid) particles of suitable size, stable in time, and to be used as carriers for brain-targeting drugs. The particles with the best characteristics for delivery system design were those formulated by nanoprecipitation with an organic/water phase ratio of 2:30, a polymer concentration of 25 mg/mL, and a surfactant concentration of 0.83 mg/mL; their surface charge was reasonably negative (approximately -27 mV) and the average size of the almost monodisperse population was roughly 250 nm. Particle characterization was obtained through ζ-potential measurements, scanning electron microscope observations, and particle size distribution determinations; the latter achieved by both photon-correlation spectroscopy and sedimentation field flow fractionation. Sedimentation field flow fractionation, which is considered more reliable than photon-correlation spectroscopy in describing the possible particle size distribution modifications, was used to investigate the effects of 3 months of storage at 4 °C had on the lyophilized particles. Figure Particle size ditribution from the SdFFF and the PCS techniques.

  11. Study on Individual PAHs Content in Ultrafine Particles from Solid Fractions of Diesel and Biodiesel Exhaust Fumes

    Directory of Open Access Journals (Sweden)

    Małgorzata Szewczyńska

    2013-01-01

    Full Text Available In order to characterize PAHs emissions of diesel engine fuelled with diesel and its blend (B20, B40. In the particle phase, PAHs in engine exhausts were collected by fiberglass filters using Electrical Low Pressure Impactor (ELPI and then determined by a high performance liquid chromatography with a fluorimetric detector (HPLC-FL. The main content in exhaust gases from diesel engine, regardless the type of applied fuel, is constituted by the particles fraction of diameter <0.25 μm. Particles sized <0.25 μm constituted on average approximately 68% of particles in diesel exhaust gases and approx. 50% of particles emitted by biodiesel B20 and B40. When the B100 bioester additive was applied, the total emission of particles was reduced thus the volume of toxic substances adsorbed on them was lower. The analysis of chemical composition of <0.25 μm exhaust gas fraction showed that there were mainly 3- and 4-ring aromatic hydrocarbons in the exhaust gas of diesel fuel while in B40 single PAHs with the number of rings of 4 and 5 were detected. An application of ELPI permitted a further separation of <0.25 μm particle’s fraction and a real-time determination of interalia number, mass, and surface concentrations.

  12. Depressing effect of hydroxamic polyacrylamide on pyrite

    Institute of Scientific and Technical Information of China (English)

    张剑锋; 胡岳华; 王淀佐; 徐竞

    2004-01-01

    The performance of hydroxamic polyacrylamide(HPAM) in mineral flotation was tested on the samples of calcite, diaspore and pyrite. It is found that HPAM expresses intensive depression on pyrite and can be used as effective depressants for pyrite. The depression mechanism of HPAM to pyrite was investigated by the determination of contact angle, zeta potential, adsorptive capacity for collectors and infrared spectrum. A lower contact angle,more negative zeta potential, less xanthate adsorptive capacity, and the formation of chemical bonding were determined, which reveals that the strong chemical interactions exist between HPAM and pyrite surface. The group electronegativity of HPAM was calculated to explain the differences of interaction between reagent and minerals.

  13. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.

    Science.gov (United States)

    Sanders, Lloyd P; Ambjörnsson, Tobias

    2012-05-01

    We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H systems are compared to their fBm counter parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same universality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.

  14. Distribution of polybrominated diphenyl ethers and dust particle size fractions adherent to skin in indoor dust, Pretoria, South Africa.

    Science.gov (United States)

    Kefeni, Kebede Keterew; Okonkwo, Jonathan O

    2014-03-01

    In order to determine human exposure to the indoor toxicant, selection of dust fraction and understanding dust particle size distribution in settled indoor dust are very important. This study examined the influence of dust particle size on the concentration of polybrominated diphenyl ethers (PBDEs) congeners, assessed the distribution of dust particle size and characterized the main indoor emission sources of PBDEs. Accordingly, the concentrations of PBDE congeners determined in different indoor dust fractions were found to be relatively higher in the order of dust particle size: 45-106 μm>(106-150 μm. The finding shows arbitrary selection of dust fractions for exposure determination may result in wrong conclusions. Statistically significant moderate correlation between the concentration of Σ9PBDEs and organic matter content calculated with respect to the total dust mass was also observed (r=0.55, p=0.001). On average, of total dust particle size <250 μm, 93.4 % (m/m%) of dust fractions was associated with less than 150 μm. Furthermore, of skin adherent dust fractions considered (<150 μm), 86 % (v/v%) is in the range of particle size 9.25-104.7 μm. Electronic materials treated with PBDEs were found the main emission sources of PBDE congeners in indoor environment. Based on concentrations of PBDEs determined and mass of indoor dust observed, 150 μm metallic sieve is adequate for human exposure risk assessment. However, research in this area is very limited and more research is required to generalize the fact.

  15. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    Science.gov (United States)

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r(2) values ranged between 0.46 and 0.90 and the secondary OA increased the r(2) values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r(2) 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs.

  16. A study on the influence of the particle packing fraction on the performance of a multilevel contact detection algorithm

    NARCIS (Netherlands)

    Ogarko, V.; Ogarko, V.; Luding, Stefan; Onate, E; Owen, D.R.J

    2011-01-01

    We investigate the influence of the packing fraction of highly polydisperse particle systems on the performance of a high-performance multilevel contact detection algorithm as applied for molecular dynamics type simulations. For best performance, this algorithm requires two or more hierarchy levels

  17. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  18. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  19. Nitric oxide and greenhouse gases emissions following the application of different cattle slurry particle size fractions to soil

    Science.gov (United States)

    Fangueiro, David; Coutinho, João; Cabral, Fernanda; Fidalgo, Paula; Bol, Roland; Trindade, Henrique

    2012-02-01

    The application to soil of different slurry particle size fractions may lead to variable gaseous soil emissions and associated differential environmental impacts. An incubation experiment was carried out during 70 d to assess the influence on nitric oxide (NO) and greenhouse gas (GHG; i.e. nitrous oxide, carbon dioxide and methane) emissions following incorporation of 4 particle size fractions, obtained through laboratorial separation from cattle slurry, to agricultural sandy loam soil (Dystric Cambisol). The response to these applied slurry fractions (>2000 μm, 2000-500 μm, 500-100 μm, emissions (6.3 mg NO-N kg -1 dry soil) were observed from the AS treatment. The cumulated amount of NO emitted (˜1 mg NO-N kg -1 dry soil) was not significantly different between slurry fractions, thereby indicating that slurry particle size had no effect on NO emissions. The largest slurry fraction (>2000 μm) induced significantly higher N 2O emissions (1.8 mg N 2O-N kg -1 dry soil) compared to the other smaller sized fractions (1.0 mg N 2O-N kg -1 dry soil). The >2000 μm, fraction, being more than 55% of the slurry by weight, was the major contributor to daily and cumulative N 2O emissions. Hence, for N 2O, the application of WS to agricultural soil is a better option that amendment with the >2000 μm, fraction. Low CH 4 emissions (emissions were short-lived and rates returned to control levels within 3 d after the slurry application. Higher CO 2 emissions were observed in soils amended with slurry fractions when compared to application with whole slurry. Clearly, slurry separation can increase soil CO 2 emissions relative to whole slurry application. Overall, N 2O contributed 10-30% to total GHG emissions, while that of methane was negligible. The present study suggested that mechanical separation of slurry into fractions and targeted application of the finest fractions to soil is a potential suitable management tool to reduce GHG emissions. However, the largest fractions

  20. Interaction between pyrite and cysteine

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-she; WANG Zhao-hui; LI Bang-mei; ZHANG Yan-hua

    2006-01-01

    The adsorption mechanism of cysteine on pyrite was studied by amounts adsorbed, FTIR and XRD measurements. The results obtained by adsorption experiment suggest that as the mass ratio of mineral to cysteine mp/mc is greater than 5, the amounts adsorbed on mineral is stable after adsorption for 15 min and cysteine adsorbing with mp/mc shows the same tendency. It can be inferred by its Langmuir-type adsorption isotherm that chemical interaction governs the entire adsorption process. The results from FTIR and XRD prove that the functional groups of cysteine appear with blue shift of their characteristic adsorption peak in FTIR spectrum; meanwhile, the lattice constant obviously decreases and the widening of crystal planes such as (210), (220) and (211) is found after cysteine adsorbing on mineral.

  1. Development of Criteria and Identification of Particle Cluster Size Based on Measurements of Void Fraction in Gas-Solid Systems

    Energy Technology Data Exchange (ETDEWEB)

    David Roelant; Seckin Gokaltun

    2009-06-30

    A circulating fluidized bed (CFB) built at FIU was used to study particle motion in the riser in order to simulate flow regimes in a cold gasifier. High speed imaging was used in order to capture the dynamics of the particles flowing in the riser. The imaging method used here is called the shadow sizing technique which allowed the determination of particle areas and trajectories at various flow rates in the riser. The solid volume fraction and particle velocities calculated using the images acquired during the experiments can be related to granular temperature in order to detect formations of clusters in the riser section of the CFB. The shadow sizing technique was observed to be an effective method in detecting dynamics of particles in motion and formation of clusters when supported with high-speed imaging.

  2. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.

    Science.gov (United States)

    Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M

    2005-06-30

    Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.

  3. A kinetic assessment of substantial oxidation by sulfolobus acidocaldarius in pyrite dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Vitaya, V.B.; Koizumi, J.; Toda, K. (King Mongkuts Institute of Technology, Bangkok (Thailand). Dept. of Chemical Engineering)

    1994-01-01

    The relative contributions of biological and chemical reactions to the total rate of pyrite oxidation in the presence of Sulfolobus acidocaldarius were studied on the basis of experimental work coupled with mathematical modeling. Kinetic constants for the individual reactions were determined in independent experiments. The specific growth rate of cells on the pyrite surface, which is the only unknown parameter, was assumed to be [mu](s) 0.1 h[sup -1] and justified by the agreement of the simulated results of a proposed model and the experimental results. The model includes: reversible adsorption, biological dissolution of pyrite by the adsorbed cells, chemical dissolution of pyrite accompanied by the reduction of ferric ions to ferrous ions, biochemical oxidation of ferrous ions to ferric ions by free cells, and change of the surface area of pyrite particles. It is suggested that the contributions of direct (biological) and indirect (chemical) reaction to the total rate of pyrite oxidation were in a ratio of 2:1.

  4. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, fractions (LF1, fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive

  5. Mapping soil particle-size fractions: A comparison of compositional kriging and log-ratio kriging

    Science.gov (United States)

    Wang, Zong; Shi, Wenjiao

    2017-03-01

    Soil particle-size fractions (psf) as basic physical variables need to be accurately predicted for regional hydrological, ecological, geological, agricultural and environmental studies frequently. Some methods had been proposed to interpolate the spatial distributions of soil psf, but the performance of compositional kriging and different log-ratio kriging methods is still unclear. Four log-ratio transformations, including additive log-ratio (alr), centered log-ratio (clr), isometric log-ratio (ilr), and symmetry log-ratio (slr), combined with ordinary kriging (log-ratio kriging: alr_OK, clr_OK, ilr_OK and slr_OK) were selected to be compared with compositional kriging (CK) for the spatial prediction of soil psf in Tianlaochi of Heihe River Basin, China. Root mean squared error (RMSE), Aitchison's distance (AD), standardized residual sum of squares (STRESS) and right ratio of the predicted soil texture types (RR) were chosen to evaluate the accuracy for different interpolators. The results showed that CK had a better accuracy than the four log-ratio kriging methods. The RMSE (sand, 9.27%; silt, 7.67%; clay, 4.17%), AD (0.45), STRESS (0.60) of CK were the lowest and the RR (58.65%) was the highest in the five interpolators. The clr_OK achieved relatively better performance than the other log-ratio kriging methods. In addition, CK presented reasonable and smooth transition on mapping soil psf according to the environmental factors. The study gives insights for mapping soil psf accurately by comparing different methods for compositional data interpolation. Further researches of methods combined with ancillary variables are needed to be implemented to improve the interpolation performance.

  6. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    Science.gov (United States)

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  7. The Fe removal through mineralogical phase transformation of pyrite by physicochemical method

    Science.gov (United States)

    Kim, BongJu; Cho, Kanghee; Jo, JiYu; Bak, GeonYeong; Choi, NagChoul; Park*, Cheonyoung

    2015-04-01

    Gold is often associated with sulfide minerals (arsenopyrite, pyrite, chalcopyrite, pyrrhotite, galena) as ''invisible'' gold that is thought to consist either of submicrometer metallic particles or to be bound to sulfur in metal sulfide lattice. Pyrite is one of the major minerals accumulating gold in most ores, although a solubility of Au in nonarsenian pyrite is minor, and increased concentrations of gold are associated with arsenic content and iron deficiency. The objective of this study was to investigate the Fe removal through mineralogical phase transformation of pyrite by physical treatment (high frequency) and chemical leaching (ammonia solvent). The high frequency treatment experiment for the pyrite showed that (1) the pyrite phase was transformed pyrrhotite and magnetite, (2) mass loss of the sample by volatilization of included sulfur(S) in pyrite. The treated pyrite by high frequency was observed rim structure from photomicrograph result. Fe removal experiments for were performed under various conditions of high frequency exposure (10~60min), grain size (+140 mesh~-325mesh), sulfuric acid concentration (0.5~3.0M), ammonia sulfate concentration (1.7~6.8M), hydrogen peroxide concentration (0.5~3.0M). Increasing the high frequency exposure produced a positive effect on Fe removal in arsenopyrite. The highest percentage Fe removal of 95.53% was obtained under the following conditions by ammonia solvent: grain size = -325mesh, sulfuric acid concentration = 2.0M, ammonia sulfate concentration = 5.1M, hydrogen peroxide concentration = 1.0M. This subject is supported by Korea Ministry of Environment(MOE) as "Advanced Technology Program for Environmental Industry".

  8. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Science.gov (United States)

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  9. A method for detecting the presence of organic fraction in nucleation mode sized particles

    OpenAIRE

    Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.

    2005-01-01

    International audience; New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d

  10. Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Sogne, Vanessa; Meier, Florian; Klein, Thorsten; Contado, Catia

    2017-09-15

    The dimensional characterization of insoluble, inorganic particles, such as zinc oxide ZnO, dispersed in cosmetic or pharmaceutical formulations, is of great interest considering the current need of declaring the possible presence of nanomaterials on the label of commercial products. This work compares the separation abilities of Centrifugal- and Asymmetrical Flow Field-Flow Fractionation techniques (CF3 and AF4, respectively), equipped with UV-vis, MALS and DLS detectors, in size sorting ZnO particles, both as pristine powders and after their extraction from cosmetic matrices. ZnO particles, bare and superficially modified with triethoxycaprylyl silane, were used as test materials. To identify the most suitable procedure necessary to isolate the ZnO particles from the cosmetic matrix, two O/W and two W/O emulsions were formulated on purpose. The suspensions, containing the extracted particles ZnO, were separated by both Field-Flow Fractionation (FFF) techniques to establish a common analysis protocol, applicable for the analysis of ZnO particles extracted from three commercial products, sold in Europe for the baby skin care. Key aspects of this study were the selection of an appropriate dispersing agent enabling the particles to stay in stable suspensions (>24h)and the use of multiple detectors (UV-vis, MALS and DLS) coupled on-line with the FFF channels, to determine the particle dimensions without using the retention parameters. Between the two FFF techniques, CF3 revealed to be the most robust one, able to sort all suspensions created in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  12. Pyrite Stability Under Venus Surface Conditions

    Science.gov (United States)

    Kohler, E.; Craig, P.; Port, S.; Chevrier, V.; Johnson, N.

    2015-12-01

    Radar mapping of the surface of Venus shows areas of high reflectivity in the Venusian highlands, increasing to 0.35 ± 0.04 to 0.43 ± 0.05 in the highlands from the planetary average of 0.14 ± 0.03. Iron sulfides, specifically pyrite (FeS2), can explain the observed high reflectivity. However, several studies suggest that pyrite is not stable under Venusian conditions and is destroyed on geologic timescales. To test the stability of pyrite on the Venusian surface, pyrite was heated in the Venus simulation chamber at NASA Goddard Space Flight Center to average Venusian surface conditions, and separately to highland conditions under an atmosphere of pure CO2 and separately under an atmosphere of 96.5% CO2, 3.5% N2 and 150 ppm SO2. After each run, the samples were weighed and analyzed using X-Ray Diffraction (XRD) to identify possible phase changes and determine the stability of pyrite under Venusian surface conditions. Under a pure CO2 atmosphere, the Fe in pyrite oxidizes to form hematite which is more stable at higher temperatures corresponding to the Venusian lowlands. Magnetite is the primary iron oxide that forms at lower temperatures corresponding to the radar-bright highlands. Our experiments also showed that the presence of atmospheric SO2 inhibits the oxidation of pyrite, increasing its stability under Venusian conditions, especially those corresponding to the highlands. This indicates that the relatively high level of SO2 in the Venusian atmosphere is key to the stability of pyrite, making it a possible candidate for the bright radar signal in the Venusian highlands.

  13. DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction

    CERN Document Server

    Kidanemariam, Aman G; Doychev, Todor; Uhlmann, Markus

    2013-01-01

    We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 0.0005. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity "seen" by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneousl...

  14. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Fathinia, Siavash [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Fathinia, Mehrangiz [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rahmani, Ali Akbar [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Khataee, Alireza, E-mail: a_khataee@tabrizu.ac.ir [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H{sub 2}O{sub 2} concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  15. Q-balls of Quasi-particles in a (2,0)-theory model of the Fractional Quantum Hall Effect

    CERN Document Server

    Ganor, Ori J; Moore, Nathan; Sun, Hao-Yu; Tan, H S; Torres-Chicon, Nesty R

    2014-01-01

    A toy model of the fractional quantum Hall effect appears as part of the low-energy description of the Coulomb branch of the $A_1$ (2,0)-theory formulated on $(S^1\\times R^2)/Z_k$, where the generator of $Z_k$ acts as a combination of translation on $S^1$ and rotation by $2\\pi/k$ on $R^2$. At low-energy the configuration is described in terms of a 4+1D Super-Yang-Mills theory on a cone ($R^2/Z_k$) with additional 2+1D degrees of freedom at the tip of the cone that include fractionally charged particles. These fractionally charged quasi-particles are BPS strings of the (2,0)-theory wrapped on short cycles. We analyze the large $k$ limit, where a smooth cigar-geometry provides an alternative description. In this framework a W-boson can be modeled as a bound state of $k$ quasi-particles. The W-boson becomes a Q-ball, and it can be described as a soliton solution of Bogomolnyi monopole equations on a certain auxiliary curved space. We show that axisymmetric solutions of these equations correspond to singular maps...

  16. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    Science.gov (United States)

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  17. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  18. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan; Zeng, Chuan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Engelsman, Martijn [Faculty of Applied Physics, Delft University of Technology/HollandPTC, 2628 CJ Delft (Netherlands)

    2013-09-15

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities.Methods: This is performed by allowing for distinct pencil beam intensities in each fraction, which are optimized using objective and constraint functions based on biologically equivalent dose (BED). The paper presents a model that mimics an IMPT treatment with a single incident beam direction for which the optimal fractionation scheme can be determined despite the nonconvexity of the BED-based treatment planning problem.Results: For this model, it is shown that a small α/β ratio in the tumor gives rise to a hypofractionated treatment, whereas a large α/β ratio gives rise to hyperfractionation. It is further demonstrated that, for intermediate α/β ratios in the tumor, a nonuniform fractionation scheme emerges, in which it is optimal to deliver different dose distributions in subsequent fractions. The intuitive explanation for this phenomenon is as follows: By varying the dose distribution in the tumor between fractions, the same total BED can be achieved with a lower physical dose. If it is possible to achieve this dose variation in the tumor without varying the dose in the normal tissue (which would have an adverse effect), the reduction in physical dose may lead to a net reduction of the normal tissue BED. For proton therapy, this is indeed possible to some degree because the entrance dose is mostly independent of the range of the proton pencil beam.Conclusions: The paper provides conceptual insight into the interdependence of optimal fractionation schemes and the spatial optimization of dose distributions. It demonstrates the emergence of nonuniform fractionation schemes that arise from the standard BED model when IMPT fields and fractionation scheme are optimized

  19. A fractional model to describe the Brownian motion of particles and its analytical solution

    Directory of Open Access Journals (Sweden)

    Jing-Jing Yao

    2015-12-01

    Full Text Available In this article, we apply a relatively modified analytic iterative method for solving a time-fractional Fokker–Planck equation subject to given constraints. The utilized method is a numerical technique based on the generalization of residual error function and then applying the generalized Taylor series formula. This method can be used as an alternative to obtain analytic solutions of different types of fractional partial differential equations such as Fokker–Planck equation applied in mathematics, physics, and engineering. The solutions of our equation are calculated in the form of a rapidly convergent series with easily computable components. The validity, potentiality, and practical usefulness of the proposed method have been demonstrated by applying it to several numerical examples. The results reveal that the proposed methodology is very useful and simple in determination of solution of the Fokker–Planck equation of fractional order.

  20. Landau-Level Mixing and Particle-Hole Symmetry Breaking for Spin Transitions in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Zhang, Yuhe; Wójs, A.; Jain, J. K.

    2016-09-01

    The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman energies and the experimentally measured values. In particular, we find, as also do experiments, that the critical Zeeman energies for fractional quantum Hall states at filling factors ν =2 -n /(2 n ±1 ) are significantly higher than those for ν =n /(2 n ±1 ), a quantitative signature of the lifting of particle-hole symmetry due to Landau-level mixing.

  1. Landau-Level Mixing and Particle-Hole Symmetry Breaking for Spin Transitions in the Fractional Quantum Hall Effect.

    Science.gov (United States)

    Zhang, Yuhe; Wójs, A; Jain, J K

    2016-09-09

    The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman energies and the experimentally measured values. In particular, we find, as also do experiments, that the critical Zeeman energies for fractional quantum Hall states at filling factors ν=2-n/(2n±1) are significantly higher than those for ν=n/(2n±1), a quantitative signature of the lifting of particle-hole symmetry due to Landau-level mixing.

  2. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    Science.gov (United States)

    Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M

    2008-01-01

    A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780

  3. Evaluation of In Vitro Cytoxicity and Genotoxicity of Size-Fractionated Air Particles Sampled during Road Tunnel Construction

    Directory of Open Access Journals (Sweden)

    Luca Dominici

    2013-01-01

    Full Text Available In tunnel construction, workers exposed to dust from blasting, gases, diesel exhausts, and oil mist have shown higher risk for pulmonary diseases. A clear mechanism to explain how these pollutants determine diseases is lacking, and alveolar epithelium’s capacity to ingest inhaled fine particles is not well characterized. The objective of this study was to assess the genotoxic effect exerted by fine particles collected in seven tunnels using the cytokinesis-block micronuclei test in an in vitro model on type II lung epithelium A549 cells. For each tunnel, five fractions with different aerodynamic diameters of particulate matter were collected with a multistage cascade sampler. The human epithelial cell line A549 was exposed to 0.2 m3/mL equivalent of particulate for 24 h before testing. The cytotoxic effects of particulate matter on A549 cells were also evaluated in two different viability tests. In order to evaluate the cells’ ability to take up fine particles, imaging with transmission electron microscopy of cells after exposure to particulate matter was performed. Particle endocytosis after 24 h exposure was observed as intracellular aggregates of membrane-bound particles. This morphologic evidence did not correspond to an increase in genotoxicity detected by the micronucleus test.

  4. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  5. Distribution pattern of polycyclic aromatic hydrocarbons in particle-size fractions of coking plant soils from different depth.

    Science.gov (United States)

    Liao, Xiaoyong; Ma, Dong; Yan, Xiulan; Yang, Linsheng

    2013-06-01

    The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in four size fractions (200 μm) in soils at different depth from a heavily contaminated crude benzol production facility of a coking plant were determined using GC-MS. Vertically, elevated total PAHs concentrations were observed in the soils at 3.0-4.5 m (layer B) and 6.0-7.5 m (layer C), relatively lower at 1.5-3.0 m (layer A) and 10.5-12.0 m (layer D). At all sampling sites, the silt (2-20 μm) contained the highest PAHs concentration (ranged from 726 to 2,711 mg/kg). Despite the substantial change in PAHs concentrations in soils with different particle sizes and lithologies, PAHs composition was similarly dominated by 2-3 ring species (86.5-98.3 %), including acenaphthene, fluorene, and phenanthrene. For the contribution of PAHs mass in each fraction to the bulk soil, the 20-200 μm size fraction had the greatest accumulation of PAHs in loamy sand layers at 1.0-7.5 m, increasing with depth; while in deeper sand layer at 10.5-12.0 m, the >200 μm size fraction showed highest percentages and contributed 81 % of total PAHs mass. For individual PAH distribution, the 2-3 ring PAHs were highly concentrated in the small size fraction (PAHs showed the highest concentrations in the 2-20 μm size fraction, increasing with depth. The distribution of PAHs was primarily determined by the sorption on soil organic matter and the characteristics of PAHs. This research should have significant contribution to PAH migration study and remediation design for PAHs-contaminated sites.

  6. Initial association of fresh microbial products to soil particles: a joint density fractionation and NanoSIMS study

    Science.gov (United States)

    Hatton, Pierre-Joseph; Remusat, Laurent; Brewer, Elizabeth; Derrien, Delphine

    2014-05-01

    While soil microorganisms are increasingly seen as shaping stable soil organic matter (OM) formation, the mechanisms controlling the attachment of microbial metabolites to soil particles are not fully understood yet. We investigate the spatial distribution of freshly produced microbial products among density-isolated fractions of soil using stable C and N isotopes and Nano-scale secondary ion mass spectrometry (NanoSIMS). A surface forest soil was amended with uniformly 13C/15N labeled glycine and incubated for 8 hours in gamma-irradiated and non-sterile soils. Sequential density fractionation was then performed to isolate various classes of aggregates and of single mineral particles. Eight hours after the labeled glycine addition, 7 % of the 13C and 15N was tightly bound to soil assemblages. Comparison of sterile and non-sterile treatments revealed that microbial activity was almost completely responsible for this rapid association (>85 %). The distributions of glycine-derived 13C and 15N, considered as markers of new microbial products, were mapped on particles of the non-sterile treatment using NanoSIMS. New microbial products were heterogeneously distributed and spatially decoupled at the surface of on soil particles. 13C microbial products were scarce and presumably within or in the vicinity of microbial cells. In contrast, 15N microbial products seemed evenly spread at the surface of soil particles, likely as soluble exoenzymes diffusing away from their parent cell. Macroscopic measurements among density fractions suggested that the diffusion of such 15N microbial products was spatially limited yet, because of pore space architecture. NanoSIMS images further allowed gaining insight into the attachment of the new microbial products on particle surfaces already covered by OM, in a multilayer fashion. Using an internal calibration method to determine C/N ratios of NanoSIMS images, we showed the preferential attachment of soluble microbial N-metabolites to N

  7. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation

    Science.gov (United States)

    Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F.

    2012-01-01

    Pennsylvanian coals in the Appalachian Basin host pyrite that is locally enriched in potentially toxic trace elements such as As, Se, Hg, Pb, and Ni. A comparison of pyrite-rich coals from northwestern Alabama, eastern Kentucky, and West Virginia reveals differences in concentrations and mode of occurrence of trace elements in pyrite. Pyrite occurs as framboids, dendrites, or in massive crystalline form in cell lumens or crosscutting veins. Metal concentrations in pyrite vary over all scales, from microscopic to mine to regional, because trace elements are inhomogeneously distributed in the different morphological forms of pyrite, and in the multiple generations of sulfide mineral precipitates. Early diagenetic framboidal pyrite is usually depleted in As, Se, and Hg, and enriched in Pb and Ni, compared to other pyrite forms. In dendritic pyrite, maps of As distribution show a chemical gradient from As-rich centers to As-poor distal branches, whereas Se concentrations are highest at the distal edges of the branches. Massive crystalline pyrite that fills veins is composed of several generations of sulfide minerals. Pyrite in late-stage veins commonly exhibits As-rich growth zones, indicating a probable epigenetic hydrothermal origin. Selenium is concentrated at the distal edges of veins. A positive correlation of As and Se in pyrite veins from Kentucky coals, and of As and Hg in pyrite-filled veins from Alabama coals, suggests coprecipitation of these elements from the same fluid. In the Kentucky coal samples (n = 18), As and Se contents in pyrite-filled veins average 4200 ppm and 200 ppm, respectively. In Alabama coal samples, As in pyrite-filled veins averages 2700 ppm (n = 34), whereas As in pyrite-filled cellular structures averages 6470 ppm (n = 35). In these same Alabama samples, Se averages 80 ppm in pyrite-filled veins, but was below the detection limit in cell structures. In samples of West Virginia massive pyrite, As averages 1700 ppm, and Se averages 270

  8. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  9. Combination of Methods for the Fractionation, Investigation, and Analysis of Micro/Nano Particles in Volcanic Ash

    Science.gov (United States)

    Valeriy, Shkinev; Michail, Ermolin; Peter, Fedotov; Aleksander, Rudnev; Nikolay, Bulychev; Vitaliy, Linnik; Gerardo, Moreno

    2013-04-01

    Micro and nanoparticles play a very important role in environment, in biology and medicine, in various technologies. The investigation of particles is often based on the fractionation according to particle size, density and charge followed by the analysis of the separated fractions. Such studies are needed in the analysis of environmental samples (natural and waste waters, soils, sediments, ashes) to assess the soil formation processes as well as distribution, transport, and biological uptake of pollutants. Recently, the review dealing with the fractionation and investigation of particles in liquid media has been published [Anal. Bioanal. Chem., 2011, v. 400, no 6, p. 1787-1804]. The present report gives a brief overview of the state-of-the-art and describes some new methods, approaches, and devices developed in the Laboratory for Concentration Methods of Vernadsky Institute for the studies of volcanic ash samples. The ash is attributed to the volcanic activity of Cordón Caulle. Puyehue and Cordón Caulle (40°35'25″S -72°07'02″W) are two coalesced volcanic vents that form a major mountain massif in Puyehue National Park in the Andes of Ranco Province, Chile. In volcanology, this group is known under the name of Puyehue-Cordón Caulle Volcanic Complex. Four different volcanoes constitute the volcanic group or complex, the Cordillera Nevada caldera, the Pliocene Mencheca volcano, Cordón Caulle fissure vents, and the Puyehue stratovolcano. Most stratovolcanoes on the Southern Volcanic Zone of the Andes, Puyehue and Cordón Caulle are located along the intersection of traverse fault with the larger north-south Liquiñe-Ofqui Fault. A new eruption started on 04 June 2011. By 15 June a dense column of ash (9 km height) was still erupting into the air, with the ash cloud spreading across the Southern Hemisphere. Actually the volcano activity continues. The samples were collected before and after the acidic rain which occurred due to the release of sulfur gases

  10. Generalized balance equations for charged particle transport via localized and delocalized states: Mobility, generalized Einstein relations, and fractional transport

    Science.gov (United States)

    Stokes, Peter W.; Philippa, Bronson; Cocks, Daniel; White, Ronald D.

    2017-04-01

    A generalized phase-space kinetic Boltzmann equation for highly nonequilibrium charged particle transport via localized and delocalized states is used to develop continuity, momentum, and energy balance equations, accounting explicitly for scattering, trapping and detrapping, and recombination loss processes. Analytic expressions detail the effect of these microscopic processes on mobility and diffusivity. Generalized Einstein relations (GER) are developed that enable the anisotropic nature of diffusion to be determined in terms of the measured field dependence of the mobility. Interesting phenomena such as negative differential conductivity and recombination heating and cooling are shown to arise from recombination loss processes and the localized and delocalized nature of transport. Fractional transport emerges naturally within this framework through the appropriate choice of divergent mean waiting time distributions for localized states, and fractional generalizations of the GER and mobility are presented. Signature impacts on time-of-flight current transients of recombination loss processes via both localized and delocalized states are presented.

  11. Search for fractionally charged particles in e/sup +/e/sup -/ annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Huth, J.E.

    1984-09-01

    We have searched for the production of free Q = +-1/3e, Q = +-2/3e and Q = +-4/3e particles produced in e/sup +/e/sup -/ collisions at a center-of-mass energy of 29 GeV in 77 pb/sup -1/ of data collected by the time projection chamber at PEP. No evidence has been found for the production of these particles. Upper limits are established on the inclusive cross section for the production of Q = +-1/3e, Q = +-2/3e, and Q = +-4/3e particles in the mass range 1.0 to 13 GeV/c/sup 2/, improving upon previously established limits. 58 references.

  12. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, Edgar B. (Bethel Park, PA)

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  13. Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea

    Science.gov (United States)

    Moskalets, Michael

    2016-07-01

    A voltage pulse of a Lorentzian shape carrying half of the flux quantum excites out of a zero-temperature Fermi sea an electron in a mixed state, which looks like a quasiparticle with an effectively fractional charge e /2 . A prominent feature of such an excitation is a narrow peak in the energy distribution function lying exactly at the Fermi energy μ . Another spectacular feature is that the distribution function has symmetric tails around μ , which results in a zero-energy excitation. This sounds improbable since at zero temperature all available states below μ are fully occupied. The resolution lies in the fact that such a voltage pulse also excites electron-hole pairs, which free some space below μ and thus allow a zero-energy quasiparticle to exist. I discuss also how to address separately electron-hole pairs and a fractionally charged zero-energy excitation in an experiment.

  14. Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractions of Gasoline and Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, Joe; Seagrave, JeanClare; McDonald, Jacob; Gigliotti,Andrew; Nikula, Kristen; Seilkop, Steven; Gurevich, Michael

    2002-08-25

    Little is known about the relative health hazards presented by emissions from in-use gasoline and diesel engines. Adverse health effects have been ascribed to engine emissions on the basis of: (1) the presence of known toxic agents in emissions; (2) high-dose animal and bacterial mutagenicity tests; and (3) studies indicating gradients of health effects with proximity to roadways. Most attention has been given to the particulate fraction of emissions; little attention has been given to the semi-volatile organic fraction. However, the semi-volatile fraction overlaps the particulate fraction in composition and is always present in the vicinity of fresh emissions. Although the potential health effects of diesel emissions have been frequently studied and debated during the past 20 years (EPA, 2002), relatively little attention has been given to the toxicity of emissions from gasoline engines. In view of the considerable progress in cleaning up diesel emissions, it would be useful to compare the toxicity of emissions from contemporary on-road diesel technology with that of emissions from the in-use gasoline fleet that is well-accepted by the public. It would also be useful to have a set of validated tests for rapid, cost-effective comparisons of the toxicity of emission samples, both for comparisons among competing technologies (e.g., diesel, gasoline, natural gas) and for determining the impacts of new fuel, engine, and after-treatment strategies on toxicity. The Office of Heavy Vehicle Technologies has sponsored research aimed at developing and applying rapid-response toxicity tests for collected emission samples (Seagrave et al., 2000). This report presents selected results from that work, which is being published in much greater detail in the peer-reviewed literature (Seagrave et al., 2002).

  15. BIOASSAY-DIRECTED FRACTIONAL AND SALMONELLA MUTAGENICITY OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES

    Science.gov (United States)

    Abstract Many pulmonary toxicity studies of diesel exhaust particles (DEP) have used anautomobile-generated sample (A-DEP) whose mutagenicity has not been reported. In contrast,rnany inutagenicity studies of DEP have used a forklift-generated sample (SRM ...

  16. Grazing of particle-associated bacteria - An elimination of the non-viable fraction

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Fernandes, S.O.; LakshmiPriya, M.; LokaBharathi, P.A.

    of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42 h showed that at the end of 24 h, growth coefficient (k...

  17. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    Directory of Open Access Journals (Sweden)

    Yost Garold S

    2008-12-01

    Full Text Available Abstract A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm and submicron (250 nm silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF, and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter

  18. Particle size fractionation of high-amylose rice (Goami 2) flour as an oil barrier in a batter-coated fried system

    Science.gov (United States)

    The particle size effects of high-amylose rice (Goami 2) flour on quality attributes of frying batters were characterized in terms of physicochemical, rheological, and oil-resisting properties. High-amylose rice flours were fractionated into four fractions (70, 198, 256, and 415 µm) of which morpho...

