WorldWideScience

Sample records for pyrite fes2 hematite

  1. Thermoluminescence kinetics of pyrite (FeS2)

    International Nuclear Information System (INIS)

    Silverman, A.N; Levy, P.W.; Kierstead, J.A.

    1990-01-01

    Thermoluminescence of pyrite (FeS 2 ) has been investigated to study the kinetics of single peak glow curves. The material used normally exhibits one large and four small peaks. However a glow curve can be obtained with only the large single peak that is suitable for testing thermoluminescence kinetics. Glow curves from aliquots of a single natural pyrite crystal studied in detail contain two low intensity thermoluminescence (TL) peaks at ∼90 degree and ∼250 degree C, and two chemiluminescence (CL) peaks at ∼350 degree and ∼430 degree C. The CL peaks are largely removable by initially heating the sample chamber under vacuum, pumping through liquid nitrogen traps, and recording glow curves immediately after helium is introduced, procedures which reduce system contaminants that react with pyrite. The shape, the variation of the temperature of the peak maximum (T max ) with dose, and the retrapping to recombination cross section ratio σ of the large 250 degree C peak are better described by the general one trap (GOT) kinetic equation, the basic equation from which the 1st and 2nd order kinetic equations are obtained as special cases (see text), than by the 1st and 2nd order equations. 12 refs., 7 figs

  2. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries

    Science.gov (United States)

    Yoder, Tara S.; Tussing, Matthew; Cloud, Jacqueline E.; Yang, Yongan

    2015-01-01

    Converting iron pyrite (FeS2) from a non-cyclable to a cyclable cathode material for lithium ion batteries has been an ongoing challenge in recent years. Herein we report a promising mitigation strategy: wet-chemistry based conformal encapsulation of synthetic FeS2 nanocrystals in a resilient carbon (RC) matrix (FeS2@RC). The FeS2@RC composite was fabricated by dispersing autoclave-synthesized FeS2 nanocrystals in an aqueous glucose solution, polymerizing the glucose in a hydrothermal reactor, and finally heating the polymer/FeS2 composite in a tube furnace to partially carbonize the polymer. The FeS2@RC electrodes showed superior cyclability compared with the FeS2 electrodes, that is, 25% versus 1% of retention at the 20th cycle. Based on electrochemical analysis, XRD study, and SEM characterization, the performance enhancement was attributed to RC's ability to accommodate volume fluctuation, enhance charge transfer, alleviate detrimental side reactions, and suppress loss of the active material. Furthermore, the remaining issues associated with the current system were identified and future research directions were proposed.

  3. Spatial Mapping for Managing Oxidized Pyrite (FeS2 in South Sumatra Wetlands, Indonesia

    Directory of Open Access Journals (Sweden)

    M. Edi Armanto

    2016-02-01

    Full Text Available The research aimed to analyze spatial mapping for managing oxidized pyrite (FeS2 in South Sumatra wetlands, Indonesia. The field observations are done by exploring several transect on land units. The field description refers to Soil Survey Staff (2014. Water and soil samples were taken from selected key areas for laboratory analysis. The vegetation data was collected by making sample plots (squares method placed on each vegetation type with plot sizes depending on the vegetation type, namely 10 x 10 m for secondary forests and 5 x 5 m for shrubs and grass. The observations of surface water level were done during the river receding with units of m above sea level (m asl. The research results showed that pyrite formation is largely determined by the availability of natural vegetation as Sulfur (S donors, climate and uncontrolled water balance and supporting fauna such as crabs and mud shrimp.  Climate and water balance as well as supporting faunas is the main supporting factors to accelerate the process of pyrite formation. Oxidized pyrite serves to increase soil acidity, becomes toxic to fish ponds and arable soils, plant growth and disturbing the water and soil nutrient balances. Oxidized pyrite is predominantly accelerated by the dynamics of river water and disturbed natural vegetation by human activities.  The pyrite oxidation management approach is divided into three main components of technologies, namely water management, land management and commodity management.

  4. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    Directory of Open Access Journals (Sweden)

    Dipendra Banjara

    2018-02-01

    Full Text Available We present results from first principle, local density approximation (LDA calculations of electronic, transport, and bulk properties of iron pyrite (FeS2. Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW method, as enhanced by Ekuma and Franklin (BZW-EF. We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96, using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.

  5. Photoelectrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS2 (pyrite) on TiO2

    International Nuclear Information System (INIS)

    Ennaoui, A.; Fiechter, S.; Tributsch, H.; Giersig, M.; Vogel, R.; Weller, H.

    1992-01-01

    Ultrathin (10 to 20 nm thick), polycrystalline films of FeS 2 (pyrite) were grown on TiO 2 (anatase) by chemical vapor deposition. The FeS 2 films were characterized using optical absorption and high-resolution electron microscopy. Photoelectrochemical solar cells, using TiO 2 (anatase) coated with FeS 2 ultrathin films, generated high open-circuit photo-voltages, of up to 600 mV, compared with a single crystal of pyrite electrode (200 mV). The photoelectrochemical behavior shows a strong dependence of photovoltage and photocurrent on the pH of the solution. This paper reports that it is explained by electron injection from the conduction band of FeS 2 to the conduction band of TiO 2 . Regeneration of holes is taking place by electron transfer from the redox system in the electrolyte

  6. Experimental studies on the electronic structure of pyrite FeS2 films prepared by thermally sulfurizing iron films

    International Nuclear Information System (INIS)

    Zhang Hui; Wang Baoyi; Zhang Rengang; Zhang Zhe; Wei Long; Qian Haijie; Su Run; Kui Rexi

    2006-01-01

    Pyrite FeS 2 films have been prepared by thermally sulfurizing iron films deposited by magnetron sputtering. The electronic structures were studies by X-ray absorption near edge structure and X-ray photoemission spectrum. The results show that an S 3p valence band with relatively higher intensity compared to the calculation exists in 2-10 eV range and a high density below the Fermi level of Fe 3d states were detected. A second gap of 2.8 eV in the unoccupied density of states was found above the conduction band which was 2.4 eV by experimentally calculation. The difference between t 2g and e g which were formed in an octahedral crystal field was computed to be 2.1 eV. (authors)

  7. Enhanced photoresponse of FeS2 films: the role of Marcasite-Pyrite phase junctions

    NARCIS (Netherlands)

    Wu, L.; Dzade, N.Y.; Gao, L.; Scanlon, D.O.; Öztürk, Z.; Hollingsworth, N.; Weckhuysen, B.M.; Hensen, E.J.M.; De Leeuw, N.H.; Hofmann, J.P.

    2016-01-01

    The beneficial role of marcasite in iron-sulfide-based photo-electrochemical applications is reported for the first time. A spectacular improvement of the photoresponse observed experimentally for mixed pyrite/marcasite-FeS2 films can be ascribed to the presence of p/m phase junctions at the

  8. Enhanced Photoresponse of FeS2 Films : The Role of Marcasite–Pyrite Phase Junctions

    NARCIS (Netherlands)

    Wu, Longfei; Dzade, N.Y.; Gao, L.; Scanlon, D. O.; Özturk, Zafer; Hollingsworth, N.; Weckhuysen, B.M.; Hensen, E. J. M.; de Leeuw, Nora H.; Hofmann, J. P.

    2016-01-01

    The beneficial role of marcasite in iron sulfide-based photo-electrochemical applications is reported for the first time. A spectacular improvement of the photoresponse observed experimentally for mixed pyrite/marcasite-FeS2 films can be ascribed to the presence of p/m phase junctions at the

  9. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films

    International Nuclear Information System (INIS)

    Zhai, Guangmei; Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin; Liu, Xuguang; Xu, Bingshe

    2016-01-01

    In this work, the optical and electronic properties of iron pyrite FeS 2 nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS 2 nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS 2 nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS 2 nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS 2 nanocrystals with different ligands were obtained by current density–voltage measurements.

  10. Chemical vapour transport of pyrite (FeS 2) with halogen (Cl, Br, I)

    Science.gov (United States)

    Fiechter, S.; Mai, J.; Ennaoui, A.; Szacki, W.

    1986-12-01

    A systematic study of chemical vapour transport (CVT) of pyrite with halogen, hydrogen halides and ammonium halides as transporting agents has shown that the transport with chlorine and bromine in a temperature gradient Δ T = 920-820 K yields the highest transport rates (˜6 mg/h) with crystals up to 5 mm edge length. Computing thermochemical equilibria and flux functions in the system Fe-S-Hal (Hal = Cl, Br, I) it has been confirmed that the transport velocity of pyrite is limited by the concentration of FeHal 2 in the vapour phase, the equilibrium position between FeHal 2(g) and FeHal 3(g) and the flux directions of the iron gas species.

  11. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  12. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm-2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  13. Magnetron-sputter deposition of Fe3S4 thin films and their conversion into pyrite (FeS2) by thermal sulfurization for photovoltaic applications

    International Nuclear Information System (INIS)

    Liu Hongfei; Chi Dongzhi

    2012-01-01

    The authors report on the fabrication of FeS 2 (pyrite) thin films by sulfurizing Fe 3 S 4 that were deposited by direct current magnetron sputtering at room temperature. Under the selected sputtering conditions, Fe 3 S 4 nanocrystal films are obtained and the nanocrystals tend to locally cluster and closely pack into ricelike nanoparticles with an increase in film thickness. Meanwhile, the film tends to crack when the film thickness is increased over ∼1.3 μm. The film cracking can be effectively suppressed by an introduction of a 3-nm Cu intermediate layer prior to Fe 3 S 4 deposition. However, an introduction of a 3-nm Al intermediate layer tends to enhance the film cracking. By post-growth thermal sulfurization of the Fe 3 S 4 thin films in a tube-furnace, FeS 2 with high phase purity, as determined by using x ray diffraction, is obtained. Optical absorption spectroscopy was employed to characterize the resultant FeS 2 thin films, which revealed two absorption edges at 0.9 and 1.2 eV, respectively. These two absorption edges are assigned to the direct bandgap (0.9 eV) and the indirect allowed transitions (1.2 eV) of FeS 2 , respectively.

  14. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    OpenAIRE

    Bayram Kilic; Sunay Turkdogan; Aykut Astam; Oguz Can Ozer; Mansur Asgin; Hulya Cebeci; Deniz Urk; Selin Pravadili Mucur

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode...

  15. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS 2) thin films by MOCVD

    Science.gov (United States)

    Höpfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H.

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ / mol over the temperature range from 250 to 400°C. From 500 to 630°C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe 1 - xS) occurs at higher growth temperatures. The {S}/{Fe} ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 Å / s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 Å / s. Temperatures above 550°C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 μm.

  16. Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2), pyrrotite (Fe1-xS) and molybdenite (MoS2)

    International Nuclear Information System (INIS)

    Francisco Junior, Wilmo E.; Bevilaqua, Denise; Garcia Junior, Oswaldo

    2007-01-01

    This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferroxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample. (author)

  17. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Photoelectrochemistry: Enhanced Photoresponse of FeS2 Films: The Role of Marcasite–Pyrite Phase Junctions  (Adv. Mater. 43/2016, Back Cover)

    NARCIS (Netherlands)

    Wu, Longfei; Dzade, N.Y.|info:eu-repo/dai/nl/41249311X; Gao, L.; Scanlon, D. O.; Öztürk, Z.; Hollingsworth, N.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Hensen, E. J. M.; de Leeuw, Nora H.|info:eu-repo/dai/nl/376421061; Hofmann, J. P.

    2016-01-01

    The beneficial role of marcasite in pyrite thin films for photoelectrochemical applications is reported by J. P. Hofmann and co-workers on page 9602. A bulk heterojunction with staggered band alignment at the pyrite–marcasite interface enhances charge-carrier separation and leads to a dramatic

  19. Charge density study of two FeS2 polymorphs

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Jørgensen, Mads Ry Vogel; Bjerg, Lasse

    Experimental charge density studies of inorganic solids have proven to be a difficult task due to systematic errors related to data collection such as absorption and extinction; however, the use of synchrotron radiation has the potential to minimize these problems. [1] One of the pioneering...... experimental electron density studies of an inorganic solid containing a transition metal was presented by Stevens et al. [2] who investigated the effect of crystal-field splitting of the partially filled iron d-orbitals in the pyrite structure of FeS2. Other studies of various FeS2 structures, including...... pyrite, has been performed by Gibbs et al. [3], however, these are all based on theoretical calculations rather than experiment. In the current study we revisit FeS2 through an experimental charge density study of the two low-spin iron FeS2 structures, pyrite and marcasite. High-quality, low...

  20. Low cost, Lightweight, FeS2-Based Photovoltaic Devices by On Demand Ink Jet Printing

    Data.gov (United States)

    National Aeronautics and Space Administration — This research projects seeks to develop novel synthesis for iron pyrite, FeS2, nanocrystals and nanorods. The synthesis of the material includes investigating the...

  1. Estudo da dissolução oxidativa microbiológica de uma complexa amostra mineral contendo pirita (FeS2, Pirrotita (Fe1-xS e Molibdenita (MoS2 Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2, pyrrotite (Fe1-xS and molybdenite (MoS2

    Directory of Open Access Journals (Sweden)

    Wilmo E. Francisco Jr

    2007-10-01

    Full Text Available This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferrooxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample.

  2. Preparation of FeS2 nanotube arrays based on layer-by-layer assembly and their photoelectrochemical properties

    International Nuclear Information System (INIS)

    Wang, Mudan; Xue, Dongpeng; Qin, Haiying; Zhang, Lei; Ling, Guoping; Liu, Jiabin; Fang, Youtong; Meng, Liang

    2016-01-01

    Graphical abstract: - Highlights: • Amorphous Fe 2 O 3 nanotube arrays are prepared via layer-by-layer assembly. • Pyrite FeS 2 nanotube arrays are obtained by sulfurizing Fe 2 O 3 nanotube arrays. • Various electrochemical properties are characterized. • A comparison between FeS 2 nanotube and nanoparticle films is conducted. • Nanotube arrays show enhanced corrosion resistance and photoresponse. - Abstract: Well-aligned one-dimensional iron pyrite FeS 2 nanotube arrays have been fabricated via layer-by-layer assembly technique on ZnO nanorod arrays in combination with subsequent sulfurization. The as-prepared products were confirmed to be pure phase pyrite FeS 2 with Fe/S ratio approaching 1/2. Typical nanotube structure was observed for the FeS 2 with average outer diameter of 150 ± 20 nm and wall thickness of 50 ± 5 nm. Comparisons of photoelectrochemical properties between FeS 2 nanotubes and FeS 2 nanoparticles were conducted. Tafel polarization curves and electrochemical impedance spectroscopy indicate that FeS 2 nanotubes possess high corrosion resistance and electrochemical stability. The J–V curves show that the photocurrent at 1.0 V for FeS 2 nanotubes is more than five times larger than that of FeS 2 nanoparticles, indicating enhanced photoresponse and rapid charge transfer performances of 1-D nanotube structure. The enhanced photoelectrochemical properties mainly benefit from the unique architecture features of nanotube array structure.

  3. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  4. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    Keywords. Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. ... Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional Chinesemedicine, has been used in the Chinese population to treat bone diseases and to promote bone healing. The mechanical properties of ...

  5. The interface of the ferromagnetic metal CoS2 and the nonmagnetic semiconductor FeS2

    KAUST Repository

    Nazir, S.

    2010-11-05

    The electronic and magnetic properties of the cubic pyriteCoS2/FeS2interface are studied using the all-electron full-potential linearized augmented plane wave method. We find that this contact between a ferromagneticmetal and a nonmagnetic semiconductor shows a metallic character. The CoS2 stays close to half-metallicity at the interface, while the FeS2 becomes metallic. The magnetic moment of the Co atoms at the interface slightly decreases as compared to the bulk value and a small moment is induced on the Fe atoms. Furthermore, at the interfaceferromagnetic ordering is found to be energetically favorable as compared to antiferromagnetic ordering.

  6. Pyrite footprinting of RNA

    International Nuclear Information System (INIS)

    Schlatterer, Jörg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-01-01

    Highlights: ► RNA structure is mapped by pyrite mediated · OH footprinting. ► Repetitive experiments can be done in a powdered pyrite filled cartridge. ► High · OH reactivity of nucleotides imply dynamic role in Diels–Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ( · OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS 2 ) can produce sufficient · OH to footprint DNA. The 49-nt Diels–Alder RNA enzyme catalyzes the C–C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme’s active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels–Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to · OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop’s flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated · OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  7. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    as substrates and NO3- as electron acceptor, in the presence of (FeS2)-Fe-55, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of (FeS2)-Fe-55, could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds......Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3...... marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3-, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S-0...

  8. Pyrite-coated granite cobbles at Lee Bay, Stewart Island

    International Nuclear Information System (INIS)

    Brathwaite, R.L.; Skinner, D.N.B.; Faure, K.; Edwards, E.

    2014-01-01

    On the west side of Lee Bay on the northeast coast of Stewart Island, ventifact cobbles of pyrite-coated granite occur on the beach near the high tide mark and appear to be derived from a sand-cemented gravel deposit that forms a low bank at the back of the beach. The pyrite coat (up to 1 mm thick) completely covers the granitic cobbles and is zoned, with an inner zone of fine-grained colloform pyrite and an outer framboidal zone. Framboidal pyrite is typically formed in anoxic sedimentary environments. Subrounded grains of hematite, ilmenite with hematite blebs, magnetite, feldspar, biotite, quartz and zircon are present in the outer framboidal zone, with some ilmenite and hematite grains being partially replaced by pyrite. The assemblage of ilmenite-hematite-magnetite-biotite-zircon is similar both in mineralogy and size range to that found in heavy mineral beach sands. Sulphur isotope values of the pyrite coat are consistent with formation of the pyrite by microbial sulphate reduction of seawater sulphate. The framboidal texture together with the presence of grains of beach sand in the pyrite coating indicate that it was deposited in a low-temperature sedimentary environment. (author)

  9. Sulfur isotope evidence for the contemporary formation of pyrite in a coastal acid sulfate soil

    International Nuclear Information System (INIS)

    Bush, R.T.; Sullivan, L.A.; Prince, K.; White, I.

    2000-01-01

    The sulfur isotopic composition of pyrite (FeS 2 ), greigite (Fe 3 S 4 ) and pore-water sulfate was determined for a typical coastal acid sulfate soil (ASS). Greigite occurs only in the partially oxidised upper-most pyrite sediments as blackish clusters within vertical fissures and other macro-pores. The concentration of pyrite was an order of magnitude greater than greigite in this layer, continuing through the underlying reduced estuarine sediments. δ 34 S of pyrite (0.45 per mil) associated with greigite accumulations were distinctly different to the bulk average for pyrite (-3.7 per mil), but similar to greigite (0.9 per mil). Greigite is meta-stable under reducing conditions, readily transforming to pyrite. The transformation of iron monosulfides (including greigite) to pyrite is a sulfur-isotope conservative process and therefore, these observations indicate that pyrite is forming from greigite at the oxic/anoxic boundary

  10. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  11. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  12. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite

    Science.gov (United States)

    Donald, Ravin; Southam, Gordon

    1999-07-01

    In vitro enrichment cultures of dissimilatory sulfate-reducing bacteria precipitated FeS and catalyzed its transformation into FeS 2 at ambient temperature and pressure under anaerobic conditions. When compared to purely abiotic processes, the bacterially mediated transformation was shown to be more efficient in transforming FeS into FeS 2. This occurred due to the large, reactive surface area available for bacterially catalyzed diagenesis, where the biogenic FeS precursor was immobilized as a thin film (˜25 nm thick) on the μm-scale bacteria. The bacteria also contained the source(s) of sulfur for diagenesis to occur. Using a radiolabeled organic-sulfur tracer study, sulfur was released during cell autolysis and was immobilized at the bacterial cell surface forming FeS 2. The formation of FeS 2 occurred on both the inner and outer surfaces of the cell envelope and represented the first step of bacterial mineral diagenesis. Pyrite crystals, having linear dimensions of ˜1 μm, grew outward from the bacterial cell surfaces. These minerals were several orders of magnitude larger in volume than those originating abiotically.

  13. Interpretation of the photoelectron spectra of FeS(2)(-) by a multiconfiguration computational approach.

    Science.gov (United States)

    Clima, Sergiu; Hendrickx, Marc F A

    2007-11-01

    The ground states of FeS(2) and FeS(2)(-), and several low-lying excited electronic states of FeS(2) that are responsible for the FeS(2)(-) photoelectron spectrum, are calculated. At the B3LYP level an open, quasi-linear [SFeS](-) conformation is found as the most stable structure, which is confirmed at the ab initio CASPT2 computational level. Both the neutral and the anionic unsaturated complexes possess high-spin electronic ground states. For the first time a complete assignment of the photoelectron spectrum of FeS(2)(-) is proposed. The lowest energy band in this spectrum is ascribed to an electron detachment from the two highest-lying 3dpi antibonding orbitals (with respect to the iron-sulfur bonding) of iron. The next-lowest experimental band corresponds to an electron removal from nonbonding, nearly pure sulfur orbitals. The two highest bands in the spectra are assigned as electron detachments from pi and sigma bonding mainly sulfur orbitals.

  14. Atomistic simulation of the structure and elastic properties of pyrite (FeS2) as a function of pressure

    CSIR Research Space (South Africa)

    Sithole, Happy M

    2003-10-01

    Full Text Available metal, NiS2 a paramagnetic Mott–Hubbard insulator, CuS2 a (metallic) superconductor and ZnS2 a diamagnetic insulator. Thus they attract a great deal of interest from both physicists and mineralogists, and of- fer a challenging group of minerals...

  15. Greigite: a true intermediate on the polysulfide pathway to pyrite

    Directory of Open Access Journals (Sweden)

    Benning Liane G

    2007-03-01

    Full Text Available Abstract The formation of pyrite (FeS2 from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS and greigite (Fe3S4. Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify. In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite. The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

  16. FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 phase as an excellent electrocatalyst for high-performance hydrogen evolution

    International Nuclear Information System (INIS)

    Zhao, Xue; Ma, Xiao; Lu, Qingqing; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2017-01-01

    Well-established methods to improve the hydrogen evolution reaction (HER) performances include, but are not limited to, tailoring the morphology and electronic structure of transition metal dichalcogenides (TMDs), and doping of earth abundant chemicals such as iron pyrite FeS 2 into existing TMDs. In this work, MoS 2 nanoflowers with the majority being octahedral MoS 2 (1T-MoS 2 ) and doped with FeS 2 were prepared and applied to HER. The as-prepared catalysts were characterized by X-ray absorption fine structure at the K-edge of Mo, S, and Fe to probe the local electronic structures. The resulting nanomaterial was identified to be FeS 2 doped MoS 2 nanoflower (denoted as Fe-MoS 2 NF) with 66% 1T-MoS 2 which was the metallic phase and could drastically boost the HER properties. The Fe-MoS 2 NF exhibited high HER performance with a Tafel slope of 82 mV dec −1 and it needs 136 mV to achieve a current density of 10 mA cm −2 . The synthesis of Fe-MoS 2 NF with refined morphology and active electronic structure is expected to open a new era for improving the catalytic activity and stability of MoS 2 .

  17. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  18. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  19. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-01-01

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS_2(s) + 91NH_4NO_3(s) → 52NO(g) + 26SO_2(g) + 6Fe_2O_3(s) + 78NH_3(g) + 26N_2O(g) + 2FeSO_4(s) + 65H_2O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO_2, NH_3, SO_2 and N_2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  20. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  1. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

    Science.gov (United States)

    Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.

    2017-03-01

    Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.

  2. Retention and reduction of uranium on pyrite surface

    International Nuclear Information System (INIS)

    Eglizaud, N.

    2006-12-01

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS 2 ). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH ≥ 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10 -9 mol g -1 , an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. ≥ -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 ± 0.8) x 10 -7 mol L -1 of uranium(VI). Modelling of uranium sorption at high surface coverage (≥ 4 x 10 -9 mol g -1 ) by the Langmuir model yields an adsorption constant of 8 x 10 7 L mol -1 . Finally, a great excess of uranium(VI) above the saturation concentration allows the observation of

  3. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries

    Science.gov (United States)

    Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.

    2016-11-01

    Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.

  4. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries

    Science.gov (United States)

    Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang

    2018-06-01

    Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.

  5. Na7 [Fe2S6 ] , Na2 [FeS2 ] and Na2 [FeSe2 ] : New 'reduced' sodium chalcogenido ferrates

    Science.gov (United States)

    Stüble, Pirmin; Peschke, Simon; Johrendt, Dirk; Röhr, Caroline

    2018-02-01

    Three new 'reduced' FeII containing sodium chalcogenido ferrates were obtained applying a reductive synthetic route. The mixed-valent sulfido ferrate Na7 [Fe2S6 ] , which forms bar-shaped crystals with metallic greenish luster, was synthesized in pure phase from natural pyrite and elemental sodium at a maximum temperature of 800 °C. Its centrosymmetric triclinic structure (SG P 1 bar , a = 764.15(2), b = 1153.70(2), c = 1272.58(3) pm, α = 62.3325 (7) , β = 72.8345 (8) , γ = 84.6394 (8) ° , Z = 3, R1 = 0.0185) exhibits two crystallographically different [Fe2S6 ] 7 - dimers of edge-sharing [FeS4 ] tetrahedra, with somewhat larger Fe-S distances than in the fully oxidized FeIII dimers of e.g. Na6 [Fe2III S6 ] . In contrast to the localized AFM ordered pure di-ferrates(III), the Curie-Weiss behavior of the magnetic susceptibility proves the rarely observed valence-delocalized S = 9/2 state of the mixed-valent FeIII /FeII dimer. The nearly spin-only value of the magnetic moment combined with the chemical bonding not generally differing from that in pure ferrates(II) and (III), provides a striking argument, that the reduction of the local Fe spin moments observed in all condensed sulfido ferrate moieties is connected with the AFM spin ordering. The two isotypic ferrates(II) Na2 [FeS2 ] and Na2 [FeSe2 ] with chain-like structural units (SG Ibam, a = 643.54(8)/ 660.81(1), b = 1140.2(2)/1190.30(2) c = 562.90(6)/585.59(1) pm, Z = 4, R1 = 0.0372/0.0466) crystallize in the K2 [ZnO2 ] -type structure. Although representing merely further members of the common series of chalcogenido metallates(II) Na2 [MIIQ2 ] , these two new phases, together with Na6 [FeS4 ] and Li2 [FeS2 ] , are the only examples of pure FeII alkali chalcogenido ferrates. The new compounds allow for a general comparison of di- and chain ferrates(II) and (III) and mixed-valent analogs concerning the electronic and magnetic properties (including Heisenberg super-exchange and double-exchange interactions

  6. The interface of the ferromagnetic metal CoS2 and the nonmagnetic semiconductor FeS2

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2010-01-01

    semiconductor shows a metallic character. The CoS2 stays close to half-metallicity at the interface, while the FeS2 becomes metallic. The magnetic moment of the Co atoms at the interface slightly decreases as compared to the bulk value and a small moment

  7. Chemical Interactions of Hydraulic Fracturing Biocides with Natural Pyrite

    Science.gov (United States)

    Consolazio, Nizette A.

    In conjunction with horizontal drilling, hydraulic fracturing or fracking has enabled the recovery of natural gas from low permeable shale formations. In addition to water, these fracking fluids employ proppants and up to 38 different chemical additives to improve the efficiency of the process. One important class of additives used in hydraulic fracturing is biocides. When applied appropriately, they limit the growth of harmful microorganisms within the well, saving energy producers 4.5 billion dollars each year. However, biocides or their harmful daughter products may return to the surface in produced water, which must then be appropriately stored, treated and disposed of. Little is known about the effect of mineral-fluid interactions on the fate of the biocides employed in hydraulic fracturing. In this study, we employed laboratory experiments to determine changes in the persistence and products of these biocides under controlled environments. While many minerals are present in shale formations, pyrite, FeS2(s) is particularly interesting because of its prevalence and reactivity. The FeII groups on the face of pyrite may be oxidized to form FeIII phases. Both of these surfaces have been shown to be reactive with organic compounds. Chlorinated compounds undergo redox reactions at the pyrite-fluid interface, and sulfur-containing compounds undergo exceptionally strong sorption to both pristine and oxidized pyrite. This mineral may significantly influence the degradation of biocides in the Marcellus Shale. Thus, the overall goal of this study was to understand the effect of pyrite on biocide reactivity in hydraulic fracturing, focusing on the influence of pyrite on specific functional groups. The first specific objective was to demonstrate the effect of pyrite and pyrite reaction products on the degradation of the bromine-containing biocide, DBNPA. On the addition of pyrite to DBNPA, degradation rates of the doubly brominated compound were found to increase

  8. Surface chemistry of pyrite during the pre-processing for the flotation in alkaline sodium carbonate medium during uranium ore processing

    International Nuclear Information System (INIS)

    Neudert, A.; Sommer, H.; Schubert, H.

    1991-01-01

    It is often necessary during processing of uranium ore to flotate pyrite at sodium carbonate alkaline pH value caused by the subsequent hydrometallurgical process stages. It was found out by ESCA analyses that the pyrite surface changes chemically prior to the addition of flotation agents. FeS 2 becomes FeO within a few hours in the case of storage in process water; limonite and/or geothite result from pyrite. The copper ions of the activator CuSO 4 are exclusively monovalent on the pyrite surface. The resulting heavy metal xanthogenate is Cu(I) xanthogenate. Conclusions are derived for the flotation practice for the intensification of the reagent regime. (orig./HP) [de

  9. Abiotic pyrite reactivity versus nitrate, selenate and selenite using chemical and electrochemical methods

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Betelu, S.; Gaucher, E.; Tournassat, C.; Chainet, F.

    2010-01-01

    Document available in extended abstract form only. This work is part of ReCosy European project (www.recosy.eu), whose main objectives are the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal and providing tools to apply the results to performance assessment/safety case. Redox is one of the main factor affecting speciation and mobility of redox-sensitive radionuclides. Thus, it is of a great importance to investigate the redox reactivity of the host radioactive waste formations, particularly when exposed to redox perturbations. Callovo-Oxfordian formation (COx), a clay rock known as an anoxic and reducing system, was selected in France as the most suitable location to store nuclear waste. Iron (II) sulfide, mostly constituted of pyrite (FeS 2 ), iron (II) carbonate, iron(II) bearing clays and organic matter are considered to account almost entirely for the total reducing capacity of the rock. We report here the redox reactivity of pyrite upon exposure to nitrate (N(V)), selenate (Se(VI)) and selenite (Se(IV)) that possibly occur in the nuclear storage. Both, chemical and electrochemical kinetic approaches were simultaneously conducted such as to (i) determine the kinetics parameters of the reactions and (ii) understand the kinetic mechanisms. In order to reach similar conditions that are encountered in the storage system, all experiments were realised in NaCl 0.1 M, near neutral pH solutions, and an abiotic glove box (O 2 less than 10 -8 M). Chemical approach has consisted to set in contact pyrite in grains with solutions containing respectively nitrate, selenate and selenite. Reactants and products chemical analyses, conducted at different contact times, allowed us to assess the kinetics of oxidant reduction. Electrochemical approach has consisted in the continuous or semi-continuous analysis of large surface pyrite electrodes immersed in solutions with or without oxidant (nitrate

  10. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Lozano

    2014-06-01

    Full Text Available The Fenton reaction is the most widely used advanced oxidation process (AOP for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2 particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  11. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    International Nuclear Information System (INIS)

    Zavašnik, J

    2016-01-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS 2 ) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe 1−x S), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe 1-x S phase, where x is about 0.1 and is equivalent to Fe 9 S 10 . The pyrite-pyrrhotite coexistence allows us a construction of fO 2 -pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation. (paper)

  12. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  13. Virtual half-metallicity at the CoS2/FeS2 interface induced by strain

    KAUST Repository

    Nazir, Safdar

    2013-01-01

    Spin polarized ab initio calculations based on density functional theory are performed to investigate the electronic and magnetic properties of the interface between the ferromagnetic metal CoS2 and the nonmagnetic semiconductor FeS2. Relaxation of the interface structure is taken into account by atomic force minimization. We find that both Co and Fe are close to half-metallicity at the interface. Tensile strain is shown to strongly enhance the spin polarization so that a virtually half-metallic interface can be achieved, for comparably moderate strain. © 2012 The Royal Society of Chemistry.

  14. Electrochemical dissolution of fresh and passivated chalcopyrite electrodes. Effect of pyrite on the reduction of Fe3+ ions and transport processes within the passive film

    International Nuclear Information System (INIS)

    Olvera, O.G.; Quiroz, L.; Dixon, D.G.; Asselin, E.

    2014-01-01

    Graphical abstract: - Highlights: • FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes. • Fe 3+ reduction was the rate controlling step in the dissolution of fresh CuFeS 2 . • Diffusion within the passive film controlled the dissolution rate of passivated CuFeS 2 . - Abstract: The effect of pyrite (FeS 2 ) on the electrochemical dissolution of fresh and passivated chalcopyrite (CuFeS 2 ) electrodes has been studied. Current density values for the dissolution of CuFeS 2 were calculated from EIS measurements. FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes indicating that the galvanic effect continued even after the electrode was chemically passivated. The dissolution rate of CuFeS 2 decreased by a factor of 3 after the passivation treatment. Due to the low diffusion rates of ions within the CuFeS 2 passive film and due to an increase in the resistance to the transfer of electrons at the electrode/film interface, the activity of FeS 2 for the reduction of Fe 3+ ions was also reduced by a factor of 2.3 even though FeS 2 was not exposed to any chemical treatment. The results in this work indicate that the dissolution rate of the fresh CuFeS 2 electrode was controlled by the reduction of Fe 3+ ions whereas for the passivated CuFeS 2 electrode the dissolution rate was controlled by diffusion within the passive film

  15. A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite

    International Nuclear Information System (INIS)

    Huang, Penghui; Deng, Shaogang; Zhang, Zhiye; Wang, Xinlong; Chen, Xiaodong; Yang, Xiushan; Yang, Lin

    2015-01-01

    Highlights: • A newly developed treating process of ferrous sulfate was proposed. • The reaction process was discussed by thermodynamic analysis. • Thermodynamic analysis was compared with experiments results. • The kinetic model of the decomposition reaction was determined. • The reaction mechanism of autocatalytic reactions was explored. - Abstract: Ferrous sulfate waste has become a bottleneck in the sustainable development of the titanium dioxide industry in China. In this study, we propose a new method for the reductive decomposition of ferrous sulfate waste using pyrite. Thermodynamics analysis, tubular reactor experiments, and kinetics analysis were performed to analyze the reaction process. The results of the thermodynamic simulation showed that the reaction process and products were different when molar ratio of FeSO_4/FeS_2 was changed. The suitable molar ratio of FeSO_4/FeS_2 was 8–12. The reaction temperature of ferrous sulfate with pyrite was 580–770 K and the main products were Fe_3O_4 and SO_2. The simulation results agreed well with the experimental results. The desulphurization rate reached 98.55% and main solid products were Fe_3O_4 at 823.15 K when mole ratio of FeSO_4/FeS_2 was 8. Nano-sized magnetite was obtained at this condition. The kinetic model was investigated by isoconversional methods. The average E value was 244.34 kJ mol"−"1. The ferrous sulfate decomposition process can be treated as autocatalytic reaction mechanism, which corresponded to the expanded Prout–Tompson (Bna) model. The reaction mechanism of autocatalytic reactions during the process of ferrous sulfate decomposition were explored, the products of Fe oxide substances are the catalyst components.

  16. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    Science.gov (United States)

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  17. Preparation and development of FeS2 Quantum Dots on SiO2 nanostructures immobilized in biopolymers and synthetic polymers as nanoparticles and nanofibers catalyst for antibiotic degradation.

    Science.gov (United States)

    Gao, Wei; Razavi, Razieh; Fakhri, Ali

    2018-03-22

    The FeS 2 Quantum Dots (QDs) decorated SiO 2 nanostructure were prepared by hydrothermal synthesis method. Chitosan and polypyrrole as polymers were used for the immobilization process. The characteristic structure of prepared samples was analyzed using several techniques such as X-ray diffraction, scanning and transmittance electron microscopy, photoluminescence and UV-vis spectroscopy. The mean crystallite sizes of FeS 2 QDs/SiO 2 nanocomposites, FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids are 56.12, 76.38, and 83.24nm, respectively. The band gap energy of FeS 2 QDs/SiO 2 nanocomposites, FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids were found out to be 3.0, 2.8, and 2.7eV, respectively. The photocatalysis properties were investigated by degradation of ampicillin under UV light illumination. The effect of experimental variables, such as, pH and time, on photo-degradation efficiency was studied. The results show that the three prepared samples nanopowders under UV light was in pH3 at 60min. As it could be seen that the amount of ampicillin degradation was increased with the loading of FeS 2 QDs on SiO 2 and FeS 2 QDs/SiO 2 on chitosan nanoparticles and polypyrrole nanofiber. The antibacterial experiment was investigated under visible light illumination and the FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids demonstrate good antibacterial compared to FeS 2 QDs/SiO 2 nanocomposites. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Oxidation of pyrite: Consequences and significance

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2002-01-01

    Full Text Available This paper presents the most important studies on the oxidation of pyrite particularly in aqueous solutions. The consequences of pyrite oxidation was examined, as well as its importance, from both the technical-technological and environmental points of view. The oxidation of pyrite was considered in two parts. The spontaneous oxidation of pyrite in nature was described in the first part, with this part comprising pyrite oxidation in deposits depots and mines. It is explained how way natural electrochemical processes lead to the decomposition of pyrite and other minerals associated with pyrite. The oxidation of pyrite occurring during technological processes such as grinding, flotation and leaching, was shown in the second part. Particular emphasis was placed on the oxidation of pyrite during leaching. This part includes the leaching of sulphide and oxide ores, the leaching of pyrite coal and the leaching of refractory gold-bearing ores (pressure oxidation, bacterial oxidation, oxidation by means of strong oxidants and the electrolysis of pyrite suspensions. Various mechanisms of pyrite oxidation and of the galvanic interaction of pyrite with other sulphide minerals are shown.

  19. Magnetic properties of hematite nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Hansen, Mikkel Fougt; Bender Koch, Christian

    2000-01-01

    The magnetic properties of hematite (alpha-Fe2O3) particles with sizes of about 16 nm have been studied by use of Mossbauer spectroscopy, magnetization measurements, and neutron diffraction. The nanoparticles are weakly ferromagnetic at temperatures at least down to 5 K with a spontaneous...... magnetization that is only slightly higher than that of weakly ferromagnetic bulk hematite. At T greater than or similar to 100 K the Mossbauer spectra contain a doublet, which is asymmetric due to magnetic relaxation in the presence of an electric field gradient in accordance with the Blume-Tjon model......, Simultaneous fitting of series of Mossbauer spectra obtained at temperatures from 5 K to well above the superparamagnetic blocking temperature allowed the estimation of the pre-exponential factor in Neel's expression for the superparamagnetic relaxation time, tau(0) = (6 +/- 4) X 10(-11) s and the magnetic...

  20. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    Science.gov (United States)

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action. © Springer-Verlag 2011

  1. Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil

    Science.gov (United States)

    Ferreira, Tiago O.; Nóbrega, Gabriel N.; Albuquerque, Antonia G. B. M.; Sartor, Lucas R.; Gomes, Irlene S.; Artur, Adriana G.; Otero, Xosé L.

    2015-10-01

    This work aimed to test the suitability of pyrite (FeS2) as a proxy for reconstructing past marine environmental conditions along the semiarid coast of Brazil. Morphological description combined with physicochemical analyses including Fe partitioning were conducted for soil depth profiles (30 and 60 cm depths) at three sites in two contrasting lagoons of the state of Ceará: a suspected former lagoon that would have been transformed into a freshwater "lake" at a site vegetated by Juncus effusus (site P1), and another lagoon with connection to the sea at sites vegetated by J. effusus (site P2) or Portulaca oleracea (site P3). Soil samples were collected in September 2010. Site P3 had more reducing conditions, reaching Eh values of -132 mV in the surface layer (0-10 cm), whereas minimum values for the P1 and P2 sites were +219 and +85 mV, respectively. Lower pyritic Fe values were found at site P1, with a degree of pyritization (DOP) ranging from 10 to 13%. At sites P2 and P3, DOP ranged from 9 to 67% and from 55 to 72%, respectively. These results are consistent with an interruption of tidal channels by eolian dune migration inducing strong changes in the hydrodynamics and physicochemical characteristics (lower salinity, oxidizing conditions) of these sites, causing the dieback of suspected former mangroves and a succession to freshwater marshes with an intermediate salt marsh stage. Together with other physicochemical signatures, pyrite can evidently serve as a useful proxy in tracking environmental changes in such ecotones, with implications for coastal management.

  2. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    International Nuclear Information System (INIS)

    Bachhuber, Frederik; Krach, Alexander; Furtner, Andrea; Söhnel, Tilo; Peter, Philipp; Rothballer, Jan; Weihrich, Richard

    2015-01-01

    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT 2 and MCh 2 boundary phases are taken into account as well as ternary M 3 T 2 Ch 2 and M 2 T 3 Ch 3 systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs 2 type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate. - Graphical abstract: Compositional and structural stability of MTCh compounds is investigated from first principle calculations. A conceptional approach is presented to study and predict novel stable and metastable compounds and structures of low gap semiconductors with TCh dumbbell units that are isoelectronic and structurally related to pyrite (FeS 2 ). - Highlights: • Study of compositional stability of MTCh vs. M 3 T 2 Ch 2 and M 2 T 3 Ch 3 compounds. • Study of structural stability of known and novel MTCh compounds. • Prediction of novel stable and metastable structures and compounds isoelectronic to pyrite, FeS 2

  3. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.

    Science.gov (United States)

    Lopez-Arce, Paula; Garcia-Guinea, Javier; Garrido, Fernando

    2017-08-01

    In the frame of a research project on microscopic distribution and speciation of geogenic thallium (Tl) from contaminated mine soils, Tl-bearing pyrite ore samples from Riotinto mining district (Huelva, SW Spain) were experimentally fired to simulate a roasting process. Concentration and volatility behavior of Tl and other toxic heavy metals was determined by quantitative ICP-MS, whereas semi-quantitative mineral phase transitions were identified by in situ thermo X-Ray Diffraction (HT-XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) analyses after each firing temperature. Sample with initial highest amount of quartz (higher Si content), lowest quantity of pyrite and traces of jarosite (lower S content) developed hematite and concentrated Tl (from 10 up to 72 mg kg -1 ) after roasting at 900 °C in an oxidizing atmosphere. However, samples with lower or absent quartz content and higher pyrite amount mainly developed magnetite, accumulating Tl between 400 and 500 °C and releasing Tl from 700 up to 900 °C (from 10-29 mg kg -1 down to 4-1 mg kg -1 ). These results show the varied accumulative, or volatile, behaviors of one of the most toxic elements for life and environment, in which oxidation of Tl-bearing Fe sulfides produce Fe oxides wastes with or without Tl. The initial chemistry and mineralogy of pyrite ores should be taken into account in coal-fired power stations, cement or sulfuric acid production industry involving pyrite roasting processes, and steel, brick or paint industries, which use iron ore from roasted pyrite ash, where large amounts of Tl entail significant environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  5. Transformation of goethite/ferrihydrite to hematite and maghemite under temperate humid conditions in Denmark

    Science.gov (United States)

    Nørnberg, P.; Finster, K.; Gunnlaugsson, H. P.; Jensen, S. K.; Merrison, J. P.; Vendelboe, A. L.

    2012-04-01

    At a number of sandy soil sites in Mid Jutland, Denmark, with iron content of 1-2%, very red spots (Munsell colour: dusky red 10R 3/4) of a few square meters are found. These spots are most likely due to burning events. After the fire ashes raised pH. This dispersed silt and clay size soil particles which were then transported with seepage water down into lower soil horizons. These particles contain hematite and maghemite due to influence of the fire. However, a long-standing unresolved question is how hematite and maghemite can also be present along with goethite and ferrihydrite, in the same geographical region, and in extended areas with high iron content (8-40 %) in the topsoil. Hematite and particularly maghemite would normally not be expected to form under the temperate humid Danish climate, but be interpreted as the result of high temperature as found in tropical regions or as seen in soils exposed to fire. The high iron content most likely has its origin in pyrite dissolution in top of the groundwater zone in deeper Miocene deposits. From there Fe2+ is brought to the surface by the groundwater, and in wells oxidized by meeting the atmosphere and precipitated as two line ferrihydrite. This is later transformed into goethite. However, along with these two minerals hematite and maghemite are present in the topsoil around the well area. Forest fires would be a likely explanation to the hematite and maghemite. But a body of evidence argues against these sites having been exposed to fire. 1) The pH in the topsoil is 3.6 - 4.8 and thus not raised by ashes. 2) No charcoal is present. 3) There is no indication of fire outside the high iron content areas. 4) Goethite is present along with hematite and maghemite in microparticles, and the mineralogical zonation produced in a forest fire is not seen. The natural sites contain a uniform mixture of goethite/ferrihydrite, hematite and maghemite down to 20 cm depth. An experimental forest fire left charcoal and ashes at

  6. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  7. Electronic structure of some 3D transition-metal pyrites

    NARCIS (Netherlands)

    Folkerts, W.; Sawatzky, G.A.; Haas, C.; Groot, R.A. de; Hillebrecht, F.U.

    1987-01-01

    Bremsstrahlung Isochromat spectra of FeS2, NiS2, NiS1.2Se0.8 and NiSe2 are reported. These are the first direct experimental evidence for a sharp antibonding p-like state above the Fermi level. A comparison is made with experimental results in the literature. For FeS2, band-structure calculations

  8. Field tracer test for denitrification in a pyrite-bearing schist aquifer

    International Nuclear Information System (INIS)

    Pauwels, H.; Kloppmann, W.; Foucher, J.-C.; Martelat, A.; Fritsche, V.

    1998-01-01

    A small-scale artificial tracer test performed on a schist aquifer in Brittany has helped clarify mechanisms and kinetics of in situ autotrophic denitrification. NO 3 was injected as a pulse simultaneously with a conservative tracer - Br - . During the test, which lasted 210 h, 73% of the injected Br - was recovered, as against only 47% of the NO 3 . The 26% difference in the recovery of the two injected species is interpreted as being the result of denitrification, in part due to the direct oxidation of pyrite present in the solid aquifer according to the reaction: 5FeS 2 +14NO 3 - +4H + approaches7N 2 +10SO 4 2- +5Fe 2+ +2H 2 O, and in part due to subsequent iron oxidation according to the reaction: NO 3 - +5Fe 2+ +6H + approaches1/2N 2 +5Fe 3+ +3H 2 O. Despite the potential increase in SO 4 and Fe resulting from denitrification through pyrite oxidation, the concentrations of these elements in the groundwater remain moderate due to the precipitation of minerals such as jarosite and/or natroalunite. Tracer transfer takes place in a heterogeneous medium which, according to the breakthrough curves, can be simplified to a dual-porosity aquifer comprising a high-permeability (fractures or large fissures) medium of low porosity from which only minor denitrification of circulating NO 3 -bearing water was observed and a low-permeability (small fissures) medium of high porosity which induces a higher denitrification rate in the circulating NO 3 -bearing water. The kinetics of the denitrification reaction are high compared with results obtained for other environments and can be described by a first-order model with a half life of 7.9 days for the low-porosity medium and only 2.1 days for the high-porosity medium. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Pyrite in the Mesoarchean Witwatersrand Supergroup, South Africa

    OpenAIRE

    2012-01-01

    Ph.D. Petrographic, chemical and multiple sulfur isotope analyses were conducted on pyrite from argillaceous, arenaceous and rudaceous sedimentary rocks from the Mesoarchean Witwatersrand Supergroup. Following detailed petrographic analyses, four paragenetic associations of pyrite were identified. These include: 1) Detrital pyrite (derived from an existing rock via weathering and/or erosion). 2) Syngenetic pyrite (formed at the same time as the surrounding sediment). 3) Diagenetic pyrite (...