  19. Particle-size fractions-dependent extracellular enzyme activity in sediments and implications for resource allocation in a subtropical mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    L. Luo

    2015-01-01

    Full Text Available The distribution of extracellular enzyme activities in particle-size fractions of sediments was investigated in a subtropical mangrove ecosystem. Five enzymes involved in carbon (C, nitrogen (N, and phosphorus (P cycling were analyzed in the sand, silt, and clay of sediments. Among these fractions, the highest activities of phenol oxidase (PHO, β-D glucosidase (GLU, and N-acetyl-glucosiminidase (NAG were found in sand, and greater than bulk sediments of both intertidal zone (IZ and mangrove forest (MG. This result implied that sand fractions might protect selective enzymes through the adsorption without affecting their activities. Additionally, the enzyme-based resource allocation in various particle-size fractions demonstrated that nutirents availability varied with different particle-size fractions and only sand fraction of MG with highest total C showed high N and P availability among fractions. Besides, the analysis between elemental contents and enzymes activities in particle-size fractions suggested that enzymes could monitor the changes of nutrients availability and be good indicators of ecosystem responses to environmental changes. Thus, these results provided a means to assess the availability of different nutrients (C, N, and P during decomposition of sediment organic matter (SOM, and thus helping to better manage the subtropical mangrove ecosystems to sequester C into SOM.

  20. Pyrite Oxidation Related to Pyritic Minesite Spoils and Its Controls:A Review

    Institute of Scientific and Technical Information of China (English)

    郑作平; H.H.GERKE; 等

    1998-01-01

    Pyrite oxidation is considered to be a main contribution to the acidification of minesite spoils and the generation of the Acid Mine Drainage(AMD) which has become the greatest threat to the ecological environment,In this paper,pyrite oxidation and its controls are reviewed with respect to the latest literature,conceptual Model and empirical rate law model with reference to indoor experiments are classified and presented to describe pyrite oxidation in heterogeneous minesite spoil piles.The influences of Thiobacillus(T) ferrooxidans on pyrite oxidation are simply summarized.In order to prevent the generation of the AMD,three approaches including the addition of alkali to minesite spoil,use of dry covers,and coating on the minesite spilk surface,are discussed.

  1. Nucleic acid interactions with pyrite surfaces

    Science.gov (United States)

    Mateo-Martí, E.; Briones, C.; Rogero, C.; Gomez-Navarro, C.; Methivier, Ch.; Pradier, C. M.; Martín-Gago, J. A.

    2008-09-01

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces.

  2. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  3. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  4. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    Science.gov (United States)

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  5. Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry

    Science.gov (United States)

    Ye, Peng; Hughes, Taylor L.; Maciejko, Joseph; Fradkin, Eduardo

    2016-09-01

    Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context, confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases. For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase of Z2 gauge theory) is a U(1 )×U(1 ) Chern-Simons theory in which gauge charges (i.e., e and m particles) are deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1 )×U(1 ) gauge fields, we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite particles consisting of partons and U(1 )×U(1 ) magnetic monopoles. This can be regarded as a 3D generalization of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel-type screening cloud formed by the condensed composite particles. Within our general framework, we explore two aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter with time-reversal symmetry and Θ ≠π , the fractional topological insulator. Second, we generalize the notion of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles ) of 3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit non-Abelian fusion properties.

  6. Carbon species in PM10 particle fraction at different monitoring sites.

    Science.gov (United States)

    Godec, Ranka; Jakovljević, Ivana; Šega, Krešimir; Čačković, Mirjana; Bešlić, Ivan; Davila, Silvije; Pehnec, Gordana

    2016-09-01

    The aim of this study was to determine and compare the levels of elemental carbon (EC), organic carbon (OC) and polycyclic aromatic hydrocarbons (PAHs) mass concentrations in PM10 particles (particles with aerodynamic diameter less than 10 μm) between seasons (winter and summer) and at different monitoring sites (urban background and rural industrial). Daily samples of airborne particles were collected on pre-fired quartz fibre filters. PM10 mass concentrations were determined gravimetrically. Samples were analysed for OC and EC with the thermal/optical transmittance method (TOT) and for PAHs by high-performance liquid chromatography (HPLC) with a fluorescence detector. Measurements showed seasonal and spatial variations of mass concentrations for carbon species and for all of the measured PAHs (Flu, Pyr, Chry, BaA, BbF, BaP, BkF, BghiP and IP) in PM10 at the urban site and rural monitoring site described here. Diagnostic PAH ratios (Flu/(Flu + Pyr), BaA/(BaA + Cry), IP/(IP + BghiP), BaP/BghiP, IP/BghiP and BaP/(BaP + Chry)) make it possible to assess the sources of pollution, and these showed that diesel vehicles accounted for most pollution at the rural-industrial (RI) site in the summer, whereas coal and wood combustion were the causes of winter pollution. This difference between winter and summer PAH ratios were more expressed at the RI site than at the UB site because at the UB site the predominant heating fuel was gas. The OC/EC ratio yielded the same conclusion. Factor analysis showed that EC and OC originated from traffic at both sites, PAHs with 5 or more benzene rings originated from wood pellets industry or biomass burning, while Pyr and Flu originated from diesel combustion or as a consequence of different atmospheric behaviour - evaporation and participation in oxidation and photo oxidation processes.

  7. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibo, E-mail: hbzhang@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Makino, Tomoyuki [National Institute for Agro-Environmental Sciences, Tsukuba 3058604 (Japan); Wu, Longhua [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Nanzyo, Masami [Tohoku University, Sendai 9808576 (Japan)

    2013-03-15

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil.

  8. Ultrasonic ash/pyrite liberation. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Yungman, B.A.; Buban, K.S.; Stotts, W.F.

    1990-06-01

    The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh {times} 0, 200 mesh {times} 0, and 325 mesh {times} 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

  9. Biogeneration of iron-based catalyst precursors by Acidianus brierleyi on high- and low-pyrite coals for direct liquefaction.

    Energy Technology Data Exchange (ETDEWEB)

    Murty, M.V.S.; Huggins, F.E.; Aleem, M.I.H.; Kermode, R.I.; Bhattacharyya, D. [University of Kentucky, Lexington, KY (United States). Dept. of Chemical Engineering

    1995-03-01

    Treatment of high-pyrite, high-sulphur Illinois (IBS) coals and pyrite-free Blind Canyon (DECS) coal with added pyrite in the presence of {ital Acidianus brierleyi} showed formation of iron oxyhydroxide (FeOOH) particles and subsequent sulphiding caused enhancement in liquefaction and oil yield. IBC No. 101 and 105, and DECS No. 17 containing different amounts of pyrite were treated with {ital A. brierleyi} to evaluate its effect on FeOOH formation. Chemical analysis of the liquid phase and Moessbauer analysis of the coals revealed that all the biotreated coals showed significant reduction in pyrite after 21 days (or less with pH alteration in the middle of IBC No. 105 coal run) of incubation. Further data on bioprocessed coals obtained from Moessbauer spectroscopy verified the formation of an FeOOH phase, which acts as a catalyst precursor for direct coal liquefaction (DCL). The direct liquefaction conversion and oil yield of the biotreated DECS No. 17 coal with added pyrite increased by 14 and 5% respectively, over the control which did not contain {ital A. brierleyi}. 40 refs., 8 figs., 2 tabs.

  10. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia

    Science.gov (United States)

    Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin

    2016-09-01

    Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the responsible for the relative enrichment of alkyl C. This study demonstrates that changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.

  11. Comparison of US and FRG post-irradiation examination procedures to measure statistically significant failure fractions of irradiated coated-particle fuels. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Kania, M.J.; Homan, F.J.; Mehner, A.W.

    1982-08-01

    Two methods for measuring failure fraction on irradiated coated-particle fuels have been developed, one in the United States (the IMGA system - Irradiated-Microsphere Gamma Analyzer) and one in the Federal Republic of Germany (FRG) (the PIAA procedure - Postirradiation Annealing and Beta Autoradiography). A comparison of the two methods on two standardized sets of irradiated particles was undertaken to evaluate the accuracy, operational procedures, and expense of each method in obtaining statistically significant results. From the comparison, the postirradiation examination method employing the IMGA system was found to be superior to the PIAA procedure for measuring statistically significant failure fractions. Both methods require that the irradiated fuel be in the form of loose particles, each requires extensive remote hot-cell facilities, and each is capable of physically separating failed particles from unfailed particles. Important differences noted in the comparison are described.

  12. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems

    Science.gov (United States)

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.

    2016-08-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources.

  13. The Adsorption of Cu Species onto Pyrite Surface and Its Effect on Pyrite Flotation

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-01-01

    Full Text Available The adsorption of Cu species onto pyrite surface and its effect on flotation were investigated by using microflotation tests, first-principle calculations, and XPS surface analysis. The results indicated that the flotation of pyrite appears to be activated with CuSO4 only at alkaline pH, while being depressed at acidic and neutral pH. The adsorption of copper ions on pyrite surface was pH-dependent, and the adsorption magnitude of copper ions at alkaline pH is higher than that at acidic and neutral pH due to a strong interaction between O atom in Cu(OH2 and surface Fe atom except for the interaction between Cu atom and surface S atom. At acidic and neutral pH, there is only an interaction between Cu atom and surface S atom. The adsorption was relatively weak, and more copper ions in solution precipitated the collector and depressed the flotation of pyrite. XPS analysis confirmed that more copper ionic species (Cu(I and Cu(II are adsorbed on the pyrite surface at alkaline pH than that at acidic and neutral pH.

  14. Bio-decomposition of rock phosphate containing pyrites by Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    CHI Ru-an; XIAO Chun-qiao; HUANG Xiao-hui; WANG Cun-wen; WU Yuan-xin

    2007-01-01

    Leaching soluble phosphorus from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans (A. f) is feasible,and the reaction mechanism is as follows. Pyrites are oxidized by A. f. to produce H2SO4 and FeSO4; the rock phosphate is decomposed by H2SO4, forming soluble phosphorus compounds; and Fe2+ from FeSO4 is oxidized to Fe3+, providing energy for the growth of A. f.. In this process, as H2SO4 is produced in the reaction, an acidic condition in the culture medium is formed, which benefits the growth of A. f. and aids both continuous oxidation of pyrites and leaching of soluble phosphorus from rock phosphate.The fraction of phosphorous leached can reach the largest in the presence of 1.0 g/L Fe3+, 200 mg/L Mg2+ and 400 mg/L NH4+. The optimal technological parameters on the fraction of phosphorous leached are as follows: the volume fraction of inocula of A. f, the

  15. Particle size analyses of porous silica and hybrid silica chromatographic support particles. Comparison of flow/hyperlayer field-flow fractionation with scanning electron microscopy, electrical sensing zone, and static light scattering.

    Science.gov (United States)

    Xu, Yuehong

    2008-05-16

    Porous silica and hybrid silica chromatographic support particles having particle diameters ranging approximately from 1 microm to 15 microm have been characterized by flow/hyperlayer field-flow fractionation (FFF). The particle size accuracy has been improved significantly in this work by a second-order polynomial calibration. Very good agreement between the FFF data and scanning electron microscopic (SEM) results has been achieved. The effects of particle porosity, pore sizes, and particle sizes on the particle size accuracy in electrical sensing zone (ESZ) analyses have been discussed. It has been demonstrated by computer simulation and experimental measurements that false peaks can be generated in certain particle size regions when the static light scattering (SLS) technique is applied to tightly distributed spherical chromatographic support particles.

  16. Utilization of coal-derived pyrite by electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Deng-xin; M.Makino; GAO Jin-sheng; MENG Fan-l ing

    2001-01-01

    The utilization of coal-derived pyrite by electrolysis was studie d. It is obvious that the sulfur and Fe in pyrite can be electrolyzed into Fe 3+ and SO2-4, and the no pollutant is drained off. In this paper, the infl uence of conditions, including electrolysis potential, time, temperature, the acidity of electrolysis solutions, the concentration of adding agent, the concentration of pyrite, and the rate of conversion of pyrite (Cr) was investigated. Cr increase s with the rise of potential, time, temperature, acidity and the concentration o f additive agent, but decreases with the rise of concentration of pyrite. At th e certain conditions (at the potential of 3.0 V, temperature of 298 K, time of 12 h , the concentration of MnSO4 of 6%, concentration of pyrite of 4%, and concent ra tion of acid of 10%), Cr is high to 93%. In the same time, the mechanism of elec trolysis of pyrite was provided. The electrolysis of pyrite is actually the r ecycle of Mn ion between anodic surface and pyrite. At last, the production of F eSO4*7H2O through electrolysis of pyrite was introduced.

  17. Utilization of coal-derived pyrite by electrolysis

    Institute of Scientific and Technical Information of China (English)

    李登新; M.Makinot; 高晋生; 孟繁玲

    2001-01-01

    The utilization of coal-derived pyrite by electrolysis was studied. It is obvious that the sulfur and Fe in pyrite can be electrolyzed into Fe3+ and SO2-4, and the no pollutant is drained off. In this paper, the influence of conditions, including electrolysis potential, time, temperature, the acidity of electrolysis solutions, the concentration of adding agent, the concentration of pyrite, and the rate of conversion of pyrite (Cr) was investigated. Cr increases with the rise of potential, time, temperature, acidity and the concentration of additive agent, but decreases, with the rise of concentration of pyrite. At the certain conditions (at the potential of 3.0 V, temperature of 298 K, time of 12 h, the concentration of MnSO4 of 6%, concentration of pyrite of 4%, and concentration of acid of 10%), Cr is high to 93%. In the same time, the mechanism of electrolysis of pyrite was provided. The electrolysis of pyrite is actually the recycle of Mn ion between anodic surface and pyrite. At last, the production of FeSO4·7H2O through electrolysis of pyrite was introduced.

  18. Effects of pyrite on the spontaneous combustion of coal

    Institute of Scientific and Technical Information of China (English)

    Jun Deng; Xiaofeng Ma; Yutao Zhang; Yaqing Li; Wenwen Zhu

    2015-01-01

    Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the parameters of spontaneous combustion, such as index gases, temperature and released heat etc., were investigated in this study. Coal samples with different pyrite contents (0%, 3%, 5%, 7%and 9%) were made by mixing coal and pyrite. The oxidation experiments under temperature-programmed condition were carried out to test the release rate of gaseous oxidation products at different temperatures. Differential scanning calorimeter (DSC) was employed to measure the intensity of heat release during coal oxidation for various pyrite contents. The results indicate that pyrite can nonlinearly accelerate the process of spontaneous combustion. The coal sample with a pyrite content of 5% has the largest CO release rate and oxygen adsorption as well. However, the coal sample with a pyrite content of 7% has the largest rate of heat flow according to the results from the DSC tests. Pyrite contents of 5%–7% in coal has the most significant effects on spontaneous combustion within the range of this study. The conclusions are conducive to the evaluation and control for the spontaneous combustion of coal.

  19. Comparison of trace elements in size-fractionated particles in two communities with contrasting socioeconomic status in Houston, TX.

    Science.gov (United States)

    Han, Inkyu; Guo, Yuncan; Afshar, Masoud; Stock, Thomas H; Symanski, Elaine

    2017-02-01

    Levels of ambient air pollutants, including particulate matter (PM), are often higher in low-socioeconomic status (SES) communities than in high-SES communities. Houston is the fourth largest city in the USA and is home to a large petrochemical industry, an active port, and congested roadways, which represent significant emission sources of air pollution in the region. To compare levels of air pollution between a low-SES and a high-SES community, we simultaneously collected a 7-day integrated size-fractionated PM between June 2013 and November 2013. We analyzed PM mass and elements for three particle size modes: quasi-ultrafine particles (quasi-UFP) (aerodynamic diameter 2.5 μm). Concentrations of vanadium, nickel, manganese, and iron in the quasi-UFP mode were significantly higher in the low-SES community than in the high-SES community. In the accumulation and coarse modes, concentrations of crustal elements and barium were also significantly higher in the low-SES community compared to the high-SES community. These findings suggest that people living in the low-SES community may experience higher exposures to some toxic elements as compared to people in the high-SES community.

  20. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Lozano

    2014-06-01

    Full Text Available The Fenton reaction is the most widely used advanced oxidation process (AOP for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2 particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  1. Factors Influencing Conversion of Pyritic Sulfur in Coal by Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    SUI Jian-cai; XU Ming-hou; QIU Ji-hua; CHENG Rong

    2005-01-01

    The high sulfur coal from southwest of China was used to examine the influence of different factors such as irradiation time, particle size of coal, and leachant (Na2CO3, NaOH and CuCl2.2H2O)on the conversion rate of pyrite to pyrrhotite by microwave irradiation. Single factor experiment was performed firstly, then orthogonal test method was used to explore these factors. The result shows that the optimal treating conditions for the conversion are a treatment time of 3 min, a particle size from 0.086 mm to 0.102 mm, and a favorable leachant of sodium hydroxide. Under these conditions the conversion rate of pyrite can reach 45.7 %.

  2. Interfacial interaction of bio-leaching of pyrite mineral

    Institute of Scientific and Technical Information of China (English)

    GU Guo-hua; WANG nui; SUO Jun; QIU Guan-zhou; HAO Ye

    2008-01-01

    Electrokinetic and contact angle measurements were used to discuss the interracial interaction on bio-leaching of pyrite mineral. Surface energy parameters of pyrite mineral and thiobaeillus ferrooxidans were Gbtained by calculating according to formula of Young's equation and contact angle measurements. The results show that surface energy of thiobacillus ferrooxidans is much higher than that of pyrite mineral, and the reaction of pyrite mineral with thiobacillus ferrooxidans causes the reduction of the pyrite surface energy. The interfacial interaction energies between pyrite mineral and thiobacillus ferrooxidans were also obtained based onpolar interfacial interaction theory and electrokinetic and contact angle measurements. The thermodynamics approach only considering Lifshitz-van der Waals and Lewis acid-base interaction fails to explain the adhesion behavior of the bacteria, but theextended Derjaguin-Landan-Verwey-Overbeek theory concerning Lifshitz-van der Waals and Lewis acid-base and the electrostatic can exactly predict interracial interaction.

  3. Carbon and nitrogen contents in particle-size fractions of topsoil along a 3000 km aridity gradient in grasslands of northern China

    Science.gov (United States)

    Wang, Xiao-Guang; Sistla, Seeta A.; Wang, Xiao-Bo; Lü, Xiao-Tao; Han, Xing-Guo

    2016-06-01

    Climate factors such as aridity significantly influence soil carbon (C) and nitrogen (N) stocks in terrestrial ecosystems. Further, soil texture plays an important role in driving changes of soil C and N contents at regional scale. However, it remains uncertain whether such changes resulted from the variation of different soil particle-size factions and/or the C and N concentrations in those fractions. We examined the distribution of total C and N in both bulk soil and different soil particle-size fractions, including sand (53-2000 µm), silt (2-53 µm), and clay (century.

  4. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust.

    Science.gov (United States)

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-03-15

    The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessibility of the metals as well as the mobility of the fine particles in soil.

  5. Thermoacidophilic archaea for pyrite oxidation in coal desulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Liselotte

    1995-10-01

    The desulfurization of low-sulfur coals has been demonstrated with the thermoacidophilic archaeon Acidianus brierleyi. A. brierleyi facilitates the removal of inorganic sulfur from coal and oxidizes mineral pyrite. The results imply that the mechanism behind microbial coal desulfurization and pyrite oxidation is a combination of biotic and abiotic leaching of pyrite. The extent of sulfur removal is dependent on the type of coal and is closely related to he amount of pyritic sulfur in the coal. Studies have shown that neither ash content nor heating value were dramatically affected by the microbial treatment. The use of the archaea Sulfolobus acidocaldarius and Sulfolobus solfataricus, as well as the mesophilic bacteria Thiobacillus ferrooxidans and several Pseudomonas species, has also been studied for coal desulfurization and mineral pyrite oxidation. The archaea and Pseudomonas species did not grow autotrophically on mineral pyrite neither did they oxidize pyrite in coal. The oxidation rate was, however, 5-10 times less than with A. brierleyi on mineral pyrite. The rate of sulfur removal from coal was in the same range as for A. brierleyi which indicates that different reactions are rate limiting in coal depyritization than in mineral pyrite oxidation. 133 refs, 18 figs, 3 tabs

  6. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    Science.gov (United States)

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action.

  7. Soil Carbon Stock and Particle Size Fractions in the Central Amazon Predicted from Remotely Sensed Relief, Multispectral and Radar Data

    Directory of Open Access Journals (Sweden)

    Marcos B. Ceddia

    2017-02-01

    Full Text Available Soils from the remote areas of the Amazon Rainforest in Brazil are poorly mapped due to the presence of dense forest and lack of access routes. The use of covariates derived from multispectral and radar remote sensors allows mapping large areas and has the potential to improve the accuracy of soil attribute maps. The objectives of this study were to: (a evaluate the addition of relief, and vegetation covariates derived from multispectral images with distinct spatial and spectral resolutions (Landsat 8 and RapidEye and L-band radar (ALOS PALSAR for the prediction of soil organic carbon stock (CS and particle size fractions; and (b evaluate the performance of four geostatistical methods to map these soil properties. Overall, the results show that, even under forest coverage, the Normalized Difference Vegetation Index (NDVI and ALOS PALSAR backscattering coefficient improved the accuracy of CS and subsurface clay content predictions. The NDVI derived from RapidEye sensor improved the prediction of CS using isotopic cokriging, while the NDVI derived from Landsat 8 and backscattering coefficient were selected to predict clay content at the subsurface using regression kriging (RK. The relative improvement of applying cokriging and RK over ordinary kriging were lower than 10%, indicating that further analyses are necessary to connect soil proxies (vegetation and relief types with soil attributes.

  8. Pyritic ash-flow tuff, Yucca Mountain, Nevada -- A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Larson, L.T.; Noble, D.C. [Univ. of Nevada, Reno, NV (United States)

    1994-12-31

    Textural and mineralogic evidence exists for at least one episode of widespread hydrothermal alteration of volcanic rocks deep in Yucca Mountain, Nevada. Despite this evidence, Castor et al. infer that most of the pyrite found in tuffs at Yucca Mountain was introduced as ejecta (lithic fragments) incorporated during the eruptions of the tuffs, rather than by in-situ hydrothermal activity. Their conclusions appear to be based on their observation that most of the pyrite resides in unaltered to variably altered and veined lithic fragments, whereas pyrite-bearing veins are absent in the tuff matrix, titanomagnetite and mafic phenocrysts in the matrix are generally not replaced by pyrite, and feldspar phenocrysts in the pyritic tuff matrix are generally unaltered. Castor et al. dismiss the much smaller quantities of pyrite disseminated in the tuff matrix, including relatively rare pyritized hornblende and biotite grains, as xenolithic as well. The pyritic tuffs belong to large-volume, subalkaline rhyolite ash-flow units (ca. > 150 to 250 km{sup 3} each). The interpretation of Castor et al. has broad implications for the temperature, fO{sub 2} and fS{sub 2} of major ash flow eruptions. Pyrite origin also bears on the nature of past fluid flow and water-rock reactions at Yucca Mountain, which in turn are important factors in assessing the potential for currently undiscovered mineral resources in the area of the proposed nuclear waste repository. We have studied core and cuttings from the same drill holes studied by Castor et al., as well as other drill holes. It is our contention that the inconsistent lateral and stratigraphic distribution of the pyrite, textural features of the pyrite, and phase stability considerations are incompatible with the {open_quotes}lithic{close_quotes} origin of Castor et al., and are more reasonably explained by in-situ formation from hydrothermal fluids containing low, but geochemically significant, concentrations of reduced sulfur.

  9. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  10. Iron recovery from pyrite cinder by flotation process to remove impurities in sulfide concentrates%硫精矿除杂提纯浮选工艺回收利用硫酸烧渣中的铁

    Institute of Scientific and Technical Information of China (English)

    冯国臣; 高金昌

    2015-01-01

    Pyrite cinder is the product of oxidizing roasting of pyrite ores. The technical index in iron recovery from pyrite cinder keeps low. The main reason for it is that fine ferric oxide particles produced in the oxidizing roasting process of pyrite ores will in high temperature interact with impurities and gangue minerals including mutual inclu-ding,sticking and polluting. The paper modifies conventional process of iron recovery from pyrite cinder,and turns to a sulfide concentrates flotation process to concentrate ferric sulfide,that is to increase the mass fraction of ferric sulfide in raw materials of pyrites,so that gangue minerals and impurities are removed from the raw materials,reaching a sul-fur grade over 50 % to 52 % and sulfur and iron grade of 90 % to 92 %. The high grade sulfur concentrates are used to made sulfuric acid. The iron in pyrite cinder reaches 63 % to 67 % making the entire cinder directly become iron concentrates without the need of further beneficiation,which is an effective way to utilize the iron in the cinder. The reason for higher technical index lies in the choice of sulfur flotation for impurity removal. High grade sulfur concen-trates making sulfuric acid avoids unwanted minerals hindering the oxidizing roasting of ferric sulfide and high content of impurities,low iron grade and low ore-dressing technical index in the process of iron recovery from pyrite cinder.%硫酸烧渣是硫铁矿制酸氧化焙烧产物;从硫酸烧渣中选铁的工艺技术指标一直不高,其主要原因是硫铁矿氧化焙烧过程中生成的氧化铁矿物颗粒微细,高温时新生成的氧化铁矿物颗粒会与杂质和脉石矿物颗粒相互包裹、相互黏结、相互污染. 该文将硫酸烧渣选铁改为硫精矿再浮选提纯硫化铁,即通过提纯硫酸原料中硫化铁的质量分数,从而去除原料中的脉石和杂质,使硫酸原料中硫品位达到50 % ~52 %(黄铁矿型原料)以上,硫、铁回收率均达到90 % ~92 %;

  11. Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing

    2016-08-01

    The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.

  12. Pyrite Surface after Thiobacillus ferrooxidans Leaching at 30℃

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to investigate the effect of Thiobacillus ferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces.Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite.It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that Thiobacillus ferrooxidans can enhance greatly the oxidation of pyrite.

  13. Induced fractional zero-point angular momentum for charged particles of the Bohm-Aharonov system by means of a 'spectator' magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianzu [Institute for Theoretical Physics, East China University of Science and Technology, Box 316, Shanghai 200237 (China)], E-mail: jzzhang@ecust.edu.cn

    2008-12-18

    An induced fractional zero-point angular momentum of charged particles by the Bohm-Aharonov (BA) vector potential is realized via a modified combined trap. It explores a 'spectator' mechanism in this type of quantum effects: In the limit of the kinetic energy approaching one of its eigenvalues the BA vector potential alone cannot induce a fractional zero-point angular momentum at quantum mechanical level in the BA magnetic field-free region; But when there is a 'spectator' magnetic field the BA vector potential induces a fractional zero-point angular momentum. The 'spectator' does not contribute to such a fractional angular momentum, but plays essential role in guaranteeing non-trivial dynamics at quantum mechanical level in the required limit. This 'spectator' mechanism is significant in investigating the BA effects and related topics in both aspects of theory and experiment.

  14. Selective separation of pyrite and chalcopyrite by biomodulation.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Modak, Jayant M

    2004-09-01

    Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.

  15. A Comprehensive Utilization Process for Black Manganese-silver Ores by Pyrite Reducing Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On a 5 kg bench scale, the separating of Mn-Ag from black manganese-silver ores by pyrite reducing was investigated. Leached Mn content of 98.3% (mass fraction) along with silver loss of 1.5% is achieved. The purification of solution by the precipitation method was effectively used. Chemical grade -MnO2 with TMn content of 60.13% (mass fraction) and MnO2 content of 92.28% (mass fraction) is obtained. Mn recovery efficiency is 94.04%. The residues from leaching Mn process of black Mn-Ag ores was employed for silver extraction by cyanidation with leached silver content of 92.17% (mass fraction), displacement ratio of 99.5%, recovery efficiency of 90.79%. Therefore, the present study provides a feasible process for making full use of black manganese-silver ore resources.

  16. On a connection between the limit set of the Moebius-Klein transformation, periodic continued fractions, El Naschie's topological theory of high energy particle physics and the possibility of a new axion-like particle

    Energy Technology Data Exchange (ETDEWEB)

    Marek-Crnjac, L. E-mail: fs.taj06@uni-mb.si

    2004-07-01

    In the present work we first give a general representation of the derivatives of the irrational number phi, for instance ((1)/(phi)), ((1)/(phi{sup 2})), ((1)/(phi{sup 3})) etc., as periodic continued fractions. Any irrational number can then be expanded in an infinite continued fraction. The limit set of the Kleinian transformation acting on the E-infinity Cantorian spacetime turned out to be this set of periodic continued fractions, consequently the vacuum of the E-infinity is described by this limit set. As discussed by El Naschie, every particle can be interpreted geometrically as a scaling of another. This is done using the topology of hyperbolic Kleinian space of VAK, which is nothing but our limit set. Here we will present the ratios of the theoretical masses of certain elementary particles to that of some chosen particles in term of phi. Many of these masses are quite close to integer multiples of the mass of a chosen particle. Finally we discuss the possibility of new transfinite, axion-like particles as discussed recently by Krauss and El Naschie [Quintessence, Vintage, London, 1999].

  17. Arsenic chemistry with sulfide, pyrite, zero-valent iron, and magnetite

    Science.gov (United States)

    Sun, Fenglong

    The aim of this thesis is to study the immobilization reactions of arsenic in water. Since compounds containing iron or sulfide are common in most natural and engineered systems, the research focused on the redox reactions and adsorption of arsenic with sulfide, pyrite, zero-valent iron (ZVI), and magnetite which were studied through wet chemistry methods and spectroscopic techniques. The kinetic and thermodynamic information of the reactions of As(V) with S(-II), As(V)/As(III) with pyrite and surface-oxidized pyrite, As(V) with ZVI and acid-treated ZVI, As(III) with magnetite was used to identify mechanisms. The necessity to maintain strictly anoxic conditions was emphasized for the study of arsenic redox chemistry with sulfides and ZVI. The major findings of this research can be stated as follows. First, dissolved sulfide reduced As(V) to lower valences to form a yellow precipitate at acidic pH. The reaction involved the formation of thioarsenic intermediate species. Dissolved O2, granular activated carbon (GAC) and dissolved Fe(II) inhibited the removal of As(V) by sulfide. Elemental sulfur catalyzed the reduction of As(V) by sulfide, which implied the possible benefit of using sulfur-loaded GAC for arsenic removal. Possible reaction mechanisms were discussed. Second, As(III) adsorbed on pristine pyrite over a broader pH range than on surface-oxidized pyrite, while As(V) adsorbed over a narrower pH range with pristine pyrite. As(V) was completely reduced to As(III) on pristine pyrite at acidic pH but not at higher pH. The reduction was first-order with respect to As(V). As(V) was not reduced on surface-oxidized pyrite at pH = 4--11. The different behaviors of As(V) and As(III) on pristine and surface oxidized pyrite determines the toxicity and mobility of arsenic under oxic/anoxic environments. Third, commercial ZVI reduced As(V) to As(III) at low pH (treated ZVI reduced As(V) to As(0), indicated by wet chemical analyses and by XANES/EXAFS, which could result in

  18. Estimation of soil water repellency of different particle size fractions in relation with carbon content by different methods.

    Science.gov (United States)

    Rodríguez-Alleres, María; de Blas, Esther; Benito, Elena

    2007-05-25

    The water repellency of soils with different texture under different types of plant cover was determined by applying the WDPT and MED methods to both whole samples and the following size fractions: 2-1, 1-0.5, 0.5-0.25, 0.25-0.05 and water repellency in the finest fraction (<0.05 mm) as a result of its higher organic carbon content. On the other hand, all fractions in the forest soils, which were extremely water repellent, contributed to the overall repellency; in any case, the MED test revealed that the finest fraction was strongly repellent in the forest soils as well.

  19. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  20. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients

    DEFF Research Database (Denmark)

    Löschner, Katrin; Harrington, Chris F.; Kearney, Jacque-Lucca;

    2015-01-01

    or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF4) coupled...... and give an indication of particle size, providing useful pathological indices. As such, the methods indicate a new way forward for in vivo investigation of the processes which lead to tissue necrosis and hip loosening in patients with MoM hip replacements....

  1. Greigite: a true intermediate on the polysulfide pathway to pyrite

    Directory of Open Access Journals (Sweden)

    Benning Liane G

    2007-03-01

    Full Text Available Abstract The formation of pyrite (FeS2 from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS and greigite (Fe3S4. Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify. In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite. The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

  2. Nature of organo-mineral particles across density fractions in a volcanic-ash soil: air-drying and sonication effect

    Science.gov (United States)

    Wagai, R.; Kajiura, M.; Shirato, Y.; Uchida, M.

    2011-12-01

    Interactions of plant- and microbially-derived organic matter with mineral phases exert significant controls on the stabilization of organic matter (OM) as well as other biogeochemical processes in soil. Density fractionation techniques have been successful in distinguishing soil organo-mineral particles of different degrees of microbial alteration, turnover rate of C, mineral associations. A major methodological difference among the density fractionation studies is the choice of sample pre-treatment. Presence or absence of sonication to disrupt and disperse soil particles and aggregates is a particularly important choice which could significantly alter the nature and distribution of organo-mineral particle and thus the resultant elemental concentration in each density fraction. Soil moisture condition (air-dry vs. field-moist) may also have strong impact especially for soils rich in Fe oxides/hydroxides and/or poorly-crystalline minerals that are prone for (possibly irreversible) aggregation. We thus tested these two effects on the concentration and distribution of C, N, and extractable phases of Fe and Al (by pyrophosphate and acid oxalate) across six density fractions (from 2.5 g/cm^3) using a surface-horizon of volcanic-ash soil which contained large amounts of poorly-crystalline minerals and organo-metal complexes. Compared to field-moist sample, air-drying had little effects on the elemental concentration or distribution across the fractions. In contrast, sonication on air-dried sample at each density cutoff during fractionation process caused significant changes. In addition to well-known increase in low-density material due to the liberation of plant detritus upon aggregate disruption, we found clear increase in C, N, and metals in 2.0-2.3 g/cm^3 fraction, which was largely compensated by the reduction in 1.8-2.0 g/cm^3 and, to a less extent, 2.3-2.5 g/cm^3 particles. Overall, sonication led to the redistribution of C and N by 15-20% and that of poorly

  3. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  4. Electrodeposition of dixanthogen(TETD) on pyrite surface

    Institute of Scientific and Technical Information of China (English)

    LI Wei-zhong; QIN Wen-qing; SUN Wei; QIU Guan-zhou

    2007-01-01

    The electrochemical reaction of xanthate on the surface of pyrite was studied using cyclic voltammogrametry, chronopotentiometry and rotating-disc electrode measurements. Experimental results demonstrate that the first step in the reaction is electrochemical adsorption of xanthate ion, and then the adsorbed ion associates with a xanthate ion from the solution and forms a dixanthogen on the pyrite electrode surface. The diffusion coefficient of butyl xanthate on pyrite electrode surface can be determined to be about 1.09×10-6 cm2/s. Using the galvanostatic technique, the kinetic parameters of oxidation of the butyl xanthate ion on the pyrite surface are calculated as Ja=200 μA/cm2, β= 0.203 and J0=27.1 μA/cm2.

  5. Magnetic properties related to thermal treatment of pyrite

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyrite is altered by heating to magnetite and pyrrhotite; the latter is stable in argon atmosphere, and has coercive force and coercivity of remanence of ~20 and ~30 mT, respectively. Whereas in air, the pyrite is ultimately oxidized to hematite. First order reversal curve (FORC) diagram of the end product shows that the remanence coercivity of hematite is up to ~1400 mT. The corresponding thermal transformation process of pyrite in air can be simply summarized as pyrite→ pyrrhotite→magnetite→hematite. These results are helpful for understanding of sedimentary magnetism, secondary chemical remanence and meteorolite magnetic properties.

  6. Magnetic properties related to thermal treatment of pyrite

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; PAN YongXin; LI JinHua; QIN HuaFeng

    2008-01-01

    Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyrite is altered by heating to magnetite and pyrrhotite; the latter is stable in argon atmosphere, and has coercive force and coercivity of remanence of ~20 and ~30 mT, respectively.Whereas in air, the pyrite is ultimately oxidized to hematite. First order reversal curve (FORC) diagram of the end product shows that the remanence coercivity of hematite is up to ~1400 mT. The corresponding thermal transformation process of pyrite in air can be simply summarized as pyrite→pyrrhotite→magnetite→hematite. These results are helpful for understanding of sedimentary magnetism, secondary chemical remanence and meteorolite magnetic properties.

  7. Effect of Coarse Particle Volume Fraction on the Yield Stress of Muddy Sediments from Marennes Oléron Bay

    Directory of Open Access Journals (Sweden)

    A. Pantet

    2010-01-01

    Full Text Available Coastal erosion results from a combination of various factors, both natural and humaninduced, which have different time and space patterns. In addition, uncertainties still remain about the interactions of the forcing agents, as well as on the significance of non-local causes of erosion. We focused about the surface sediments in the Marennes Oléron bay, after a general description of the site that has many various activities. The superficial sediments show a mechanical behavior, mainly depends on the fine fraction for a composition that contains up to 60% of sandy material. Fine sediments fraction has a typical yield stress depending naturally of concentration or water content. This yield could be modified slightly or significantly by adding silt or sand. As a result, the rheological measurement sensitivity allows us to characterize five typical sediments that correlate with solid fraction and fine fraction.