  10. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-07-01

    The thermal decomposition and reduction behaviour of pure pyrite crystals were studied under nitrogen and hydrogen atmospheres. Decomposition of pyrite in coal during pyrolysis and hydropyrolysis, and the behaviour of organic sulphur, are discussed. Temperature and pressure effects are considered. 7 refs., 6 figs., 1 tab.

  11. Densification of zirconia-hematite nanopowders

    NARCIS (Netherlands)

    Raming, T.P.; Winnubst, Aloysius J.A.; van Zyl, W.E.; Verweij, H.

    2003-01-01

    The densification of dual-phase yttria-doped tetragonal zirconia polycrystals (Y-TZP) and -Fe2O3 (hematite) composite powders is described. Different powder synthesis methods, different forms of dry compaction processes, and two sinter methods (pressureless sintering and sinterforging) were

  12. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.

    Science.gov (United States)

    Chandra, A P; Gerson, A R

    2009-01-30

    A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial

  13. Formation mechanism and yield of molecules ejected from ZnS, CdS, and FeS2 during ion bombardment

    International Nuclear Information System (INIS)

    Nikzad, S.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Gruen, D.M.; Tombrello, T.A.

    1994-01-01

    Neutral species ejected from single crystals of ZnS, CdS, and FeS 2 during ion bombardment by 3 keV Ar + were detected by laser post-ionization followed by time-of-flight mass spectrometry. While metal atoms (Fe, Zn, Cd) and S 2 were the dominant species observed, substantial amounts of S, FeS, Zn 2 , ZnS, Cd 2 , and CdS were also detected. The experimental results demonstrate that molecules represent a larger fraction of the sputtered yield than was previously believed from secondary ion mass spectrometry experiments. In addition, the data suggest that the molecules are not necessarily formed from adjacent atoms in the solid and that a modified form of the recombination model could provide a mechanism for their formation

  14. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion, Inst. of Coal Chemistry

    2000-10-01

    The thermal behaviour of pure pyrite was studied under nitrogen and hydrogen atmospheres in a pressurized thermal balance. The transfer of pyrite in coal during pyrolysis and hydropyrolysis was investigated in a fixed-bed reactor. The results suggest that the indigenous hydro-carbon with hydrogen donor ability in coal can promote the reduction of pyrite in pyrolysis. At low temperatures, organic sulfur removal is almost the same in pyrolysis and hydropyrolysis of two coals. It is likely that indigenous hydrogen in coal is the dominant factor in organic sulfur elimination in the low-temperature stage. An increase of organic sulfur in pyrolysis of Hongmiao coal indicates that the lack of the indigenous hydrogen may be the key factor determining the transformation of pyritic sulfur into organic sulfur. Oxygen affects the conversion of pyrite into organic sulfur through the competitive consumption of hydrogen. 12 refs., 5 figs., 1 tab.

  15. THE DEPRESSION OF PYRITE FLOTATION BY THIOBACILLUS FERROOXIDANS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The experimental studies on the microbial flotation of a pure pyrite sample using Thiobacillus ferrooxidans was conducted in the laboratory. The results indicate that Thiobacillus ferrooaidans has strong depression effect on the flotation of pyrite. Thiobacillus f errooxidans can adsorb on the surface of pyrite in a very short time (a few min. ), changing the surface from hydrophobic into hydrophilic and making the pyrite particles to lose their floatability. Therefore, Thiobacillus ferrooxidans is an effective microbial depressant of pyrite. It has also been pointed out that the depression of pyrite by Thiobacillus ferrooxidans is caused by the adsorption of the microbial colloids, but not by the oxidation effect.

  16. First-principles investigation of the electronic states at perovskite and pyrite hetero-interfaces

    KAUST Repository

    Nazir, Safdar

    2012-09-01

    Oxide heterostructures are attracting huge interest in recent years due to the special functionalities of quasi two-dimensional quantum gases. In this thesis, the electronic states at the interface between perovskite oxides and pyrite compounds have been studied by first-principles calculations based on density functional theory. Optimization of the atomic positions are taken into account, which is considered very important at interfaces, as observed in the case of LaAlO3/SrTiO3. The creation of metallic states at the interfaces thus is explained in terms of charge transfer between the transition metal and oxygen atoms near the interface. It is observed that with typical thicknesses of at least 10-12 °A the gases still extend considerably in the third dimension, which essentially determines the magnitude of quantum mechanical effects. To overcome this problem, we propose incorporation of highly electronegative cations (such as Ag) in the oxides. A fundamental interest is also the thermodynamic stability of the interfaces due to the possibility of atomic intermixing in the interface region. Therefore, different cation intermixed configurations are taken into account for the interfaces aiming at the energetically stable state. The effect of O vacancies is also discussed for both polar and non-polar heterostructures. The interface metallicity is enhanced for the polar system with the creation of O vacancies, while the clean interface at the non-polar heterostructure exhibits an insulating state and becomes metallic in presence of O vacancy. The O vacancy formation energies are calculated and explained in terms of the increasing electronegativity and effective volume of A the side cation. Along with these, the electronic and magnetic properties of an interface between the ferromagnetic metal CoS2 and the non-magnetic semiconductor FeS2 is investigated. We find that this contact shows a metallic character. The CoS2 stays quasi half metallic at the interface, while the

  17. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  18. The determination of uranium in pyrite samples

    International Nuclear Information System (INIS)

    Jacobs, J.J.

    1979-01-01

    An existing method for the determination of uranium in rocks and minerals is examined for the determination of uranium in materials containing pyrite. The results are comparable with those obtained by a spectrophotometric method, the precision (relative standard deviation) of the method for standards with U 3 O 8 contents of 1500 and 300 p.p.m. being 0,03 and 0,08 respectively when prepared in pyrite, and 0,15 and 0,06 respectively when made up with inert diluent. Full details of the procedure are given in accompanying appendices [af

  19. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  20. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. 1. Introduction ... research focuses on the direct cellular level effect of pyrite on bone cells. ..... optimal scaffold from the results of this paper. Although the.

  1. Pyritized ooids from the Arabian Sea basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Rao, Ch.M.; Reddy, N.P.C.

    Pyritized ooids in association with turbidites were observed in a box core collected at a depth of 3627 m from the Arabian Sea Basin. Ooids having a shallow water origin were transported to the present depth by turbidity currents or slumping...

  2. Nucleic acid interactions with pyrite surfaces

    International Nuclear Information System (INIS)

    Mateo-Marti, E.; Briones, C.; Rogero, C.; Gomez-Navarro, C.; Methivier, Ch.; Pradier, C.M.; Martin-Gago, J.A.

    2008-01-01

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces

  3. Nucleic acid interactions with pyrite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain)], E-mail: mateome@inta.es; Briones, C.; Rogero, C. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Gomez-Navarro, C. [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain); Methivier, Ch.; Pradier, C.M. [Laboratoire de Reactivite de Surface, UMR CNRS 7609. Universite Pierre et Marie Curie, 4, Pl Jussieu, 75005-Paris (France); Martin-Gago, J.A. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain)

    2008-09-03

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces.

  4. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  5. The effects of trace element content on pyrite oxidation rates

    Science.gov (United States)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the

  6. Characterization of hematite nanoparticles synthesized via two different pathways

    Science.gov (United States)

    Das, Soumya; Hendry, M. Jim

    2014-08-01

    Hematite is one of the most common and thermodynamically stable iron oxides found in both natural and anthropogenic systems. Owing to its ubiquity, stability, moderate specific surface area, and ability to sequester metals and metalloids from aquatic systems, it has been the subject of a large number of adsorption studies published during the past few decades. Although preparation techniques are known to affect the surface morphology of hematite nanoparticles, the effects of aging under environmentally relevant conditions have yet to be tested with respect to surface morphology, surface area, and adsorptive capacity. We prepared hematite via two different pathways and aged it under highly alkaline conditions encountered in many mill tailings settings. Crystal habits and morphologies of the hematite nanoparticles were analyzed via scanning electron microscopy and transmission electron microscopy. X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller surface area analyses were also conducted on the hematite nanoparticles before and after aging. The hematite synthesized via an Fe(III) salt solution (average particle size 37 nm) was morphologically and structurally different from the hematite synthesized via ferrihydrite aging (average particle size 144 nm). Overall, our data demonstrate that the crystallinity of hematite produced via ferrihydrite transformation is susceptible to morphological alterations/modifications. In contrast, the hematite formed via hydrolysis of an Fe(III) salt solution remains very stable in terms of structure, size, and morphology even under extreme experimental conditions.

  7. Thickness Dependent on Photocatalytic Activity of Hematite Thin Films

    Directory of Open Access Journals (Sweden)

    Yen-Hua Chen

    2012-01-01

    Full Text Available Hematite (Fe2O3 thin films with different thicknesses are fabricated by the rf magnetron sputtering deposition. The effects of film thicknesses on the photocatalytic activity of hematite films have been investigated. Hematite films possess a polycrystalline hexagonal structure, and the band gap decreases with an increase of film thickness. Moreover, all hematite films exhibit good photocatalytic ability under visible-light irradiation; the photocatalytic activity of hematite films increases with the increasing film thickness. This is because the hematite film with a thicker thickness has a rougher surface, providing more reaction sites for photocatalysis. Another reason is a lower band gap of a hematite film would generate more electron-hole pairs under visible-light illumination to enhance photocatalytic efficiency. Experimental data are well fitted with Langmuir-Hinshelwood kinetic model. The photocatalytic rate constant of hematite films ranges from 0.052 to 0.068 min-1. This suggests that the hematite film is a superior photocatalyst under visible-light irradiation.

  8. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2013-01-01

    Full Text Available The potential of triethylenetetramine (TETA to inhibit the oxidation of pyrite in H2SO4 solution had been investigated by using the open-circuit potential (OCP, cyclic voltammetry (CV, potentiodynamic polarization, and electrochemical impedance (EIS, respectively. Experimental results indicate that TETA is an efficient coating agent in preventing the oxidation of pyrite and that the inhibition efficiency is more pronounced with the increase of TETA. The data from potentiodynamic polarization show that the inhibition efficiency (η% increases from 42.08% to 80.98% with the concentration of TETA increasing from 1% to 5%. These results are consistent with the measurement of EIS (43.09% to 82.55%. The information obtained from potentiodynamic polarization also displays that the TETA is a kind of mixed type inhibitor.

  9. 40Ar/39Ar dating of pyrite

    International Nuclear Information System (INIS)

    York, D.; Masliwec, A.; Kuybida, P.; Hanes, J.A.; Hall, C.M.; Kenyon, W.J.; Spooner, E.T.C.; Scott, S.D.

    1982-01-01

    To overcome difficulties encountered in the customary method of determining the age of mineralization of sulphide ore deposits by analysing silicate material, the sulphide minerals themselves have been examined to see if they contained sufficient potassium and argon for 40 Ar/ 39 Ar age determination. Initial results indicate that this is the case for pyrite from the Geco ore body in northwestern Ontario, Canada. (U.K.)

  10. A SIMS Study of Sulfur Isotopes of Accessory Pyrites Associated with Barites from Methane Cold Seeps in the Gulf of Mexico

    Science.gov (United States)

    Morelli, E. C.; Aharon, P.

    2017-12-01

    Bacteria and archaea associated with seeps can fix methane from sublimating gas hydrates through coupled bacterial sulfate reduction/ anaerobic methane oxidation (BSR/AMO) and prevent outgassing to the atmosphere. The occurrence of such microbial processes has been established on the basis of the sulfur isotope compositions of microbial byproducts (pyrites; FeS2) that reflect the degree of fractionation between SO4 and FeS2 via the production of the H2S intermediate phase. BSR/AMO coupling has been discerned in accessory sulfides associated with carbonates from gas hydrate sites. Whether BSR/AMO coupling is also active in barites, another ubiquitous product of gas hydrate sublimation, has so far been overlooked. Here we present results of a new sulfur isotope study of accessory sulfides in barites associated with gas hydrates at the threshold of stability occurring on the Gulf of Mexico slope. Using a fractionation factor of 1.009 and a seawater δ34SSO4 value of 20.3‰ and assuming a Rayleigh distillation closed system model for marine sulfide precipitation, pyrites from barite gas seeps are predicted to exhibit a range of δ34S values (about -1‰ to 20‰ CDT) as the pool of sulfate is continuously depleted. Actual δ34S values could fall outside of the predicted range because the system in question is likely only partially closed and kinetic fractionations are likely. δ34S of accessory pyrites from three Garden Banks Lease Block 382 (510 - 640m water depth) and one Mississippi Canyon Lease Block 929 (590m) barite samples have been determined using an ims-1290 Secondary Ion Mass Spectrometer (SIMS). Two Garden Banks samples and one Mississippi Canyon sample reveal a spread of values from 5.30 ± 0.04 to 25.90 ± 0.09 (‰ CDT), which follow the predicted trend for gas seeps and indicate the source of fractionation is likely from the coupled BSR/AMO process. One Garden Banks sample yields a wide spread of values from -26.2 ± 0.05 to 20.5 ± 0.4 (‰ CDT). The

  11. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  12. Microprobe channeling analysis of pyrite crystals

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Ryan, C.G.

    1992-01-01

    Nuclear microprobe analysis has provided much useful information about the composition of microscopic inclusions in minerals, mainly through the use of Particle Induced X-ray Emission (PIXE). However this technique, while powerful, does not provide any direct information about the chemical state, in particular the lattice location, of the elements in the mineral. This information is often of crucial importance in understanding the ore genesis. The technique of ion channeling may be used to identify lattice location, but many minerals occur as microscopic crystals. Therefore it is necessary to utilize a nuclear microprobe with the technique of Channeling Contrast Microscopy (CCM). As many minerals contain interesting trace elements, it is necessary to measure both the yield of backscattered particles and the induced x-rays to get a clear picture of the lattice location of the elements in the crystal. CCM with PIXE was used to analyse natural pyrite crystals containing a variety of substitutional and non-substitutional elements and natural pyrite crystals from a gold bearing ore. In the latter case, evidence was obtained for two habits for Au in the 400 μm crystals: one as inclusions of Au rich minerals, the other substituted on the pyrite lattice sites. 31 refs., 3 tabs., 6 figs

  13. XAS studies on selenite reduction by pyrite

    International Nuclear Information System (INIS)

    Kang Mingliang; Liu Chunli; Chen Fanrong; Charlet, Laurnet

    2012-01-01

    The interaction of aqueous Se (IV) with pyrite were systematically investigated in light of thermodynamic calculations and X-ray Absorption Spectroscopy (XAS). The results from the speciation study reveal that the reduction product is Se (O) when natural pyrite reacts with Se (N) at pH≤5.65, while small amount of FeSeO 3 or iron selenides may be formed at pH 6.1. At pH≥6.94, due to the precipitation of Fe (Ⅲ) -oxyhydroxide, the formation of the thermodynamically most stable species, FeSe 2 , is inhibited. However, when the reactive nanopyrite-greigite was used for reaction, the thermodynamically most stable species, FeSe 2 , was found for the first time as the predominant product in the present study, suggesting that 79 Se can be immobilized in its most insoluble form, FeSe 2 , in Fe (Ⅱ) -sulfide containing environment. This study confirms that pyrite can significantly attenuate the mobility of Se by reductive precipitation, and that the reaction process does not produce protons under acidic or neutral condition when Se (O) is formed. (authors)

  14. Evaluation of pyrite and pyrrhotite in concretes

    Directory of Open Access Journals (Sweden)

    A. P. Marcelino

    Full Text Available ABSTRACT It is well known that aggregate characteristics can intensively interfere in concrete behavior especially when sulfides are presented in the aggregates. The lack of consensus to content limit value of these deleterious sulfur compounds in concrete structures for dams has motivated several investigations worldwide. Within this scenario, this work presents a methodology to evaluate the presence of pyrite and pyrrhotite in concretes produced with aggregates containing sulfides. For the study, rock samples from the Irapé hydroelectric power plant area in Minas Gerais (Brazil were used. This plant was built in a geological site where the rock presented sulfide levels of at least 3%. These rock samples were first ground and then used as aggregates in mortars, which were, during almost one year, subjected to three different exposed conditions: temperature of 23° ± 2°C and relative humidity of 95 to 100%; calcium hydroxide solution diluted in water kept at two different temperatures: room temperature and 50° C. The presence and amount of pyrrhotite were obtained from a leaching process of the material (aggregate or mortar in a solution of hydrochloric acid. This procedure allowed also the evaluation of the pyrite content. The results showed that the amount of pyrite has remained virtually constant over time in the three exposure situations. This finding indicates that sulfur limits in aggregates should be set according to the type of iron sulfide presented and not solely by the total amount of sulfur.

  15. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    International Nuclear Information System (INIS)

    Pariona, N.; Camacho-Aguilar, K.I.; Ramos-González, R.; Martinez, Arturo I.; Herrera-Trejo, M.; Baggio-Saitovitch, E.

    2016-01-01

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a “plum pudding”, where hematite NPs “raisins” are surrounded by ferrihydrite “pudding”. Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere. - Highlights: • Ferrihydrite/hematite nanocomposites were prepared. • The “plum pudding” morphology of the ferrihydrite/hematite nanocomposites was found. • The FORC diagrams of ferrihydrite/hematite nanocomposites have been measured.

  16. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, N.; Camacho-Aguilar, K.I.; Ramos-González, R. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Martinez, Arturo I., E-mail: mtz.art@gmail.com [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Herrera-Trejo, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Río de Janeiro 22290-180 (Brazil)

    2016-05-15

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a “plum pudding”, where hematite NPs “raisins” are surrounded by ferrihydrite “pudding”. Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere. - Highlights: • Ferrihydrite/hematite nanocomposites were prepared. • The “plum pudding” morphology of the ferrihydrite/hematite nanocomposites was found. • The FORC diagrams of ferrihydrite/hematite nanocomposites have been measured.

  17. The Adsorption of Cu Species onto Pyrite Surface and Its Effect on Pyrite Flotation

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-01-01

    Full Text Available The adsorption of Cu species onto pyrite surface and its effect on flotation were investigated by using microflotation tests, first-principle calculations, and XPS surface analysis. The results indicated that the flotation of pyrite appears to be activated with CuSO4 only at alkaline pH, while being depressed at acidic and neutral pH. The adsorption of copper ions on pyrite surface was pH-dependent, and the adsorption magnitude of copper ions at alkaline pH is higher than that at acidic and neutral pH due to a strong interaction between O atom in Cu(OH2 and surface Fe atom except for the interaction between Cu atom and surface S atom. At acidic and neutral pH, there is only an interaction between Cu atom and surface S atom. The adsorption was relatively weak, and more copper ions in solution precipitated the collector and depressed the flotation of pyrite. XPS analysis confirmed that more copper ionic species (Cu(I and Cu(II are adsorbed on the pyrite surface at alkaline pH than that at acidic and neutral pH.

  18. High-energy particle emission from galena and pyrite bombarded with Cs and O ions

    International Nuclear Information System (INIS)

    Karpuzov, D.S.; McIntyre, N.S.

    2002-01-01

    The ejection of energetic particles during steady-state ion surface bombardment has been investigated by means of a dynamic computer simulation as well as in a secondary ion mass spectrometry (SIMS)/low-energy ion scattering from surfaces (LEIS) experiment. The emphasis of this comparative study is on the mass dependence of high-energy tails in sputtering and backscattering for the bombardment of galena (PbS) and pyrite (FeS 2 ) with keV energy ion beam of cesium and oxygen. In the experiment, kinetic energy distributions of sputtered secondary ions (S + , Fe + , Pb + , S - ), as well as backscattered or re-sputtered primary ions (Cs + , O + , O - ), have been measured on a modified Cameca IMS-3f magnetic sector mass spectrometer for keV cesium (Cs + ) and oxygen (O 2 + , O - ) bombardment of galena and pyrite. Ejection of high-energy particles, with emission energies of up to ∼40% or up to ∼60% of the bombarding energy for sputtering of the lighter component (S ± ) with cesium or oxygen, respectively, and of up to ∼40% (Cs + ) and ∼80% (O ± ) for backscattering, has been observed for PbS. The computer simulations were based on the well-known MARLOWE code. In order to model the change of the stoichiometry of the binary compounds, dynamic modification of the target composition in the near-surface region was introduced. Cs incorporation was included, and a relative enrichment of the metallic component (Pb, Fe) in the top few layers due to preferential sputtering of sulfur was allowed. The computer simulations provide information on the formation of altered layer under sputter equilibrium as well as on the energy and angular emission distributions of sputtered and backscattered particles in steady-state conditions. Multiple scattering of Cs projectiles and dynamic re-sputtering of cesium that was previously incorporated in the altered near-surface region can be distinguished in the simulation, and matched with the experimental observations. In addition

  19. Hematite nuclear fuel cycle facility decommissioning

    International Nuclear Information System (INIS)

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  20. Super gene alternation of magnetite and pyrite and the role of their alternation products in the fixation of uranium from the circulating media. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Gemmizi, M A [Nuclear Materials Authority, Cairo, (Egypt)

    1996-03-01

    In most of the Egyptian altered radioactive granites, highly magnetic heavy particles were found to be radioactive. They are a mixture of several iron oxide minerals which are products of super gene alternation of the preexisting hypo gene iron-bearing minerals especially magnetite and pyrite. The end products of this super gene alternation are mainly hydrated iron oxide minerals limonite and/or goethite. During the alternation, deformation and defects in the mineral structure took place, thereby promoting diffusion of the substitutional and interstitial ions (uranium) towards these sites. The mechanism of the alternation of the hypo gene iron-bearing minerals, magnetite and pyrite to form the secondary mineral hematite, limonite and goethite; and the role of these secondary minerals in fixing uranium from the circulating media, and as indicators to the radioactivity of the host rocks are discussed. 2 figs.

  1. Super gene alternation of magnetite and pyrite and the role of their alternation products in the fixation of uranium from the circulating media. Vol. 3

    International Nuclear Information System (INIS)

    El-Gemmizi, M.A.

    1996-01-01

    In most of the Egyptian altered radioactive granites, highly magnetic heavy particles were found to be radioactive. They are a mixture of several iron oxide minerals which are products of super gene alternation of the preexisting hypo gene iron-bearing minerals especially magnetite and pyrite. The end products of this super gene alternation are mainly hydrated iron oxide minerals limonite and/or goethite. During the alternation, deformation and defects in the mineral structure took place, thereby promoting diffusion of the substitutional and interstitial ions (uranium) towards these sites. The mechanism of the alternation of the hypo gene iron-bearing minerals, magnetite and pyrite to form the secondary mineral hematite, limonite and goethite; and the role of these secondary minerals in fixing uranium from the circulating media, and as indicators to the radioactivity of the host rocks are discussed. 2 figs

  2. Synergistic effect of biogenic Fe3+ coupled to S° oxidation on simultaneous bioleaching of Cu, Co, Zn and As from hazardous Pyrite Ash Waste.

    Science.gov (United States)

    Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren

    2017-03-05

    Pyrite ash, a waste by-product formed during roasting of pyrite ores, is a good source of valuable metals. The waste is associated with several environmental issues due to its dumping in sea and/or land filling. Although several other management practices are available for its utilization, the waste still awaits and calls for an eco-friendly biotechnological application for metal recovery. In the present study, chemolithotrophic meso-acidophilic iron and sulphur oxidisers were evaluated for the first time towards simultaneous mutli-metal recovery from pyrite ash. XRD and XRF analysis indicated higher amount of Hematite (Fe 2 O 3 ) in the sample. ICP-OES analysis indicated concentrations of Cu>Zn>Co>As that were considered for bioleaching. Optimization studies indicated Cu - 95%, Co - 97%, Zn - 78% and As - 60% recovery within 8days at 10% pulp density, pH - 1.75, 10% (v/v) inoculum and 9g/L Fe 2+ . The productivity of the bioleaching system was found to be Cu - 1696ppm/d (12% dissolution/d), Co - 338ppm/d (12.2% dissolution/d), Zn k 576ppm/d (9.8% dissolution/d) and As - 75ppm/d (7.5% dissolution/d). Synergistic actions for Fe 2+ - S° oxidation by iron and sulphur oxidisers were identified as the key drivers for enhanced metal dissolution from pyrite ash sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    Science.gov (United States)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  4. Local structural order in nanostructured hematite

    International Nuclear Information System (INIS)

    Florez, J. M.; Mazo-Zuluaga, J.; Restrepo, J.

    2005-01-01

    Nanostructured α-Fe 2 O 3 powders were prepared by high-energy ball milling. The milling process spans grinding times from 30 min to 24 h. The as-milled samples were characterized by means of 57 Fe Moessbauer spectrometry, Rietveld analysis of X-ray diffraction data and particle size analysis. The obtained results evidence the presence of disordered hematite characterized by a hyperfine field distribution with a well-behaved dependence on the mean crystallite size for which the mean hyperfine field decreases asymptotically as the grain size decreases. A new relationship is proposed in order to describe such behavior. Finally the presence of superparamagnetic grains, the occurrence of a partial topotactic phase transformation into a spinel phase and tool induced contamination are also presented and discussed.

  5. Local structural order in nanostructured hematite

    Energy Technology Data Exchange (ETDEWEB)

    Florez, J. M.; Mazo-Zuluaga, J.; Restrepo, J., E-mail: jrestre@fisica.udea.edu.co [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia)

    2005-09-15

    Nanostructured {alpha}-Fe{sub 2}O{sub 3} powders were prepared by high-energy ball milling. The milling process spans grinding times from 30 min to 24 h. The as-milled samples were characterized by means of {sup 57}Fe Moessbauer spectrometry, Rietveld analysis of X-ray diffraction data and particle size analysis. The obtained results evidence the presence of disordered hematite characterized by a hyperfine field distribution with a well-behaved dependence on the mean crystallite size for which the mean hyperfine field decreases asymptotically as the grain size decreases. A new relationship is proposed in order to describe such behavior. Finally the presence of superparamagnetic grains, the occurrence of a partial topotactic phase transformation into a spinel phase and tool induced contamination are also presented and discussed.

  6. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  7. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG)

    International Nuclear Information System (INIS)

    Hu Huiping; Chen Qiyuan; Yin Zhoulan; Zhang Pingmin

    2003-01-01

    The thermal decompositions of mechanically activated and non-activated pyrites were studied by thermogravimetry (TG) at the heating rate of 10 K min -1 in argon. Results indicate that the initial temperature of thermal decomposition (T di ) in TG curves for mechanically activated pyrites decreases gradually with increasing the grinding time. The specific granulometric surface area (S G ), the structural disorder of mechanically activated pyrites were analyzed by X-ray diffraction laser particle size analyzer, and X-ray powder diffraction analysis (XRD), respectively. The results show that the S G of mechanically activated pyrites remains almost constant after a certain grinding time, and lattice distortions (ε) rise but the crystallite sizes (D) decrease with increasing the grinding time. All these results imply that the decrease of T di in TG curves of mechanically activated pyrites is mainly caused by the increase of lattice distortions ε and the decrease of the crystallite sizes D of mechanically activated pyrite with increasing the grinding time. The differences in the reactivity between non-activated and mechanically activated pyrites were observed using characterization of the products obtained from 1 h treatment of non-activated and mechanically activated pyrites at 713 K under inert atmosphere and characterization of non-activated and mechanically activated pyrites exposed to ambient air for a certain period

  8. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  9. SEDIMENTARY LOW-MANGANESE HEMATITE DEPOSITS OF THE BUKOVICA AREA IN THE NORTHWESTERN MT. PETROVA GORA, CENTRAL CROATIA

    Directory of Open Access Journals (Sweden)

    Milivoj Čop

    1998-12-01

    Full Text Available Middle-Permian Gröden deposits crop out on the surface of 0.8 km in the Bukovica area and on the surface of 0.8 km2 in the Mt. Loskun-jska gora in the NW part of the Petrova gora Mountain. One half of the Bukovica Gröden deposits contains in its lowest parts 1 to 5 m (in average 2.5 m thick hematite bed cutted in blocks by NE-SW stretch¬ing vertical, normal and reverse faults. The hematite bed is unconfor-mably underlain by Lower Permian quartz-wackes (subgraywackes intercalated with shales intercalations. Ore deposit is explored by 308 boreholes (10509 m and by numerous adits, inclines and crosscuts on the underground surface of 0.4 km2 . From 1936 to 1941 and from 1953 to 1969 has been exploited 183000 t of ore with (in wt %: 34.0 Si02, 2.9 Al2O3; 59.0 Fe203; 0.15 MnO; 0.7 CaO; 0.4 MgO; 0.1 P, 0.37 S; 1.25 l.o. ign. Proven remaining ore reserves are 250.000 t. Paragenesis is investigated by microscopy of thin and polished sections, XRD, DTA, AAS analyses and by sedimentological analyses. Paragenesis major minerals are of hematite and quartz, with subordinate stable litho-clasts, muscovite (sericite and scarce kaolinite, calcite, dolomite, and barite. Accessories are zircon, rutile, tourmaline, amphibole, garnet, apatite. Epigenetic veinlets and small nests are built up of quartz or calcite as the main neominerals associated with siderite, barite, kaolinite, pyrite, gypsum. Iron from the Bukovica hematite ore origi¬nated by land weathering during hot climate and transported by rivers and underground waters deposited in river beds, in flood plains and in shallow sea. Precipitation of the Bukovica iron ores took place after the Saalic orogenetic phase. At Hrastno (SE Slovenia and at Rude nearby Samobor (Croatia, similar hematite deposits were found.

  10. Regional sulfate-hematite-sulfide zoning in the auriferous Mariana anticline, Quadrilátero Ferrífero of Minas Gerais, Brazil

    Science.gov (United States)

    Cabral, Alexandre Raphael; Koglin, Nikola; Strauss, Harald; Brätz, Helene; Kwitko-Ribeiro, Rogerio

    2013-10-01

    The distribution of mineral deposits, characterised as barite deposits, hematite-rich auriferous deposits and auriferous tourmaline-sulfide deposits, displays a regional sulfate-hematite-sulfide zoning along the thrust-delineated limbs of the Mariana anticline, in the south-eastern part of the Quadrilátero Ferrífero of Minas Gerais, Brazil. Cross-cut relationships of barite veins and sulfide lodes indicate that sulfidation occurred in a late-tectonic context, which is here attributed to the collapse of the ˜0.6-Ga Brasiliano thrust front. Reconnaissance S-isotopic data from barite and pyrite (Antônio Pereira barite deposit and its adjacent gold deposit, respectively), and arsenopyrite (Passagem de Mariana gold deposit), suggest a new interpretation for the hydrothermal fluid overprint in the Mariana anticline. The Antônio Pereira barite has Δ33S values that are near zero, constraining the sulfate source to rocks younger than 2.45 Ga. The barite-δ34S values are between +19.6 and +20.8 ‰. The Passagem arsenopyrite and tourmaline have Co/Ni ratios that define a positive linear trend with the Antônio Pereira pyrite. The latter has homogenous δ34S values, between +8.8 and +8.9 ‰, which are compatible with thermochemical reduction of aqueous sulfate with the S-isotopic composition of the Antônio Pereira barite.

  11. Mineralization and trace element distribution in pyrite using EMPA in exploration drill holes from Cheshmeh Zard gold district, Khorasan Razavi Province, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Alaminia

    2015-10-01

    systems were recognized east of Arghash. The estimated resources are about 2 million metric tons of potential ore with an average of 1.9 g/t Au (Samadi, 2001;Ashrafpour et al., 2012. Multiple intrusive events are recognized in the region including Precambrian to post-Oligocene-Miocene igneous rocks (Alaminia et al., 2013a. This includes the Arghash diorite pluton, upper Cretaceous granitoids (minor diorite, mainly quartz monzodiorite and granodiorite, early Eocene granite and several lamprophyre and small intrusions of quartz monzodiorite porphyries. Volcanicsinclude andesite, dacite, pillow basalt and tuffs. Sedimentary rocks are conglomerate and minor limestone. Gold veins are hosted by intermediate to silicic volcanic rocks, tuffs, granite, granodiorite, and conglomerate. Veins consist of calcite and quartz. The main alteration zones mapped at the surface and underground are sericite-quartz-pyrite-calcite, withsilicified, propylitic, argillic, and carbonate zones. The mineralization associated with sericiticalteration and silicificationoccurs asveinlets and disseminated in the propylitic zone. Gangue minerals are quartz, chalcedony, calcite, adularia, illite, and kaolinite. Mineralization occurs as veinlets, breccia filling and disseminated. The veinlets are comprised of pyrite, arsenopyrite, minor chalcopyrite, sphalerite, galena, magnetite and hematite. Pyrite is the main sulfide mineral in the hypogene ore. Samples were collected with the objective of studying the pyrite in the Au (III vein systems. All samples were therefore pyrite rich. The paragenesiswas determined to show four stages of mineralization based on the following microscopic observations: 1. an initial pyrite veinlet stage with associated quartz, chlorite, epidote. Pyrite is fine to medium grained, anhedral and gold-poor. 2. a second pyritic stage (polymetallic sulfide stage contains pyrite, chalcopyrite, galena, sphalerite, quartz and chalcedony, minor adularia and arsenopyrite. 3. An As

  12. Spin orientation in solid solution hematite-ilmenite

    DEFF Research Database (Denmark)

    Brok, Erik; Frandsen, Cathrine; Lefmann, Kim

    2017-01-01

    temperature range below the Néel temperature and does not depend systematically on Ti-content. The results indicate that the out-of-plane spin component is an intrinsic feature of hematite itself, with an origin not yet fully understood, but consistent with group theory. This represents a major shift...... spectroscopy. The usually assumed magnetic structure of hematite within this temperature range is antiferromagnetic with the spins confined to the basal plane of the hexagonal structure; however, an out-of-plane spin component is allowed by the symmetry of the system and has been observed in recent studies......The spin orientation in synthetic hematite-ilmenite samples and in a sample of natural hematite was studied from room temperature to above the antiferromagnetic-paramagnetic phase transition (the Néel temperature; TN ≈ 600–950 K) by neutron powder diffraction and at room temperature by Mössbauer...

  13. Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-07-01

    Full Text Available Bioleaching is the mobilization of metal cations from insoluble ores by microorganisms. Biofilms can enhance this process. Since Sulfobacillus often appears in leaching heaps or reactors, this genus has aroused attention. In this study, biofilm formation and subsequent pyrite dissolution by the Gram-positive, moderately thermophilic acidophile Sulfobacillus thermosulfidooxidans were investigated. Five strategies, including adjusting initial pH, supplementing an extra energy source or ferric ions, as well as exchanging exhausted medium with fresh medium, were tested for enhancement of its biofilm formation. The results show that regularly exchanging exhausted medium leads to a continuous biofilm development on pyrite. By this way, multiply layered biofilms were observed on pyrite slices, while only monolayer biofilms were visible on pyrite grains. In addition, biofilms were proven to be responsible for pyrite leaching in the early stages.

  14. Selective separation of pyrite and chalcopyrite by biomodulation.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Modak, Jayant M

    2004-09-01

    Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.

  15. Magnetic clusters in ilmenite-hematite solid solutions

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Burton, B. P.; Rasmussen, Helge Kildahl

    2010-01-01

    We report the use of high-field 57Fe Mössbauer spectroscopy to resolve the magnetic ordering of ilmenite-hematite [xFeTiO3−(1−x)Fe2O3] solid solutions with x>0.5. We find that nanometer-sized hematite clusters exist within an ilmenite-like matrix. Although both phases are antiferromagnetically...

  16. Incorporation of Uranium into Hematite during Crystallization from Ferrihydrite

    Science.gov (United States)

    2014-01-01

    Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite. The results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. PMID:24580024

  17. The transformation of ferrihydrite into goethite or hematite, revisited

    International Nuclear Information System (INIS)

    Cudennec, Yannick; Lecerf, Andre

    2006-01-01

    During the oxidation of iron, poorly crystallized phases are firstly formed: 2- and 6-line ferrihydrite, which presents for the last phase, a similarity with wustite FeO but also with hematite α-Fe 2 O 3 . Crystallization increases with time and the solid phase obtained is dependent on temperature and pH. Obviously, high temperature favours the formation of the oxide hematite α-Fe 2 O 3 . As for the pH factor, it is more complicated. Low and high values of pH (2-5 and 10-14) favour the formation of goethite α-FeOOH, while obtaining hematite is favoured at neutral pH (values around 7). Goethite or hematite are obtained either through a dissolution-crystallization process or in the solid state, through a topotactic transformation. Given the structural relationships observed between ferrihydrite and wustite and hematite, it is allowed to think that a structural continuity could exist between wustite Fe (1- x ) O and hematite via ferrihydrite

  18. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  19. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.

    Science.gov (United States)

    Alp, I; Deveci, H; Yazici, E Y; Türk, T; Süngün, Y H

    2009-07-15

    Pyrite cinders, which are the waste products of sulphuric acid manufacturing plants, contain hazardous heavy metals with potential environmental risks for disposal. In this study, the potential use of pyrite cinders (PyCs) as iron source in the production of Portland cement clinker was demonstrated at the industrial scale. The chemical and mineralogical analyses of the PyC sample used in this study have revealed that it is essentially a suitable raw material for use as iron source since it contains >87% Fe(2)O(3) mainly in the form of hematite (Fe(2)O(3)) and magnetite (Fe(3)O(4)). The samples of the clinkers produced from PyC in the industrial scale trial operation of 6 months were tested for the conformity of their chemical composition and the physico-mechanical performance of the resultant cement products. The data were compared with the clinker products of the iron ore, which is used as the raw material for the production Portland cement clinker in the plant. The chemical compositions of all the clinker products of PyC appeared to conform to those of the iron ore clinker, and hence, a Portland cement clinker. The mechanical performance of the mortars prepared from the PyC clinker was found to be consistent with those of the industrial cements e.g. CEM I type cements. It can be inferred from the leachability tests (TCLP and SPLP) that PyC could be a potential source of heavy metal pollution while the mortar samples obtained from the PyC clinkers present no environmental problems. These findings suggest that the waste pyrite cinders can be readily used as iron source for the production of Portland cement. The availability of PyC in large quantities at low cost provides further significant benefits for the management/environmental practices of these wastes and for the reduction of mining and processing costs of cement raw materials.

  20. The leaching of base minerals from the calcines produced by the roasting of pyrite concentrates

    International Nuclear Information System (INIS)

    Nicol, M.J.; Filmer, A.O.

    1985-01-01

    A number of gold and uranium plants in South Africa concentrate the pyrite in the ore residue by flotation and roast the concentrate for the production of sulphuric acid. The calcine produced, which is predominantly hematite, is generally subjected to cyanidation for the recovery of gold and silver. The calcines often contain economically significant quantities of copper, nickel , cobalt and uranium. Prior treatment of the calcine for the recovery of these metals would be desirable in terms of the value of the products. Several processes for the leaching of the base metals from plant calcines have been investigated, and an important general conclusion is that an adequate recovery of the base metals requires that a large proportion of the iron should also be extracted. This observation led to a more extensive investigation of the kinetics of leaching of various iron oxides. The application of electrochemical theory and techniques resulted in a fuller understanding of the various factors that govern the rate of leaching of iron oxides. As a result of this fundamental work, alternative treatment schemes that should yield more efficient extraction from calcines were suggested. Several of these possibilities were investigated, and the most promising were found to require reducing conditions during the leach, or prior partial reduction of the calcine to magnetite or wustite

  1. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles

    DEFF Research Database (Denmark)

    Hellman, Anders; Iandolo, Beniamino; Wickman, Bjorn

    2015-01-01

    The oxygen evolution reaction on hydroxyl- and oxygen-terminated hematite was investigated using first-principle calculations within a theoretical electrochemical framework. Both pristine hematite and hematite containing oxygen vacancies were considered. The onset potential was determined to be 1...... on hematite occurs on the oxygen-terminated hematite, containing oxygen vacancies. (C) 2015 Elsevier B.V. All rights reserved....

  2. Waste pyritic coal as a raw material for energetic industry

    Energy Technology Data Exchange (ETDEWEB)

    Gasiorek, J. [Institute of Inorganic Chemistry, Poznan (Poland). Dept. of Research and Technology

    1997-11-01

    Results are presented of large laboratory studies on coal desulphurisation with foam flotation method improved by application of bioadsorption of Thiobacillus ferrooxidans bacteria to the modification of superficial properties of pyrite particulates from hydrophobic to hydrophillic ones. Results of coal desulfurization with and without bioadsorption have been compared. Bioadsorption improved pyritic sulfur removal by 30% (for coal from `Sierza mine`, coal size 0.3 to 0.102 mm, S pyritic content 1.69%) after 6-week adaptation of bacteria and 30 min of bioadsorption. Bacteria concentration in 5% water suspension of coal reached 22 {mu}g of biomass cm{sup -3}. 12 refs., 4 figs., 1 tab.

  3. Practical considerations of pyrite oxidation control in uranium tailings

    International Nuclear Information System (INIS)

    1984-05-01

    The problems posed by the oxidation of pyrite in uranium tailings include the generation of sulfuric acid and acid sulfate metal salts. These have substantial negative impacts on watercourse biota by themselves, and the lowered pH levels tend to mobilize heavy metals present in the tailings the rate of oxidation of pyrite at lower pH levels is catalyzed by sulfur and iron oxidizing bacteria present in soils. No single clear solution to the problems came from this study. Exclusion of air is a most important preventative of bacterial catalysis of oxidation. Bactericides, chemically breaking the chain of integrated oxidation reactions, maintaining anaerobic conditions, or maintaining a neutral or alkaline pH all reduce the oxidation rate. Removal of pyrite by flotation will reduce but not eliminate the impact of pyrite oxidation. Controlled oxidation of the remaining sulfide in the flotation tails would provide an innocuous tailing so far as acidity generation is concerned

  4. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    sulphide mineralization and their chemical evo- lution in relative .... properties and chemical compositions. Electron ..... from the sulphide lode provide clues to the chang- ing fluid ..... Raymond O L 1996 Pyrite composition and ore geneis in.

  5. Surface Potential of Polycrystalline Hematite in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Tajana Preočanin

    2011-01-01

    Full Text Available The surface potential of polycrystalline hematite in aqueous sodium perchlorate environment as a function of pH was examined. Surface potential of hematite was obtained from measured electrode potential of a nonporous polycrystalline hematite electrode. Acidic solution was titrated with base, and the backward titration with acid was performed. Substantial hysteresis was obtained which enabled location of the point of zero potential and equilibrium values of surface potentials. The theoretical interpretation of the equilibrium data was performed by applying the surface complexation model and the thermodynamic equilibrium constants for the first and the second step of surface protonation was obtained as logK1∘=11.3;logK2∘=2.8.

  6. Non destructive Testing (NDT) of concrete containing hematite

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of Non-destructive ultrasonic and rebound hammer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/c) and types of fine aggregate. All samples were cured in water for 7 days and then tested after 28 days. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  7. Memory effect of ball-milled and annealed nanosized hematite

    International Nuclear Information System (INIS)

    Bercoff, P.G.; Bertorello, H.R.; Oliva, M.I.

    2007-01-01

    Fine particles of hematite (mean size 55 nm) were produced by ball milling a mixture of hematite and pure Fe and annealing at 1000 o C. X-ray diffraction (XRD) and Moessbauer spectroscopy show that only α-Fe 2 O 3 is present in the final product, with lattice and Moessbauer parameters that correspond to bulk hematite. ZFC and FC magnetization measurements were performed from 5 to 300 K, at different applied fields. Two magnetic regimes were observed: one at low temperatures (≤100 K) that we ascribe to the magnetic moments in the outer shell of the particles that couple to the magnetic moments in the core, and another at higher temperature that corresponds to the Morin transition, finding that the Morin temperature is T M =246 K. The memory effect is clearly observed in magnetic measurements that start from different remanence states and explained as dependent on the ordering of the magnetic moments within the particles

  8. Moessbauer investigation of gold-bearing pyrite-rich concentrates

    International Nuclear Information System (INIS)

    Wagner, F.E.; Harris, D.C.

    1994-01-01

    A gold-bearing pyrite-rich concentrate of a refractory ore from the Golden Bear mine, northwestern British Columbia, and a pyrite-rich concentrate from Newhawk's west zone, Brucejack Lake area, northern British Columbia, containing 38 and 316 ppm Au and 0.57% and 0.19% As, respectively, have been investigated using 197 Au and 57 Fe Moessbauer spectroscopy. In the Golden Bear sample, the gold is mainly chemically bound in the pyrite with minor amounts present as an Au-Ag alloy, whereas in the Newhawk sample, the gold occurs mainly as an Au-Ag alloy with a composition close to Au 0.5 Ag 0.5 and is only partly bound in the pyrite. Having mean isomer shifts of +3.2 and +4.0 mm/s with respect to a Pt metal source, the gold in pyrite exhibits shifts similar to those observed for gold in arsenopyrite. The nature of the lattice sites occupied by the gold in pyrite is discussed. (orig.)

  9. The effect of lizardite surface characteristics on pyrite flotation

    International Nuclear Information System (INIS)

    Feng Bo; Feng Qiming; Lu Yiping

    2012-01-01

    Highlights: ► Two kinds of lizardite samples have different effect on the flotation of pyrite. ► Acid leaching changed the surface characteristics of lizardite mineral. ► The leached lizardite has less magnesium on its surface. ► The electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on mineral surface. - Abstract: The effect of lizardite surface characteristics on pyrite flotation has been investigated through flotation tests, adsorption tests, zeta potential measurements, FTIR study, X-ray photoelectron spectroscopy (XPS) and sedimentation tests. The flotation results show that at pH value 9, where flotation of nickel sulfide ores is routinely performed, two kinds of lizardite samples (native lizardite and leached lizardite) have different effects on the flotation of pyrite. The native lizardite adheres to the surface of pyrite and reduces pyrite flotation recovery while the leached lizardite does not interfere with pyrite flotation. Infrared analyses and XPS tests illustrate that acid leaching changed the surface characteristics of lizardite mineral and the leached lizardite has less magnesium on its surface. It has been determined that the electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on lizardite surface. So, the low isoelectric point observed in the leached sample has been linked to values of this ratio lower than that of the native lizardite.

  10. Spectral Induced Polarization of Disseminated Pyrite Particles in Soil

    Science.gov (United States)

    Slater, L. D.; Kessouri, P.; Seleznev, N. V.

    2017-12-01

    Disseminated metallic particles in soil, particularly pyrite, occur naturally or are enhanced by anthropogenic activities. Detecting their presence and quantifying their concentration and location is of interest for numerous applications such as remediation of hydrocarbon contamination, mine tailings assessment, detection of oil traps, and archaeological studies. Because pyrite is a semiconductor, spectral induced polarization (SIP) is a promising geophysical method for sensing it in porous media. Previous studies have identified relations between pyrite properties (e.g., volumetric content, grain size) and SIP parameters (e.g., chargeability, relaxation time). However, the effect of pyrite grains in porous media on the SIP response is not fully understood over the entire low-frequency range. We tested the relationship between the presence of pyrite grains and the change in electrical properties of the medium through an extended series of laboratory measurements: (1) variation of grain size, (2) variation of grain concentration, (3) variation of electrolyte conductivity, (4) change in the diffusion properties of the host medium. For the fourth set of measurements, we compared sand columns to agar gel columns. Our experimental design included more than 20 different samples with multiple repeats to ensure representative results. We confirm the strong relation between grain size and relaxation time and that between grain concentration and chargeability in both the sand and agar gel samples. Furthermore, our results shed light on the significance of the diffusion coefficient and the recently hypothesized role of pyrite grains as resistors at frequencies lower than the relaxation frequency.