  8. Evaluation and modeling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki ─ Part II: Aerosol measurements within the SAPPHIRE project

    Directory of Open Access Journals (Sweden)

    A. Karppinen

    2007-08-01

    Full Text Available This study presents an evaluation and modeling exercise of the size fractionated aerosol particle number concentrations measured nearby a major road in Helsinki during 23 August–19 September 2003 and 14 January–11 February 2004. The available information also included electronic traffic counts, on-site meteorological measurements, and urban background particle number size distribution measurement. The ultrafine particle (UFP, diameter<100 nm number concentrations at the roadside site were approximately an order of magnitude higher than those at the urban background site during daytime and downwind conditions. Both the modal structure analysis of the particle number size distributions and the statistical correlation between the traffic density and the UFP number concentrations indicate that the UFP were evidently from traffic related emissions. The modeling exercise included the evolution of the particle number size distribution nearby the road during downwind conditions. The model simulation results revealed that the evaluation of the emission factors of aerosol particles might not be valid for the same site during different time.

  9. Evaluation of the Strength of Railway Ballast Using Point Load Test for Various Size Fractions and Particle Shapes

    Science.gov (United States)

    Koohmishi, Mehdi; Palassi, Massoud

    2016-07-01

    The ballast layer is one of the most important components of the railway track superstructure in which angular aggregates of high strength rocks are used. Ballast degradation is one of the main sources of railway problems in which the ballast aggregates are gradually degraded due to the abrasion of the sharp corners of the angular particles and splitting each individual particle into two or several small pieces under loading. In this paper, the effects of rock type, aggregate size and particle shape on the strength of the single ballast particles are investigated. For this purpose, point load test is carried out on ballast aggregates of four rock types including basalt, marl, dolomite and trachyte. According to the obtained results, as the size of the aggregates increases, the point load strength index decreases. The influence of size on the strength is more noticeable for ballasts obtained from higher strength rocks. It is also found that the shape of ballast particles has no major effect on its strength. Furthermore, our findings show that the failure pattern for ballasts of higher strength is so that each particle commonly splits into three pieces; while the dominant failure pattern for ballast particles with less strength is breaking the particle into two pieces.

  10. Nannobacteria and the formation of framboidal pyrite: Textural evidence

    Indian Academy of Sciences (India)

    Robert L Folk

    2005-06-01

    Study of sedimentary pyrite in the form of framboids, euhedral crystals or metasomatic masses has revealed that their surfaces are commonly covered with spheroids of about 50 nm. This applies to all the examples studied, from modern to Proterozoic. These spheroids are interpreted as the pyritized corpses of nannobacterial cells; if correct, this indicates that precipitation of iron sulfide was performed by these dwarf forms of bacteria, often associated with decaying organic matter.

  11. Rapid method to determine proximate analysis and pyritic sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.W.; Hyman, M.

    1985-05-01

    The use of thermomagnetogravimetry has been proposed as an alternative to the ASTM methods for measuring the pyritic sulphur content of coal and for proximate analysis. This paper presents a comparison of the results of thermogravimetry for proximate analysis and thermomagnetometry for pyritic sulphur with ASTM values on the same samples. The thermomagnetogravimetric technique is quicker and easier than the ASTM methods, and of comparable accuracy.

  12. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.

    Science.gov (United States)

    Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R

    2016-03-07

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  13. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

    Directory of Open Access Journals (Sweden)

    Darrah K. Sleeth

    2016-03-01

    Full Text Available Extrathoracic deposition of inhaled particles (i.e., in the head and throat is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling. However, the International Organization for Standardization (ISO has recently adopted particle deposition sampling conventions (ISO 13138, including conventions for extrathoracic (ET deposition into the anterior nasal passage (ET1 and the posterior nasal and oral passages (ET2. For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm were used as a test dust in a low speed (0.2 m/s wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  14. An investigation into the fraction of particle accelerators among colliding-wind binaries. Towards an extension of the catalogue

    Science.gov (United States)

    De Becker, M.; Benaglia, P.; Romero, G. E.; Peri, C. S.

    2017-03-01

    Particle-accelerating colliding-wind binaries (PACWBs) are multiple systems made of early-type stars able to accelerate particles up to relativistic velocities. The relativistic particles can interact with different fields (magnetic or radiation) in the colliding-wind region and produce non-thermal emission. In many cases, non-thermal synchrotron radiation might be observable and thus constitute an indicator of the existence of a relativistic particle population in these multiple systems. To date, the catalogue of PACWBs includes about 40 objects spread over many stellar types and evolutionary stages, with no clear trend pointing to privileged subclasses of objects likely to accelerate particles. This paper aims at discussing critically some criteria for selecting new candidates among massive binaries. The subsequent search for non-thermal radiation in these objects is expected to lead to new detections of particle accelerators. On the basis of this discussion, some broad ideas for observation strategies are formulated. At this stage of the investigation of PACWBs, there is no clear reason to consider particle acceleration in massive binaries as an anomaly or even as a rare phenomenon. We therefore consider that several PACWBs will be detected in the forthcoming years, essentially using sensitive radio interferometers which are capable of measuring synchrotron emission from colliding-wind binaries. Prospects for high-energy detections are also briefly addressed.

  15. Degree of trace metal pyritization in sediments from the Pacific coast of Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nava Lopez, Carmen; Huerta Diaz, Miguel Angel [Instituto de Investigaciones Oceanologicas, Ensenada, Baja California (Mexico)

    2001-06-01

    We analyzed sediments from a core collected on the Pacific coast of Baja California, 45 km off the city of Tijuana and at 1257 m water depth (32 Celsius degrees 9.5N , 117 Celsius degrees 8.3W), for trace metal content in two operationally-defined fractions, HCl and pyrite. Our results indicate transference of Cu>Ni>Zn>>Hg y Ag from the HCl to the pyrite fraction. Sediments have degrees of pyritization (DOP) that average 7.2{+-} 4.9% with a maximum value of 18.5%. Average degrees of trace metal pyritization (DTMP) range from 6.2 {+-}2.1% to 83{+-} 8% for Mn and Hg, respectively, although maximum values for some metals were closed to 100%. This transference is apparently a function of the solubility products of metal sulfides and the relative abundances of metals in the HCl fraction, as suggested by the significant correlation (p<0.001) observed between these two parameters and the DTMP of a number of trace metals. A similar correlation was obtained from published data of two cores collected in the Gulf of Mexico. [Spanish] Se analizaron sedimentos de un nucleo recolectado en la costa del Pacifico de Baja California 45 km de la costa de la ciudad de Tijuana y a 1257 m de profundidad del agua (32 grados Celsius 9.5N, 117 grados Celsius 8.3W), para determinar su contenido de metales traza en dos fracciones operacionales definidas HCl y pirita. Los resultados indican una transferencia de Cu>Ni>Zn>>Hg y Ag de la fraccion de HCl a la fase piritica. Los grados de piritizacion (DOP) en los sedimentos promediaron 7.2{+-} 4.9%, con un valor maximo de 18.5%. Los valores promedio de los grados de piritizacion de metales traza (DTMP) abarcaron el intervalo de 6.2 {+-}2.1% a 83{+-}18% para Mn y Hg, respectivamente, aunque los valores maximos para algunos metales estuvieron cercanos al 100%. Esta transferencia aparentemente es funcion de los productos de solubilidad de los sulfuros metalicos y de la abundancia relativa de metales en la fraccion HCl, como sugiere la correlacion

  16. Study on Bailing Properties of Pyrite Cinder%硫酸渣成球性能研究

    Institute of Scientific and Technical Information of China (English)

    陈文达; 翟大成; 李航

    2011-01-01

    对硫酸渣成球性能进行了研究.对硫酸渣磨矿后,其粒度和成球性能得到很大的改善.通过对硫酸渣球团的落下强度、抗压强度和生球爆裂温度等进行测定,得出在粒度水平(74μm/95.1%)及膨润土为1.0%条件下,硫酸渣的成球性能较好,能够满足冶金工艺的要求.%The bailing pmpenies of pyrite cinder are studied in this paper. AFter grinding on pyrite cinder, particle size and bailing properties are greatlly improved. Through the measuring of drop strength, compressive strength and cracking temperture on pyrite cinder pellet, it is found that the bailing properties of pyrite cinder is best at the level panicle size (74μm95.1%) and 1.0% bentonite, which can meet the requirements of metallurgical technology.

  17. Enabling iron pyrite (FeS2) and related ternary pyrite compounds for high-performance solar energy applications

    Science.gov (United States)

    Caban Acevedo, Miguel

    The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for

  18. Pyrite and pyritic mill tailing as a source of iron in a calcareous iron-deficient soil

    Energy Technology Data Exchange (ETDEWEB)

    Barrau, E.M.; Berg, W.A.

    1977-01-01

    Mill wastes from ore processing, particularly acid-forming pyrites, often pose disposal problems. This greenhouse study evaluated pyrite and a pyritic mill tailing as Fe sources on an Fe-deficient calcareous soil. Pyrite and tailing <0.1 mm in diameter were applied at rates of 45 and 135 metric ton/ha. Controls, 200 and 600 ppM Fe as Fe/sub 2/(SO/sub 4/)/sub 3/ and 5 and 15 ppM Fe as FeEDDHA, were used as standards. The treatments were seeded with sudangrass (Sorghum vulgare sudanense) and six successive crops were harvested. Sudangrass yields increased 160 to 200% with pyrite and tailing treatments; these yields were significantly greater than the control and were comparable to yields from the other Fe sources. The 5 ppM FeEDDHA treatment, however, increased yield for only the first two crops. Plant-available soil Fe measured by DTPA extraction increased with all Fe treatments, while the levels of DTPA-extractable Zn and Mn remained the same or increased slightly. DTPA-extractable Cu doubled with the high rate of pyrite addition. The concentration of Fe in the plants remained the same or increased slightly with the Fe treatments, while concentrations of Zn, Cu, and Mn all decreased.

  19. Heterogeneous uptake of gaseous nitric acid on dolomite (CaMg(CO3)2) and calcite (CaCO3) particles: a Knudsen cell study using multiple, single, and fractional particle layers.

    Science.gov (United States)

    Johnson, Elizabeth R; Sciegienka, Joanna; Carlos-Cuellar, Sofia; Grassian, Vicki H

    2005-08-11

    In this study, the heterogeneous uptake of gaseous nitric acid on dolomite, CaMg(CO3)2, and calcite, CaCO3, particles under dry conditions at 296 K was investigated. A Knudsen cell reactor was used to measure heterogeneous uptake coefficients for these reactions. Several different experiments were performed including those on many, single, and fractional layers of particles. For experiments using multiple particle layers, the Knudsen cell data were modeled to take into account gas diffusion into the underlying layers of the sample. From this analysis, initial heterogeneous uptake coefficients, gamma(o,t), were determined to be (5 +/- 2) x 10(-4) and (2 +/- 1) x 10(-3), for dolomite and calcite, respectively, at a nitric acid concentration of 6.5 x 10(10) molecules cm(-3). For experiments that employed single or fractional particle layers, the initial heterogeneous uptake coefficient was analyzed using a recent method described in the literature. Values of the initial heterogeneous uptake coefficient using this analysis were in agreement with the above analysis and determined to be (7 +/- 4) x 10(-4) and (2 +/- 0.4) x 10(-3) for CaMg(CO3)2 and CaCO3, respectively. In addition, these results are compared to previous literature values.

  20. [Distribution characteristics of lead in different particle size fractions of surface soil of a lead-acid battery factory contaminated site].

    Science.gov (United States)

    Yue, Xi; Sun, Ti-chang; Huang, Jin-lou

    2013-09-01

    In this research, six topsoil samples (0-20 cm) were collected in the heavy-metal lead contaminated soil of one lead battery factory in south-west China as research object, which were later divided into seven particle size fractions, and analyzed for the lead concentration as well as the correlation between the lead concentration and the organic matter content. The result showed that five soil samples were contaminated with lead with different pollution levels, and there were two different trends in the changes of lead concentration as of the change of soil particle size. The lead concentration of the three samples from sewage treatment workshop, the workshop A and the workshop B, showed a first declining and then ascending trend with the decreasing particle size. The lead concentration of the soil samples of the packing workshop and the former production workshop A showed a decreasing trend when the particle size decreased. The lead concentration and the organic matter content showed a positive linear correlation (R2 = 0.8232). Soil organic matter has the ability of lead enrichment, and the ability declines with the decreasing particle size. Soil texture may be an important factor for the interaction between soil organic matter and lead distribution.

  1. Geochemical characteristics of pyrite in Duolanasayi gold deposit, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    CHEN Guodong; XIAO Huiliang; WANG Henian; ZHOU Jiyuan

    2005-01-01

    The Duolanasayi gold deposit, 60 km NW of Habahe County, Xinjiang Uygur Autonomous Region, is a mid-large-scale gold deposit controlled by brittle-ductile shearing, and superimposed by albitite veins and late-stage magma hydrothermal solutions. There are four types of pyrite, which are contained in the light metamorphosed rocks (limestone, siltstone), altered-mineralized rocks (chlorite-schist, altered albite-granite, mineralized phyllite), quartz veins and carbonatite veinlets. The pyrite is the most common ore mineral. The Au-barren pyrite is present mainly in a simple form and gold-bearing pyrite is present mainly in a composite form. From the top downwards, the pyrite varies in crystal form from {100} and {210}+{100} to {210}+{100}+{111} to {100}+{111}. Geochemical studies indicate that the molecular contents of pyrite range from Fe1.057S2 to Fe0.941S2. Gold positively correlates with Mn, Sr, Zn, Te, Pb, Ba and Ag. There are four groups of trace elements: Fe-Cu-Sr-Ag, Au-Te-Co, As-Pb-Zn and Mn-V-Ti-Ba-Ni-Cr in pyrite. The REE characteristics show that the total amount of REE (ΣREE) ranges from 32.35×10 -6 to 132.18×10 -6; LREE/HREE, 4.466-9.142; (La/Yb)N, 3.719-11.133; (Eu/Sm)N, 0.553-1.656; (Sm/Nd)N, 0.602-0.717; La/Yb, 6.26-18.75; δEu, 0.628-2.309; δCe, 0.308-0.816. Sulfur isotopic compositions (δ 34S=-2.46‰--7.02‰) suggest that the sulfur associated with gold mineralization was derived from the upper mantle or lower crust.

  2. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions.

    Science.gov (United States)

    Hemkemeyer, Michael; Pronk, Geertje J; Heister, Katja; Kögel-Knabner, Ingrid; Martens, Rainer; Tebbe, Christoph C

    2014-12-01

    Artificial soils were used in this study to analyse the importance of different mineral compositions for the diversity of soil microorganisms. Variants containing montmorillonite (MT), illite (IL) and illite + ferrihydrite (IL+FH) were compared to each other. Bulk material and their particle size fractions, as obtained by ultracentrifugation and wet-sieving, were characterised for abundance and diversity of Bacteria, Archaea and Fungi. Samples were analysed 6 and 18 months after inoculation with sterilised manure and a soil-extracted microbial community. Generally, IL, and even more pronouncedly IL+FH, supported the growth of more Bacteria, Archaea and Fungi, than MT. This trend was most pronounced in the finest fraction (soils with complex mineral compositions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Navratilova, Jana; Købler, Carsten;

    2013-01-01

    A method of analysis of silver nanoparticles (AgNPs) in chicken meat was developed. The homogenized chicken meat sample, which was spiked with AgNPs, was subjected to enzymolysis by Proteinase K for 40 min at 37 °C. Transmission electron microscopy and inductively coupled plasma mass spectrometry...... of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF(4)) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two...... (ICP-MS) in single particle mode were used to characterize the number-based size distribution of AgNPs in the meat digestate. Because similar size distributions were found in the meat digestate and in the aqueous suspension of AgNPs used for spiking the meat, it was shown that no detectable dissolution...

  4. Mineralogy and geochemistry of density-separated Greek lignite fractions

    NARCIS (Netherlands)

    Iordanidis, A.; Doesburg, van J.D.J.

    2006-01-01

    In this study, lignite samples were collected from the Ptolemais region, northern Greece, homogenized, crushed to less than I nun, and separated in three density fractions using heavy media. The mineralogical investigation of the density fractions showed a predominance of pyrite in the light fractio

  5. Mineralogy and geochemistry of density-separated Greek lignite fractions

    NARCIS (Netherlands)

    Iordanidis, A.; Doesburg, van J.D.J.

    2006-01-01

    In this study, lignite samples were collected from the Ptolemais region, northern Greece, homogenized, crushed to less than I nun, and separated in three density fractions using heavy media. The mineralogical investigation of the density fractions showed a predominance of pyrite in the light fractio

  6. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle*

    Institute of Scientific and Technical Information of China (English)

    FANG Chao; CAO Jian-Zhu; SUN Li-Feng

    2011-01-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.

  7. Fractal and fractional calculus to model hydrological processes with application to particle-based 2D and 3D landslide simulation

    Science.gov (United States)

    Martelloni, Gianluca; Bagnoli, Franco; Di Cintio, Pierfrancesco

    2015-04-01

    We integrate existing soil infiltration modeling with particle based methods in order to simulate two and three-dimensional setups of triggered landslides. Commonly, the infiltration models are based on continuum schemes (e.g. Eulerian approach) by means of which it is possible to define the field of the pore pressure within a soil. By contrast, the particle based methods follow a Lagrangian scheme that allows one to identify the particle trajectories and their dynamical properties. In this work, in order to simulate the triggering mechanism, we apply the classical, fractal and fractional Richards equations and the Mohr-Coulomb failure criterion, adapted to the molecular dynamics technique. In our scheme the (local) positive pore pressure is simply implemented as a perturbation of the rest state of each grain. Therefore, the pore pressure function can be interpreted as a time-space dependent scalar field acting on each particle. To initialize the system we generate, using a molecular dynamics based algorithm, a mechanically stable disk (2D) or sphere (3D) packing simulating the consolidated soil. In this way, we can built the micro and macro pore structure related to different infiltration time scales. The inter-particle interactions are modeled with a Lennard-Jones like potential. The particle positions are updated in time, after and during a rainfall, with standard molecular dynamics. We analyze the sensitivity of the model with respect to the variation of some parameters such as hydraulic conductivity, cohesion, slope and friction angle, soil depth and fractional order of the generalized infiltration model. In addition, we consider both regular and random particle configurations. The results of our simulations are found to be in agreement with real landslides. In particular, the mean velocity patterns of the simulated landslides appear extremely similar to the observed ones. Moreover, it is possible to apply the method of the inverse surface displacement

  8. Acceptance Test Data for BWXT Coated Particle Batch 93164A Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    Coated particle fuel batch J52O-16-93164 was produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used as demonstration production-scale coated particle fuel for other experiments. The tristructural-isotropic (TRISO) coatings were deposited in a 150-mm-diameter production-scale fluidizedbed chemical vapor deposition (CVD) furnace onto 425-μm-nominal-diameter spherical kernels from BWXT lot J52L-16-69316. Each kernel contained a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO) and was coated with four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (i.e., 93164A).

  9. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-07-31

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  10. Hydrogeologic and environmental impact of amjhore pyrite mines, India

    Science.gov (United States)

    Choubey, Vishnu D.; Rawat, Rajendra K.

    1991-01-01

    Drainage from active and inactive pyrite mines has produced chemical and physical pollution of both ground- and surface water in Amjhore region. In the present case, chemical pollution is caused by exposing pyrite minerals to oxidation or leaching, resulting in undesirable concentrations of dissolved materials. Pyrite mining suddenly exposed large quantities of sulfides to direct contact with oxygen, and oxidation proceeds rapidly, resulting in acidity and release of metal (Fe) and sulfates to the water system, eventually resulting in water pollution in the region. The magnitude and impact of the problem is just being recognized and, as the present and the future projected demand for clean water is of top priority, the present studies were undertaken. Mine drainage includes water flowing from the surface and underground mines and runoff or seepage from the pyrite mines. This article describes the various hydrologic factors that control acid water formation and its transport. The mine drainage is obviously a continuing source of pollution and, therefore, remedial measures mainly consisting of a double-stage limestone-lime treatment technique have been suggested. The present results will be used to develop an alternative and more effective abatement technology to mitigate acid production at the source, namely, the technique of revegetation of the soil cover applied to the waste mine dump material. Water quality change is discussed in detail, with emphasis on acidity formed from exposed pyrite material and on increase in dissolved solids. Preventive and treatment measures are recommended.

  11. Hydrogeological and environmental impact of Amjhore pyrite mines, India

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.D.; Rawat, R.K. (Indian School of Mines, Dhanbad (India))

    Drainage from active and inactive pyrite mines has produced chemical and physical pollution of both ground and surface water in Amjhore region. In the present case, chemical pollution is caused by exposing pyrite minerals to oxidation or leaching, resulting in undesirable concentrations of dissolved materials. Pyrite mining suddenly exposed large quantities of sulfides to direct contact with oxygen, and oxidation proceeds rapidly, resulting in acidity and release of metal (Fe) and sulfates to the water system, eventually resulting in water pollution in the region. The magnitude and impact of the problem is just being recognized and, as the present and the future projected demand for problem demand for clean water is of top priority, the present studies were undertaken. Mine drainage includes water flowing from the surface and underground mines and runoff or seepage from the pyrite mines. This article describes the various hydrologic factors that control acid water formation and its transport. The mine drainage is obviously a continuing source of pollution and, therefore, remedial measures mainly consisting of a double-stage limestone-lime treatment technique have been suggested. The present results will be used to develop an alternative and more effective abatement technology to mitigate acid production at the source, namely, the technique of revegetation of the soil cover applied to the waste mine dump material. Water quality change is discussed in detail, with emphasis on acidity formed from exposed pyrite material and on increase in dissolved solids. Preventive and treatment measures are recommended.

  12. ORGANIC CARBON CONTENTS AND STOCKS IN PARTICLE SIZE FRACTIONS OF A TYPIC HAPLUDOX FERTILIZED WITH PIG SLURRY AND SOLUBLE FERTILIZER

    Directory of Open Access Journals (Sweden)

    Maria Sueli Heberle Mafra

    2015-08-01

    Full Text Available The use of pig slurry (PS as fertilizer can affect the soil quality and increase total stocks of soil organic carbon (TOC. However, the effects of PS on TOC amount and forms in the soil are not fully understood, particularly in areas under no-tillage (NT. The purpose of this study was to determine TOC contents and stocks in the particulate (POC and mineral-associated C fractions (MAC of an Oxisol after nine years of maize-oat rotation under NT, with annual applications of PS, soluble fertilizer and combined fertilization (pig slurry + soluble fertilizer. The experiment was initiated in 2001 in Campos Novos, Santa Catarina, with the following treatments: PS at rates of 0 (without fertilization - PS0; 25 (PS25; 50 (PS50; 100 (PS100; and 200 m3 ha-1yr-1 (PS200; fertilization with soluble fertilizer (SF; and mixed fertilization (PS + SF. The TOC content was determined in samples of six soil layers to a depth of 40 cm, and the POC and MAC contents in four layers to a depth of 20 cm. From the rate of 50 m3 ha-1yr-1 and upwards, the soil TOC content and stock increased according to the PS rates in the layers to a depth of 10 cm. The POC and MAC contents and stocks were higher in the surface layers, with a clear predominance of the second fraction, but a greater relative amplitude in the contents of the first fraction.

  13. Characterization of exposures among cemented tungsten carbide workers. Part I: Size-fractionated exposures to airborne cobalt and tungsten particles.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2009-07-01

    As many as 30,000 workers in the United States of America are exposed to cemented tungsten carbides (CTC), alloys composed primarily of tungsten carbide and cobalt, which are used in cutting tools. Inhalation of cobalt-containing particles may be sufficient for the development of occupational asthma, whereas tungsten carbide particles in association with cobalt particles are associated with the development of hard metal disease (HMD) and lung cancer. Historical epidemiology and exposure studies of CTC workers often rely only on measures of total airborne cobalt mass concentration. In this study, we characterized cobalt- and tungsten-containing aerosols generated during the production of CTC with emphasis on (1) aerosol "total" mass (n=252 closed-face 37 mm cassette samples) and particle size-selective mass concentrations (n=108 eight-stage cascade impactor samples); (2) particle size distributions; and (3) comparison of exposures obtained using personal cassette and impactor samplers. Total cobalt and tungsten exposures were highest in work areas that handled powders (e.g., powder mixing) and lowest in areas that handled finished product (e.g., grinding). Inhalable, thoracic, and respirable cobalt and tungsten exposures were observed in all work areas, indicating potential for co-exposures to particles capable of getting deposited in the upper airways and alveolar region of the lung. Understanding the risk of CTC-induced adverse health effects may require two exposure regimes: one for asthma and the other for HMD and lung cancer. All sizes of cobalt-containing particles that deposit in the lung and airways have potential to cause asthma, thus a thoracic exposure metric is likely biologically appropriate. Cobalt-tungsten mixtures that deposit in the alveolar region of the lung may potentially cause HMD and lung cancer, thus a respirable exposure metric for both metals is likely biologically appropriate. By characterizing size-selective and co-exposures as well as

  14. Distribution of metals in various particle-size fractions in topsoils of a small dry valley system (European Russia, forest zone)

    Science.gov (United States)

    Samonova, Olga; Aseyeva, Elena

    2017-04-01

    A detailed study of heavy metals distribution in various soil grain-size fractions helps to increase the knowledge about the complex nature of metals' occurrence and their distribution pathways in the environment. On the basis of particle size fractionation of topsoil horizons we examined the specific behavior of heavy metals in a small erosional landform located in the humid temperate zone of the Russian Plain. The object of the study is a 400 m small U-shaped dry valley (balka in Russian) with a catchment area of 32.8 ha located in the central part of the Protva river basin, 100 km southwest of Moscow. The uppermost parts of the landform are incised in Late Pleistocene loessial loams, which cover significant portions of interfluve area in the region, while the middle and the lower parts cut through Middle Pleistocene glacial sediments. A total of 50 samples were collected from topsoil horizons of different landform geomorphic units along three cross-sections as well as along the bottom of the landform and its detrital fan. Samples were analyzed for Mn, Cu, Ni, Co, Cr, Zn, Pb, Ti, Zr, and Fe content. Eleven samples were chosen for physical fractionation into 5 grain-size fractions (1-0.25 mm, 0.25-0.05 mm, 0.05-0.01 mm, 0.01-0.001 mm and units, the coarser (sand) fractions showed distinct spatial patterns in the elements' distribution, possibly related to migration processes, the depletion of metals in the landforms' slopes and their prevalent enrichment in the bottom unit is observed.

  15. A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC)

    Science.gov (United States)

    Wang, Weiqing; Feng, Qiming; Liu, Kun; Zhang, Guofan; Liu, Jing; Huang, Yang

    2015-01-01

    As a solid waste, kaolinite type pyrite cinder (KTPC) is a special pyrite cinder, its mineral components include metakaolin and magnetite, and the chemical compositions of these minerals include SiO2, Al2O3, FeO and Fe2O3. In this study, a novel magnetic 4A zeolite adsorbent was synthesised from KTPC using the hydrothermal method, and the optimum hydrothermal synthesis conditions were investigated using X-ray diffraction (XRD) and by determining the specific surface area (SSA) and the saturated cation exchange adsorption capacity (SCEAC) to Cs+. Under the optimum hydrothermal synthesis conditions, the magnetic 4A zeolite adsorbent can be synthesised with high crystallinity, and the SSA and SCEAC to Cs+ are 24.49 m2/g and 106.63 mg/g, respectively. The further characterisations of pore size distribution, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetry-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) were performed. The results revealed that magnetic particles are coated onto the zeolite surface and further form magnetic aggregates, and the existing magnetic particles in KTPC do not change their crystal structure and do not affect the synthesis of the 4A zeolite. In addition, the synthesised 4A zeolite adsorbent can be used as a magnetic adsorbent in wastewater treatment with high magnetic sensitivity and is thermally stable up to approximately 900 °C.

  16. Probing the “Dark” Fraction of Core-Shell Quantum Dots by Ensemble and Single Particle pH-Dependent Spectroscopy

    Science.gov (United States)

    Durisic, Nela; Godin, Antoine G.; Walters, Derrel; Grütter, Peter; Wiseman, Paul W.; Heyes, Colin D.

    2011-01-01

    The optical properties of core-shell CdSe-ZnS quantum dots (QDs) are characterized by complex photophysics leading to difficulties in interpreting quantitative measurements based on QD emission. By comparing the pH dependence of fluorescence of single QDs to that of an ensemble, we have been able to propose a molecular scale model of how QD surface chemical and physical processes are affected by protons and oxygen. We show that the connection between the ensemble fluorescence intensity and the single QD fluorescence properties such as dark fraction, blinking, particle brightness and a multi-exponential fluorescence lifetime decay is not trivial. The ensemble fluorescence intensity is more weakly dependent on pH than the single particle fluorescence which, together with fluorescence lifetime analysis, provided evidence that the dark fraction of QDs emits photons with low quantum efficiency and long lifetime. We uncovered two surface-dependent mechanisms that affected the fluorescence emission: an immediate physical effect of charges surrounding the QD and an irreversible chemical effect from reaction of the H+ and O2 with the QD shell surface. These results will have important implications for those using QD-based fluorescence lifetime imaging as well as for proper implementation of these probes for quantitative cellular imaging applications. PMID:22023370

  17. Multi-wavelength UV-detection in capillary hydrodynamic fractionation. Data treatment for an absolute estimate of the particle size distribution

    Science.gov (United States)

    Clementi, Luis A.; Aguirre, Miren; Leiza, José R.; Gugliotta, Luis M.; Vega, Jorge R.

    2017-03-01

    A new approach is proposed for estimating the particle size distribution (PSD) of hydrophobic colloids by capillary hydrodynamic fractionation (CHDF) based on UV-detection at several wavelengths. At each elution time, the multi-wavelength UV signal is used to estimate the instantaneous PSD at the detector cell by solving the involved inverse problem through an artificial neural network. Then, the global PSD is obtained as a weighted sum of the estimated instantaneous PSDs along the entire elution time interval. With the current approach, the estimation procedure is absolute in the sense that no calibration of diameters is required and the instrumental broadening introduced by the fractionation capillary is automatically compensated for. The proposed method was evaluated on the basis of narrow polystyrene standards, as follows: i) a single standard, to emulate a narrow unimodal PSD; ii) a mixture of three standards of relatively close average diameters, to emulate a broad unimodal PSD; and iii) a mixture of two standards of quite different average diameters, to emulate a bimodal PSD. Experimental results indicate that the new approach is able to produce adequate PSD estimates provided that the particle refractive index is known with a relatively high accuracy.

  18. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chengliang [Univ. of Kentucky, Lexington, KY (United States)

    1993-01-01

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  19. Biogenic syngenetic pyrite from tuffaceous sedimentary RF3-V rocks

    Science.gov (United States)

    Kozyreva, Irina; Nikulova, Natalia

    2015-04-01

    Biogenic framboidal pyrite was found in intraformational tuffaceous sedimentary gravelites, within basic volcanites (RF3-V) in Subpolar Urals (Sablya Ridge). Pyrite grains (Fe 44.07-44,33, S 50.22-53.31 wt. %) are composed of ball-like microconcretions, sometimes intergrown with crystals of pentagondodecahedron and cubic habit. The microconcretions (20 to 40 mcm) are roundish and composed of microcrystals, which end faces form spherical surface. The nuclei of the microconcretions are represented by frambohedrons 4-5 mcm in size, which are pyritized cells of sulphate-reducing colonial coccoid microfossils. The formation of the frambohedrons occurred synchronously to sedimentation in stagnant reducing environment at interaction of biogenic hydrogen sulphide with water-dissolved iron. The biogenic hydrogen sulphide is reduced by microorganisms in the conditions of free and unrestricted access of dissolved sulphate ions sourced from sulphur of fumarole gases. Iron came from washed-out basic volcanites. The growth of outer radial parts of microconcretions occurred during compaction of sediments in diagenetic stage. The quantity of dissolved sulphate and iron during pyrite formation exceeded possibilitites of bacterial "starters" which resulted in the formation of pyrites of other morphological varieties. This is confirmed by the accretion of concentric rays of the concretions and cubic microcrystals of pyrite in the aggregate grains. The formation of tuffaceous sediments occurred during temporary decrease of volcanic activity in a continuous linear water flow with stagnant areas composed of water-displaced pebbles from underlying metaterrigenous rocks (RF 1-2), which were exposed beyond the development area of volcanic strata, unchanged clasts of recent and synchronously formed basic and medium volcanites with participation of air-driven ashes and influence of volcanic gases in the presence of sulphate-reducing bacteria. The work is financially supported by the Program

  20. Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: Implications for inhalation hazards around old mines

    Science.gov (United States)

    Moreno, Teresa; Higueras, Pablo; Jones, Tim; McDonald, Iain; Gibbons, Wes

    Almadén has a >2000y mining history and an unprecedented legacy of mercury contamination. Resuspended airborne particles were extracted from mine waste (Las Cuevas), retort site soil (Almadenejos), and urban car park dust (Almadén), separated into fine (PM 10) and coarse (PM >10 μm ) fractions, analysed for mercury using ICP-MS, and individual HgPM characterised using SEM. Cold extractable mercury concentrations in PM 10 range from 100 to 150 μg g -1 (car parks), to nearly 6000 μg g -1 (mine waste), reaching a world record of 95,000 μg g -1 above the abandoned retort at Almadenejos where ultrafine HgPM have pervaded the brickwork and soil and entered the food chain: edible wild asparagus stem material from here contains 35-65 μg g -1 Hg, and pig hair from animals living, inhaling and ingesting HgPM 10 at the site yielded 8-10 μg g -1. The PM 10 fraction (dusts easily wind transported and deeply inhaled) contains much more mercury than the coarser fraction. The contribution of HgPM 10 to ecosystem contamination and potential human health effects around old mercury mines has been underestimated.

  1. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings.

    Science.gov (United States)

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan

    2017-06-01

    Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.

  2. Mechanism of separating pyrite and dolomite by flotation

    Institute of Scientific and Technical Information of China (English)

    Anping Liu; Wen Ni; Wei Wu

    2007-01-01

    To study the mechanism of separating pyrite and dolomite by flotation, the acting mechanisms of WHL depressor and both the minerals were studied by means of thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrareddiffuse reflection spectroscopy (FTIR-DRS), and X-ray photoelectron spectroscopy (XPS). The results indicated that WHL formed metal salts with metal ions dissolved in water from dolomite and pyrite, which then deposited on their surfaces. Both of the minerals could be depressed by WHL. In the process of flotation, sulfur was created besides the WHL being absorbed on the surface of the sulfur concentrate, and its recovery rate was slightly affected.

  3. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy

    Science.gov (United States)

    Perrone, Maria Grazia; Zhou, Jun; Malandrino, Mery; Sangiorgi, Giorgia; Rizzi, Cristiana; Ferrero, Luca; Dommen, Josef; Bolzacchini, Ezio

    2016-03-01

    Recent epidemiological evidence support the hypothesis that health effects from inhalation of air particles are governed by more than just particle mass, since specific chemical components have been identified as important contributors to mortality and hospitality admissions. We studied the chemical composition and the oxidative potential (OP) of total suspended particle (TSP) samples from Milan at two sites with different traffic loads: a site in the low emission zone (LEZ) and a traffic site (TR) outside. Two a-cellular assays; dithiothreitol (OPDTT) and 2‧,7' dichlorofluorescin (OPDCFH) were used to characterize the OP of the soluble fraction of particles. TSP samples from LEZ showed significantly lower concentrations of traffic-related chemical components compared to TR. The decrease in the concentrations from TR to LEZ was maximum for EC, with a LEZ/TR ratio of 0.64 (±0.18), and a significant reduction (p cellular assays gave complementary information on the OP of particles in Milan. The two OP assays resulted to be sensitive to different chemical properties of PM samples. OPDTT correlated positively only with Global Radiation (Spearman's rs = 0.38, p < 0.05), which could be considered as a proxy for high concentrations of secondary oxidizing organics, while OPDCFH was related to various PM chemical species, mainly correlated with total mass (rs = 0.65; p < 0.01), elements (e.g. Zn, rs = 0.67; As, rs = 0.65; p < 0.01) and the sum of sulfate and nitrate (rs = 0.63; p < 0.01), a proxy for secondary aerosol.

  4. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans.

    Science.gov (United States)

    Liu, H-L; Chen, B-Y; Lan, Y-W; Cheng, Y-C

    2003-09-01

    The bioleaching mechanism of pyrite by the indigenous Thiobacillus thiooxidans was examined with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the pyrite surface. The presence of pyrite eliminated the lag phase during growth of this microorganism. This was due to the stimulatory effect on cell growth of the slight amount of Cu2+ that had leached from the pyrite. Zn2+ was found to be much more readily solubilized than Cu2+. The efficiency of bioleaching was four times higher than that of chemical leaching. SEM images provided evidence of direct cell attachment onto the pyrite surface, thereby enhancing the bioleaching rate. Furthermore, extracellular polymeric substances (EPSs) were found on the pyrite surface after 4 days of oxidation. AFM images showed that the pyrite surface area positively correlated with the oxidation rate. A combination of direct and indirect mechanism is probably responsible for the oxidation of pyrite by T. thiooxidans.

  5. Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals.

    Science.gov (United States)

    Huang, Chun-Li; Bao, Lian-Jun; Luo, Pei; Wang, Zhao-Yi; Li, Shao-Meng; Zeng, Eddy Y

    2016-11-05

    Health risk of residents dwelling around e-waste recycling zones has been a global concern, but has not been adequately examined. The present study was intended to evaluate the potential health risk of residents through inhalation exposure to size-fractionated particle-bound heavy metals in a typical e-waste recycling zone, South China. Anthropogenic metals (Zn, Se, Pb, Sb, As, and Cd) were predominantly enriched in fine particles (Dp1.8μm). Although the daily inhalation intakes of the target metals were significantly lower than those through food consumption and ingestion of house dust, the hazard quotients of total metals for adults (95% CI: 1.0-5.5) and children (95% CI: 3.0-17) were greater than 1. Moreover, the incremental lifetime cancer risks of five carcinogenic metals (Cr, Co, Ni, As, and Cd) for adults and children were 1.3×10(-3) (95% CI: 4.1×10(-4)-3.0×10(-3)) and 3.9×10(-3) (95% CI: 1.3×10(-3)-8.6×10(-3)), respectively, substantially higher than the acceptable cancer risk range of 10(-6)-10(-4). All these findings suggested that health risks were high for local residents dwelling around the e-waste recycling zone through inhalation exposure to particle-bound heavy metals, for both adults and children.

  6. Scavenging and fractionation of particle-reactive radioisotopes 7Be, 210Pb and 210Po in the atmosphere

    Science.gov (United States)

    Chen, Jinfang; Luo, Shangde; Huang, Yipu

    2016-09-01

    The scavenging and fractionation of 7Be, 210Pb, and 210Po in the atmosphere are investigated by measuring their activities in rainwater collected from 68 rain events during March 2004 to April 2006 at a coastal station of Xiamen, southeastern China. In addition to documenting the large temporal variations in activities, fluxes, and isotope ratios of 7Be, 210Pb and 210Po in rainwater and the role of rainfall intensity in radionuclide scavenging, our results show that an enhanced deposition of 7Be and 210Pb occurs in the spring than in other seasons and is attributed to the "funnel effect" due to the increased atmospheric vertical convective mixing in the spring. This latter hypothesis is further supported by the observed seasonal and inter-annual variations in 7Be/210Pb and 210Po/210Pb ratios showing that the weakening of vertical convective mixing or stratosphere-troposphere exchange (STE) at the study site is linked with the enhancement of summer monsoons. It appears that the rainfall intensity, in connection with the vertical (e.g., STE) and horizontal (summer monsoons) air transport, exerts an important control on the activities, fluxes, and isotope ratios of 7Be, 210Pb, and 210Po in the atmosphere. Application of the observational data to a theoretical model shows that there are significant fractionations among 7Be, 210Pb, and 210Po in the atmosphere, with the scavenging rate constant or reciprocal of the residence time of radionuclide in the atmosphere being 210Pb > 7Be > 210Po. A revised Poet et al. (1972)'s method is proposed for quantitative constraint on the scavenging behavior of radionuclide, aerosols, and aerosol-associated trace pollutants in the atmosphere.

  7. Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice.

    Science.gov (United States)

    Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian

    2015-10-06

    Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.

  8. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    Science.gov (United States)

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than

  9. Study of possibilities of pyrite content reduction in black coals from the Mecsek Area

    Energy Technology Data Exchange (ETDEWEB)

    Petho, S.; Bokanyi, L.

    1985-01-01

    Certain parts of the pyrite content of coals can be removed by physical methods in inorganic form. The pyrite content of the Hungarian black coals as well as the pyrite distribution, as a function of density and grain size, are discussed. Based on literature data and laboratory experiments the pyrite content reduction by means of flotation, magnetic and gravitation enrichment is dealt with. Conclusions are drawn on how to apply these different procedures in black coal processing in Hungary.

  10. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients.

    Science.gov (United States)

    Loeschner, Katrin; Harrington, Chris F; Kearney, Jacque-Lucca; Langton, David J; Larsen, Erik H

    2015-06-01

    Hip replacements are used to improve the quality of life of people with orthopaedic conditions, but the use of metal-on-metal (MoM) arthroplasty has led to poor outcomes for some patients. These problems are related to the generation of micro- to nanosized metal wear particles containing Cr, Co or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF(4)) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate metal protein binding and the size and composition of wear metal particles present in serum and hip aspirates from MoM hip replacement patients. A well-established HPLC anion exchange chromatography (AEC) separation system coupled to ICP-MS was used to confirm the metal-protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF(4) of the wear particles in hip aspirates. In the serum samples, AF(4) -ICP-MS suggested that Cr was associated with transferrin (Tf) and Co with albumin (Alb) and an unidentified species; AEC-ICP-MS confirmed these associations and also indicated an association of Cr with Alb. In the hip aspirate sample, AF(4)-ICP-MS suggested that Cr was associated with Alb and Tf and that Co was associated with Alb and two unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF(4) with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes of the Cr-, Co- and Mo-containing wear particles in a hip aspirate sample were in the range 40-150 nm. Off-line spICP-MS was used to confirm these

  11. Galvanic interaction between galena and pyrite in an open system

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li; LI Heping; XU Liping

    2006-01-01

    Galvanic interactions between sulfide minerals have very important influences on hydrometallurgical processes, the supergene enrichment of sulfides and the formation of acid mine drainage. By changing the concentrations of Fe3 + , the pH values, status of the flowing of the solution and the solution salinity ( e. g. the concentrations of Na2 SO4 ) and monitoring the galvanic currents and potentials, studies were conducted in this work on the galvanic interaction between pyrite acting as the anode and galena acting as the cathode. The results indicated that the concentrations of Fe3 + , pH values and the flowing of the solution exhibit a great effect on the galvanic interaction of galena-pyrite couple, while the salinity of the solution has only a slight influence on the interaction. The experiments also revealed that in case cracks exist on the surface of pyrite electrode, the potential of pyrite will decrease so sharply as to be lower than that of galena under the same experimental condition. The experimental results were explained in terms of the Butler-Volume equation and the theory of mixed potential.

  12. Contribution of microorganisms to the oxidation of pyrite

    NARCIS (Netherlands)

    Arkesteyn, G.J.M.W.

    1980-01-01

    Optimum conditions for the accumulation of substantial amounts of pyrite (FeS 2 ) in the sediment are found in estuarine areas, especially in the tropics. In such areas anaerobic conditions prevail owing to continuous saturation with water. There is an abundant supply of organic matter, i

  13. Investigation of pyrite surface state by DFT and AFM

    Institute of Scientific and Technical Information of China (English)

    先永骏; 聂琪; 文书明; 刘建; 邓久帅

    2015-01-01

    The surface states of pyrite (FeS2) were theoretically investigated using first principle calculation based on the density functional theory (DFT). The results indicate that both the (200) and (311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy (AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.

  14. The mechanisms of pyrite oxidation and leaching: A fundamental perspective

    Science.gov (United States)

    Chandra, A. P.; Gerson, A. R.

    2010-09-01

    Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh

  15. Distribution pattern of legacy and "novel" brominated flame retardants in different particle size fractions of indoor dust in Birmingham, United Kingdom.

    Science.gov (United States)

    Al-Omran, Layla Salih; Harrad, Stuart

    2016-08-01

    This study investigates the particle size distribution of eight polybrominated diphenyl ethers (PBDEs) and five "novel" brominated flame retardants (NBFRs) in settled house dust. Elevated surface dust (ESD) and floor dust (FD) were collected from 5 homes in Birmingham, UK, yielding a total of 10 samples. Each sample was fractionated into three different particle sizes: 125-250 μm (P1), 63-125 μm (P2) and 25-63 μm (P3). Non-fractionated bulk dust samples (BD) were also analysed. BDE-209 predominated, comprising an average 74.3%, 77.3%, 69.2%, and 62.7% ΣBFRs of BD, P1, P2 and P3 respectively. Σ5NBFRs contributed 24.2%, 21.5%, 29.0% and 35.3% ΣBFRs, while Σ7tri-hepta-BDEs represented 1.5%, 1.2%, 1.7%, and 2.0% ΣBFRs. BEH-TEBP was the predominant NBFR contributing 76.9%, 75.1%, 83.1%, and 83.9% ΣNBFRs in BD, P1, P2 and P3 respectively; followed by DBDPE which contributed 20.1%, 21.9%, 14.1% and 13.9% ΣNBFRs. EH-TBB, BTBPE and PBEB were the least abundant NBFRs. Concentrations of Σ7tri-hepta-BDEs and BEH-TEBP in P3 exceeded significantly (P surface area to volume ratio, rather than by variations in organic carbon content. Copyright © 2016. Published by Elsevier Ltd.

  16. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health.

    Science.gov (United States)

    Li, Hongxia; Ji, Hongbing; Shi, Chunjing; Gao, Yang; Zhang, Yan; Xu, Xiangyu; Ding, Huaijian; Tang, Lei; Xing, Yuxin

    2017-04-01

    Heavy metals (HMs) and metalloids migrate into their surroundings, thus increasing environmental risks and threatening human health. Current studies on coal-mine brownfields, however, have not thoroughly investigated soil-associated HMs and metalloids produced by coal mining. Therefore, this study explored the spatial and particle fraction distribution and human health implications of HMs and metalloids. The soil-associated HMs and metalloids are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Manganese (Mn), Nickel (Ni), Lead (Pb), Scandium (Sc), Titanium (Ti) and Zinc (Zn). Results showed that Cd, Cu, Pb, and Ni were enriched in bulk soils. Cadmium, Cu and Pb from anthropogenic source were mainly found at entrance roadsides and in sites closest to coal mines. HMs and metalloids primarily accumulated in fine fractions (Protection Agency (USEPA, 1 × 10 (-4)). The total carcinogenic risk was mainly contributed by Cd and Ni through ingestion and dermal access. Therefore, hygiene and food security in areas should be emphasized.

  17. Bio-leaching effects of Leptospirillum ferriphilum on the surface chemical properties of pyrite

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Leptospirillum ferriphilum cultured using different energy sources(either soluble ferrous ion or pyrite) changed the surface properties of pyrite.Cell adsorption,zeta-potential,hydrophobicty,FT-IR spectra and surface morphology were investigated.Adhesion of bacterial cells to the pyrite surface is a fast process.Furthermore,the adsorption of cells grown in pyrite is greater than of cells grown in soluble ferrous ion.The Iso-Electric Point(IEP) of pyrite treated with L.ferriphilum approaches that of the cell...

  18. Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    Directory of Open Access Journals (Sweden)

    S. Dobbie

    2010-01-01

    Full Text Available A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the three Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter, contact angle that is widely used in ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10 degrees.

  19. Synthesis of silica nanoparticles for the manufacture of porous carbon membrane and particle size analysis by sedimentation field-flow fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ho; Eum, Chul; Hun; Choi, Seong Ho; Kim, Woon Jung [Dept. of Chemistry, Hannam University, Daejeon (Korea, Republic of)

    2016-11-15

    Silica nanoparticles were synthesized by emulsion polymerization by mixing ethanol, ammonium hydroxide, water, and tetraethyl orthosilicate. An apparatus was designed and assembled for a large-scale synthesis of silica nanospheres, which was aimed for uniform mixing of the reactants. Then sedimentation field-flow fractionation (SdFFF) was used to determine the size distribution of the silica nanoparticles. SdFFF provided mass-based separation where the retention time increased with the particle size, thus the size distribution of silica nanoparticles obtained from SdFFF appeared more accurate than that from dynamic light scattering, particularly for those having broad and multimodal size distributions. A disk-shaped porous carbon membrane (PCM) was manufactured for application as an adsorbent by pressurizing the silica particles, followed by calcination. Results showed that PCM manufactured in this study has relatively high surface area and temperature stability. The PCM surface was modified by attaching a carboxyl group (PCM-COOH) and then by incorporating silver (PCM-COOH-Ag). The amount of COOH group on PCM was measured electrochemically by cyclic voltammetry, and the surface area, pore size, pore volume of PCM-COOH-Ag by Brunauer–Emmet–Teller measurement. The surface area was 40.65 and reduced to 13.02 after loading a COOH group then increased up to 30.37 after incorporating Ag.

  20. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    Science.gov (United States)

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  1. Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread.

    Science.gov (United States)

    Izydorczyk, M S; Chornick, T L; Paulley, F G; Edwards, N M; Dexter, J E

    2008-05-15

    The performance of barley fibre-rich fractions (FRF), as high dietary fibre ingredients, in two-layer flat bread was investigated. In addition, the effects of particle size reduction by pin milling on functional properties of FRF were studied. FRF enriched in non-starch polysaccharides (β-glucans and arabinoxylans) were obtained by roller milling of hull-less barley. Pin milling (PM) of FRF significantly reduced their particle size, slightly increased the solubility of β-glucans and arabinoxylans, and increased the viscosity of water slurries containing FRF. The addition of 20% of barley FRF to wheat flour significantly increased dough water absorption and weakened the dough properties, as indicated by farinograph mixing curves, but the FRF-enriched doughs exhibited good handling characteristics at the dividing and sheeting stages. The appearance, diameter, layer separation, crumb, and aroma of the FRF-enriched flat breads were comparable to that of the control. The PM of FRF did not significantly affect the dough handling or the quality characteristics of flat breads. The addition of 20% of barley FRF to wheat flour flat bread provided substantial health benefits by significantly increasing the total and soluble dietary fibre contents and by decreasing starch digestibility.

  2. Surface electrochemical control for fine coal and pyrite separation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  3. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes.

  4. Comparative Mössbauer study of the oxidation of pyrite under different conditions

    Science.gov (United States)

    Gracia, M.; Gancedo, J. R.; Martínez-Alonso, A.; Tascón, J. M. D.

    1990-07-01

    Samples of pyrite-rich brown coal from As Pontes and Meirama coalfields (Spain) were oxidized either by air at atmospheric pressure or by a cool oxygen plasma generated by radiofrequency activation. Despite the very different nature and characteristics of the oxidizing media, in both cases the RT Mössbauer spectra were easily fitted to two doublets, whose parameters matched those of pyrite and jarosite (hydrated iron (III) sulphate). The extent of pyrite oxidation to jarosite was monitored by the relative spectral areas of pyrite and jarosite doublets. Both, air and plasma, oxidized pyrite to the same extent and in a similar way, in contrast to coal organic matter, which was scarcely modified by air but completely oxidized by the plasma at the same temperature (ca. 423 K). The incomplete oxidation of pyrite by plasma is attributed to the action of a thin calcium sulphate layer which hinders the access of activated oxygen to small pyrite crystals.

  5. Comparative Moessbauer study of the oxidation of pyrite under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, M.; Gancedo, J.R.; Martinez-Alonso, A.; Tascon, J.M.D. (Instituto de Quimica Fisica ' Rocasolano' , Madrid (Spain))

    1990-07-01

    Samples of pyrite-rich brown coal from As Pontes and Meirama coalfields (Spain) were oxidized either by air at atmospheric pressure or by a cool oxygen plasma generated by radiofrequency activation. Despite the very different nature and characteristics of the oxidizing media, in both cases the RT Moessbauer spectra were easily fitted to two doublets, whose parameters matched those of pyrite and jarosite (hydrated iron (III) sulphate). The extent of pyrite oxidation to jarosite was monitored by the relative spectral areas of pyrite and jarosite doublets. Both, air and plasma, oxidized pyrite to the same extent and in a similar way, in contrast to coal organic matter, which was scarcely modified by air but completely oxidized by the plasma at the same temperature (ca. 423 K). The incomplete oxidation of pyrite by plasma is attributed to the action of a thin calcium sulphate layer which hinders the access of activated oxygen to small pyrite crystals. 18 refs., 3 tabs., 2 figs.

  6. What is the role played by organic matter fractions from different sieve-size particles in the development of soil water repellency? A case study using analytical pyrolysis.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; González-Vila, Francisco J.; Zavala, Lorena M.; Jordán, Antonio; Jiménez-González, Marco A.

    2014-05-01

    1. INTRODUCTION It is known that soil water repellency (WR) is induced by organic substances covering the surface of minerals particles and aggregates or present as interstitial substances in the soil matrix. It has also been suggested that the persistence of WR is largely conditioned by specific chemical characteristics of soil organic matter (SOM). Most of these substances are abundant in ecosystems and are released into soils as exudates of roots, organic residues in decomposition, or secretions by fungi and other microorganisms. Soil free lipids correspond to a diverse collection of hydrophobic substances including complex substances as sterols, terpenes, polynuclear hydrocarbons, chlorophylls, fatty acids, waxes, and resins. Some of these organic substances, responsible of soil water repellency may be studied using analytical pyrolisis (de la Rosa et al., 2011; González-Pérez et al., 2011). This research aims to study the relation between soil WR and SOM quantity and quality, assessing the impact of organic fractions and its distribution in soil particles of different size on soil WR from sandy soils. 2. METHODS Soil samples were collected under selected species growing in sandy soils from the Doñana National Park (SW Spain), cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Soil WR and physical chemical characteristics including SOM content were assessed in fine earth soil samples (PA>PP>HH. A positive correlation was observed between WR from each sieve size fraction and SOM content. The most severe WR was detected in QS for all sieve size fractions, followed by the finer fractions form PA, PP and HH samples, which that also shows the highest SOM content, ranging between 20.9% (PP) and 46.9% (QS). Coarser soil fractions (1-2 mm) under PA, PP and HH showed the highest long-chain-even C numbered fatty acids (LCE-FA) in the order PP>PA>HH. No fatty acids were detected neither

  7. Contribution of Cistus ladanifer L. andCistus salvifolius L. for environmentla rehabilitation of mine areas from iberian pyrite belt

    OpenAIRE

    Santos, Erika; Ferreira, Mara; Abreu, Maria Manuela

    2011-01-01

    The aim of this study was to evaluate the potential of combined use of Cistus ladanifer and Cistus salviifolius for environmental rehabilitation of abandoned mine areas from Iberian Pyrite Belt. Soils from São Domingos mine area are heterogeneous, due to different characteristics of the original materials, and showed high total concentrations of trace elements (1940- 3030 mg As kg-1; 210-237 mg Cu kg-1; 5280-9210 mg Pb kg-1). Available fractions of trace elements presented, in gen...

  8. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  9. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance

    Science.gov (United States)

    Deditius, Artur P.; Utsunomiya, Satoshi; Renock, Devon; Ewing, Rodney C.; Ramana, Chintalapalle V.; Becker, Udo; Kesler, Stephen E.

    2008-06-01

    This report describes a new form of arsenian pyrite, called As3+-pyrite, in which As substitutes for Fe [(Fe,As)S2], in contrast to the more common form of arsenian pyrite, As1--pyrite, in which As1- substitutes for S [Fe(As,S)2]. As3+-pyrite has been observed as colloformic overgrowths on As-free pyrite in a hydrothermal gold deposit at Yanacocha, Peru. XPS analyses of the As3+-pyrite confirm that As is present largely as As3+. EMPA analyses show that As3+-pyrite incorporates up to 3.05 at % of As and 0.53 at. %, 0.1 at. %, 0.27 at. %, 0.22 at. %, 0.08 at. % and 0.04 at. % of Pb, Au, Cu, Zn, Ni, and Co, respectively. Incorporation of As3+ in the pyrite could be written like: As+yAu+1-y(□)⇔2Fe; where Au+ and vacancy (□) help to maintain the excess charge. HRTEM observations reveal a sharp boundary between As-free pyrite and the first overgrowth of As3+-pyrite (20-40 nm thick) and co-linear lattice fringes indicating epitaxial growth of As3+-pyrite on As-free pyrite. Overgrowths of As3+-pyrite onto As-free pyrite can be divided into three groups on the basis of crystal size, 8-20 nm, 100-300 nm and 400-900 nm, and the smaller the crystal size the higher the concentration of toxic arsenic and trace metals. The Yanacocha deposit, in which As3+-pyrite was found, formed under relatively oxidizing conditions in which the dominant form of dissolved As in the stability field of pyrite is As3+; in contrast, reducing conditions are typical of most environments that host As1--pyrite. As3+-pyrite will likely be found in other oxidizing hydrothermal and diagenetic environments, including high-sulfidation epithermal deposits and shallow groundwater systems, where probably kinetically controlled formation of nanoscale crystals such as observed here would be a major control on incorporation and release of As3+ and toxic heavy metals in oxidizing natural systems.

  10. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  11. Protein footprinting by pyrite shrink-wrap laminate.

    Science.gov (United States)

    Leser, Micheal; Pegan, Jonathan; El Makkaoui, Mohammed; Schlatterer, Joerg C; Khine, Michelle; Law, Matt; Brenowitz, Michael

    2015-04-07

    The structure of macromolecules and their complexes dictate their biological function. In "footprinting", the solvent accessibility of the residues that constitute proteins, DNA and RNA can be determined from their reactivity to an exogenous reagent such as the hydroxyl radical (·OH). While ·OH generation for protein footprinting is achieved by radiolysis, photolysis and electrochemistry, we present a simpler solution. A thin film of pyrite (cubic FeS2) nanocrystals deposited onto a shape memory polymer (commodity shrink-wrap film) generates sufficient ·OH via Fenton chemistry for oxidative footprinting analysis of proteins. We demonstrate that varying either time or H2O2 concentration yields the required ·OH dose-oxidation response relationship. A simple and scalable sample handling protocol is enabled by thermoforming the "pyrite shrink-wrap laminate" into a standard microtiter plate format. The low cost and malleability of the laminate facilitates its integration into high throughput screening and microfluidic devices.

  12. Effect of processing history of pyrite on its leaching kinetics

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 李洪桂; 孙培梅; 李运姣; 霍广生

    2003-01-01

    Different researchers often attained scattered kinetic results for the same leaching process. Usually, the difference is ascribed to the variation in mineral resource, chemical composition and, accuracy of experimental methods, while less attention is paid to the sample processing history. The present study shows that processing history of pyrite sample can cause great changes in its physico-chemical properties. Crushing, grinding and milling lead to an increase of the leachability of pyrite and the leaching becomes less temperature dependence owing to the decreasing of apparent activation energy of the reaction. The activation energy for its leaching in H2SO4-HNO3 solution is depressed from 73.9 to 47.5kJ/mol after being activated through vibrating milling for 40min. On the contrary, aging causes the reverse change owing to the release of extra inner energy stored during mechanical treatments. Thus activity of pyrite will decrease towards its original value. Surely the processing history of concentrate sample should be taken into consideration when studying the kinetics of leaching reaction.

  13. Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence.

    Science.gov (United States)

    Mango, Helen; Ryan, Peter

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ(34)S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to >2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from -5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in (34)S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ(34)S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ(34)S values.

  14. Restoration of GERIS Data Using the Maximum Noise Fractions Transform

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Larsen, Rasmus

    1994-01-01

    The Maximum Noise Fractions (MNF) transformation is used as a restoration tool in a 512512 subscene of a 63 channel spectral dataset recorded over the Pyrite Belt in Southern Spain with the Geophysical Environmental Research Imaging Spectrometer (GERIS). The data obtained from such a scanning...

  15. Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, Sw Spain)

    Science.gov (United States)

    López, María; González, Isabel; Romero, Antonio

    2008-04-01

    Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As-Cu-Pb-Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19-994 mg kg-1 for As, 41-4,890 mg kg-1 for Pb, 95-897 mg kg-1 for Zn and of 27-1,160 mg kg-1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.

  16. Interfacial electrokinetic characteristics before and after bioleaching microorganism adhesion to pyrite

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-she; WANG Zhao-hui; CHEN Hong; ZHANG Yan-hua

    2006-01-01

    Zeta potentials of pyrite and Acidithiobacillusferrooxidans cultured by sulfur in different levels of ionic strength and pH values were measured by Coulter Delsa 440SX zeta potential determinator. Meanwhile, the effects of bacterial adhesion and bacterial concentration on zeta potential of pyrite after adsorption were investigated. The results show that with the increase of ionic strength,zeta potentials of pyrite decrease in the range of pH 2.5-10.5 and the isoelectric point(IEP) of mineral shifts to the left. It is also found that the specific adsorption on pyrite of chloride ion can affect zeta potentials of pyrite sharply. As bacterial adsorption occurs,IEP of pyrite shifts towards that of Acidithiobacillus ferrooxidans; as bacterial concentration is increscent, this tendency is even larger and more obvious. Finally, a reasonable explanation for above-mentioned experimental phenomena was given by electrical double layer model and surface ionization model.

  17. Pyritization of the Coastal Sediments in the Kelantan Plains in the Malay Peninsula during the Holocene

    Directory of Open Access Journals (Sweden)

    M. S.K. Enio

    2011-01-01

    Full Text Available Problem statement: For a number of geological reasons a proportion of the present coastal plains in the Malay Peninsula were inundated by seawater in the past when pyrite in some of the soils is believed to have been mineralized. Random survey of these sites showed a unique distribution and depth of pyritic layer in the soils along the coastal plains. A study was conducted in order to explain the mechanism of pyritization in the sediments of the present day coastal plains in Kelantan, Peninsular Malaysia. Approach: Soil surveys were conducted and soils were sampled and analyzed. Spatial distribution of the pyritic soils was used to construct an imaginary line to indicate the probable position of the shoreline when the sea level was at its highest. Results: Results of the study showed that soils containing pyrite occur sporadically in the plains. This pyrite occurs in the soils at varying depth; some soils have pyritic layer below 2 m from the surface (northern region, while others have pyrite in the surface horizon (southern region. Pyrite was formed by the reaction of ferrous and sulfide ions which were respectively reduced from ferric ions (sediments and sulfate (seawater ions, respectively. In the middle of the study area, pyritic layer overlain by peaty materials were observed. Conclusion: The presence of pyrite in the soils can be used as an evidence for sea level rise in the area during the Holocene. This pyrite is assumed to have been formed about 6,000 years BP when the sea level rose 3-5 m above the present. Its oxidation has caused untold damage to the productivity of the paddy soils in the area.

  18. Paleoredoc and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York

    DEFF Research Database (Denmark)

    Farrell, Una C.; Briggs, Derek E. G.; Hammarlund, Emma U.

    2013-01-01

    Multiple beds in the Frankfort Shale (Upper Ordovician, New York State), including the original "Beecher's Trilobite Bed," yield fossils with pyritized soft-tissues. A bed-by-bed geochemical and sedimentological analysis was carried out to test previous models of soft-tissue pyritization by inves......Multiple beds in the Frankfort Shale (Upper Ordovician, New York State), including the original "Beecher's Trilobite Bed," yield fossils with pyritized soft-tissues. A bed-by-bed geochemical and sedimentological analysis was carried out to test previous models of soft-tissue pyritization...

  19. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  20. Hot-Water Deposition of Pyritic Stromatolite and Its Relation to Biomineralization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Pyritic stromatolite, a rich pyrite ore, is scattered as reef masses in sedex deposits of the Proterozoic Yanshan rift trough. The pyritic stromatolite consists of a core and alternating concentric rims of light colloidal pyrite and dark organic materials. The concentric rims are cemented together by trichomes highly similar to the trichomic microorganisms inhabiting substantively around the black chimneys on the current sea beds while the core is composed chiefly of groups of thermophilous sulphur bacteria. Biomarkers for the molecules of pyritic stromatolite include pristane, phytane, regular isoprenoids paraffin, methyl-heptadecyl, and so on. This study reveals the existence of methane-yielding bacteria in the pyritic stromatolite and reflects the evolution of thermophilous thallophyta.Long pulsation of mineralizing thermal solutions venting up along contemporaneous faults in rift troughs contributed greatly not just to the reproduction of thermophilous organisms living around the vents, but to their adsorption of Fe2+ from the solutions in a reducing environment. Pyritic stromatolite constantly took shape through metabolism and reduction of these organisms. Owing to the uneven development of the organic communities close to the vents or the hydrothermal plumes, pyritic stromatolite occurred eventually as scattered reef masses. This mineralizing mechanism may be summarized as the following procedure: flowing of hydrothermal fluids associated with submarine exhalation(r) adsorption and metabolism of thermophilous micro-organisms(r) reduction of organic materials(r) formation of deposits of pyritic stromatolite.

  1. CONSOLIDATION AND COMPACTION OF POWDER MIXTURES .3. BINARY-MIXTURES OF DIFFERENT PARTICLE-SIZE FRACTIONS OF DIFFERENT TYPES OF CRYSTALLINE LACTOSE

    NARCIS (Netherlands)

    RIEPMA, KA; ZUURMAN, K; BOLHUIS, GK; DEBOER, AH; LERK, CF

    1992-01-01

    Tablets were compacted from a coarse fraction (250-315 mum), a fine fraction (32-45 mum) and from binary blends of a coarse and a fine fraction of different types of crystalline lactose. The results showed differences in consolidation and compaction between the granular lactose types, i.e., roller-d

  2. Study of initial stage of mechanochemical transformation in pyrite

    Directory of Open Access Journals (Sweden)

    Paneva D.

    2007-01-01

    Full Text Available The initial stage of transformation of pyrite to Fe(II-sulfate as a result of mechanical milling is studied by X-ray powder diffraction (XRD, Moessbauer spectroscopy (MS, Infrared (IR and X-ray photoelectron spectroscopy (XPS techniques. A degree of conversion of 0.071 is achieved in the time interval of 0 36 min. The kinetic data satisfy the equation of a shrinking core reaction 1-(1-α1/3=kt. The reaction is of the first order. The calculated rate constant is k=6.434.10-4 min-1. .

  3. Molecular Ink Processed Iron Pyrite Thin Films for Photovoltaics

    OpenAIRE

    Weber, Amanda Sue

    2015-01-01

    Thin-film photovoltaics (PV) have the potential to supply our future energy needs, but the dominant commercial thin film technologies rely on rare or toxic elements that may limit their capacity to scale to the terawatt levels of electricity generation needed to impact global energy demand. Iron pyrite (FeS2) is a promising, earth-abundant material that has a suitable band gap of 0.95 eV, a large optical absorption coefficient, and adequate carrier diffusion lengths for use in PV. Unfortunate...

  4. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.

    Science.gov (United States)

    Bellenberg, Sören; Barthen, Robert; Boretska, Mariia; Zhang, Ruiyong; Sand, Wolfgang; Vera, Mario

    2015-02-01

    In this study, the process of pyrite colonization and leaching by three iron-oxidizing Acidithiobacillus species was investigated by fluorescence microscopy, bacterial attachment, and leaching assays. Within the first 4-5 days, only the biofilm subpopulation was responsible for pyrite dissolution. Pyrite-grown cells, in contrast to iron-grown cells, were able to oxidize iron(II) ions or pyrite after 24 h iron starvation and incubation with 1 mM H₂O₂, indicating that these cells were adapted to the presence of enhanced levels of reactive oxygen species (ROS), which are generated on metal sulfide surfaces. Acidithiobacillus ferrivorans SS3 and Acidithiobacillus ferrooxidans R1 showed enhanced pyrite colonization and biofilm formation compared to A. ferrooxidans (T). A broad range of factors influencing the biofilm formation on pyrite were also identified, some of them were strain-specific. Cultivation at non-optimum growth temperatures or increased ionic strength led to a decreased colonization of pyrite. The presence of iron(III) ions increased pyrite colonization, especially when pyrite-grown cells were used, while the addition of 20 mM copper(II) ions resulted in reduced biofilm formation on pyrite. This observation correlated with a different extracellular polymeric substance (EPS) composition of copper-exposed cells. Interestingly, the addition of 1 mM sodium glucuronate in combination with iron(III) ions led to a 5-fold and 7-fold increased cell attachment after 1 and 8 days of incubation, respectively, in A. ferrooxidans (T). In addition, sodium glucuronate addition enhanced pyrite dissolution by 25%.

  5. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.

    Science.gov (United States)

    Percak-Dennett, E; He, S; Converse, B; Konishi, H; Xu, H; Corcoran, A; Noguera, D; Chan, C; Bhattacharyya, A; Borch, T; Boyd, E; Roden, E E

    2017-09-01

    Pyrite (FeS2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite-associated metals

  6. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Bacelar-Nicolau, P.; Johnson, D.B. [Univ. of Wales, Bangor (United Kingdom). School of Biological Sciences

    1999-02-01

    Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS{sub 2}) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferroxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the indirect mechanism. Mixed cultures of three isolates (strains T-21, T-232, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T -23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.

  7. Surfactant-Assisted Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wadia, Cyrus; Wu, Yue; Gul, Sheraz; Volkman, Steven; Guo, Jinghua; Alivisatos, Paul

    2009-03-27

    Iron pyrite nanocrystals with high purity have been synthesized through a surfactant-assisted hydrothermal reaction under optimum pH value. These pyrite nanocrystals represent a new group of well-defined nanoscale structures for high-performance photovoltaic solar cells based on non-toxic and earth abundant materials.

  8. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.

    Science.gov (United States)

    Jones, Gregg W; Pichler, Thomas

    2007-02-01

    Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.

  9. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Van Cappellen, P.

    2012-01-01

    Denitrificationdriven by pyrite oxidation can play a major role in the removal of nitrate from groundwater systems. As yet, limited information is available on the interactions between the micro-organisms and aqueous and mineral phases in aquifers where pyrite oxidation is occurring. In this study,

  10. Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Schippers, A.; Rohwerder, T.; Sand, W. [Hamburg Univ. (Germany). Inst. fuer Allgemeine Botanik und Botanischer Garten

    1999-07-01

    Accumulation of elemental sulfur during pyrite oxidation lowers the efficiency of coal desulfurization and bioleaching. In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an iron(II)-ion-oxidizing organism without sulfur-oxidizing capacity, from the pyritic sulfur moiety about 10% elemental sulfur, 2% pentathionate, and 1% tetrathionate accumulated by a recently described cyclic pyrite oxidation mechanism. In the case of pure cultures of Thiobacillus ferrooxidans and mixed cultures of L. ferrooxidans and T. thiooxidans, pyrite was nearly completely oxidized to sulfate because of the capacity of these cultures to oxidize both iron(II) ions and sulfur compounds. Pyrite oxidation in acidic solutions, mediated chemically by iron(III) ion, resulted in an accumulation of similar amounts of sulfur compounds as obtained with L. ferrooxidans. Changes of pH to values below 2 or in the iron ion concentration are not decisive for diverting the flux of sulfur compounds. The literature on pyrite bioleaching is in agreement with the findings indicating that the chemistry of direct and indirect pyrite leaching is identical. (orig.)

  11. Bio-reduction of pyrite investigated in a gas lift loop reactor

    NARCIS (Netherlands)

    Hol, A.; Weijden, van der R.D.; Weert, van G.; Kondos, P.; Buisman, C.J.N.

    2010-01-01

    To liberate gold from refractory pyrite, oxidative destruction techniques that consume lots of energy and generate acidic waste streams are custom. As an alternative the “bio-reduction” of pyrite is proposed and investigated in this study. Bio-reduction is an anaerobic process based on sulfate/sulfu

  12. Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite

    Science.gov (United States)

    Soliman, Mamdouh F.; El Goresy, Ahmed

    2012-08-01

    The upper Maastrichtian organic-rich sediments studied at Gabal Oweina, Egypt, are moderately enriched in syngenetic and diagenetic pyrite. Pyrite occurs mostly as layers or bands, group of lamina, lenses, diagenetic intercalated pockets, burrow fills and disseminated individual pyrite framboids and crystals within the host sediments. The pyritic thin bands and lamina consist mostly of unconsolidated to compact-oriented pyrite (oriented along the bedding planes) in gypsiferous-clayey matrix and less common as poorly oriented pyrite crystallites. In several cases, pyrite crystals of the latter type depict zoning, fracturing and micro-concretions. Pyritic burrow fills are composed mainly of pyrite, phosphatic ooids, microfossils, glauconitic grains, poorly graphitized carbon and native sulfur. Pyrite replaces minerals other than gypsum, sulfur or carbon. It also replaces microfossils thus turning some of the phosphatic ooids and microfossils to pyritized pseudomorphs. None of the studied phosphate ooids or framboids contains any mackinawite, pyrrhotite or greigite. Based on the microscopic and SEM observations of the micro-textures of disseminated pyrite found at Gabal Oweina section, four morphological forms of primary pyrite could be identified: (1) Grouped multiple-framboids; (2) Individual framboids; (3) Pyrite idiomorphic crystal overgrowths on framboids and (4) Single and aggregates of euhedral pyrite crystals. The multiple-framboid formation may have emerged from three successive processes: nucleation and growth of individual aggregates of the microcrystals to form combined micro-framboids (the growth of framboids); and followed by grouping of the several pyrite framboids. Direct pyrite nucleation (shell formation), crystallization, and aggregation processes might complete a single framboid. The disseminated single and aggregated euhedral pyrite crystals bear evidence indicating that their formation was via nucleation and growth of pyrite crystallites and

  13. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    Science.gov (United States)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  14. Lipid extraction and esterification for microalgae-based biodiesel production using pyrite (FeS2).