  11. Interfacial Precipitation of Phosphate on Hematite and Goethite

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2018-05-01

    Full Text Available Adsorption and subsequent precipitation of dissolved phosphates on iron oxides, such as hematite and goethite, is of considerable importance in predicting the bioavailability of phosphates. We used in situ atomic force microscopy (AFM to image the kinetic processes of phosphate-bearing solutions interacting with hematite or goethite surfaces. The nucleation of nanoparticles (1.0–4.0 nm in height of iron phosphate (Fe(III-P phases, possibly an amorphous phase at the initial stages, was observed during the dissolution of both hematite and goethite at the earliest crystallization stages. This was followed by a subsequent aggregation stage where larger particles and layered precipitates are formed under different pH values, ionic strengths, and organic additives. Kinetic analysis of the surface nucleation of Fe-P phases in 50 mM NH4H2PO4 at pH 4.5 showed the nucleation rate was greater on goethite than hematite. Enhanced goethite and hematite dissolution in the presence of 10 mM AlCl3 resulted in a rapid increase in Fe-P nucleation rates. A low concentration of citrate promoted the nucleation, whereas nucleation was inhibited at higher concentrations of citrate. By modeling using PHREEQC, calculated saturation indices (SI showed that the three Fe(III-P phases of cacoxenite, tinticite, and strengite may be supersaturated in the reacted solutions. Cacoxenite is predicted to be more thermodynamically favorable in all the phosphate solutions if equilibrium is reached with respect to hematite or goethite, although possibly only amorphous precipitates were observed at the earliest stages. These direct observations at the nanoscale may improve our understanding of phosphate immobilization in iron oxide-rich acid soils.

  12. Photosystem I-​based Biophotovoltaics on Nanostructured Hematite

    NARCIS (Netherlands)

    Ocakoglu, K.; Krupnik, T.; van den Bosch, B.; Harputlu, E.; Gullo, M.P.; Olmos, J.D.J.; Yildirimcan, S.; Gupta, R.K.; Yakuphanoglu, F.; Barbieri, A.; Reek, J.N.H.; Kargul, J.

    2014-01-01

    The electronic coupling between a robust red algal photosystem I (PSI) associated with its light harvesting antenna (LHCI) and nanocrystalline n-​type semiconductors, TiO2 and hematite (α-​Fe2O3) is utilized for fabrication of the biohybrid dye-​sensitized solar cells (DSSC)​. PSI-​LHCI is

  13. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  14. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  15. Hydrogeologic and environmental impact of amjhore pyrite mines, India

    Science.gov (United States)

    Choubey, Vishnu D.; Rawat, Rajendra K.

    1991-01-01

    Drainage from active and inactive pyrite mines has produced chemical and physical pollution of both ground- and surface water in Amjhore region. In the present case, chemical pollution is caused by exposing pyrite minerals to oxidation or leaching, resulting in undesirable concentrations of dissolved materials. Pyrite mining suddenly exposed large quantities of sulfides to direct contact with oxygen, and oxidation proceeds rapidly, resulting in acidity and release of metal (Fe) and sulfates to the water system, eventually resulting in water pollution in the region. The magnitude and impact of the problem is just being recognized and, as the present and the future projected demand for clean water is of top priority, the present studies were undertaken. Mine drainage includes water flowing from the surface and underground mines and runoff or seepage from the pyrite mines. This article describes the various hydrologic factors that control acid water formation and its transport. The mine drainage is obviously a continuing source of pollution and, therefore, remedial measures mainly consisting of a double-stage limestone-lime treatment technique have been suggested. The present results will be used to develop an alternative and more effective abatement technology to mitigate acid production at the source, namely, the technique of revegetation of the soil cover applied to the waste mine dump material. Water quality change is discussed in detail, with emphasis on acidity formed from exposed pyrite material and on increase in dissolved solids. Preventive and treatment measures are recommended.

  16. The Influence of Several Doped Ions on Gas Sensitivity of Hematite

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The dehydrating activation energies of the hematite with several doped ions used for the alcohol sensor were determinated by thermogravimetric differential thermal analyzer (TG-DTA) and the grain size of the samples were observed with TEM. The hematites with different doping amounts of Sn4 + were investigated by Mossbauer spectrometer. It shows that the different doped ion is of influence for grain growth of the hematite. The decrease of grain size stemmed from the doped ion causes gas sensitivity for alcohol to increase and the dehydrating activation energy to decrease correspondingly. When the different amounts of Sn4 + is doped in hematite, the microstructure of the hematite can be influenced.

  17. The flotation of gold, uranium, and pyrite from Witwatersrand ores

    International Nuclear Information System (INIS)

    Lloyd, P.J.D.

    1981-01-01

    The Witwatersrand reefs contain gold, uranium, and pyrite in the following average concentrations: 0,001 per cent, 0,02 per cent, and 1,7 per cent respectively. The paper discusses the flotation of pyrite to produce a sulphide concentrate, reviews work done on the production of gold concentrates, discusses attempts to produce maximum concentrates, and closes with a review of processes for the simultaneous flotation of these three species. It is concluded that high recoveries of all three species can be achieved only if a rougher concentrate of perhaps 20 per cent of the feed (by mass) is produced, and it is suggested that reverse leaching (leaching before cyanidation) of this concentrate, followed by a cleaning flotation step for the recovery of the pyrite, would be more efficient than the routes employed at present [af

  18. Degradation of Diclofenac by sonosynthesis of pyrite nanoparticles.

    Science.gov (United States)

    Khabbaz, M; Entezari, M H

    2017-02-01

    The aim of this work is to evaluate the ability of synthesized pyrite nanoparticles (NPs) on the degradation of Diclofenac (DCF) as a model pharmaceutical pollutant. Pyrite NPs were synthesized by sonication with 20 kHz apparatus under optimum conditions. The effects of pyrite loading (0.02-0.20 g/L), DCF concentration (10-50 mg/L) and initial pH (2-10) on the degradation were investigated. The results revealed that the NPs have a great activity in the degradation of DCF with 25 mg/L concentration. A first-order kinetic model was found to match the experimental data. Complete degradation (100%) of DCF was achieved by pyrite within 3 min and 20 min in acidic and natural pH, respectively. To gain an understanding of the degradation mechanism and the role of pyrite, a UV-Vis spectrophotometer was employed to follow the DCF concentration. In addition, the Chemical Oxygen Demand (COD) and the amounts of ammonium and chloride ions verified complete degradation of DCF in both pH values. The results demonstrated that Fe 2+ ions were generated by the pyrite surface and the hydroxyl radical (OH) was formed by Fe 2+ ions through the Fenton reaction. Based on using radical scavengers in the degradation process, OH was mainly responsible for the fast degradation of DCF. COD measurements confirmed that DCF finally degraded to further oxidized forms (NH 4 + , Cl - ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of magnetic starch on the clarification of hematite tailings wastewater

    Science.gov (United States)

    Yue, Tao; Wu, Xiqing

    2018-02-01

    The magnetic starch solution, synthesized by mixing the caustic starch, the Fe2+ solution (in some cases containing the Zn2+, Cu2+, Mn2+ or Mg2+ ions) and H2O2 solution, was used as the flocculant to investigate its clarification effect on hematite tailings wastewater. Based on the clarification tests and adsorption analysis it was demonstrated that the magnetic starch produced better clarification effect than the caustic starch, and the adsorption of magnetic starch onto hematite tailings particles was also stronger than the caustic starch. AFM found that the magnetic interaction between magnetic seeds and hematite is characteristic of long range force and greatly strengthens the adsorption of magnetic seeds onto fine hematite for agglomeration. FTIR indicates the starch adsorbed onto the surfaces of hematite and magnetic seeds, thus acting as the bridging between hematite particles and magnetic seeds, resulting in an intensified coverage of the starch onto hematite and positive action in the clarification.

  20. Influence of heterotrophic microbial growth on biological oxidation of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E.A.; Silverstein, J. [University of Nevada, Reno, NV (United States). Dept. of Civil Engineering

    2002-12-15

    Experiments were carried out to examine the possibility that enhanced growth of heterotrophic (non-iron-oxidising) bacteria would inhibit pyrite oxidation by Acidithiobacillus ferroxidans by out-competing the more slowly growing autotrophs for oxygen, nutrients or even attachment sites on the mineral surface. Glucose was added to microcosms containing pyrite, acidic mineral solution and cultures of A-ferrooxidans and Acidiphilium acidophilus under various experimental conditions. Results suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation. 43 refs., 8 figs., 3 tabs.

  1. Green urea synthesis catalyzed by hematite nanowires in magnetic field

    International Nuclear Information System (INIS)

    Yahya, Noorhana; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong

    2017-01-01

    The catalytic activity of hematite (α-Fe 2 O 3 ) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe 2 O 3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is −4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0–21 respectively. In addition, it induces magnetic moment value of 36.33 µB, which confirms the enhanced magnetic behaviour of hematite. α-Fe 2 O 3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750−800) °C and as synthesized α-Fe 2 O 3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe 2 O 3 and Raman spectrum analyses confirms the α-Fe 2 O 3 peaks at 410 cm −1 , 500 cm −1 and 616 cm −1 . The needle-like shape of hematite nanowires with length ranging from 16–25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe 2 O 3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe 2 O 3 NWs for urea production is lower than NPs in the range of 0–1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690–1600 cm −1 . This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure

  2. Tridimensional modelling and resource estimation of the mining waste piles of São Domingos mine, Iberian Pyrite Belt, Portugal

    Science.gov (United States)

    Vieira, Alexandre; Matos, João; Lopes, Luis; Martins, Ruben

    2016-04-01

    Located in the Iberian Pyrite Belt (IPB) northern sector, near the Portuguese/Spanish border, the outcropping São Domingos deposit was mined since Roman time. Between 1854 and 1966 the Mason & Barry Company developed open pit excavation until 120 m depth and underground mining until 420 m depth. The São Domingos subvertical deposit is associated with felsic volcanics and black shales of the IPB Volcano-Sedimentary Complex and is represented by massive sulphide and stockwork ore (py, cpy, sph, ga, tt, aspy) and related supergene enrichment ore (hematite gossan and covellite/chalcocite). Different mine waste classes were mapped around the old open pit: gossan (W1), felsic volcanic and shales (W2), shales (W3) and mining waste landfill (W4). Using the LNEG (Portuguese Geological Survey) CONASA database (company historical mining waste characterization based on 162 shafts and 160 reverse circulation boreholes), a methodology for tridimensional modelling mining waste pile was followed, and a new mining waste resource is presented. Considering some constraints to waste removal, such as the Mina de São Domingos village proximity of the wastes, the industrial and archaeological patrimony (e.g., mining infrastructures, roman galleries), different resource scenarios were considered: unconditioned resources (total estimates) and conditioned resources (only the volumes without removal constraints considered). Using block modelling (SURPAC software) a mineral inferred resource of 2.38 Mt @ 0.77 g/t Au and 8.26 g/t Ag is estimated in unconditioned volumes of waste. Considering all evaluated wastes, including village areas, an inferred resource of 4.0 Mt @ 0.64 g/t Au and 7.30 g/t Ag is presented, corresponding to a total metal content of 82,878 oz t Au and 955,753 oz t Ag. Keywords. São Domingos mine, mining waste resources, mining waste pile modelling, Iberian Pyrite Belt, Portugal

  3. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  4. Modelling the reactive-path between pyrite and radioactive nuclides

    International Nuclear Information System (INIS)

    Kang Mingliang; Wu Shijun; Dou Shunmei; Chen Fanrong; Yang Yongqiang

    2008-01-01

    The mobility of redox sensitive nuclides is largely dependent on their valence state. The radionuclides that make the dominant contributions to final dose calculations are redox sensitive. Almost all the radionuclides (except 129 I) have higher mobility at high valence state, and correspond to immobilization at low valence state due to the much lower solubility. Pyrite is an ubiquitous and stable mineral in geological environment, and would be used as a low-cost long time reductant for the immobilization of radionuclides. However, pyrite oxidation is supposed to generate acid, which will enhance the mobility of nuclides. In this paper, the reaction path of the reactions between radionuclides (U, Se and Tc) and pyrite in the groundwater from Wuyi well in Beishan area of China has been simulated using geochemical modeling software. According to the results, pyrite can reduce high valence nuclides to a dinky-level effectively, with the pH slightly increasing under anaerobic condition that is common in deep nuclear waste repositories. (authors)

  5. The mechanisms of pyrite oxidation and leaching: A fundamental perspective

    Science.gov (United States)

    Chandra, A. P.; Gerson, A. R.

    2010-09-01

    Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh

  6. The nature of hematite depression with corn starch in the reverse flotation of iron ore.

    Science.gov (United States)

    Shrimali, Kaustubh; Atluri, Venkata; Wang, Yan; Bacchuwar, Sanket; Wang, Xuming; Miller, Jan D

    2018-08-15

    The function of corn starch and the significance of the order of addition of corn starch and mono ether amine in the reverse flotation of iron ore has been investigated. Understanding hematite depression with starch and the corresponding hydrophilic state involves consideration of adsorption with amine as well as flocculation of fine hematite. Captive bubble contact angle and micro-flotation experiments indicated that amine has an affinity towards both hematite and quartz, and that the role of starch is to hinder the adsorption of amine at the hematite surface so that flotation is inhibited. Micro-flotation results confirmed that quartz does not have affinity towards starch at pH 10.5. In addition to competitive adsorption, flocculation of fine hematite occurs and images from high resolution X-ray computed tomography (HRXCT) and cryo-SEM reveal further detail regarding floc structure. These results provide substantial evidence that the fine hematite particles are flocculated in the presence of corn starch, and flocculation is dependent on the particle size of hematite, with greater flocculation for finer particles. Thus, starch is playing a dual role in the reverse flotation of iron ore, acting as a depressant by hindering amine adsorption at the hematite surface in order to maintain the hydrophilic surface state of hematite, and acting as a flocculant to aggregate fine hematite particles, which if not flocculated, could diminish the flotation separation efficiency by being transported to the froth phase during reverse flotation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

    Science.gov (United States)

    Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A.

    2017-06-01

    The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

  8. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  9. The composition of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Sie, S.H.; Suter, G.F.; Ryan, C.G.

    1993-01-01

    Pixeprobe analysis of pyrite from Australian volcanogenic massive sulfide (VMS) deposits indicate significant levels of Cu, Zn, Pb, Ba, Ag, Sb, Bi (from inclusions), As, Tl, Mo, Au, In, Cd (from nonstoichiometric substitution), Co, Ni, Se and Te (from stoichiometric substitution). Pyrite in massive sulfide lenses is enriched in trace elements compared to that in the stringer zone owing to hydrothermal recrystallization. Metamorphic recrystallization also 'cleans' pyrite of trace elements. High Au values occur in pyrite with high As content. Pyrite in stringer zones is enriched in Se relative to the overlying massive sulfide lenses and the surrounding alteration zones. (orig.)

  10. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  11. Chemical and Mineralogical Characterization of a Hematite-bearing Ridge on Mauna Kea, Hawaii: A Potential Mineralogical Process Analog for the Mount Sharp Hematite Ridge

    Science.gov (United States)

    Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.

    2014-01-01

    The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.

  12. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Green urea synthesis catalyzed by hematite nanowires in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Noorhana, E-mail: noorhana_yahya@petronas.com.my; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong

    2017-04-15

    The catalytic activity of hematite (α-Fe{sub 2}O{sub 3}) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe{sub 2}O{sub 3} (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is −4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0–21 respectively. In addition, it induces magnetic moment value of 36.33 µB, which confirms the enhanced magnetic behaviour of hematite. α-Fe{sub 2}O{sub 3} nanowires (NWs) synthesized by heating iron wire in a box furnace at (750−800) °C and as synthesized α-Fe{sub 2}O{sub 3} nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe{sub 2}O{sub 3} and Raman spectrum analyses confirms the α-Fe{sub 2}O{sub 3} peaks at 410 cm{sup −1}, 500 cm{sup −1} and 616 cm{sup −1}. The needle-like shape of hematite nanowires with length ranging from 16–25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe{sub 2}O{sub 3} perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe{sub 2}O{sub 3} NWs for urea production is lower than NPs in the range of 0–1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690–1600 cm{sup −1}. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process

  14. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  15. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    International Nuclear Information System (INIS)

    Mango, Helen; Ryan, Peter

    2015-01-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ 34 S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in 34 S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ 34 S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ 34 S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ 34 S = – 5.2 to 63‰ with higher 34 S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ 34 S

  16. Reductive Dissolution of Goethite and Hematite by Reduced Flavins

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhi; Zachara, John M.; Wang, Zheming; Shi, Liang; Fredrickson, Jim K.

    2013-10-02

    The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive than hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.

  17. An inelastic neutron scattering study of hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Klausen, Stine Nyborg; Lefmann, K

    2003-01-01

    We have studied the magnetic dynamics in nanocrystalline hematite by inelastic neutron scattering at the high-resolution time-of-flight spectrometer IRIS at ISIS. Compared to previous inelastic neutron scattering experiments an improvement of the resolution function is achieved and more detailed...... moment at the antiferromagnetic Bragg reflection. We have studied different weightings of the particle size distribution. The data and their temperature dependence can with good agreement be interpreted on the basis of the Neel-Brown theory for superparamagnetic relaxation and a model for the collective...

  18. Magnetic anisotropy and quantized spin waves in hematite nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker

    2004-01-01

    We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...

  19. Lattice location of gold in natural pyrite crystals

    International Nuclear Information System (INIS)

    Besten, Jacinta den; Jamieson, David N.; Ryan, Chris G.

    1999-01-01

    The lattice location of gold atoms in naturally occurring Au-doped pyrite crystals has been investigated with a nuclear microprobe using ion channeling. The specimens consisted of 300-μm diameter pyrite crystals in veins embedded in a quartz matrix from the Emperor mine in Fiji. The specimens were prepared by standard geological specimen preparation techniques and the pyrite crystals were analysed in situ in the quartz matrix. Significant trace elements in the crystals, determined by Proton Induced X-ray Emission with a 3 MeV H + microprobe, were Cu, As, Mo, Zn, Te, Au and Pb. The Au concentration was about 0.2 wt%. By the use of 2 MeV He + ion channeling, the Miller indices of the lowest order crystal axes nearest to the normal were determined from backscattering yield maps from two-dimensional angular scanning and comparison of the resulting patterns with published gnomonic projections. Channeling angular yield curves were obtained from Fe, S, As and Au signals. The results indicate that at least 35% of the Au is substituted onto lattice sites

  20. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.

    Science.gov (United States)

    Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M

    2005-06-30

    Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.

  1. Defective pyrite (100) surface: An ab initio study

    International Nuclear Information System (INIS)

    Stirling, Andras; Bernasconi, Marco; Parrinello, Michele

    2007-01-01

    The structural and electronic properties of sulfur monomeric defects at the FeS 2 (100) surface have been studied by periodic density-functional calculations. We have shown that for a monomeric sulfur bound to an originally fivefold coordinated surface Fe site, the defect core features a triplet electronic ground state with unpaired spins localized on the exposed Fe-S unit. At this site, the iron and sulfur ions have oxidation states +4 and -2, respectively. This defect can be seen as produced via heterolytic bond breaking of the S-S sulfur dimer followed by a Fe-S redox reaction. The calculated sulfur 2p core-level shifts of the monomeric defects are in good agreement with experimental photoemission spectra, which allow a compelling assignment of the different spectroscopic features. The effect of water on the stability of the defective surface has also been studied, and it has been shown that the triplet state is stable against the wetting of the surface. The most important implications of the presence of the monomeric sulfur defect on the reactivity are also discussed

  2. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  3. Interaction of light with hematite hierarchical structures: Experiments and simulations

    Science.gov (United States)

    Distaso, Monica; Zhuromskyy, Oleksander; Seemann, Benjamin; Pflug, Lukas; Mačković, Mirza; Encina, Ezequiel; Taylor, Robin Klupp; Müller, Rolf; Leugering, Günter; Spiecker, Erdmann; Peschel, Ulf; Peukert, Wolfgang

    2017-03-01

    Mesocrystalline particles have been recognized as a class of multifunctional materials with potential applications in different fields. However, the internal organization of nanocomposite mesocrystals and its influence on the final properties have not yet been investigated. In this paper, a novel strategy based on electrodynamic simulations is developed to shed light on how the internal structure of mesocrystals influences their optical properties. In a first instance, a unified design protocol is reported for the fabrication of hematite/PVP particles with different morphologies such as pseudo-cubes, rods-like and apple-like structures and controlled particle size distributions. The optical properties of hematite/PVP mesocrystals are effectively simulated by taking their aggregate and nanocomposite structure into consideration. The superposition T-Matrix approach accounts for the aggregate nature of mesocrystalline particles and validate the effective medium approximation used in the framework of the Mie theory and electromagnetic simulation such as Finite Element Method. The approach described in our paper provides the framework to understand and predict the optical properties of mesocrystals and more general, of hierarchical nanostructured particles.

  4. Adsorption of ions on hematite (α-Fe2O3) : a colloid-chemical study

    NARCIS (Netherlands)

    Breeuwsma, A.

    1973-01-01

    This study is primarily intended to provide a better understanding of the adsorption of ions on hematite (α-Fe 2 O 3 ). In addition, due attention is given to the relation between the ionic adsorption and the colloidal stability of hematite sols.

    Chapter 1. is concerned

  5. Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution

    KAUST Repository

    Joya, Khurram

    2015-07-15

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst – hematite photoanode hybrid material showed significant onset shift and high stability for photoelectrochemical oxidation evolution reaction (OER).

  6. Residual Energy Harvesting from Light Transients Using Hematite as an Intrinsic Photocapacitor in a Symmetrical Cell

    NARCIS (Netherlands)

    Blom, Burgert; van Leeuwen, Nicole; Xie, Mengying; Adamaki, Vana; Bowen, Chris R.; de Araujo, Moises A.; Mascaro, Lucia H.; Cameron, Petra J.; Marken, Frank

    2017-01-01

    Hematite as a sustainable photoabsorber material offers a band gap close to 2 eV and photoanode characteristics, but usually requires additional catalysts to enhance surface redox chemistry during steady state light energy harvesting for water splitting. Here, for a highly doped hematite film,

  7. Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution

    KAUST Repository

    Joya, Khurram; Morlanes, Natalia; Maloney, Edward; Rodionov, Valentin; Takanabe, Kazuhiro

    2015-01-01

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst – hematite photoanode hybrid material showed significant onset shift and high stability for photoelectrochemical oxidation evolution reaction (OER).

  8. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    Science.gov (United States)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Nanostructured nickel oxide-hematite (NiO/α-Fe2O3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni2+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  9. Hematite mining in the ancient Americas: Mina Primavera, A 2,000 year old Peruvian mine

    Science.gov (United States)

    Vaughn, Kevin J.; Grados, Moises Linares; Eerkens, Jelmer W.; Edwards, Matthew J.

    2007-12-01

    Mina Primavera, a hematite (Fe2O3) mine located in southern Peru, was exploited beginning approximately 2,000 years ago by two Andean civilizations, the Nasca and Wari. Despite the importance of hematite in the material culture of the ancient Americas, few hematite mines have been reported in the New World literature and none have been reported for the Central Andes. An estimated 3,710 tonnes of hematite were extracted from the mine for over 1,400 years at an average rate of 2.65 tonnes per year, suggesting regular and extensive mining prior to Spanish conquest. The hematite was likely used as a pigment for painting pottery, and the mine demonstrates that iron ores were extracted extensively at an early date in the Americas.

  10. Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries"

    Science.gov (United States)

    Golden, D. C.; Ming, D. W.; Morris, R. V.

    2006-01-01

    Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of

  11. Green urea synthesis catalyzed by hematite nanowires in magnetic field

    Science.gov (United States)

    Yahya, Noorhana; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong

    2017-04-01

    The catalytic activity of hematite (α-Fe2O3) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe2O3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is -4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0-21 respectively. In addition, it induces magnetic moment value of 36.33 μB, which confirms the enhanced magnetic behaviour of hematite. α-Fe2O3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750-800) °C and as synthesized α-Fe2O3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe2O3 and Raman spectrum analyses confirms the α-Fe2O3 peaks at 410 cm-1, 500 cm-1 and 616 cm-1. The needle-like shape of hematite nanowires with length ranging from 16-25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe2O3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe2O3 NWs for urea production is lower than NPs in the range of 0-1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690-1600 cm-1. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure.

  12. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi-Xiang; Wang, Qian [School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Fu, Xiao-Qi, E-mail: xzx19820708@163.com [School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 (China)

    2015-12-30

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS{sub 2}(s) + 91NH{sub 4}NO{sub 3}(s) → 52NO(g) + 26SO{sub 2}(g) + 6Fe{sub 2}O{sub 3}(s) + 78NH{sub 3}(g) + 26N{sub 2}O(g) + 2FeSO{sub 4}(s) + 65H{sub 2}O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and N{sub 2}O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  13. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  14. Comparison Analysis of Coal Biodesulfurization and Coal’s Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Fen-Fen Hong

    2013-01-01

    Full Text Available Acidithiobacillus ferrooxidans (A. ferrooxidans was applied in coal biodesulfurization and coal’s pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal’s pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal’s pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32% and jarosite (18.99% were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34% and elemental sulfur (50.72% but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process.

  15. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  16. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    International Nuclear Information System (INIS)

    Sanchez-Arenillas, M.; Mateo-Marti, E.

    2015-01-01

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions

  17. Silane-based coatings on the pyrite for remediation of acid mine drainage.

    Science.gov (United States)

    Diao, Zenghui; Shi, Taihong; Wang, Shizhong; Huang, Xiongfei; Zhang, Tao; Tang, Yetao; Zhang, Xiaying; Qiu, Rongliang

    2013-09-01

    Acid mine drainage (AMD) resulting from the oxidation of pyrite and other metal sulfides has caused significant environmental problems, including acidification of rivers and streams as well as leaching of toxic metals. With the goal of controlling AMD at the source, we evaluated the potential of tetraethylorthosilicate (TEOS) and n-propyltrimethoxysilane (NPS) coatings to suppress pyrite oxidation. The release of total Fe and SO4(-2) from uncoated and coated pyrite in the presence of a chemical oxidizing agent (H2O2) or iron-oxidizing bacteria (Acidithiobacillus ferrooxidans) was measured. Results showed that TEOS- and NPS-based coatings reduced chemical oxidation of pyrite by as much as 59 and 96% (based on Fe release), respectively, while biological oxidation of pyrite was reduced by 69 and 95%, respectively. These results were attributed to the formation of a dense network of Fe-O-Si and Si-O-Si bonds on the pyrite surface that limited permeation of oxygen, water, and bacteria. Compared with results for TEOS-coated pyrite, higher pH and lower concentrations of total Fe and SO4(-2) were observed for oxidation of NPS-coated pyrite, which was attributed to its crack-free morphology and the presence of hydrophobic groups on the NPS-based coating surface. The silane-based NPS coating was shown to be highly effective in suppressing pyrite oxidation, making it a promising alternative for remediation of AMD at its source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  19. Magnetic dynamics of weakly and strongly interacting hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen

    2000-01-01

    The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance with...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...... for "superferromagnetism" in which the magnetic anisotropy is included. The coupling between the particles is due to exchange interactions and the interaction strength can be accounted for by just a few exchange bridges between surface atoms in neighboring crystallites....

  20. Nanostructured hematite thin films for photoelectrochemical water splitting

    Science.gov (United States)

    Maabong, Kelebogile; Machatine, Augusto G. J.; Mwankemwa, Benard S.; Braun, Artur; Bora, Debajeet K.; Toth, Rita; Diale, Mmantsae

    2018-04-01

    Nanostructured hematite thin films prepared by dip coating technique were investigated for their photoelectrochemical activity for generation of hydrogen from water splitting. Structural, morphological and optical analyses of the doped/undoped films were performed by X-ray diffraction, high resolution field emission-scanning electron microscopy, UV-vis spectrophotometry and Raman spectroscopy. The photoelectrochemical measurements of the films showed enhanced photoresponse and cathodic shift of the onset potential upon Ti doping indicating improved transfer of photoholes at the semiconductor-electrolyte interface. Films doped with 1 at% Ti produced 0.72 mA/cm2 at 1.23 V vs RHE which is 2 times higher than current density for the pure film (0.30 mA/cm2, at 1.23 V vs RHE). Gas chromatography analysis of the films also showed enhanced hydrogen evolution at 1 at% Ti with respect to pure film.

  1. Disposal of coal and hematite dusts inhaled successively

    Energy Technology Data Exchange (ETDEWEB)

    Heppleston, A G

    1958-01-01

    Rabbits and rats were exposed in a chamber to coal (20,000 and 10,000 particles/ml) and hematite (20,000 and 37,000 particles/ml) in succession to follow deposition and clearance by color. Exposures were 5 days/wk, 20 hr/day. Generally, there was dust widely but not uniformly distributed in peripheral alveoli, tending to aggregate and clump in more proximal alveoli with time. There was initial nonuniform distribution more uniform with exposure time. Aggregation mostly through phagocyte activities and more evident in rabbits than rats was observed. There was eventual mixing of two dusts inhaled up to 7 months apart. Dust deposited last is cleared first because of less tortuous route.

  2. Microstructural changes in porous hematite nanoparticles upon calcination

    DEFF Research Database (Denmark)

    Johnsen, Rune; Knudsen, Kenneth D.; Molenbroek, Alfons M.

    2011-01-01

    This combined study using small-angle neutron scattering (SANS), X-ray powder diffraction (XRPD), transmission electron microscopy (TEM) and adsorption isotherm techniques demonstrates radical changes in the microstructure of porous hematite (-Fe2O3) nanoparticles upon calcination in air. TEM....... The change in microstructure also causes a reduction in the surface area as calculated by gaseous adsorption. The XRPD and SANS data show that the crystallite and SANS particle sizes are virtually unchanged by calcination at 623 K. Calcination at 973 K induces a significant alteration of the sample. The XRPD...... data reveal that the crystallite size increases significantly, and the SANS and adsorption isotherm studies suggest that the specific surface area decreases by a factor of 5–6. The TEM images show that the particles are sintered into larger agglomerates, but they also show that parts of the porous...

  3. Fixing arsenic contained in a gas phase using solid hematite

    International Nuclear Information System (INIS)

    Balladares, E.; Gonzalez, A.; Rarra, R.; Sanchez, M.

    2004-01-01

    Feasibility to obtain ferric arsenate starting from arsenic containing gas in contact with Fe 3 O 3 has been studied. Thermodynamic stability of the system Fe-As-O was analysed in order to verify conditions to form Fe x As y O z type compounds. Experiments were made using a hematite sample suspended in a thermogravimetric device. As 4 O 6 was generated starting from solid As 2 O 3 which was circulating through the iron oxide. Final samples were analysed chemically and by means of DRX, verifying the formation of FeAsO 4 , FeAsO 4 .2h 2 O and FeAsO 4 .(H 2 O) 2 in small quantities. Tests in porous bed and pellets were carried out, studying the effect of: porosity, temperature and oxygen potential. The largest conversion obtained was 10% at 800 degree centigrade, pO 2 =50% and porosity=0.883. (Author) 9 refs

  4. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Phuan, Yi Wen, E-mail: phuan.yi.wen@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Ibrahim, Elyas, E-mail: meibr2@student.monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Chong, Meng Nan, E-mail: Chong.Meng.Nan@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Zhu, Tao, E-mail: zhu.tao@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehakro 93, Ulsan 680-749 (Korea, Republic of); Ocon, Joey D., E-mail: jdocon@up.edu.ph [Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101 (Philippines); Chan, Eng Seng, E-mail: chan.eng.seng@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia)

    2017-01-15

    Highlights: • NiO-hematite p-n junction photoanodes were fabricated via an in situ Ni-doping. • The fundamental mechanism of Ni{sup 2+} ions involved was elucidated. • The optimum Ni dopant was 25 M% for the highest photocurrent density. • It exhibited an excellent photoelectrochemical performance of 7-folds enhancement. - Abstract: Nanostructured nickel oxide-hematite (NiO/α-Fe{sub 2}O{sub 3}) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni{sup 2+} ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  5. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    International Nuclear Information System (INIS)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Highlights: • NiO-hematite p-n junction photoanodes were fabricated via an in situ Ni-doping. • The fundamental mechanism of Ni"2"+ ions involved was elucidated. • The optimum Ni dopant was 25 M% for the highest photocurrent density. • It exhibited an excellent photoelectrochemical performance of 7-folds enhancement. - Abstract: Nanostructured nickel oxide-hematite (NiO/α-Fe_2O_3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni"2"+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  6. Cytochrome c interaction with hematite ({alpha}-Fe{sub 2}O{sub 3}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, Carrick M. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States)]. E-mail: carrick@uwyo.edu; Khare, Nidhi [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States); Lovelace, David M. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States)

    2006-02-15

    The interaction of metalloproteins such as cytochromes with oxides is of interest for a number of reasons, including molecular catalysis of environmentally important mineral-solution electron transfer reactions (e.g., dehalogenations) and photovoltaic applications. Iron reduction by bacteria, thought to be cytochrome mediated, is of interest for geochemical and environmental remediation reasons. As a baseline for understanding cytochrome interaction with ferric oxide surfaces, we report on the interaction of mitochondrial cytochrome c (Mcc), a well-studied protein, with hematite ({alpha}-Fe{sub 2}O{sub 3}) surfaces. Mcc sorbs strongly to hematite from aqueous solution in a narrow pH range corresponding to opposite charge on Mcc and hematite (between pH 8.5 and 10, Mcc is positively charged and hematite surfaces are negatively charged). Cyclic voltammetry of Mcc using hematite electrodes gives redox potentials characteristic of Mcc in a native conformational state, with no evidence for unfolding on the hematite surface. Atomic force microscopy imaging is consistent with a loosely attached adsorbate that is easily deformed by the AFM tip. In phosphate-containing solution, Mcc adhers to the surface more strongly. These results establish hematite as a viable material for electrochemical and spectroscopic characterization of cytochrome-mineral interaction.

  7. Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite.

    Science.gov (United States)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J; Barrón, Vidal; Torrent, José; Roberts, Andrew P

    2016-07-26

    Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism.

  8. Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles

    International Nuclear Information System (INIS)

    Xu, Chen-yang; Deng, Kai-ying; Li, Jiu-yu; Xu, Ren-kou

    2015-01-01

    Hematite and goethite nanoparticles were used as model minerals to investigate their aggregation kinetics under soil environmental conditions in the present study. The hydrodynamic diameters of hematite and goethite nanoparticles were 34.4 and 66.3 nm, respectively. The positive surface charges and zeta potential values for goethite were higher than for hematite. The effective diameter for goethite was much larger than for hematite due to anisotropic sticking of needle-shaped goethite during aggregation. Moreover, the critical coagulation concentration (CCC) values of nanoparticles in solutions of NaNO 3 , NaCl, NaF, and Na 2 SO 4 were 79.2, 75.0, 7.8, and 0.5 mM for hematite and they were 54.7, 62.6, 5.5, and 0.2 mM for goethite, respectively. The disparity of anions in inducing hematite or goethite aggregation lay in the differences in interfacial interactions. NO 3 − and Cl − could decrease the zeta potential and enhance aggregation mainly through increasing ionic strength and compressing electric double layers of hematite and goethite nanoparticles. F − and SO 4 2− highly destabilized the suspensions of nanoparticles mainly through specific adsorption and then neutralizing the positive surface charges of nanoparticles. Specific adsorption of cations could increase positive surface charges and stabilize hematite and goethite nanoparticles. The Hamaker constants of hematite and goethite nanoparticles were calculated to be 2.87 × 10 −20 and 2.29 × 10 −20 J −1 , respectively. The predicted CCC values based on DLVO theory were consistent well with the experimentally determined CCC values in NaNO 3 , NaCl, NaF, and Na 2 SO 4 systems, which demonstrated that DLVO theory could successfully predict the aggregation kinetics even when specific adsorption of ions occurred

  9. Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability

    Energy Technology Data Exchange (ETDEWEB)

    Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. [Hokkaido University, Hokkaido (Japan). Graduate School of Engineering

    2008-11-15

    Pyrite (FeS{sub 2}) is a common sulfide mineral associated with valuable metal minerals and coal, and it is rejected as a gangue mineral using physical separation techniques such as froth flotation and discharged into tailing pond. In the flotation, pyrite is frequently entrapped in the froth due to its hydrophobic nature. Formation of acid mine drainage due to the air-oxidation of pyrite in the tailing pond is also a serious problem. The authors have proposed carrier-microencapsulation (CME) as a method for suppressing both the floatability and oxidation of pyrite. In this method, pyrite is coated with a thin layer of metal oxide or hydroxide using catechol solution as a carrier combined with metal ions. The layer converts the pyrite surface from hydrophobic to hydrophilic and acts as a protective coating against oxidation. The present study demonstrates the effect of CME using Si-catechol complex to suppress the pyrite floatability: The bubble pick-up experiments showed that attachment of pyrite particles to air bubble is suppressed by the CME treatment at pH 4-10, Si-catechol complex concentration over 0.5 mol m{sup -3} and treatment time within 2 min. The Hallimond tube flotation experiments showed that the pyrite floatability is suppressed by the CME treatment even in the presence of typical flotation collectors such as kerosene and xanthate. SEM-EDX analysis confirmed that Si present on the pyrite surface treated by Si-catechol complex, implying that SiO{sub 2} or SiOH{sub 4} layer formed by the CME treatment convert the pyrite surface hydrophobic to hydrophilic.

  10. Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions

    Science.gov (United States)

    Qiu, Guohong; Gao, Tianyu; Hong, Jun; Luo, Yao; Liu, Lihu; Tan, Wenfeng; Liu, Fan

    2018-05-01

    Pyrite affects the conversion and migration processes of arsenic in soils and waters. Adsorption and redox reactions of arsenite (As(III)) occur on the surface of pyrite, and the interaction processes are influenced by the arsenic incorporated into pyrite. This work examined the effects of arsenic content, pH and oxygen on the interaction between arsenian pyrite and aqueous As(III) and investigated the underlying mechanisms. The results indicated that arsenic incorporation led to a high content of Fe(III) in pyrite, and that As(III) was mainly adsorbed on pyrite surface and part of As(III) was oxidized to As(V) by the newly formed intermediates including hydroxyl radicals and hydrogen peroxide. The oxidation rate increased with increasing arsenic content in the pyrite and the presence of air (oxygen), and first decreased and then increased with increasing pH from 3.0 to 11.0. Hydroxyl radicals and hydrogen peroxide significantly contributed to the oxidation of pyrite and aqueous As(III) in acidic and alkaline solutions, respectively. Although pyrite oxidation increased with increasing arsenic content as indicated by the elevated concentrations of elemental S and SO42-, the percentage of released arsenic in total arsenic of the arsenian pyrite decreased due to the adsorption of arsenic on the surface of newly formed ferric (hydr)oxides, especially the ferric arsenate precipitate formed in high pH solutions. The present study enables a better understanding of the important interaction process of dissolved arsenite and natural pyrites in the study of groundwater contamination, arsenic migration/sequestration, and acid mine drainage formation.

  11. In-situ deposition of hematite (α-Fe2O3) microcubes on cotton cellulose via hydrothermal method

    Science.gov (United States)

    Gili, M.; Latag, G.; Balela, M.

    2018-03-01

    Hematite microcubes with truncated edges have been successfully deposited on cotton cellulose via one-step hydrothermal process using anhydrous FeCl3 and glycine as Fe(III) precursor and chelating agent, respectively. The amount of glycine significantly affects the morphology and yield of hematite. The addition of 0.495 g of glycine to 50 ml of 0.1 M FeCl3 solution with 0.400 g of cotton resulted to hematite-deposited cellulose having ∼15% hematite content. The reduction of glycine to 0.247 g increased the amount of hematite on the surface of the cotton cellulose to ∼20% by weight. However, the hematite microcubes have a wide size distribution, with particle size in the range of 0.684 μm to 1.520 μm. Without glycine, hematite cannot be formed in the solution.

  12. Paleoredoc and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York

    DEFF Research Database (Denmark)

    Farrell, Una C.; Briggs, Derek E. G.; Hammarlund, Emma U.

    2013-01-01

    Multiple beds in the Frankfort Shale (Upper Ordovician, New York State), including the original "Beecher's Trilobite Bed," yield fossils with pyritized soft-tissues. A bed-by-bed geochemical and sedimentological analysis was carried out to test previous models of soft-tissue pyritization...

  13. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    Science.gov (United States)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.

    Science.gov (United States)

    Jones, Gregg W; Pichler, Thomas

    2007-02-01

    Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.

  15. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Van Cappellen, P.

    2012-01-01

    Denitrificationdriven by pyrite oxidation can play a major role in the removal of nitrate from groundwater systems. As yet, limited information is available on the interactions between the micro-organisms and aqueous and mineral phases in aquifers where pyrite oxidation is occurring. In this study,

  16. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer

    NARCIS (Netherlands)

    Zhang, Y.C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Cappellen, P. van

    2012-01-01

    Denitrification driven by pyrite oxidation can play a major role in the removal of nitrate from groundwater systems. As yet, limited information is available on the interactions between the micro-organisms and aqueous and mineral phases in aquifers where pyrite oxidation is occurring. In this study,

  17. Utah Marbles and Mars Blueberries: Comparitive Terrestrial Analogs for Hematite Concretions on Mars

    Science.gov (United States)

    Chan, M. A.; Beitler, B.; Parry, W. T.; Ormö, J.; Komatsu, G.

    2005-03-01

    Compelling comparisons show why Utah iron oxide-cemented "marbles" are a good analog for Mars hematite "blueberries". Terrestrial examples offer valuable models for interpreting the diagenetic history and importance of water on Mars.

  18. Design, Fabrication, and Characterization of Hematite (α-Fe2O3) Nanostructures

    Science.gov (United States)

    Jansi Rani, B.; Mageswari, R.; Ravi, G.; Ganesh, V.; Yuvakkumar, R.

    2017-12-01

    The influence of processing parameters on the physicochemical properties of hematite α-Fe2O3 nanostructures was investigated. X-ray diffraction results revealed the hematite phase rhombohedral structure. Scanning electron microscope results explored nanospheres, nanohexagonal platelets, nanoellipsoids, distorted nanocubes, and interconnected platelets nanostructures. Rhombohedral single-phase hematite was confirmed through five Raman active modes. 2 P 3/2 (1) → 2 P 1/2 transition in photoluminescence spectra and Fourier-transform infrared spectroscopy band observed at 555 cm-1 revealed the hematite formation. The highest specific capacitance value of 151.09 F/g for scan rate of 10 mV/s was obtained for the hydrothermal-assisted product using an Fe(NO3)2·9H2O precursor in KOH electrolyte solutions.

  19. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  20. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Ma, Zhiyao; Tong, Meiping, E-mail: tongmeiping@pku.edu.cn

    2014-03-01

    Graphical abstract: - Highlights: • Sb(III) adsorption capacity of MNP@hematite was twice that of commercial Fe{sub 3}O{sub 4}. • pH, ionic strength, coexisting anions and NOM did not inhibit Sb(III) removal. • MNP@hematite could remove trace Sb(III) and As(III) from water simultaneously. • Efficient removal of Sb(III) from real tap water was achieved. • MNP@hematite could be easily recycled with a magnet and could be used repeatedly. - Abstract: Hematite coated magnetic nanoparticle (MNP@hematite) was fabricated through heterogeneous nucleation technique and used to remove trace Sb(III) from water. Powder X-ray diffraction, transmission electron microscopy (TEM), and alternating gradient magnetometry were utilized to characterize the prepared adsorbent. TEM image showed that MNP@hematite particles were spherical with size of 10–30 nm. With saturation magnetization of 27.0 emu/g, MNP@hematite particles could be easily separated from water with a simple magnetic process in short time (5 min). At initial concentration of 110 μg/L, Sb(III) was rapidly decreased to below 5 μg/L by MNP@hematite in 10 min. Sb(III) adsorption capacity of MNP@hematite was 36.7 mg/g, which was almost twice that of commercial Fe{sub 3}O{sub 4} nanoparticles. The removal of trace Sb(III) was not obviously affected by solution pH (over a wide range from 3 to 11), ionic strength (up to 100 mM), coexisting anions (chloride, nitrate, sulfate, carbonate, silicate, and phosphate, up to 10 mM) and natural organic matters (humic acid and alginate, up to 8 mg/L as TOC). Moreover, MNP@hematite particles were able to remove Sb(III) and As(III) simultaneously. Trace Sb(III) could also be effectively removed from real tap water by MNP@hematite. The magnetic adsorbent could be recycled and used repeatedly.

  1. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Shan, Chao; Ma, Zhiyao; Tong, Meiping

    2014-01-01

    Graphical abstract: - Highlights: • Sb(III) adsorption capacity of MNP@hematite was twice that of commercial Fe 3 O 4 . • pH, ionic strength, coexisting anions and NOM did not inhibit Sb(III) removal. • MNP@hematite could remove trace Sb(III) and As(III) from water simultaneously. • Efficient removal of Sb(III) from real tap water was achieved. • MNP@hematite could be easily recycled with a magnet and could be used repeatedly. - Abstract: Hematite coated magnetic nanoparticle (MNP@hematite) was fabricated through heterogeneous nucleation technique and used to remove trace Sb(III) from water. Powder X-ray diffraction, transmission electron microscopy (TEM), and alternating gradient magnetometry were utilized to characterize the prepared adsorbent. TEM image showed that MNP@hematite particles were spherical with size of 10–30 nm. With saturation magnetization of 27.0 emu/g, MNP@hematite particles could be easily separated from water with a simple magnetic process in short time (5 min). At initial concentration of 110 μg/L, Sb(III) was rapidly decreased to below 5 μg/L by MNP@hematite in 10 min. Sb(III) adsorption capacity of MNP@hematite was 36.7 mg/g, which was almost twice that of commercial Fe 3 O 4 nanoparticles. The removal of trace Sb(III) was not obviously affected by solution pH (over a wide range from 3 to 11), ionic strength (up to 100 mM), coexisting anions (chloride, nitrate, sulfate, carbonate, silicate, and phosphate, up to 10 mM) and natural organic matters (humic acid and alginate, up to 8 mg/L as TOC). Moreover, MNP@hematite particles were able to remove Sb(III) and As(III) simultaneously. Trace Sb(III) could also be effectively removed from real tap water by MNP@hematite. The magnetic adsorbent could be recycled and used repeatedly

  2. Conditioning in the flotation of gold, uranium oxide, and pyrite

    International Nuclear Information System (INIS)

    Stassen, F.J.N.

    1991-01-01

    The effect of conditioning energy on the flotation of gold, U 3 O 8 , and pyrite was investigated in the range 0,1 to 100 kWh per tonne of dry ore for various combinations of conditioning time and impeller speed in a cylindrical conditioning tank. It was found that, when the conditioning energy was increased to between 5 and 10 kWh per tonne of dry ore, the total recovery and flotation rate of the valuable minerals (expressed as Klimpel parameters) increased substantially. The Klimpel parameters are dependent on conditioning energy, but are independent of conditioning time or impeller speed (at constant conditioning energy). The Klimpel parameters of the gangue are independent of conditioning energy. 23 refs., 7 tabs., 2 figs

  3. Termomagnetic investigations influence coal and organic carbon on transformation structure of hematite to magnetite

    Directory of Open Access Journals (Sweden)

    Dudchenko N.O.

    2014-12-01

    Full Text Available Thermomagnetic investigations of hematite into magnetite transformations by activated carbon and starch were carried-out using laboratory facility, that allows automatic registration of sample magnetization with the temperature (the rate of sample heating/cooling was 65-80°/min. It was shown, that reduction of hematite by starch occurs by the temperatures up to 650°С and leads to formation of magnetic material with saturation magnetization ~50 А*m2/kg. Reduction of hematite by activated coal in the same temperature range leads to formation of the product with saturation magnetization ~0,5 А*m2/kg. The problem of the development and introduction of new energy-efficient methods of enriching these types of iron ore, which can significantly increase the profitability of using oxidized iron ore in the creation of iron ore and iron ore solve the environmental problems of the regions. Thermomagnetic curves have received in magnetic hematite transformation product using as a reducing agent activated carbon ZL-302 and compare it with starch, proposed a method developed by us. It is shown that reduction of hematite to magnetite using coal ZL-302 is at a much higher temperature compared to starch. Recovery hematite by starch in the temperature range 400 ° -650 ° C results in a product with magnetization ~ 50 A * m2 / kg. Restoration of charcoal hematite in the same temperature range results in a product with magnetization ~ 0.5 A * m2 / kg, and when heated to 800 ° C magnetization increases to ~ 10 * m2 / kg. Thus, hematite ores starch recovery is less energy that can be used to develop new ways to get iron ore concentrates.

  4. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    OpenAIRE

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prep...

  5. Retention and reduction of uranium on pyrite surface; Retention et reduction de l'uranium a la surface de la pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N

    2006-12-15

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS{sub 2}). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH {>=} 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10{sup -9} mol g{sup -1}, an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. {>=} -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 {+-} 0.8) x 10{sup -7} mol L{sup -1} of uranium(VI). Modelling of uranium sorption at high surface coverage ({>=} 4 x 10{sup -9} mol g{sup -1}) by the Langmuir model yields an adsorption constant of 8 x 10{sup 7} L mol{sup -1}. Finally, a great excess of uranium(VI) above the

  6. Microbially induced separation of quartz from hematite using sulfate reducing bacteria.

    Science.gov (United States)

    Prakasan, M R Sabari; Natarajan, K A

    2010-07-01

    Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. 2010 Elsevier B.V. All rights reserved.

  7. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

    Science.gov (United States)

    Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi

    2017-07-01

    The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

  8. Use of interfacial layers to prolong hole lifetimes in hematite probed by ultrafast transient absorption spectroscopy

    Science.gov (United States)

    Paradzah, Alexander T.; Diale, Mmantsae; Maabong, Kelebogile; Krüger, Tjaart P. J.

    2018-04-01

    Hematite is a widely investigated material for applications in solar water oxidation due primarily to its small bandgap. However, full realization of the material continues to be hampered by fast electron-hole recombination rates among other weaknesses such as low hole mobility, short hole diffusion length and low conductivity. To address the problem of fast electron-hole recombination, researchers have resorted to growth of nano-structured hematite, doping and use of under-layers. Under-layer materials enhance the photo-current by minimising electron-hole recombination through suppressing of back electron flow from the substrate, such as fluorine-doped tin oxide (FTO), to hematite. We have carried out ultrafast transient absorption spectroscopy on hematite in which Nb2O5 and SnO2 materials were used as interfacial layers to enhance hole lifetimes. The transient absorption data was fit with four different lifetimes ranging from a few hundred femtoseconds to a few nanoseconds. We show that the electron-hole recombination is slower in samples where interfacial layers are used than in pristine hematite. We also develop a model through target analysis to illustrate the effect of under-layers on electron-hole recombination rates in hematite thin films.

  9. Oxygen vacancy doping of hematite analyzed by electrical conductivity and thermoelectric power measurements

    Science.gov (United States)

    Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard

    2017-11-01

    Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.

  10. Hydrogen Reduction of Hematite Ore Fines to Magnetite Ore Fines at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Wenguang Du

    2017-01-01

    Full Text Available Surplus coke oven gases (COGs and low grade hematite ores are abundant in Shanxi, China. Our group proposes a new process that could simultaneously enrich CH4 from COG and produce separated magnetite from low grade hematite. In this work, low-temperature hydrogen reduction of hematite ore fines was performed in a fixed-bed reactor with a stirring apparatus, and a laboratory Davis magnetic tube was used for the magnetic separation of the resulting magnetite ore fines. The properties of the raw hematite ore, reduced products, and magnetic concentrate were analyzed and characterized by a chemical analysis method, X-ray diffraction, optical microscopy, and scanning electron microscopy. The experimental results indicated that, at temperatures lower than 400°C, the rate of reduction of the hematite ore fines was controlled by the interfacial reaction on the core surface. However, at temperatures higher than 450°C, the reaction was controlled by product layer diffusion. With increasing reduction temperature, the average utilization of hydrogen initially increased and tended to a constant value thereafter. The conversion of Fe2O3 in the hematite ore played an important role in the total iron recovery and grade of the concentrate. The grade of the concentrate decreased, whereas the total iron recovery increased with the increasing Fe2O3 conversion.

  11. Sorption of 241Am onto montmorillonite, illite and hematite colloids

    International Nuclear Information System (INIS)

    Degueldre, C.; Ulrich, H.J.; Silby, H.

    1994-01-01

    Actinide sorption on colloids may be described as a competition between the formation of complexes in solution and the build up of surface complexes. The role of particle and of carbonate concentrations on the sorption/desorption of 241 Am on montmorillonite, illite and hematite colloids is investigated. Since the partition coefficient (K p ) values are virtually independent of the colloid concentrations, within the range 1 to 300 ppm, no significant aggregation takes place in the sorption/desorption experiment. At pH 8, a slight decrease of K p is observed if the concentration of total carbonate exceeds 10 -2 M. The formation of the carbonato- (and hydroxo-carbonato-) complexes in the solution competes with the formation of surface complexes on the colloids. A relationship between the sorption coefficient and the complexation of 241 Am in the solution has been found. This leads to the conclusion that, besides free americium cation, the hydroxo-, and carbonato- as well as the mixed hydroxo-carbonato-complexes are sorbed. Only when the tricarbonatocomplex [Am(CO 3 ) 3 ] 3- prevails (total carbonate concentration > 10 -2 M), a significant decrease of the distribution coefficient is observed. At pH 10 this decrease disappears because under these conditions the strong hydroxo-complexes dominate. A pragmatic and relatively simple application of surface complexation model describes the observed features. (orig.)

  12. Probing size-dependent electrokinetics of hematite aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Kedra-Królik, Karolina; Rosso, Kevin M.; Zarzycki, Piotr

    2017-02-01

    Aqueous particle suspensions of many kinds are stabilized by the electrostatic potential developed at their surfaces from reaction with water and ions. An important and less well understood aspect of this stabilization is the dependence of the electrostatic surface potential on particle size. Surface electrostatics are typically probed by measuring particle electrophoretic mobilities and quantified in the electrokinetic potential (f), using commercially available Zeta Potential Analyzers (ZPA). Even though ZPAs provide frequency-spectra (histograms) of electrophoretic mobility and hydrodynamic diameter, typically only the maximal-intensity values are reported, despite the information in the remainder of the spectra. Here we propose a mapping procedure that inter-correlates these histograms to extract additional insight, in this case to probe particle size-dependent electrokinetics. Our method is illustrated for a suspension of prototypical iron (III) oxide (hematite, a-Fe2O3). We found that the electrophoretic mobility and f-potential are a linear function of the aggregate size. By analyzing the distribution of surface site types as a function of aggregate size we show that site coordination increases with increasing aggregate diameter. This observation explains why the acidity of the iron oxide particles decreases with increasing particle size.

  13. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

    Science.gov (United States)

    2017-01-01

    The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533

  14. Potential-specific structure at the hematite-electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter; Rosso, Kevin M.

    2018-02-21

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe2O3) (110$\\bar{2}$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.

  15. Flocculation of Pyrite Fines in Aqueous Suspensions with Corn Starch to Eliminate Mechanical Entrainment in Flotation

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2015-10-01

    Full Text Available The hydrophilic flocculation of pyrite fines in aqueous suspensions with corn starch was studied by measuring particle size distribution, microscopy observation and micro-flotation. Furthermore, the interaction of corn starch with pyrite was investigated by determining the adsorption density and based on zeta potential measurements and X-ray photoelectron spectrometer (XPS analysis in this work. The results of the particle size distribution measurement show that corn starch can effectively aggregate pyrite fines, and the pyrite floccules (flocs are sensitive to mechanical stirring. The micro-flotation results suggest that the mechanical entrainment of pyrite fines in flotation can be effectively eliminated through the formation of large-size flocs. The zeta potential of pyrite particles decreases with the addition of corn starch. The XPS results prove that carboxyl groups are generated on the digested corn starch, and both iron hydroxyl compounds and ferrous disulfide on the pyrite surface can chemically interact with the corn starch digested by sodium hydroxide.

  16. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  17. Adsorção de xantatos sobre pirita Adsorption of xanthate on pyrite

    Directory of Open Access Journals (Sweden)

    Fábio Garcia Penha

    2001-10-01

    Full Text Available This paper presents a study of adsorption of xanthate with alkyl chain of two (C2XK, four (C4XK and eight (C8XK atoms of carbon, on pyrite from Santa Catarina, Brazil. The results showed that pyrite surface changes from hydrophilic to hydrophobic when xanthate is adsorbed increasing the contact angle to 35º for C2XK, and to 90º for C4XK and C8XK. The rate of flotation of pyrite particles after adsorption increases with the increase of the number of carbon atoms in the alkyl chain in agreement with the results of contact angle measurements.

  18. Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen-yang, E-mail: cyxu@issas.ac.cn; Deng, Kai-ying; Li, Jiu-yu, E-mail: jyli@issas.ac.cn; Xu, Ren-kou, E-mail: rkxu@issas.ac.cn [Chinese Academy of Sciences, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science (China)

    2015-10-15

    Hematite and goethite nanoparticles were used as model minerals to investigate their aggregation kinetics under soil environmental conditions in the present study. The hydrodynamic diameters of hematite and goethite nanoparticles were 34.4 and 66.3 nm, respectively. The positive surface charges and zeta potential values for goethite were higher than for hematite. The effective diameter for goethite was much larger than for hematite due to anisotropic sticking of needle-shaped goethite during aggregation. Moreover, the critical coagulation concentration (CCC) values of nanoparticles in solutions of NaNO{sub 3}, NaCl, NaF, and Na{sub 2}SO{sub 4} were 79.2, 75.0, 7.8, and 0.5 mM for hematite and they were 54.7, 62.6, 5.5, and 0.2 mM for goethite, respectively. The disparity of anions in inducing hematite or goethite aggregation lay in the differences in interfacial interactions. NO{sub 3}{sup −} and Cl{sup −} could decrease the zeta potential and enhance aggregation mainly through increasing ionic strength and compressing electric double layers of hematite and goethite nanoparticles. F{sup −} and SO{sub 4}{sup 2−} highly destabilized the suspensions of nanoparticles mainly through specific adsorption and then neutralizing the positive surface charges of nanoparticles. Specific adsorption of cations could increase positive surface charges and stabilize hematite and goethite nanoparticles. The Hamaker constants of hematite and goethite nanoparticles were calculated to be 2.87 × 10{sup −20} and 2.29 × 10{sup −20} J{sup −1}, respectively. The predicted CCC values based on DLVO theory were consistent well with the experimentally determined CCC values in NaNO{sub 3}, NaCl, NaF, and Na{sub 2}SO{sub 4} systems, which demonstrated that DLVO theory could successfully predict the aggregation kinetics even when specific adsorption of ions occurred.

  19. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X

  20. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  1. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    Science.gov (United States)

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Somasundaran, P

    2004-08-15

    Effective methods for selective separation using flotation or flocculation of arsenopyrite from pyrite by biomodulation using Acidithiobacillus ferrooxidans are presented here. Adhesion of the bacterium to the surface of arsenopyrite was very slow compared to that to pyrite, resulting in a difference in surface modification of the minerals subsequent to interaction with cells. The cells were able to effectively depress pyrite flotation in presence of collectors like potassium isopropyl xanthate and potassium amyl xanthate. On the other hand the flotability of arsenopyrite after conditioning with the cells was not significantly affected. The activation of pyrite by copper sulfate was reduced when the minerals were conditioned together, resulting in better selectivity. Selective separation could also be achieved by flocculation of biomodulated samples.

  3. Effect of inversion layer at iron pyrite surface on photovoltaic device

    Science.gov (United States)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  4. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)

    2017-03-21

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  5. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    Science.gov (United States)

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Ravishankar, T.N.; Sureshkumar, K. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Reddy, M.V.; Chowdari, B.V.R. [Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Ramakrishnappa, T. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Balakrishna, Geetha R., E-mail: br.geetha@jainuniversity.ac.in [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India)

    2016-06-25

    Gel-combustion, solution combustion and molten salt methods were used to synthesize hematite nanoparicles. Two weight ratios of precursor (Ferric nitrate) to fuel (Cassava Starch) (1:0.5, 1:1) were used in gel-combustion technique. Ferric nitrate as a precursor and ethylenediamine tetraacetic acid as fuel (in stoichiometric proportions) were used in the solution combustion method. Ferric oxalate was the precursor in molten salt method. The structural parameters of the hematite nanoparticles were studied by X-ray diffraction. The optical properties, including band gap studies were done by UV–Visible spectroscopy. The morphological studies were carried out by Scanning Electron Microscope. The energy storage capacity of the molten salt method-hematite nanoparticles surpassed (920 mAhg{sup −1}) the others while the equal-weight- ratio-hematite nanoparticles synthesized by gel-combustion method exhibited better dopamine sensor properties. - Highlights: • Hematite nanoparticles were synthesized by gel, solution combustion and molten salt methods. • Gel-combustion involved the use of natural fuel extracted from the root tubers of Manihot esculenta. • Two ratios of fuel to precursors were attempted in gel combustion method. • The product formed from the equal weight ratio of fuel to precursor was a very good electrochemical dopamine sensor. • The product formed by molten salt method exhibited good battery behaviour (Li-ion battery).

  7. Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles

    International Nuclear Information System (INIS)

    Ramasami, Alamelu K.; Ravishankar, T.N.; Sureshkumar, K.; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishnappa, T.; Balakrishna, Geetha R.

    2016-01-01

    Gel-combustion, solution combustion and molten salt methods were used to synthesize hematite nanoparicles. Two weight ratios of precursor (Ferric nitrate) to fuel (Cassava Starch) (1:0.5, 1:1) were used in gel-combustion technique. Ferric nitrate as a precursor and ethylenediamine tetraacetic acid as fuel (in stoichiometric proportions) were used in the solution combustion method. Ferric oxalate was the precursor in molten salt method. The structural parameters of the hematite nanoparticles were studied by X-ray diffraction. The optical properties, including band gap studies were done by UV–Visible spectroscopy. The morphological studies were carried out by Scanning Electron Microscope. The energy storage capacity of the molten salt method-hematite nanoparticles surpassed (920 mAhg"−"1) the others while the equal-weight- ratio-hematite nanoparticles synthesized by gel-combustion method exhibited better dopamine sensor properties. - Highlights: • Hematite nanoparticles were synthesized by gel, solution combustion and molten salt methods. • Gel-combustion involved the use of natural fuel extracted from the root tubers of Manihot esculenta. • Two ratios of fuel to precursors were attempted in gel combustion method. • The product formed from the equal weight ratio of fuel to precursor was a very good electrochemical dopamine sensor. • The product formed by molten salt method exhibited good battery behaviour (Li-ion battery).

  8. Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize

    Directory of Open Access Journals (Sweden)

    Nicolaza Pariona

    2017-11-01

    Full Text Available Engineered iron oxide nanoparticles (IO-NPs have been used extensively for environmental remediation. It may cause the release IO-NPs to the environment affecting the functions of ecosystems. Plants are an important component of ecosystems and can be used for the evaluation of overall fate, transport and exposure pathways of IO-NPs in the environment. In this work, the effects of engineered ferrihydrite and hematite NPs on the germination and growth of maize are studied. The germination and growth of maize were done with treatments at different concentrations of hematite and ferrihydrite NPs, namely 1, 2, 4, and 6 g/L. Biological indicators of toxicity or stress in maize seedlings were not observed in treatments with engineered hematite and ferrihydrite NPs. In contrast, the NPs treatments increased the growth of maize and the chlorophyll content, except for hematite NPs at 6 g/L, where non-significant effects were found. The translocation of engineered ferrihydrite and hematite NPs in maize stems was demonstrated using confocal laser scanning microscopy.

  9. Cu-As Decoupling in Hydrothermal Systems: A Link Between Pyrite Chemistry and Fluid Composition

    Science.gov (United States)

    Reich, M.; Tardani, D.; Deditius, A.; Chryssoulis, S.; Wrage, J.; Sanchez-Alfaro, P.; Andrea, H.; Cinthia, J.

    2016-12-01

    Chemical zonations in pyrite have been recognized in most hydrothermal ore deposit types, showing in some cases marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au)-depleted zones and As-(Au)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. Here we report a comprehensive trace element database of pyrite from an active hydrothermal system, the Tolhuaca Geothermal System (TGS) in southern Chile. We combined high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a 1 km drill hole that crosses the argillic and propylitic alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, arsenic, Cu and Co are the most abundant with concentrations that vary from sub-ppm levels to a few wt. %. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusion in quartz veins (high Cu/Na and low As/Na) and borehole fluids (low Cu/Na and high As/Na) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical

  10. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Science.gov (United States)

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  11. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite

    International Nuclear Information System (INIS)

    Gunawan, Richard; Zhang Dongke

    2009-01-01

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol -1 and 4.55 x 10 7 s -1 without the presence of pyrite and 101.8 kJ mol -1 and 2.57 x 10 9 s -1 with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  12. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.

    Science.gov (United States)

    Gunawan, Richard; Zhang, Dongke

    2009-06-15

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  13. Application of fuel cell for pyrite and heavy metal containing mining waste

    Science.gov (United States)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  14. On the genesis of pyrite-polymetallic deposits of the Rudnyi Altai

    International Nuclear Information System (INIS)

    Puchkov, E.V.; Najdenov, B.M.

    1986-01-01

    Results of lead isotope composition measurements in pyrite-polymetallic deposits of the Rudnyi Altai are presented. Porphyr dating by zirconium has shown isochronous age of 552 million years. Lead of galenites of various generations and galenite form of lead of pyrit provide similar lead-isotope values with model age of 370 million years. The isotopic-geochemical data obtained are interpreted as applied to the deposit genesis

  15. The influence of pyrite on the solubility of minjingu and panda ...

    African Journals Online (AJOL)

    A laboratory study was conducted to investigate the effect of pyrite rock on the solubility of Minjingu and Panda phosphate rocks. The rocks were ground to 100 mesh (0.045 mm) after which each phosphate rock was mixed with pyrite at P:S ratios of 1:4, 1 :3, 1:2, 1:1, 2:1, and 3: 1. The mixtures were moistened and incubated ...

  16. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  17. Influence of the Interaction between Sphalerite and Pyrite on the Copper Activation of Sphalerite

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2018-01-01

    Full Text Available In this paper, the effect of pyrite on the activation of sphalerite was investigated by micro-flotation, copper adsorption experiments, X-ray photoelectron spectroscopy (XPS, and electrochemical measurement. The micro-flotation test results showed that the recovery and flotation rate of sphalerite with copper sulphate as activator and butyl xanthate as collector were significantly decreased with the increasing content of pyrite in pulp. Cu2+ adsorption results indicated that the adsorption of Cu2+ on the sphalerite surface were decreased when pyrite was present in the pulp. XPS surface analysis demonstrated that the proportion of Cu+ species increased in the activation products on the sphalerite surface, but the total atomic concentration of Cu atom was decreased. Linear voltammetry measurement suggested that the current density of Cu+ species oxidizing to Cu2+ species was increased when sphalerite was electrically contacted with pyrite, which confirmed the increased proportion of Cu+ species on Cu-activation sphalerite surface when contacting with pyrite. These results indicated that there is not only a competitive adsorption for cupric ions (Cu2+, but the galvanic interaction between sphalerite and pyrite also has a significant influence on the copper activation of sphalerite.

  18. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  19. Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China

    Directory of Open Access Journals (Sweden)

    Yanfei An

    2018-04-01

    Full Text Available Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1 four pyrite generations are present (framboidal sedimentary pyrites (Py I in the original coal, coarse-grained magmatic pyrites (Py II in the intruding diabase, fine-grained metamorphic pyrites (Py III in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV in the cokeite; and (2 concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian.

  20. Effect of thermal treatment on solid–solid interface of hematite thin film synthesized by spin-coating deposition solution

    International Nuclear Information System (INIS)

    Bellido-Aguilar, Daniel Angel; Tofanello, Aryane; Souza, Flavio L.; Furini, Leonardo Negri; Constantino, Carlos José Leopoldo

    2016-01-01

    This work describes hematite films prepared by a spin-coating deposition solution (SCDS) method that is a sol–gel method derived technique. Hematite films were prepared at two heat treatment temperatures (500 °C and 800 °C) and the influence of thermal treatment on the photoelectrochemical performance was studied. In addition, since the SCDS method allows an optimal control of stoichiometry and impurity incorporation, hematite films modified with Zn 2+ and Sn 4+ were also prepared. The 800 °C-treated hematite films had a higher wettability and roughness that enabled them to have a better photocatalytic response in comparison with that of 500 °C-treated hematite films. Moreover, modified hematite films demonstrated to have a performance slightly better than that of undoped hematite film as shown in linear sweep voltammetry and chronoamperometry results. Although an improvement in the performance of hematite films was achieved by annealing at higher temperatures and incorporating Zn 2+ or Sn 4+ , the general photocatalytic response of the films was poor. Two plausible hypotheses were discussed related to the (i) dopant segregation at grain boundary, and (ii) poor contact between the hematite and fluorine doped tin oxide layer (from the glass substrate), which was experimentally confirmed by a cross-sectional analysis conducted using scanning electron microscopy (SEM). In fact, additional experiments need to be done in order to improve the hematite deposition and make the SCDS a promise method for industrial application. - Highlights: • High temperature of annealing decreases the hematite adherence and performance. • Zn 2+ and Sn 4+ dopants affected differently the photocurrent onset potentials. • Dopants affected the grain size due to their segregation at grain boundaries.

  1. Effect of thermal treatment on solid–solid interface of hematite thin film synthesized by spin-coating deposition solution

    Energy Technology Data Exchange (ETDEWEB)

    Bellido-Aguilar, Daniel Angel; Tofanello, Aryane [Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados N°5001, Bangu, Santo André, São Paulo CEP 09210-580 (Brazil); Souza, Flavio L., E-mail: flavio.souza@ufabc.edu.br [Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados N°5001, Bangu, Santo André, São Paulo CEP 09210-580 (Brazil); Furini, Leonardo Negri; Constantino, Carlos José Leopoldo [Faculdade de Ciências e Tecnologia (FCT), UNESP Univ Estadual Paulista, Presidente Prudente, São Paulo, 19060-900 (Brazil)

    2016-04-01

    This work describes hematite films prepared by a spin-coating deposition solution (SCDS) method that is a sol–gel method derived technique. Hematite films were prepared at two heat treatment temperatures (500 °C and 800 °C) and the influence of thermal treatment on the photoelectrochemical performance was studied. In addition, since the SCDS method allows an optimal control of stoichiometry and impurity incorporation, hematite films modified with Zn{sup 2+} and Sn{sup 4+} were also prepared. The 800 °C-treated hematite films had a higher wettability and roughness that enabled them to have a better photocatalytic response in comparison with that of 500 °C-treated hematite films. Moreover, modified hematite films demonstrated to have a performance slightly better than that of undoped hematite film as shown in linear sweep voltammetry and chronoamperometry results. Although an improvement in the performance of hematite films was achieved by annealing at higher temperatures and incorporating Zn{sup 2+} or Sn{sup 4+}, the general photocatalytic response of the films was poor. Two plausible hypotheses were discussed related to the (i) dopant segregation at grain boundary, and (ii) poor contact between the hematite and fluorine doped tin oxide layer (from the glass substrate), which was experimentally confirmed by a cross-sectional analysis conducted using scanning electron microscopy (SEM). In fact, additional experiments need to be done in order to improve the hematite deposition and make the SCDS a promise method for industrial application. - Highlights: • High temperature of annealing decreases the hematite adherence and performance. • Zn{sup 2+} and Sn{sup 4+} dopants affected differently the photocurrent onset potentials. • Dopants affected the grain size due to their segregation at grain boundaries.

  2. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  3. Chalcopyrite Dissolution at 650 mV and 750 mV in the Presence of Pyrite

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2015-08-01

    Full Text Available The dissolution of chalcopyrite in association with pyrite in mine waste results in the severe environmental issue of acid and metalliferous drainage (AMD. To better understand chalcopyrite dissolution, and the impact of chalcopyrite’s galvanic interaction with pyrite, chalcopyrite dissolution has been examined at 75 °C, pH 1.0, in the presence of quartz (as an inert mineral and pyrite. The presence of pyrite increased the chalcopyrite dissolution rate by more than five times at Eh of 650 mV (SHE (Cu recovery 2.5 cf. 12% over 132 days due to galvanic interaction between chalcopyrite and pyrite. Dissolution of Cu and Fe was stoichiometric and no pyrite dissolved. Although the chalcopyrite dissolution rate at 750 mV (SHE was approximately four-fold greater (Cu recovery of 45% within 132 days as compared to at 650 mV in the presence of pyrite, the galvanic interaction between chalcopyrite and pyrite was negligible. Approximately all of the sulfur from the leached chalcopyrite was converted to S0 at 750 mV, regardless of the presence of pyrite. At this Eh approximately 60% of the sulfur associated with pyrite dissolution was oxidised to S0 and the remaining 40% was released in soluble forms, e.g., SO42−.

  4. Biogenic magnetite, detrital hematite, and relative paleointensity in Quaternary sediments from the Southwest Iberian Margin

    Science.gov (United States)

    Channell, J. E. T.; Hodell, D. A.; Margari, V.; Skinner, L. C.; Tzedakis, P. C.; Kesler, M. S.

    2013-08-01

    Magnetic properties of late Quaternary sediments on the SW Iberian Margin are dominated by bacterial magnetite, observed by transmission electron microscopy (TEM), with contributions from detrital titanomagnetite and hematite. Reactive hematite, together with low organic matter concentrations and the lack of sulfate reduction, lead to dissimilatory iron reduction and availability of Fe(II) for abundant magnetotactic bacteria. Magnetite grain-size proxies (κARM/κ and ARM/IRM) and S-ratios (sensitive to hematite) vary on stadial/interstadial timescales, contain orbital power, and mimic planktic δ18O. The detrital/biogenic magnetite ratio and hematite concentration are greater during stadials and glacial isotopic stages, reflecting increased detrital (magnetite) input during times of lowered sea level, coinciding with atmospheric conditions favoring hematitic dust supply. Magnetic susceptibility, on the other hand, has a very different response being sensitive to coarse detrital multidomain (MD) magnetite associated with ice-rafted debris (IRD). High susceptibility and/or magnetic grain-size coarsening, mark Heinrich stadials (HS), particularly HS2, HS3, HS4, HS5, HS6 and HS7, as well as older Heinrich-like detrital layers, indicating the sensitivity of this region to fluctuations in the position of the polar front. Relative paleointensity (RPI) records have well-constrained age models based on planktic δ18O correlation to ice-core chronologies, however, they differ from reference records (e.g. PISO) particularly in the vicinity of glacial maxima, mainly due to inefficient normalization of RPI records in intervals of enhanced hematite input.

  5. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A.

    2013-01-01

    Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N 2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N 2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

  6. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate

    Science.gov (United States)

    Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian

    2017-10-01

    Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.

  7. Transformation of goethite/ferrihydrite to hematite and maghemite under temperate humid conditions in Denmark

    DEFF Research Database (Denmark)

    Nørnberg, Per; Finster, Kai; Gunnlaugsson, Haraldur Pall

    2012-01-01

    At a number of sandy soil sites in Mid Jutland, Denmark, with iron content of 1-2%, very red spots (Munsell colour: dusky red 10R 3/4) of a few square meters are found. These spots are most likely due to burning events. After the fire ashes raised pH. This dispersed silt and clay size soil...... particles which were then transported with seepage water down into lower soil horizons. These particles contain hematite and maghemite due to influence of the fire. However, a long-standing unresolved question is how hematite and maghemite can also be present along with goethite and ferrihydrite...

  8. Fabrication of non-aging superhydrophobic surfaces by packing flower-like hematite particles

    Science.gov (United States)

    Cao, Anmin; Cao, Liangliang; Gao, Di

    2008-03-01

    We demonstrate the fabrication of non-aging superhydrophobic surfaces by packing flower-like micrometer-sized hematite particles. Although hematite is intrinsically hydrophilic, the nanometer-sized protrusions on the particles form textures with overhanging structures that prevent water from entering into the textures and induce a macroscopic superhydrophobic phenomenon. These superhydrophobic surfaces do not age even in extremely oxidative environments---they retain the superhydrophobicity after being stored in ambient laboratory air for 4 months, heated to 800 degree C in air for 10 hours, and exposed to ultraviolet ozone for 10 hours.

  9. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  10. Shape Evolution Synthesis of Monodisperse Spherical, Ellipsoidal, and Elongated Hematite (alpha-Fe2O3) Nanoparticles Using Ascorbic Acid

    NARCIS (Netherlands)

    Tan, W.F.; Yu, Y.T.; Wang, M.X.; Liu, F.; Koopal, L.K.

    2014-01-01

    Spherical, ellipsoidal, and elongated hematite particles have been obtained via a simple chemical precipitation reaction of FeCl3 and NaOH in the presence of ascorbic acid,(AA). The effects of pH, molar ratio of AA/Fe(III), and time on the formation and shape of the hematite particles were

  11. Charge carrier trapping, recombination and transfer in hematite (-Fe2O3) water splitting photoanodes

    NARCIS (Netherlands)

    Barroso Silva da Cruz, M.; Pendlebury, S.R.; Cowan, A.J.; Durrant, J.R.

    2013-01-01

    Hematite is currently considered one of the most promising materials for the conversion and storage of solar energy via the photoelectrolysis of water. Whilst there has been extensive research and much progress in the development of hematite structures with enhanced photoelectrochemical (PEC)

  12. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Miller, Duane D

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  13. Expediting the chemistry of hematite nanocatalyst for catalytic aquathermolysis of heavy crude oil

    Science.gov (United States)

    Khalil, Munawar

    In upstream exploration and production of heavy and extra heavy oil, catalytic aquathermolysis is a process where steam (along with catalyst) is injected into the reservoir to improve oil production. The improvement of oil production has been associated with the reduction of heavy oil's viscosity due to the degradation of large hydrocarbon molecules (resin and asphaltene fractions) which mostly the result of desulphurization of organosulphur compounds. In this work, the potential of hematite (alpha-Fe2O3) nanoparticles, a nontoxic, inexpensive and the most stable phase of iron oxide, was investigated for aquathermolysis application. This dissertation encompasses the synthesis, surface modification, catalytic activity, and catalysis mechanism of hematite nanoparticles in aquathermolysis. In the first part of this study, a simple hydrothermal method was successfully developed to synthesize hematite nanoparticles with high purity and good crystallinity. Using this method, the size, crystal's growth rate, shape, and dispersity of the nanoparticles can be controlled by the amount of iron precursor, precipitation agent, temperature and reaction time. Furthermore, the surface chemistry of hematite nanoparticle was modified in order to improve particle dispersibility in hydrocarbon phase. Based on the result, oleic acid (OA) was successfully grafted on the surface of hematite nanoparticles by forming a monodentate interaction and changed the surface property of the nanoparticles from hydrophilic to hydrophobic. As the result, nanoparticles were able to be transferred from aqueous phase to non-polar phase, vice versa, depending on the amount of oleic acid used for modification. In the third part of this work, the catalytic activity and catalytic mechanism of hematite nanoparticles to catalyze desulphurization reaction were studied. It is found that hematite nanoparticles have a good catalytic activity to decompose a highly stable aromatic organosulphur compound, i

  14. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  15. Action time effect of lime on its depressive ability for pyrite

    Institute of Scientific and Technical Information of China (English)

    Tichang Sun

    2004-01-01

    Two sample groups of bulk concentrates consisting mainly of pyrite and chalcopyrite from Daye and Chenghchao Mines in Hubei Province of China were used to investigate the effect of the action time of lime on its depressive ability for pyrite. The experimental results conducted with different samples and collectors showed that the action time between lime and pyrite markedly influences the depressive ability of lime. The depressive ability of lime increased with the action time increasing. It was also proved that the depressive results obtained at a large lime dosage after a shorter action time are similar to those obtained at a small lime dosage after a longer action time. The increase of depressive ability of lime after a longer action time is because that there are different mechanisms in different action time. The composition on the surface of pyrite acted for different time with lime was studied by using ESCA (Electron Spectroscopic Chemical Analysis). The results showed that iron hydroxide and calcium sulphate formed on the pyrite surface at the presence of lime in the pulp but the amounts of iron hydroxide and calcium sulphate were different at different action time. At the beginning action time the compound formed on the pyrite surface was mainly calcium sulphate and almost no iron hydroxide formed; but with the action time increasing, iron hydroxide formed. The longer the action time, the more iron hydroxide and the less calcium sulphate formed. It was considered that the stronger depressive ability of lime after a longer action time is because more iron hydroxide forms on the pyrite surface.

  16. Study of magnetic properties of nano-powders prepared by pyrite -> troilite transformation via high energy milling

    DEFF Research Database (Denmark)

    Balaz, P.; Alacova, A.; Godocikova, E.

    2004-01-01

    The preparation of nanocrystalline troilite by high-energy milling of FeS2 sulphide with elemental Fe acting as reducing element is reported. X-ray difractometry was used in order to determine the presence of different phases in investigated samples. This technique allowed us to identify the form......-->troilite transformation is almost finished already after 25 minutes of high-energy milling.......The preparation of nanocrystalline troilite by high-energy milling of FeS2 sulphide with elemental Fe acting as reducing element is reported. X-ray difractometry was used in order to determine the presence of different phases in investigated samples. This technique allowed us to identify...

  17. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Åsa, E-mail: asa.gustafsson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bergström, Ulrika [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Organismal Biology, Uppsala University, SE-751 Uppsala (Sweden); Ågren, Lina [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Österlund, Lars [Dept of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 Uppsala (Sweden); Sandström, Thomas [Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden)

    2015-10-01

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. - Highlights: • Hematite NPs induce differential responses in airways of healthy and allergic mice. • Hematite induced an airway inflammation in healthy mice. • Hematite induced cellular reduction in the alveolus and lymph nodes of allergic mice. • Cell death is possible due to extensive pro-oxidative environment in allergic mice. • It is important to include sensitive individuals when valuing health effects of NPs.

  18. Comparative study of the shield of concrete blocks with hematite in relation to common concrete blocks

    International Nuclear Information System (INIS)

    Costa, Paulo R.; Buerger, Andre A.; Naccache, Veronica K.; Priszkulnik, Simao

    2012-01-01

    The present work shows results of an empirical evaluation of the transmission properties of two radioprotection materials: an ordinary concrete and an ordinary concrete mixed with hematite. It was used techniques of x-ray spectroscopy and measurements of the air-kerma transmitted through these two materials in order to compare the transmission properties for each one. (author)

  19. Synthesis and photo-electrochemical properties of spinel-ferrite-coated hematite for solar water splitting

    Science.gov (United States)

    Selvaraj, Seenivasan; Moon, Hee; Kim, Do-Heyoung

    2018-01-01

    Photo-electrochemical water splitting with hematite photo-anodes under solar irradiation has attracted considerable attention as regards the production of renewable hydrogen energy. However, many challenges remain unresolved, as the full contribution of the catalytic over-layers has not been fully realized. Herein, we incorporate uniform spinel nickel-ferrite over-layers in hematite photo-anodes to obtain an improved understanding of the associated intrinsic changes. We achieve a 1.5-mA/cm2 photo-current density at 1.23 VRHE (RHE: reversible hydrogen electrode) under one-sun illumination conditions, along with a negative shift of 200 mV in the onset potential, for NiFe2O4-coated Sn-doped hematite photo-anodes. Fundamental electrochemical analyses clearly show that the shift in the onset potential is predominantly due to the enhanced photo-voltage development inside the hematite, rather than being purely caused by the interfacial kinetics. These insights reveal a new direction for fundamental research on photo-anodes towards fabrication of more efficient photo-anode systems.

  20. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants.

    Science.gov (United States)

    Pawlowska, Agnieszka; Sznajder, Izabela; Sadowski, Zygmunt

    2017-07-01

    Colloidal particles have an ability to sorb heavy metals, metalloids, and organic compounds (e.g. biosurfactants) present in soil and groundwater. The pH and ionic strength changes may promote release of such particles causing potential contaminant transport. Therefore, it is very important to know how a colloid particle-mineral particle and colloid-mineral-biosurfactant system behaves in the natural environment. They can have negative impact on the environment and human health. This study highlighted the influence of biosurfactants produced by Pseudomonas aeruginosa on the transport of colloidal hematite (α-Fe 2 O 3 ) through porous bed (materials collected from the Szklary and Zloty Stok solid waste heaps from Lower Silesia, Poland). Experiments were conducted using column set in two variants: colloid solution with porous bed and porous bed with adsorbed biosurfactants, in the ionic strengths of 5 × 10 -4 and 5 × 10 -3  M KCl. The zeta potential of mineral materials and colloidal hematite, before and after adsorption of biosurfactant, was determined. Obtained results showed that reduction in ionic strength facilitates colloidal hematite transport through the porous bed. The mobility of colloidal hematite was higher when the rhamnolipid adsorbed on the surface of mineral grain.

  1. Thermal modification of hematite-ilmenite intergrowths in the Ecstall pluton, British Columbia, Canada

    DEFF Research Database (Denmark)

    Brownlee, S.J.; Feinberg, J.M.; Harrison, R.J.

    2010-01-01

    In this study, we examine the effects of reheating on finely exsolved hematite-ilmenite intergrowths from the similar to 91 Ma Ecstall pluton using reflected light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). As a result of the emplacement of the you......In this study, we examine the effects of reheating on finely exsolved hematite-ilmenite intergrowths from the similar to 91 Ma Ecstall pluton using reflected light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). As a result of the emplacement...... of the younger adjacent similar to 52 Ma Quottoon pluton, samples closer to a thermal boundary have experienced greater degrees of thermal alteration. Five main microstructural features characterize hematite-ilmenite intergrowths from the Ecstall: (I) exsolution lamellae of hematite and ilmenite; (II) oxidation....... Higher temperatures also enhanced oxidation in ilmenite. The formation of magnetite altered the bulk magnetic properties of these samples, increasing NRM intensity. This study underscores the need to consider a pluton's post-emplacement thermal history before making tectonic interpretations based...

  2. Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements

    Science.gov (United States)

    Bargar, John R.; Reitmeyer, Rebecca; Lenhart, John J.; Davis, James A.

    2000-01-01

    We have measured U(VI) adsorption on hematite using EXAFS spectroscopy and electrophoresis under conditions relevant to surface waters and aquifers (0.01 to 10 μM dissolved uranium concentrations, in equilibrium with air, pH 4.5 to 8.5). Both techniques suggest the existence of anionic U(VI)-carbonato ternary complexes. Fits to EXAFS spectra indicate that U(VI) is simultaneously coordinated to surface FeO6 octahedra and carbonate (or bicarbonate) ligands in bidentate fashions, leading to the conclusion that the ternary complexes have an inner-sphere metal bridging (hematite-U(VI)-carbonato) structure. Greater than or equal to 50% of adsorbed U(VI) was comprised of monomeric hematite-U(VI)-carbonato ternary complexes, even at pH 4.5. Multimeric U(VI) species were observed at pH ≥ 6.5 and aqueous U(VI) concentrations approximately an order of magnitude more dilute than the solubility of crystalline β-UO2(OH)2. Based on structural constraints, these complexes were interpreted as dimeric hematite-U(VI)-carbonato ternary complexes. These results suggest that Fe-oxide-U(VI)-carbonato complexes are likely to be important transport-limiting species in oxic aquifers throughout a wide range of pH values.

  3. Ion adsorption on oxides : surface charge formation and cadmium binding on rutile and hematite

    NARCIS (Netherlands)

    Fokkink, L.G.J.

    1987-01-01

    The adsorption of charge-determining (H +and OH -) and cadmium ions on rutile (TiO 2 ) and hematite (α-Fe

  4. The Distribution of Crystalline Hematite on Mars from the Thermal Emission Spectrometer: Evidence for Liquid Water

    Science.gov (United States)

    Christensen, P. R.; Malin, M.; Morris, D.; Bandfield, J.; Lane, M.; Edgett, K.

    2000-01-01

    Crystalline hematite on Mars has been mapped using the MGS TES. Two major, and several minor areas of significant accumulation are identified. We favor precipitation models involving Fe-rich water, providing direct mineralogic evidence for large-scale water interactions.

  5. Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sandra D. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Liu, Jia [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Arey, Bruce W. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Schreiber, Daniel K. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Perea, Daniel E. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States

    2018-02-13

    The distribution of iron resulting from the autocatalytic interaction of aqueous Fe(II) with the hematite (001) surface was directly mapped in three dimensions (3D) for the first time, using iron isotopic labelling and atom probe tomography (APT). Analyses of the mass spectrum showed that natural abundance ratios in 56Fe-dominant hematite are recovered at depth with good accuracy, whereas at the relict interface with 57Fe(II) solution evidence for hematite growth by oxidative adsorption of Fe(II) was found. 3D reconstructions of the isotope positions along the surface normal direction showed a zone enriched in 57Fe, which was consistent with an average net adsorption of 3.2 – 4.3 57Fe atoms nm–2. Statistical analyses utilizing grid-based frequency distribution analyses show a heterogeneous, non-random distribution of oxidized Fe on the (001) surface, consistent with Volmer-Weber-like island growth. The unique 3D nature of the APT data provides an unprecedented means to quantify the atomic-scale distribution of sorbed 57Fe atoms and the extent of segregation on the hematite surface. This new ability to spatially map growth on single crystal faces at the atomic scale will enable resolution to long-standing unanswered questions about the underlying mechanisms for electron and atom exchange involved in a wide variety of redox-catalyzed processes at this archetypal and broadly relevant interface.

  6. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    Science.gov (United States)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  7. Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.

    Science.gov (United States)

    Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A

    2017-08-31

    Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.

  8. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2017-08-31

    Highlights: • Surface annealing pretreatment on pyrite surfaces can select molecular adsorption. • Enriched monosulfide species on pyrite (100) surface favors NH{sub 2} adsorption form. • Enriching disulfide species on pyrite (100) surface promotes NH{sub 3}{sup +} adsorption form. • Unique structure of each aminoacid provides a particular fingerprint in the process. • Spectroscopy evidence, pretreatment surface processes drives molecular adsorption. - Abstract: This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH{sub 2} chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH{sub 3}{sup +} adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S{sub 2}{sup 2−}) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH{sub 2} to NH{sub 3}{sup +} species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  9. Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    Agangi, A., E-mail: aagangi@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa); Przybyłowicz, W., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Hofmann, A., E-mail: ahofmann@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa)

    2015-04-01

    Chemical zoning of pyrites can record the evolution of mineralising fluids at widely varying P–T conditions ranging from diagenesis to medium-grade metamorphism. If preserved, zoning can reveal growth textures, brecciation and veining, resorption and recrystallisation events, thus shedding light on the processes that contributed to ore formation. Chemical zoning of sulfides is invisible in optical microscopy, but can be studied by chemical etching, high-contrast back-scattering electron images, and elemental imaging. In this study we compared micro-PIXE and WDS-EPMA elemental maps on the chemically zoned pyrites in mineralised vein-bearing samples from the Sheba and Fairview gold mines in the Barberton Greenstone Belt, South Africa. Elemental images show complex distribution of trace elements, suggesting multiple events of pyrite crystallisation and gold deposition. EPMA maps show fine-scale variations reflecting growth and recrystallisation textures marked, in particular, by variations of As, Ni, and Co. In PIXE maps, gold occurs both as finely-distributed and discrete inclusions, suggesting incorporation in the pyrite structure as solid solution, and deposition as electrum inclusions, respectively. Micro-PIXE and EPMA provide complementary information, forming together a powerful tool to obtain information on chemical zoning of pyrites in ore deposits.

  10. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses

    Science.gov (United States)

    Gregory, Daniel D.; Large, Ross R.; Halpin, Jacqueline A.; Steadman, Jeffery A.; Hickman, Arthur H.; Ireland, Trevor R.; Holden, Peter

    2015-01-01

    The well-preserved late Archean sedimentary rocks of the Fortescue and Hamersley Basins in Western Australia offer fascinating insights into early earth ocean chemistry prior to the Great Oxidation Event (GOE). In this study, we use a combination of whole rock geochemistry, LA-ICPMS trace element analysis of sedimentary pyrite and pyrrhotite and SHRIMP-SI sulfur isotope analyses to elucidate the chemical changes in these sedimentary rocks. These proxies are used to examine chemical conditions of the ocean during the late Archean. Two to three periods of oxygen enrichment prior to the deposition of banded iron formations (BIF) can be identified. One minor stage of general increase in whole rock enrichment factors and trace element content of pyrite is observed up stratigraphy in the Jeerinah Formation, Fortescue Basin and a more substantial stage is present in the Paraburdoo and Bee Gorge Members of the Wittenoom Formation, Hamersley Basin. Some of the trace element enrichments indicate organic matter burial flux (Ni, Cr, Zn, Co and Cu) which suggests an increase in biological productivity. If the increased biological activity reflects an increase in cyanobacteria activity then an associated increase in oxygen is likely to have occurred during the deposition of the Bee Gorge Member. An increase in atmospheric oxygen would result in continental weathering of sulfide and other minerals, increasing the trace element content of the water column via erosion and avoiding excessive depletion of trace elements due to drawdown in seawater. Since some of these trace elements may also be limiting nutrients (such as Mo and Se) for the cyanobacteria, the degree of biological productivity may have further increased due to the increasing amount of trace elements introduced by oxygenation in a positive feedback loop. These periods of increased productivity and oxygen rise stopped prior to the onset of BIF deposition in the Hamersley Basin. This may be due to the ocean reaching an

  11. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.

    Science.gov (United States)

    Sivula, Kevin; Zboril, Radek; Le Formal, Florian; Robert, Rosa; Weidenkaff, Anke; Tucek, Jiri; Frydrych, Jiri; Grätzel, Michael

    2010-06-02

    Sustainable hydrogen production through photoelectrochemical water splitting using hematite (alpha-Fe(2)O(3)) is a promising approach for the chemical storage of solar energy, but is complicated by the material's nonoptimal optoelectronic properties. Nanostructuring approaches have been shown to increase the performance of hematite, but the ideal nanostructure giving high efficiencies for all absorbed light wavelengths remains elusive. Here, we report for the first time mesoporous hematite photoelectodes prepared by a solution-based colloidal method which yield water-splitting photocurrents of 0.56 mA cm(-2) under standard conditions (AM 1.5G 100 mW cm(-2), 1.23 V vs reversible hydrogen electrode, RHE) and over 1.0 mA cm(-2) before the dark current onset (1.55 V vs RHE). The sintering temperature is found to increase the average particle size, and have a drastic effect on the photoactivity. X-ray photoelectron spectroscopy and magnetic measurements using a SQUID magnetometer link this effect to the diffusion and incorporation of dopant atoms from the transparent conducting substrate. In addition, examining the optical properties of the films reveals a considerable change in the absorption coefficient and onset properties, critical aspects for hematite as a solar energy converter, as a function of the sintering temperature. A detailed investigation into hematite's crystal structure using powder X-ray diffraction with Rietveld refinement to account for these effects correlates an increase in a C(3v)-type crystal lattice distortion to the improved optical properties.

  12. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  13. Use of the Moessbauer effect for determining pyritic sulfur content in coal

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T

    1986-10-01

    This paper discusses investigations into resonance absorption of gamma radiation. Standard equipment for measuring the Moessbauer effect in black coal consisting of a measuring head, the SM-4T spectrometer, a multichannel analyzer, the Standard electronic unit and a printer is evaluated. The MSP measuring system developed jointly by the EMAG Mine Automation Company and the Nuclear Research Institute in Swierk is described. The MSP equipment is used for measuring content of pyritic sulfur in coal. Its accuracy is satisfactory. Results of measuring pyritic and total sulfur content by means of quantitative chemical analysis and by the MSP resonance absorption method (Moessbauer effect) are compared. The mean standard deviation for pyritic sulfur is 0.14% and for total sulfur content 0.21%. 11 refs.