    Science.gov (United States)

    Seo, Yeong Hwan; Sung, Mina; Oh, You-Kwan; Han, Jong-In

    2015-09-01

    In this study, pyrite (FeS2) was used for lipid extraction as well as esterification processes for microalgae-based biodiesel production. An iron-mediated oxidation reaction, Fenton-like reaction, produced an expected degree of lipid extraction, but pyrite was less effective than FeCl3 commercial powder. That low efficiency was improved by using oxidized pyrite, which showed an equivalent lipid extraction efficiency to FeCl3, about 90%, when 20 mM of catalyst was used. Oxidized pyrite was also employed in the esterification step, and converted free fatty acids to fatty acid methyl esters under acidic conditions; thus, the fatal problem of saponification during esterification with alkaline catalysts was avoided, and esterification efficiency over 90% was obtained. This study clearly showed that pyrite could be utilized as a cheap catalyst in the lipid extraction and esterification steps for microalgae-based biodiesel production.

  15. Pyrite surface interaction with selected organic aqueous species under anoxic conditions

    Directory of Open Access Journals (Sweden)

    Bebié Joakim

    2000-10-01

    Full Text Available The interaction between low-molecular weight organic compounds and pyrite under anoxic conditions has been studied using a combination of electrophoresis and batch sorption experiments. The results suggest that acetate, carbamide, ethylamine, formamide, purine, D-ribose, and adenine, as well as the amino acids alanine, cysteine and glycine, interact within the electrophoretic shearplane of the pyrite surface. The observed surface interaction between the negatively charged surface of pyrite and the organic aqueous species takes place regardless of the formal charge of the aqueous species of interest. This indicates that the interaction of organic molecules with pyrite surfaces under anoxic conditions is dictated by interactions with specific surface sites (thiol or iron surface sites rather than electrostatic forces. Dissolved metals typically enhance the interaction of the organics species. This enhancement is either due to an alteration in the distribution of thiol and iron groups on the pyrite surface or by the formation of ternary surface complexes.

  16. Occurrence and Geological Genesis of Pyrites in Late Paleozoic Coals in North China

    Institute of Scientific and Technical Information of China (English)

    刘大锰; 杨起; 等

    2000-01-01

    The occurrence and geological genesis of pyrites in Late Paleozoic colas of North china have been systematically studied in terms of coal petrology,coal chemistry,elemental geochemistry and sulfur isotope geochemistry.The results suggest that eight types of pyrite,i.e.,framboidal,automorphic graular,oolitic,massive,homogeneous spherical,allotriomorphic,nodular,joint-and fisure-filling pyrintes can be subdivided under the microscope,Four generations of pyrite are also reconized according to the shape,size,coexisting assemblage,spacial distribution relationship with macerals,the contents of sulfur and iron.atomic S/Fe ratios and associated elements in pryites.Sulfur in Late Palozoic colas of North China is of diverse source as evidenced by sulfur isotope variations in the pyrites.The δ34S values of pyrite generated at the early stage ted to be negative,and at the late stage,positive.

  17. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Science.gov (United States)

    Sanchez-Arenillas, M.; Mateo-Marti, E.

    2015-09-01

    We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  18. Measuring of Volume Fraction for SiC Particles in SiCP/Al Composite%SiC颗粒增强铝基复合材料中SiC颗粒体积分数的测定

    Institute of Scientific and Technical Information of China (English)

    木二珍; 李强

    2013-01-01

    利用金相法和XRD定量分析法对SiC颗粒增强铝基复合材料的SiC颗粒体积分数进行测定.用定量金相法测得SiC增强铝基复合材料SiC颗粒的体积分数为58.6%,用XRD定量分析法测得的体积分数为62.7%.%The volume fraction for SiC particle was measured by metallographic method and XRD quantitative analysis.The volume fraction for SiC particles is 56.1% for metallographic method and 62.7% for XRD quantitative analysis.

  19. STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES

    Energy Technology Data Exchange (ETDEWEB)

    Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

    2005-04-01

    Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

  20. Remnant colloform pyrite at the haile gold deposit, South Carolina: A textural key to genesis

    Science.gov (United States)

    Foley, N.; Ayuso, R.A.; Seal, R.R.

    2001-01-01

    Auriferous iron sulfide-bearing deposits of the Carolina slate belt have distinctive mineralogical and textural features-traits that provide a basis to construct models of ore deposition. Our identification of paragenetically early types of pyrite, especially remnant colloform, crustiform, and layered growth textures of pyrite containing electrum and pyrrhotite, establishes unequivocally that gold mineralization was coeval with deposition of host rocks and not solely related to Paleozoic tectonic events. Ore horizons at the Haile deposit, South Carolina, contain many remnants of early pyrite: (1) fine-grained cubic pyrite disseminated along bedding; (2) fine- grained spongy, rounded masses of pyrite that may envelop or drape over pyrite cubes; (3) fragments of botryoidally and crustiform layered pyrite, and (4) pyritic infilling of vesicles and pumice. Detailed mineral chemistry by petrography, microprobe, SEM, and EDS analysis of replaced pumice and colloform structures containing both arsenic compositional banding and electrum points to coeval deposition of gold and the volcanic host rocks and, thus, confirms a syngenetic origin for the gold deposits. Early pyrite textures are present in other major deposits of the Carolina slate belt, such as Ridgeway and Barite Hill, and these provide strong evidence for models whereby the sulfide ores formed prior to tectonism. The role of Paleozoic metamorphism was to remobilize and concentrate gold and other minerals in structurally prepared sites. Recognizing the significance of paragenetically early pyrite and gold textures can play an important role in distinguishing sulfide ores that form in volcanic and sedimentary environments from those formed solely by metamorphic processes. Exploration strategies applied to the Carolina slate belt and correlative rocks in the eastern United States in the Avalonian basement will benefit from using syngenetic models for gold mineralization.

  1. Control of pyrite surface chemistry in physical coal cleaning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, G.H.; Yoon, R.H.; Richardson, P.E.

    1993-05-19

    In Part I, Surface Chemistry of Coal Pyrite the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn.

  2. Retention and reduction of uranium on pyrite surface; Retention et reduction de l'uranium a la surface de la pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N

    2006-12-15

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS{sub 2}). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH {>=} 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10{sup -9} mol g{sup -1}, an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. {>=} -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 {+-} 0.8) x 10{sup -7} mol L{sup -1} of uranium(VI). Modelling of uranium sorption at high surface coverage ({>=} 4 x 10{sup -9} mol g{sup -1}) by the Langmuir model yields an adsorption constant of 8 x 10{sup 7} L mol{sup -1}. Finally, a great excess of uranium(VI) above the

  3. Oxygen adsorption on pyrite (100) surface by density functional theory

    Institute of Scientific and Technical Information of China (English)

    孙伟; 胡岳华; 邱冠周; 覃文庆

    2004-01-01

    Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference.The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.

  4. All inorganic iron pyrite nano-heterojunction solar cells

    Science.gov (United States)

    Kirkeminde, Alec; Scott, Randall; Ren, Shenqiang

    2012-11-01

    The large absorption coefficient of iron pyrite (FeS2) nanocrystals coupled with their low-cost and vast-abundance shows great promise as a potential photovoltaic absorber. Here, we demonstrate that bulk heterojunction (BHJ) nanostructures consisting of 80 nm FeS2 nanocubes (NCs) and 4 nm CdS quantum dot (QD) matrix, lead to a well-defined percolation network, which significantly improved open-circuit voltage (Voc) to 0.79 V and power conversion efficiency of 1.1% under AM 1.5 solar illumination. The localized surface plasmon resonances (LSPRs) arising from p-type colloidal FeS2 NCs exhibit plasmonic photoelectron conversion. Our approach can be applied to a wide range of colloidal nanocrystals exhibiting the LSPRs effect and is compatible with solution processing, thereby offering a general tactic to enhancing the efficiency of all inorganic BHJ solar cells and LSPRs-based NIR photodetectors.The large absorption coefficient of iron pyrite (FeS2) nanocrystals coupled with their low-cost and vast-abundance shows great promise as a potential photovoltaic absorber. Here, we demonstrate that bulk heterojunction (BHJ) nanostructures consisting of 80 nm FeS2 nanocubes (NCs) and 4 nm CdS quantum dot (QD) matrix, lead to a well-defined percolation network, which significantly improved open-circuit voltage (Voc) to 0.79 V and power conversion efficiency of 1.1% under AM 1.5 solar illumination. The localized surface plasmon resonances (LSPRs) arising from p-type colloidal FeS2 NCs exhibit plasmonic photoelectron conversion. Our approach can be applied to a wide range of colloidal nanocrystals exhibiting the LSPRs effect and is compatible with solution processing, thereby offering a general tactic to enhancing the efficiency of all inorganic BHJ solar cells and LSPRs-based NIR photodetectors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32097e

  5. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen

    Science.gov (United States)

    Schoonen, Martin A. A.; Harrington, Andrea D.; Laffers, Richard; Strongin, Daniel R.

    2010-09-01

    Hydrogen peroxide and hydroxyl radical are readily formed during the oxidation of pyrite with molecular oxygen over a wide range of pH conditions. However, pretreatment of the pyrite surface influences how much of the intermediates are formed and their fate. Acid-washed pyrite produces significant amounts of hydrogen peroxide and hydroxyl radical when suspended in air-saturated water. However, the hydrogen peroxide concentration shows an exponential decrease with time. Suspensions made with partially oxidized pyrite yield significantly lower amounts of hydrogen peroxide product. The presence of Fe(III)-oxide or Fe(III)-hydroxide patches facilitates the conversion of hydrogen peroxide to oxygen and water. Hence, the degree to which a pyrite surface is covered with patches of Fe(III)-oxide or Fe(III)-hydroxide patches is an important control on the concentration of hydrogen peroxide in solution. Hydrogen peroxide appears to be an important intermediate in the four-electron transfer from pyrite to molecular oxygen. Addition of catalase, an enzyme that decomposes hydrogen peroxide to water and molecular oxygen, to a pyrite suspension reduces the oxidation rate by 40%. By contrast, hydroxyl radical does not appear to play a significant role in the oxidation mechanism. It is estimated on the basis of a molecular oxygen and sulfate mass balance that 5-6% of the molecular oxygen is consumed without forming sulfate.

  6. [Characterization of oxidation on pyrite by in situ attenuated total reflection-Fourier transform infrared spectroscopy].

    Science.gov (United States)

    Zhang, Ping; Chen, Yong-Heng; Liu, Juan; Wang, Chun-Lin

    2008-11-01

    Pyrite is one of common natural minerals in the environment, which is easily oxidated and is the main source of acidity mine drainage (AMD). The study on the oxidation of pyrite is helpful to comprehend the mechanism of its pollution. In the present paper, the oxidation of pyrite under the condition of air and water was respectively investigated by the attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) through the designing experiment on the formation of carbon dioxide by the reaction of carbonate in pyrite with sulfuric acid formed by the oxidation of pyrite. The CO2 measurement by in situ ATR indicated that the oxidation rate of pyrite both in the air and in water both reduced by time and the latter reduced more obviously than the former, which indicates that the oxidation rate of pyrite in water is slower than that in the air. In the ATR measurement, the double absorption peaks at 2 350 cm(-1) that indicates CO2 have high selectivity, and permits the in situ analysis.

  7. Comment on "Fractional quantum mechanics" and "Fractional Schroedinger equation"

    CERN Document Server

    Wei, Yuchuan

    2016-01-01

    In this comment, we point out some shortcomings in two papers "Fractional quantum mechanics" [Phys. Rev. E 62, 3135 (2000)] and "Fractional Schroedinger equation" [Phys. Rev. E 66, 056108 (2002)]. We prove that the fractional uncertainty relation does not hold generally. The probability continuity equation in fractional quantum mechanics has a missing source term, which leads to particle teleportation, i.e., a particle can teleport from one place to another. Since the relativistic kinetic energy can be viewed as an approximate realization of the fractional kinetic energy, the particle teleportation should be an observable relativistic effect in quantum mechanics. With the help of this concept, superconductivity could be viewed as the teleportation of electrons from one side of a superconductor to another and superfluidity could be viewed as the teleportation of helium atoms from one end of a capillary tube to the other. We also point out how to teleport a particle to a destination.

  8. Abundances and isotopic compositions of rhenium and osmium in pyrite samples from the Huaibei coalfield, Anhui, China

    Science.gov (United States)

    Liu, Gaisheng; Chou, C.-L.; Peng, Z.; Yang, G.

    2008-01-01

    Two pyrite samples from the Shihezi Formation (Lower Permian), Huaibei coalfield, Anhui, China, have been analyzed for abundances and isotopic compositions of rhenium and osmium using negative thermal ion mass spectrometry. The Re-Os ages of the pyrites are 64.4 and 226 Ma, which are younger than the formation age of the coal seam. The pyrite samples may consist of pyrite formed at various stages during the history of coal formation. The ??Osvalues of the two pyrite samples are +17 and +18, respectively. Such high ??Osvalues are reported for the first time for recycles crustal materials from a sedimentary basin. ?? Springer-Verlag 2007.

  9. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides.

    Science.gov (United States)

    Chopard, Aurélie; Plante, Benoît; Benzaazoua, Mostafa; Bouzahzah, Hassan; Marion, Philippe

    2017-01-01

    Predicting the water quality at mine sites is of significant importance for developing mines with respect for the environment. Acid mine drainage (AMD) occurs when sulfides are in contact with oxygen and water, and several parameters and mechanisms influence final drainage quality. Galvanic interactions influence the reactivity of sulfide minerals, which act as semi-conductors. These galvanic interactions have been insufficiently studied in the context of AMD generation. In this study, the influence of pyrite on the reactivity of sphalerite and chalcopyrite was investigated. Five blends, comprised of free grains of quartz/pyrite, quartz/chalcopyrite, quartz/sphalerite, quartz/pyrite/chalcopyrite, and quartz/pyrite/sphalerite, were subjected to geochemical testing. Five weathering cells were monitored over a 200-day period during which they were leached twice weekly. Leachates were analyzed for pH, Eh, electrical conductivity, and sulfate and metal concentrations. The results of these analyses showed that galvanic interactions occurred between free sulfide grains. Pyrite was galvanically protected over the full testing period in the quartz/pyrite/chalcopyrite blend, and partially protected in the quartz/pyrite/sphalerite blend. Moreover, the release of Cu from chalcopyrite and Zn, Mn, and Cd from sphalerite was accelerated in the presence of pyrite. This work provides a better understanding of the influence of pyrite on chalcopyrite and sphalerite reactivity by highlighting the galvanic effects. In the future, to improve the reliability of AMD prediction tests, galvanic interactions should be considered in both the prediction of the acid generation potential and the estimation of metal and metalloid release rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.

    Science.gov (United States)

    Africa, Cindy-Jade; van Hille, Robert P; Harrison, Susan T L

    2013-02-01

    The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals.

  11. Nickel mobilization in a groundwater well field: Release by pyrite oxidation and desorption from manganese oxides

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming

    1997-01-01

    is furthermore characterized by enhanced Mn2+ concentrations. Apparently nickel accumulates on manganese oxides during pyrite oxidation. When the water table rises again, partially oxidized pyritic layers are resubmerged, and due to an insufficient supply of oxygen, the oxidation of Fe2+ released during pyrite...... oxidation becomes incomplete. The mobilized Fe2+ may reduce manganese oxides and thereby release large amounts of Ni2+ to the groundwater. Calculations using a surface complexation model indicate retardation of nickel to be strongly affected by bulk water composition. At the background groundwater...

  12. On the pore water chemistry effect on spectral induced polarization measurements in the presence of pyrite

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Slater, Lee D.

    2016-12-01

    In order to expand the application of the induced polarization (IP) method as a technique for monitoring metallic mineral dissolution and precipitation mechanisms, we studied the effects of variations in pore water chemistry on the spectral induced polarization (SIP) response of a mixture of silica-sand and pyrite particles in the laboratory. We investigated the dependence of the SIP response on both pore water conductivity and pH for various chemical compositions: redox-passive (P) versus redox-active (A) ions, using CaCl2 as P-ions, and FeSO4 and FeCl3 as A-ion brines. The effect of pore water chemistry was evaluated by means of a recently proposed volumetric specific capacitance model. The SIP response (IP-effect) was primarily determined by the pore water conductivity and the specific capacitance was only weakly dependent on the chemical composition and pHw. We found that the specific capacitance varies to first order over a limited range and approximates a single value (≈ 302 F m- 3 in average). However, variations in the specific capacitance as a function of active versus inactive ion chemistry might be important to consider when using IP to monitor specific mineral dissolution and precipitation processes.

  13. Fractional Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  14. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  15. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  16. Fractional randomness

    Science.gov (United States)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  17. Short-term effects of tillage practices on soil organic carbon turnover assessed by δ13C abundance in particle-size fractions of black soils from northeast China.

    Science.gov (United States)

    Liang, Aizhen; Chen, Shenglong; Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ (13)C natural abundance to assess SOC turnover in the 0-20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ (13)C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC.

  18. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  19. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Somasundaran, P

    2004-08-15

    Effective methods for selective separation using flotation or flocculation of arsenopyrite from pyrite by biomodulation using Acidithiobacillus ferrooxidans are presented here. Adhesion of the bacterium to the surface of arsenopyrite was very slow compared to that to pyrite, resulting in a difference in surface modification of the minerals subsequent to interaction with cells. The cells were able to effectively depress pyrite flotation in presence of collectors like potassium isopropyl xanthate and potassium amyl xanthate. On the other hand the flotability of arsenopyrite after conditioning with the cells was not significantly affected. The activation of pyrite by copper sulfate was reduced when the minerals were conditioned together, resulting in better selectivity. Selective separation could also be achieved by flocculation of biomodulated samples.

  20. Electronic, thermodynamic and elastic properties of pyrite RuO_2

    Institute of Scientific and Technical Information of China (English)

    Yang Ze-Jin; Guo Yun-Dong; Wang Guang-Chang; Li Jin; Dai Wei; Liu Jin-Chao; Cheng Xin-Lu; Yang Xiang-Dong

    2009-01-01

    This paper calculates the elastic, thermodynamic and electronic properties of pyrite (Pa3) RuO_2 by the plane-wave pseudopotential density functional theory (DFT) method. The lattice parameters, normalized elastic constants, Cauchy pressure, brittle-ductile relations, heat capacity and Debye temperature are successfully obtained. The Murnaghan equation of state shows that pyrite RuO_2 is a potential superhard material. Internal coordinate parameter increases with pressure, which disagrees with experimental data. An analysis based on electronic structure and the pseudogap reveals that the bonding nature in RuO_2 is a combination of covalent, ionic and metallic bonding. A study of the elastic properties indicates that the pyrite phase is isotropic under usual conditions. The relationship between brittleness and ductility shows that pyrite RuO_2 behaves in a ductile matter at zero pressure and the degree of ductility increases with pressure.

  1. Geological significance of componential characteristics of pyrite from Shibaqinghao gold deposit in central Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    Yihong Liang; Hongying Zhang; Yanhua Ma

    2006-01-01

    There are two types of gold ore in Shibaqinghao gold deposit, mylonite ore and quartz vein ore. Pyrite accompanying with native gold in mylonite ore has Fe from 43.66 to 45.32 wt% and S from 52.64 to 53.55 wt%. It is clear that this kind of pyrite is poor in both sulphur and iron. That means that the mylonite ore may be related to metamorphic water. Pyrite in the quartz vein ore has Fe from 44.38 to 45.30 wt% and S from 53.08 to 54.00 wt%. It means that this kind of pyrite is poor in iron but rich in sulphur, while the quartz vein ore may be related to magma water.

  2. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)

    2017-03-21

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  3. New method for the simultaneous determination of pyrite content and proximate analysis in coal

    Energy Technology Data Exchange (ETDEWEB)

    Aylmer, D.M.; Rowe, M.W.

    1984-01-01

    A combined thermogravimetric and thermomagnetometric procedure using inert, oxidising and reducing gases is described. It is shown to give good agreement with the ASTM methods and to have advantages over the latter, especially as regards occluded or weathered pyrite.

  4. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H. [Hokkaido University, Sapporo (Japan). Graduate School of Engineering

    1998-02-28

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone.

  5. Chalcophile Siderophile Trace Element Systematics of Hydrothermal Pyrite from Martian Regolith Breccia NWA 7533

    Science.gov (United States)

    Lorand, J.-P.; Hewins, R. H.; Humayun, M.; Remusat, L.; Zanda, B.; La, C.; Pont, S.

    2016-08-01

    Martian impact breccia NWA 7533 contains hydrothermal pyrite. Laser ablation ICPMS analyses show that its chalcophile siderophile element content was inherited from both early meteorite bombardment and later hydrothermal inputs from H2S fluids.

  6. Pyrite Genesis During Early Diagenesis in Yellow Sea and East China Sea

    Institute of Scientific and Technical Information of China (English)

    段伟民; 陈丽蓉

    1994-01-01

    The content and isotopic compositions of different sulphur species in pore-water and solid phases have been examined on five sediment cores taken from muddy sediment region in the Yellow Sea and the East China Sea. Relationships among these data have been investigated with the combination of morphology of mineral pyrite and organic matter so as to role out the diagenetic behaviour of sulphur species at the early stage of diagenesis in modern marine sediment and the origin of pyrite formation.

  7. Preparation of pyrite-coated sand grains for research on roll-type uranium deposits

    Science.gov (United States)

    Gent, Carol A.

    1977-01-01

    Ordinary quartz sand grains can be coated with pyrite for use in laboratory experiments on the genetic geochemistry of roll-type uranium deposits. The sand is first added to a ferric chloride solution. The slow addition of sodium hydroxide to the mixture gives the sand grains an iron oxide coating. This coating is then converted to pyrite by reaction with hydrogen sulfide, thus yielding a product suitable for experimental use.

  8. Application of fuel cell for pyrite and heavy metal containing mining waste

    Science.gov (United States)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  9. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory.

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Fontana, Luca; Cottica, Danilo; Bergamaschi, Antonio

    2013-04-01

    To investigate the emission sources of fine and ultrafine particles (UFPs) during brazing, welding, and grinding in a mechanical engineering factory and to characterize UFP exposure by measuring size distributions, number, and surface area concentrations. Samplings lasted 4 hours and were conducted during 5 days using the Grimm 1.109 portable aerosol spectrometer, the Grimm portable NanoCheck™ 1.320, the electrical low pressure impactor, and the nanoparticle aerosol monitor AeroTrak™ 9000. Higher concentrations of fine particles were observed in welding and grinding activities. The highest values of UFP number and alveolar surface area concentrations were detected in the welding booth. Potential emission sources of fine particles and UFPs can be identified by the multifaceted approach outlined in this study. This sampling strategy provides important data on key UFP metrics.

  10. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Mössbauer spectroscopic study

    Science.gov (United States)

    Kolker, Allan; Huggins, Frank E.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less

  11. Spatial Mapping for Managing Oxidized Pyrite (FeS2 in South Sumatra Wetlands, Indonesia

    Directory of Open Access Journals (Sweden)

    M. Edi Armanto

    2015-05-01

    Full Text Available The research aimed to analyze spatial mapping for managing oxidized pyrite (FeS2 in South Sumatra wetlands, Indonesia. The field observations are done by exploring several transect on land units. The field description refers to Soil Survey Staff (2014. Water and soil samples were taken from selected key areas for laboratory analysis. The vegetation data was collected by making sample plots (squares method placed on each vegetation type with plot sizes depending on the vegetation type, namely 10 x 10 m for secondary forests and 5 x 5 m for shrubs and grass. The observations of surface water level were done during the river receding with units of m above sea level (m asl. The research results showed that pyrite formation is largely determined by the availability of natural vegetation as Sulfur (S donors, climate and uncontrolled water balance and supporting fauna such as crabs and mud shrimp.  Climate and water balance as well as supporting faunas is the main supporting factors to accelerate the process of pyrite formation. Oxidized pyrite serves to increase soil acidity, becomes toxic to fish ponds and arable soils, plant growth and disturbing the water and soil nutrient balances. Oxidized pyrite is predominantly accelerated by the dynamics of river water and disturbed natural vegetation by human activities.  The pyrite oxidation management approach is divided into three main components of technologies, namely water management, land management and commodity management.

  12. Mineralogy, geochemistry and pyrite content of Bulgarian subbituminous coals, Pernik Basin

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.; Petrov, O.; Kortenski, J. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Applied Mineralogy

    1996-08-01

    The mineralogy and geochemistry of Pernik subbituminous coals (coal bed A) and some genetic peculiarities related to the mineral formation were studied. The mineral matter of the coal consists chiefly of pyrite, kaolinite, siderite, quartz and calcite. Other minerals (dolomite, ankerite, plagioclase and some sulphates) are present in minor amounts, some occurring as accessory single crystals. Pyrite is them main mineral in these coals and exhibits a large array of textures and morphology. Isolated and clustered euhedral, bacterial and inorganic framboidal, cluster-like, homogeneous and microconcretional massive, infilling and replacing anhedral, and cleat-filling and fracture-filling infiltrational pyrite types were observed. Four stages of mineralization were distinguished: pyrite-kaolinite, pyrite, pyrte-siderite and sulphate stages. The amount of pyrite present in two sections of coal bed A was determined by quantitative powder X-ray diffraction analysis. The concentrations of 37 trace elements were determined. As, Cu, Co, Ni, Zn, Pb, V, Ti, Mo Rb, Cr and Mn are typomorphic for this coal. On the basis of their relation to organic or inorganic matter, four groups of trace elements were subdivided; and on the basis of cluster analysis four associations were differentiated. 19 refs., 31 figs., 2 tabs.

  13. Bio-oxidation of pyrite, chalcopyrite and pyrrhotite by Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the bio-oxidation processes by Acidithiobacillus ferrooxidans of pyrite, chalcopyrite and pyrrhotite. Our experimental results show distinctive bio-oxidation characteristics for the three sulfide minerals. In the presence of A. ferrooxidans, the sulfide oxidation rates generally decrease in the order of pyrrhotite, chalcopyrite and pyrite. The pH during bio-oxidation of pyrite tends to decrease as a whole, whereas a rise-fall pattern was recorded for both chalcopyrite and pyrrhotite in their pH variations. No deposition was observed during the bio-oxidation of pyrite, suggesting a possible link to lower pH value in the process. However, large amounts of jarosite and element sulfur were determined in the bio-oxidation processes of chalcopyrite and pyrrhotite. A. ferrooxidans individuals were found directly as attachments to erosion pits on the smooth surface of pyrite. The erosion pits are similar to the bacterium in shape and length, and thus are probably products of dissolution of organic acid secreted by the cells on the mineral surface. More complicatedly, biofilm exists on the surfaces of chalcopyrite and pyrrhotite. This type of structured community of A. ferrooxidans is enclosed in the extracellular polymeric substances (EPS), and covered with the deposition generated in the bio-oxidation processes of chalcopyrite and pyrrhotite. Different bio-oxidation processes of pyrite, chalcopyrite and pyrrhotite may be linked mainly to characteristics of individual minerals and the pH in the reaction solution of the bio-oxidation system.

  14. Degradation of off-gas toluene in continuous pyrite Fenton system.

    Science.gov (United States)

    Choi, Kyunghoon; Bae, Sungjun; Lee, Woojin

    2014-09-15

    Degradation of off-gas toluene from a toluene reservoir and a soil vapor extraction (SVE) process was investigated in a continuous pyrite Fenton system. The removal of off-gas toluene from the toluene reservoir was >95% by 8h in the pyrite Fenton system, while it was ∼97 % by 3h in classic Fenton system and then rapidly decreased to initial level by 8h. Continuous consumption of low Fe(II) concentration dissolved from pyrite surface (0.05-0.11 mM) was observed in the pyrite Fenton system, which can lead to the effective and successful removal of the gas-phase toluene due to stable production of OH radical (OH). Inhibitor and spectroscopic test results showed that OH was a dominant radical that degraded gas-phase toluene during the reaction. Off-gas toluene from the SVE process was removed by 96% in the pyrite Fenton system, and remnant toluene from rebounding effect was treated by 99%. Main transformation products from toluene oxidation were benzoic acid (31.4%) and CO2 (38.8%) at 4h, while traces of benzyl alcohol (1.3%) and benzaldehyde (0.7%) were observed. Maximum operation time of continuous pyrite Fenton system was estimated to be 56-61 d and its optimal operation time achieving emission standard was 28.9 d. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Research on Genesis of Pyrite near the Permian-Triassic Boundary in Meishan, Zhejiang, China

    Institute of Scientific and Technical Information of China (English)

    JIANG Yao-fa; TANG Yue-gang; CHOU Chen-lin

    2006-01-01

    The content and crystal forms of pyrite and sulfur isotope composition of pyrite sulfur as well as its vertical distribution near the Permian-Triassic (P/T) boundary in the Meishan section, Changxing county, Zhejiang province, China were studied using geological, petrological, mineralogical and geochemical methods (techniques). The result showed that the genesis of abundant pyrites in bed 24e2 at the uppermost part of the Changxing Formation in the Meishan section may be related to volcanic activity. In bed 24e2 of the Meishan section, pyrite has its highest content of 1.84% and the sulfur isotope composition has the highest δ34S value at +2.2‰ which is very similar to that of the average value of volcanic gas. There are some volcanic products such as β-quartz, siliceous cylinders and siliceous spherules which coexisted with pyrites in beds 24e2 and 24f. It can be concluded that a large quantity of volcanic ash fell into the South China Sea and was incorporated into marine sediments during the formation of limestone at the uppermost part of the Changxing Formation. The volcanic eruption with massive amounts of H2S and SO2 gas at the end of the Permian period resulted in the enrichment of H2S in the South China Sea areas. The reaction of H2S with reactive iron minerals formed the mass of abundant pyrites.

  16. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3......-, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3- or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer......-marked (FeS2)-Fe-55 occurred with MnO2 but not with NO3- or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS, and FeS oxidation with NO3- or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several...

  17. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, E.I.B. [School of Human and Environmental Sciences, University of Reading (United Kingdom)]. E-mail: edith.chopin@univ-reims.fr; Alloway, B.J. [School of Human and Environmental Sciences, University of Reading (United Kingdom)

    2007-02-15

    Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling trace element distribution in soils around ancient and modern mining and smelting areas are not always clear. Tharsis, Riotinto and Huelva are located in the Iberian Pyrite Belt in SW Spain. Tharsis and Riotinto mines have been exploited since 2500 B.C., with intensive smelting taking place. Huelva, established in 1970 and using the Flash Furnace Outokumpu process, is currently one of the largest smelter in the world. Pyrite and chalcopyrite ore have been intensively smelted for Cu. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters, being found up to a maximum of 2 km from the mines and smelters at Tharsis, Riotinto and Huelva. Trace element partitioning (over 2/3 of trace elements found in the residual immobile fraction of soils at Tharsis) and soil particles examination by SEM-EDX showed that trace elements were not adsorbed onto soil particles, but were included within the matrix of large trace element-rich Fe silicate slag particles (i.e. 1 mm o at least 1 wt.% As, Cu and Zn, and 2 wt.% Pb). Slag particle large size (1 mm o) was found to control the geographically restricted trace element distribution in soils at Tharsis, Riotinto and Huelva, since large heavy particles could not have been transported long distances. Distribution and partitioning indicated that impacts to the environment as a result of mining and smelting should remain minimal in the region.

  18. Early diagenetic pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, eastern England

    Science.gov (United States)

    Taylor, K. G.; Macquaker, J. H. S.

    2000-03-01

    Diagenetic pyrite in the mudstones and ironstones of the Lower Jurassic Cleveland Ironstone Formation of eastern England exhibits two distinct morphologies: framboidal pyrite, commonly associated with organic matter, and euhedral pyrite, associated with detrital clay pellets. These two morphologies are mutually exclusive in occurrence. Framboidal pyrite is present in clay-rich mudstones, ooidal ironstones, apatite-rich units and some silt-rich mudstones. Euhedral pyrite is present in silt-rich and sand-rich mudstones. δ34S isotopic analysis of six samples of pyrite suggests that both types of pyrite morphology precipitated during early diagenesis from porewaters with open access to overlying sea-water, although both probably acted as sites for continued pyrite precipitation during burial. It is proposed that framboidal pyrite precipitated from iron-dominated porewaters at sites of sulfide supply (i.e. in the region of organic matter as a result of bacterial sulfate reduction) where, locally, sulfide production rates were high enough for porewaters to reach supersaturation with respect to FeS. Euhedral pyrite also precipitated from iron-dominated porewaters, but sulfide production rates from organic matter was such that FeS saturation was not reached at the sites of sulfide production. Instead, euhedral pyrite was precipitated directly from porewater when FeS2 saturation was reached. The control over pyrite morphology was probably the amount and reactivity of the organic matter within the deposited sediments. The sand-rich mudstones contained less reactive organic matter due to clastic dilution and deposition in shallower environments with O2-rich bottom waters. The ironstones and apatite-rich units were deposited under very low sedimentation rates, and as a result organic matter contents were very low and iron reduction dominated early diagenesis, which inhibited sulfate-reduction. The presence of minor framboidal pyrite within these units, however, suggests that

  19. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (competitividad de España (MINECO) and the European Regional Development Fund (ERDF) for financial support of the project (CGL2009-10557). The MINECO is also acknowledged for providing the Formación de Professional Investigator (FPI) grant (BES-2010-42581). REFERENCES Golchin, A., Oades, J., Skjemstad, J., Clarke, P., 1994. Soil structure and carbon cycling. Soil Research 32, 1043-1068. Sohi, S.P., Mahieu, N., Arah, J.R.M., Powlson, D.S., Madari, B., Gaunt, J.L., 2001. A procedure for isolating soil organic matter fractions suitable for modelling. Soil Science Society of America Journal 65, 1121.

  20. Acceptance Test Data for Candidate AGR-5/6/7 TRISO Particle Batches BWXT Coater Batches 93165 93172 Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).

  1. Cadmium in the waters off South Morocco: Nature of particles hosting Cd and insights into the mechanisms fractionating Cd from phosphate

    Science.gov (United States)

    Waeles, Matthieu; Planquette, Hélène; Afandi, Imane; Delebecque, Nina; Bouthir, Fatimazohra; Donval, Anne; Shelley, Rachel U.; Auger, Pierre-Amaël.; Riso, Ricardo D.; Tito de Morais, Luis

    2016-05-01

    In this study, we report the distributions of total dissolvable cadmium and particulate cadmium from 27 stations in southern Moroccan coastal waters (22°N-30°N), which is part of the North-West African upwelling system. These distributions were predominantly controlled by upwelling of the North Atlantic Central Waters (NACWs) and uptake by primary production. Atmospheric inputs and phosphogypsum slurry inputs from the phosphate industry at Jorf Lasfar (33°N), recently estimated as an important source of dissolved cadmium (240 t Cd yr-1), are at best of minor importance for the studied waters. Our study provides new insights into the mechanisms fractionating cadmium from phosphate. In the upper 30 m, the anomalies observed in terms of Cd:P ratios in both the particulate and total dissolvable fractions were related to an overall preferential uptake of phosphate. We show that the type of phytoplanktonic assemblage (diatoms versus dinoflagellates) is also a determinant of the fractionation intensity. In subsurface waters (30-60 m), a clear preferential release of P (versus Cd) was observed indicating that remineralization in Oxygen Minimum Zones is a key process in sequestering Cd.

  2. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    Science.gov (United States)

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-19

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.

  3. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt.