  14. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  15. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in Anoxic Groundwater Sediment

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo; Jacobsen, Ole Stig

    2009-01-01

    denitrification process with pyrite as the primary electron donor. The process demonstrates a temperature dependency (Q10) of 1.8 and could be completely inhibited by addition of a bactericide (NaN3). Experimentally determined denitrification rates show that more than 50% of the observed nitrate reduction can...... be ascribed to pyrite oxidation. The apparent zero-order denitrification rate in anoxic pyrite containing sediment at groundwater temperature has been determined to be 2-3 µmol NO3- kg-1 day-1. The in situ groundwater chemistry at the boundary between the redoxcline and the anoxic zone reveals that between 65......-anoxic boundary in sandy aquifers thus determining the position and downward progression of the redox boundary between nitrate-containing and nitrate-free groundwater....

  16. Isotopic and elemental chemistry of sedimentary pyrite: A combined analytical and statistical approach to a novel planetary biosignature

    Science.gov (United States)

    Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.

    2017-12-01

    Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal

  17. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.

    Science.gov (United States)

    Hisatomi, Takashi; Brillet, Jérémie; Cornuz, Maurin; Le Formal, Florian; Tétreault, Nicolas; Sivula, Kevin; Grätzel, Michael

    2012-01-01

    Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.

  18. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  19. Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans

    International Nuclear Information System (INIS)

    Alexey Borisovich Umanskii; Anton Mihaylovich Klyushnikov

    2013-01-01

    A process of uranium extraction from ore containing 3.1 % pyrite by bacterial leaching was investigated in shaken flasks during 90 days. The highest uranium recovery amounting to 85.1 % was obtained using binary mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans that was exceeding results obtained by traditional acid leaching technique up to 27 %. High uranium recovery was founded to be due to the high degree of pyrite dissolution that can be readily achieved by bacterial leaching (up to 98.0 %). (author)

  20. DFT study on the galvanic interaction between pyrite (100) and galena (100) surfaces

    International Nuclear Information System (INIS)

    Ke, Baolin; Li, Yuqiong; Chen, Jianhua; Zhao, Cuihua; Chen, Ye

    2016-01-01

    Graphical abstract: - Highlights: • Galvanic interaction is weakened with the increase of contact distance. • Electronic transfer mainly occurs on the contact layers. • Galvanic effect enhances nucleophilicity of galena and electrophilicity of pyrite. • Presence of H_2O increases the galvanic interaction. - Abstract: The galvanic interaction between pyrite and galena surface has been investigated using density functional theory (DFT) method. The calculated results show that galvanic interactions between pyrite and galena surface are decreased with the increase of contact distance. The galvanic interactions still occurs even the distance larger than the sum of two atoms radius (≈2.8 Å), and the limit distance of galvanic interaction between galena and pyrite surface is about 10 Å, which is consistent with the quantum tunneling effect. Through Mulliken charge population calculation, it is found that electrons transfer from galena to pyrite. For galena surface, Pb 6s and 6p states lose electrons and S 3p state loses a small amount of electrons, which causes the electron loss of galena. For pyrite surface, Fe 4p state obtains large numbers of electrons, resulting in the decrease of positive charge of Fe atom. However, the 3p state of S atom loses a small numbers of electrons. The reactivity of mineral surface has also been studied by calculating the frontier orbitals of minerals. Results suggest that the highest occupied molecular orbital (HOMO) coefficients of galena are increased whereas those of pyrite are decreased with the enhancing galvanic interaction, indicating that the oxidation of galena surface would be enhanced due to the galvanic interaction. The Fukui indices and dual descriptor values of surface atoms suggest that the nucleophilicity of the galena surface increases, meanwhile, the electrophilicity of pyrite surface increases with the decrease of the contact distance. In addition, the density of states (DOS) of atoms results show that the

  1. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2011-01-01

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al 2 (SO 4 ) 3 solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pH eq between 2.3 and 6.2. Sorption capacities of fluoride ions as a function of dose of

  2. Adsorption of water and carbon dioxide on hematite and consequences for possible hydrate formation.

    Science.gov (United States)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Kivelae, Pilvi-Helina

    2012-04-07

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decline in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide into the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures, conditions which may lead to formation of hydrates from residual water dissolved in carbon dioxide and carbon dioxide. The critical question is whether the water at certain temperatures and pressures will drop out as liquid droplets first, and then form hydrates, or alternatively, adsorb on the pipeline surfaces, and subsequently form hydrates heterogeneously. In this work, we used several different basis sets of density functional theory in ab initio calculations to estimate the charge distribution of hematite (the dominating component of rust) crystals. These rust particles were embedded in water and chemical potential for adsorbed water molecules was estimated through thermodynamic integration and compared to similar estimates for water clusters of the same size. While the generated charges were not unique, the use of high order approximations and different basis sets provides a range of likely charge distributions. Values obtained for the chemical potential of water in different surroundings indicated that it would be thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based on this formation mechanism. Depending on the basis set and approximations, the estimated gain for water to adsorb on the hematite surface rather than condense as droplets varied between -1.7 kJ mole(-1) and -3.4 kJ mole(-1). The partial charge distribution on the hematite surface is incompatible with the hydrate structure, and thus hydrates will be unable to attach to the surface. The behavior of water outside the immediate vicinity of hematite (beyond 3

  3. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

    Science.gov (United States)

    D'Orazio, Massimo; Biagioni, Cristian; Dini, Andrea; Vezzoni, Simone

    2017-06-01

    The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte-pyrite-iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always <1. Geochemical data of pyrite and marcasite ore samples from other mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb-Hg ore deposits showed very high Tl concentrations (up to 3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte-pyrite-iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

  4. On the mechanism of action of combination of thionocarbamates with xanthate during flotation of copper-molybdenum pyrite contained ores

    International Nuclear Information System (INIS)

    Nedosekina, T.V.; Glembotskij, A.V.; Bekhtle, G.A.; Novgorodova, Eh.Z.

    1985-01-01

    Investigation results of action mechanism of thionocarbamates combination with xanthate are described. It is established that these collectors are capable of co-adsorbing on pyrite surface, that is the reason for sharp increase of the floatability and disturbs the selectivity of copper-molybdenum pyrite-containing ore flotation

  5. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen

  6. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    Science.gov (United States)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S = -43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into

  7. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea

    DEFF Research Database (Denmark)

    Neretin, LN; Bottcher, ME; Jørgensen, BB

    2004-01-01

    Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above...... and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur...... and polysulfides, formed from H,S by a reductive dissolution of Fe(Ill)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a "direct" pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate...

  8. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Sri [Department of Mining Engineering, Moslem University of Indonesia, Jln. Urip Sumoharjo, Makassar (Indonesia); Oschmann, Wolfgang [Institute of Geosciece, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany); Bechtel, Achim; Sachsenhofer, Reinhard F. [Department of Applied Geoscience and Geophysics, University of Leoben, Peter-Tunner-Str.5, A-8700 Leoben (Austria); Anggayana, Komang [Department of Mining Engineering, Bandung Institute of Technology, Jln. Ganesa 10, I-40132 Bandung (Indonesia); Puettmann, Wilhelm [Institute of Atmospheric and Environmental Sciences, Dapartment of Analytical Enviromental Chemistry, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany)

    2010-03-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (< 1%) and pyrite contents. The ash, mineral, total sulfur, iron (Fe) and pyrite contents of most of the coal samples from the Sebulu and Centra Busang coal mines are high and positively related in these samples. Low contents of ash, mineral, total sulfur, iron (Fe) and pyrite have been found only in sample TNT-32 from Centra Busang coal mine. Pyrite was the only sulfur form that we could recognize under reflected light microscope (oil immersion). Pyrite occurred in the coal as framboidal, euhedral, massive, anhedral and epigenetic pyrite in cleats/fractures. High concentration of pyrite argues for the availability of iron (Fe) in the coal samples. Most coal samples from the Embalut coal mine show lower sulfur (< 1 wt.%) and pyrite contents as found within Centra Busang and Sebulu coals. One exception is the coal sample KTD-38 from Embalut mine with total sulfur content of 1.41 wt.%. The rich ash, mineral, sulfur and pyrite contents of coals in the Kutai Basin (especially Centra Busang and Sebulu coals) can be related to the volcanic activity (Nyaan volcanic) during Tertiary whereby aeolian material was transported to the mire during or after the peatification process. Moreover, the adjacent early Tertiary deep marine sediment, mafic igneous rocks and melange in the center of Kalimantan Island might have provided mineral to the coal by uplift and erosion. The inorganic matter in the mire might also originate from the ground and surface water from the highland of central Kalimantan. (author)

  9. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution

    Science.gov (United States)

    Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping

    2018-05-01

    Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral

  10. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Fathinia, Siavash [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Fathinia, Mehrangiz [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rahmani, Ali Akbar [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Khataee, Alireza, E-mail: a_khataee@tabrizu.ac.ir [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H{sub 2}O{sub 2} concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  11. Iron Isotopes in Spherical Hematite and Goethite Concretions from the Navajo Sandstone (Utah, USA): A Prospective Study for "Martian Blueberries"

    Science.gov (United States)

    Busigny, V.; Dauphas, N.

    2006-03-01

    Iron isotopes of terrestrial hematite and goethite concretions provide clues on fluid transport, reservoir sizes, redox variations and biotic versus abiotic processes. This opens several avenues of research for future work on Martian blueberries.

  12. Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Wickman, Björn; Seger, Brian

    2014-01-01

    in several studies, to the best of our knowledge no measurements of the Faradaic efficiency (FE) of the oxygen evolution reaction (OER) have been reported for such systems. This work characterizes the FE on a model system consisting of ultra-thin films of hematite (Fe2O3) sensitized with Ti/Au nanodisks....... Compared to bare hematite references, sensitized samples showed significantly enhanced photocurrents as well as O-2 evolution. Experimental evidence suggests that the observed enhancement was not due to photocatalytic activity of the nanodisks. The FE has been determined to be 100%, within the experimental...... errors, for both sensitized and reference samples. Also, this work demonstrates that the sensitized samples were stable for at least 16 hours photocurrent testing. The concepts shown in this work are generally applicable to any situation in which a semiconductor has its water splitting performance...

  13. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    Directory of Open Access Journals (Sweden)

    Carlo Grignani

    2013-09-01

    Full Text Available The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  14. Strontium-doped hematite as a possible humidity sensing material for soil water content determination.

    Science.gov (United States)

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-09-10

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800-1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  15. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  16. Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling

    Directory of Open Access Journals (Sweden)

    O. M. Lemine

    2014-01-01

    Full Text Available α-Fe2O3 nanocrystallines were prepared by direct transformation via high energy ball milling treatment for α-FeOOH powder. X-ray diffraction, Rietveld analysis, TEM, and vibrating sample magnetometer (VSM are used to characterize the samples obtained after several milling times. Phase identification using Rietveld analysis showed that the goethite is transformed to hematite nanocrystalline after 40 hours of milling. HRTEM confirm that the obtained phase is mostly a single-crystal structure. This result suggested that the mechanochemical reaction is an efficient way to prepare some iron oxides nanocrystallines from raw materials which are abundant in the nature. The mechanism of the formation of hematite is discussed in text.

  17. Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity

    International Nuclear Information System (INIS)

    Lian Suoyuan; Wang Enbo; Gao Lei; Wu Di; Song Yanli; Xu Lin

    2006-01-01

    Submicrometer-sized hollow hematite particles were prepared through a surfactant-assisted solvothermal process. The amount of FeCl 3 .H 2 O and cetyltrimethylammonium bromide, and the acidity of the solution were systematically altered to study their effects on the final results. Hollow hematite particles with shapes from sphere, ellipsoid to peanut were obtained. Their sizes range from 500 nm to 2 μm with shell thickness from 100 to 500 nm. Powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction were applied to investigate the products' crystallinity, purity, morphology, size and structural features. Finally, the study on the photocatalysis of Fe 2 O 3 for the destruction of diethyl phthalate in water was carried out. The result proved that Fe 2 O 3 hollow particles were effective photocatalysts for the degradation of DEP, with 96.8% destruction ratio being obtained within 60 min

  18. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    Science.gov (United States)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  19. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    NARCIS (Netherlands)

    Binning, P. J.; POSTMA, D; Russell, T. F.; Wesselingh, J. A.; Boulin, P. F.

    2007-01-01

    [1] Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed

  20. The Influence of Pyrite on the Solubility of Minjingu and Panda ...

    African Journals Online (AJOL)

    28.5 million tons of sulphur. This study was ... bining PRs with elemental S, FYM ot 'and pyrite rock rere used.in this compost (Chien et al., ... Some of the possibility of using locally available the chemical properties of the rocks materials in ...

  1. High-power pulsed plasma deposition of hematite photoanode for PEC water splitting

    Czech Academy of Sciences Publication Activity Database

    Kment, Š.; Hubička, Zdeněk; Krysa, J.; Olejníček, Jiří; Čada, Martin; Gregora, Ivan; Zlámal, M.; Brunclíková, Michaela; Remeš, Zdeněk; Liu, N.; Wang, L.; Kirchgeorg, R.; Lee, Ch.Y.; Schmuki, P.

    2014-01-01

    Roč. 230, Jul (2014), 8-14 ISSN 0920-5861 R&D Projects: GA ČR GAP108/12/2104; GA MŠk LH12043 Institutional support: RVO:68378271 Keywords : electrical properties * hematite * HiPIMS * hollow cathode plasma jet * photoelectrochemical water splitting * thin films Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.893, year: 2014

  2. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  3. Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite

    OpenAIRE

    Huifang Xu; Mo Zhou; Yihang Fang; H. Henry Teng

    2018-01-01

    The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the m...

  4. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.

    Science.gov (United States)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena; Bielańska, Elżbieta

    2014-06-15

    Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Adhesion of Escherichia coli onto quartz, hematite and corundum: extended DLVO theory and flotation behavior.

    Science.gov (United States)

    Farahat, Mohsen; Hirajima, Tsuyoshi; Sasaki, Keiko; Doi, Katsumi

    2009-11-01

    The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH mineral adhesion was assessed by the extended DLVO theory approach. The essential parameters for calculation of microbe-mineral interaction energy (Hamaker constants and acid-base components) were experimentally determined. The extended DLVO approach could be used to explain the results of the adhesion experiments. The effect of E. coli on the floatability of three oxide minerals was determined and the results showed that E. coli can act as a selective collector for quartz at acidic pH values, with 90% of the quartz floated at 1.5 x 10(9)cells/ml. However, only 9% hematite and 30% corundum could be floated under similar conditions. By using E. coli and no reagents, it was possible to separate quartz from a hematite-quartz mixture with Newton's efficiency of 0.70. Removal of quartz from the corundum mixture was achieved by E. coli with Newton's efficiency of 0.62.

  6. Synthesis and characterization of hematite pigment obtained from a steel waste industry

    Energy Technology Data Exchange (ETDEWEB)

    Prim, S.R. [Department of Mechanical Engineering, University of the State of Santa Catarina, Santa Catarina (Brazil); Folgueras, M.V., E-mail: dem2mvf@joinville.udesc.br [Department of Mechanical Engineering, University of the State of Santa Catarina, Santa Catarina (Brazil); Lima, M.A. de [Department of Mechanical Engineering, University of the State of Santa Catarina, Santa Catarina (Brazil); Hotza, D. [Departamento de Engenharia Quimica, Federal University of Santa Catarina, Santa Catarina (Brazil)

    2011-09-15

    Highlights: {yields} The study of using of a industrial waste for the synthesis of hematite pigments. {yields} The nanometer dimension this waste and your behavior as chromophore. {yields} The effect of process variables on the mechanisms of encapsulation sintered pigments. - Abstract: Pigments that meet environmental and technology requirements are the focus of the research in the ceramic sector. This study focuses on the synthesis of ceramic pigment by encapsulation of hematite in crystalline and amorphous silica matrix. Iron oxide from a metal sheet rolling process was used as chromophore. A different content of hematite and silica was homogenized by conventional and high energy milling. The powders obtained after calcinations between 1050 and 1200 {sup o}C for 2 h were characterized by X-ray diffraction and SEM analysis. The pigments were applied to ceramic enamel and porcelain body. The effect of pigment was measured by comparing L*a*b* values of the heated samples. Results showed that the color developed is influenced by variables such as oxide content employed, conditions of milling and processing temperature. The results showed that the use of pigment developed does not interfere in microstructural characteristics of pigmented material. The best hue was obtained from samples with 15 wt% of chromophore, heated at 1200 {sup o}C in amorphous silica matrix.

  7. ADSORPTION OF PARAQUAT DICHLORIDE TO KAOLIN PARTICLES AND TO MIXTURES OF KAOLIN AND HEMATITE PARTICLES

    Directory of Open Access Journals (Sweden)

    Dina Alexandra Martins

    2015-03-01

    Full Text Available Deliberate contamination with pesticides is a potential risk to water security, due to the availability of these contaminants and the fact that they do not need special expertise to handle or apply. Adsorption of the herbicide paraquat from an aqueous solution to suspended particles of kaolin and kaolin/hematite mixture was investigated by kinetic and equilibrium assays, taking into consideration several parameters such as initial pH, sorbent dosage and agitation speed. The results showed that the adsorption process is quite fast, reaching an 18% reduction in paraquat concentration in a very short period of time. The addition of hematite particles to kaolin suspension had no apparent effect on the maximum amount of paraquat adsorbed. Kinetic parameters were determined by fitting the pseudo-second order model to the experimental data (correlation coefficients close to 1. Isotherm studies indicate an inhibitory effect, promoted by hematite particles, that was not detected in the adsorption assays. Equilibrium data was best adjusted using the Langmuir model which yielded higher correlation coefficient values and smaller normalized standard deviations.

  8. Impact of water quality parameters on the sorption of U(VI) onto hematite

    International Nuclear Information System (INIS)

    Zhao Donglin; Wang Xianbiao; Yang Shitong; Guo Zhiqiang; Sheng Guodong

    2012-01-01

    In this study, the sorption of U(VI) from aqueous solution on hematite was studied as a function of various water quality parameters such as contact time, pH, ionic strength, soil humic acid (HA) or fulvic acid (FA), solid content and temperature by using a batch technique. The results demonstrated that the sorption of U(VI) was strongly dependent on ionic strength at pH 6.0 and the sorption was mainly dominated by inner-sphere surface complexation. The presence of HA/FA increases U(VI) sorption at low pH, whereas decreases U(VI) sorption at high pH. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) were calculated from the temperature dependent sorption isotherms, and the results suggested that U(VI) sorption was a spontaneous and endothermic process. The results might be important for the application of hematite in U(VI) pollution management. Highlights: ► The sorption of U(VI) was strongly dependent on ionic strength at pH 6.0. ► A positive effect of HA/FA on U(VI) sorption was found at low pH, whereas a negative effect was observed at high pH. ► U(VI) sorption was a spontaneous and endothermic process. ► The results are quite important for the application of hematite in U(VI) pollution management.

  9. Effect of Mica and Hematite (001 Surfaces on the Precipitation of Calcite

    Directory of Open Access Journals (Sweden)

    Huifang Xu

    2018-01-01

    Full Text Available The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM, X-ray diffraction (XRD, and electron backscatter diffraction (EBSD methods. On mica, we found, in the absence of Mg2+, the substrates’ (001 surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D structure can affect the orientation of calcite nucleation with calcite (001 ~// mica (001 and calcite (010 ~// mica (010 to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001 surface also leads to the observed calcite (001 twinning. A second and less common orientation between calcite {104} and mica (001 was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice.

  10. Experimental evidence for non-redox transformations between magnetite and hematite under H 2-rich hydrothermal conditions

    Science.gov (United States)

    Otake, Tsubasa; Wesolowski, David J.; Anovitz, Lawrence M.; Allard, Lawrence F.; Ohmoto, Hiroshi

    2007-05-01

    Transformations of magnetite (Fe IIFe 2IIIO 4) to hematite (Fe 2IIIO 3) (and vice versa) have been thought by many scientists and engineers to require molecular O 2 and/or H 2. Thus, the presence of magnetite and/or hematite in rocks has been linked to a specific oxidation environment. However, the availability of reductants or oxidants in many geologic and industrial environments appears to have been too low to account for the transformations of iron oxides through redox reactions. Here, we report the results of hydrothermal experiments in mildly acidic and H 2-rich aqueous solutions at 150 °C, which demonstrate that transformations of magnetite to hematite, and hematite to magnetite, occur rapidly without involving molecular O 2 or H 2: Fe3O 4(Mt) + 2H (aq)+ ↔ Fe 2O 3(Hm) + Fe (aq)2+ + H 2O. The transformation products are chemically and structurally homogeneous, and typically occur as euhedral single crystals much larger than the precursor minerals. This suggests that, in addition to the expected release of aqueous ferrous species to solution, the transformations involve release of aqueous ferric species from the precursor oxides to the solution, which reprecipitate without being reduced by H 2. These redox-independent transformations may have been responsible for the formation of some iron oxides in natural systems, such as high-grade hematite ores that developed from Banded Iron Formations (BIFs), hematite-rich deposits formed on Mars, corrosion products in power plants and other industrial systems.

  11. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  12. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.

    Science.gov (United States)

    Karikari-Yeboah, Ohene; Addai-Mensah, Jonas

    2017-02-01

    Pyrite-rich sediments would, invariably, undergo redox reactions which would lead to acidic aqueous environment containing solubilized toxic metal species. When such sediments are subjected to preload, a technique employed by geotechnical engineers to improve the load-bearing capacity of highly compressible formation, transient flow of pore water, accompanied by acidity transfer, would occur as a response. Despite the concomitant environmental and socio-economic significance, to date, there has been limited interdisciplinary research on the underpinning geotechnical engineering and geo-environmental science issues for pyrite-rich sediments under preload. In this study, we investigate the effect of pyrite-rich sediment pore water transfer under preload surcharge on the receiving environment and the impact on the groundwater speciation and quality. Sediment samples were obtained at close depth intervals from boreholes established within pristine areas and those subjected to the preload application. Soil and pore water samples were subjected to solid/solution speciation, moisture contents, soil pH and the Atterberg Limits' analyses using standard analytical techniques and methods. Standpipes were also installed in the boreholes for groundwater sampling and in situ monitoring of water quality parameters. It is shown that the imposition of preload surcharge over pyritic sediment created a reducing environment rich in SO 4 2- , iron oxide minerals and organic matter. This reducing environment fostered organic carbon catabolism to generate excess pyrite and bicarbonate alkalinity, which would invariably impact adversely on soil quality and plant growth. These were accompanied by increase in pH, dissolved Al, Ca, Mg and K species beneath the surcharge.

  13. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping

    Science.gov (United States)

    Dubosq, R.; Lawley, C. J. M.; Rogowitz, A.; Schneider, D. A.; Jackson, S.

    2018-06-01

    The metamorphic transition of pyrite to pyrrhotite results in the liberation of lattice-bound and nano-particulate metals initially hosted within early sulphide minerals. This process forms the basis for the metamorphic-driven Au-upgrading model applied to many orogenic Au deposits, however the role of syn-metamorphic pyrite deformation in controlling the retention and release of Au and related pathfinder elements is poorly understood. The lower amphibolite facies metamorphic mineral assemblage (Act-Bt-Pl-Ep-Alm ± Cal ± Qz ± Ilm; 550 °C) of Canada's giant Detour Lake deposit falls within the range of pressure-temperature conditions (450 °C) for crystal plastic deformation of pyrite. We have applied a complementary approach of electron backscatter diffraction (EBSD) mapping and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2D element mapping on pyrite from the Detour Lake deposit. Chemical element maps document an early generation of Au-rich sieve textured pyrite domains and a later stage of syn-metamorphic oscillatory-zoned Au-poor pyrite. Both pyrite types are cut by Au-rich fractures as a consequence of remobilization of Au with trace element enrichment of first-row transition elements, post-transition metals, chalcogens and metalloids during a late brittle deformation stage. However, similar enrichment in trace elements and Au can be observed along low-angle grain boundaries within otherwise Au-poor pyrite, indicating that heterogeneous microstructural misorientation patterns and higher strain domains are also relatively Au-rich. We therefore propose that the close spatial relationship between pyrite and Au at the microscale, features typical of orogenic Au deposits, reflects the entrapment of Au within deformation-induced microstructures in pyrite rather than the release of Au during the metamorphic transition from pyrite to pyrrhotite. Moreover, mass balance calculations at the deposit scale suggest that only a small percentage

  14. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method

    International Nuclear Information System (INIS)

    Phuan, Yi Wen; Chong, Meng Nan; Zhu, Tao; Yong, Siek-Ting; Chan, Eng Seng

    2015-01-01

    Highlights: • Nanostructured hematite thin films were synthesized via electrodeposition method. • Effects of annealing on size, grain boundary and PEC properties were examined. • Photocurrents generation was enhanced when the thin films were annealed at 600 °C. • The highest photocurrent density of 1.6 mA/cm 2 at 0.6 V vs Ag/AgCl was achieved. - Abstract: Hematite (α-Fe 2 O 3 ) is a promising photoanode material for hydrogen production from photoelectrochemical (PEC) water splitting due to its wide abundance, narrow band-gap energy, efficient light absorption and high chemical stability under aqueous environment. The key challenge to the wider utilisation of nanostructured hematite-based photoanode in PEC water splitting, however, is limited by its low photo-assisted water oxidation caused by large overpotential in the nominal range of 0.5–0.6 V. The main aim of this study was to enhance the performance of hematite for photo-assisted water oxidation by optimising the annealing temperature used during the synthesis of nanostructured hematite thin films on fluorine-doped tin oxide (FTO)-based photoanodes prepared via the cathodic electrodeposition method. The resultant nanostructured hematite thin films were characterised using field emission-scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) for their elemental composition, average nanocrystallites size and morphology; phase and crystallinity; UV-absorptivity and band gap energy; and the functional groups, respectively. Results showed that the nanostructured hematite thin films possess good ordered nanocrystallites array and high crystallinity after annealing treatment at 400–600 °C. FE-SEM images illustrated an increase in the average hematite nanocrystallites size from 65 nm to 95 nm when the annealing temperature was varied from 400 °C to 600 °C. As the

  15. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Phuan, Yi Wen [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Chong, Meng Nan, E-mail: Chong.Meng.Nan@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Zhu, Tao; Yong, Siek-Ting [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Chan, Eng Seng [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia); Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150 Selangor DE (Malaysia)

    2015-09-15

    Highlights: • Nanostructured hematite thin films were synthesized via electrodeposition method. • Effects of annealing on size, grain boundary and PEC properties were examined. • Photocurrents generation was enhanced when the thin films were annealed at 600 °C. • The highest photocurrent density of 1.6 mA/cm{sup 2} at 0.6 V vs Ag/AgCl was achieved. - Abstract: Hematite (α-Fe{sub 2}O{sub 3}) is a promising photoanode material for hydrogen production from photoelectrochemical (PEC) water splitting due to its wide abundance, narrow band-gap energy, efficient light absorption and high chemical stability under aqueous environment. The key challenge to the wider utilisation of nanostructured hematite-based photoanode in PEC water splitting, however, is limited by its low photo-assisted water oxidation caused by large overpotential in the nominal range of 0.5–0.6 V. The main aim of this study was to enhance the performance of hematite for photo-assisted water oxidation by optimising the annealing temperature used during the synthesis of nanostructured hematite thin films on fluorine-doped tin oxide (FTO)-based photoanodes prepared via the cathodic electrodeposition method. The resultant nanostructured hematite thin films were characterised using field emission-scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) for their elemental composition, average nanocrystallites size and morphology; phase and crystallinity; UV-absorptivity and band gap energy; and the functional groups, respectively. Results showed that the nanostructured hematite thin films possess good ordered nanocrystallites array and high crystallinity after annealing treatment at 400–600 °C. FE-SEM images illustrated an increase in the average hematite nanocrystallites size from 65 nm to 95 nm when the annealing temperature was varied from 400 °C to 600

  16. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes.

    Science.gov (United States)

    Busch, Verónica M; Loosli, Fréderic; Santagapita, Patricio R; Buera, M Pilar; Stoll, Serge

    2015-11-01

    The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum--VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475 nm Z-average diameter, 0.65 Pdi) and a negative zeta potential (between -1 and -12 mV for pH2 and 12, respectively). The aggregation of hematite nanoparticles (3.3 mg/L) was induced by the addition of VG at lower concentrations than 2mg/L (pH5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2 mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer

  17. The impact of solution chemistry of electrolyte on the sorption of pentachlorophenol and phenanthrene by natural hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanfeng; He, Yan, E-mail: yhe2006@zju.edu.cn; Lian, Zhenghua; Xu, Jianming, E-mail: jmxu@zju.edu.cn

    2014-01-01

    Hematite nanoparticles (NPs) were studied as a sorbent for hydrophobic organic contaminants (OCs) under natural ambient conditions through specially designed contrasting solution chemistry of electrolyte. Ionizable pentachlorophenol (PCP) and non-ionizable phenanthrene (PHE) were selected as representative OCs. The sorption capacities of PCP and PHE were pH-dependent, and a larger amount of PCP was sorbed at pH values below its pK{sub a} (4.75). However, the PHE sorption capacity was higher at relatively high or low pHs (e.g. below 4.0 and above 10.0), possibly due to the larger available surface area of the hematite NPs, caused by the higher values of net charges and charge density. Changes in pH might thus affect the sorption of OCs by hematite NPs, through modification of the surface characteristics of the sorbent and the electronic properties of the sorbate molecules. The influence of different ionic strengths indicated that the amounts of PCP and PHE sorbed by hematite NPs decreased as a concentration function of different types of ions (e.g. Na{sup +}, K{sup +}, Mg{sup 2 +} and Ca{sup 2 +}), with the underlying mechanism possibly being due to four interactions i.e. hydrogen-bonding, competitive sorption by ions in the ambient solution, screening effects and aggregation effects. The results confirmed that the surface chemistry of hematite NPs, the chemical properties of PCP and PHE, and solution chemistry (e.g. pH and ionic strength) of the electrolyte all played an important role in PCP and PHE sorption by hematite NPs. By comparison of both sorption capacity and ecologic advantages, our results suggested that natural hematite NPs would be more competitive and efficient for PCP and PHE sorption than engineered NPs. This finding increases our knowledge regarding the environmental function of natural NPs (such as hematite NPs) for OC remediation through manipulating their interfacial behavior. - Highlights: •Hematite NPs was tested for PCP/PHE sorption under

  18. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  19. Chemostratigraphy and trace element pattern of authigenic pyrite in a Frasnian-Fammenian transition section (Büdesheimer bach, Germany)

    Science.gov (United States)

    Pujol, F.; Berner, Z.; Neumann, T.; Stüben, D.

    2003-04-01

    Trace element contents in authigenic pyrite were investigated in relationship to the geochemistry of host rocks in a 160 m deep drilling at Büdesheimer Bach (Prümer Mulde, Germany), in order to put constrains on possible changes in depositional conditions and seawater composition related to the Kellwasser events (Frasnian/Fammenian transition). The approach is based on the observation that the trace element pattern of authigenic pyrite is controlled by genetic conditions (Stüben et al., 2002) and that the content of elements with generally high degree of pyritization (DTMP, degree of trace metal pyritization, like As, Mo, Co, Ni, etc.) depends on their availability at the site of pyrite formation (e.g. Huerta-Diaz and Morse, 1992). The distribution of trace elements in the bulk rock essentially reflects mineralogical composition and redox conditions which are mainly controlled by the flux of organic matter entering the sediment. The lower and upper Kellwasser horizons are marked by an increase in carbonate and organic carbon content (up to 2%), coupled with an increase in the degree of pyritization of Fe (DOP: 0.4-0.8), indicating a change from normal marine to suboxic/anoxic conditions. A simultaneous drop in the Ba content of the host lithology, which usually is used as a proxy for paleoproductivity, can be explained by the removal of Ba dissolved in pore water under anoxic conditions (McManus et al., 1998). While low in the host rock, the Ba content of authigenic pyrite is high in these horizons, suggesting that pyrite may preserve the initial composition of pore water even for some elements with generally low DTMP, like Ba. Consequently, Ba content in pyrite may serve as indicator for productivity even when the Ba content of sediment can not be used due to its poor preservation. During these anoxic episodes also a significant increase in the content of As, U, V was registered in pyrite. Opposite to these, others like Ni, Co, Ag show a decrease in their

  20. The origin of copiapite from chlorite pyritic schist (Wiesciszowice, Lower Silesia, Poland) in the light of Moessbauer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, Z., E-mail: zdzislaw.adamczyk@polsl.pl [Silesian University of Technology, Institute of Applied Geology (Poland); Komraus, J. L., E-mail: komraus@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2008-01-15

    This work presents the results of the analysis of copiapite, formed from weathering and oxidation of pyrite in pyritic schist from Wiesciszowice, Lower Silesia (Poland). The pure phase of copiapite was found in secondary minerals after pyrite and identified by optical microscopy, XRD and Moessbauer spectroscopy. In the analyzed copiapite major cations appear to be Fe{sup 2+} and Fe{sup 3+}. Some Fe{sup 3+} is substituted by other cations, mainly Al{sup 3+}. Al{sup 3+} probably comes from leaching of chlorite from which hydrated sulphates of iron, mainly szomolnokite, form followed by hydrated sulphates fibroferrite, which is replaced by copiapite.

  1. Pressure response of vacancy ordered maghemite (γ-Fe2O3) and high pressure transformed hematite (α-Fe2O3)

    Science.gov (United States)

    Hearne, Giovanni; Pischedda, Vittoria

    2012-03-01

    Combined XRD and Mössbauer effect spectroscopy studies to high pressures of ˜30 GPa of vacancy ordered maghemite are presented. The vacancy ordered superstructure is robust and remains intact up to the pressure-induced onset transition to hematite at 13-16 GPa. The pressure transformed hematite is shown to be crystallographically textured, unlike the randomised low pressure maghemite phase. This arises out of a pressure or stress instigated topotactic transformation of the cubic-spinel to hexagonal-corundum structure. The textured sample permits us to obtain information on the spin reorientation behavior of the pressure transformed hematite in compression and decompression sequences. Spin reorientation is restricted to ˜15° over wide pressure ranges, attributable to the effect of entrapped vacancies in the high pressure structure. Thus there are structural and magnetic peculiarities specific to pressure transformed hematite not evident in pressurized hematite starting material. These are triggered by the maghemite→hematite transformation.

  2. Ocre, hematites y óxido de hierro: el problema terminológico = Ochre, Hematite and Iron Oxid: The Terminological Issue

    Directory of Open Access Journals (Sweden)

    Alfredo Cortell Nicolau

    2016-12-01

    Full Text Available Los óxidos de hierro son prácticamente omnipresentes al analizar contextos, no solo referentes al arte rupestre, sino también en relación con toda una serie de actividades que podríamos considerar cotidianas en ambientes prehistóricos. Sin embargo, su estudio sistemático no ha comenzado hasta tiempos muy recientes. Fruto de ello, podría decirse que una parte de la literatura arqueológica no especializada en el campo de la pigmentología muestra, en ocasiones, cierta inexactitud terminológica. Con este documento pretendemos, a través de un análisis tanto de su funcionamiento, como de las propiedades geoquímicas y mineralógicas del ocre, la hematites y los propios óxidos de hierro, exponer la necesidad de propiedad en su nomenclatura, así como los problemas que podrían derivarse de la falta de precisión. Por último, establecemos algunas propuestas que tal vez pudieran ayudar en esta normativización. Iron oxides are virtually omnipresent when analyzing contexts, not only referring to rock art, but also related to a whole series of activities, which we could consider as quotidian for prehistoric environments. Nevertheless, a systematic study of these has not started until recent times. As a result, it could be argued that a part of archaeological literature, not specialized on pigmentology, shows sometimes a certain lack of terminological accurateness. With this document we mean to, through an analysis both of the functioning and the geochemical and mineralogical properties of ochre, hematite and iron oxides themselves, expose the need for an appropriate terminology, as well as to show the problems derived from an inadequate naming. Finally, we bring some proposals, which could maybe help on an appropriate terminological standardization.

  3. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  4. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Directory of Open Access Journals (Sweden)

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  5. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  6. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  7. Adaptation of chemical methods of analysis to the matrix of pyrite-acidified mining lakes

    International Nuclear Information System (INIS)

    Herzsprung, P.; Friese, K.

    2000-01-01

    Owing to the unusual matrix of pyrite-acidified mining lakes, the analysis of chemical parameters may be difficult. A number of methodological improvements have been developed so far, and a comprehensive validation of methods is envisaged. The adaptation of the available methods to small-volume samples of sediment pore waters and the adaptation of sensitivity to the expected concentration ranges is an important element of the methods applied in analyses of biogeochemical processes in mining lakes [de

  8. Simulated aerobic pedogenesis in pyritic overburden with a positive acid-base account

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R.; Wilding, L.P. (South Dakota State University, Brookings, SD (United States). Dept. of Plant Science)

    Reclamation of surface-mined land is often hindered by the excess salts and acidity produced by the weathering of pyritic overburden. This study was conducted to document the initial transformations that occur when pyritic overburden containing excess acid neutralizing potential is used as parent material in minesoil construction. An overburden containing 0.8% FeS[sub 2] (pyrite) and 1.6% inorganic carbonate (predominantly dolomite) was collected from the highwall of an active lignite surface mine in Panola County, Texas. The overburden was lightly crushed through a 13-mm sieve and packed into three replicate lysimeters (0.75 by 0.75 by 1.2 m). The lysimeters were leached monthly with 63.5 mm of deionized water for 24 mo. The initial material had a pH of 8.3 and an excess acid neutralizing potential. Progressive FeS[sub 2] oxidation released H[sub 2]SO[sub 4], and the pH decreased to 6.8. The dolomite dissolved, neutralizing the acidity, with subsequent release of Ca and Mg ions into solution. Leachate Ca[sup 2+] and SO[sub 4][sup 2-] concentrations exceeded the ion activity product of gypsum in the lower 60 cm of the lysimeters. Thin-section analysis revealed that gypsum crystals precipitated along margins of residual pyrite particles and in conductive vughs and channels. The continued accumulation of gypsum in minesoil development could eventually lead to the formation of a gypsic or a petrogypsic horizon. A restrictive layer such as this would decrease vertical movement of water and O[sub 2] which would reduce vegetative growth, increase runoff and erosion, and thus increase the probability of reclamation failure.

  9. Late Strunian age : a key time frame for VMS deposit exploration in the Iberian Pyrite Belt

    OpenAIRE

    Matos, João Xavier; Pereira, Zélia; Rosa, Carlos J. P.; Rosa, Diogo R. N.; Oliveira, José Tomás; Relvas, Jorge M. R. S.

    2011-01-01

    Estimate of geological environments favorable for the formation of massive sulphide deposits is an important goal to the exploration companies working in the Iberian Pyrite Belt (IPB), the main European VMS base metals province, with giant deposits such as Neves Corvo, Aljustrel (Portugal), Rio Tinto and Tharsis (Spain). Palynostratigraphic research programs using more than 40 exploration boreholes (>30 km length) allowed the dating of the sediments of the Volcano-Sedimentary Comp...

  10. Fabrication of hematite (α-Fe{sub 2}O{sub 3}) nanoparticles using electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingling; Wang, Zuobin, E-mail: wangz@cust.edu.cn; Chai, Xiangyu; Weng, Zhankun; Ding, Ran; Dong, Litong

    2016-04-15

    Graphical abstract: - Highlights: • Cathodic electrochemical deposition proposed to fabricate hematite nanoparticles. • Hematite nanoparticles were fabricated on indium-tin-oxide coated glass substrates. • The size and shape of nanoparticles were determined by deposition conditions. • The nanoparticles were well decentralized for different potential applications. • Electrochemical deposition is a useful approach in fabricating nanoparticles. - Abstract: In this work, cathodic electrochemical deposition was proposed to fabricate reproducible and homogeneous hematite (α-Fe{sub 2}O{sub 3}) nanoparticles on indium-tin-oxide (ITO) films. The α-Fe{sub 2}O{sub 3} nanoparticles, which were quasi-hexagonally shaped, were deposited in an aqueous mixture of FeCl{sub 2} and FeCl{sub 3} at the temperatures 16.5 °C, 40 °C and 60 °C. The electrochemically deposited α-Fe{sub 2}O{sub 3} nanoparticles showed excellent stability and good crystallinity. The α-Fe{sub 2}O{sub 3} nanoparticles were characterized by Raman spectroscope and X-ray diffractometer (XRD). A scanning electron microscope (SEM) was used to measure the size and shape of the nanoparticles. The experiment results have shown that the size and shape of nanoparticles were determined by electrochemical deposition conditions including the deposition time, current density, reaction temperature and solution concentration. The proposed electrochemical deposition method has been proven to be a cost-effective, environment friendly and highly efficient approach in fabricating well decentralized α-Fe{sub 2}O{sub 3} nanoparticles for different potential applications.

  11. Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system

    Science.gov (United States)

    Lenhart, J.J.; Bargar, J.R.; Davis, J.A.

    2001-01-01

    Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.

  12. An Insight into Flotation Chemistry of Pyrite with Isomeric Xanthates: A Combined Experimental and Computational Study

    Directory of Open Access Journals (Sweden)

    Guihong Han

    2018-04-01

    Full Text Available The flotation chemistry between pyrite and isomeric xanthates (butyl xanthate and isobutyl xanthate was investigated by means of adsorption experiments, surface tension tests, and molecular dynamic simulations in this work. The flotation chemical results were confirmed and further interpreted by quantum chemical calculations. The experiment results demonstrated that the isobutyl xanthate exhibited superior adsorption capacity and surface activity than those of butyl xanthate in flotation chemistry. In addition, molecular dynamic simulations were simultaneously performed in constant number, constant volume and temperature (NVT, and constant number, constant volume, and pressure (NPT ensemble, indicating that the NPT ensemble was more suitable to the flotation system and the isobutyl xanthate was easier to be adsorbed on pyrite surface compared with butyl xanthate during an appropriate range of concentrations. Furthermore, the quantum chemical calculations elucidated that the isobutyl xanthate presented higher reactivity than that of the corresponding butyl xanthate based on the frontier molecular orbital theory of chemical reactivity, which was consistent with experimental and simulation results obtained. This work can provide theoretical guidance for an in-depth study of the flotation chemistry of pyrite with isomeric xanthates.

  13. Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances

    Directory of Open Access Journals (Sweden)

    Sian M. La Vars

    2018-03-01

    Full Text Available A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM, photoemission electron microscopy (PEEM, time-of-flight secondary ion mass spectrometry (ToF-SIMS and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II sulfide to Fe(III oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.

  14. Acid-base properties of a limed pyritic overburden during simulated weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R. [South Dakota State University, Brookings, SD (United States). Plant Science Dept.

    1997-11-01

    Surface-mine reclamation is often hindered by the formation of acid mine soil and acid mine drainage from FeS{sub 2} oxidation. Surface soils containing FeS{sub 2} are often treated with crushed limestone (predominately CaCO{sub 3}) to prevent aid minesoil formation. The main objective of this study was to evaluate the long-term effectiveness of liming pyritic minesoil to prevent the formation of acid minesoil and acid mine drainage. Pyritic minesoils that did not receive lime became acidic very rapidly and produced acidic leachate. Almost all of the FeS{sub 2} in this treatment oxidized during the first 200 d. The addition of lime at a rate of 25% of the theoretical acid-base account (ABA) significantly slowed FeS{sub 2} oxidation, but rapid oxidation ensued after the added lime was neutralized. Treatments receiving a liming rate of 50% ABA or greater remained neutral to alkaline throughout the study. Acid-base values and residual FeS{sub 2}-CO{sub 3} data, however, indicate that the lime was dissolving from the system faster than the FeS{sub 2} was oxidizing, and all the treatments would eventually become acidic. The results indicate that the liming of a pyritic overburden to an ABA of 125% is not a sustainable solution to preventing acid minesoil and acid mine drainage. 25 refs., 6 figs., 3 tabs.

  15. In situ remediation of hexavalent chromium with pyrite fines : bench scale demonstration

    International Nuclear Information System (INIS)

    Cathum, S.; Wong, W.P.; Brown, C.E.

    2002-01-01

    An in situ remediation technique for chromium contaminated soil with pyrite fines was presented. Past industrial activities and lack of disposal facilities have contributed to a serious problem dealing with chromium, which cannot be eliminated from the environment because it is an element. Both bench-scale and laboratory testing was conducted to confirm the efficiency of the proposed process which successfully converted Cr(VI) into Cr(III) in soil and water. Cr(III) is less toxic and immobile in the environment compared to Cr(VI) which moves freely in the soil matrix, posing a risk to the groundwater quality. pH in the range of 2.0 to 7.6 has no effect on the reactivity of pyrite towards Cr(VI). The optimization of the bench-scale treatment resulted in a large volume of chromium waste, mostly from the control experiments and column hydrology testing. These waste streams were treated according to municipal guidelines before disposal to the environment. Samples of chromium waste before and after treatment were analyzed. Cr (VI) was completely mineralized to below guideline levels. It was determined that several conditions, including contact time between pyrite and Cr(VI), are crucial for complete mineralization of Cr(VI). 13 refs., 8 tabs., 9 figs

  16. Isothermal Oxidation of Magnetite to Hematite in Air and Cyclic Reduction/Oxidation Under Carbon Looping Combustion Conditions

    Science.gov (United States)

    Simmonds, Tegan; Hayes, Peter C.

    2017-12-01

    In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.

  17. Synthesis of Ru doped hematite nanorods for application as photo-anode material in a photoelectrochemical cell (PEC)

    Energy Technology Data Exchange (ETDEWEB)

    Ndlangamandla, C. L. [University of Zululand, Department of Physics and Engineering (South Africa); Bharuth-Ram, K., E-mail: kbr@tlabs.ac.za [Durban University of Technology, Physics Department (South Africa); Ngom, B. D.; Maaza, M. [iThemba LABS, Materials Research Department (South Africa)

    2017-11-15

    Nanostructured thin films of hematite doped with different concentrations of ruthenium were grown on fluorine doped tin oxide glass substrates using the aqueous chemical growth method. On further heat treatment at 500 {sup ∘}C the structures morphed into hematite nanorods (NRs). The Ru concentration in the NRs was controlled by varying the Ru concentration in the RuCl {sub 3}⋅H{sub 2}O precursors. Scanning Electron Microscopy confirmed the formation of the hematite nanorods, while. X-ray diffraction and Mössbauer spectroscopy (MS) data provided clear evidence of the crystallinity of the nanorods and incorporation of ruthenium in the hematite nanorod structure. The band gap of the Ru-doped hematite NRs, estimated from UV-Vis optical absorption intensity vs photon energy curves, were found to be directly related to the Ru concentration. For concentrations in the range 6–30 mg the band gaps are in the range well suited to drive the water splitting process in a photoelectrochemical cell without application of an external bias.

  18. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.

    Science.gov (United States)

    Smart, Tyler J; Ping, Yuan

    2017-10-04

    Hematite (α-Fe 2 O 3 ) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe 2 O 3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.

  19. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.

    Science.gov (United States)

    Niu, Xiaopeng; Ruan, Renman; Xia, Liuyin; Li, Li; Sun, Heyun; Jia, Yan; Tan, Qiaoyi

    2018-02-27

    When it comes to Pb-Zn ores with high amounts of pyrite, the major problem encountered is the low separation efficiency between galena and pyrite. By virtue of high dosage of lime and collector sodium diethyl dithiocarbamate (DDTC), pyrite and zinc minerals are depressed, allowing the galena to be floated. However, there have been significant conflicting reports on the flotation behavior of galena at high pH. In this context, correlation of the surface adsorption and oxidation with the floatability difference of galena and pyrite in high-alkaline lime systems would be a key issue for process optimization. Captive bubble contact angle measurements were performed on freshly polished mineral surfaces in situ exposed to lime solutions of varying pH as a function of immersion time. Furthermore, single mineral microflotation tests were conducted. Both tests indicated that the degree of hydrophobicity on the surfaces of galena and pyrite increased in the presence of DDTC at natural or mild pulp pH. While in a saturated lime solution, at pH 12.5, DDTC only worked for galena, but not for pyrite. Surface chemistry analysis by time-of-flight secondary ion mass spectrometry (Tof-SIMS) confirmed the preference of DDTC on the galena surface at pH 12.5, which contributed to a merit recovery. Further important evidence through measurements of Tof-SIMS, ion chromatography, and high-performance liquid chromatography indicated that in high-alkaline lime systems, the merit floatability of galena could exclude the insignificant contribution of elemental sulfur (S 8 ) and was dominantly attributed by the strong adsorption of DDTC. In contrast, the poor flotation response of pyrite at high pH was due to the prevailing adsorption of CaOH + species. This study provides an important surface chemistry evidence for a better understanding of the mechanism on the better selectivity in the galena-pyrite separation adopting high-alkaline lime systems.

  20. Short communication: Adverse effect of surface-active reagents on the bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans.

    Science.gov (United States)

    Huerta, G; Escobar, B; Rubio, J; Badilla-Ohlbaum, R

    1995-09-01

    Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at ≤ 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite.

  1. Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite

    International Nuclear Information System (INIS)

    Merino, J. L.; Saez, R. M.

    1974-01-01

    This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs

  2. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific

    Science.gov (United States)

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.

    2008-01-01

    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base

  3. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  4. Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite

    Science.gov (United States)

    Pisarzowska, Agnieszka; Berner, Zsolt A.; Racki, Grzegorz

    2014-07-01

    Pyrite geochemistry (isotope and trace element composition, degree of pyritization, S/Corg ratio) was used in context of selected lithogeochemical parameters (major and trace elements, including sulphur, organic carbon, and δ13C of carbonate carbon) to constrain fluctuations in depositional conditions during the Early to Middle Frasnian carbon isotopic perturbation (punctata Event) in the Kostomłoty Basin, Poland. Based on the ratio between the sum of oxyanionic elements and transition metals in pyrite, a new proxy parameter (index of syngenetic pyrite, ISYP) is proposed for assessing the relative amount of syngenetic pyrite in a sample. The distribution of the ISYP along the Kostomłoty - Małe Górki section (upper Szydłówek to the basal Kostomłoty beds) is in concert with conclusions inferred from paleoecologic data and other geochemical parameters (degree of pyritization, S/Corg, δ34Spyrite). According to these, the lower segment of the Szydłówek Beds was deposited in a normally oxygenated environment, but undergoing increasing primary productivity in surface water, as indicated by an increase in δ13Ccarb and in Cu/Zr ratio in bulk rock, which triggered the periodic deposition of sediments slightly enriched in organic matter, notably within the pyrite-ammonoid level (= Goniatite Level). Fluctuating, but in general high S/Corg ratios, DOPR values and ISYP values suggest that during this time - against the background of a generally dysoxic environment - shorter or longer lasting episodes of more restricted (anoxic and possibly even euxinic) bottom water conditions developed. Low sedimentation rates enabled a continuous and practically unlimited supply of sulphate during bacterial sulphate reduction (BSR), which in turn led to a strong depletion of pyrite sulphur in 34S in this interval (constantly around -29‰). In contrast, below and above the Goniatite Level, higher δ34S values (up to + 3‰), are compatible with closed system conditions and higher

  5. Pressure response of vacancy ordered maghemite (γ-Fe2O3) and high pressure transformed hematite (α-Fe2O3)

    International Nuclear Information System (INIS)

    Hearne, Giovanni; Pischedda, Vittoria

    2012-01-01

    Combined XRD and Mössbauer effect spectroscopy studies to high pressures of ∼30 GPa of vacancy ordered maghemite are presented. The vacancy ordered superstructure is robust and remains intact up to the pressure-induced onset transition to hematite at 13–16 GPa. The pressure transformed hematite is shown to be crystallographically textured, unlike the randomised low pressure maghemite phase. This arises out of a pressure or stress instigated topotactic transformation of the cubic-spinel to hexagonal-corundum structure. The textured sample permits us to obtain information on the spin reorientation behavior of the pressure transformed hematite in compression and decompression sequences. Spin reorientation is restricted to ∼15° over wide pressure ranges, attributable to the effect of entrapped vacancies in the high pressure structure. Thus there are structural and magnetic peculiarities specific to pressure transformed hematite not evident in pressurized hematite starting material. These are triggered by the maghemite→hematite transformation. - Graphical abstract: Pressure instigated topotactic transformation of vacancy ordered γ-Fe 2 O 3 →α-Fe 2 O 3 . There is restricted spin (B hf ) reorientation in the new pressure transformed hematite due to entrapped vacancies. The change in direction of V zz signifies a distortion of the FeO 6 octahedral local environment. Highlights: ► Robust vacancy ordered superstructure in maghemite to high pressures. ► Pressure instigated topotactic transformation to hematite and subsequent texture. ► Defect trapping in the pressure transformed hematite. ► Entrapped defects restricts spin reorientation in pressure transformed hematite. ► Contrasting behavior with pressurized hematite starting material.

  6. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    Directory of Open Access Journals (Sweden)

    Nedim Ay Ahmet

    2011-01-01

    Full Text Available Abstract A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  7. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites.

    Science.gov (United States)

    Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul

    2011-02-03

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  8. Hematite Nanoparticles-Modified Electrode Based Electrochemical Sensing Platform for Dopamine

    Science.gov (United States)

    Zangeneh Kamali, Khosro; Alagarsamy, Pandikumar; Huang, Nay Ming; Ong, Boon Hoong; Lim, Hong Ngee

    2014-01-01

    Hematite (α-Fe2O3) nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN)6]3−/4− redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8) by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0–2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0–35 μM with LoD of 236 nM for DA. PMID:25136664

  9. Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals

    Science.gov (United States)

    Peng, Shaomin; Yu, Lin; Lan, Bang; Sun, Ming; Cheng, Gao; Liao, Shuhuan; Cao, Han; Deng, Yulin

    2016-12-01

    We present a facile method for the fabrication of hematite nanocrystal-carbon cloth (Fe2O3-CC) composite. Hierarchical manganite is chosen as the sacrificial precursor, that does not contribute to the component of final iron oxide but can be in situ dissolved by the acid produced from the Fe3+ hydrolysis. This method effectively enhances the specific surface area and conductivity of hematite (Fe2O3) by attaching Fe2O3 nanocrystals (around 5 nm) firmly on the surface of carbon fibers. The obtained Fe2O3-CC can be directly used as a binder-free electrode for a supercapacitor. Interestingly, the composite electrode exhibits synergistic electrochemical capacitance (electrochemical double-layer capacitance and pseudo-capacitance). It manifests a very high areal capacitance of 1.66 F cm-2 (1660 F g-1) at 2 mA cm-2 and excellent cycling performance at large current densities (88.6% retention at 30 mA cm-2 after 5000 cycles) in a three-electrode testing system, which is among the best performances reported in the literature. Importantly, when fabricated as a solid-state flexible symmetric supercapacitor it still shows a maximum energy density of 8.74 mW h cm-3 and power density of 253.9 mW cm-3. Additionally, its good flexibility makes it suitable for portable devices.

  10. Hematite Nanoparticles-Modified Electrode Based Electrochemical Sensing Platform for Dopamine

    Directory of Open Access Journals (Sweden)

    Khosro Zangeneh Kamali

    2014-01-01

    Full Text Available Hematite (α-Fe2O3 nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN6]3−/4− redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8 by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0–2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0–35 μM with LoD of 236 nM for DA.

  11. Reversibility of sorption of plutonium-239 onto hematite and goethite colloids

    International Nuclear Information System (INIS)

    Lu, N.; Cotter, C.R.; Kitten, H.D.; Bentley, J.; Triay, I.R.

    1998-01-01

    Laboratory batch sorption experiments were conducted to evaluate: (1) sorption of plutonium-239 ( 239 Pu) on different iron oxide colloids (hematite and geothite), (2) sorption kinetics of colloidal Pu(IV) and soluble Pu(V) onto these two colloids, and (3) desorption of colloidal Pu(IV) and soluble Pu(V) from 239 Pu-loaded colloids as a function of time. Natural groundwater and carbonate-rich synthetic groundwater were used in this study. To examine the possible influence of bicarbonate on 239 Pu sorption, an additional set of experiments was conducted in sodium nitrate (NaNO 3 ) solutions under carbon dioxide free environments. Our results show that colloidal Pu(IV) as well as soluble Pu(V) was rapidly adsorbed by hematite and goethite colloids in both natural and synthetic groundwater. The amount of 239 Pu adsorbed by both iron oxide colloids in synthetic groundwater was higher than in natural groundwater. The presence of carbonate did not influence the sorption of 239 Pu. While sorption of soluble Pu(V) is a slow process, sorption of colloidal Pu(IV) occurs rapidly. Desorption of Pu from iron oxide colloids is much slower than the sorption processes. Our findings suggest that different sorption and desorption behaviors of 239 Pu by iron oxide colloids in groundwater may facilitate the transport of 239 Pu along potential flowpaths from the areas contaminated by radionuclide and release to the accessible environment. (orig.)

  12. Synthesis and characterization of hematite pigment obtained from a steel waste industry.

    Science.gov (United States)

    Prim, S R; Folgueras, M V; de Lima, M A; Hotza, D

    2011-09-15

    Pigments that meet environmental and technology requirements are the focus of the research in the ceramic sector. This study focuses on the synthesis of ceramic pigment by encapsulation of hematite in crystalline and amorphous silica matrix. Iron oxide from a metal sheet rolling process was used as chromophore. A different content of hematite and silica was homogenized by conventional and high energy milling. The powders obtained after calcinations between 1050 and 1200 °C for 2h were characterized by X-ray diffraction and SEM analysis. The pigments were applied to ceramic enamel and porcelain body. The effect of pigment was measured by comparing L*a*b* values of the heated samples. Results showed that the color developed is influenced by variables such as oxide content employed, conditions of milling and processing temperature. The results showed that the use of pigment developed does not interfere in microstructural characteristics of pigmented material. The best hue was obtained from samples with 15 wt% of chromophore, heated at 1200 °C in amorphous silica matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Interaction of Zn(II) with hematite nanoparticles and microparticles: Part 2. ATR-FTIR and EXAFS study of the aqueous Zn(II)/oxalate/hematite ternary system.

    Science.gov (United States)

    Ha, Juyoung; Trainor, Thomas P; Farges, François; Brown, Gordon E

    2009-05-19

    Sorption of Zn(II) to hematite nanoparticles (HN) (av diam=10.5 nm) and microparticles (HM) (av diam=550 nm) was studied in the presence of oxalate anions (Ox2-(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2-(aq) concentration ratio (R=[Zn(II)(aq)]tot/[Ox2-(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)](tot)system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot>4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]totternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R=0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot>or=4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

  14. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments

    International Nuclear Information System (INIS)

    Tichomirowa, Marion; Junghans, Manuela

    2009-01-01

    Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO 4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O 2 ) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O 2 ) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO 4 and water was observed over a pH range of 0-2 only at 50 deg. C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 deg. C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T ≤ 25 deg. C, pH ≥ 3) for decades. Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O 2 to pyrite surface sites. The sorption of molecular O 2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO 4 . The calculated bulk contribution of atmospheric O 2 in the dissolved SO 4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O 2 in the early-formed sulfates, chemisorption and electron transfer of molecular O 2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction

  15. The application of Lorentz transmission electron microscopy to the study of lamellar magnetism in hematite-ilmenite

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Dunin-Borkowski, Rafal E.; Asaka, T

    2009-01-01

    . However, the magnitude of the experimental contrast is higher than that in the simulations, suggesting that an alternative origin for the observed asymmetry cannot be ruled out. Electron tomography was used to show that the lamellae have lens-like shapes and that (001) planes make up a significant...... in hematite. The likelihood that lamellar magnetism may be responsible for this contrast is assessed using simulations that incorporate interfacial magnetic moments on the (001) basal planes of hematite and ilmenite. The simulations suggest qualitatively that the asymmetric contrast is magnetic in origin...

  16. Iberian Pyrite Belt Subsurface Life (IPBSL), a drilling project in a geochemical Mars terrestrial analogue

    Science.gov (United States)

    Amils, R.; Fernández-Remolar, D. C.; Parro, V.; Manfredi, J. A.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Gómez-Ortiz, D.; Briones, C.; Gómez, F.; García, M.; Rodríguez, N.; Sanz, J. L.

    2012-09-01

    Iberian Pyrite Belt Subsurface Life (IPBSL) is a drilling project specifically designed to characterize the subsurface ecosystems operating in the Iberian Pyrite Belt (IPB), in the area of Peña de Hierro, and responsible of the extreme acidic conditions existing in the Rio Tinto basin [1]. Rio Tinto is considered a good geochemical terrestrial analogue of Mars [2, 3]. A dedicated geophysical characterization of the area selected two drilling sites (4) due to the possible existence of water with high ionic content (low resistivity). Two wells have been drilled in the selected area, BH11 and BH10, of depths of 340 and 620 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. Preliminary results showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite (sulfates and ferric iron). Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors (ferrous iron, nitrite in addition of the metal sulfides), electron acceptors (sulfate, nitrate, ferric iron) as well as variable concentration of metabolic organic acids (mainly acetate, formate, propionate and oxalate), which are strong signals of the presence of active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. The system is driven by oxidants that appear to be provided by the rock matrix, only groundwater is needed to launch microbial metabolism. The geological, geomicrobiological and molecular biology analysis which are under way, should allow the characterization of this ecosystem of paramount interest in the design of an astrobiological underground Mars exploration mission in the near future.

  17. Strategies for Reduced Acid and Metalliferous Drainage by Pyrite Surface Passivation

    Directory of Open Access Journals (Sweden)

    Gujie Qian

    2017-03-01

    Full Text Available Acid and metalliferous drainage (AMD is broadly accepted to be a major global environmental problem facing the mining industry, requiring expensive management and mitigation. A series of laboratory-scale kinetic leach column (KLC experiments, using both synthetic and natural mine wastes, were carried out to test the efficacy of our pyrite passivation strategy (developed from previous research for robust and sustainable AMD management. For the synthetic waste KLC tests, initial treatment with lime-saturated water was found to be of paramount importance for maintaining long-term circum-neutral pH, favourable for the formation and preservation of the pyrite surface passivating layer and reduced acid generation rate. Following the initial lime-saturated water treatment, minimal additional alkalinity (calcite-saturated water was required to maintain circum-neutral pH for the maintenance of pyrite surface passivation. KLC tests examining natural potentially acid forming (PAF waste, with much greater peak acidity than that of the synthetic waste, blended with lime (≈2 wt % with and without natural non-acid-forming (NAF waste covers, were carried out. The addition of lime and use of NAF covers maintained circum-neutral leachate pH up to 24 weeks. During this time, the net acidity generated was found to be significantly reduced by the overlying NAF cover. If the reduced rate of acidity production from the natural PAF waste is sustained, the addition of smaller (more economically-feasible amounts of lime, together with application of NAF wastes as covers, could be trialled as a potential cost-effective AMD mitigation strategy.

  18. Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO 2

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Duane D.; Siriwardane, Ranjani

    2013-08-15

    Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO{sub 2} stream, reducing the energy penalty of CO{sub 2} separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO{sub 2}-promoted Fe{sub 2}O{sub 3}-hematite oxygen carrier suitable for the methane CLC process. Composition of CeO{sub 2} is between 5 and 25 wt % and is lower than what is generally used for supports in Fe{sub 2}O{sub 3} carrier preparations. The incorporation of CeO{sub 2} to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO{sub 2} and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO{sub 2} enhances the reaction capacity of the Fe{sub 2}O{sub 3} oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 times as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO{sub 2} with methane forming intermediates, which are reactive for extracting oxygen from Fe{sub 2}O{sub 3} at a considerably faster rate than the rate of the direct reaction of Fe{sub 2}O{sub 3} with methane. These studies reveal that 5 wt % CeO{sub 2}/Fe{sub 2}O{sub 3} gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed mode) suggest the methane reacts initially with CeO{sub 2} lattice oxygen to form partial oxidation products (CO + H{sub 2}), which continue to react with oxygen from neighboring Fe{sub 2}O{sub 3}, leading to its complete oxidation to form CO{sub 2}. The reduced cerium oxide promotes the methane decomposition reaction to form C + H{sub 2}, which continue to

  19. The recovery of gold and pyrite from a residue dump at Crown Mines

    International Nuclear Information System (INIS)

    Keleghan, W.

    1976-01-01

    The application of ore-dressing methods to a residue dump at Crown Mines has been examined. The use of either single-stage or double-stage gravity concentration is advocated for the recovery of the gold. Flotation and wet high-intensity magnetic separation (WHIMS) are not recommended. The two-stage gravity process facilitates the recovery of most of the pyrite in the residue (over 70 per cent) at commercial grade (40 per cent sulphur), but sacrifices some of the gold obtainable by a single-stage operation. There is little prospect of the commercial recovery of uranium from the dump at Crown Mines

  20. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  1. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine.

    Science.gov (United States)

    Khataee, Alireza; Fathinia, Siavash; Fathinia, Mehrangiz

    2017-01-01

    Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2h to 6h, in the constant milling speed of 320rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) confirmed the production of pyrite nanoparticles during 6h of ball milling with the average size distribution of 20-80nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5g/L, SSZ concentration of 10mg/L and reaction time of 30min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir-Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl - , CO 3 2- and SO 4 2- was investigated on the L-H reaction rate (k r ) and adsorption (K s ) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H 2 O 2 and K 2 S 2 O 8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K 2 S 2 O 8 and H 2 O 2 increased the SSZ removal efficiency, due to the formation of SO 4 - and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  3. Hematite Spherules in Basaltic Tephra Altered Under Aqueous, Acid-Sulfate Conditions on Mauna Kea Volcano, Hawaii: Possible Clues for the Occurrence of Hematite-Rich Spherules in the Burns Formation at Meridiani Planum, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Graff, T. G.; Arvidson, R. E.; Bell, J. F., III; Squyres, S. W.; Mertzman, S. A.; Gruener, J. E.; Golden, D. C.; Robinson, G. A.

    2005-01-01

    Iron-rich spherules (>90% Fe2O3 from electron microprobe analyses) approx.10-100 microns in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe/Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or /OH. The transmission Moessbauer spectrum of a spherule-rich separate is dominated by a hematite (alpha-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al(3+) for Fe(3+) substitution and structural H2O and/or /OH. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.

  4. Influence of Sulfobacillus thermosulfidooxidans on Initial Attachment and Pyrite Leaching by Thermoacidophilic Archaeon Acidianus sp. DSM 29099

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2016-07-01

    Full Text Available At the industrial scale, bioleaching of metal sulfides includes two main technologies, tank leaching and heap leaching. Fluctuations in temperature caused by the exothermic reactions in a heap have a pronounced effect on the growth of microbes and composition of mixed microbial populations. Currently, little is known on the influence of pre-colonized mesophiles or moderate thermophiles on the attachment and bioleaching efficiency by thermophiles. The objective of this study was to investigate the interspecies interactions of the moderate thermophile Sulfobacillus thermosulfidooxidans DSM 9293T and the thermophile Acidianus sp. DSM 29099 during initial attachment to and dissolution of pyrite. Our results showed that: (1 Acidianus sp. DSM 29099 interacted with S. thermosulfidooxidansT during initial attachment in mixed cultures. In particular, cell attachment was improved in mixed cultures compared to pure cultures alone; however, no improvement of pyrite leaching in mixed cultures compared with pure cultures was observed; (2 active or inactivated cells of S. thermosulfidooxidansT on pyrite inhibited or showed no influence on the initial attachment of Acidianus sp. DSM 29099, respectively, but both promoted its leaching efficiency; (3 S. thermosulfidooxidansT exudates did not enhance the initial attachment of Acidianus sp. DSM 29099 to pyrite, but greatly facilitated its pyrite dissolution efficiency. Our study provides insights into cell-cell interactions between moderate thermophiles and thermophiles and is helpful for understanding of the microbial interactions in a heap leaching environment.

  5. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF.

    Science.gov (United States)

    Chia, Chung-Lim; Avendaño, Carlos; Siperstein, Flor R; Filip, Sorin

    2017-10-24

    ReaxFF-based molecular dynamics simulations are used in this work to study the effect of the polarity of adsorbed molecules in the liquid phase on the structure and polarization of hematite (α-Fe 2 O 3 ). We compared the adsorption of organic molecules with different polarities on a rigid hematite surface and on a flexible and polarizable surface. We show that the displacements of surface atoms and surface polarization in a flexible hematite model are proportional to the adsorbed molecule's polarity. The increase in electrostatic interactions resulting from charge transfer in the outermost solid atoms in a flexible hematite model results in better-defined adsorbed layers that are less ordered than those obtained assuming a rigid solid. These results suggest that care must be taken when parametrizing empirical transferable force fields because the calculated charges on a solid slab in vacuum may not be representative of a real system, especially when the solid is in contact with a polar liquid.

  7. Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process

    Directory of Open Access Journals (Sweden)

    Haithem Bel Hadjltaief

    2018-06-01

    Full Text Available This paper describes a simple and low-cost process for the degradation of 4-Chlorophenol (4-CP from aqueous solution, using natural Tunisian Hematite (M1 and Siderite (M2. Two natural samples were collected in the outcroppings of the Djerissa mining site (Kef district, northwestern Tunisia. Both Hematite and Siderite ferrous samples were characterized using several techniques, including X-Ray Diffraction (XRD, Nitrogen Physisorption (BET, Infrared Spectroscopy (FTIR, H2-Temperature Programmed Reduction (H2-TPR, Scanning Electronic Microscopy (SEM linked with Energy Dispersive X-ray (EDS and High-Resolution Transmission Electron Microscopy (HRTEM. Textural, structural and chemical characterization confirmed the presence of Hematite and Siderite phases with a high amount of iron on the both surface materials. Their activity was evaluated in the oxidation of 4-CP in aqueous medium under heterogeneous photo-Fenton process. Siderite exhibited higher photocatalytic oxidation activity than Hematite at pH 3. The experimental results also showed that 100% conversion of 4-CP and 54% TOC removal can be achieved using Siderite as catalyst. Negligible metal leaching and catalyst reutilization without any loss of activity point towards an excellent catalytic stability for both natural catalysts.

  8. Role of Ion Bombardment, Film Thickness and Temperature of Annealing on PEC Activity of Very-thin Film Hematite .

    Czech Academy of Sciences Publication Activity Database

    Kment, Š.; Čada, M.; Hubička, Z.; Krýsa, J.; Kmentová, Hana; Olejníček, J.; Zlámalová Cílová, Z.; Zbořil, R.

    2016-01-01

    Roč. 41, č. 27 (2016), s. 11547-11557 ISSN 0360-3199. [International Conference on Hydrogen Energy /1./. Aveiro, 20.07.2015-22.07.2015] Institutional support: RVO:67985858 Keywords : ion flux density * hematite photoanode * thin films Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.582, year: 2016

  9. Characteristics of NixFe1−xOy Electrocatalyst on Hematite as Photoanode for Solar Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Chih-Ping Yen

    2017-11-01

    Full Text Available The use of hematite as the photoanode for photoelectrochemical hydrogen production by solar energy has been actively studied due to its abundance, stability, and adequate optical properties. Deposition of an electrocatalyst overlayer on the hematite may increase kinetics and lower the onset potential for water splitting. NixFe1−xOy is one of the most effective electrocatalysts reported for this purpose. However, the condition and results of the previous reports vary significantly, and a comprehensive model for NixFe1−xOy/hematite is lacking. Here, we report a simple and novel chemical bath deposition method for depositing low-onset-potential NixFe1−xOy electrocatalyst on hematite. With a Ni percentage of 80% and an immersion time of 2 min, the as-prepared NixFe1−xOy overlayer raised the photovoltage from 0.2 V to 0.7 V, leading to a cathodic shift of the onset potential by 400 mV, while maintaining the same level of current density. The dependence of the electrochemical and photoelectrochemical characteristics of the photoanode on the condition of the electrocatalyst was studied systematically and explained based on energy level diagrams and kinetics.

  10. Photoanodes with fully controllable texture: the enhanced water splitting efficiency of thin hematite films exhibiting solely (110) crystal orientation

    Czech Academy of Sciences Publication Activity Database

    Kment, Š.; Schmuki, P.; Hubička, Zdeněk; Machala, L.; Kirchgeorg, R.; Liu, N.; Wang, L.; Lee, K.; Olejníček, Jiří; Čada, Martin; Gregora, Ivan; Zbořil, R.

    2015-01-01

    Roč. 9, č. 7 (2015), s. 7113-7123 ISSN 1936-0851 R&D Projects: GA MŠk LH12043 Institutional support: RVO:68378271 Keywords : hematite * iron oxide * texture * PEC water splitting * pulsed magnetron sputtering * conversion electron Mössbauer spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 13.334, year: 2015

  11. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    Science.gov (United States)

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-10-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.

  12. Nanocrack Formation in Hematite through the Dehydration of Goethite and the Carbon Infiltration from Biotar

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kashiwaya

    2010-01-01

    Full Text Available The cracks in nano-order are generated and propagated when the combined water is released during the dehydration. If the nanopore can be utilized for a reaction site, the overall reaction can be extremely accelerated. On the other hand, it is well known that woody biomass is an attractive alternative fuel for the reduction of CO2 emission. However, the process of biomass pyrolysis is disturbed by the tar which causes a clogging in gas tubing system. Hata et al. found that the tar was consumed almost 100% in the iron ore layer having nanocrack or nanopore. The nanocracks formed in hematite crystals after dehydration of goethite were about 4 nm in width, which is in excellent agreement with the result of BET measurement. When the carbon deposited from tar into the nanocracks, reduction reactions were occurred simultaneously. The deposited carbons completely infilled into the nanocracks and the void in the sample.

  13. Passivating surface states on water splitting hematite photoanodes with alumina overlayers

    KAUST Repository

    Le Formal, Florian; Té treault, Nicolas; Cornuz, Maurin; Moehl, Thomas; Grä tzel, Michael; Sivula, Kevin

    2011-01-01

    Hematite is a promising material for inexpensive solar energy conversion via water splitting but has been limited by the large overpotential (0.5-0.6 V) that must be applied to afford high water oxidation photocurrent. This has conventionally been addressed by coating it with a catalyst to increase the kinetics of the oxygen evolution reaction. However, surface recombination at trapping states is also thought to be an important factor for the overpotential, and herein we investigate a strategy to passivate trapping states using conformal overlayers applied by atomic layer deposition. While TiO2 overlayers show no beneficial effect, we find that an ultra-thin coating of Al2O3 reduces the overpotential required with state-of-the-art nano-structured photo-anodes by as much as 100 mV and increases the photocurrent by a factor of 3.5 (from 0.24 mA cm-2 to 0.85 mA cm-2) at +1.0 V vs. the reversible hydrogen electrode (RHE) under standard illumination conditions. The subsequent addition of Co2+ ions as a catalyst further decreases the overpotential and leads to a record photocurrent density at 0.9 V vs. RHE (0.42 mA cm-2). A detailed investigation into the effect of the Al2O3 overlayer by electrochemical impedance and photoluminescence spectroscopy reveals a significant change in the surface capacitance and radiative recombination, respectively, which distinguishes the observed overpotential reduction from a catalytic effect and confirms the passivation of surface states. Importantly, this work clearly demonstrates that two distinct loss processes are occurring on the surface of high-performance hematite and suggests a viable route to individually address them. © The Royal Society of Chemistry 2011.

  14. Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: hematite.

    Science.gov (United States)

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2013-05-14

    A better understanding of interaction with dissolved CO2 is required to rationally design and model the (photo)catalytic and sorption processes on metal (hydr)oxide nanoparticles (NPs) in aqueous media. Using in situ FTIR spectroscopy, we address this problem for rhombohedral 38 nm hematite (α-Fe2O3) nanoparticles as a model. We not only resolve the structures of the adsorbed carbonate species, but also specify their adsorption sites and their location on the nanoparticle surface. The spectral relationships obtained present a basis for a new method of characterizing the microscopic structural and acid-base properties (related to individual adsorption sites) of hydrated metal (hydr)oxide NPs using atmospherically derived CO2 as a probe. Specifically, we distinguish two carbonate species suggesting two principally different adsorption mechanisms. One species, which is more weakly adsorbed, has an inner-sphere mononuclear monodentate structure which is formed by a conventional ligand-exchange mechanism. At natural levels of dissolved carbonate and pH from 3 to 11, this species is attached to the most acidic/reactive surface cations (surface states) associated with ferrihydrite-like surface defects. The second species, which is more strongly adsorbed, presents a mixed C and O coordination of bent CO2. This species uniquely recognizes the stoichiometric rhombohedral {104} facets in the NP texture. Like in gas phase, it is formed through the surface coordination of molecular CO2. We address how the adsorption sites hosting these two carbonate species are affected by the annealing and acid etching of the NPs. These results support the nanosize-induced phase transformation of hematite towards ferrihydrite under hydrous conditions, and additionally show that the process starts from the roughened areas of the facet intersections.

  15. Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Samuel Bayham

    2017-08-01

    Full Text Available Chemical looping combustion is considered an indirect method of oxidizing a carbonaceous fuel, utilizing a metal oxide oxygen carrier to provide oxygen to the fuel. The advantage is the significantly reduced energy penalty for separating out the CO2 for reuse or sequestration in a carbon-constrained world. One of the major issues with chemical looping combustion is the cost of the oxygen carrier. Hematite ore is a proposed oxygen carrier due to its high strength and resistance to mechanical attrition, but its reactivity is rather poor compared to tailored oxygen carriers. This problem is further exacerbated by methane cracking, the subsequent deposition of carbon and the inability to transfer oxygen at a sufficient rate from the core of the particle to the surface for fuel conversion to CO2. Oxygen needs to be readily available at the surface to prevent methane cracking. The purpose of this work was to demonstrate the use of steam to overcome this issue and improve the conversion of the natural gas to CO2, as well as to provide data for computational fluid dynamics (CFD validation. The steam will gasify the deposited carbon to promote the methane conversion. This work studies the performance of hematite ore with methane and steam mixtures in a 5 cm fluidized bed up to approximately 140 kPa. Results show an increased conversion of methane in the presence of steam (from 20–45% without steam to 60–95% up to a certain point, where performance decreases. Adding steam allows the methane conversion to carbon dioxide to be similar to the overall methane conversion; it also helped to prevent carbon accumulation from occurring on the particle. In general, the addition of steam to the feed gas increased the methane conversion. Furthermore, the addition of steam caused the steam methane reforming reaction to form more hydrogen and carbon monoxide at higher steam and methane concentrations, which was not completely converted at higher concentrations and

  16. Passivating surface states on water splitting hematite photoanodes with alumina overlayers

    KAUST Repository

    Le Formal, Florian

    2011-01-24

    Hematite is a promising material for inexpensive solar energy conversion via water splitting but has been limited by the large overpotential (0.5-0.6 V) that must be applied to afford high water oxidation photocurrent. This has conventionally been addressed by coating it with a catalyst to increase the kinetics of the oxygen evolution reaction. However, surface recombination at trapping states is also thought to be an important factor for the overpotential, and herein we investigate a strategy to passivate trapping states using conformal overlayers applied by atomic layer deposition. While TiO2 overlayers show no beneficial effect, we find that an ultra-thin coating of Al2O3 reduces the overpotential required with state-of-the-art nano-structured photo-anodes by as much as 100 mV and increases the photocurrent by a factor of 3.5 (from 0.24 mA cm-2 to 0.85 mA cm-2) at +1.0 V vs. the reversible hydrogen electrode (RHE) under standard illumination conditions. The subsequent addition of Co2+ ions as a catalyst further decreases the overpotential and leads to a record photocurrent density at 0.9 V vs. RHE (0.42 mA cm-2). A detailed investigation into the effect of the Al2O3 overlayer by electrochemical impedance and photoluminescence spectroscopy reveals a significant change in the surface capacitance and radiative recombination, respectively, which distinguishes the observed overpotential reduction from a catalytic effect and confirms the passivation of surface states. Importantly, this work clearly demonstrates that two distinct loss processes are occurring on the surface of high-performance hematite and suggests a viable route to individually address them. © The Royal Society of Chemistry 2011.

  17. Synthesis and properties of iridium-doped hematite ({alpha}-Fe{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Krehula, Stjepko, E-mail: krehul@irb.hr [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Stefanic, Goran [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Zadro, Kreso [Department of Physics, Faculty of Science, University of Zagreb, Bijenicka 32, 10000 Zagreb (Croatia); Kratofil Krehula, Ljerka [Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, 10000 Zagreb (Croatia); Marcius, Marijan; Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2012-12-25

    Highlights: Black-Right-Pointing-Pointer Ir-doped hematites were prepared by heating Ir-doped goethites. Black-Right-Pointing-Pointer Ir-doping in hematite led to an increase in unit cell and a decrease in crystallite size. Black-Right-Pointing-Pointer Ir-doping significantly affected magnetic, infrared and UV-Vis properties of hematite. Black-Right-Pointing-Pointer The Morin transition temperature increased with an increase in Ir-doping. Black-Right-Pointing-Pointer Ir ions brought about changes in the size and shape of the formed hematite particles. - Abstract: The effect of the incorporation of Ir{sup 3+} ions on the properties of {alpha}-Fe{sub 2}O{sub 3} formed by dehydroxylation of {alpha}-FeOOH was investigated using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), {sup 57}Fe Moessbauer, UV-Vis-NIR and FT-IR spectroscopies, SQUID magnetometer, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Pure and Ir-doped hematite samples were obtained by heating of pure and Ir-doped goethites ({alpha}-FeOOH) formed by precipitation from mixed Fe(III)-Ir(III) chloride solutions in a highly alkaline medium. The incorporation of Ir{sup 3+} ions into the {alpha}-Fe{sub 2}O{sub 3} structure led to changes in unit-cell dimensions, crystallinity, particle size and shape, as well as changes in the magnetic, infrared and UV-Vis properties. An increase in the temperature of the Morin transition with an increase in Ir-doping was observed by Moessbauer spectroscopy and magnetic measurements.

  18. Pristine and Al-doped hematite printed films as photoanodes of p-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Mirko, E-mail: mirko.congiu@fc.unesp.br [UNESP–Univ. Estadual Paulista, POSMAT-Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (Brazil); De Marco, Maria L.; Bonomo, Matteo [DC-FC-UNESP–Univ. Estadual Paulista (Brazil); Nunes-Neto, Oswaldo [UNESP–Univ. Estadual Paulista, POSMAT-Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (Brazil); Dini, Danilo [DC-FC-UNESP–Univ. Estadual Paulista (Brazil); Graeff, Carlos F.O. [UNESP–Univ. Estadual Paulista, POSMAT-Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (Brazil)

    2017-01-15

    We hereby propose a non-expensive method for the deposition of pure and Al-doped hematite photoanodes in the configuration of thin films for the application of dye-sensitized solar cells (DSSC). The electrodes have been prepared from hematite nanoparticles that were obtained by thermal degradation of a chemical precursor. The particles have been used in the preparation of a paste, suitable for both screen printing and doctor blade deposition. The paste was then spread on fluorine-doped tin oxide (FTO) to obtain porous hematite electrodes. The electrodes have been sensitized using N3 and D5 dyes and were characterized through current/voltage curves under simulated sun light (1 sun, AM 1.5) with a Pt counter electrode. Al-doping of hematite showed interesting changes in the physical and electrochemical characteristics of sensitized photoanodes since we could notice the growth of AlFe{sub 2}O{sub 4} (hercynite) as a secondary crystal phase into the oxides obtained by firing the mixtures of two chemical precursors at different molar ratios. Pure and Al-doped hematite electrodes have been used in a complete n-type DSSCs. The kinetics of charge transfer through the interface dye/electrolyte was studied and compared to that of a typical p-type DSSC based on NiO photocathodes sensitized with erythrosine B. The results suggest a potential application of both Fe{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}/AlFe{sub 2}O{sub 4} as photoanodes of a tandem DSSC.

  19. Soil pollution by a pyrite mine spill in Spain: evolution in time

    International Nuclear Information System (INIS)

    Aguilar, J.; Dorronsoro, C.; Fernandez, E.; Fernandez, J.; Garcia, I.; Martin, F.; Simon, M.

    2004-01-01

    Soil pollution was studied after the spill of the Aznalcollar pyrite mine between 1998 and 2001, analyzing As, Zn, Cd, Cu and Pb both in total concentrations as well as in soluble and bioavailable forms. The main remediation measures were: clean-up of the tailings and polluted soils, plus application of amendment materials (liming). The results indicate that, after three years, 50-70% of the acidic soils and 25-30% of the basic soils are still highly polluted in total arsenic. The limit of 0.04 mg kg -1 for water-soluble arsenic is exceeded in 15-20% of all soils. The EDTA-extractable arsenic (bioavailable) exceeds the limit of 2 mg kg -1 only in the acidic sectors. After clean-up, the homogenization of the upper 20-25 cm of the soils appears to be the most recommended measure in the reduction of pollution. - Capsule: Remediation measures carried out after the Aznalcollar pyrite mine spill were effective in the reduction of the pollution, although three years after the accident many areas are still polluted by As

  20. Microbial leaching of iron from pyrite by moderate thermophile chemolithotropic bacteria

    International Nuclear Information System (INIS)

    Ilyas, S.; Niazi, S.B.

    2007-01-01

    The present work was aimed at studying the bioleachability of iron from pyrite by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans (chemolithotroph) and an un-identified strain of acidophilic heterotroph (code 6A1TSB) isolated from local environments. As compared to inoculated flasks, dissolution of metal (due to acid leaching) was significantly low in the un-inoculated control flasks in all the experiments in ore. A decrease in the bioleaching activity was observed at the later stages of bioleaching of metal from ore. Among the strategies adopted to enhance the metal leaching rates, a mixed consortium of the metal adapted cultures of the above-mentioned bacteria was found to exhibit the maximum metal leaching efficiency. In all the flasks where high metal leaching rates were observed, concomitantly biomass production rates were also high indicating high growth rates. It showed that the metal bioleaching capability of the bacteria was associated with their growth. Pyrite contained 42% iron. (author)

  1. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    Science.gov (United States)

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.

    Science.gov (United States)

    Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R

    2015-07-07

    The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid.

  3. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Smestad, G.; Ennaoui, A.; Fiechter, S.; Tributsch, H.; Hofmann, W.K.; Birkholz, M. (Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Solare Energetik Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Materialforschung); Kautek, W. (Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany, F.R.))

    1990-03-01

    Photoactive iron pyrite (FeS{sub 2}) thin film layers have been synthesized by a simple method involving the reaction of Fe{sub 3}O{sub 4} or Fe{sub 2}O{sub 3} with elemental sulfur. The films were formed on a variety of different substrate materials by converting or sulfurizing iron oxide layers. The subsequent sulfur treatment of the oxide layers consisted of exposure of the films to gaseous sulfur in open or closed ampules at 350degC for 0.5-2 h. The morphology, composition and photoactivity of the films produced were checked using X-ray diffraction, X-ray photoelectron spectroscopy (ESCA), optical absorption, steady state and transient photoconductivity. The best films showed good crystallinity and purity with concurrent photoconductivity and photoelectrochemical response. The ability of this technique to produce photoactive material can be explained by interpretation of the Gibbs ternary phase diagram for the Fe-O-S system, and may be related to the production of photoactive pyrite in nature. A discussion is made as to the future improvement of the solar cell response by proper optimization of geometric and configurational properties. (orig.).

  4. Study of the pyritized surfaces of the carbon steel components in heavy water production facilities

    International Nuclear Information System (INIS)

    Radulescu, Maria; Parvan, Ioana; Lucan, Dumitra; Fulger, Manuela; Dinu, Alice; Blanatui, A.

    1998-01-01

    The components used in the Girldler Sulfide (GS) process of heavy water production are made of carbon steel covered by iron sulfide layers of different compositions (mackinawite, troilite, pyrrhotite or pyrite) of variable thicknesses. The most protective layers which provide an acceptable corrosion resistance of the subjacent metal are the mixtures of pyrrhotite and pyrite. In the present work, the corrosion resistance of carbon steel samples covered by different types of sulfides was investigated by the following methods: X ray diffraction, metallography and electrochemical methods (potential-dynamical and electrochemical impedance). In order to carry out the electrochemical measurements in the same conditions as those of the operation of carbon steel components in D 2 O production facilities, the experiments were performed with Na 2 S solutions, at pH=4 - 13 and S 2- concentration value between 1 and 1000 mg/l. The dependence of corrosion rate kinetics on pH and S 2- concentration of the testing solution was investigated for sulfide covered samples comparatively with the uncovered ones. Corrosion rates determined gravimetrically were compared with those determined by electrochemical measurements. The uniformity and thickness of the sulfide layers were checked by metallographic methods. The composition of the sulfides formed in various environment conditions was established by X-ray diffraction. Reaction mechanisms specific for sulfide formation environments have been proposed. (authors)

  5. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    KAUST Repository

    Cabán-Acevedo, Miguel

    2015-09-14

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS 2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm at overpotentials as low as 48mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n -p-p silicon micropyramids achieved photocurrents up to 35 mA cm at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  6. Thermodynamic Cconstraints on Coupled Carbonate-Pyrite Weathering Dynamics and Carbon Fluxes

    Science.gov (United States)

    Winnick, M.; Maher, K.

    2017-12-01

    Chemical weathering within the critical zone regulates global biogeochemical cycles, atmospheric composition, and the supply of key nutrients to terrestrial and aquatic ecosystems. Recent studies suggest that thermodynamic limits on solute production act as a first-order control on global chemical weathering rates; however, few studies have addressed the factors that set these thermodynamic limits in natural systems. In this presentation, we investigate the effects of soil CO2 concentrations and pyrite oxidation rates on carbonate dissolution and associated carbon fluxes in the East River watershed in Colorado, using concentration-discharge relationships and thermodynamic constraints. Within the shallow subsurface, soil respiration rates and moisture content determine the extent of carbonic acid-promoted carbonate dissolution through their modulation of soil pCO2 and the balance of open- v. closed-system weathering processes. At greater depths, pyrite oxidation generates sulfuric acid, which alters the approach to equilibrium of infiltrating waters. Through comparisons of concentration-discharge data and reactive transport model simulations, we explore the conditions that determine whether sulfuric acid reacts to dissolve additional carbonate mineral or instead reacts with alkalinity already in solution - the balance of which determines watershed carbon flux budgets. Our study highlights the importance of interactions between the chemical structure of the critical zone and the hydrologic regulation of flowpaths in determining concentration-discharge relationships and overall carbon fluxes.

  7. 57Fe Mössbauer analysis of the Upper Triassic-Lower Jurassic deep-sea chert: Paleo-redox history across the Triassic-Jurassic boundary and the Toarcian oceanic anoxic event

    International Nuclear Information System (INIS)

    Sato, Tomohiko; Isozaki, Yukio; Shozugawa, Katsumi; Seimiya, Kimiko; Matsuo, Motoyuki

    2012-01-01

    We investigated the paleo-redox change across the Triassic-Jurassic (T-J) boundary (∼200 Ma) and the Early Toarcian oceanic anoxic event (T-OAE; ∼183 Ma) recorded in the Upper Triassic to Lower Jurassic pelagic deep-sea cherts in the Inuyama area, Central Japan. The present 57 Fe Mössbauer spectroscopic analysis for these cherts identified five iron species, i.e., hematite (α-Fe 2 O 3 ), pyrite (FeS 2 ), paramagnetic Fe 3 +  , and two paramagnetic Fe 2 +  with different quadrupole splittings. The occurrence of hematite and pyrite in deep-sea cherts essentially indicates primary oxidizing and reducing depositional conditions, respectively. The results confirmed that oxidizing conditions persisted in deep-sea across the T-J boundary. In contrast, across the T-OAE, deep-sea environment shifted to reducing conditions. The first appearance of the gray pyrite-bearing chert marked the onset of the deep-sea oxygen-depletion in the middle Pliensbachian, i.e., clearly before the shallow-sea T-OAE.

  8. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.

    Science.gov (United States)

    Tao, Huang; Dongwei, Li

    2014-12-01

    This review outlines classic and current research, scientific documents and research achievements in bioleaching, particularly in respect of the bioleaching of chalcopyrite and pyrite. The diversity and commonality of the microbial leaching process can be easily studied through comparing the bioleaching mechanism and the application of these two metal sulfides. The crystal, electronic and surface structures of chalcopyrite and pyrite are summarized in detail in this paper. It determines the specific and complicated interaction pathways, kinetics of the atmospheric/aqueous oxidation, and the control process of bioleaching of the minerals as the precondition. Bioleaching of metal sulfides is performed by a diverse group of microorganisms and microbial communities. The species of the bacteria which have a significant effect on leaching ores are miraculously diverse. The newly identified acidophilic microorganisms with unique characteristics for efficient bioleaching of sulfidic minerals are increasing sharply. The cell-to-cell communication mechanisms, which are still implicit, elusive and intangible at present day, have gradually become a research hotspot. The different mineralogy characteristics and the acid solubility of the metal sulfides (e.g., chalcopyrite and pyrite) cause two different dissolution pathways, the thiosulfate and the polysulfide pathways. The bioleaching mechanisms are categorized by contact (an electrostatic attachment) and noncontact (planktonic) process, with emphasis on the produce of extracellular polymeric substances and formation of biofilm on the surface of the metal sulfides in this paper. The division of the direct and indirect effect are not adopted due to the redox chain, the reduction of the ferric iron and oxidation of the ferrous iron. The molecular oxygen is reduced by the electrons extracted from the specific metal sulfide, via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner

  9. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    Science.gov (United States)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  10. U-Pb isotope and trace element compositions of pyrites in the Black Reef: implications on their age and origin

    International Nuclear Information System (INIS)

    Barton, E.S.

    1990-01-01

    In the Black Reef Quartzite Formation of the Transvaal Supergroup two gold-bearing conglomerate facies have been recognized. The source of gold in these reefs has long been a matter of speculation. Although some ascribe the gold and pyrite to a hydrothermal origin, the prevailing opinion favours a detrital origin. As a possible source, the reworked underlying sub-outcrops of the Kimberly Reef horizons in the Central Rand group have been proposed. An investigation was undertaken with the aim of defining the Pb-isotopic and trace element signatures of morphologically different pyrite populations within the two Black Reef facies as well as for the underlying Kimberly Reef. 2 tabs

  11. S/Se ratio of pyrite from eastern Australian VHMS deposits: implication of magmatic input into volcanogenic hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Huston, D L [Geological Survey of Canada, Ottawa, ON (Canada); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Cooke, D R [Tasmania Univ., Sandy Bay, TAS (Australia)

    1994-12-31

    The proton microprobe was used to determine the concentrations of over twenty trace elements in pyrite grains from four volcanic-hosted massive sulphide (VHMS) deposits in eastern Australia. Of the elements determined, Se has the most potential in resolving important problems in the genesis of this class of ore deposits. This paper summarises analytical conditions, describes the distribution of Se in pyrite in VHMS deposits as determined in this and other studies, discusses the speciation of Se in hydrothermal fluids, and presents a genetic model on the relative contribution of magmatic versus sea water Se (and S) in VHMS systems. 2 refs., 1 fig.

  12. S/Se ratio of pyrite from eastern Australian VHMS deposits: implication of magmatic input into volcanogenic hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Huston, D.L. [Geological Survey of Canada, Ottawa, ON (Canada); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Cooke, D.R. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    The proton microprobe was used to determine the concentrations of over twenty trace elements in pyrite grains from four volcanic-hosted massive sulphide (VHMS) deposits in eastern Australia. Of the elements determined, Se has the most potential in resolving important problems in the genesis of this class of ore deposits. This paper summarises analytical conditions, describes the distribution of Se in pyrite in VHMS deposits as determined in this and other studies, discusses the speciation of Se in hydrothermal fluids, and presents a genetic model on the relative contribution of magmatic versus sea water Se (and S) in VHMS systems. 2 refs., 1 fig.