    Science.gov (United States)

    Gadanho, Mário; Libkind, Diego; Sampaio, José Paulo

    2006-10-01

    In the Iberian Pyrite Belt (IPB), acid rock drainage gives rise to aquatic habitats with low pH and high concentrations of heavy metals, a situation that causes important environmental problems. We investigated the occurrence and diversity of yeasts in two localities of the IPB: São Domingos (Portugal) and Rio Tinto (Spain). Yeast isolation was performed on conventional culture media (MYP), acidified (pH 3) media (MYP3), and on media prepared with water from the study sites (MYPw). The main goal of the study was to determine the structure of the yeast community; a combination of molecular methods was used for accurate species identifications. Our results showed that the largest fraction of the yeast community was recovered on MYPw rather than on MYP and MYP3. Twenty-seven yeast species were detected, 48% of which might represent undescribed taxa. Among these, an undescribed species of the genus Cryptococcus required low pH for growth, a property that has not been observed before in yeasts. The communities of S. Domingos and R. Tinto showed a considerable resemblance, and eight yeast species were simultaneously found in both localities. Taking into consideration the physicochemical parameters studied, we propose a hierarchic organization of the yeast community in terms of high-, intermediate-, or low-stress conditions of the environment. According to this ranking, the acidophile yeast Cryptococcus sp. 5 is considered the most tolerant species, followed by Cryptococcus sp. 3 and Lecytophora sp. Species occurring in situations of intermediate environmental stress were Candida fluviatilis, Rhodosporidium toruloides, Williopsis californica, and three unidentified yeasts belonging to Rhodotorula and Cryptococcus.

  4. DFT study on the galvanic interaction between pyrite (100) and galena (100) surfaces

    Science.gov (United States)

    Ke, Baolin; Li, Yuqiong; Chen, Jianhua; Zhao, Cuihua; Chen, Ye

    2016-03-01

    The galvanic interaction between pyrite and galena surface has been investigated using density functional theory (DFT) method. The calculated results show that galvanic interactions between pyrite and galena surface are decreased with the increase of contact distance. The galvanic interactions still occurs even the distance larger than the sum of two atoms radius (≈2.8 Å), and the limit distance of galvanic interaction between galena and pyrite surface is about 10 Å, which is consistent with the quantum tunneling effect. Through Mulliken charge population calculation, it is found that electrons transfer from galena to pyrite. For galena surface, Pb 6s and 6p states lose electrons and S 3p state loses a small amount of electrons, which causes the electron loss of galena. For pyrite surface, Fe 4p state obtains large numbers of electrons, resulting in the decrease of positive charge of Fe atom. However, the 3p state of S atom loses a small numbers of electrons. The reactivity of mineral surface has also been studied by calculating the frontier orbitals of minerals. Results suggest that the highest occupied molecular orbital (HOMO) coefficients of galena are increased whereas those of pyrite are decreased with the enhancing galvanic interaction, indicating that the oxidation of galena surface would be enhanced due to the galvanic interaction. The Fukui indices and dual descriptor values of surface atoms suggest that the nucleophilicity of the galena surface increases, meanwhile, the electrophilicity of pyrite surface increases with the decrease of the contact distance. In addition, the density of states (DOS) of atoms results show that the activity of electrons in Pb 6s and 6p orbitals enhances while the activity of electrons in Fe 3d orbitals weaken due to the galvanic contact between minerals.

  5. Action time effect of lime on its depressive ability for pyrite

    Institute of Scientific and Technical Information of China (English)

    Tichang Sun

    2004-01-01

    Two sample groups of bulk concentrates consisting mainly of pyrite and chalcopyrite from Daye and Chenghchao Mines in Hubei Province of China were used to investigate the effect of the action time of lime on its depressive ability for pyrite. The experimental results conducted with different samples and collectors showed that the action time between lime and pyrite markedly influences the depressive ability of lime. The depressive ability of lime increased with the action time increasing. It was also proved that the depressive results obtained at a large lime dosage after a shorter action time are similar to those obtained at a small lime dosage after a longer action time. The increase of depressive ability of lime after a longer action time is because that there are different mechanisms in different action time. The composition on the surface of pyrite acted for different time with lime was studied by using ESCA (Electron Spectroscopic Chemical Analysis). The results showed that iron hydroxide and calcium sulphate formed on the pyrite surface at the presence of lime in the pulp but the amounts of iron hydroxide and calcium sulphate were different at different action time. At the beginning action time the compound formed on the pyrite surface was mainly calcium sulphate and almost no iron hydroxide formed; but with the action time increasing, iron hydroxide formed. The longer the action time, the more iron hydroxide and the less calcium sulphate formed. It was considered that the stronger depressive ability of lime after a longer action time is because more iron hydroxide forms on the pyrite surface.

  6. The mobilization of toxic trace elements due to pyrite oxidation at the mega-nourishment The Sand Motor, the Netherlands

    Science.gov (United States)

    Pit, I.; Doodeman, L.; Van Heteren, S.; van Bruggen, M.; Griffioen, J.

    2014-12-01

    Pilot project "The Sand Motor" is a 21.5 million m3 nourishment of sandy sediment situated along the coast of the Netherlands close to The Hague (figure 1). It was constructed in 2011 and initially spans the shore over a 2.4 km stretch and extends up to 1 km offshore creating a hook-shaped peninsula. Due to wind, waves and currents the Sand Motor will gradually change in shape and eventually be fully incorporated into the dunes and beach. This concept is expected to be more environmentally friendly compared to traditional beach and shoreface nourishments. The aim of this project is to understand how oxidation changed the geochemistry of the sediment applied and to address possible toxic element mobilization. The sediment was taken 10 km out of shore from the sea floor, which was at a depth of 20 m. Grab samples of the upper 25 cm seabed analyzed for geochemical mapping of Southern North Sea sediments, show locally high contents of sulfur, iron and trace elements like arsenic indicating presence of pyrite with impurities. Sediment was removed to a maximum depth of 6 m below sea floor, reaching different geological layers including bog iron ore layers. Different degrees of pyrite oxidation are expected with depth at the Sand Motor. First, minimum oxidation when sediment was deposited from the ship directly by opening the bottom floor, which is now present under water at the deepest part of the nourishment. Second, limited oxidation when sediment was applied from the ship under high pressure through the air, and settled below sea level. Last, maximum oxidation when the same method was used but the sediment remains located in a surface layer having a maximum height of 4 m above sea level. At the Sand Motor, samples were taken of surface water, pore water and sediment from the surface to a depth of 10 m, the bottom of the nourishment. Analyses show that pyrite oxidation has occurred above sea level and mobilization of arsenic is present up to a maximum concentration of

  7. Gold deposition on pyrite and the common sulfide minerals: An STM/STS and SR-XPS study of surface reactions and Au nanoparticles

    Science.gov (United States)

    Mikhlin, Yuri L.; Romanchenko, Alexander S.

    2007-12-01

    Gold species spontaneously deposited on pyrite and chalcopyrite, pyrrhotite, galena, sphalerite from HAuCl 4 solutions at room temperature, as well as the state of the reacted mineral surfaces have been characterized using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), scanning tunneling microscopy and tunneling spectroscopy (STM/STS). The deposition of silver from 10 -4 M AgNO 3 has been examined for comparison. Gold precipitates as metallic nanoparticles (NPs) from about 3 nm to 30 nm in diameter, which tends to aggregate forming larger particles, especially on pyrite. The Au 4f binding energies increase up to 1 eV with decreasing size of individual Au 0 NPs, probably due to the temporal charging in the final state. Concurrently, a positive correlation between the tunneling current and the particle size was found in STS. Both these size effects were observed for unusually large, up to 20 nm Au particles. In contrast, silver deposited on the minerals as nanoparticles of semiconducting sulfide showed no shifts of photoelectron lines and different tunneling spectra. The quantity of gold deposited on pyrite and other minerals increased with time; it was lower for fracture surfaces and it grew if minerals were moderately pre-oxidized, while the preliminary leaching in Fe(III)-bearing media inhibited the following Au deposition. After the contact of polished minerals with 10 -4 M AuCl4- solution (pH 1.5) for 10 min, the gold uptake changed in the order CuFeS 2 > ZnS > PbS > FeAsS > FeS 2 > Fe 7S 8. It was noticed that the open circuit (mixed) potentials of the minerals varied in approximately the same order, excepting chalcopyrite. We concluded that the potentials of minerals were largely determined by Fe(II)/Fe(III) couple, whereas the reduction of gold complexes had a minor effect. As a result, the deposition of gold, although it proceeded via the electrochemical mechanism, increased with decreasing potential. This suggests, in particular, that the

  8. Fractional motions

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)

    2013-06-10

    Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.

  9. Dynamics of electrodeposition of tetraethylthioram disulphide(TETD) on pyrite surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electrode process of pyrite in diethyldithiocarbamate (DDTC) solution pH 11.4 was investigated by using cyclic voltammetry, potentiostatic and ehronopotentiometry. Tetraethylthioram disulphide (TETD) was electrodeposited on pyrite electrode surface as the electrode potential is higher than 0.2 V. The relationship of the current density caused by diffusion and reaction time can be ascertained as i = 1/(9.08×10-5 + 4.77 × 10-3 t0.5 ), and the diffusion coefficient of DDTC on pyrite surface is about 3.72×10-6 cm2/s.At pH 11.4, the thickness of TETD adsorbed on pyrite surface is about 1.63 molecule layer. The electrochemical dynamics equation of the reduction of TETD on pyrite surface is given as η = 0.116- 0.0641og[1-(t/τ)0.5]. The kinetic parameters were determined as follows: the exchange current density (io) is 3.08μA/cm2; the transmission coefficient(α) is 0.462.

  10. Pyrite Oxidation in Leaching Process of Radionuclides and Heavy Metals from Uranium Mill Tailings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Pyrite is a sensitive mineral in the geological environment, and its oxidation produces an important geochemical and environmental effect on the control of the redox and pH conditions. Column experiment results were used for modeling the geochemical processes in uranium mill tailings under lcaching conditions. Oxidation of pyrite dominates the control of the tailings leaching process. The experimental and modeling results show that the leachate chemistry changes substantially with the decrease in pyrite consumption. In the initial stage of the leaching experiment, the pyrite is consumed several hundred times greater than that in the later stages, for much more oxygen is present in the tailings in the initial stage. As the experiment continues, the tailings is gradually saturated with water and the oxygen concentration greatly decreases and so does pyrite consumption. The experimental and modeling results are useful for the design of mill tailing decommissioning., oxidation process and transport of radioactive nuclides and heavy metals can be constrained by controlling the oxygen concentration of tailings and the infiltration of meteoric water.

  11. Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    Agangi, A., E-mail: aagangi@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa); Przybyłowicz, W., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Hofmann, A., E-mail: ahofmann@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa)

    2015-04-01

    Chemical zoning of pyrites can record the evolution of mineralising fluids at widely varying P–T conditions ranging from diagenesis to medium-grade metamorphism. If preserved, zoning can reveal growth textures, brecciation and veining, resorption and recrystallisation events, thus shedding light on the processes that contributed to ore formation. Chemical zoning of sulfides is invisible in optical microscopy, but can be studied by chemical etching, high-contrast back-scattering electron images, and elemental imaging. In this study we compared micro-PIXE and WDS-EPMA elemental maps on the chemically zoned pyrites in mineralised vein-bearing samples from the Sheba and Fairview gold mines in the Barberton Greenstone Belt, South Africa. Elemental images show complex distribution of trace elements, suggesting multiple events of pyrite crystallisation and gold deposition. EPMA maps show fine-scale variations reflecting growth and recrystallisation textures marked, in particular, by variations of As, Ni, and Co. In PIXE maps, gold occurs both as finely-distributed and discrete inclusions, suggesting incorporation in the pyrite structure as solid solution, and deposition as electrum inclusions, respectively. Micro-PIXE and EPMA provide complementary information, forming together a powerful tool to obtain information on chemical zoning of pyrites in ore deposits.

  12. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    Directory of Open Access Journals (Sweden)

    Holm Nils G

    2011-02-01

    Full Text Available Abstract One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials.

  13. Pyrite Formation in Organic-rich Clay, Calcitic and Coal-Forming Environments

    Institute of Scientific and Technical Information of China (English)

    Gordana DEVI(C); Petar PFENDT; Branimir JOVAN(C)I(C)EVI(C); Zoran POPOVIC

    2006-01-01

    The early diagenetic characteristics of pyrite formation processes in a Miocene freshwater sequence of mixed sediments (coal fragments in clays, sandstones or shales) alternating with continuous brown coal layers was investigated. Based on abundant minerals, the following main sedimentary environments were distinguished: the illite-montmorillonitic (I-M), calcitic (Ct) and coal-forming environment (CL). For these hydrogeochemically differing environments the effects of limiting factors on the pyrite formation process (availability of sulphate and Fe, amount of organic matter and participation of organic sulphur) were assessed by correlation analysis. Significant differences in the effects of these limiting factors in the particular environments were observed. These differences were explained taking in account the different oxidative activity, Fe-complex and surface complex forming properties of hnmic substances in dependence of pH of environment and the abundance of sorptionally active clay minerals. In environments having a relatively low pH and containing clay minerals (I-Mand CL-environments) the oxidative activity of humic substances (Hs) on pyrite precursors was greatly prevented however pyrite formation depended on reactive Fe availability as the consequence of complex formation. On the contrary, in environments with a relatively high pH, as it was the calcitic,the oxidative activity of Hs was greatly enhanced, thus oxidizing the sulfur precursors of pyrite. The oxidation degree of organic matter was probably also a consequence of the differing activity of the humic electron-acceptors.

  14. New method for the simultaneous determination of pyrite content and proximate analysis in coal and lignite

    Energy Technology Data Exchange (ETDEWEB)

    Aylmer, D.M.

    1983-01-01

    The new method combines thermogravimetry and thermomagnetometry and utilizes inert, oxidizing, and reducing gases. Results by the new technique are compared to the ASTM method, one set obtained by the author on a Fisher Coal Analyzer and one set by the Coal Research Laboratory of the Pennsylvania State University. Comparison of thermo-magneto-gravimetric-analysis with the ASTM method indicates good agreement and comparable accuracy. These studies show that the thermo-magneto-gravimetric-analysis are: 1) ease of determination of both proximate analysis and pyrite, which permits use of unskilled technicians; 2) widespread availability of the apparatus; 3) cost effectiveness due to use of unskilled operators; 4) automation, presently available for proximate analysis on some commercial instruments and is easily accomplished for pyrite analysis, as well; 5) advantage over pyrite analysis by the ASTM method in two situations: first, when pyrite is totally surrounded by acid-insoluble organic-material and secondly where significant amounts of pyrite have been oxidized to FeSO/sub 4/; and 6) a permanent record of the measurements, which are continuous, is made in contrast to the ASTM method which records only initial and final conditions.

  15. [Limestone and pyrite-limestone constructed wetlands for treating river water].

    Science.gov (United States)

    Zhang, Jing; Li, Rui-hua; Li, Jie; Hu, Jun-song; Sun, Qian-qian

    2013-09-01

    Polluted river water was treated with limestone and pyrite-limestone subsurface horizontal constructed wetlands. The aims were to know the performance of two wetlands on removal of common pollutants, especially nitrogen and phosphorus, and analyze the actions of these minerals. The relationship between hydraulic retention time and purification performance of two constructed wetlands was studied. The optimal hydraulic retention time for pollutant removal was about 3 d, The average removal efficiency of COD, TN and TP were 51%, 70% and 95%, respectively. With same influent and hydraulic loading, the average removal efficiency of COD, NH4+ -N, TN and TP were 53.93%, 82.13%, 66%, 50.9%, and 51.66%, 77.43%, 72.06%, 97.35% for limestone and pyrite-limestone constructed wetlands, respectively. There were few differences between limestone and pyrite-limestone wetlands on COD removal, but the nitrogen and phosphorus removal of pyrite-limestone constructed wetland was higher than that of limestone constructed wetland. The phosphorus removal of pyrite-limestone wetland was more efficiency and stable, not affected by temperature.

  16. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel

    Science.gov (United States)

    Alves, C. A.; Vicente, A. M. P.; Gomes, J.; Nunes, T.; Duarte, M.; Bandowe, B. A. M.

    2016-11-01

    A sampling campaign of size segregated particulate matter (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) was carried out at two sites, one in a road tunnel (Braga, Portugal) and another at an urban background location in the neighbourhood. Particle-bound polycyclic aromatic compounds were extracted with organic solvents and analysed by gas chromatography-mass spectrometry. Twenty six parent and alkyl-polycyclic aromatic hydrocarbons (PAHs), 4 azaarenes (AZAs), 15 nitrated and 15 oxygenated derivatives (NPAHs and OPAHs) were analysed. On average, submicron particles (PM1) in the tunnel comprised 93, 91, 96 and 71% of the total PAHs, OPAHs, NPAHs and AZAs mass in PM10, respectively. Tunnel to outdoor PAH concentration ratios between 10 and 14 reveal the strong contribution of fresh exhaust emissions to the PM loads. The dominant PAHs in the tunnel were pyrene, retene and benzo[ghi]perylene, accounting for 20, 17 and 8% of the total PAH levels in PM10, respectively. Isomer ratios indicated the importance of unburnt fuel as a significant PAH source. The only NPAH consistently present in all samples was 5-nitroacenaphthene. Indanone and 1,8-naphthalic anhydride were the most abundant OPAHs, accounting for 25 and 17% of the total concentrations of this organic class, respectively. Other abundant OPAHs were 1,4-naphthoquinone, 9-fluorenone, 1,2-acenaphthylenequinone and 7H-benz[de]anthracene-7-one. Individual emission factors (μg veh- 1 km- 1) were estimated and compared with those obtained in other tunnel studies.

  17. Understanding Multiplication of Fractions.

    Science.gov (United States)

    Sweetland, Robert D.

    1984-01-01

    Discussed the use of Cuisenaire rods in teaching the multiplication of fractions. Considers whole number times proper fraction, proper fraction multiplied by proper fraction, mixed number times proper fraction, and mixed fraction multiplied by mixed fractions. (JN)

  18. Different nano-particles volume fraction and Hartmann number effects on flow and heat transfer of water-silver nanofluid under the variable heat flux

    Science.gov (United States)

    Forghani-Tehrani, Pezhman; Karimipour, Arash; Afrand, Masoud; Mousavi, Sayedali

    2017-01-01

    Nanofluid flow and heat transfer composed of water-silver nanoparticles is investigated numerically inside a microchannel. Finite volume approach (FVM) is applied and the effects of gravity are ignored. The whole length of Microchannel is considered in three sections as l1=l3=0.151 and l2=0.71. The linear variable heat flux affects the microchannel wall in the length of l2 while a magnetic field with strength of B0 is considered over the whole domain of it. The influences of different values of Hartmann number (Ha=0, 10, 20), volume fraction of the nanoparticles (ɸ=0, 0.02, 0.04) and Reynolds number (Re=10, 50, 200) on the hydrodynamic and thermal properties of flow are reported. The investigation of slip velocity variations under the effects of a magnetic field are presented for the first time (to the best knowledge of author) while the non-dimensional slip coefficient are selected as B=0.01, 0.05, 0.1 at different states.

  19. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  20. Crystalomorphological Characteristics of Pyrite in Hydrothermal Gold Deposit--An Experimental Study

    Institute of Scientific and Technical Information of China (English)

    蔡元吉; 周茂

    1994-01-01

    On the basis of the geological characteristics of primary gold deposits, with an experiment on modelling the environment of gold mineralization , the evolutionary array and growth mechanism and their relationship with gold mineralization of the crystal forms of pyrite, i. e. pentagonal dodecahedron, octahedron and cube, formed under the different values of fo2, fs2, T (℃), P(Pa) and C (salinity) in the hy-drothermal system are studied. The results show that the crystal form of pyrite is not only related to the temperature L, but also affected by the geochemistry of iron and sulfur which formed pyrite and other physicochemical conditions.Our results promote the study of gold mineralization, genetic and prospecting mineralogy.

  1. Re-Os dating of pyrite from Giant Bayan Obo REE-Nb-Fe deposit

    Institute of Scientific and Technical Information of China (English)

    LIU Yulong; YANG Gang; CHEN Jiangfeng; DU Andao; XIE Zhi

    2004-01-01

    Six pyrite samples from the giant Bayan Obo REE-Nb-Fe deposit are dated by Re-Os technique. Pyrite studied is associated with barite and separated from a vein cutting REE mineralization. Pyrites analyzed contain 16-30 ng Re and 0.10-0.16 ng Os, and yield a Caledonian isochron age of 439 ± 86 Ma. High Re/Os ratio, low Os concentration and highly radiogenic Os isotopic ratios of these samples suggest that they are of crustal origin. The northern margin of the North China Block was a passive continental margin, but not a subduction zone with enormous volcanic activities in the Early Paleozoic Era. Our Re-Os result provides new evidences, showing that Bayan Obo deposit experienced a thermal disturbance of crustal origin in the Caledonian time and some isotopic systems recorded only the time of the disturbance, not the mineralization age.

  2. Hydrometallurgical-UV process to produce ferrous sulfate from the pyrite present in coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Viganico, E.M.; Silva, R.A. [South Rio Grande Federal Univ., Porto Alegre (Brazil).Graduate Program in Mining, Metallurgical and Materials Technology Center

    2010-07-01

    The oxidation of pyrite can promote acid mine drainage (AMD). This study developed a hydrometallurgical-UV route for the production of ferrous sulfate. The laboratory study was conducted using a pyrite concentrate obtained from a processed coal tailing. Leaching of the tailing was performed in packed bed columns in an oxidizing environment with an aqueous medium. Recirculation of the liquor produced an Fe{sup 3+} iron rich extract. Ultraviolet irradiation was then used to convert the Fe{sup 3+} to Fe{sup 2+}. Heat provided by the UV lamps caused the ferrous sulfate to crystallize. X-ray diffraction (XRD) studies of the crystals demonstrated that it is possible to produce commercial-grade ferrous sulfate heptahydrate crystals from the pyrite present in coal tailings. The crystals are used to treat anemia in humans and animals, and are also used as reagents for waste and waste water treatment. 7 refs., 2 tabs., 2 figs.

  3. Ferruginous Microspherules in Bauxite at Maochang, Guizhou Province, China: Products of Microbe-Pyrite Interaction?

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yuefei; WANG Rucheng; LU Jianjun; LI Yiliang

    2006-01-01

    The Maochang bauxite in Guizhou Province is one of the important aluminum ore deposits in southwestern China. Ferruginous spherules, measuring about a few microns across, were found in the transitional layer of the deposit. The EDS and XRD results show that the microspherules are composed mostly of iron (hydr)oxide minerals (goethite) with only weak presence of aluminum and silicon.Occasionally, some pyrite micrograins with dissolved surface are found associated with goethite within the spherules. It is thus suggested that microspherules are linked to pyrite oxidization. It is also thought that microbial activities contribute not only to pyrite oxidization, but also to ball-like assemblage of the iron (hydr)oxides. The mechanism of the formation of ferruginous microspherules is also believed to be important in studying geomicrobiology of bauxite.

  4. Evidence for microbial dissolution of pyrite from the Lower Cambrian oolitic limestone, South China

    Directory of Open Access Journals (Sweden)

    W. Liu

    2011-03-01

    Full Text Available The oxidative dissolution of the sulphide mineral pyrite (FeS2 has been of significant interest since it affects global geochemical cycles, generates acid mine drainage, and is used in industrial metal extraction. Several different groups of prokaryotes are known to catalyze the dissolution of pyrite and use the free energy generated from the oxidation, which may result in the dissolution of the mineral and the precipitation of the secondary ferric iron minerals either on the cell surface or is separated from the cells. However, straightforward evidence for such metabolic process in the ancient sediments is rare. Here we report pyrite crystals from the Lower Cambrian oolitic limestones that show indications of microbial erosion in various degrees. Erosion pits and tubular micro-tunnels with characteristic shapes and sizes in our samples are generally similar to those obtained from the laboratory studies on the oxidative dissolution of pyrite by iron-oxidizing bacteria. Diagenetic examination demonstrates that the bioerosion predates the consolidation of the limestone. In addition, bacillus-sized and -shaped microfossils encrusted with iron oxides are present in our samples, which are very likely to be fossilized sheaths produced by iron-oxidizing bacteria. Our findings indicate that the microbial oxidative dissolution of pyrite existed in the Cambrian shallow marine carbonate sediments. Furthermore, we suggest that characteristic pitting patterns on the pyrite crystals from ancient sediments are an important clue to trace the evolution of life, in particular, the evolution of metabolism like microbial iron oxidation in the remote past on our planet, independent of biomarkers, isotopic signals and body fossils as well.

  5. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  6. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.

    Science.gov (United States)

    Lu, Yayin; Luo, Dinggui; Lai, An; Liu, Guowei; Liu, Lirong; Long, Jianyou; Zhang, Hongguo; Chen, Yongheng

    2017-01-01

    Chelator-assisted phytoextraction is an alternative and effective technique for the remediation of heavy metal-contaminated soils, but the potential for heavy metal leaching needs to be assessed. In the present study, a soil column cultivation-leaching experiment was conducted to investigate the Cd and Pb leaching characteristics during assisted phytoextraction of metal-contaminated soils containing different particle-size soil aggregates. The columns were planted with Zea mays "Zhengdan 958" seedlings and treated with combined applications of EDTA and simulated rainfall (pH 4.5 or 6.5). The results were as follows: (1) The greatest uptake of Cd and Pb by Z. mays was observed after treatment with EDTA (2.5 mmol kg(-1) soil) and soil aggregates of  EDTA2.5-1 (pH 6.5) > EDTA2.5-2 (pH 4.5) > EDTA2.5-4 (pH 4.5) > EDTA2.5-2 (pH 6.5) > EDTA2.5-4 (pH 6.5).

  7. Contributions to the research on the principles of a pyrite solar cell. Beitraege zur Erforschung der Grundlagen einer Pyritsolarzelle

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, B.

    1994-01-01

    Within the framework of the dissertation experiences on pyrite thin film production by plasma sulfurization of iron films and thermal sulfurization of iron films in closed, evacuated quartz ampullas are given. X-ray investigation show that both methods are suitable for pyrite thin film production. Problems have been shown concerning film porosity, film adhesion on the substrates and film stability. (BWI)

  8. Atomistic simulation of the structure and elastic properties of pyrite (FeS2) as a function of pressure

    CSIR Research Space (South Africa)

    Sithole, Happy M

    2003-10-01

    Full Text Available Interatomic potential parameters have been derived at simulated temperatures of 0 K and 300 K to model pyrite FeS2. The predicted pyrite structures are within 1% of those determined experimentally, while the calculated bulk modulus is within 7...

  9. Proving of Golden Pyrite (golden pyrite (Pyr-d. Patogenesia de Pirita dorada (pirita dorada (Pyr-d. Patogenesia de Pirita dorada (pirita dorada (Pyr-d.

    Directory of Open Access Journals (Sweden)

    Silvia Waisse Priven

    2003-01-01

    Full Text Available The results of the proving of Golden Pyrite are presented here. The proving followed the protocol adopted for Brosimum gaudichaudii, further modified to adjust to our group’s demands. They are also presented a thematic study of the remedy, its reportorial rubrics, its differential diagnosis and new rubrics that ought to be added to the repertory. The experience created the need of suggesting new practical guidelines to be included in the protocol.

  10. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    Science.gov (United States)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S = -43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into

  11. Morphology, origin and infrared microthermometry of fluid inclusions in pyrite from the Radka epithermal copper deposit, Srednogorie zone, Bulgaria

    Science.gov (United States)

    Kouzmanov, Kalin; Bailly, Laurent; Ramboz, Claire; Rouer, Olivier; Bény, Jean-Michel

    2002-08-01

    Pyrite samples from the Radka epithermal, replacement type, volcanic rock-hosted copper deposit, Bulgaria, have been studied using near-infrared (IR) microscopy. Two generations of pyrite based on their textures, composition and behaviour in IR light can be distinguished. Electron microprobe analyses, X-ray elemental mapping and Fourier transform infrared spectroscopy were used to study the relationship between crystal zoning, trace element contents and IR transmittance of pyrite. The observed crystal zoning is related to variable arsenic contents in massive fine-grained and colloform pyrite from the early pyrite-quartz assemblage, and cobalt contents in pyrite crystals from the late quartz-pyrite vein assemblage. There is a negative correlation between trace element content and IR transmittance of pyrite. The IR transparency of pyrite is thus a sensitive indicator of changes in trace element concentrations. Fluid inclusions have only been found in the second pyrite generation. Scanning electron microscopy observations on open fluid inclusion cavities permitted the crystallographic features of vacuoles to be determined. A characteristic feature of primary fluid inclusions in pyrite is a negative crystal habit, shaped mainly by {100}, {111} and {210}. This complicated polyhedral morphology is the reason for the observed opacity of some isometric primary inclusions. Secondary fluid inclusion morphology depends on the nature of the surface of the healed fracture. Recognition of the primary or secondary origin of fluid inclusions is enhanced by using crystallographically oriented sections. Microthermometric measurements of primary inclusions indicate that the second pyrite generation was deposited at maximum P-T conditions of 400 °C and 430 bar and from a fluid of low bulk salinity (3.5-4.6 wt%), possibly KCl-dominant. There are large ranges for homogenisation temperatures in secondary inclusions because of necking-down processes. Decrepitation features of some of

  12. 树儿梁小流域坝地土壤颗粒的分形特征%THE FRACTIONAL CHARACTERISTIC OF SOIL PARTICLE ABOUT DAM LAND IN SHUERLIANG SMALL RIVER VALLEY

    Institute of Scientific and Technical Information of China (English)

    刘秀珍; 李翔; 向云; 李静波; 毕如田; 牛越先

    2011-01-01

    Soil particle is one of the important physical properties of soil.In order to study the connotation of soil particle fractal dimension and the description soil properties by using soil particle fractal dimension, this study calculated the soil particle fractal dimension of dam land in Shuerliang small river valley, and analyzed the relation of fractal dimension and composition of various soil particle and nutrient.Results showed that the fractal dimensions of particle size distribution (PSD) of soils increased with the increase of soil clay content in dam land in Shuerliang, and the fractal dimensions of PSD in the front, the middle and the end of the dam respectively were 2.7278, 2.7184 and 2.685, which met the Stokes' rule.The overall difference of the various size particles content of particle constitution of dam land and the change range were very small, the changes in the vertical profile were very weak.There was significantly positive correlation between the fractal dimensions of PSD and the content of soil organic matter in dam land.The fractal dimensions of PSD were highly significantly positive-related with the soil cation exchange capacity, total potassium,slowly available potassium and readily available potassium.So it is positively significant to describe soil nature with the fractional dimension of soil particle.%土壤颗粒的分形维数是重要的土壤物理特性,为研究坝地土壤颗粒分形维数的内涵和利用土壤颗粒的分形维数来描述与土壤性质的关系,本研究计算了树儿梁小流域坝地土壤颗粒的分形维数,并分析了分形维数与各粒级组成及其土壤养分的关系.结果表明:树儿梁坝地土壤颗粒的分形维数随土壤黏粒的增加而增大,坝前、坝中、坝尾土壤颗粒的分形维数分别为2.7278、2.7184和2.685,符合Stokes沉降原理,坝地颗粒组成各粒级含量及变化范围整体差异较小,在垂直剖面上变化都很微弱.坝地土壤颗粒的分形维

  13. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  14. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  15. Synchrotron Spectroscopic Studies of the Reaction of Cleaved Pyrite ( {FeS2}) Surfaces with Cr(VI) Solutions

    Science.gov (United States)

    Doyle, C. S.; Kendelewicz, T.; Bostick, B. C.; Brown, G. E.

    2002-12-01

    Pyrite is one of the most common sulfide ores, and the separation of valuable sulfide minerals from it has been an area of considerable interest for a long time. This extraction has led to a large quantity of pyrite waste, typically remaining in mine tailings piles which can interact with oxygen and surface water. The oxidation of pyrite under these conditions leads to the commonly known environmental problem of acid mine drainage, with acidification of surface waters, and the release of potentially toxic metals remaining within the pyrite matrix. A microscopic understanding of this oxidation process is extremely important and has been the aim of a number of studies. We apply the methods of synchrotron based surface science to this problem, utilizing surface sensitive photoemission and X-ray absorption spectroscopy to study the surface species present on the pyrite surface at the initial stages of oxidation. We have reacted pyrite surfaces with solutions containing chromate. Chromium exists in solution in two principal valence states, trivalent Cr(III) and hexavalent Cr(VI). Hexavalent chromium is itself considered an environmental problem due to its high toxicity and solubility, and thus mobility, whilst trivalent chromium is much less toxic and relatively insoluble. Hexavalent chromate is a strong oxidizing agent, and will react rapidly with the pyrite surface allowing the identification of oxidized iron and sulfur surface species. The possibility of using pyrite as a means of reducing chromate, and at the same time using chromate to passivate the pyrite surface to further oxidation through the buildup of a non-reactive iron-chromium (oxy)hydroxide layer will be investigated. The work was performed on rods cut from a natural pyrite single crystal from the Logroño region of Spain. The rods were then fractured over a reaction vessel, producing a fresh (100) surface for each experiment. The pyrite surfaces were reacted with 50 μM Cr(VI) solutions for 5 minutes at

  16. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea

    DEFF Research Database (Denmark)

    Neretin, LN; Bottcher, ME; Jørgensen, BB

    2004-01-01

    Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above...... and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur...... and polysulfides, formed from H,S by a reductive dissolution of Fe(Ill)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a "direct" pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate...

  17. Measurement and Modeling of Resistivity as a Microscale Tool to Quantify the Volume Fraction of Lenticular (alpha)' Particles in a Partially Transformed (delta)-phase Pu-Ga Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, J J; Wall, M A; Johnson, D L; Mayhall, D J; Schwartz, A J

    2005-07-13

    We have measured and modeled the change in electrical resistivity due to partial transformation to the martensitic {alpha}{prime}-phase in a {delta}-phase Pu-Ga matrix. The primary objective is to relate the change in resistance, measured with a 4-probe technique during the transformation, to the volume fraction of the {alpha}{prime} phase created in the microstructure. Analysis by finite element methods suggests that considerable differences in the resistivity may be anticipated depending on the orientational and morphological configurations of the {alpha}{prime} particles. Finite element analysis of the computed resistance of an assembly of lenticular shaped particles indicates that series resistor or parallel resistor approximations are inaccurate and can lead to an underestimation of the predicted amount of {alpha}{prime} in the sample by 15% or more. Comparison of the resistivity of a simulated network of partially transformed grains or portions of grains suggests that a correction to the measured resistivity allows quantification of the amount of {alpha}{prime} phase in the microstructure with minimal consideration of how the {alpha}{prime} morphology may evolve. It is found that the average of the series and parallel resistor approximations provide the most accurate relationship between the measured resistivity and the amount of {alpha}{prime} phase. The methods described here are applicable to any evolving two-phase microstructure in which the resistance difference between the two phases is measurable.

  18. Research on Enrichment of Iron in Pyrite Cinder%硫酸渣中铁的富集试验研究

    Institute of Scientific and Technical Information of China (English)

    李国旺; 王家伟; 赵平源; 吴霜

    2014-01-01

    研究了从硫酸渣中富集铁,考察了物料细度、物料配比、焙烧温度、焙烧时间对铁品位的影响。结果表明:在物料配比0.20、700℃下焙烧1.5 h ,再用试剂WJ‐2浸出,可将硫酸渣中铁质量分数从49%提高到59.24%。%Enrichmentof iron in pyrite cinder was studied .The effects of pyrite cinder fineness, material proportion, roasting temperature, roasting time on iron grade were examined .The results show that at the conditions of roasting temperature of 700 ℃, the materials proportion of 0 .20, roasting time of 1 .5 h, and leaching using WJ‐2 reagent, the mass fraction of iron in the leaching residue can increase from 49% to 59 .24% .

  19. Fraction Reduction through Continued Fractions

    Science.gov (United States)

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  20. AN INNOVATIVE INTEGRATED APPROACH TO MINIMIZING GYPSUM AND PYRITE WASTES BY CONVERSION TO MARKETABLE PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao

    2000-06-27

    The objective of this research program is to develop a novel integrated process to eliminate millions of tons of gypsum and pyrite wastes generated annually by the U.S. energy industries and reduce the emission of millions of tons of greenhouse gas carbon dioxide. This was accomplished by converting gypsum and pyrite wastes to marketable products such as lime, direct reduced iron (DRI), and sulfur products and obviating the need to calcine millions of tons of limestone for use in utility scrubbers. Specific objectives included: (1) Develop a novel, integrated process for utilizing two major wastes generated by mining and energy industries to produce lime for recycling and other marketable products. (2) Study individual chemical reactions involved in pyrite decomposition, DRI production, and Muller-Kuhne process for lime regeneration to determine optimum process variables such as temperature, time, and reactant composition. (3) Investigate techniques for effective concentration of pyrite from tailing waste and methods for effective separation of DRI from calcium sulfide.

  1. Pyrite oxidation in saturated and Unsaturated Porous Media Flow: AComparison of alternative mathematical modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; White, Stephen P.; Pruess, Karsten

    1998-02-15

    Pyrite (FeS{sub 2}) is one of the most common naturally occurring minerals that is present in many subsurface environments. It plays an important role in the genesis of enriched ore deposits through weathering reactions, is the most abundant sulfide mineral in many mine tailings, and is the primary source of acid drainage from mines and waste rock piles. The pyrite oxidation reaction serves as a prototype for oxidative weathering processes with broad significance for geoscientific, engineering, and environmental applications. Mathematical modeling of these processes is extremely challenging because aqueous concentrations of key species vary over an enormous range, oxygen inventory and supply are typically small in comparison to pyrite inventory, and chemical reactions are complex, involving kinetic control and microbial catalysis. We present the mathematical formulation of a general multi-phase advective-diffusive reactive transport model for redox processes. Two alternative implementations were made in the TOUGHREACT and TOUGH2-CHEM simulation codes which use sequential iteration and simultaneous solution, respectively. The simulators are applied to reactive consumption of pyrite in (1) saturated flow of oxidizing water, and (2) saturated-unsaturated flow in which oxygen transport occurs in both aqueous and gas phases. Geochemical evolutions predicted from different process models are compared, and issues of numerical accuracy and efficiency are discussed.

  2. The Influence of Pyrite on the Solubility of Minjingu and Panda ...

    African Journals Online (AJOL)

    with pyrite also resulted into high amounts of A I and Mn being released in ... low P:S ratios this point was attained earlier than those with high P:S ratios. ..... tribution of ST AMICO staff who pro- ... maize- wheat rotation on submontarie soils.

  3. Degradation of anthraquinone dye reactive blue 4 in pyrite ash catalyzed Fenton reaction.

    Science.gov (United States)

    Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

    2014-01-01

    Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L(-1); [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L(-1). The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  4. Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Lara, René H; García-Meza, J Viridiana; Cruz, Roel; Valdez-Pérez, Donato; González, Ignacio

    2012-08-01

    Massive pyrite (FeS₂) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S(n)²⁻, S⁰). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe(1-x )S₂) to active sulfur species (e.g., Fe(1-x )S(2-y ), S⁰). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S(n)²⁻/S⁰ speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S(n)²⁻/S⁰ surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.

  5. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    Science.gov (United States)

    Zavašnik, J.

    2016-02-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS2) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe1-xS), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe1-xS phase, where x is about 0.1 and is equivalent to Fe9S10. The pyrite-pyrrhotite coexistence allows us a construction of fO2-pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation.

  6. Enhanced Photoresponse of FeS2 Films : The Role of Marcasite–Pyrite Phase Junctions

    NARCIS (Netherlands)

    Wu, Longfei; Dzade, N.Y.; Gao, L.; Scanlon, D. O.; Özturk, Zafer; Hollingsworth, N.; Weckhuysen, B.M.; Hensen, E. J. M.; de Leeuw, Nora H.; Hofmann, J. P.

    2016-01-01

    The beneficial role of marcasite in iron sulfide-based photo-electrochemical applications is reported for the first time. A spectacular improvement of the photoresponse observed experimentally for mixed pyrite/marcasite-FeS2 films can be ascribed to the presence of p/m phase junctions at the interfa

  7. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in Anoxic Groundwater Sediment

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo; Jacobsen, Ole Stig;

    2009-01-01

    denitrification process with pyrite as the primary electron donor. The process demonstrates a temperature dependency (Q10) of 1.8 and could be completely inhibited by addition of a bactericide (NaN3). Experimentally determined denitrification rates show that more than 50% of the observed nitrate reduction can...

  8. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  9. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    the reaction stoichiometry and partitioning of gases between the solution and the gas phase. Pyrite oxidation with concurrent calcite dissolution was found to be consistent with the experimental data while organic carbon oxidation was not. The reaction involves changes in the total volume of the gas phase...

  10. Open system sulphate reduction in a diagenetic environment - Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada

    Science.gov (United States)

    Magnall, J. M.; Gleeson, S. A.; Stern, R. A.; Newton, R. J.; Poulton, S. W.; Paradis, S.

    2016-05-01

    ; n = 9), and euhedral pyrite (py-II), which has markedly more positive δ34S values (+8‰ to +26‰; n = 86). We argue that stratiform pyrite and barite developed along diagenetic redox fronts, where the isotopic relationships (δ34Spyrite ≈ δ34Sbarite) are explained by anaerobic oxidation of methane coupled to sulphate reduction (AOM-SR). Furthermore, the relatively narrow distribution of δ34Sbarite values is consistent with an open system model of sulphate reduction, in which reduced sulphur generation occurred with a reduced isotopic fractionation (ε34S = <15‰) linked to higher rates of sulphate reduction and AOM-SR. Importantly, hydrothermal sulphides (pyrite, sphalerite and galena) all post-date this diagenetic barite-pyrite assemblage, and textural and mineralogical evidence indicates barite replacement to be an important process during hydrothermal mineralisation. Neither the textures nor the documented isotopic relationships can be produced by processes operating in a euxinic water column, which represents a major departure from the conventional model for SHMS formation at Macmillan Pass. We suggest that positive δ34S values in sulphides, a common feature of SHMS systems both in the Selwyn Basin and throughout the geologic record, could be linked to AOM-SR. At Macmillan Pass, positive δ34Spyrite values developed during open system diagenesis, which was critical for rapid sulphur cycling and the development of an effective metal trap.

  11. Pyrite (FeS 2) oxidation: A sub-micron synchrotron investigation of the initial steps

    Science.gov (United States)

    Chandra, Anand P.; Gerson, Andrea R.

    2011-10-01

    Pyrite is an environmentally significant mineral being the major contributor to acid rock drainage. Synchrotron based SPEM (scanning photoelectron microscopy) and micro-XPS (X-ray photoelectron spectroscopy) have been used to characterise fresh and oxidised pyrite (FeS 2) with a view to understanding the initial oxidation steps that take place during natural weathering processes. Localised regions of the pyrite surface containing Fe species of reduced coordination have been found to play a critical role. Such sites not only initiate the oxidation process but also facilitate the formation of highly reactive hydroxyl radical species, which then lead the S oxidation process. Four different S species are found to be present on fresh fractured pyrite surfaces: S 22-(bulk) (4-fold coordination), S 22-(surface) (3-fold coordination), S 2- and S 0/S n2- (metal deficient sulfide and polysulfide respectively). These species were found to be heterogeneously distributed on the fractured pyrite surface. Both O 2 and H 2O gases are needed for effective oxidation of the pyrite surface. The process is initiated when O 2 dissociatively and H 2O molecularly adsorb onto the surface Fe sites where high dangling bond densities exist. H 2O may then dissociate to produce rad OH radicals. The adsorption of these species leads to the formation of Fe-oxy species prior to the formation of sulfoxy species. Evidence suggests that Fe-O bonds form prior to Fe-OH bonds. S oxidation occurs through interactions of rad OH radicals formed at the Fe sites, with formation of SO 42- occurring via S 2O 32-/SO 32- intermediates. The pyrite oxidation process is electrochemical in nature and was found to occur in patches, where site specific adsorption of O 2 and H 2O has occurred. Fe and S oxidation was found to occur within the same area of oxidation probably in atomic scale proximity. Furthermore, the O in SO 42- arises largely from H 2O; however, depending on the surface history, SO 42- formed early in

  12. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.; Martin, F.; Ortiz, I.; Garcia, I.; Fernandez, J.; Fernandez, E.; Dorronsoro, C.; Aguilar, J. [Dpto. de Edafologia y Quimica Agricola, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2001-11-12

    On the 25th April 1998, toxic water and tailings from a pyrite mine of Aznalcollar (southern Spain) spilled into the Agrio and Guadiamar River Basin affecting some 40 km{sup 2}. In five sectors throughout the basin, we monitored the physical and chemical properties of the tailings as well as the degree of pollution in the soils on four different sampling dates: 5 May, 20 May, 4 June and 22 July 1998. The characteristics of the tailings deposited on the soils are shown to be related to distance from the spill. The oxidation rate of the tailings and the solubilization of the pollutant elements were more pronounced in the middle and lower sectors of the basin, where the particle size was finer, the sulfur content higher and the bulk density less. The increases in water-soluble sulfates, Zn, Cd and Cu were very rapid (the highest values being reached 25 days after the spill) and intense (reaching 45% of the total Cu, 65% of the total Zn and Cd). Meanwhile, the increases in water-soluble As, Bi, Sb, Pb and Tl were far lower (ranging between 0.002% of the total Tl and 2.5% of the total As) and less rapid in the case of As, Bi and Pb (the highest values for these elements being reached 40 days after the spill). These soluble elements infiltrated the soils with the rainwater, swiftly augmenting the soil pollution. Twenty-five days after the spill, when the rainfall ranged between 45 and 63 mm, the first 10-cm of the soils in the middle and lower sectors of the basin exceeded the maximum concentration permitted for agricultural soils in Zn, Cu and Tl. At 40 days after the spill, when the rainfall ranged between 60 and 89 mm, all the soils reached or exceeded the maximum permitted concentrations for As and Tl. Nevertheless, the pollutants tended to concentrate in the first 10 cm of the soils without seriously contaminating either the subsoil or the groundwaters. Consequently, a rapid removal of the tailings and the ploughing of the first 25-30 cm of the soils would be urgent

  13. Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ~1.9-Ga Gunflint chert.

    Science.gov (United States)

    Wacey, David; McLoughlin, Nicola; Kilburn, Matt R; Saunders, Martin; Cliff, John B; Kong, Charlie; Barley, Mark E; Brasier, Martin D

    2013-05-14

    The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia-Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture a view through multiple trophic levels in a Paleoproterozoic ecosystem. Nanoscale analysis of pyritic Gunflintia (sheaths) and Huroniospora (cysts) reveals differing relic carbon and nitrogen distributions caused by contrasting spectra of decay and pyritization between taxa, reflecting in part their primary organic compositions. In situ sulfur isotope measurements from individual microfossils (δ(34)S(V-CDT) +6.7‰ to +21.5‰) show that pyritization was mediated by sulfate-reducing microbes within sediment pore waters whose sulfate ion concentrations rapidly became depleted, owing to occlusion of pore space by coeval silicification. Three-dimensional nanotomography reveals additional pyritized biomaterial, including hollow, cellular epibionts and extracellular polymeric substances, showing a preference for attachment to Gunflintia over Huroniospora and interpreted as components of a saprophytic heterotrophic, decomposing community. This work also extends the record of remarkable biological preservation in pyrite back to the Paleoproterozoic and provides criteria to assess the authenticity of even older pyritized microstructures that may represent some of the earliest evidence for life on our planet.

  14. Fractional Charge Definitions and Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, A.S.

    2004-06-04

    Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles.

  15. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  16. Fractional lattice charge transport

    Science.gov (United States)

    Flach, Sergej; Khomeriki, Ramaz

    2017-01-01

    We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302

  17. Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit,Jiangxi Province,China

    Institute of Scientific and Technical Information of China (English)

    毛光周; 华仁民; 高剑峰; 李伟强; 赵葵东; 龙光明; 陆慧娟

    2009-01-01

    Rare earth element(REE) is widely used in various fields of geology.Study of the existing forms of REE in geological objects is a necessity for us to solve geological problems related with REE.This paper tried to make it clear the existing forms of REE in gold-bearing pyrite in Jinshan gold deposit by stepwise dissolution test with ICP-MS analysis.Results showed that content of REE in fluid-inclusions of gold-bearing pyrite was very low,which only took about 0.07%-0.70% of the ΣREE,and that of pyrite phase ...

  18. The origin of copiapite from chlorite pyritic schist (Wiesciszowice, Lower Silesia, Poland) in the light of Moessbauer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, Z., E-mail: zdzislaw.adamczyk@polsl.pl [Silesian University of Technology, Institute of Applied Geology (Poland); Komraus, J. L., E-mail: komraus@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2008-01-15

    This work presents the results of the analysis of copiapite, formed from weathering and oxidation of pyrite in pyritic schist from Wiesciszowice, Lower Silesia (Poland). The pure phase of copiapite was found in secondary minerals after pyrite and identified by optical microscopy, XRD and Moessbauer spectroscopy. In the analyzed copiapite major cations appear to be Fe{sup 2+} and Fe{sup 3+}. Some Fe{sup 3+} is substituted by other cations, mainly Al{sup 3+}. Al{sup 3+} probably comes from leaching of chlorite from which hydrated sulphates of iron, mainly szomolnokite, form followed by hydrated sulphates fibroferrite, which is replaced by copiapite.

  19. THE STUDY OF THE BASIC THEORY AND THE APPLICATION OF REMOVAL PYRITE AND ASH FROM FINE COAL WITH ELECTROSTATIC SEPARATOR

    Institute of Scientific and Technical Information of China (English)

    章新喜; 陈清加

    1996-01-01

    The effect of removing pyrite and ash from fine coal with electrostatic separator is determined by the electric property of coal, the distribution of corona ion and electrostatic field, and the disperse and even feed. The dielectric constant of coal and mineral matter is studied in this paper and the amendment has been made to survey theory. The oscillogram is adopted to study the distribution of corona ion and electrostatic field. The paper details the study of remoing pyrite and ash from fine coal, and the test results demonstrate the high efficiency of removing pyrite and ash with electrostatic separator.

  20. Recovery of Iron from Pyrite Cinder Containing Non-ferrous Metals Using High-Temperature Chloridizing-Reduction-Magnetic Separation

    Science.gov (United States)

    Chen, Dong; Guo, Hongwei; Xu, Jifang; Lv, Yanan; Xu, Zemin; Huo, Haijiang

    2017-01-01

    This study presents a new technique that uses high-temperature chloridizing -reduction-magnetic separation to recover iron from pyrite cinder containing non-ferrous metals. The effects of the reduction temperature, reduction time, and chlorinating agent dosage were investigated. The optimized process parameters were proposed as the following: CaCl2 dosage of 2 pct, chloridizing at 1398 K (1125 °C) for 10 minutes, reducing at 1323 K (1050 °C) for 80 minutes, grinding to a particle size of 78.8 pct less than 45 μm, and magnetic field intensity of 73 mT. Under the optimized conditions, the Cu, Pb, and Zn removal rates were 45.2, 99.2, and 89.1 pct, respectively. The iron content of the magnetic concentrate was 90.6 pct, and the iron recovery rate was 94.8 pct. Furthermore, the reduction behavior and separation mechanism were determined based on microstructure and phase change analyses using X-ray powder diffraction, scanning electron microscope, and optical microscopy.

  1. On the origin of framboidal pyrite in sediments of the Suakin Deep (Red Sea)Sur l'origine de la pyrite framboïdale dans les sédiments de la fosse Suakin (mer Rouge)

    Science.gov (United States)

    Pierret, Marie-Claire; Blanc, Gérard; Clauer, Norbert

    2000-01-01

    Suakin Deep is one of the southern depressions of the Red Sea, with sediments containing up to 20 % of pyrite. Although metalliferous sediments result from hydrothermal activity in most deeps, those of Suakin have different characteristics. Pyrite is framboïdal and the REE patterns of its sediments are similar to those of biodetrital sediments. The sediments seem to be of biodetritic origin and to have undergone diagenetic changes without hydrothermal activity.

  2. A relationship between maximum packing of particles and particle size

    Science.gov (United States)

    Fedors, R. F.

    1979-01-01

    Experimental data indicate that the volume fraction of particles in a packed bed (i.e. maximum packing) depends on particle size. One explanation for this is based on the idea that particle adhesion is the primary factor. In this paper, however, it is shown that entrainment and immobilization of liquid by the particles can also account for the facts.

  3. Fractional complex transforms for fractional differential equations

    National Research Council Canada - National Science Library

    Ibrahim, Rabha W

    2012-01-01

    The fractional complex transform is employed to convert fractional differential equations analytically in the sense of the Srivastava-Owa fractional operator and its generalization in the unit disk...

  4. Biohydrometallurgical process to produce the coagulant ferric sulfate from the pyrite present in coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Colling, A.V.; Santos Menezes dos, J.C.S.; Silveira, P.S.; Schneider, I.A.H. [South Rio Grande Federal Univ., Porto Alegre (Brazil). Graduate Program in Mining, Metallurgical and Materials Technology Center

    2010-07-01

    This paper presented details of a biohydrometallurgical study conducted to characterize the production of a ferric sulfate coagulate from pyrite (FeS{sub 2}) contained in coal tailings. Leaching experiments were conducted with coal tailings samples from the Santa Catarina mining site in Brazil. The experiments were conducted for sterile and non-sterile samples, as well as samples inoculated with acidophilic bacteria and acidophilic bacteria with the addition of nutrients. Samples were collected weekly in order to analyze total iron, sulfate, and the amounts of Acidithiobacillus ferroxidans bacteria. An analysis of the samples showed that the pyrite oxidation, iron sulfate production, and quantities of bacteria were higher in the column inoculated with the bacteria and nutrient additions. The samples produced an aqueous solution that was rich in ferric sulfate. Water treatment tests demonstrated that the resulting coagulant is as efficient as conventionally-produced coagulants. 8 refs., 2 tab., 2 figs.

  5. Simulation of electrocatalytic hydrogen production by a bioinspired catalyst anchored to a pyrite electrode.

    Science.gov (United States)

    Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2010-06-30

    The possibility of using the active site, the [FeFe](H) cluster, of the bacterial di-iron hydrogenases as a catalyst for hydrogen production from water by electro- or photocatalysis is of current scientific and technological interest. We present here a theoretical study of hydrogen production by a modified [FeFe](H) cluster stably linked to a pyrite electrode immersed in acidified water. We employed state-of-the-art electronic-structure and first-principles molecular-dynamics methods. We found that a stable sulfur link of the cluster to the surface analogous to that linking the cluster to its enzyme environment cannot be made. However, we have discovered a modification of the cluster which does form a stable, tridentate link to the surface. The pyrite electrode readily produces hydrogen from acidified water when functionalized with the modified cluster, which remains stable throughout the hydrogen production cycle.

  6. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  7. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  8. Influences of silver sulfide on the bioleaching of chalcopyrite, pyrite and chalcopyrite-containing ore

    Institute of Scientific and Technical Information of China (English)

    胡岳华; 王军; 邱冠周; 王淀佐

    2002-01-01

    The effects of silver sulfide (Ag2S) on the bioleaching of chalcopyrite and pyrite were investigated in this paper. It has been shown that Ag2S enhanced the yields of bioleaching of chalcopyrite but inhibited the bio-oxidation of pyrite. The addition of Ag2S selectively increased the copper dissolution from the chalcopyrite-containing ores in shake flasks with a recovery of 85.3% compared with 24.3% without Ag2S, while slightly decreased the iron yields from 51% to 41.8%. The copper extraction of the chalcoopyrite-containing waste rock in column leaching charged with 18 kg mass increased up to 21.7% in the presence of Ag2S, while only 3.4% in the absence of the catalyst. The mechanism of Ag2S catalysis could be explained well by the "Mixed potential model".

  9. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Directory of Open Access Journals (Sweden)

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  10. Preparation of solid polyferric sulfate from pyrite cinders and its structure feature

    Institute of Scientific and Technical Information of China (English)

    郑雅杰; 龚竹青; 陈白珍; 刘立华

    2003-01-01

    Acid leaching solution was obtained after mixing pyrite cinders with H2SO4, then heating the mixture of pyrite cinders and H2SO4 at 200-300 ℃, leaching the heated mixture with water and filtrating. Polyferric sulfate (PFS) solution was produced by adding suitable amounts of FeSO4*7H2O and NaClO3 into acid leaching solution. By concentrating and drying PFS solution, solid PFS with alkali degree of 6.40%-22.4% was prepared. Fe4.67(SO4)6(OH)2*20H2O in the solid PFS was discovered by XRD analysis. FT-IR spectroscopy shows that the absorption peaks at 3 400 cm-1 and 1 635 cm-1 arise from OH and absorption peaks at 998 cm-1 and 669 cm-1 come from Fe-OH in the solid PFS.

  11. Comparisons of species and coagulation effects of PFS solution and solid PFS from pyrite cinders

    Institute of Scientific and Technical Information of China (English)

    郑雅杰; 龚竹青; 刘立华; 陈白珍

    2002-01-01

    Pyrite cinder is a kind of solid waste of sulfuric acid industry. After mixing pyrite cinders with sulfuric acid, ferric sulfate was obtained by heating, maturing, dissolving and filtrating. Suitable amounts of FeSO4 * 7H2O and NaClO3 were added into ferric sulfate solution and polyferric sulfate(PFS) solution was produced. Solid PFS was made by concentrating and drying PFS solution. Time-dependent complex colorimetric tests were done while ferron agent reacted with Fe3+ in the solution. The results show that the proportion of transitional low polymeric species and high polymeric species are increased after PFS solution is transferred into solid PFS. It was discovered by jar tests that solid PFS has very good coagulation effects relevant to the increase of transitional lower polymeric species.

  12. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe2O3) and alumina (α-Al2O3) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe(2+) to Fe(3+) by dissolved O2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High-resolution (SIMS) versus bulk sulfur isotope patterns of pyrite in Proterozoic microbialites with diverse mat textures

    Science.gov (United States)

    Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.

    2015-12-01

    Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments

  14. Dependence of reaction rate of pyrite oxidation on temperature, pH and oxidant concentration

    Institute of Scientific and Technical Information of China (English)

    LU; Long; WANG; Rucheng; XUE; Jiyue; CHEN; Fanrong; CHEN; J

    2005-01-01

    The kinetic sstudy of pyrite oxidation was performed in a series of experiments by a mixed flow reactor. The release rates of Fe(II) are in the order of 3.22×10-9-5.51×10-7 mol·m-2·s-1 at temperature (T ) 25 to 44℃, initial pH (pH )1.4 to 2.7, and initial Fe(III) concentration ([Fe(III)]I) 10-5 to 5×10-3 mol·kg-1. The release rate of Fe(II) increased with increasing T or/and pH or/and [Fe(III)]I in the above range. The rate law and activation energy of pyrite oxidation were derived by statistical analyses of Rfe(II) vs. [Fe(III)]I, Rfe(II) vs. pH and Rfe(II) vs. T, and are given as (1) Rate law: Rfe(II)=104.65e-64.54×103/8.31T[Fe(III)]i0.6./[H+]0.45 ; (2) activation energy: 64.54 ( 8.07 kJ·mol-1. The expression can be applied to more cases (e.g., quantifying the pollutant released from sulfide-rich mining waste and assessing reliable performance of underground repository sites where pyrite acts as an engineered barrier material). Using the rate law derived from this study, the magnitude of the pollutants transferred to secondary phases, soil and water from oxidized pyrite during Jiguanshan mine waste weathering was preliminarily estimated. The estimated magnitude is very high, suggesting that the pile has possibly posed significant impact on the water quality in this region.

  15. Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil

    Science.gov (United States)

    Ferreira, Tiago O.; Nóbrega, Gabriel N.; Albuquerque, Antonia G. B. M.; Sartor, Lucas R.; Gomes, Irlene S.; Artur, Adriana G.; Otero, Xosé L.

    2015-10-01

    This work aimed to test the suitability of pyrite (FeS2) as a proxy for reconstructing past marine environmental conditions along the semiarid coast of Brazil. Morphological description combined with physicochemical analyses including Fe partitioning were conducted for soil depth profiles (30 and 60 cm depths) at three sites in two contrasting lagoons of the state of Ceará: a suspected former lagoon that would have been transformed into a freshwater "lake" at a site vegetated by Juncus effusus (site P1), and another lagoon with connection to the sea at sites vegetated by J. effusus (site P2) or Portulaca oleracea (site P3). Soil samples were collected in September 2010. Site P3 had more reducing conditions, reaching Eh values of -132 mV in the surface layer (0-10 cm), whereas minimum values for the P1 and P2 sites were +219 and +85 mV, respectively. Lower pyritic Fe values were found at site P1, with a degree of pyritization (DOP) ranging from 10 to 13%. At sites P2 and P3, DOP ranged from 9 to 67% and from 55 to 72%, respectively. These results are consistent with an interruption of tidal channels by eolian dune migration inducing strong changes in the hydrodynamics and physicochemical characteristics (lower salinity, oxidizing conditions) of these sites, causing the dieback of suspected former mangroves and a succession to freshwater marshes with an intermediate salt marsh stage. Together with other physicochemical signatures, pyrite can evidently serve as a useful proxy in tracking environmental changes in such ecotones, with implications for coastal management.

  16. Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China

    Institute of Scientific and Technical Information of China (English)

    Yutong Yan; Na Zhang; Shengrong Li; Yongsheng Li

    2014-01-01

    The Heilangou gold deposit is located in the northern QixiaePenglai gold belt, which is one amongst the three large gold belts in the eastern Shandong Province (Jiaodong Peninsula). The ore body has formed within the Guojialing granite. In this study, we report the mineral chemistry of pyrite, as well as the S, Pb, and HeO isotope data of the Heilangou gold deposit. The chemical composition of pyrite in the Heilangou gold deposit indicates that the associated gold deposit is a typical magmatic hydrothermal one. The geochemical signatures and crystal structure of pyrite show that the ore-forming materials have been derived from the crust. The S isotope data of the pyrites from Heilangou show an overall range from 5.5 to 7.8&and an average of 6.7&. The S isotope data in this deposit are similar to those from the deposits in the Jiaodong gold belt. The Pb and S isotope variations are small in the Heilangou gold deposit. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios are 17.4653e17.5958, 15.5105e15.5746 and 38.0749e38.4361, respec-tively. These data plot between the lower crust and the orogenic belt. The Pb isotope data in the Heilangou gold deposit are similar to those in the Linglong gold deposit. From the Qixia gold area (the Liukou and Majiayao gold deposits) to the MupingeRushan gold belt (Rushan gold deposit) to the ZhaoeYe gold belt (the Linglong, Sanshandao and Jiaojia gold deposits), the 206Pb/204Pb ratios progressively increase. The DeO isotope data obtained from quartz separates suggest that the ore-forming fluid was similar to a mixture of magmatic and meteoric waters. These results suggest that the ore-forming elements were primarily from source fluids derived from the lower crust.

  17. Equation of state of pyrite to 85 GPa and 2400 K

    Science.gov (United States)

    Thompson, E. C.; Chidester, B.; Campbell, A. J.; Prakapenka, V.

    2014-12-01

    Pyrite (FeS2), a Pa3 space group non-magnetic semiconductor, is the most abundant iron sulfide in nature, yet the high cosmic abundance of sulfur is not reflected in the terrestrial crust, implying it is either sequestered in the Earth's interior or was volatilized during accretion. As it has widely been suggested that sulfur could be one of the contributing light elements leading to the density deficit of Earth's core, a robust thermal equation of state of FeS2 is vital for understanding the evolution and properties of Earth's interior. We performed X-ray diffraction measurements on FeS2 at the GSECARS sector 13-ID-D and HPCAT sector 16-ID-B beamlines at the Advanced Photon Source. Pressures from 17 to 85 GPa and temperatures up to 2400 K were achieved using laser-heated diamond anvil cells. Pressures were determined from the lattice parameters of KBr [1], which served as an insulator and pressure medium, and temperatures were determined by spectroradiometry. No phase transitions were observed in the pyrite structure over the pressure and temperature ranges investigated. By combining our new P-V-T data with previously published room temperature compression data [2], we have determined a thermal equation of state for FeS2, with bulk modulus K=182.6(74) GPa, pressure derivative K'=3.82(25), and αKT=0.00329(45). Our revised equation of state for pyrite is consistent with a core density deficit satisfied by 9-10 wt.% sulfur. We compare these findings to previously published ab intio equation of state parameters for pyrite under a similar range of pressures [3]. [1] Fischer et al. (2012) EPSL 357-358, 268-276. [2] Merkel et al. (2002) PCM 29, 1-9. [3] Le Page and Rodgers (2005) PCM 32, 564-567.

  18. Fractional complex transform for fractional differential equations

    National Research Council Canada - National Science Library

    Lİ, Zheng Biao; HE, Ji Huan

    2010-01-01

    Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily...

  19. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Miguel Nicolas [Univ. of California, Berkeley, CA (United States)

    1994-01-01

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  20. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, M.N.

    1994-12-31

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  1. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    Science.gov (United States)

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

  2. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    Science.gov (United States)

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  3. Hydrothermal vents as a source of pyrite and trace metal- containing mineral nanoparticles to the ocean

    Science.gov (United States)

    Gartman, A.; Yucel, M.; Luther, G. W.

    2012-12-01

    The pathways by which metals from hydrothermal vents may be transported through the ocean are still largely unknown. We demonstrate that pyrite nanoparticles as small as 4nm aggregate into nanoframboids of 50-350nm and are emitted from high temperature black smokers from vents at Lau Basin and the East Pacific Rise. These nanoparticles, which contain other metals including copper, are characterized via chemical methods as well as by using a combination of physical chemical techniques (TEM, SEM-EDS and EELS). Data indicate that the metal sulfide nanoparticles from Lau Basin, a back arc basin and EPR 9N, a fast spreading mid ocean ridge, have similar morphology. We report that laboratory hydrothermal syntheses can reproduce the size and morphology of the natural pyrite nanoparticles. Laboratory oxidation experiments show that these synthesized pyrite nanoparticles are stable in oxic seawater for months, and thus provide a potential transport mechanism for iron far from vent sources. These nanoparticles as well as others including iron silicates, which have also been identified, likely influence the transport of iron and other elements from the hydrothermal environment to the ocean. Hydrothermal vents serve as nanoparticle 'factories' that fertilize the ocean with metals that are important in a variety of biogeochemical processes.

  4. Synthesis and adsorption/photocatalysis performance of pyrite FeS2

    Science.gov (United States)

    Liu, Shuling; Li, Miaomiao; Li, Shu; Li, Honglin; Yan, Lu

    2013-03-01

    FeS2 crystallites were synthesized successfully via a solvothermal method, using potassium ferrocyanide K4[Fe(CN)6]·3H2O as Fe source, sulfur powder as S source in the presence of polyvinyl pyrrolidone (PVP) as dispersant. And potassium carbonate provided an alkaline environment. The phase and morphology of the products were characterized by means of X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). It was found that the temperature and solvent ratio (V:VO) play a crucial role in the formation of FeS2 with a cubic phase structure (pyrite). Then based on a series of experiments, the possible formation mechanism of pyrite FeS2 crystallites was proposed. In addition, research also showed that the as-prepared pyrite FeS2 crystallites could high-efficiently absorb or photocatalytically degrade some organic dyes such as Methylene blue (MB), Safranine T, Methyl orange (MO), Rhodamine B (Rh B) and Pyronine B. Furthermore, the adsorption and photocatalytic degradation abilities of FeS2 for organic dyes were also compared.

  5. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant.

    Science.gov (United States)

    Erust, Ceren; Akcil, Ata

    2016-06-01

    The pyrite ashes formed as waste material during the calcination of concentrated pyrite ore used for producing sulphuric acid not only has a high iron content but also contains economically valuable metals. These wastes, which are currently landfilled or dumped into the sea, cause serious land and environmental pollution problems owing to the release of acids and toxic substances. In this study, physical (sulphation roasting) and hydrometallurgical methods were evaluated for their efficacy to recover non-iron metals with a high content in the pyrite ashes and to prevent pollution thereby. The preliminary enrichment tests performed via sulphation roasting were conducted at different roasting temperatures and with different acid amounts. The leaching tests investigated the impact of the variables, including different solvents, acid concentrations and leach temperatures on the copper and cobalt leaching efficiency. The experimental studies indicated that the pre-enrichment via sulphation roasting method has an effect on the leaching efficiencies of copper and cobalt, and that approximate recoveries of 80% copper and 70% cobalt were achieved in the H2O2-added H2SO4 leaching tests.

  6. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  7. A silica/fly ash-based technology for controlling pyrite oxidation. Semi-annual, March 1, 1996 - August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evangelou, V.P. [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1996-12-31

    The overall objective is to develop methodologies by which metasilicate or fly ash may produce an effective coating on pyrite surfaces for inhibiting pyrite oxidation. During the past six months, the investigators produced wet chemistry evidence demonstrating that pyrite-HCO{sub 3} complexes promote pyrite oxidation. This is an important finding for their over all strategy in controlling pyrite oxidation because it suggests that pyrite microencapsulation is important in order to control oxidation in near cirumneutral pH environments produced by addition of alkaline material, e.g., fly ash. In their previous studies, the investigators reported that pyrite microencapsulation could be carried out by reacting pyrite with a pH buffered solution and in the presence of metasilicate. The coating formed on the surface of pyrite appeared to be an amorphous iron-oxide-silicate material which inhibited pyrite oxidation. During this past six months, the investigators evaluated: the molecular mechanisms of silicate adsorption by iron oxide; the effects of silicate on the bulk and surface properties of iron oxides; and the effect of silicate on metal-cation adsorption properties by iron oxides.

  8. Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite

    Science.gov (United States)

    Pisarzowska, Agnieszka; Berner, Zsolt A.; Racki, Grzegorz

    2014-07-01

    Pyrite geochemistry (isotope and trace element composition, degree of pyritization, S/Corg ratio) was used in context of selected lithogeochemical parameters (major and trace elements, including sulphur, organic carbon, and δ13C of carbonate carbon) to constrain fluctuations in depositional conditions during the Early to Middle Frasnian carbon isotopic perturbation (punctata Event) in the Kostomłoty Basin, Poland. Based on the ratio between the sum of oxyanionic elements and transition metals in pyrite, a new proxy parameter (index of syngenetic pyrite, ISYP) is proposed for assessing the relative amount of syngenetic pyrite in a sample. The distribution of the ISYP along the Kostomłoty - Małe Górki section (upper Szydłówek to the basal Kostomłoty beds) is in concert with conclusions inferred from paleoecologic data and other geochemical parameters (degree of pyritization, S/Corg, δ34Spyrite). According to these, the lower segment of the Szydłówek Beds was deposited in a normally oxygenated environment, but undergoing increasing primary productivity in surface water, as indicated by an increase in δ13Ccarb and in Cu/Zr ratio in bulk rock, which triggered the periodic deposition of sediments slightly enriched in organic matter, notably within the pyrite-ammonoid level (= Goniatite Level). Fluctuating, but in general high S/Corg ratios, DOPR values and ISYP values suggest that during this time - against the background of a generally dysoxic environment - shorter or longer lasting episodes of more restricted (anoxic and possibly even euxinic) bottom water conditions developed. Low sedimentation rates enabled a continuous and practically unlimited supply of sulphate during bacterial sulphate reduction (BSR), which in turn led to a strong depletion of pyrite sulphur in 34S in this interval (constantly around -29‰). In contrast, below and above the Goniatite Level, higher δ34S values (up to + 3‰), are compatible with closed system conditions and higher

  9. Physiological response of Cistus monspeliensis L. growing in two mine areas of the Iberian Pyrite Belt

    Science.gov (United States)

    Arenas Lago, Daniel; Carvalho, Luisa C.; Santos, Erika S.; Abreu, Maria Manuela; Andrade, María Luisa

    2015-04-01

    São Domingos and Lousal mines, nowadays in abandoned state, are located in Portugal, in the Iberian Pyrite Belt, a world-class volcanic-hosted massive sulfide. As a result of the intense mining activity large volumes of wastes containing metal(loid)s were partly exposed to weathering realising potential hazardous elements contaminating waters, soils and sediments. In both mines, a great part of the contaminated areas is relatively covered by several wild species. These species have developed mechanisms of response to oxidative stress originated by high concentration of metal(loid)s in plant tissues, whose presence leads to the formation of reactive oxygen species, thus causing oxidative damage. The main objective of this study was to evaluate changes in the ecophysiological behaviour of Cistus monspeliensis L., which grows spontaneously in both mine areas, in soils containing high concentrations of metal(loid)s. With this purpose, the variation of some physiological parameters was analysed in order to identify which parameters can be indicators of the plant'sresponse to oxidative stress. Representative soils from rhizosphere and plants were sampled, in the same locations, in different areas of São Domingos and Lousal mines and in an uncontaminated area nearby São Domingos. Soils were characterized for the classic properties. Multielemental total concentration was analysed in soils and plants (shoots and roots), and multielemental concentration in the available fraction of soils. Pigments (chlorophylls, anthocyanins and carotenoids), glutathione, ascorbate, H2O2 and antioxidative enzyme activities were measured in plant shoots. In general, total and available concentrations (mg/kg) of Zn (total 149-463; available 2-16), As (total 62-3030; available 0.03-1.9), Cd (total 0.3-1.2; available 0.01-0.05), Cu (total 79-375; available 0.8-10) and Pb (total 95-9210; available 0.2-40) are significantly higher in mine soils than in uncontaminated soils Zn (total 92

  10. Derivation of S and Pb in phanerozoic intrusion-related metal deposits from neoproterozoic sedimentary pyrite, Great Basin, United States

    Science.gov (United States)

    Vikre, P.G.; Poulson, S.R.; Koenig, A.E.