  13. Unpacking paleoenvironmental change across OAE2 using paired d34S records of pyrite and organic matter

    Science.gov (United States)

    Raven, M. R.; Gomes, M.; Fike, D. A.

    2017-12-01

    Pyrite sulfur isotopes have proven to be a powerful tool for reconstructing major changes in global redox state and the emergence of microbial metabolisms. Still, pyrite can be a challenging archive, as its formation depends on the availability of reactive iron species and can occur over multiple generations of sedimentary processes. Accordingly, pyrite δ34S records commonly have large point-to-point variability reflecting local processes. By pairing pyrite δ34S records with those of coexisting organic matter (OM), including both kerogens and extractable bitumens, we can begin to parse the various potential causes of this variability and gain greater insights into changes in the sedimentary paleoenvironment. Here, we present the first collection of records of OM δ34S for the Cretaceous, focusing on sections spanning Ocean Anoxic Event 2 (OAE2, 94 Mya), a period of globally widespread marine anoxia and carbon cycle disruption. In carbonates and shales from OAE2 in Pont d'Issole, France, pyrite and OM δ34S values vary in parallel throughout most of the section, consistent with their shared sulfide source. There are also distinct exceptions: In one interval, an excursion in pyrite δ34S is entirely absent from the organic sulfur record but associated with unusual organic sulfur redox speciation (by XAS), potentially reflecting later exposure to oxic porewaters. Across the core interval of shale deposition during OAE2, the offset between pyrite and OM δ34S values declines smoothly from +17.4 to -7.9‰, which we interpret in terms of changes in the speciation of detrital iron minerals that may have regional implications. We then compare these results with data for other well-characterized OAE2 sections, including Cismon (Italy), Tarfaya (Morocco), and the Demerara Rise (offshore Brazil), which represent environments with a variety of apparent redox states. These paired pyrite - OM δ34S profiles yield new information about how the local and global forcings

  14. Hematite (U-Th)/He thermochronometry constrains intraplate strike-slip faulting on the Kuh-e-Faghan Fault, central Iran

    Science.gov (United States)

    Calzolari, Gabriele; Rossetti, Federico; Ault, Alexis K.; Lucci, Federico; Olivetti, Valerio; Nozaem, Reza

    2018-03-01

    The Kuh-e-Faghan strike-slip fault system (KFF), located to the northern edge of the Lut Block in central Iran, developed through a Neogene-Quaternary pulsed history of eastward fault propagation and fault-related exhumation. This system is a consequence of the residual stresses transmitted from the Arabia-Eurasia convergent plate boundary. Here we integrate structural and textural analysis with new and previously published apatite fission-track (AFT) and apatite (U-Th)/He (apatite He) results, chlorite thermomentry, and hematite (U-Th)/He data from hematite-coated brittle fault surfaces to constrain the timing of tectonic activity and refine patterns of late Miocene-Pliocene burial and exhumation associated with the propagation of the KFF. Twenty-nine hematite (U-Th)/He (hematite He) dates from three striated hematite coated slip surfaces from the KFF fault core and damage zone yield individual dates from 12-2 Ma. Petrographic analysis and chlorite thermometry of a polyphase, fossil fluid system in the KFF fault core document that fluid circulation and mineralization transitioned from a closed system characterized by pressure solution and calcite growth to an open system characterized by hot hydrothermal (T = 239 ± 10 °C) fluids and hematite formation. Hematite microtextures and grain size analysis reveal primary and secondary syntectonic hematite fabrics, no evidence of hematite comminution and similar hematite He closure temperatures ( 60-85 °C) in each sample. Integration of these results with thermal history modeling of AFT and apatite He data shows that KFF activity in the late Miocene is characterized by an early stage of fault nucleation, fluid circulation, hematite mineralization, and eastward propagation not associated with vertical movement that lasted from 12 to 7 Ma. Hematite He, AFT, and apatite He data track a second phase of fault system activity involving fault-related exhumation initiating at 7 Ma and continuing until present time. Our new data

  15. Reconstructing Holocene hematite and goethite variations in the Indus Canyon to trace changes in the Asian monsoon system

    Science.gov (United States)

    Koehler, Cornelia; Clift, Peter; Pressling, Nicola; Limmer, David; Giosan, Liviu; Tabrez, Ali

    2010-05-01

    In order to study Holocene Asian monsoon variations, we reconstructed changes in chemical weathering by examining sediments from the Indus Canyon. During the late Holocene, the Asian monsoon system had periods of high and low intensities that influenced the civilisations living in its realm. For example, the demise of the Harappan civilisation has been linked to a weakened monsoon system around 4 ka. The sediments in the Indus Canyon, which originate from the River Indus and its Himalayan tributaries, provide an ideal, natural environmental archive of the South Asian monsoon system. In order to investigate the alternation between arid and humid monsoonal climatic conditions, variations are traced using the magnetic minerals hematite and goethite, which form under distinct environmental conditions: goethite is stable under humid conditions, whereas hematite forms from the dehydration of goethite under arid conditions. The two minerals are characterised and quantified using environmental magnetic measurements, as well as diffuse reflectance spectrometry. Combining both approaches will enable us to reconstruct variations in chemical weathering over time. Furthermore, because this is governed by temperature and the availability of moisture, our weathering record will allow us to understand monsoon variability during the Holocene and test whether summer rain intensity has been decreasing in SW Asia since 8 ka. In addition, the multi-component analysis of colour reflectance spectra identifies different mineral components including hematite/goethite, clay mineral mixtures, calcite and organics. We will present our results from the multi-sensor core logger equipped with a Minolta spectrometer, measuring both magnetic susceptibility and the optical properties of the split sediment cores. Initial results indicate the presence of hematite and goethite in the sediment. There is an increasing hematite content up the cores, indicating an aridification trend during the Holocene

  16. Reactivity of Dazomet, a Hydraulic Fracturing Additive: Hydrolysis and Interaction with Pyrite

    Science.gov (United States)

    Consolazio, N.; Lowry, G. V.; Karamalidis, A.; Hakala, A.

    2015-12-01

    The Marcellus Shale is currently the largest shale gas formation in play across the world. The low-permeability formation requires hydraulic fracturing to be produced. In this process, millions of gallons of water are blended with chemical additives and pumped into each well to fracture the reservoir rock. Although additives account for less than 2% of the fracking fluid mixture, they amount to hundreds of tons per frack job. The environmental properties of some of these additives have been studied, but their behavior under downhole conditions is not widely reported in the peer-reviewed literature. These compounds and their reaction products may return to the surface as produced or waste water. In the event of a spill or release, this water has the potential to contaminate surface soil and water. Of these additives, biocides may present a formidable challenge to water quality. Biocides are toxic compounds (by design), typically added to the Marcellus Shale to control bacteria in the well. An assessment of the most frequently used biocides indicated a need to study the chemical dazomet under reservoir conditions. The Marcellus Shale contains significant deposits of pyrite. This is a ubiquitous mineral within black shales that is known to react with organic compounds in both oxic and anoxic settings. Thus, the objective of our study was to determine the effect of pyrite on the hydrolysis of dazomet. Liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) was used to calculate the loss rate of aqueous dazomet. Gas chromatography-mass spectrometry (GC-MS) was used to identify the reaction products. Our experiments show that in water, dazomet rapidly hydrolyses in water to form organic and inorganic transformation products. This reaction rate was unaffected when performed under anoxic conditions. However, with pyrite we found an appreciable increase in the removal rate of dazomet. This was accompanied by a corresponding change in the distribution of observed

  17. Effects of various tailings covers on radon gas emanation from pyritic uranium tailings

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.

    1987-01-01

    Radon emanation studies were carried out at an inactive pyritic uranium tailings site in Elliot Lake, Ontario, Canada, to evaluate the effects of various existing dry and wet covers on radon flux rates. Measurements were taken using activated charcoal cartridges for various surface covers consisting of bare, vegetated, acidophilic moss with high degree of water saturation, compacted crushed rock and gravel, and winter snow. The results showed that at a given site, there was no significant difference in radon emanation rates between various tailings covers and bare tailings. In particular, no increase In radon emanation rates from vegetated areas compared to bare tailings was observed. Radon emanation rates varied spatially depending on tailings grain size, porosity, moisture content and on pressure and water table variations. The emanation rates were higher for tailings with low water contents compared to those for wet and moss covered tailings

  18. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal)

    Science.gov (United States)

    Rosa, Carlos; Rosa, Diogo; Matos, Joao; Relvas, Jorge

    2010-05-01

    The Iberian Pyrite Belt (IPB) is a massive sulfide province that is located in the south of Portugal and Spain, and hosts more than 90 massive sulfide deposits that amount to more than 1850 million metric tonnes of sulfide ore (Tornos, 2006). The ore deposits size, vary from ~1Mt to >100Mt (e.g. Neves Corvo and Aljustrel in Portugal, and Rio Tinto and Tharsis in Spain). The ore deposits are hosted by a submarine sedimentary and volcanic, felsic dominated, succession that constitutes the Upper Devonian to Lower Carboniferous Volcanic and Sedimentary Complex (VSC). The VSC ranges in thickness from approximately 600 to 1300 m (Tornos 2006). The VSC overlies the Phyllite-Quartzite Group (PQ) (Upper Devonian, base unknown) and is overlain by the Baixo Alentejo Flysch Group (Lower to Upper Carboniferous). The Lousal massive sulfide deposit is located in the western part of the IPB and occurs mostly interbedded with black mudstone. The VSC sequence at Lousal mine consists of a mudstone and quartzite sequence (PQ Group) in the lower part of the succession, over which a thick sequence of rhyolitic lavas (>300 m) occurs. Above the rhyolitic lavas there is a thick sequence of black and grey mudstone that hosts the massive sulfide ore bodies, and a rhyolitic sill. The upper part of the VSC sequence consists of a thick mudstone interval that hosts two thick basaltic units, locally with pillows. The rhyolites have small coherent cores, locally with flow bands, that grade to surrounding massive clastic intervals, with large lateral extent. The clasts show jigsaw-fit arrangement in many places and have planar or curviplanar margins and locally are perlitic at the margin. The top contact of these units is in most locations not exposed, which makes difficult to interpret the mode of emplacement. However, the thick clastic intervals, above described, are in accordance with quenching of volcanic glass with abundant water and therefore indicate that quenching of the rhyolites was the

  19. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  20. The quality and quantity of runoff and groundwater in two overburden dumps undergoing pyritic oxidation

    International Nuclear Information System (INIS)

    Daniel, J.A.; Harries, J.R.; Ritchie, A.I.M.

    1983-01-01

    The quality and quantity of runoff and seepage water from two waste rock dumps at the abandoned uranium mine at Rum Jungle, N.T., have been monitored over various time intervals since 1975. Both dumps contain pyrite which is oxidising and solubilising trace metals within the dumps. Results are presented for the quality and quantity of runoff from both dumps measured in the 1980-81 wet season. The rainfall/runoff characteristics of the two dumps measured during this wet season are similar and in good agreement with measurements made in previous wet seasons. Pollution loads in runoff were only a few per cent of pollution loads in water percolating through to the base of the dumps. The rainfall/runoff characteristics and the dominance of pollution loads in water percolating through the dumps are likely to apply to other similar waste rock dumps

  1. Energetic characterization of the photoactive FeS/sub 2/ (pyrite) interface

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Tributsch, H.

    1986-12-01

    The electronic properties of synthetic single crystalline pyrite (100) orientation are investigated. The spectral response of the photoconductivity was determined by the four point probe technique. The carrier concentration and the flat band potential are calculated from capacitance measurements, the minority carrier diffusion length is determined by photocurrent and capacitance vs voltage measurements. The results allow the construction of an energy band diagram for the FeS/sub 2//electrolyte contact. The parameters determined explain the high quantum efficiency (approx. 90%) obtained with FeS/sub 2//I/sup -/, I/sub 3//sup -/, photoelectrochemical cells (PECs). The reasons for the main deficiency (photopotentials not exceeding 200 mV at AM0) are elaborated: photogenerated charges in the interface shift the flatband potential and trap-assisted electron transfer through the barrier short-circuits it. 32 refs.

  2. The role of isomorphous substitutions in natural selenides belonging to the pyrite group

    International Nuclear Information System (INIS)

    Bindi, Luca; Cipriani, Curzio; Pratesi, Giovanni; Trosti-Ferroni, Renza

    2008-01-01

    The present paper reports chemical and structural data of selenide minerals belonging to the pyrite group. Eighteen samples of minerals in this group with variable chemical composition (7 samples of penroseite, NiSe 2 ; 10 samples of krutaite, CuSe 2 ; 1 sample of trogtalite, CoSe 2 ) were studied by means of X-ray single-crystal diffraction and electron microprobe. On the basis of information gained from the chemical characterization, we can conclude that a complete solid solution between NiSe 2 and CuSe 2 exists in nature with the absence of pure end-members. Although verified only for the Ni-rich members, we also infer a solid solution between NiSe 2 and CoSe 2 . The unit-cell parameters were modeled using a multiple regression method as a function of the Co, Ni, and Cu contents

  3. The role of isomorphous substitutions in natural selenides belonging to the pyrite group

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia e Litologia, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it; Cipriani, Curzio [Museo di Storia Naturale, sez. di Mineralogia e Litologia, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy); Pratesi, Giovanni [Museo di Storia Naturale, sez. di Mineralogia e Litologia, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy); Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy); Trosti-Ferroni, Renza [Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy)

    2008-07-14

    The present paper reports chemical and structural data of selenide minerals belonging to the pyrite group. Eighteen samples of minerals in this group with variable chemical composition (7 samples of penroseite, NiSe{sub 2}; 10 samples of krutaite, CuSe{sub 2}; 1 sample of trogtalite, CoSe{sub 2}) were studied by means of X-ray single-crystal diffraction and electron microprobe. On the basis of information gained from the chemical characterization, we can conclude that a complete solid solution between NiSe{sub 2} and CuSe{sub 2} exists in nature with the absence of pure end-members. Although verified only for the Ni-rich members, we also infer a solid solution between NiSe{sub 2} and CoSe{sub 2}. The unit-cell parameters were modeled using a multiple regression method as a function of the Co, Ni, and Cu contents.

  4. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process.

    Science.gov (United States)

    Xiao, Yunhua; Liu, Xueduan; Dong, Weiling; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Ma, Liyuan; Hao, Xiaodong; Zhang, Xian; Xu, Zhen; Yin, Huaqun

    2017-07-01

    This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.

  5. Model-Based Integration and Analysis of Biogeochemical and Isotopic Dynamics in a Nitrate-Polluted Pyritic Aquifer

    NARCIS (Netherlands)

    Zhang, Y.C.; Prommer, H.; Slomp, C.P.; Broers, H.P.; van der Grift, B.; Passier, H.F.; Greskowiak, J.; Boettcher, M.E.; van Capellen, P.

    2013-01-01

    Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as

  6. Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Prommer, H.; Broers, H.P.; Slomp, C.P.; Greskowiak, J.; Van Der Grift, B.; Van Cappellen, P.

    2013-01-01

    Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as

  7. Gelatin/DMSO. A new approach to enhancing the performance of a pyrite electrode in a lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, L.A.; Rosolen, J.M. [Department of Chemistry, FFCLRP-University of Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2003-04-01

    We have studied the electrochemical behavior of natural pyrite (FeS{sub 1.9}, n-type semiconductor) treated nonaqueously with dimethylsulfoxide (DMSO) solvent and also with a gelatin/DMSO solution. Composite electrodes (comprised of pyrite, polyvinilidene fluoride, polyethylene oxide and carbon) were characterized in a lithium cell at room temperature by cyclic voltammetry and galvanostatic measurements; the electrolyte used was LiPF{sub 6} in a solution of ethylene carbonate and dimethyl carbonate (1 mol l{sup -1}). The gelatin/DMSO treatment greatly improved the reversible specific capacity of a pyrite electrode. For galvanostatic discharge/charge at a current density of 0.4 mA cm{sup -2} and between voltage limits of 3.2 and 1.1 V, its reversible specific capacity at the 15th cycle equaled 275 mA h g{sup -1}, an impressive value compared to less than 25 mA h g{sup -1} for a pristine pyrite electrode.

  8. Uranium pollution in an estuary affected by pyrite acid mine drainage and releases of naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Villa, M.; Manjon, G.; Hurtado, S.; Garcia-Tenorio, R.

    2011-01-01

    Highlights: → Huelva estuary is affected by former phosphogypsum releases and pyrite acid mine drainage. → Time evolution of uranium concentration is analyzed after halting of NORM releases. → Two new contamination sources are preventing the complete uranium cleaning: (1) The leaching of phosphogypsum stacks located close to Tinto River. (2) Pyrite acid mine drainage. → High uranium concentrations are dissolved in water and precipitate subsequently. - Abstract: After the termination of phosphogypsum discharges to the Huelva estuary (SW Spain), a unique opportunity was presented to study the response of a contaminated environmental compartment after the cessation of its main source of pollution. The evolution over time of uranium concentrations in the estuary is presented to supply new insights into the decontamination of a scenario affected by Naturally Occurring Radioactive Material (NORM) discharges. The cleaning of uranium isotopes from the area has not taken place as rapidly as expected due to leaching from phosphogypsum stacks. An in-depth study using various techniques of analysis, including 234 U/ 238 U and 230 Th/ 232 Th ratios and the decreasing rates of the uranium concentration, enabled a second source of uranium contamination to be discovered. Increased uranium levels due to acid mine drainage from pyrite mines located in the Iberian Pyrite Belt (SW Spain) prevent complete uranium decontamination and, therefore, result in levels nearly twice those of natural background levels.

  9. The uraninite-pyrite association, a sensitive indicator of changes in fluid chemistry: element gains and losses

    Czech Academy of Sciences Publication Activity Database

    Zachariáš, J.; Adamovič, Jiří; Konečný, P.

    2008-01-01

    Roč. 46, č. 5 (2008), s. 1159-1172 ISSN 0008-4476 R&D Projects: GA AV ČR IAA3013302 Institutional research plan: CEZ:AV0Z30130516 Keywords : uraninite * chemical age, * arsenian pyrite * silicification * fluid chemistry Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.136, year: 2008

  10. RECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION

    Directory of Open Access Journals (Sweden)

    N. Alavifard

    2016-09-01

    Full Text Available In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron, which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.

  11. (U-Th)/He thermochronometry reveals Pleistocene punctuated deformation and synkinematic hematite mineralization in the Mecca Hills, southernmost San Andreas Fault zone

    Science.gov (United States)

    Moser, Amy C.; Evans, James P.; Ault, Alexis K.; Janecke, Susanne U.; Bradbury, Kelly K.

    2017-10-01

    The timing, tempo, and processes of punctuated deformation in strike-slip fault systems are challenging to resolve in the rock record. Faults in the Mecca Hills, adjacent to the southernmost San Andreas Fault, California, accommodate active deformation and exhumation in the Plio-Pleistocene sedimentary rocks and underlying crystalline basement. We document the spatiotemporal patterns of San Andreas Fault-related deformation as recorded in crystalline basement rocks of the Mecca Hills using fault microstructural observations, geochemical data, and hematite (n = 24) and apatite (n = 44) (U-Th)/He (hematite He, apatite He) thermochronometry data. Reproducible mean hematite He dates from minor hematite-coated fault surfaces in the Painted Canyon Fault damage zone range from ∼0.7-0.4 Ma and are younger than ∼1.2 Ma apatite He dates from adjacent crystalline basement host rock. These data reveal concomitant Pleistocene pulses of fault slip, fluid flow, and synkinematic hematite mineralization. Hematite textures, crystal morphology, and hematite He data patterns imply some damage zone deformation occurred via cyclic crack-seal and creep processes. Apatite He data from crystalline basement define distinct date-eU patterns and indicate cooling across discrete fault blocks in the Mecca Hills. Uniform ∼1.2 Ma apatite He dates regardless of eU are located exclusively between the Painted Canyon and Platform faults. Outside of this fault block, samples yield individual apatite He dates from ∼30-1 Ma that define a positive apatite He date-eU correlation. These patterns reveal focused exhumation away from the main trace of the San Andreas Fault at ∼1.2 Ma. Low-temperature thermochronometry of fault-related rocks provides an unprecedented window into the 105-106-yr record of San Andreas Fault-related deformation in the Mecca Hills and documents hematite deformation mechanisms that may be operative in other strike-slip faults world-wide.

  12. Cosmogenic 3He in hematite and goethite from Brazilian "canga" duricrust demonstrates the extreme stability of these surfaces

    Science.gov (United States)

    Shuster, David L.; Farley, Kenneth A.; Vasconcelos, Paulo M.; Balco, Greg; Monteiro, Hevelyn S.; Waltenberg, Kathryn; Stone, John O.

    2012-05-01

    Helium isotopes were measured in hematite and goethite samples from several lateritiric duricrusts (canga) developed on banded iron formations. These samples uniformly have high 3He concentrations which must arise from long periods of cosmic ray exposure. From coexisting phases from the Quadrilátero Ferrífero in east central Brazil, we determined the ratio of cosmogenic 3He in hematite to that of 21Ne in quartz to be 3.96 ± 0.19. Combined with best current estimates of the 21Ne production rate in quartz, this ratio implies a sea-level high latitude (SLHL) 3He production rate in hematite of 68.1 ± 8.1 atoms/g/yr; from the chemical composition we estimate the 3He production rate in goethite to be ~ 5% higher. We use these production rate estimates to interpret 3He concentrations measured in goethite and hematite from a ~ 10 m depth profile collected from a surface canga in Carajás, in the Amazon basin of Brazil. We find that the Carajás canga has experienced a very low rate of surface erosion (~ 0.16-0.54 m/Myr) over at least the last few millions of years. This iron-rich canga surface is remarkably resistant to erosion despite its location in a wet tropical environment. Details of the depth profile suggest that despite its stability, the canga has also been internally dynamic (translocation of material; solution and reprecipitation) over million-year timescales.

  13. Observation of multiphase magnetic state of hematite crystal during Morin transition by the method of section topography of synchrotron radiation

    International Nuclear Information System (INIS)

    Shchetinkin, S.A.; Kvardakov, V.V.; Viler, Eh.; Barushel', Zh.; Shlenker, M.

    2005-01-01

    The boundaries between weak ferromagnetic and antiferromagnetic phases in hematite crystals during Morin transition are detected by the section topography method by synchrotron radiation. It is shown that these boundaries are parallel to (111) surface hence magnetic phases during Morin transition separate the crystal by layers. Change of layer depth in dependence on temperature and magnetic field, and interaction interphase boundaries with crystal defects are observed [ru

  14. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre, Grégory; Živković, Ljiljana S.; Jaubertie, Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  15. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    Energy Technology Data Exchange (ETDEWEB)

    Cardillo, Dean [Institute for Superconducting and Electronic Materials, AIIM Facility, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2500 (Australia); Konstantinov, Konstantin, E-mail: konstan@uow.edu.au [Institute for Superconducting and Electronic Materials, AIIM Facility, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2500 (Australia); Devers, Thierry [Centre de Recherche sur la Matière Divisée, Institut de Physique, site de Chartres, Université d’Orléans (France)

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  16. A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3 Surfaces

    Directory of Open Access Journals (Sweden)

    Nelson Y. Dzade

    2014-02-01

    Full Text Available The reactivity of mineral surfaces in the fundamental processes of adsorption, dissolution or growth, and electron transfer is directly tied to their atomic structure. However, unraveling the relationship between the atomic surface structure and other physical and chemical properties of complex metal oxides is challenging due to the mixed ionic and covalent bonding that can occur in these minerals. Nonetheless, with the rapid increase in computer processing speed and memory, computer simulations using different theoretical techniques can now probe the nature of matter at both the atomic and sub-atomic levels and are rapidly becoming an effective and quantitatively accurate method for successfully predicting structures, properties and processes occurring at mineral surfaces. In this study, we have used Density Functional Theory calculations to study the adsorption of benzene on hematite (α-Fe2O3 surfaces. The strong electron correlation effects of the Fe 3d-electrons in α-Fe2O3 were described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach, which was found to provide an accurate description of the electronic and magnetic properties of hematite. For the adsorption of benzene on the hematite surfaces, we show that the adsorption geometries parallel to the surface are energetically more stable than the vertical ones. The benzene molecule interacts with the hematite surfaces through π-bonding in the parallel adsorption geometries and through weak hydrogen bonds in the vertical geometries. Van der Waals interactions are found to play a significant role in stabilizing the absorbed benzene molecule. Analyses of the electronic structures reveal that upon benzene adsorption, the conduction band edge of the surface atoms is shifted towards the valence bands, thereby considerably reducing the band gap and the magnetic moments of the surface Fe atoms.

  17. NaF-assisted hydrothermal synthesis of Ti-doped hematite nanocubes with enhanced photoelectrochemical activity for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chong; Zhu, Zezhou; Wang, Sibo; Hou, Yidong, E-mail: ydhou@fzu.edu.cn

    2015-12-30

    Graphical abstract: An enhanced photoelectrochemical activity for water splitting was achieved over porous Ti-doped α-Fe{sub 2}O{sub 3} nanocubes. - Highlights: . • Ti-doped hematite nanocubes were successfully prepared by NaF-assisted hydrothermal deposition and subsequent annealing. • Ti-doped α-Fe{sub 2}O{sub 3} nanocubes showed an enhanced PEC activity with an IPCE of 25.2% at 340 nm at 1.23 V vs. RHE. • The enhanced activity of Ti-doped hematite nanocubes can be ascribed to high surface area and fast charge transportation. - Abstract: Ti-doped α-Fe{sub 2}O{sub 3} nanocubes on FTO substrate was prepared by hydrothermal deposition β-FeOOH onto FTO glass with a solution of FeCl{sub 3}, TiOCl{sub 2} and NaF, followed by an appropriate annealing. In comparison to Ti-doped α-Fe{sub 2}O{sub 3} nanorods Ti-doped α-Fe{sub 2}O{sub 3} nanocubes showed an enhanced photoelectrochemical activity for water splitting, with a remarkable IPCE of 25.2% at 340 nm at the potential of 1.23 V vs. RHE. The hematite films were studied in detail by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis absorption spectroscopy and electrochemical impedance spectroscopy. On the basis of the obtained results, the improved performance of Ti-doped α-Fe{sub 2}O{sub 3} nanocubes can be ascribed to the porous structure, good electrical conductivity and fast charge transportation of hematite.

  18. Compositional Models of Hematite-Rich Spherules (Blueberries) at Meridiani Planum, Mars and Constraints on Their Formation

    Science.gov (United States)

    Schneider, A.; Mittlefehldt, D.

    2006-10-01

    The Mars Exploration Rover Opportunity discovered hematite-rich spherules (``blueberries'') believed to be diagenetic concretions formed in the bedrock in stagnant or slow-moving groundwater. These spherules likely precipitated from solution, but their origins are poorly understood. Three formation mechanisms are possible: inclusive, replacive and displacive. The first would result in a distinct spherule composition compared to the other two. We propose that chemical clues may help to constrain the nature of blueberry formation. We used Alpha Particle X-ray Spectrometer data for undisturbed soils that were blueberry-free and with visible blueberries at the surface in Microscopic Imager images. We made plots of the elements versus iron for the spherule-rich soils and compared them to a mixing line representative of a pure hematite end member spherule (called ``the zero model''). This modeled the replacive formation mechanism, in which pure hematite would replace all of the original material. If the spherules grew inclusively, chemical data should reflect a compositional component of the rock grains included during formation. Four models were developed to test for possible compositions of a rock component. These models could not easily explain the APXS data and thus demonstrate that the most plausible rock compositions are not components of blueberries.

  19. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe_2O_3) nanocrystals

    International Nuclear Information System (INIS)

    Luna, Carlos; Cuan-Guerra, Aída D.; Barriga-Castro, Enrique D.; Núñez, Nuria O.; Mendoza-Reséndez, Raquel

    2016-01-01

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe_2O_3) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects

  20. Occlusion of chromophore oxides by Sol-Gel methods: Application to the synthesis of hematite-silica red pigments

    Directory of Open Access Journals (Sweden)

    Vicent, J. B.

    2000-02-01

    Full Text Available Heteromorphic pigments present the chromophore particle occluded in an encapsulating matrix which is thermally stable and insoluble in glazes. The occluded chromophore compound is also insoluble in the host matrix. In this work the mechanisms of formation of this type of pigments are analyzed and the occlusion of hematite into silica matrix is discussed. The formation of this hematite-silica red pigment follows a sintering-coarsening mechanism, and, consequently, the control of both hematite particles nucleation and their crystal growth results to be decisive to obtain a good coloring effectiveness.

    En los pigmentos heteromórficos la partícula de cromóforo es ocluida en una matriz encapsuladora estable tanto termicamente como frente a los vidriados. El compuesto cromóforo ocluido y la matriz no coloreada son insolubles. En este trabajo se analiza los diferentes mecanismos de formación de estos pigmentos heteromórficos y se estudia la oclusión de hematita en sílice mediante métodos sol-gel acuoso. El pigmento sigue un mecanismo de sinterización-crecimiento cristalino por lo que es muy importante controlar el momento de nucleación y la velocidad de crecimiento de las partículas de hematita en el seno de la matriz.

  1. Aggregation Kinetics of Hematite Particles in the Presence of Outer Membrane Cytochrome OmcA of Shewanella oneidenesis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Anxu [Peking Univ., Beijing (China). College of Environmental Sciences and Engineering; Liu, Feng [Peking Univ., Beijing (China). College of Environmental Sciences and Engineering; Shi, Liang [China Univ. of Geoscience in Wuhan, Hubei (China). Dept. of Biological Sciences and Technology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Juan [Peking Univ., Beijing (China). College of Environmental Sciences and Engineering

    2016-09-20

    The aggregation behavior of 9, 36, and 112 nm hematite particles was studied in the presence of OmcA, a bacterial extracellular protein, in aqueous dispersions at pH 5.7 through time-resolved dynamic light scattering, electrophoretic mobility, and circular dichroism spectra, respectively. At low salt concentration, the attachment efficiencies of hematite particles in all sizes first increased, then decreased, and finally remained stable with the increase of OmcA concentration, indicating the dominant interparticle interaction changed along with the increase in the protein-to-particle ratio. Nevertheless, at high salt concentration, the attachment efficiencies of all hematite samples gradually decreased with increasing OmcA concentration, which can be attributed to increasing steric force. Additionally, the aggregation behavior of OmcA-hematite conjugates was more correlated to total particle-surface area than primary particle size. It was further established that OmcA could stabilize hematite nanoparticles more efficiently than bovine serum albumin (BSA), a model plasma protein, due to the higher affinity of OmcA to hematite surface. This study highlighted the effects of particle properties, solution conditions, and protein properties on the complicated aggregation behavior of protein-nanoparticle conjugates in aqueous environments.

  2. Clusters and holes: Exchange networks in hematite-ilmenite solid solutions

    Science.gov (United States)

    Fabian, K.; McEnroe, S. A.; Robinson, P.

    2009-04-01

    Holes and clusters of exchange networks dominate the low-temperature, metastable phase diagram of the system (1 - x)Fe2O3 xF eTiO3 (Ilmx ). By our measurements we have probed and extended the phase diagram of Ishikawa et al. (1985) in the light of magnetic influences of the random exchange links, which originate either by replacing random pairs of Fe2+ and Ti4+ ions in the ordered ilmenite lattice by two Fe3+ions (ordered Ilmx phase), or by randomly replacing two Fe3+ ions in the hematite lattice by a pair of Fe2+ and Ti4+ ions (disordered Ilmx phase). Now a large dataset is available from these measurements, and we propose several new ideas to interpret the sometimes unexpected results. By refining a method of Ishikawa (1967), we analyze the PM' region of the phase diagram in terms of a mean field theory of interacting clusters. This allows to determine cluster sizes and interaction field distribution by inverting hysteresis measurements of Ilm92 and Ilm97. To understand the relation between ordered and disordered phases we design a mean field theory to determine Neel and Curie temperatures of both. An especially interesting finding is that the experimentally observed intersection of PM-PM' crossover with the AF phase boundary close to Ilm97 can be explained by analyzing average exchange interaction strengths.

  3. Adatom Fe(III on the hematite surface: Observation of a key reactive surface species

    Directory of Open Access Journals (Sweden)

    Rosso Kevin M

    2004-06-01

    Full Text Available The reactivity of a mineral surface is determined by the variety and population of different types of surface sites (e.g., step, kink, adatom, and defect sites. The concept of "adsorbed nutrient" has been built into crystal growth theories, and many other studies of mineral surface reactivity appeal to ill-defined "active sites." Despite their theoretical importance, there has been little direct experimental or analytical investigation of the structure and properties of such species. Here, we use ex-situ and in-situ scanning tunneling microcopy (STM combined with calculated images based on a resonant tunneling model to show that observed nonperiodic protrusions and depressions on the hematite (001 surface can be explained as Fe in an adsorbed or adatom state occupying sites different from those that result from simple termination of the bulk mineral. The number of such sites varies with sample preparation history, consistent with their removal from the surface in low pH solutions.

  4. Influence of Lanthanum Doping on the Structural and Optical Properties of Hematite Nanopowders

    Science.gov (United States)

    Justus, J. Sharmila; Dharma Roy, S. Dawn; Raj, A. Moses Ezhil

    2016-10-01

    Rare-earth elements are an attractive class of dopant elements, as they give easily trivalent cations that possibly altering the structure and other properties of the parent nanoparticles and creating multifunctional materials because of their f-electronic configurations. Herein, experimental evidence has been given for a better understanding of the factors that dictate the interactions of La doping on the structure and optical properties of iron oxide nanoparticles. For that, lanthanum doped hematite (α-Fe2O3) nanoparticles were prepared by a facile solution method using iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent without templates at low temperature. As-prepared powders were subsequently calcined in air for 3 hr at 800 °C. Xray diffraction (XRD) technique was used to study the nanocrystal formation of α-Fe2O3 and Fourier Transform Raman (FT-Raman) spectral information identified the chemical bond structure of the nanoparticles. Morphology study of the nanoparticles was identified using Scanning Electron Microscope (SEM) and the incorporated La content was recognized from the Energy Dispersive X-ray Spectroscopy (EDS) analysis. The optical absorption spectrum was recorded in the wavelength range of 200-2000 nm and the optical parameters such as absorption coefficient and optical band gap energy of pure and doped Fe2O3 nanoparticles were determined. Obtained results are interpreted by considering the impregnation of trivalent La cations that replaced Fe cations of the host structure.

  5. Spectroscopic Confirmation of Uranium (VI)-Carbonato Adsorption Complexes on Hematite

    International Nuclear Information System (INIS)

    Bargar, John R

    1999-01-01

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)-carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of FeO surface -U(VI)-carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)-carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)-carbonato complexes, which are trace constituents at pH < 6. This result indicates the inadequacy of the common modeling assumption that the compositions and predominance of adsorbed species can be inferred from aqueous species. By extension, adsorbed carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium

  6. Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite

    Science.gov (United States)

    Bargar, John R.; Reitmeyer, Rebecca; Davis, James A.

    1999-01-01

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)−carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used attenuated total reflectance Fourier transform infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of ≡FeOsurface−U(VI)−carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)−carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)−carbonato complexes, which are trace constituents at pH carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium.

  7. Influence of hematite nanorods on the mechanical properties of epoxy resin

    Directory of Open Access Journals (Sweden)

    Bogdanović Gordana

    2017-01-01

    Full Text Available The mechanical properties of nanocomposites obtained by incorporation of fairly uniform hematite nanorods (α-Fe2O3 NRs into epoxy resin were studied as a function of the content of the inorganic phase. A thorough microstructural characterization of the α-Fe2O3 NRs and the nanocomposites was performed using transmission electron microscopy (TEM and atomic force microscopy (AFM. The TEM measurements revealed rod-like morphology of the nanofiller with a uniform size distribution (8.5 nm×170 nm, diameter×length. High-magnification TEM and AFM measurements indicated agglomeration of α-Fe2O3 NRs embedded in the epoxy resin. Stress at break, strain at break, elastic modulus and tensile toughness of the nanocomposites were compared with the data obtained for pure epoxy resin. Significant influence of nanofiller on the mechanical properties of epoxy resin, as well as on the glass transition temperature, could be noticed for samples with low contents of the inorganic phase (up to 1 wt. %. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45020

  8. Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Spagnoli, D.; Gilbert, B.; Waychunas, G.A.; Banfield, J. F.

    2009-05-15

    Compared with macroscopic surfaces, the structure of water around nanoparticles is difficult to probe directly. We used molecular dynamics simulations to investigate the effects of particle size and morphology on the time-averaged structure and the dynamics of water molecules around two sizes of hematite ({alpha}-Fe{sub 2}O{sub 3}) nanoparticles. Interrogation of the simulations via atomic density maps, radial distribution functions and bound water residence times provide insight into the relationships between particle size and morphology and the behavior of interfacial water. Both 1.6 and 2.7 nm particles are predicted to cause the formation of ordered water regions close to the nanoparticle surface, but the extent of localization and ordering, the connectivity between regions of bound water, and the rates of molecular exchange between inner and outer regions are all affected by particle size and morphology. These findings are anticipated to be relevant to understanding the rates of interfacial processes involving water exchange and the transport of aqueous ions to surface sites.

  9. Production of low-silicon molten iron from high-silica hematite using biochar

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Tang∗; Xiu-feng Fu; Yan-qi Qin; Shi-yu Zhao; Qing-guo Xue

    2017-01-01

    A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was ex-perimentally investigated and the results show that the method is feasible.In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89 mass% at temperature of 1 373 K, biochar mixing ratio of 0.8-0.9, and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage, molten iron with a carbon content of 0.02-0.03 mass% and silicon content of 0.02-0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%-91% and impurities in the obtained metal were negligible.

  10. Quantitative Investigation of Roasting-magnetic Separation for Hematite Oolitic-ores: Mechanisms and Industrial Application

    Directory of Open Access Journals (Sweden)

    Peng Tiefeng

    2017-12-01

    Full Text Available Natural high-quality iron can be directly applied to pyro-metallurgy process, however, the availability of these ores has become less and less due to exploitation. This research reports a systematic approach using reduction roasting and magnetic separation for oolitic iron ores from west Hubei Province. Firstly, a mineralogical study was performed and it was shown that the oolitic particles were mainly composed of hematite, with some silicon-quartz inside the oolitic particle. Then, the roasting temperature was examined and shown to have significant influence on both Fe recovery and the Fe content of the concentrate. Also the Fe content gradually increased as the temperature increased from 700 to 850 °C. The most important aspects are the quantitative investigation of change of mineral phases, and reduction area (with ratio during the reduction roasting process. The results showed that Fe2O3 decreased with temperature, and Fe3O4 (magnetite increased considerably from 600 to 800 °C. The reductive reaction was found to occur from the outside in, the original oolitic structure and embedding relationship among the minerals did not change after roasting. Finally, 5% surrounding rock was added to mimic real industrial iron beneficiation. This study could provides useful insight and practical support for the utilization of such iron ores.

  11. Optimization of flotation variables for the recovery of hematite particles from BHQ ore

    Science.gov (United States)

    Rath, Swagat S.; Sahoo, Hrushikesh; Das, B.

    2013-07-01

    The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2, by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results.

  12. Facet-controlled synthesis of polyhedral hematite/carbon composites with enhanced photoactivity

    Science.gov (United States)

    Hu, Xiaoyi; Han, Sancan; Zhu, Yufang

    2018-06-01

    Much effort has been made to develop the semiconductor photocatalysis, but it is still challenging to fabricate low-cost and high-activity photocatalysts. In this study, Hematite (α-Fe2O3) with three kinds of morphologies including dodecahedron, tetrakaidecahedron and hexagonal nanoplates have been synthesized without any organic reagents. The photocatalytic performance reveals that the dodecahedron with exposed {1 0 1} facets is superior to the hexagonal nanoplates with predominant exposure of {0 0 1} facets in the case of similar BET surface area. For further enhancement of photocatalytic activity, carbon layer was coated on dodecahedral α-Fe2O3 through the self-polymerization of dopamine and following pyrolysis at 400 °C under Ar flow. Compared with the pristine dodecahedral α-Fe2O3, the α-Fe2O3/C composites exhibit stronger visible absorption, lower photoexcited electron-hole pairs recombination rate and better photodegradation activity. The photocatalytic performance showed the degradation rate of α-Fe2O3-D/4.5C is nearly 6 times higher than pristine α-Fe2O3, which have great potential for photocatalysis applications.

  13. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  14. Relation between electric properties and water saturation for hematitic sandstone with frequency

    Directory of Open Access Journals (Sweden)

    M. M. Gomaa

    2008-06-01

    Full Text Available This paper focuses on the effect of water saturation on A. C. electrical conductivity and dielectric constant of fully and partially saturated hematitic sandstone sample (Aswan area, Egypt. The saturation of the sample was changed from partial to full saturation. Complex resistivity measurements at room temperature (~16°C, were performed in the frequency range from 0.1 Hz to 100 KHz. Experimental electrical spectra indicate, generally, that the electrical conductivity and dielectric constant vary strongly with water saturations and frequency. The low frequency electrical conductivity and dielectric constant are mainly controlled by surface conduction and polarization of the electrical double layer. The behaviour of the electrical conductivity and dielectric constant, with increasing water content, were argued to the orientational polarization of bound water for very low saturations, displacement of the excess surface charges for relatively low saturations, and free exchange of excess ions in double layer with the bulk electrolyte and generation of transient diffusion potentials which lag behind the applied field for high saturations.

  15. Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

    Science.gov (United States)

    Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk

    2015-05-01

    Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.

  16. HECLA experiments on interaction between metallic melt and hematite-containing concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo, E-mail: tuomo.sevon@vtt.f [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kinnunen, Tuomo; Virta, Jouko; Holmstroem, Stefan; Kekki, Tommi; Lindholm, Ilona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland)

    2010-10-15

    In a hypothetical severe accident in a nuclear power plant, molten materials may come into contact with concrete, causing concrete ablation. In five HECLA experiments the interaction between metallic melt and concrete was investigated by pouring molten stainless steel at almost 1800 {sup o}C into cylindrical concrete crucibles. The tests were transient, i.e. no decay heat simulation was used. The main objective was to test the behavior of the FeSi concrete, containing hematite (Fe{sub 2}O{sub 3}) and siliceous aggregates. This special concrete type is used as a sacrificial layer in the Olkiluoto 3 EPR reactor pit, and very scarce experimental data is available about its behavior at high temperatures. It is concluded that no clear differences between the ablation of FeSi concrete and ordinary siliceous concrete were observed. The ablation depths were small, 25 mm at maximum. No dramatic effects, such as cracking of large pieces of concrete due to the thermal shock, took place. An important side result of the test series was gaining knowledge of the properties of the special concrete type. Chemical analyses were conducted and mechanical properties were measured.

  17. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer

    Science.gov (United States)

    Seibert, Simone; Descourvieres, Carlos; Skrzypek, Grzegorz; Deng, Hailin; Prommer, Henning

    2017-05-01

    The oxidation of pyrite is often one of the main drivers affecting groundwater quality during managed aquifer recharge in deep aquifers. Data and techniques that allow detailed identification and quantification of pyrite oxidation are therefore crucial for assessing and predicting the adverse water quality changes that may be associated with this process. In this study, we explore the benefits of combining stable sulphur isotope analysis with reactive transport modelling to improve the identification and characterisation of pyrite oxidation during an aquifer storage and recovery experiment in a chemically and physically heterogeneous aquifer. We characterise the stable sulphur isotope signal (δ34S) in both the ambient groundwater and the injectant as well as its spatial distribution within the sedimentary sulphur species. The identified stable sulphur isotope signal for pyrite was found to vary between -32 and +34‰, while the signal of the injectant ranged between +9.06 and +14.45‰ during the injection phase of the experiment. Both isotope and hydrochemical data together suggest a substantial contribution of pyrite oxidation to the observed, temporally variable δ34S signals. The variability of the δ34S signal in pyrite and the injectant were both found to complicate the analysis of the stable isotope data. However, the incorporation of the data into a numerical modelling approach allowed to successfully employ the δ34S signatures as a valuable additional constraint for identifying and quantifying the contribution of pyrite oxidation to the redox transformations that occur in response to the injection of oxygenated water.

  18. Terrestrial sedimentary pyrites as a potential source of trace metal release to groundwater – A case study from the Emsland, Germany

    International Nuclear Information System (INIS)

    Houben, Georg J.; Sitnikova, Maria A.; Post, Vincent E.A.

    2017-01-01

    Pyrite is a common minor constituent of terrestrial freshwater sediments and a sink for trace elements. Different amounts and morphological types (framboids and euhedral crystals) of sedimentary pyrites were found in the heavy mineral fraction of cores obtained from several drillholes located in the Emsland region, NW Germany. Their trace element contents were investigated to assess their potential for groundwater contamination after oxidation, e.g. induced by dewatering or autotrophic denitrification. Nickel, arsenic and cadmium were found in significant concentrations in pyrite. Geochemical modeling showed that elevated trace metal concentrations in groundwater, potentially exceeding drinking water standards, should preferentially occur in a less than 1 m thick zone situated around the depth of the redoxcline, where nitrate is reduced by pyrite. This was confirmed by depth-specific groundwater sampling in the Emsland and by previously published studies. The absolute concentration of released trace metals depends on their content in the pyrite but also strongly on the nitrate load of groundwater. - Highlights: • Pyrite from heavy mineral fraction of aquifer sediment analyzed for trace metal content. • Pyrites contain significant concentration of trace metals, such as nickel, arsenic, cadmium. • Trace elements are released by autotrophic denitrification. • Reactive transport model predicts small zone of trace element accumulation. • Release of trace elements strongly dependent on nitrate content of groundwater.

  19. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India: Implications for hematite deposits on Mars

    Directory of Open Access Journals (Sweden)

    Mahima Singh

    2016-11-01

    Full Text Available Banded iron formations (BIFs are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada and Carajas (Brazil have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (<4 mm are occasionally observed in the hand-specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1.9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has

  20. Liquid-Liquid Extraction and Determination of Trace Elements in Iron Minerals by Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Taseska, Milena; Stafilov, Trajche; Makreski, Petre; Jacimovic, Radojko; Jovanovski, Gligor

    2006-01-01

    Various trace elements (cadmium, chromium, cobalt, nickel, manganese) in some iron minerals were determined by flame (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). The studied minerals were chalcopyrite (CuFeS 2 ), hematite (Fe 2 O 3 ) and pyrite (FeS 2 ). To avoid the interference of iron, a method for liquid-liquid extraction of iron and determination of investigated elements in the inorganic phase was proposed. Iron was extracted by diisopropyl ether in hydrochloride acid solution and the extraction method was optimized. Some parameters were obtained to be significantly important: Fe mass in the sample should not exceed 0.3 g, the optimal concentration of HCI should be 7.8 mol 1 -1 and ratio of the inorganic and organic phase should be 1: 1. The procedure was verified by the method of standard additions and by its applications to reference standard samples. The investigated minerals originate from various mines in the Republic of Macedonia. (Author)

  1. Final Report For Independent Confirmatory Survey Summary And Results For The Hematite Decommissioning Project, Festus, Missouri

    International Nuclear Information System (INIS)

    Bailey, Erika N.; Lee, Jason D.

    2012-01-01

    ORAU conducted confirmatory surveys of the Hematite site during the period of June 12 through June 13, 2012. The survey activities included in-process inspections, document review, walkover surveys, sampling activities, and laboratory analysis of split samples. WEC was forthcoming with information relating to practices, procedures, and surface scan results. Scans performed by the WEC technician were extremely thorough and methodical. The WEC and ORAU technicians identified the same areas of elevated activity with comparable detector responses. WEC sampling of re-use soils, waste soils, sediments, and groundwater were conducted under ORAU observation. The sampling efforts observed by ORAU were performed in accordance with site-specific procedures and in a manner sufficient to provide quality supporting data. Three observations were made during groundwater sampling activities. First, the water level indicator was re-used without submitting rinse blank. Second, bubbles created during tubing extraction could indicate the presence of volatilized organic compounds. Third, samplers did not use a photo ionization detector prior to sample collection to indicate the presence of volatile organic vapors. Results of split samples indicated a high level of comparability between the WEC and ORAU/ORISE radiological laboratories. Analytical practices and procedures appear to be sufficient in providing quality radiochemical data. All concentrations from the Soil Re-Use Area and sediment samples are below Uniform radionuclide-specific derived concentration guideline level (DCGL W ) limits; thus, comparisons to the less conservative stratified geometry were not required. Results were compared to individual DCGLs and using the sum of fractions approach. Both composite soil samples collected from the Waste Handling Area (Bins 1 and 4) were well below the prescribed USEI waste acceptance criteria

  2. Surface termination dependence of the reactivity of single crystal hematite with CCl 4

    Science.gov (United States)

    Camillone, Nicholas, III; Adib, Kaveh; Fitts, Jeffrey P.; Rim, Kwang T.; Flynn, George W.; Joyce, S. A.; Osgood, Richard M.

    2002-06-01

    We describe ultrahigh vacuum Auger electron spectrometric measurements of the uptake of chlorine following the room temperature exposure of single crystal hematite, α-Fe2O3, to CCl4. We compare the surface chemistry of two specific surface phases formed on the basal plane of α-Fe2O3: the Fe3O4(1 1 1)-(2×2) ;selvedge; and the α-Fe2O3/Fe1-xO ;biphase.; For Fe3O4(1 1 1)-(2×2) an estimated saturation level of Cl of ∼75% of a monolayer is readily attained. Carbon uptake is well below that expected for simple stoichiometric dissociative chemisorption, consistent with desorption of organic products during the surface reaction. Low energy electron diffraction measurements suggest that, dependent upon preparation procedures, at least two types of α-Fe2O3/Fe1-xO biphase structures can be formed. Surprisingly, upon exposure to CCl4, Cl uptake does not occur on either of these biphase surfaces, despite the fact that these surfaces are thought to have the same surface concentrations of iron and oxygen as Fe3O4(1 1 1). The dramatic difference between the reactivity of the Fe3O4 and biphase surfaces suggests that the active site for the dissociative adsorption of CCl4 on Fe3O4(1 1 1)-(2×2) comprises both an iron cation and an oxygen anion with a surface-normal-oriented dangling bond that is uncapped by iron cations. Electron stimulated and thermal desorption of Cl from the saturated Fe3O4(1 1 1)-(2×2) selvedge is also reported.

  3. The calculated solubilities of hematite, magnetite and lepidocrocite in steam generator feedtrains

    International Nuclear Information System (INIS)

    Jobe, D.

    1997-05-01

    The solubility of three iron oxides [hematite (α-Fe 2 O 3 (s)), magnetite (Fe 3 O 4 (s)) and lepidocrocite (γ-FeOOH(s))] under representative steam generator feedtrain conditions were calculated using a thermodynamic database for these oxides and the associated aqueous species. Using this database, we calculated the solubility of iron for both Fe 3 O 4 (s) in equilibrium with other iron oxides and for the individual oxides in the presence of various oxygen partial pressures. The results indicate that the solubility of iron is strongly dependent on redox conditions, represented either by dissolved H 2 or O 2 concentration, or by the presence of other iron oxides (stable or metastable). The solubility behaviour of these oxides can be explained by changes in the aqueous-phase speciation of iron with temperature and pH. Similar calculations for the individual oxides in the presence Of O 2 (g) are also presented and were used to construct temperature-dependent phase diagrams for these oxides in equilibrium (including metastable conditions) with 1 ppb (ppb - μg·kg -1 ) of soluble iron. Calculations were also performed for feedtrain solutions containing 5 ppb of dissolved oxygen and pH buffered using mixtures of amines. From these calculations it was concluded that, relative to the oxidation potential and temperature of the feedtrain solution, changing the pH-buffer has only a minor effect on iron solubility. The effect of the variation in iron solubility along the feedtrain with solution pH, temperature and redox potential on corrosion-product transport to the boiler is also discussed. (author)

  4. Environmental regulatory failure and metal contamination at the Giap Lai pyrite mine, Northern Vietnam.

    Science.gov (United States)

    Håkan Tarras-Wahlberg, N; Nguyen, Lan T

    2008-03-01

    The causes for the failure in enforcement of environmental regulations at the Giap Lai pyrite mine in northern Vietnam are considered and the environmental impacts that are associated with this mine are evaluated. It is shown that sulphide-rich tailings and waste rock in the mining area represent significant sources of acid rock drainage (ARD). The ARD is causing elevated metal levels in downstream water bodies, which in turn, represent a threat to both human health and to aquatic ecosystems. Metal concentrations in impacted surface waters have increased after mine closure, suggesting that impacts are becoming progressively more serious. No post-closure, remediation measures have been applied at the mine, in spite of the existence of environmental legislation and both central and regional institutions charged with environmental supervision and control. The research presented here provides further emphasis for the recommendation that, while government institutions may need to be strengthened, and environmental regulations need to be in place, true on the ground improvement in environmental quality in Vietnam and in many other developing countries require an increased focus on promoting public awareness of industrial environmental issues.

  5. Restoration of pyritic colliery waste with sewage sludge in the Midlands coalfield, England, United Kingdom

    International Nuclear Information System (INIS)

    Humphries, R.N.; McQuire, G.E.; Sly, M.

    1994-01-01

    A trial was set up in 1990 in the Midlands coalfield in the United Kingdom (UK) to evaluate the use of sewage sludge to revegetate colliery waste tips containing 1--2% sulfur as iron pyrites. The rate of sewage sludge application is currently restricted by legislation and codes of practice to maximum concentrations of potentially toxic elements (copper, nickel, zinc, etc.) in the soil or waste after application. Following this guidance, an application rate of 250 mt/ha dry solids was applied at the trial site. At this rate, the colliery waste became extremely acidic pH <4.0. From experience elsewhere, much higher levels have been found to be necessary to control acidification in the absence of other measures or treatments. In view of the restriction on the amount of sewage sludge that can be applied, it is recommended that the current practice of covering fresh colliery wastes with soil or low sulfur spoil to a minimum depth of 0.45m is continued in the UK. Where this is not possible, the sludge must always be applied with sufficient neutralizing agent to control the potential acidity. If the acidity cannot be maintained above pH 5.0, the guidelines do not permit the application of sewage sludge

  6. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth

    Science.gov (United States)

    Merinero, Raul; Cárdenes, Víctor

    2017-12-01

    Framboids and sunflowers are the most ubiquitous shapes of sedimentary pyrite. Framboids are spherical aggregates of nanocrystals, while sunflowers are formed by overgrowth of framboids and represent intermediate stages in the transformation of framboids into euhedrae. The characterization of the size populations of these shapes provides critical information about the paleoredox conditions at time of formation and the subsequent changes in these conditions. This paper describes in detail an algorithm designed to model the growth and generate significant populations of both framboids and sunflowers, using functions of the statistical software R. The source code is provided as supplementary material to this paper. The algorithm uses several growth mechanisms based on dependence on or independence of the number of nanocrystals for framboids and the external diameter for sunflowers. Variability in the generated size populations depends on several parameters of the algorithm, such as the diameter of the nanocrystals, the initial diameter of the framboids and the maximum value of the random numbers. The resulting populations of framboids and sunflowers can be compared with data obtained from analysis of real samples in order to understand and model the genetic paleo-processes.

  7. Ore prospecting in the Iberian Pyrite Belt using seismic and potential-field data

    International Nuclear Information System (INIS)

    Carvalho, João; Pinto, Carlos; Sousa, Pedro; Matos, João Xavier

    2011-01-01

    Ore prospecting using gravimetric and magnetic data has become one of the traditional approaches used in past decades, often complemented with electric and electromagnetic methods. However, due to the problem of non-uniqueness inherent to potential-field modelling, constraints provided by structural methods such as seismic reflection are often used. During the exploration of polymetallic massive sulfide minerals in the Iberian Pyrite Belt, Figueira de Cavaleiros sector, located in the Sado Tertiary Basin, several gravimetric and magnetic anomalies were considered to be interesting targets. In order to reduce any ambiguity in the gravimetric modelling and to confirm the geological model of the area, two seismic reflection profiles were acquired. The interpretation of these profiles was assisted by three mechanical boreholes, two of which were located in the research area to make a seismostratigraphic interpretation. Unfortunately, the gravimetric modelling suggests that the anomaly has a lithological and structural origin and is not related to massive sulfides. Nevertheless, a good agreement between the seismic and potential-field data was achieved and new insights into the geological model for the region were obtained from this work, with accurate data about the Tertiary cover and Palaeozoic basement

  8. Leachability and physical stability of solidified and stabilized pyrite cinder sludge from dye effluent treatment

    Directory of Open Access Journals (Sweden)

    Kerkez Đurđa V.

    2015-01-01

    Full Text Available This work is concerned with exploring the possibilities of using solidification/stabilization (S/S treatment for toxic sludge generated in dye effluent treatment, when pyrite cinder is used as catalytic iron source in the modified heterogeneous Fenton process. S/S treatment was performed by using different clay materials (kaolin, bentonite and native clay from the territory of Vojvodina and fly ash in order to immobilize toxic metals and arsenic presented in sludge. For the evaluation of the extraction potential of toxic metals and the effectiveness of the S/S treatment applied, four single-step leaching tests were performed. Leaching test results indicated that all applied S/S treatments were effective in immobilizing toxic metals and arsenic presented in sludge. X-ray diffraction analysis confirmed the formation of pozzolanic products, and compressive strength measurement proved the treatment efficacy. It can be concluded that the S/S technique has significant potential for solving the problem of hazardous industrial waste and its safe disposal. [Projekat Ministarstva nauke Republike Srbije, br. III43005 i br. TR37004

  9. Mycorrhizal Fungal Community of Poplars Growing on Pyrite Tailings Contaminated Site near the River Timok

    Directory of Open Access Journals (Sweden)

    Marina Katanić

    2015-06-01

    Full Text Available Background and Purpose: Mycorrhizal fungi are of high importance for functioning of forest ecosystems and they could be used as indicators of environmental stress. The aim of this research was to analyze ectomycorrhizal community structure and to determine root colonization rate with ectomycorrhizal, arbuscular mycorrhizal and endophytic fungi of poplars growing on pyrite tailings contaminated site near the river Timok (Eastern Serbia. Materials and Methods: Identification of ectomycorrhizal types was performed by combining morphological and anatomical characterization of ectomycorrhizae with molecular identification approach, based on sequencing of the nuclear ITS rRNA region. Also, colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi were analysed with intersection method. Results and Conclusions: Physico-chemical analyses of soil from studied site showed unfavourable water properties of soil, relatively low pH and high content of heavy metals (copper and zinc. In investigated samples only four different ectomycorrhizal fungi were found. To the species level were identified Thelephora terrestris and Tomentella ellisi, while two types remained unidentified. Type Thelephora terrestris made up 89% of all ectomycorrhizal roots on studied site. Consequently total values of Species richness index and Shannon-Weaver diversity index were 0.80 and 0.43, respectively. No structures of arbuscular mycorrhizal fungi were recorded. Unfavourable environmental conditions prevailing on investigated site caused decrease of ectomycorrhizal types diversity. Our findings point out that mycorrhyzal fungal community could be used as an appropriate indicator of environmental changes.

  10. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Vamerali, Teofilo [Department of Environmental Sciences, University of Parma, Viale G.P. Usberti 11/A, 43100 Parma (Italy)], E-mail: teofilo.vamerali@unipd.it; Bandiera, Marianna; Coletto, Lucia; Zanetti, Federica [Department of Environmental Agronomy and Crop Sciences, University of Padova, Viale dell' Universita 16, 35020 Legnaro - Padova (Italy); Dickinson, Nicholas M. [Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF (United Kingdom); Mosca, Giuliano [Department of Environmental Agronomy and Crop Sciences, University of Padova, Viale dell' Universita 16, 35020 Legnaro - Padova (Italy)

    2009-03-15

    At a site in Udine, Italy, a 0.7 m layer of As, Co, Cu, Pb and Zn contaminated wastes derived from mineral roasting for sulphur extraction had been covered with an unpolluted 0.15 m layer of gravelly soil. This study investigates whether woody biomass phytoremediation is a realistic management option. Comparing ploughing and subsoiling (0.35 m depth), the growth of Populus and Salix and trace element uptake were investigated in both pot and field trials. Species differences were marginal and species selection was not critical. Impaired above-ground productivity and low translocation of trace elements showed that bioavailable contaminant stripping was not feasible. The most significant finding was of coarse and fine roots proliferation in surface layers that provided a significant sink for trace elements. We conclude that phytostabilisation and effective immobilisation of metals and As could be achieved at the site by soil amelioration combined with woody species establishment. Confidence to achieve a long-term and sustainable remediation requires a more complete quantification of root dynamics and a better understanding of rhizosphere processes. - In As- and metal-contaminated pyrite wastes, contaminant stripping is not feasible, and root foraging and quantification of root dynamics holds the key to stabilisation in woody species.

  11. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy)

    International Nuclear Information System (INIS)

    Vamerali, Teofilo; Bandiera, Marianna; Coletto, Lucia; Zanetti, Federica; Dickinson, Nicholas M.; Mosca, Giuliano

    2009-01-01

    At a site in Udine, Italy, a 0.7 m layer of As, Co, Cu, Pb and Zn contaminated wastes derived from mineral roasting for sulphur extraction had been covered with an unpolluted 0.15 m layer of gravelly soil. This study investigates whether woody biomass phytoremediation is a realistic management option. Comparing ploughing and subsoiling (0.35 m depth), the growth of Populus and Salix and trace element uptake were investigated in both pot and field trials. Species differences were marginal and species selection was not critical. Impaired above-ground productivity and low translocation of trace elements showed that bioavailable contaminant stripping was not feasible. The most significant finding was of coarse and fine roots proliferation in surface layers that provided a significant sink for trace elements. We conclude that phytostabilisation and effective immobilisation of metals and As could be achieved at the site by soil amelioration combined with woody species establishment. Confidence to achieve a long-term and sustainable remediation requires a more complete quantification of root dynamics and a better understanding of rhizosphere processes. - In As- and metal-contaminated pyrite wastes, contaminant stripping is not feasible, and root foraging and quantification of root dynamics holds the key to stabilisation in woody species

  12. Mössbauer study of the effect of gamma irradiation on the removal of pyrite from Colombian coals

    International Nuclear Information System (INIS)

    Mejía, J A; Palacio, C A; Caballero, F Reyes; Dávila, H Olaya; Ovalle, S A Martínez; De Grave, E

    2014-01-01

    The removal of sulfur from the coals is necessary before using it. It is due to the environmental and technological problems that it causes. In this work, the results of the study by Mössbauer spectroscopy of the gamma-irradiation effect on the pyrite in three Colombian coals are analyzed. They were exposed to different gamma-irradiation doses using a 60 Co source

  13. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China

    Science.gov (United States)

    Gregory, Daniel D.; Lyons, Timothy W.; Large, Ross R.; Jiang, Ganqing; Stepanov, Aleksandr S.; Diamond, Charles W.; Figueroa, Maria C.; Olin, Paul

    2017-11-01

    The trace element content of pyrite is a recently developed proxy for metal abundance in paleo-oceans. Previous studies have shown that the results broadly match those of whole rock studies through geologic time. However, no detailed study has evaluated the more traditional proxies for ocean chemistry for comparison to pyrite trace element data from the same samples. In this study we compare pyrite trace element data from 14 samples from the Wuhe section of the Ediacaran-age Doushantuo Formation, south China, measured by laser ablation inductively coupled plasma mass spectrometry with new and existing whole rock trace element concentrations; total organic carbon; Fe mineral speciation; S isotope ratios; and pyrite textural relationships. This approach allows for comparison of data for individual trace elements within the broader environmental context defined by the other chemical parameters. The results for discrete pyrite analyses show that several chalcophile and siderophile elements (Ag, Sb, Se, Pb, Cd, Te, Bi, Mo, Ni, and Au) vary among the samples with patterns that mirror those of the independent whole rock data. A comparison with existing databases for sedimentary and hydrothermal pyrite allows us to discriminate between signatures of changing ocean conditions and those of known hydrothermal sources. In the case of the Wuhe samples, the observed patterns for trace element variation point to primary marine controls rather than higher temperature processes. Specifically, our new data are consistent with previous arguments for pulses of redox sensitive trace elements interpreted to be due to marine oxygenation against a backdrop of mostly O2-poor conditions in the Ediacaran ocean-with important implications for the availability of bioessential elements. The agreement between the pyrite and whole rock data supports the use of trace element content of pyrite as a tracer of ocean chemistry in ways that complement existing approaches, while also opening additional

  14. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    Science.gov (United States)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

  15. A combined kinetic and diffusion model for pyrite oxidation in tailings - a change in controls with time

    International Nuclear Information System (INIS)

    Elberling, B.; Nicholson, R.V.; Scharer, J.M.

    1994-01-01

    Acidic drainage from the oxidation of mine tailing wastes is an important environmental problem. The purpose of this paper is to develop a model (1) to simulate the rate of oxidation of pyrite over time, (2) to verify the importance of chemical kinetic control and diffusion control on the oxidation rate with time and, (3) to evaluate the sensitivity of the model to critical parameters of the tailings, such as grain size, pyrite content and the effective diffusion coefficient. The source code comprises four main modules including parameter allocation (kinetics, transport), sulphide oxidation (shrinking particle), oxygen transport and pyrite mass balance. The results show that high oxidation rates are observed in the initial time after tailings deposition. During this initial period of high rates, an apparent shift occurs from kinetic to diffusional control over a period of time that depends on the composition and properties of the tailings. Based on the simulation results, it is evident that the overall rate of oxidation after a few years will be controlled dominantly by the diffusion of oxygen rather than by biological or non-biological kinetics in the tailings

  16. Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data.

    Science.gov (United States)

    Killingsworth, Bryan A; Bao, Huiming; Kohl, Issaku E

    2018-05-17

    Riverine dissolved sulfate (SO 4 2- ) sulfur and oxygen isotope variations reflect their controls such as SO 4 2- reduction and reoxidation, and source mixing. However, unconstrained temporal variability of riverine SO 4 2- isotope compositions due to short sampling durations may lead to mischaracterization of SO 4 2- sources, particularly for the pyrite-derived sulfate load. We measured the sulfur and triple-oxygen isotopes (δ 34 S, δ 18 O, and Δ' 17 O) of Mississippi River SO 4 2- with biweekly sampling between 2009 and 2013 to test isotopic variability and constrain sources. Sulfate δ 34 S and δ 18 O ranged from -6.3‰ to -0.2‰ and -3.6‰ to +8.8‰, respectively. Our sampling period captured the most severe flooding and drought in the Mississippi River basin since 1927 and 1956, respectively, and a first year of sampling that was unrepresentative of long-term average SO 4 2- . The δ 34 S SO4 data indicate pyrite-derived SO 4 2- sources are 74 ± 10% of the Mississippi River sulfate budget. Furthermore, pyrite oxidation is implicated as the dominant process supplying SO 4 2- to the Mississippi River, whereas the Δ' 17 O SO4 data shows 18 ± 9% of oxygen in this sulfate is sourced from air O 2 .

  17. Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers.

    Science.gov (United States)

    Nieto, Jose M; Sarmiento, Aguasanta M; Canovas, Carlos R; Olias, Manuel; Ayora, Carlos

    2013-11-01

    Acid mine drainage in the Iberian Pyrite Belt is probably the worst case in the world of surface water pollution associated with mining of sulphide mineral deposits. The Iberian Pyrite Belt is located in SW Iberian Peninsula, and it has been mined during the last 4,500 years. The central and eastern part of the Iberian Pyrite Belt is drained by the Tinto and Odiel rivers, which receive most of the acidic leachates from the mining areas. As a result, the main channels of the Tinto and Odiel rivers are very rich in metals and highly acidic until reaching the Atlantic Ocean. A significant amount of the pollutant load transported by these two rivers is delivered during the rainy season, as is usual in rivers of Mediterranean climate regions. Therefore, in order to have an accurate estimation of the pollutant loads transported by the Tinto and Odiel rivers, a systematic sampling on a weekly basis and a high temporal resolution sampling of floods events were both performed. Results obtained show that metal fluxes are strongly dependent on the study period, highlighting the importance of inter-annual studies involving dry and wet years.

  18. Synthesis, structural, optical and morphological characterization of hematite through the precipitation method: Effect of varying the nature of the base

    Science.gov (United States)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    2017-08-01

    Iron oxide (α-Fe2O3) nanoparticles were synthesized using the precipitation synthesis method focusing only on (FeCl3, 6H2O), NaOH, KOH and NH4OH as raw materials. The impact of varying the nature of the base on the crystalline phase, size and morphology of α-Fe2O3 products was explored. XRD spectra revealed that samples crystallize in the rhombohedral (hexagonal) system at 800 °C.The Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to detect the morphology of synthesized nanoparticles and specify their sizes. However, the Fourier Transform Infra-Red (FT-IR) spectroscopy has permitted the observation of vibration band Fe-O. Raman spectroscopy was used not only to prove that we have synthesized hematite but also to identify their phonon modes. The Thermo Gravimetric Analysis (TGA) findings allow the thermal cycle determination of samples whereas Differential Thermal Analysis (DTA) findings allow the phase transition temperature identification. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV. Findings highlight that the nature of the agent precipitant plays a significant role in the morphology of the products and the formation of the crystalline phase. Hematite synthesis with the base NH4OH brought about much stronger, sharper and wider diffraction peaks of α-Fe2O3. The morphology of samples are spherical with a size of about 61 nm while the size of the nanoparticles of hematite which we have synthesized with NaOH and KOH is respectively of the order of 82 and 79 nm.

  19. Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) superstructure with high coercivity

    International Nuclear Information System (INIS)

    Tadic, Marin; Citakovic, Nada; Panjan, Matjaz; Stanojevic, Boban; Markovic, Dragana; Jovanovic, Đorđe; Spasojevic, Vojislav

    2012-01-01

    Highlights: ► We found superior magnetic properties of the hematite (α-Fe 2 O 3 ). ► TEM and HRTEM images show a pomegranate-like superstructure. ► Magnetic measurements display high coercivity H C = 4350 Oe at the room temperature. - Abstract: We found novel and superior magnetic properties of the hematite (α-Fe 2 O 3 ) that originate from an internal microstructure of particles and strong inter-particle interactions between nanocrystal sub-units. The hematite particles were synthesized by thermal decomposition of iron (III) nitrate without any template or surfactant. The purity, size, crystallinity, morphology, microstructure and magnetic features of the as-prepared particles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and SQUID magnetometry. An XRD study reveals a pure phase of α-Fe 2 O 3 whereas TEM shows α-Fe 2 O 3 spheres with a diameter of about 150 nm. RS also shows high quality and purity of the sample. Moreover, TEM and HRTEM images show a pomegranate-like superstructure and evidence that the spherical particles are composed of individual well-crystallized nanoparticle sub-units (self-assembled nanoparticles) with a size of about 20 nm. Magnetic measurements display hysteretic behavior at the room temperature with remanent magnetization M r = 0.731 emu/g, saturation magnetization M S = 6.83 emu/g and coercivity H C = 4350 Oe, as well as the Morin transition at T M = 261 K. These results and comparison with those in the literature reveal that the sample has extremely high coercivity. The magnetic properties of the sample are discussed in relation to morphology, internal microstructure, surface effects and exchange and dipole–dipole interactions.

  20. Observations of surface-mediated reduction of Pu(VI) to Pu(IV) on hematite nanoparticles by ATR FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Hilary P. [Florida International Univ., Applied Research Center, Miami, FL (United States); Powell, Brian A. [Clemson Univ., Dept. of Enviromental Engineering and Earth Sciences, Anderson, SC (United States)

    2015-07-01

    Previous studies have shown that mineral surfaces may facilitate the reduction of plutonium though the mechanisms of the reduction are still unknown. The objective of this study is to use batch sorption and attenuated total reflectance Fourier transform infrared spectroscopy experiments to observe the surface-mediated reduction of plutonium on hematite nanoparticles. These techniques allow for in situ measurement of reduction of plutonium with time and may lead to a better understanding of the mechanisms of surface mediated reduction of plutonium. For the first time, ATR FT-IR peaks for Pu(VI) sorbed to hematite are measured at ∝ 916 cm{sup -1}, respectively. The decrease in peak intensity with time provides a real-time, direct measurement of Pu(VI) reduction on the hematite surface. In this work pseudo first order rate constants estimated at the high loadings (22 mg{sub Pu}/g{sub hematite}, 1.34 x 10{sup -6} M{sub Pu}/m{sup 2}) for ATR FT-IR are approximately 10 x slower than at trace concentrations based on previous work. It is proposed that the reduced rate constant at higher Pu loadings occurs after the reduction capacity due to trace Fe(II) has been exhausted and is dependent on the oxidation of water and possibly electron shuttling based on the semiconducting nature of hematite. Therefore, the reduction rate at higher loadings is possibly due to the thermodynamic favorability of Pu(IV)-hydroxide complexes.

  1. Pressure response of vacancy ordered maghemite ({gamma}-Fe{sub 2}O{sub 3}) and high pressure transformed hematite ({alpha}-Fe{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Hearne, Giovanni, E-mail: grhearne@uj.ac.za [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg (South Africa); Pischedda, Vittoria, E-mail: Vittoria.Pischedda@univ-lyon1.fr [Laboratoire de Physique de la Matiere Condensee et Nanostructures, University Lyon 1 and CNRS, 69622 Villeurbanne Cedex (France)

    2012-03-15

    Combined XRD and Moessbauer effect spectroscopy studies to high pressures of {approx}30 GPa of vacancy ordered maghemite are presented. The vacancy ordered superstructure is robust and remains intact up to the pressure-induced onset transition to hematite at 13-16 GPa. The pressure transformed hematite is shown to be crystallographically textured, unlike the randomised low pressure maghemite phase. This arises out of a pressure or stress instigated topotactic transformation of the cubic-spinel to hexagonal-corundum structure. The textured sample permits us to obtain information on the spin reorientation behavior of the pressure transformed hematite in compression and decompression sequences. Spin reorientation is restricted to {approx}15 Degree-Sign over wide pressure ranges, attributable to the effect of entrapped vacancies in the high pressure structure. Thus there are structural and magnetic peculiarities specific to pressure transformed hematite not evident in pressurized hematite starting material. These are triggered by the maghemite{yields}hematite transformation. - Graphical abstract: Pressure instigated topotactic transformation of vacancy ordered {gamma}-Fe{sub 2}O{sub 3}{yields}{alpha}-Fe{sub 2}O{sub 3}. There is restricted spin (B{sub hf}) reorientation in the new pressure transformed hematite due to entrapped vacancies. The change in direction of V{sub zz} signifies a distortion of the FeO{sub 6} octahedral local environment. Highlights: Black-Right-Pointing-Pointer Robust vacancy ordered superstructure in maghemite to high pressures. Black-Right-Pointing-Pointer Pressure instigated topotactic transformation to hematite and subsequent texture. Black-Right-Pointing-Pointer Defect trapping in the pressure transformed hematite. Black-Right-Pointing-Pointer Entrapped defects restricts spin reorientation in pressure transformed hematite. Black-Right-Pointing-Pointer Contrasting behavior with pressurized hematite starting material.

  2. Experimental Acid Weathering of Fe-Bearing Mars Analog Minerals and Rocks: Implications for Aqueous Origin of Hematite-Bearing Sediments in Meridiani Planum, Mars

    Science.gov (United States)

    Golden, D. C.; Koster, A. M.; Ming, D. W.; Morris, R. V.; Mertzman, S. A.

    2011-01-01

    A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [1, 2]. However, there are no reported experimental studies for the formation of jarosite and gray hematite (spherules), which are characteristic of Meridiani rocks from Mars analog precursor minerals. A terrestrial analog for hematite spherule formation from basaltic rocks under acidic hydrothermal conditions has been reported [3], and we have previously shown that the hematite spherules and jarosite can be synthetically produced in the laboratory using Fe3+ -bearing sulfate brines under hydrothermal conditions [4]. Here we expand and extend these studies by reacting Mars analog minerals with sulfuric acid to form Meridiani-like rock-mineral compositions. The objective of this study is to provide environmental constraints on past aqueous weathering of basaltic materials on Mars.

  3. The different climatic response of pedogenic hematite and ferrimagnetic minerals: Evidence from particle-sized modern soils over the Chinese Loess Plateau

    Science.gov (United States)

    Gao, Xinbo; Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Bloemendal, Jan; Deng, Chenglong; Song, Yang; Ge, Junyi; Wu, Haibin; Xu, Bing; Li, Fengjiang; Han, Long; Fu, Yu; Guo, Zhengtang

    2018-01-01

    In recent years, increasing interest in loess studies has focused on qualitative and quantitative paleoclimatic reconstruction using the imperfect antiferromagnetic mineral hematite. However, the linkage between the hematite formation and climatic variables remains controversial. Here we present the results of a comprehensive investigation of the magnetic properties and statistical analysis of a suite of clay and silt fractions of modern soil samples from 179 sites across the Chinese Loess Plateau (CLP) and adjacent regions. Our objective was to clarify the relationships between modern climatic variables and pedogenic hematite, as well as pedogenic ferrimagnetic minerals. First-order reversal curve measurements were also conducted on representative particle-sized subsamples from a N-S transect to understand the differences in magnetic mineralogy between the two fractions. Our results show that pipette extraction separates the fine-grained superparamagnetic (SP) and most of the single-domain (SD) magnetic grains into the clay fraction, and that the remaining silt fraction displays the magnetic properties of coarse pseudo-single domain (PSD) or a mixture of multidomain (MD)/PSD and a few SD particles. Only the pedogenic clay fraction shows a strong correlation with climatic variables. The application of redundancy analysis helps to distinguish the climate variables controlling the formation of ferrimagnetic minerals and hematite during pedogenesis. On the CLP, pedogenic ferrimagnetic minerals are sensitive to mean annual precipitation, while pedogenic hematite formation is preferentially dependent on mean annual temperature. The confirmation of the temperature-dependent nature of hematite on the CLP provides a new possibility for quantitatively reconstructing the paleotemperature history of Chinese loess/paleosol sequences.

  4. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods.

    Science.gov (United States)

    Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia

    2012-10-24

    Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).

  5. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  6. Effect of EDTA on quartz and hematite flotation with starch/amine in an aqueous solution containing Mn2+ ions

    Directory of Open Access Journals (Sweden)

    Deisiane Ferreira Lelis

    Full Text Available Abstract In this paper, a detailed study of the influence of Mn2+ ions on quartz and hematite flotation (at pH 10.5 with starch/amine as depressor/collector in the absence and presence of ethylenediaminetetraacetic acid (EDTA is presented. By using zeta potential measurement and a careful analysis of manganese species present in water for dosages in which manganese hydroxide precipitated, we confirmed that the depression of both minerals by Mn2+ ions is due to the following: (i the adsorption of Mn hydroxy complexes (Mn2(OH3+ and Mn(OH+; (ii Mn2+ and mainly (iii the precipitation of Mn(OH2 on mineral surfaces. These effects hindered the adsorption of amine species on the surfaces of the minerals (quartz and hematite. EDTA was used to complex Mn2+ to restore the recoveries of both minerals. This was confirmed by the species distribution diagrams of Mn and EDTA-Mn in water. Conditioning with starch followed by amine at pH 10.5 enabled a selective separation of these minerals.

  7. In situ spectroscopic identification of neptunium(V) inner-sphere complexes on the hematite-water interface.

    Science.gov (United States)

    Müller, Katharina; Gröschel, Annett; Rossberg, André; Bok, Frank; Franzen, Carola; Brendler, Vinzenz; Foerstendorf, Harald

    2015-02-17

    Hematite plays a decisive role in regulating the mobility of contaminants in rocks and soils. The Np(V) reactions at the hematite-water interface were comprehensively investigated by a combined approach of in situ vibrational spectroscopy, X-ray absorption spectroscopy and surface complexation modeling. A variety of sorption parameters such as Np(V) concentration, pH, ionic strength, and the presence of bicarbonate was considered. Time-resolved IR spectroscopic sorption experiments at the iron oxide-water interface evidenced the formation of a single monomer Np(V) inner-sphere sorption complex. EXAFS provided complementary information on bidentate edge-sharing coordination. In the presence of atmospherically derived bicarbonate the formation of the bis-carbonato inner-sphere complex was confirmed supporting previous EXAFS findings.1 The obtained molecular structure allows more reliable surface complexation modeling of recent and future macroscopic data. Such confident modeling is mandatory for evaluating water contamination and for predicting the fate and migration of radioactive contaminants in the subsurface environment as it might occur in the vicinity of a radioactive waste repository or a reprocessing plant.

  8. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process

    International Nuclear Information System (INIS)

    Mao Baodong; Kang Zhenhui; Wang Enbo; Tian Chungui; Zhang Zhiming; Wang Chunlei; Song Yanli; Li Meiye

    2007-01-01

    Uniform hollow hematite (α-Fe 2 O 3 ) spheres with diameter of about 600-700 nm and shell thickness lower than 100 nm are obtained by direct hydrothermal treatment of dilute FeCl 3 and tungstophosphoric acid H 3 PW 12 O 40 solution at 180 deg. C. The hollow spheres are composed of robust shells with small nanoparticles standing out of the surface and present a high-surface area and a weak ferromagnetic behavior at room temperature. The effect of concentration of H 3 PW 12 O 40 , reaction time and temperature for the formation of the hollow spheres are investigated in series of experiments. The formation of the hollow spheres may be ascribed to a polyoxometalte-assisted forced hydrolysis and dissolution process. - Graphical abstract: Uniform hollow hematite (α-Fe 2 O 3 ) spheres with diameter of about 600-700 nm and shell thickness lower than 100 nm are obtained by direct hydrothermal treatment of dilute FeCl 3 and tungstophosphoric acid H 3 PW 12 O 40 solution at 180 deg. C. The hollow spheres present a high surface area and weak ferromagnetic behavior at room temperature

  9. Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Lian Xiaojuan; Yang Xin; Liu Shangjun; Xu Ying; Jiang Chunping; Chen Jinwei [College of Materials Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065 (China); Wang Ruilin, E-mail: rlwang26@yahoo.com.cn [College of Materials Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065 (China)

    2012-01-15

    Ti-doped {alpha}-Fe{sub 2}O{sub 3} thin films were successfully prepared on FTO substrates by the sol-gel route. Hematite film was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The XRD data showed {alpha}-Fe{sub 2}O{sub 3} had a preferred (1 1 0) orientation which belonged to the rhombohedral system. Interestingly, the grains turned into worm-like shape after annealed at high temperature. The IPCE could reach 32.6% at 400 nm without any additional potential vs. SCE. Titanium in the lattice can affect the photo electro chemical performance positively by increasing the conductivity of the thin film. So the excited electrons and holes could live longer, rather than recombining with each other rapidly as undoped hematite. And the efficient carrier density on the Ti-doped anode surface was higher than the undoped anode, which contribute to the well PEC performance.

  10. Method for Transformation of Weakly Magnetic Minerals (Hematite, Goethite into Strongly Magnetic Mineral (Magnetite to Improve the Efficiency of Technologies for Oxidized Iron Ores Benefication

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.

    2015-03-01

    Full Text Available A new method for relatively simple transformation of weakly magnetic minerals (goethite (α-FeOOH and hematite (α-Fe2O3 into strongly magnetic mineral (magnetite (Fe3O4 was developed. It was shown, that transformation of structure and magnetic characteristics of go ethite and hematite are realized in the presence of starch at relatively low temperatures (in the range of 300—600 °С. Obtained results open up new possibilities for development of effective technologies for oxidized iron ore beneficiation.

  11. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    International Nuclear Information System (INIS)

    Clemente, Rafael; Almela, Concepcion; Bernal, M. Pilar

    2006-01-01

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha -1 ) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg -1 TOC and 123, 170 and 275 μg g -1 biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil

  12. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)]. E-mail: rclemente@cebas.csic.es; Almela, Concepcion [Instituto de Agroquimica y Tecnologia de Alimentos, CSIC, Apartado 73, 46100 Burjassot, Valencia (Spain); Bernal, M. Pilar [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)

    2006-10-15

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha{sup -1}) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg{sup -1} TOC and 123, 170 and 275 {mu}g g{sup -1} biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil.

  13. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine

    International Nuclear Information System (INIS)

    Simon, M.; Martin, F.; Ortiz, I.; Garcia, I.; Fernandez, J.; Fernandez, E.; Dorronsoro, C.; Aguilar, J.

    2001-01-01

    On the 25th April 1998, toxic water and tailings from a pyrite mine of Aznalcollar (southern Spain) spilled into the Agrio and Guadiamar River Basin affecting some 40 km 2 . In five sectors throughout the basin, we monitored the physical and chemical properties of the tailings as well as the degree of pollution in the soils on four different sampling dates: 5 May, 20 May, 4 June and 22 July 1998. The characteristics of the tailings deposited on the soils are shown to be related to distance from the spill. The oxidation rate of the tailings and the solubilization of the pollutant elements were more pronounced in the middle and lower sectors of the basin, where the particle size was finer, the sulfur content higher and the bulk density less. The increases in water-soluble sulfates, Zn, Cd and Cu were very rapid (the highest values being reached 25 days after the spill) and intense (reaching 45% of the total Cu, 65% of the total Zn and Cd). Meanwhile, the increases in water-soluble As, Bi, Sb, Pb and Tl were far lower (ranging between 0.002% of the total Tl and 2.5% of the total As) and less rapid in the case of As, Bi and Pb (the highest values for these elements being reached 40 days after the spill). These soluble elements infiltrated the soils with the rainwater, swiftly augmenting the soil pollution. Twenty-five days after the spill, when the rainfall ranged between 45 and 63 mm, the first 10-cm of the soils in the middle and lower sectors of the basin exceeded the maximum concentration permitted for agricultural soils in Zn, Cu and Tl. At 40 days after the spill, when the rainfall ranged between 60 and 89 mm, all the soils reached or exceeded the maximum permitted concentrations for As and Tl. Nevertheless, the pollutants tended to concentrate in the first 10 cm of the soils without seriously contaminating either the subsoil or the groundwaters. Consequently, a rapid removal of the tailings and the ploughing of the first 25-30 cm of the soils would be urgent

  14. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    Science.gov (United States)

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface

    Science.gov (United States)

    Afrin, Rehana; Ganbaatar, Narangerel; Aono, Masashi; Cleaves, H. James; Yano, Taka-aki; Hara, Masahiko

    2018-01-01

    The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces. PMID:29370126

  16. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

    Science.gov (United States)

    Tadic, Marin; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinovic-Runic, Jasmina; Stojanovic, Zoran

    2017-05-01

    Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio ∼5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.

  17. Acquisition of chemical remanent magnetization during experimental ferrihydrite-hematite conversion in Earth-like magnetic field-implications for paleomagnetic studies of red beds

    NARCIS (Netherlands)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Tauxe, Lisa; Qin, Huafeng; Barrón, Vidal; Torrent, José

    2015-01-01

    Hematite-bearing red beds are renowned for their chemical remanent magnetization (CRM). If the CRM was acquired substantially later than the sediment was formed, this severely compromises paleomagnetic records. To improve our interpretation of the natural remanent magnetization, the intricacies of

  18. Magneto-optical effects of reflection on monocrystals of ferrite garnets, orthoferrites hexaferrites and hematite. [Yttrium oxides iron oxides; europium oxides; bismuth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Krinchik, G S; Krylova, V A; Khrebtov, A P; Chepurova, E E

    1975-01-01

    The results of experimental studies of the equatorial Kerr effect in visible and ultraviolet ranges of the spectrum are given for ferromagnetic dielectrics of different classes: ferrimagnetic ferrite garnets and hexaferrites, as well as weakly ferromagnetic orthoferrites and hematite. A method for the nondestructive magneto-optical data readout using reflected light is proposed and described.

  19. Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Lee, C.-Y.; Kirchgeorg, R.; Liu, N.; Lee, K.; Kment, Š.; Hubička, Zdeněk; Krýsa, J.; Olejníček, J.; Čada, M.; Zbořil, R.; Schmuki, P.

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9333-9341 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Třešť, 16.09.2014-20.09.2014] Institutional support: RVO:68378271 Keywords : hematite * nanotubular * anodization * magnetron * sputtering * water splitting Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.833, year: 2015

  20. Sensors based on Ag-loaded hematite (α-Fe2O3 nanoparticles for methyl mercaptan detection at room temperature

    Directory of Open Access Journals (Sweden)

    Daniel Garcia

    2017-06-01

    Full Text Available Sensors based on Ag/α-Fe2O3 nanoparticles have been prepared by the coprecipitation method for sensing methyl mercaptan at room temperature. X-ray diffraction patterns of samples matched perfectly with characteristic peaks of hematite with no peaks assigned to Ag even at the highest concentration. STEM images and EDX analysis revealed the presence of Ag nanoparticles (from 2 to 5 nm which were highly dispersed onto α-Fe2O3 surface with an Ag/Fe ratio from 0.014 to 0.099. The Ag nanoparticles were deposited on the hematite surface. Sensing tests of Ag-loaded hematite nanoparticles showed much higher response signal than the unmodified sensor. Hematite loaded with 3%(Wt Ag showed the highest response with a linear dependence from 20 to 80 ppm. The sensor also depicted a good selectivity and stability during 4 days with short recovery time. The high dispersion of reduced Ag evaluated by XPS analysis played an important chemical role in the sensing mechanism that favored the contact of CH3SH with oxygen.

  1. Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia

    DEFF Research Database (Denmark)

    Brownlee, Sarah J.; Feinberg, Joshua M.; Kasama, Takeshi

    2011-01-01

    Paleomagnetic studies of the 91 Ma Ecstall pluton and other Cretaceous plutons of British Columbia imply large northward tectonic movements (>2000 km) may have occurred during the tectonic evolution of western North America. However, more recent studies have shown that the eastern edge...... of the Ecstall pluton experienced considerable mineralogical changes as younger Eocene plutons, such as the ∼58 Ma Quottoon Pluton, were emplaced along its margins. We investigated changes in the rock magnetic properties associated with this reheating event by examining isolated grains of intergrown ilmenite...... and hematite, the primary paleomagnetic recorder in the Ecstall pluton. Measurements of hysteresis properties, low-temperature remanence, and room temperature isothermal remanent magnetization acquisition and observations from magnetic force microscopy and off-axis electron holography indicate that samples...

  2. Neptunium redox behavior and sorption onto goethite and hematite in the presence of humic acids with different hydroquinone content

    International Nuclear Information System (INIS)

    Khasanova, A.B.; Kalmykov, St.N.; Perminova, I.V.; Clark, S.B.

    2007-01-01

    The effect of humic acids (HA) on neptunium redox behavior and sorption onto hematite, α-Fe 2 O 3 , and goethite, α-FeOOH, colloids was established in batch sorption experiments that were carried out in broad pH interval. The sorption isotherms were provided for two samples of HA: commercial sample of leonardite humic acid and its hydroquinone-enriched derivative obtained using formaldehyde copolycondensation. The distribution of Np fitted the distribution of hydroquinone-enriched HA at low pH values in case of both solids while the influence of parent HA on Np sorption was negligible. This is due to Np(V) reduction upon interaction with hydroquinone-enriched derivative having higher reducing capacity compared to the parent HA. The order of components addition was found to be significant for Np retention

  3. Photo-assisted electrochemical oxidation of the urea onto TiO2-nanotubes modified by hematite

    Directory of Open Access Journals (Sweden)

    Waleed M. Omymen

    2017-12-01

    Full Text Available The electrochemical oxidation of the urea in near neutral pH is investigated on platinum electrode. It is shown that oxidation reaction is practically inhibited up to the potentials of ∼0.9 V. The same reaction is investigated onto electrochemically obtained titanium dioxide nanotubes modified by hematite using facile, low-cost successive ion layer adsorption and reaction (SILAR method. It is shown that such system possesses electrocatalytic activity at very low potentials, and activity can be further improved by the illumination of the electrode in the photo-assisted reaction. The possible application of the photoactive anode is considered in the application of urea based water electrolysis and urea based fuel cell. Keywords: Photoelectrochemical cell, Water electrolysis, Fuel cell, SILAR

  4. AMS Fabric of a CRM in Hematite-Bearing Samples: Evidence of DRMs in Natural Red Beds

    Science.gov (United States)

    Kodama, K. P.

    2002-12-01

    Anisotropy of magnetic susceptibility (AMS) and anisotropy of isothermal remanence (AIR) in red sedimentary rocks both typically show a bedding parallel foliation with minimum axes clustered perpendicular to the bedding plane. Our studies have observed this type of magnetic fabric in red bed units that have a range of ages and come from widespread localities. These units include the Mississippian Mauch Chunk Formation from the Appalachians, the Triassic Passaic Formation from the Newark basin in Pennsylvania, the Cretaceous Kapusaliang Formation from the Tarim basin in China, and the early Mesozoic Kayenta and Chinle Formations from the Colorado Plateau in southwestern North America. Bedding parallel foliations are also observed in magnetite-bearing rocks that carry a depositional remanence (DRM), suggesting the possibility of a DRM in red beds, even though the conventional wisdom is that they carry a post-depositional chemical remanent magnetization (CRM). Before the typical magnetic fabric of red beds can be used to indicate their type of remanence, we must determine what the magnetic fabric of a CRM looks like. For this reason, I conducted a series of hematite-growth experiments following the procedures outlined by Stokking and Tauxe (1987). I grew hematite in the laboratory on stacks of glass-fiber filter papers and in slurries of quartz and kaolinite. The hematite was grown from a ferric nitrate solution heated to 95° C for 8 hours. The samples were then dehydrated in a vacuum at room temperature for approximately 38 hours. It was possible to thermally demagnetize the eight filter paper samples to 350° C, but the six kaolinite-quartz samples were grown in plastic sample cubes and could only be thermally demagnetized to 150° C, enough to remove the thermoviscous magnetization acquired by the samples during the heating at 95° C. The mean CRM acquired by the red-brown magnetic phase grown in the experiments was within its alpha-95 of the steeply inclined

  5. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    Science.gov (United States)

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On the impact of non-sphericity and small-scale surface roughness on the optical properties of hematite aerosols

    International Nuclear Information System (INIS)

    Kahnert, Michael; Nousiainen, Timo; Mauno, Paeivi

    2011-01-01

    We perform a comparative modelling study to investigate how different morphological features influence the optical properties of hematite aerosols. We consider high-order Chebyshev particles as a proxy for aerosol with a small-scale surface roughness, and spheroids as a model for nonspherical aerosols with a smooth boundary surface. The modelling results are compared to those obtained for homogeneous spherical particles. It is found that for hematite particles with an absorption efficiency of order unity the difference in optical properties between spheres and spheroids disappears. For optically softer particles, such as ice particles at far-infrared wavelengths, this effect can be observed for absorption efficiencies lower than unity. The convergence of the optical properties of spheres and spheroids is caused by absorption and quenching of internal resonances inside the particles, which depend both on the imaginary part of the refractive index and on the size parameter, and to some extent on the real part of the refractive index. By contrast, small-scale surface roughness becomes the dominant morphological feature for large particles. This effect is likely to depend on the amplitude of the surface roughness, the relative significance of internal resonances, and possibly on the real part of the refractive index. The extinction cross section is rather insensitive to surface roughness, while the single-scattering albedo, asymmetry parameter, and the Mueller matrix are strongly influenced. Small-scale surface roughness reduces the backscattering cross section by up to a factor of 2-3 as compared to size-equivalent particles with a smooth boundary surface. This can have important implications for the interpretation of lidar backscattering observations.