    2011-01-01

    The thick (???8 km), regionally extensive section of Neoproterozoic siliciclastic strata (terrigenous detrital succession, TDS) in the central and eastern Great Basin contains sedimentary pyrite characterized by mostly high d34S values (-11.6 to 40.8%, derived from reduction of seawater sulfate, and by markedly radiogenic Pb isotopes ( 207Pb/204Pb derivation of deposit S and Pb from TDS pyrite. Minor element abundances in TDS pyrite (e.g., Pb, Zn, Cu, Ag, and Au) compared to sedimentary and hydrothermal pyrite elsewhere are not noticeably elevated, implying that enrichment in source minerals is not a precondition for intrusion-related metal deposits. Three mechanisms for transferring components of TDS sedimentary pyrite to intrusion-related metal deposits are qualitatively evaluated. One mechanism involves (1) decomposition of TDS pyrite in thermal aureoles of intruding magmas, and (2) aqueous transport and precipitation in thermal or fluid mixing gradients of isotopically heavy S, radiogenic Pb, and possibly other sedimentary pyrite and detrital mineral components, as sulfide minerals in intrusion-related metal deposits. A second mechanism invokes mixing and S isotope exchange in thermal aureoles of Pb and S exsolved from magma and derived from decomposition of sedimentary pyrite. A third mechanism entails melting of TDS strata or assimilation of TDS strata by crustal or mantle magmas. TDS-derived or assimilated magmas ascend, decompress, and exsolve a mixture of TDS volatiles, including isotopically heavy S and radiogenic Pb from sedimentary pyrite, and volatiles acquired from deeper crustal or mantle sources. In the central and eastern Great Basin, the wide distribution and high density of small to mid-sized vein, replacement, and skarn intrusion-related metal deposits in lower Paleozoic rocks that contain TDS sedimentary pyrite S and Pb reflect (1) prolific Jurassic, Cretaceous, and Tertiary magmatism, (2) a regional, substrate reservoir of S and Pb in

  11. 润磨强化硫酸渣制备氧化球团的技术及机理%Enhancing technology and mechanism of oxidized pellet prepared from pyrite cinder by moisture grinding

    Institute of Scientific and Technical Information of China (English)

    白国华; 周晓青; 范晓慧; 李建臣

    2011-01-01

    In connection with characteristic of pyrite cinder, the characteristic of oxidized pellet prepared from pyrite cinder and the mechanism of moisture grinding on pellet preparation were studied. The results show that the strength of green balls is very low, and the moisture of green balls is fairly higher without moisture grinding. Moisture grinding is an effective means to improve the strength and reduce the moisture of green ball with the less dosage of bentonite by improving size distribution, specific surface area and lowering the porosity of green balls. Moisture grinding can improve the roasting performance of pyrite cinder pellet by improving the surface energy of pyrite cinder and increasing contact points between particles, which has the advantages of diffusion. The compressive strength of pellets overruns 3 kN per pellet with moisture grinding after roasted at 1 150℃ for 10 min. The roasting temperature can be greatly reduced. The high quality oxidized pellet can be produced as a blast furnace feed by using pyrite cinder.%从硫酸渣本身特点出发,对硫酸渣制备氧化球团的特点及润磨在球团制备过程中的作用机理进行研究。研究结果表明:无润磨的硫酸渣生球强度极差,水分较高,润磨可改善硫酸渣的粒度组成、比表面积,降低生球的孔隙率,从而有效降低膨润土用量,大幅提高生球的强度及降低生球的水分;润磨也能提高硫酸渣颗粒活性,增加颗粒与颗粒之间的接触点,使质点利于扩散,从而改善硫酸渣球团的焙烧性能,润磨后的球团在焙烧温度为1150℃、焙烧时间为10 min的条件下,便可获得抗压强度大于3 kN/个的球团,大大降低了球团的焙烧温度。使用硫酸渣能生产出优质的球团供高炉使用。

  12. Pyrite deformation and connections to gold mobility: insight from micro-structural analysis and trace element mapping

    Science.gov (United States)

    Dubosq, Renelle; Rogowitz, Anna; Lawley, Christopher; Schneider, David; Jackson, Simon

    2017-04-01

    Pyrite is an important and ubiquitous gold-bearing phase in many orogenic gold deposits making the study of its deformation behaviour under metamorphic conditions crucial to the understanding of gold (re)mobilization. However, pyrite deformation mechanisms and their influence on the retention or release of trace elements during deformation and metamorphism remain poorly understood. We propose a syn- to post-peak metamorphic and deformation driven gold upgrading model where gold is remobilized through deformation-induced diffusion pathways in the form of substructures in pyrite. The middle amphibolite facies assemblage (actinolite-biotite-plagioclase-almandine) of the Detour Lake deposit (Canada) makes it an ideal study area due to maximum temperatures reaching 550°C, exceeding the conditions for plastic deformation in pyrite (450°C). The world-class Detour Lake deposit, containing 16.4 Moz of Au at 1 g/t, is a Neoarchean orogenic gold ore body located in the northern Abitibi district within the Superior Province. The mine is situated along the high strain, sub-vertical ductile-brittle Sunday Lake Deformation Zone (SLDZ) parallel to the broadly E-W trending Abitibi greenstone belt. Herein we combine orientation contrast (OC) forescatter imaging, electron backscatter diffraction (EBSD) and 2D laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) trace element pyrite mapping to evaluate the influence of pyrite brittle and plastic deformation on the release of trace elements during syn-metamorphic gold remobilization. Local misorientation patterns in pyrite exhibit parallel bands that can be described by continuous rotation around one of the axes, whereas higher strain areas reveal more heterogeneous misorientation patterns and the development of low-angle grain boundaries with late fractures indicative of dislocation creep and strain hardening. These late fractures are an important micro-structural setting for gold and clusters of precious

  13. Meadow based Fraction Theory

    OpenAIRE

    Bergstra, Jan A.

    2015-01-01

    In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.

  14. Development of an on-line image analysis for assessment of pyrite liberation. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Yen, M.S.C.; Chu, P.T.C. [Southern Illinois Univ., Carbondale, IL (United States); Ho, K. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-05-01

    An automation procedure based on the principles of image processing is proposed to perform the analysis of pyrite/minerals liberation of coal. To make the automated image analysis system possible, a data base of the light reflectance characteristics of different coal constituents must be established. Characterization of coal images through the analysis of their histogram was conducted. In general, it was found that the distinction of coal particles or particle groups may be accomplished by determining the gray levels of zero pixel or by taking average gray level of each particle. In particular, when the gray level averaging is applied, the spread of gray levels of a given maceral becomes smaller. In other words, the spread in gray level among different maceral group becomes larger. This has led to a distinct boundary between different material group of coal. Two computer programs based on these findings are being developed. The implementation of these criteria will cover most of the coal samples that are previously analyzed. Consideration of special cases will require additional data analysis of histogram.

  15. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  16. Research on the growth orientation of pyrite grains in the colloform textures in Baiyunpu Pb-Zn polymetallic deposit, Hunan, China

    Science.gov (United States)

    Gao, Shang; Huang, Fei; Gu, Xiangping; Chen, Zhenyu; Xing, Miaomiao; Li, Yongli

    2017-02-01

    A large number of colloform-textured pyrites were found in Baiyunpu Pb-Zn ore bodies in Xinshao County, Hunan, China. This study investigates the growth orientation of the pyrite grains in these structures by field emission scanning electron microscopy (FE-SEM), in situ micro X-ray diffraction (μXRD) and electron backscatter diffraction (EBSD). The growth proceeded from micro-crystalline cores in the colloform textures. Moreover, the pyrite layers were discrete and separated by locally significant quantities of galena and calcite. The μXRD results suggested clear crystalline characteristics and weakly preferred orientations of the colloform textures. EBSD confirmed that the pyrite grains exist preferred orientations or in the layered zones. According to the crystal growth theory, the formation and variation of crystal preferred orientations (CPOs) in pyrite are mainly restricted by the internal crystal structure of the pyrite and depends on the external environment conditions, such as trace element concentrations and the supersaturation degree. We inferred the evolutionary regularity of lattice planes with different indices in the pyrite crystal structure from morphological, compositional and growth orientation information, which reflect the crystal growth history of the colloform pyrite. This study will advance our understanding of the growth processes of colloform pyrite and environmental evolution in the Baiyunpu Pb-Zn polymetallic deposits.

  17. Flotation and Adsorption of a New Polysaccharide Depressant on Pyrite and Talc in the Presence of a Pre-Adsorbed Xanthate Collector

    Directory of Open Access Journals (Sweden)

    Wei Deng

    2017-03-01

    Full Text Available The flotation and adsorption of a new polysaccharide konjac gum (KG on pyrite and talc in the presence of pre-adsorbed potassium butyl xanthate (PBX is investigated. The micro-flotation results show that KG is a quality depressant for talc and that conditioning the minerals initially with PBX before KG will increase the recovery difference between pyrite and talc. The results of artificially mixing the minerals show that compared with adding KG before PBX, when minerals are pre-adsorbed with PBX, the grade and the recovery of sulfur (S increases by 1.96% and 5.44%, respectively. The contact angle results show that the addition of PBX before KG will increase the contact angles of pyrite, but the addition order of KG/PBX has little influence on the contact angles of talc. The adsorption tests show that KG can adsorb on pyrite and talc surfaces, while PBX can only adsorb on the pyrite surface. The addition order of KG/PBX affects the adsorption of KG and PBX on the pyrite surface but not on the talc surface. Fourier transform infrared (FTIR spectra analysis further demonstrates the chemical adsorption of KG on pyrite and talc surfaces, while PBX chemisorbs on the pyrite surface. Based on these analyses, a schematic illustration of the reagent adsorption forms on pyrite and talc surfaces is drawn to explain the competitive adsorption of KG and PBX on mineral surfaces.

  18. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.

    Science.gov (United States)

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution.

  19. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching

    Science.gov (United States)

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  20. Experimental Study on Microbial Desulfurization of Pyrite Cinder%硫铁矿烧渣微生物脱硫试验研究

    Institute of Scientific and Technical Information of China (English)

    周文博; 邹平; 孙珮石

    2013-01-01

    The mixed culture of acidophilic bacteria was used to remove sulfur from pyrite cinder .The effects of different culture mediums ,solid-liquid ratio ,pH ,inoculum volume ,surfactant usage , temperature and particle size on the desulfurization rate were examined by shake flask experiments . The results indicated that the optimal conditions of desulfurization were solid-liquid ratio of 3∶10 , inoculation amount of 3% ,pH of 1 .5 ,rotation speed of 180 r/min and temperature of 25 ℃ .After 72 hours leaching ,the total sulfur content in the pyrite cinder was reduced significantly from 1 .78% to 0 .28% with a desulfurization rate of 86 .02% ,and iron content was enriched effectively from 53 .78%to 59 .56% .The desulfurization slag meet the requirements of ore concentrate for steelmaking .%  研究了从高硫硫铁矿烧渣中微生物脱硫,考察了培养基种类、矿浆固液质量体积比、pH、细菌接种量、表面活性剂、温度及粒度等因素对微生物脱硫的影响。试验结果表明:在菌种接种量3%、矿浆pH=1.5、温度30℃条件下对固液质量体积比3∶10的硫酸渣矿浆进行脱硫,72 h内,烧渣的硫质量分数由1.78%降至0.28%,脱硫率达86.02%,铁品位由53.78%提高到59.56%;脱硫后的烧渣符合铁精矿要求。

  1. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    Science.gov (United States)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  2. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks

    Science.gov (United States)

    Bernard, Sylvain; Benzerara, Karim; Beyssac, Olivier; Brown, Gordon E., Jr.

    2010-09-01

    Pyritized plant tissues with well-preserved morphology were studied in rocks from Vanoise (western Alps, France) that experienced high-pressure, low-temperature metamorphic conditions in the blueschist facies during the Alpine orogeny. Organic and inorganic phases composing these fossils were characterized down to the nanometer scale by Raman microspectroscopy, scanning transmission X-ray microscopy and transmission electron microscopy. The graphitic but disordered organic matter composing these fossils is chemically and structurally homogeneous and mostly contains aromatic functional groups. Its original chemistry remains undefined likely because it was significantly transformed by diagenetic processes and/or thermal degradation during metamorphism. Various mineral phases are closely associated with this organic matter, including sulphides such as pyrite and pyrrhotite, carbonates such as ankerite and calcite, and iron oxides. A tentative time sequence of formation of these diverse mineral phases relative to organic matter decay is proposed. The absence of traces of organic matter sulphurization, the pervasive pyritization of the vascular tissues and the presence of ankerite suggest that the depositional/diagenetic environment of these metasediments was likely rich in reactive iron. Fe-sulphides and ankerite likely precipitated early and might have promoted the preservation of the fossilized biological soft tissues by providing mechanical resistance to compaction during diagenesis and subsequent metamorphism. In contrast, iron oxides which form rims of 100-nm in thickness at the interface between organic matter and Fe-sulphides may result from metamorphic processes. This study illustrates that it may be possible in some instances to deconvolve metamorphic from diagenetic imprints and opens new avenues to better constrain processes that may allow the preservation of organic fossils during diagenesis and metamorphism.

  3. The pyrite-type high-pressure form of FeOOH

    Science.gov (United States)

    Nishi, Masayuki; Kuwayama, Yasuhiro; Tsuchiya, Jun; Tsuchiya, Taku

    2017-07-01

    Water transported into Earth’s interior by subduction strongly influences dynamics such as volcanism and plate tectonics. Several recent studies have reported hydrous minerals to be stable at pressure and temperature conditions representative of Earth’s deep interior, implying that surface water may be transported as far as the core-mantle boundary. However, the hydrous mineral goethite, α-FeOOH, was recently reported to decompose under the conditions of the middle region of the lower mantle to form FeO2 and release H2, suggesting the upward migration of hydrogen and large fluctuations in the oxygen distribution within the Earth system. Here we report the stability of FeOOH phases at the pressure and temperature conditions of the deep lower mantle, based on first-principles calculations and in situ X-ray diffraction experiments. In contrast to previous work suggesting the dehydrogenation of FeOOH into FeO2 in the middle of the lower mantle, we report the formation of a new FeOOH phase with the pyrite-type framework of FeO6 octahedra, which is much denser than the surrounding mantle and is stable at the conditions of the base of the mantle. Pyrite-type FeOOH may stabilize as a solid solution with other hydrous minerals in deeply subducted slabs, and could form in subducted banded iron formations. Deep-seated pyrite-type FeOOH eventually dissociates into Fe2O3 and releases H2O when subducted slabs are heated at the base of the mantle. This process may cause the incorporation of hydrogen into the outer core by the formation of iron hydride, FeHx, in the reducing environment of the core-mantle boundary.

  4. Iron pyrite thin films synthesized from an Fe(acac)3 ink.

    Science.gov (United States)

    Seefeld, Sean; Limpinsel, Moritz; Liu, Yu; Farhi, Nima; Weber, Amanda; Zhang, Yanning; Berry, Nicholas; Kwon, Yon Joo; Perkins, Craig L; Hemminger, John C; Wu, Ruqian; Law, Matt

    2013-03-20

    Iron pyrite (cubic FeS2) is a promising candidate absorber material for earth-abundant thin-film solar cells. Here, we report on phase-pure, large-grain, and uniform polycrystalline pyrite films that are fabricated by solution-phase deposition of an iron(III) acetylacetonate molecular ink followed by sequential annealing in air, H2S, and sulfur gas at temperatures up to 550 °C. Phase and elemental compositions of the films are characterized by conventional and synchrotron X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, and X-ray photoelectron spectroscopy (XPS). These solution-deposited films have more oxygen and alkalis, less carbon and hydrogen, and smaller optical band gaps (E(g) = 0.87 ± 0.05 eV) than similar films made by chemical vapor deposition. XPS is used to assess the chemical composition of the film surface before and after exposure to air and immersion in water to remove surface contaminants. Optical measurements of films rich in marcasite (orthorhombic FeS2) show that marcasite has a band gap at least as large as pyrite and that the two polymorphs share similar absorptivity spectra, in excellent agreement with density functional theory models. Regardless of the marcasite and elemental impurity contents, all films show p-type, weakly activated transport with curved Arrhenius plots, a room-temperature resistivity of ~1 Ω cm, and a hole mobility that is too small to measure by Hall effect. This universal electrical behavior strongly suggests that a common defect or a hole-rich surface layer governs the electrical properties of most FeS2 thin films.

  5. Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    González, Dulce M; Lara, René H; Alvarado, Keila N; Valdez-Pérez, Donato; Navarro-Contreras, Hugo R; Cruz, Roel; García-Meza, Jessica Viridiana

    2012-01-01

    We have applied epifluorescence principles, atomic force microscopy, and Raman studies to the analysis of the colonization process of pyrite (FeS(2)) by sulfuroxidizing bacteria Acidithiobacillus thiooxidans after 1, 15, 24, and 72 h. For the stages examined, we present results comprising the evolution of biofilms, speciation of S (n) (2-) /S(0) species, adhesion forces of attached cells, production and secretion of extracellular polymeric substances (EPS), and its biochemical composition. After 1 h, highly dispersed attached cells in the surface of the mineral were observed. The results suggest initial non-covalent, weak interactions (e.g., van der Waal's, hydrophobic interactions), mediating an irreversible binding mechanism to electrooxidized massive pyrite electrode (eMPE), wherein the initial production of EPS by individual cells is determinant. The mineral surface reached its maximum cell cover between 15 to 24 h. Longer biooxidation times resulted in the progressive biofilm reduction on the mineral surface. Quantification of attached cell adhesion forces indicated a strong initial mechanism (8.4 nN), whereas subsequent stages of mineral colonization indicated stability of biofilms and of the adhesion force to an average of 4.2 nN. A variable EPS (polysaccharides, lipids, and proteins) secretion at all stages was found; thus, different architectural conformation of the biofilms was observed during 120 h. The main EPS produced were lipopolysaccharides which may increase the hydrophobicity of A. thiooxidans biofilms. The highest amount of lipopolysaccharides occurred between 15-72 h. In contrast with abiotic surfaces, the progressive depletion of S (n) (2-) /S(0) was observed on biotic eMPE surfaces, indicating consumption of surface sulfur species. All observations indicated a dynamic biooxidation mechanism of pyrite by A. thiooxidans, where the biofilms stability and composition seems to occur independently from surface sulfur species depletion.

  6. Inertization of pyrite cinders and co-inertization with electric arc furnace flue dusts by pyroconsolidation at solid state.

    Science.gov (United States)

    Viñals, J; Balart, M J; Roca, A

    2002-01-01

    The viability of a pyroconsolidation process to render pyrite cinders inert and to co-inert pyrite cinders with a hazardous polymetallic residue such as electric arc furnace flue dusts (EAF) containing Pb, Cu, Zn, As, Cr, Ni and Mo were investigated. The effects of pyroconsolidation temperature (800-1200 degrees C), milling pyrite cinders and additions of both CaO and EAF on the resulting microstructure of the pellets were determined. The microstructural changes were then compared with the results of the standard leaching tests. Full inertization of pyrite cinders was achieved after milling to < 100 micron followed by a pelletization and pyroconsolidation process at a temperature of 1200 degrees C. This process also allows co-inertization of pyrite cinders with controlled additions of EAF (up to approximately to 10%). Following pyroconsolidation at 1200 degrees C, the metallic elements were inert components in the four main phases: traces of Cr in hematite; Cr, Cu, Zn and Ni in spinel-phase; traces of Cr and Zn in calcium ferrites; and Pb and traces of Cu, Zn and Ba in K-Ca-Al-Fe glassy silicate.

  7. Surficial phase-identification and structural profiles from weathered natural pyrites: A grazing-incidence X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Cai Yuanfeng [State Key Laboratory of Mineral Deposits Research, Nanjing 210093 (China); Department of Earth Sciences, Nanjing University, Nanjing 210093 (China)], E-mail: caiyf@nju.edu.cn; Pan, Yuguan [State Key Laboratory of Mineral Deposits Research, Nanjing 210093 (China); Xue Jiyue; Su Guizhen [Department of Earth Sciences, Nanjing University, Nanjing 210093 (China)

    2009-01-15

    Five pyrites with original crystal face (1 0 0) with different tarnish colours were selected from one pyrite-bearing ore sample from Tongling multi-metal deposit, Anhui, China. They are henna mottled with dark violet, yellow mottled with red, yellow, blue mottled with violet and reddish brown in surface colour. Grazing-incidence X-ray diffractometry (GIXRD) was used to study the phases formed or precipitated on the surface of pyrite (1 0 0) face during chemical weathering. By changing the incident angle, GIXRD can provide information on the changes in the mineral phases from the surface as a function of depth. Products formed or precipitated on the surface of pyrite (1 0 0) face are one or several sulfur or iron-bearing hydrated oxides and include gypsum, jalpaite, goethite, goldichite. The sulfur-bearing minerals present on the surface imply the oxidation of sulfur to sulfate, or the reduction of sulfur to sulfide. By analyzing a series of GIXRD patterns obtained at different angles of incidence for a single pyrite, the mineral assemblage differs from the surface into the body of the crystal. Taking the reddish brown sample as an example, four diffraction profiles at 2.575, 2.2105, 1.9118 and 1.613 A are present in the pattern of a 2{sup o} incident angle experiment whereas they cannot be found at a GIXRD angle smaller than 0.6{sup o}.

  8. Influence of Sulfobacillus thermosulfidooxidans on Initial Attachment and Pyrite Leaching by Thermoacidophilic Archaeon Acidianus sp. DSM 29099

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2016-07-01

    Full Text Available At the industrial scale, bioleaching of metal sulfides includes two main technologies, tank leaching and heap leaching. Fluctuations in temperature caused by the exothermic reactions in a heap have a pronounced effect on the growth of microbes and composition of mixed microbial populations. Currently, little is known on the influence of pre-colonized mesophiles or moderate thermophiles on the attachment and bioleaching efficiency by thermophiles. The objective of this study was to investigate the interspecies interactions of the moderate thermophile Sulfobacillus thermosulfidooxidans DSM 9293T and the thermophile Acidianus sp. DSM 29099 during initial attachment to and dissolution of pyrite. Our results showed that: (1 Acidianus sp. DSM 29099 interacted with S. thermosulfidooxidansT during initial attachment in mixed cultures. In particular, cell attachment was improved in mixed cultures compared to pure cultures alone; however, no improvement of pyrite leaching in mixed cultures compared with pure cultures was observed; (2 active or inactivated cells of S. thermosulfidooxidansT on pyrite inhibited or showed no influence on the initial attachment of Acidianus sp. DSM 29099, respectively, but both promoted its leaching efficiency; (3 S. thermosulfidooxidansT exudates did not enhance the initial attachment of Acidianus sp. DSM 29099 to pyrite, but greatly facilitated its pyrite dissolution efficiency. Our study provides insights into cell-cell interactions between moderate thermophiles and thermophiles and is helpful for understanding of the microbial interactions in a heap leaching environment.

  9. Selenium, tellurium and precious metal mineralogy in Uchalinsk copper-zinc-pyritic district, the Urals

    Science.gov (United States)

    Vikentev, I.

    2016-04-01

    During processing the most of Au, Ag, Se, Te, Pb, Bi, Sb, Hg as well as notable part of Cu, Zn and Cd fail for tailings and became heavy metal pollutants. Modes of occurrence of Au, Ag, Te and Se covers two giant VMS deposits: Uchaly (intensively deformed) and Uzelginsk (altered by late hydrothermal processes) as well as middle-sized Molodezn and West Ozern deposits (nondeformed) have been studied. Mineral forms of these elements as well as their presence in disperse mode in common ore minerals (pyrite, chalcopyrite, sphalerite) have been studied using SEM, EPMA, INAA, ICP-MS and LA-ICP-MS.

  10. Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Alam Khan, M., E-mail: alamkhan77@gmail.com; Sarker, J.C.; Lee, Seunyong; Mangham, Scott C.; Manasreh, M.O.

    2014-12-15

    Cubic iron pyrite (fool's gold) nanocrystals with an average diameter of ∼60 nm were grown in an oleylamine ligand which acts as a solvent and surfactant without the utilization of alkyl phosphine and phosphonic acids at 230 °C in a Schlenk flask. For the first time photoluminescence properties of such cubic nanocrystals were analyzed at 77 K, showing band gaps of 1.71 eV. However, UV–Vis spectra shows a band gap of 1.41 eV for the same nanocrystals, close to the direct band gap (1.38 eV) of reported pyrite materials. The discrepancy of 0.3 eV in absorption (UV–Vis) and emission spectra (PL) are attributed to the phonon coupling (stokes shift). The prepared cubic nanocrystals were well suited for an inexpensive thin film solar cells and further processed and spin casted with a synthesized CdSe quantum dots in chloroform solvent as a bulk-heterojunction (BHJ) solar cell in order to get photovoltaic responses in real devices. We successfully report here an efficiency of 0.5% with the J{sub SC} of 3.7 mA/cm{sup −2} and V{sub OC} of 0.16 mV with a cell structure of ITO/PEDOT:PSS/FeS{sub 2}:CdSe/Au. The morphology and optoelectronic properties are elucidated by SEM, TEM, TEM-EDS, XRD, micro-Raman spectra, IV curve and micro-PL techniques. - Highlights: • Excellent cubic iron pyrite nanocrystals are synthesized by using an oleylamine ligand. • First time PL spectra were used to measure band gaps of such colloidal cubic nanocrytsals. • Pyrite ink was made in suitable solvent to fabricate practical devices. • A successful 0.5% efficiency is reported in bulk-heterojunction cell with CdSe QDs.

  11. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  12. Isotopic studies of authigenic sulfides, silicates and carbonates, and calcite and pyrite veinlets in the Creede Formation, San Juan Mountains, Southwest Colorado

    Science.gov (United States)

    Bethke, Philip M.; Rye, Robert O.; Finkelstein, David B.

    2000-01-01

    Sulfur isotope analysis of authigenic pyrite in the Creede Formation documents its precipitation by the reaction between iron in the volcaniclastic sediments and H2S formed through bacteriogenic reduction of sulfate added to the lake during and immediately following repeated volcanic eruptions during sedimentation. Pyrite veinlets in the underlying Snowshoe Mountain Tuff were formed by the percolation of H2S-bearing pore waters into fractures in the tuff. Conventional analyses of bulk samples of authigenic pyrite range from -20.4% to 34.5% essentially equivalent to the range of -30% to 40% determined using SHRIMP microprobe techniques. Conventional analyses of bulk samples of pyrite from veinlets in the Snowshow Mountain Tiff range from -3.5% to 17.6% much more limited than the ranges of -23% to 111% and -15.6% to 67.0% determined by SHRIMP and laser ablation microbeam techniques, respectively. The extreme range of δ34S for the veinlets is interpreted to be the result of continued fractionation of the already 34S-depleted pore water. Oxygen isotope analysis of authigenic smectite, kaolinite, and K-feldspar together with fluid-inclusion temperatures and oxygen isotope analysis of calcite coexisting with kaolinite indicate that the smectites formed early during burial diagenesis, in accord with petrographic observations. The 40Ar/39Ar dating of K-feldspar, concorfance of K-feldspar, kaolinite, and calcite δ18O values, and fluid-inclusion temperatures in calcite, indicate that the sediments at core hole CCM-1 were subjected to a hydrothermal event at 17.6 Ma. The minerals formed oxygen-shifted meteoric waters with δ18O values of ~-9% Smecities at CCM-1 at least partially exchanged with these waters. Carbon and oxygen isotope analysis of authigenic calcites in the Creede Formation show that they formed over a wide range of temperatures from fluids having a wide range of isotopic composition, presumably over an extended period time. Some of the cements apparently

  13. Particle segregation during explosive dispersal of binary particle mixtures

    Science.gov (United States)

    Frost, David L.; Loiseau, Jason; Marr, Bradley J.; Goroshin, Samuel

    2017-01-01

    The explosive dispersal of a layer of solid particles surrounding a spherical high explosive charge generates a turbulent, multiphase flow. The shock-compacted particle layer typically fractures into discrete fragments which move radially outwards on ballistic trajectories. The fragments shed particles in their wakes forming jet-like structures. The tendency to form jets depends on the mass-ratio of the particles to explosive and the type of particles. Brittle or soft, ductile particles are more susceptible to forming jets during compaction and dispersal, whereas particles that are comprised of material with moderate hardness, high compressive strength and high toughness are much less prone to forming jets. Experiments have been carried out to determine the degree of particle segregation that occurs during the explosive dispersal of a uniform, binary mixture containing both "jetting" (silicon carbide) and "non-jetting" (steel) particles with various mass fractions of each particle type. During the dispersal of mixtures that contain predominantly non-jetting (steel) particles, the steel particles form a stable layer whereas the jetting (silicon carbide) particles rapidly segregate and form jets which are confined within the shell of steel particles. As the fraction of silicon carbide particles increases, the jet structures dominate the particle motion and the steel particles are entrained into the jet structures.

  14. The effect of rehabilitation on the rate of oxidation of pyrite in a mine waste rock dump.

    Science.gov (United States)

    Harries, J R; Ritchie, A I

    1987-06-01

    Temperature profiles within a mine waste rock dump undergoing pyritic oxidation have been used to estimate the rate of oxidation and the sites where oxidation was occurring. The waste rock dump is located at the abandoned Rum Jungle mine site in Northern Australia and was a major source of pollution to the local river system. The dump was rehabilitated in 1983-84 by reshaping to reduce erosion and covering with clay and soil to reduce infiltration of water.Heat source distributions were derived from temperature profiles measured in the dump. The oxidation of pyritic material is the main cause of heat in the dump, hence the rate and location of oxidation can be obtained from the distribution of heat sources. A comparison of the heat source distributions before and after rehabilitation showed that rehabilitation greatly reduced or stopped the oxidation of pyrite in the dump.

  15. Fractional statistical potential in graphene

    Science.gov (United States)

    Ardenghi, J. S.

    2017-03-01

    In this work the fractional statistics is applied to an anyon gas in graphene to obtain the special features that the arbitrary phase interchange of the particle coordinates introduce in the thermodynamic properties. The electron gas is constituted by N anyons in the long wavelength approximation obeying fractional exclusion statistics and the partition function is analyzed in terms of a perturbation expansion up to first order in the dimensionless constant λ / L being L the length of the graphene sheet and λ = βℏvF the thermal wavelength. By considering the correct permutation expansion of the many-anyons wavefunction, taking into account that the phase changes with the number of inversions in each permutation, the statistical fermionic/bosonic potential is obtained and the intermediate statistical behavior is found. It is shown that "extra" fermonic and bosonic particles states appears and this "statistical particle" distribution depends on N. Entropy and specific heat is obtained up to first order in λ / L showing that the results obtained differs from those obtained in different approximation to the fractional exclusion statistics.

  16. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    Science.gov (United States)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  17. Re-Os pyrite geochronology of Zn-Pb mineralization in the giant Caixiashan deposit, NW China

    Science.gov (United States)

    Li, Dengfeng; Chen, Huayong; Hollings, Pete; Zhang, Li; Mi, Mei; Li, Jie; Fang, Jing; Wang, Chengming; Lu, Wanjian

    2016-03-01

    The newly discovered Caixiashan Irish-type Zn-Pb deposit (˜131 Mt at 3.95 % Zn + Pb), located in the Eastern Tianshan of Xinjiang, is one of the largest Zn-Pb deposits in NW China. Massive colloform/framboidal textured syn-sedimentary pyrite yielded a Re-Os isochron age of 1019 ± 70 Ma (MSWD = 3.5), which is interpreted to be the depositional age of the Kawabulake group that hosts the ore. The age of the main mineralization stage is constrained by two types of pyrite: the layered pyrite coexists with recrystallized calcite and dolomite and is locally replaced by sphalerite, whereas the euhedral pyrite occurs with galena that crosscuts the massive sphalerite. The layered pyrite yielded a Re-Os age of 859 ± 79 Ma (MSWD = 6.7; initial 187Os/188Os ratio [IOs] = 0.19 ± 0.25) and the euhedral pyrite 837 ± 39 Ma (MSWD = 6.5; [IOs] = 0.16 ± 0.09), which are interpreted to be the Zn and Pb mineralization ages, respectively. The low radiogenic initial Os values of the Zn-Pb mineralization suggest interaction between a hydrothermal fluid and a mafic or ultramafic source rock with a mantle Os signature with some contamination with Mesoproterozoic Kawabulake group. Based on our new Re-Os ages, we conclude that the giant Caixiashan Zn-Pb deposit formed in the early Neoproterozoic and it represents a newly identified mineralization epoch in the Eastern Tianshan of the Central Asia Orogenic Belt.

  18. Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process.

    Science.gov (United States)

    Barhoumi, Natija; Labiadh, Lazhar; Oturan, Mehmet A; Oturan, Nihal; Gadri, Abdellatif; Ammar, Salah; Brillas, Enric

    2015-12-01

    Levofloxacin is a large spectrum antibiotic from fluoroquinolones family, widely used and detected in natural waters. Here, this drug was degraded by a novel heterogeneous electro-Fenton (EF) process, so-called EF-pyrite, in which pyrite powder in suspension regulates the solution pH to 3.0 and supplies 0.2mM Fe(2+) as catalyst to the solution. Trials were performed with a stirred boron-doped diamond (BDD)/carbon-felt cell under O2 bubbling for cathodic H2O2 generation. Hydroxyl radicals formed from water oxidation at the BDD anode and in the bulk from Fenton's reaction between Fe(2+) and H2O2 were the main oxidizing agents. The effect of applied current and antibiotic concentration over the mineralization rate and degree, mineralization current efficiency and specific energy consumption was studied. An almost total mineralization was achieved for a 0.23mM drug solution operating at 300mA for 8h. The kinetic decay of the drug was followed by reversed-phase HPLC and obeyed a pseudo-first-order reaction. Ion-exclusion HPLC analysis of treated solutions revealed that oxalic and oxamic acids, the most persistent final products, were the predominant pollutants remaining in solution at long electrolysis time. Ion chromatography analysis confirmed the release of F(-), NO3(-) and NH4(+) ions during levofloxacin mineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    KAUST Repository

    Cabán-Acevedo, Miguel

    2015-09-14

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS 2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm at overpotentials as low as 48mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n -p-p silicon micropyramids achieved photocurrents up to 35 mA cm at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  20. Sulfidation Roasting of Hemimorphite with Pyrite for the Enrichment of Zn and Pb

    Science.gov (United States)

    Min, Xiao-Bo; Xue, Ke; Ke, Yong; Zhou, Bo-Sheng; Li, Yang-Wen-Jun; Wang, Qing-Wei

    2016-09-01

    With the increasing consumption of zinc and the depletion of zinc sulfide ores, the exploitation of low-grade zinc oxide ores may be important for the sustainability of the zinc industry. Hemimorphite, a zinc hydroxyl silicate hydrate, is a significant source of Zn and Pb. It is difficult to obtain Zn and Pb from the hemimorphite using traditional technology. In this work, for the first time, sulfidation roasting of hemimorphite with pyrite was studied for the enrichment of Zn and Pb by a flotation process. Four stages of sulfidation roasting were determined based on x-ray diffraction and thermogravimetry analysis. Then, the effects of sulfidation temperature, pyrite dosage and reaction time on the sulfidation percentages were investigated at the laboratory scale. The experimental results showed that the sulfidation percentages of Pb and Zn were as high as 98.08% and 90.55% under optimum conditions, respectively. Finally, a flotation test was performed to enrich Zn and Pb in the sulfidation product. A flotation concentrate with 8.78% Zn and 9.25% Pb was obtained, and the recovery of Zn and Pb reached 56.14% and 75.94%, respectively.

  1. An experimental study of pyrite bio-leaching as a way to control spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    Yin Shenghua; Wu Aixiang; Liu Jinzhi; Huang Mingqing; Wang Hongjiang

    2011-01-01

    Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests.Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed.The leaching ability and efficiency of native bacteria was greatly improved by adaptation of the bacteria to the test conditions.These cultivated bacteria were then used for the leaching process.The changes in solution pH,Eh,Fe2+ concentration,and sulfate ion concentration were monitored throughout the tests.A portion of the pyritic sulfur is transformed into soluble sulfate ion.The desulfurization ratio of 42.6% was obtained in a flask shaking test and a ratio of 39.4% was obtained during column leaching.A weight gain test was performed on leached and unleached samples by exposing the samples to humid air for several days.A smaller weight gain of the bio-leached samples indicates that removing sulfur from the sulphide ore helps reduce its oxidation rate and the potential for spontaneous combustion.

  2. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Rizzi, Agostino; Baldi, Franco; Ventura, Stefano; Daffonchio, Daniele; Borin, Sara

    2011-02-01

    In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity.

  3. Matrix fractional systems

    Science.gov (United States)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional